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Lay summary

Many natural systems are characterised by the presence of multiple timescales. Considering
the whole Universe itself, for instance, stellar phenomena are very slow compared to Earthly
ones, for example compared to how long it takes for Earth to complete a rotation around
the Sun or to how long it takes for Earth to complete a rotation around its axis. The
timescale-separation is even more extreme when such macroscopic phenomena are compared
to microscopic ones, like atomic and subatomic phenomena etc.

However, different timescales are apparent even in smaller, more contained and maybe
closed systems, were the dynamics between different components are not as seemingly un-
related as in the example of Earth’s orbit and atomic particles. Some examples of such
systems include biological systems, were electrical phenomena happen faster than chemical
ones and where even chemical reactions can occur at very different rates, or climate systems,
where pressure, temperature, humidity and other quantities vary at different rates, leading
to complicated meteorological phenomena, like the weather in Scotland.

The focus of this work is the study of a class of dynamical systems, i.e. of mathematical
formulations that are used to model natural systems, that are characterised by the presence
and interaction of three distinct timescales. The aim is to uncover the mechanisms that
distinguish between qualitatively different oscillatory dynamics of the system, explaining,
for instance, why for some particular choices of the parameters of the system only two
timescales seem to manifest themselves, while for other choices of the parameters, all three
timescales seem to manifest themselves in the behaviour of the system.





Abstract

In this work, we are concerned with the dynamics of three-dimensional, three-timescale
systems of ordinary differential equations. Systems with two timescales have been extensively
studied, while the theory of systems with three or more timescales is less developed, although
in some cases they provide more realistic modelling of natural systems. Our focus is on mixed-
mode oscillations (MMOs), i.e., on trajectories which consist of alternating small-amplitude
oscillations (SAOs) and large excursions or large-amplitude oscillations (LAOs). We aim to
understand the underlying mechanisms that are responsible for the qualitative properties of
these trajectories, as well as to classify the various behaviours of these systems upon variation
of their parameters, using geometric singular perturbation theory (GSPT).

In the first part, we present a new prototypical system that captures a geometric mecha-
nism which distinguishes between MMOs that feature SAOs only in one region of the phase
space from those which feature SAOs in two distinct regions of the phase space; we refer
to the former as MMOs with single SAO-epochs and to the latter as MMOs with double
SAO-epochs. In essence, this distinction is based on the relative position of points where
normal hyperbolicity with respect to the fast flow is lost.

In the second part, we show that the Koper model, a well known system from chemical
kinetics, is merely a particular realisation of the prototypical example that we introduced in
the first part. This system has been extensively studied in the two-timescale context, but,
to our knowledge, it has not been studied in the three-timescale context before. We hence
classify its dynamics in dependence of its parameters in the three-timescale context, and we
show that some phenomena that are delicate in the two-timescale setting, like MMOs with
double SAO epochs, become robust in the three-timescale one.

In the third part, we show that the four-dimensional Hodgkin-Huxley equations from
mathematical neuroscience can be reduced to a three-dimensional, three-timescale system.
We then illustrate that, in particular parameter regimes, this system features similar prop-
erties to the prototypical example that we introduced in the first part, and we show how
the theory that we introduced in the previous chapters can be used to explain its behaviour.
From another point of view, we show that the system can be written in the non-standard
form of GSPT, and we show that its oscillatory dynamics can be explained by extending the
notions that we introduced in the previous chapters.

In the fourth part, we study a three-dimensional system that describes the El-Niño South-
ern Oscillation (ENSO) phenomenon. This system has too been extensively studied in the
two-timescale context but not in the three-timescale one. However, this system is more
complicated in terms of its invariant manifold structure compared to the other two systems
mentioned above. Extending some notions from the previous parts and based again on the
relative position of sets where normal hyperbolicity with respect to the fast flow is lost, we
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distinguish between oscillations with different qualitative properties. Moreover, we perform
a desingularisation analysis of the sets where normal hyperbolicity is lost and we give es-
timates on bifurcation-delay phenomena, which are points that had not been addressed in
previous works.

In summary, this work is concerned with local and global phenomena in three-timescale
systems. The focus is (a) on systems that have previously been analysed only in the two-
timescale context, like the Koper and ENSO models, thus exploring the dynamics in the
three-timescale setting, and (b) on systems that have been studied in the multi-timescale
context (more than two) in the past, but not in the GSPT framework, and where the mech-
anisms that encode transitions between qualitatively different behaviours were elusive, like
the Hodgkin-Huxley equations. The various qualitative behaviours depend on the under-
lying geometry of these systems, and the extended prototypical example that we propose
does not only provide a geometric mechanism that is directly applicable to other systems,
like the Koper model and the Hodgkin-Huxley equations, but also, by simple extension of
some notions, provides insight on the dynamics and possible behaviours in three-timescale
systems with more complicated geometry, like the ENSO model. Finally, we remark on some
phenomena that are not robust in the two-timescale setting, but become robust in the three
timescale one.
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Introduction

Mixed-mode oscillations (MMOs) are trajectories that are characterised by the alternation
of small-amplitude oscillations (SAOs) and large-amplitude excursions (LAOs) in the corre-
sponding time series, and are frequently observed in dynamical systems that feature multiple
timescales. Representative MMO trajectories can be seen in Figure 1; each such trajectory
can be associated with a sequence of the form {F0F1 . . .}, called the Farey sequence, that
describes the succession of large excursions and small oscillations, where the segments Fj are
of the form

Fj =

{
Ls if the segment consists of L LAOs, followed by s SAOs “above”;

Ls if the segment consists of L LAOs, followed by s SAOs “below”.

If a Farey sequence consists of Ls-type or Ls-type segments only, we say that the correspond-
ing MMO trajectory contains single epochs of SAOs, as seen in panels (a) and (b) of Figure 1,
respectively; Farey sequences that consist of both Ls-type and Ls-type segments correspond
to MMO trajectories that contain double epochs of SAOs, as shown in Figure 1(c). Finally,
relaxation oscillation refers to oscillatory trajectories that contain large excursions and no
SAO segments, i.e., trajectories with associated Farey sequence {L0}; cf. Figure 1(d).

MMO dynamics has been widely studied in systems with two distinct timescales. Consider
a system of the form

x′ = f(x, y, z), (1a)

y′ = εg(x, y, z), (1b)

z′ = εh(x, y, z), (1c)

with (x, y, z) ∈ R3, ε ∈ R+, and f, g, h : R3 → R smooth, and where the prime denotes
differentiation with respect to time. If the parameter ε is sufficiently small, then the rates
of change of the variables y and z are slower than the rate of change of the variable x, as
can be seen from the RHS of (1). Correspondingly, y and z are then referred to as the slow
variables, x is referred to as the fast variable, and system (1) is said to be a slow-fast system.

Systems of the form of Equations (1) have been extensively studied using Fenichel’s
geometric singular perturbation theory (GSPT) [Fenichel, 1979]. In essence, this approach is
based on finding locally invariant slow manifolds in the phase space of (1), that is, manifolds
on which the dynamics evolves in the timescale of y and z, i.e. the slow timescale. Crudely
speaking, trajectories that evolve along the fast direction are attracted exponentially close
to these manifolds, and then they evolve in the slow timescale until they reach vicinities
where stability changes from attracting to repelling, where we say that normal hyperbolicity
is lost; we make this idea precise in Chapter 1. It is exactly at these regions of the phase
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(a) SAOs “above” (b) SAOs “below”

(c) Double epochs of SAOs (d) Relaxation oscillation

Figure 1: (a) MMO trajectory with single epochs of SAOs and Farey sequence 2s12s22s3 · · · ;
(b) MMO trajectory with single epochs of SAOs and Farey sequence 2s12s22s3 · · · ; (c) MMO
trajectory with double epochs of SAOs and Farey sequence 1s11s21

s31s4 · · · ; (d) relaxation
oscillation.

space where SAOs can occur, followed by large excursions to other attracting portions of the
slow manifold, which give the LAOs.

The geometric theory of MMO dynamics in slow-fast systems with more than two timescales
is less well-developed. Consider a system of the form

x′ = f(x, y, z), (2a)

y′ = εg(x, y, z), (2b)

z′ = εδh(x, y, z), (2c)

with ε, δ > 0 small, and f, g, h smooth. In this case, x is the fast variable, y is the intermediate
variable, and z is the slow variable.

In [Krupa et al., 2008], a prototypical example is considered, namely

x′ = −y + f2x
2 + f3x

3, (3a)

y′ = ε (x− z) , (3b)

z′ = ε2 (µ+ φ(x, y, z)) , (3c)

2



which is a special case of (2), where in particular δ = ε. Asymptotic formulae for the return
map induced by the flow of (3) are derived; in particular, an underlying near-integrable
structure allows for a both qualitative and quantitative description of the corresponding
MMO dynamics which includes predictions on the associated Farey sequences and estimates
for the relevant parameter regimes, see Chapter 2 for more details. In a follow-up article
[De Maesschalck et al., 2016], a two-parameter modification of Equation (3c) is considered,
with ε replaced by an independent parameter δ in (3c); crucially, it is shown that the interplay
between ε and δ can affect the local qualitative properties of MMOs, see Section 2.4 for
details. However, this system is quite restrictive, because, as will become apparent, the
absence of y-terms in (3b) makes it impossible for (3) to fully capture the dynamics of
relevant three-timescale systems from applications, such as the Koper model from chemical
kinetics and the Hodgkin-Huxley equations from mathematical neuroscience described below.

In [Letson et al., 2017], the local canonical form

x′ = y + x2, (4a)

y′ = ε
(
−α2x+ βy + z

)
, (4b)

z′ = εδ, (4c)

was considered. This system has richer local dynamics due to the additional y-terms in the
intermediate equation, cf. (4a) and (3b). However, MMOs are not possible in (4), since the
system lacks a return mechanism, due to the absence of cubic x-terms in the fast equation, cf.
(4a) and (3a); and trajectories that escape the vicinity of the non-hyperbolic region cannot
return, as will become apparent in Chapter 2.

In this work, we introduce an extended prototypical example

x′ = −y + f2x
2 + f3x

3, (5a)

y′ = ε (αx+ βy − z) , (5b)

z′ = εδ (µ+ φ(x, y, z)) , (5c)

which combines features from both the prototypical system (3) and the canonical form (4),
namely:

1. Due to the presence of cubic x-terms in the fast equation (5a), it features a return
mechanism which allows for MMO dynamics, in contrast to the canonical form (4);

2. Due to the presence of y-terms in the intermediate equation (5a), it features richer SAO
dynamics, and also geometric mechanisms that allow for additional global scenarios
compared to the prototypical system (3), in which, for instance, MMOs with double
epochs are not possible, cf. Figure 1 (c);

3. The timescale-separation parameters ε and δ in (5c) are independent.

In Chapter 2, we study the various possible qualitative scenarios of MMO dynamics of
system (5) in dependence of its parameters. One of the main results of this work is the
uncovering of the mechanisms responsible for the transition between MMO scenarios with
different qualitative properties in dependence of the parameters of the system, cf. Figure 1.
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A particular realisation of the extended prototypical example is the Koper model from
chemical kinetics [Koper, 1995]

x′ = ky + 3x− x3 − λ, (6a)

y′ = ε (x− 2y + z) , (6b)

z′ = εδ (y − z) , (6c)

which, after affine transformation, can be written in the form of (5). In Chapter 3, we
therefore show that the results presented in Chapter 2 extend directly to this system. In
particular, we demonstrate that MMOs with double SAO epochs are robust in the three-
timescale context, in contrast to the two-timescale one, where they are very delicate as the
parameter regimes in which they are observed are very narrow [Desroches et al., 2012].

Further, in Chapter 4 we consider the four-dimensional, four-timescale Hodgkin-Huxley
equations from mathematical neuroscience [Hodgkin and Huxley, 1952]. We propose a novel,
three-dimensional reduction of these equations of the form

v′ = U(v, h, n) +O(ε), (7a)

h′ = εδhH(v, h), (7b)

n′ = εδnN(v, h), (7c)

with ε > 0 small, which is based on GSPT. We study the two different cases where ei-
ther h or n is taken to be the slowest variable (by setting δn = 1 and considering 0 <
δh � 1, or δh = 1 and 0 < δn � 1, respectively), and we show that system (7) ex-
hibits the same underlying mechanisms that produce different MMO behaviours and encode
the transitions between them as the extended prototypical example (5) studied in Chap-
ter 2. These two different limits have been considered in previous works [Doi et al., 2001]
and various scenarios have been documented, and here we aim to explain them in the
framework of GSPT. We emphasize that an alternative three-dimensional reduction of the
Hodgkin-Huxley equations has been derived in [Rubin and Wechselberger, 2007], and it is
equivalent in predicting the transitions between qualitatively different behaviours of the sys-
tems in dependence of its parameters when treated as a three-timescale system; however, in
[Rubin and Wechselberger, 2007, Rubin and Wechselberger, 2008], the corresponding three-
dimensional system was treated solely as a two-timescale system, i.e. ε > 0 small and
δh, δn = O(1) in (7).

The final three-timescale system that we are considering in this work is a model that
describes the El-Niño Southern Oscillation (ENSO) phenomenon [Roberts et al., 2016]

x′ = x (x+ y + c(1− tanh (x+ z))) + ρδ(x2 − ax), (8a)

y′ = −ρδ(ay + x2), (8b)

z′ = δ(k − z − x

2
), (8c)

whith ρ, δ > 0 small and c, k, a > 0. To our knowledge, this system has not been previously
studied in the three-timescale context. In this setting, it features richer geometric scenarios
in terms of its slow manifolds compared to the Koper model (6) and the Hodgkin-Huxley
equations (7). Our approach with this system goes in the opposite direction than the one
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with the Hodgkin-Huxley equations (7); that is, we study its geometry in order to gain
insight about possible qualitative properties of MMO trajectories and we then classify those
in dependence of the parameters of the system, instead of attempting to geometrically explain
behaviours that have been documented in previous works. This way, we uncover qualitative
behaviours that have not been observed in previous works.
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Chapter 1

Geometric singular perturbation
theory: basic notions and background

1.1 The standard form of GSPT

Consider the following ODE-system

x′ = f(x, y, ε), (1.1a)

y′ = εg(x, y, ε), (1.1b)

where x ∈ Rm, y ∈ Rn, f, g : Rm+n+1 → R smooth, ε ∈ R+, and where the prime denotes
differentiation with respect to time t. If ε is considered “small”, then the dynamics of (1.1b)
is “slow” compared to the dynamics of (1.1a). Rescaling time as τ = t/ε in (1.1) gives

εẋ = f(x, y, ε), (1.2a)

ẏ = g(x, y, ε). (1.2b)

We then refer to systems (1.1) and (1.2) as the fast and slow formulations, respectively, and
the two systems are equivalent in terms of their phase space.

The main idea behind GSPT, is to view the fast and slow systems (1.1) and (1.2) as
perturbations of two limit or singular systems, namely of the layer problem

x′ = f(x, y, 0), (1.3a)

y′ = 0 (1.3b)

obtained by setting ε = 0 in (1.1), and of the reduced problem

0 = f(x, y, 0), (1.4a)

ẏ = g(x, y, 0). (1.4b)

obtained by setting ε = 0 in (1.2).
System (1.3) corresponds to a family of m one-dimensional ODE problems where t is the

independent variable, x are the dependent variables and y are parameters
The set of equilibria of the m-dimensional layer problem defines the critical manifold

M = {(x, y) ∈ Rm × Rn | f(x, y, 0) = 0} . (1.5)
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The normally hyperbolic subset S of M is defined as the set where the eigenvalues λ(x, y)
of the m ×m Jacobian matrix Dxf(x, y, 0) satisfy <(λ(x, y)) 6= 0. This implies that S has
stable and unstable manifolds Ws(Mε) and Wu(Mε), respectively, with respect to the fast
flow x given by (1.3).

Definition 1 ([Fenichel, 1979]; reformulation from [Kuehn, 2015]). A normally hyperbolic
subset S ⊂ M is called attracting if all eigenvalues of Dxf(x, y, 0) have negative real part
for (x, y) ∈ S; similarly, S is called repelling if all eigenvalues have positive real part. If S
is normally hyperbolic and neither attracting nor repelling, it is of saddle type.

Throughout this work, we will denote the normally hyperbolic and attracting subsets of
M by Sa, and the normally hyperbolic and repelling subsets of M by Sr.

On the other hand, equations (1.4) comprise a differential-algebraic system. Equation
(1.4b) defines the reduced flow on the manifold characterised by the algebraic constraint
(1.4a), i.e. M. A particular example with n = 1 = m is shown in Section 1.4 below.

We emphasize that, although systems (1.1) and (1.2) are topologically equivalent, the
limit systems (1.3) and (1.4) are two distinct problems. That is, at the singular limit ε = 0,
M consists of equilibria of (1.3a), which means that solutions of (1.3a) do not actually reach
M in finite forward or backward time, while (1.4) describes the flow on M. The main
idea behind GSPT is, rather, that information obtained by the two limiting systems can be
combined to give insight about the “perturbed” system (1.1) with ε > 0 small, as follows.

Theorem 1 ([Fenichel, 1979]; reformulation from [Hek, 2010]). Suppose M0 ⊂ M is com-
pact, possibly with boundary, and normally hyperbolic. Then for ε > 0 and sufficiently small,
there exists a manifold Mε, O(ε) close and diffeomorphic to M0, that is locally invariant
under the flow of the full problem (1.1).

Theorem 2 ([Fenichel, 1979]; reformulation from [Hek, 2010]). Suppose M0 ⊂ M is com-
pact, possibly with boundary, and normally hyperbolic. Then for ε > 0 and sufficiently
small, there exist manifolds Ws(Mε) and Wu(Mε), that are O(ε) close and diffeomorphic to
Ws(M0) and Ws(M0), respectively, and that are locally invariant under the flow of (1.1).

Therefore, near normally hyperbolic sets of M, the dynamics of the full system (1.1)
is O(ε) close to the dynamics of the limiting problems (1.3) and (1.4). We will address
the regions where normal hyperbolicity is lost in a following subsection. However, a quite
particular feature of fast-slow systems written in the standard form (1.1) is that, at the
singular limit ε = 0 (1.3), one can identify linear subspaces where the fast dynamics evolve,
by y = const. In the following section, we introduce systems in the “non-standard form”,
where there is no global distinct separation between linear slow and fast subspaces.

1.2 The non-standard form of GSPT

Consider a system of the form

w′ = B(w)H(w) + εP (w, ε), (1.6)
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where w ∈ Rk, B(w) is a k×(k− l)-matrix with column vectors Bi(w) = (Bi
1(w), . . . , Bi

k(w))
with sufficiently smooth functionsBi : Rk → R, i = 1, ..., k−l, H(w) = (H1(w), . . . , Hk−l(w))
is a column vector of sufficiently smooth functions H i : Rk → R, i = 1, . . . , k − l, P (w, ε) =
(P 1(w, ε), . . . , P k−l(w, ε)) is a column vector of sufficiently smooth functions P i : Rk+1 → R,
i = 1, . . . , k − l, ε > 0 small, and where the prime denotes differentiation with respect
to time t. We will further assume that the set given by {H(w) = 0} is an l-dimensional
differentiable manifold, where 1 ≤ l < k; in this case, (1.6) is a singular perturbation problem,
see [Wechselberger, 2020, Definition 3.2].

In particular, we will say that system (1.6) is a slow-fast system written in the non-
standard form of GSPT. Setting ε = 0 in (1.6) gives the k-dimensional layer problem

w′ = B(w)H(w) (1.7)

Equilibria of (1.7) define the critical manifold

M =
{
w ∈ Rk | B(w)H(w) = Ok

}
, (1.8)

where Ok denotes the k-dimensional zero vector. The (k− l)× (k− l) Jacobian matrix of the
linearisation of the layer problem (1.7) aboutM has l trivial eigenvalues λi = 0, i = 1, . . . , l
and a k − l nontrivial ones, corresponding to the eigenvalues of the k − l square matrix

A = 〈∇H,B〉 . (1.9)

Non-stationary solutions of (1.7) will be called the fast fibres; these solutions are k − l
dimensional geometric objects related to their corresponding base points on M. To see
the inherent difference between the layer problem (1.3) and the layer problem (1.7), set
n = 1 = m in the former and k = 2 in the latter; the layer problem (1.3) then becomes
one-dimensional and its solutions are horizontal lines in the xy-plane, while the layer problem
(1.7) is two dimensional and its solutions are in general curves in the plane; therefore,
there are typically no directions in the plane along which solutions of (1.6) are characterised
exclusively as fast or slow.

Definition 2 ([Fenichel, 1979]; reformulation from [Wechselberger, 2020]). An l-dimensional
(sub)manifold S ⊂ M is called normally hyperbolic if all nontrivial eigenvalues (1.9) have
nonzero real part. Such a manifold S is called attracting if all nontrivial eigenvalues have
negative real parts, repelling, if all nontrivial eigenvalues have positive real parts or saddle-
type otherwise.

We emphasise that Theorem 1 and Theorem 2 apply to both the cases of slow-fast sys-
tems written in the standard and in the non-standard form of GSPT, see [Fenichel, 1979,
Wechselberger, 2020] for more details.

1.3 Hierarchy of timescales and iterative reductions

In this section, we study iterative reductions to critical manifolds due to a hierarchy of
timescales. For simplicitly, we will consider three-dimensional systems with three timescales
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written in the standard form:

x′ = f(x, y, z), (1.10a)

y′ = εg(x, y, z), (1.10b)

z′ = εδh(x, y, z), (1.10c)

with ε, δ > 0 sufficiently small. We will say that x is the fast variable, y is the intermediate
variable, and z is the slow variable.

At the singular limit ε = 0, the layer problem of (1.10) is

x′ = f(x, y, z), (1.11a)

y′ = 0, (1.11b)

z′ = 0, (1.11c)

The critical manifold M1 is defined by f(x, y, z) = 0. Rescaling time by a factor of ε in
(1.10) we obtain the slow formulation

εẋ = f(x, y, z), (1.12a)

ẏ = g(x, y, z), (1.12b)

ż = δh(x, y, z), (1.12c)

and the reduced flow on M1 is obtained by setting ε = 0 in (1.12)

0 = f(x, y, z), (1.13a)

ẏ = g(x, y, z), (1.13b)

ż = δh(x, y, z). (1.13c)

We will now show that, maybe in contrast to what one would a priori expect, the reduced
flow on M1 can potentially be a slow-fast system written either in the standard or in the
non-standard form of GSPT, depending on the properties of the function f(x, y, z) in (1.10a).
We will distinguish between two different cases, namely between the case where M1 can be
globally written as a graph of the intermediate variable y over the other two variables x, z,
and the case where M1 can be globally written as a graph of the slow variable z over the
other two variables x, y.

Assume that M1 can be globally written as a graph y = Y (x, z), i.e., without loss of
generality, that f(x, y, z) = −y + Y (x, z). Assume further that there exists a set

FM1 = {(x, y, z) ∈M1 | ∂x [Y (x, z)] = 0} , (1.14)

and that ∂2
x [Y (x, z)] 6= 0 for (x, y, z) ∈ FM1 ; then, FM1 is a fold set that separates the

normally hyperbolic set

S = {∂x [Y (x, z)] 6= 0}

into the attracting and repelling portions

Sa = {(x, y, z) ∈ S | ∂x [Y (x, z)] < 0} , Sr = {(x, y, z) ∈ S | ∂x [Y (x, z)] > 0} .
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Differentiating the algebraic constraint (1.13a) yields

−∂x [f(x, y, z)] ẋ = ∂y [f(x, y, z)] ẏ + ∂z [f(x, y, z)] ż

Making use of (1.12) and of the fact that ∂x [f(x, y, z)] = ∂x [Y (x, z)], ∂y [f(x, y, z)] = −1,
∂z [f(x, y, z)] = ∂z [Y (x, z)], we obtain the reduced flow on S as

−∂x [Y (x, z)] ẋ = −g(x, Y (x, z), z) + δ∂z [Y (x, z)]h (x, Y (x, z), z) , (1.15a)

ż = δh (x, Y (x, z), z) . (1.15b)

Rescaling time by a factor of − (∂x [Y (x, z)])−1 in (1.15) gives

ẋ = −g(x, Y (x, z), z) + δ∂z [Y (x, z)]h (x, Y (x, z), z) , (1.16a)

ż = −δ∂x [Y (x, z)]h (x, Y (x, z), z) ; (1.16b)

this transformation reverses the direction of time on Sr and maintains it on Sa. Away from
FM1 , we have the following observation:

Lemma 1. Assume that f(x, y, z) = −y+Y (x, z) in (1.10) and consider ε, δ > 0 sufficiently
small. Then, the reduced flow on S, equations (1.16), is a slow-fast system written in the
standard form of GSPT.

Assume now that M1 can be globally written as a graph z = Z(x, y), i.e., without loss
of generality, that f(x, y, z) = −z + Z(x, y). Assume further that there exists a set

FM1 = {(x, y, z) ∈M1 | ∂x [Z(x, y)] = 0} , (1.17)

and that ∂2
x [Z(x, y)] 6= 0 for (x, y, z) ∈ FM1 ; then, FM1 is a fold set that separates the

normally hyperbolic set

S = {∂x [Z(x, y)] 6= 0}

into the attracting and repelling portions

Sa = {(x, y, z) ∈ S | ∂x [Z(x, y)] < 0} , Sr = {(x, y, z) ∈ S | ∂x [Z(x, y)] > 0} .

Differentiating the algebraic constraint (1.13a) yields

−∂x [f(x, y, z)] ẋ = ∂y [f(x, y, z)] ẏ + ∂z [f(x, y, z)] ż.

Making use of (1.12) and of the fact that now ∂x [f(x, y, z)] = ∂x [Z(x, y)], ∂y [f(x, y, z)] =
∂y [Z(x, y)], ∂z [f(x, y, z)] = −1, we obtain the reduced flow on S as

−∂x [Z(x, y)] ẋ = ∂y [Z(x, y)] g(x, y, Z(x, y))− δh (x, y, Z(x, y)) , (1.18a)

ẏ = g (x, y, Z(x, y)) . (1.18b)
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Rescaling time by a factor of − (∂x [Z(x, y)])−1 in (1.18) gives

ẋ = ∂y [Z(x, y)] g(x, y, Z(x, y))− δh (x, y, Z(x, y)) , (1.19a)

ẏ = −∂x [Z(x, y)] g (x, y, Z(x, y)) . (1.19b)

this transformation reverses the direction of time on Sr and maintains it on Sa. Using the
the formulation of (1.6), we can write

w′ = B(w)H(w) + δP (w, δ),

where

w =

(
x
y

)
, B(w) =

(
∂y [Z(x, y)]
−∂z [Z(x, y)]

)
, P (w, δ) =

(
h (x, y, Z(x, y))

0

)
,

H(w) = g(x, y, Z(x, y)).

Away from FM1 , we therefore have the following observation:

Lemma 2. Assume that f(x, y, z) = −z+Z(x, y) in (1.10) and consider ε, δ > 0 sufficiently
small. Then, the reduced flow on S, equations (1.19), is a slow-fast system written in the
non-standard form of GSPT.

Therefore, although the full system (1.10) is written in the standard form of GSPT,
it is possible that the reduced flow on the slow manifold M1 is a slow-fast system in the
non-standard form of GSPT.

In following Chapters we will see that the above observations are relevant in applications
from the natural sciences where, either the intermediate and slow variables are swapped based
on the choice of the parameters of the system, see Hodgkin-Huxley equations in Chapter 4,
or the critical manifoldM1 is simply the union of disjoint surfaces, and each expressed as the
graph of a different variable over the others, see a model for the El-Niño Southern Oscillation
phenomenon in Chapter 5

The analysis presented here is focused on the reduced flow on normally hyperbolic re-
gions of M1, which is a slow-fast system itself for δ > 0 sufficiently small. The exis-
tence of additional, one-dimensional critical manifolds at the double singular limit ε =
0 = δ, as well as the existence of corresponding slow manifolds for ε, δ > 0 is studied in
[Cardin and Teixeira, 2017]. In Chapter 2 we outline an alternative approach to showing the
existence and investigating the stability of these manifolds.

In Section 1.4 below, we outline how the the sets FM1 where normal hyperbolicity is lost
are treated using the geometric desingularisation technique known as “blow-up”.

1.4 Non-hyperbolic sets and geometric desingularisa-

tion

At subsets where normal hyperbolicity is lost, one can “gain” hyperbolicity by a proper
change of coordinates; a typical choice is a transformation that “blows-up” degenerate sets to
higher dimensional objects, e.g. points are blown-up to hyperspheres, lines are blown-up to
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hypercylinders, etc. This technique originates from the field of algebraic geometry, and has
been widely used to resolve singularities in non-linear dynamical systems, see for instance
[Anosov et al., 1997].

This method was first used in the slow-fast context by Dumortier and Roussarie in
[Dumortier et al., 1996], and was later formulated in an entry-, rescaling-, exit-chart form
in [Krupa and Szmolyan, 2001a, Krupa and Szmolyan, 2001b, Krupa and Szmolyan, 2001c,
Szmolyan and Wechselberger, 2001, Szmolyan and Wechselberger, 2004] and other works, to
mention but a few.

As described above, the main idea is that degeneracies at sets FM where normal hyper-
bolicity of a critical manifoldM is lost, recall (1.14) and (1.17), can be resolved by replacing
these sets by higher dimensional manifolds. To outline the method, here we will consider the
case where the nonhyperbolic set is a point, replaced by a hypersphere.

Consider a vector field

ẇ = f(w),

where w ∈ Rk and f : Rk → Rk smooth, and assume that w = 0 is a nonhyperbolic point;
in particular, for the sake of simplicity, assume that the Jacobian matrix of the linearisation
about the origin is a nilpotent matrix. Consider now a transformation

Φ : B → Rk,

(r, w̄1, · · · , w̄k) 7→ (ra1w̄1, · · · , rakw̄k);
(1.20)

here, B = [0,∞)× Sk−1 and Sk−1 =
{

(w̄1, . . . , w̄k) ∈ Rk |
∑k

j=1 w̄
2
j = 1

}
, and (a1, . . . , ak) ∈

Nk. The map Φ is a diffeomorphism for r > 0, and its inverse “blows-up” the origin in
Rk to {0} × Sk−1 or, alternatively viewed, replaces it by the real projective space RPk−1

[Anosov et al., 1997]. Denoting by X the vector field defined by ẇ = f(w), a vector field X̄
is defined on B via Φ∗X̄ = X, where Φ∗ is the push-forward induced by Φ. The corresponding
commutative diagram is illustrated in Figure 1.1 (a).

(a) (b)

Figure 1.1: Commutative diagrams for the general blow-up method (a) for the induced vector
field, (b) for the directional charts κi.

Instead of using spherical coordinates to study the dynamics of the vector field X̄ on
Sk−1, it is typically more convenient to use directional charts

κi : B → Rk, with i ∈ I, B =
⋃
i

Bi,
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and then the map Φ induces vector fields Xi on Bi for all i ∈ I. The directional blow-ups Φi,
i = 1, . . . , 2k, are then obtained by setting w̄i = ±1, i = 1, . . . , 2k in (1.20), and the direc-
tional charts κi, i = 1, . . . , 2k, are defined such that the diagram in Figure 1.1 (b) commutes.
The charts κi then cover Sk by planes perpendicular to the axes, and in every chart κi, the
blown-up vector field X̄ is described by a vector fieldXi [Szmolyan and Wechselberger, 2001].

We will now illustrate the above idea for the simple case of the planar fold point from
[Krupa and Szmolyan, 2001a]. Consider the two-dimensional slow-fast system

x′ = −y + x2 (1.21a)

y′ = −ε (1.21b)

which is obtained by setting n = 1 = m, f(x, y, ε) = −y + x2 and g(x, y, ε) = −1 in (1.1).
The critical manifold is given by M = {y = x2}. At the origin, there holds that

f(0, 0, 0) = 0, fx(0, 0, 0) = 0,

therefore M is not normally hyperbolic there.
One can then augment system (1.21) by including ε as a dynamic variable

x′ = −y + x2, (1.22a)

y′ = −ε, (1.22b)

ε′ = 0 (1.22c)

and consider a transformation Φ : B → R3,

x = rx̄, y = r2ȳ, ε = r3ε̄, (1.23)

where B = [0,∞)× S2, S2 = {(x̄, ȳ, ε̄) ∈ R3 | x̄2 + ȳ2 + ε̄2 = 1}. The map Φ is a diffeomor-
phism for r > 0, and its inverse blows-up the origin in R3 to a hypershpere as shown in
Figure 1.2. Denoting by X the vector field defined by (1.22), a vector field X̄ is defined on
B via Φ∗X̄ = X, where Φ∗ is the push-forward induced by Φ.

The directional charts κ1 and κ3 are then obtained by setting {ȳ = 1} and {x̄ = 1}, respec-
tively, and they describe the dynamics in neighbourhood of parts of the equator {ε̄ = 0}; they
are called the entry and exit chart, respectively. The chart κ2, obtained by setting {ε̄ = 1},
describes a neighbourhood of the upper hemisphere, and is called the rescaling chart. The
corresponding directional blow-up transformation Φi : R3 → R3 in each chart κi is given by

κ1 : x = r1x1, y = r2
1, ε = r3

1ε1, (1.24a)

κ2 : x = r1x1, y = r2
1y1, ε = r3

1, (1.24b)

κ3 : x = x1, y = r2
1y1, ε = r3

1ε1. (1.24c)

The transformations (1.24a), (1.24b), and (1.24c) are then inserted in (1.22), and three
individual systems are obtained. Once the dynamics in each one of these systems has been
resolved, they can be glued together via the changes of coordinates

• κ12 : κ1 → κ2,

x2 = x1ε
−1/3
1 , y2 = ε

−2/3
1 , r2 = r1ε

1/3
1 , (1.25)
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(a) (b) (c)

Figure 1.2: Blow-up analysis of the planar fold point of (1.22). Panel (a) illustrates the
geometry of (1.22) at the singular limit ε = 0, where the system admits a critical manifold
M which is normally hyperbolic at S = Sa ∪ Sr but not a the origin. Panel (b) illustrates
the sphere S2 introduced by the transformation (1.23) and the relevant directional charts κ1,
κ2, κ3 to cover the dynamics. Panel (c) illustrates the dynamics of the “perturbed” system
(1.22) with ε > 0 small.

• κ23 : κ2 → κ3,

r3 = r2y
−1/2
2 , y3 = y2x

−2
2 , ε3 = x−3

2 , (1.26)

which follow easily from (1.24), and then the global picture of the original system (1.22) is
obtained, cf. Figure 1.2 and see [Krupa and Szmolyan, 2001a] for details.

Some examples of desingularisation of higher dimensional objects, where, for instance,
lines are blown-up to hypercylinders, are included in [Szmolyan and Wechselberger, 2004,
Kosiuk and Szmolyan, 2016]. For the rest of this section, we focus on the phenomena that
can occur near such sets in three-dimensional slow-fast systems with one fast variable and
two slow ones, before addressing systems with three-timescales in Chapter 2.

1.5 Relaxation oscillations in R3

In this section we discuss two-timescale relaxation oscillations (ROs) in three-dimensional
systems in the formulation of [Szmolyan and Wechselberger, 2004]. Relaxation oscillations
are a type of nonlinear oscillations that, in two-timescale systems, consist of alternating fast
and slow segments, cf. Figure 1.3 panel (b). To this end, we recall system (1.10) with δ = 1
and ε > 0 sufficiently small therein, so that it has one fast variable x and two slow variables
(y, z); this yields

x′ = f(x, y, z) (1.27a)

y′ = εg(x, y, z) (1.27b)

z′ = εh(x, y, z) (1.27c)

In the following, we outline the necessary assumptions on (1.27) so that the system
features relaxation oscillations, as described in [Szmolyan and Wechselberger, 2004]
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Assumption 1. The critical manifold S is S-shaped, i.e.

S = Sa− ∪ L− ∪ Sr ∪ L+ ∪ Sa+

with attracting outer branches

Sa∓ ,Sa− ∪ Sa+ := {(x, y, z) ∈ S | fx(x, y, z) < 0}

a repelling branch

Sr := {(x, y, z) ∈ S | fx(x, y, z) > 0}

and fold-curves

L∓,L− ∪ L+ := {(x, y, z) ∈ S | fx(x, y, z) = 0, fxx(x, y, z) 6= 0} .

A fairly simple and typical example of a function on the RHS of (1.27a) that satisfies
Assumption 1 is f(x, y, z) = −y + f2x

2 + f3x
3, with f2 < 0, f3 > 0; the fold lines are

then given by L− = {x = 0}, L+ = {x = −2f2/(3f3)}, and separate Sr from Sa− and Sa+

respectively, see Figure 1.3.

(a) (b)

Figure 1.3: Schematic illustration of the emergence of relaxation oscillation trajectories in
(1.27). (a) singular geometry and singular cycle, (b) corresponding time series.

Assumption 2. The fold-curves L∓ are given as graphs (x∓(z), y∓(z), z), z ∈ I∓ for certain
intervals I∓. The points p ∈ L∓ of the fold curves are jump points, i.e.

l(p) :=

(
fy
fz

)
·
(
g
h

) ∣∣∣∣
p∈L∓

6= 0 (1.28)

and the reduced flow near the fold-curves is directed towards the fold-curves.

Equation (1.28) is called the transversality condition or the normal switching condition,
and its interpretation is that the projection of the reduced flow onto the yz-plane is not
tangent to L∓.

We denote by P (L∓) ⊂ Sa± the projection along the fast fibres of the fold-curve L∓ on
the corresponding opposite attracting branch Sa± .
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Assumption 3. The reduced flow is transversal to the curve P (L∓|I∓) ⊂ Sa±.

We now introduce the concept of singular orbits or candidate trajectories. Such orbits
are piecewise smooth curves that consist of slow segments Γ∓a ⊂ Sa

∓
that are solutions of

the reduced flow on Sa∓ , recall (1.16), and of fast segments Γ∓f that connect the above slow
segments from L∓ to P (L∓).

Assumption 4. There exists a singular periodic orbit Γ = Γ−a ∪ Γ−f ∪ Γ+
a ∪ Γ+

f .

Therefore, in order to have a trajectory with slow and fast segments in the perturbed
system (1.27) with ε > 0 small, the existence of a singular periodic orbit with such segments
needs to be established at the limit ε = 0. The final assumption, which concerns this periodic
orbit is that:

Assumption 5. The singular periodic orbit Γ is hyperbolic.

The hyperbolicity property is with respect to a one-dimensional map π− : Σ− → Σ−

induced by the reduced flow on Sa∓ , see Section 2.3 and [Szmolyan and Wechselberger, 2004]
for details. In essence, it means that, locally, Γ is either the α- or the ω-set of nearby singular
trajectories.

Assumption 1 to Assumption 5 are illustrated in Figure 1.3, and yield the following result.

Theorem 3 ([Szmolyan and Wechselberger, 2004]). Assume that system (1.27) satisfies As-
sumption 1 to Assumption 5. Then there exists a locally unique, hyperbolic relaxation orbit
of system (1.27) close to the singular orbit Γ for sufficiently small values of ε.

The result outlined here concerns two-timescale relaxation oscillations in inherently two-
timescale systems of the form (1.27) with ε > 0 sufficiently small, or, equivalently, of (1.10)
with ε > 0 sufficiently small and δ = 1. In Chapter 2, using Theorem 3, we will show that
such cycles can exist in inherently three-timescale systems of the form of (1.10) with ε, δ > 0
sufficiently small.

1.6 Folded singularities and canards in R3

Consider system (1.27) and assume that at the origin there holds that

l(0, 0, 0) = 0,

recall the transversality condition (1.28). The origin is then called a canard point, see
[Szmolyan and Wechselberger, 2001]. System (1.27) can be locally written as

εẋ = y + x2 +O
(
y2, x, x3, xyz

)
, (1.29a)

ẏ = cx+ bz +O
(
y, (x+ z)2

)
, (1.29b)

ż = a+O (x+ y + z) ; (1.29c)

it can be easily seen that, at the singular limit ε = 0, it has a critical manifold S = Sa ∪Sr,
where Sa = {x < 0}, Sr = {x > 0}. For ε > 0 sufficiently small, Sa,r perturb to locally
invariant slow manifolds Sa,rε .
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The reduced flow on S is given by

ẋ = cx+ bz +O
(
(x+ z)2

)
, (1.30a)

ż = −2ax+O(xz, x2), (1.30b)

recall (1.16), and it reverses orientation on Sr and maintains it on Sa.

Lemma 3. For c < 0, the origin is an equilibrium of the desingularised system (1.30a) of
the following type

ab < 0,

ab = 0,

0 < 8ab < c2,

8ab = c2,

c2 < 8ab,

λ1 < 0 < λ2,

λ1 < 0 = λ2,

λ1 < λ2 < 0,

λ1 = λ2 < 0,

< (λi} < 0,

saddle,

saddle-node,

node,

degenerate node,

focus.

(1.31)

Phase portraits of some of the equibria outlined in Lemma 3 are illustrated in Figure 1.4.
The orbits Γ1 illustrated therein are the unique solutions that correspond to the strong
stable manifold (or the stable manifold, in case of a folded saddle) that passes through the
origin in each case. Solutions of the reduced problem passing through a canard point from
an attracting critical manifold to a repelling critical manifold are called singular canards
[Szmolyan and Wechselberger, 2001]. Moreover, the intersections of the slow manifolds Sa,rε
are called maximal canards. Note that FSN I corresponds to the case where a 6= 0, b = 0,
and FSN II corresponds to the case where a = 0, b 6= 0, while there exists also the type
of FSN III which assumes slightly different structure in (1.29), see [Roberts et al., 2015] for
details.

(a) folded saddle (b) folded node (c) FSN I (d) FSN II

Figure 1.4: Phase portraits of (1.30a), in accordance with the classification of Lemma 3.

Of interest in this work will be folded nodes (FN), and folded saddle-nodes of type II (FSN
II), due to the existence of maximal canards in the perturbed system ε > 0 sufficiently small.
In the case of FN, the singular strong canard Γ1 always perturbs to a maximal strong canard
solution for ε > 0 sufficiently small. Moreover, the singular canard solution corresponding
to the weak eigendirection perturbs to a maximal weak canard for ε > 0 sufficiently small,
provided that µ2 := λs/λw /∈ N, where λs and λw are the strong and weak eigenvalues of the
canard point, respectively; see [Szmolyan and Wechselberger, 2001].
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In the case of FSN II, the singular strong canard Γ1 always perturbs to a maximal
strong canard solution for ε > 0 sufficiently small. Moreover, the singular canard solution
corresponding to the weak eigendirection perturbs to a maximal weak canard for ε > 0
sufficiently small, under additional conditions on a, b, c, see [Krupa and Wechselberger, 2010]
for details.

The existence of maximal canards is of interest because, when trajectories approach
their vicinity, the latter can potentially undergo small-amplitude oscillations (SAOs), before
they escape following the fast flow. In the FN case, depending on the values of a, b, c,
trajectories are trapped in sectors of weak canards, which determine the number of SAOs
[Wechselberger, 2005]. In the FSN II case, trajectories undergo bifurcation delay, which can
result in a different kind of SAOs [Krupa and Wechselberger, 2010]. The above, combined
with appropriate return mechanisms, could lead to mixed-mode oscillations (MMOs), i.e.
trajectories that consist of alternating SAOs and large amplitude oscillations (LAOs); MMOs
have been extensively studied in the two timescale setting and some representative works
include [Wechselberger, 2005, Brøns et al., 2006, Krupa et al., 2008, Desroches et al., 2012],
to mention but a few.

The theory of MMOs in systems with three timescales, which is the main focus of this
work, is relatively recent and less well-developed; some examples include [Vo et al., 2013,
De Maesschalck et al., 2016, Desroches and Kirk, 2018]. In [Letson et al., 2017], a novel type
of folded singularity is introduced via a local analysis of a variation of (1.29), where z is as-
sumed to evolve on a slower timescale; this singularity is called the canard-delayed-Hopf
singularity (CDH), and features characteristics of both a(n) FN and a(n) FSN II. By ex-
tending the local system studied in [Letson et al., 2017] to include global return mechanisms
that allow MMOs, in Chapter 2 we study the properties of MMOs in the three-timescale
setting, as well as any effect that these additional terms might have locally, extending some
results from [Letson et al., 2017]. In Chapter 3 and Chapter 4, we show how the theory that
we develop in Chapter 2 can be used to explain documented behaviours of the Koper model
from chemical kinetics and the Hodgkin-Huxley equations from mathematical neuroscience,
respectively, and in Chapter 5 we show how this theory can be used or extended in order to
gain a priori insight on the behaviour of a system modelling the El Niño Southern Oscillation
phenomenon.
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Chapter 2

Three-timescale systems: an extended
prototypical example

2.1 Introduction

The main purpose of this work is to understand the mechanisms that produce different
MMO behaviours in three-timescale systems, motivated by systems from applications, like
the Koper model from chemical kinetics Chapter 3 and the Hodgkin-Huxley equations from
mathematical neuroscience Chapter 4. To this end, a natural first step would be to consider
the prototypical three-timescale system introduced in [Krupa et al., 2008]

εẋ = −y + f2x
2 + f3x

3, (2.1a)

ẏ = x− z, (2.1b)

ż = ε (µ+ φ(x, y, z)) , (2.1c)

and investigate whether it can capture the dynamics of these two systems. As became ap-
parent a posteriori, however, system (2.1) is not general enough in order to successfully
capture the dynamics of these systems. Therefore, here we introduce an extended prototyp-
ical example, which, as will become apparent, captures the geometric mechanisms that are
responsible for the various different qualitative behaviours and transitions between them in
the aforementioned systems from applications.

In particular, we introduce the family of three-dimensional singularly perturbed systems
of the form

εẋ = −y + f2x
2 + f3x

3 =: f(x, y, z), (2.2a)

ẏ = αx+ βy−z =: g(x, y, z), (2.2b)

ż = δ (µ+ φ (x, y, z)) =: δh(x, y, z), (2.2c)

with f2, ε, and δ positive and f3 negative; moreover, φ : R3 → R is a smooth function
in (x, y, z) that will be specified further in the following. When ε and δ are sufficiently
small, Equation (2.2) exhibits dynamics on three distinct timescales; the variables x, y, and
z are then called the fast, intermediate, and slow variables, respectively. Correspondingly,
Equations (2.2a), (2.2b), and (2.2c) are called the fast, intermediate, and slow equations,
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respectively. We remark that the extended prototypical example (2.2) can be viewed as
combining the prototypical system (2.1) with the local canonical form

x′ = y + x2, (2.3a)

y′ = ε
(
−α2x+ βy + z

)
, (2.3b)

z′ = εδ, (2.3c)

introduced in [Letson et al., 2017], which, however, although it features richer local dynamics
compared to (2.1) because of the presence of y-terms in (2.3b), it lacks a return mechanism
and therefore MMO trajectories are not possible, due to the absence of cubic x-terms in
(2.3a).

Our principal aim in this Chapter is a classification of the MMO dynamics in Equa-
tion (2.2) in the three-timescale scenario where ε and δ are sufficiently small, on the basis
of Fenichel’s geometric singular perturbation theory (GSPT) [Fenichel, 1979]. While the un-
derlying local and global mechanisms that can generate SAOs and LAOs, respectively, in
singularly perturbed systems of the type in Equation (2.2) are known in the two-timescale
context, here we study the combination of those in the context of three-timescales. Our focus
is on local and global bifurcations of the resulting MMO trajectories which encode transitions
between the corresponding Farey sequences, as illustrated in Figure 1: we construct families
of singular cycles for Equation (2.2) in the double singular limit of ε = 0 = δ; then, we study
the persistence of these families for ε and δ sufficiently small, and we show how the MMO
dynamics of (2.2) can be classified in dependence of the underlying singular geometries –
denoted as “remote”, “aligned”, or “connected”.

One of our main results is the classification of that dynamics for Equation (2.2), as
summarised in the bifurcation diagram in Figure 2.1: we identify subregions in the µ-
parameter space which correspond to the various Farey sequences illustrated in Figure 1.
Moreover, we derive asymptotic approximations for the boundaries between those subre-
gions, which are marked by transitions between the above singular geometries, as well as
by bifurcations of the associated fast subsystems; see Section 2.3 for details. Of partic-
ular interest here are MMOs that exhibit double epochs of perturbed slow dynamics, as
shown in panel (c) of Figure 1; while such MMOs were reported in [Desroches et al., 2012,
Curtu and Rubin, 2011] in the context of two-timescale systems, they were found to be highly
delicate there [Desroches et al., 2012, Figures 16 and 22], whereas they are relatively robust
in the three time-scale context. Our analysis provides a clear geometric explanation for the
transition from MMOs with single epochs of SAOs to those with double epochs, as well as for
the robustness of the latter. We showcase our results in two examples, the Koper model from
chemical kinetics and the Hodgkin-Huxley equations from mathematical neuroscience, in
Chapter 3 and Chapter 4, respectively. In particular, the Koper model, Equation (6), has typ-
ically been treated as a two-timescale system with one fast and two slow variables, with δ = 1
in (6c); while the corresponding MMO trajectories are induced by a folded node, and are
highly regular [Desroches et al., 2012, Guckenheimer and Lizarraga, 2015, Kuehn, 2011], our
three-timescale analysis near folded saddle-nodes of type II [Szmolyan and Wechselberger, 2001]
in (2.2) uncovers rich MMO dynamics which is not captured by the conventional two-scale
approach.

As will become apparent through our analysis, Equation (2.2) exhibits properties of
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(a) α
β ≥

2f22
9f3

(b) α
β <

2f22
9f3

Figure 2.1: Dynamics of Equation (2.2) with f2, f3, α, and β fixed and ε, δ > 0 sufficiently
small: the µ-values µo, µc distinguish between oscillatory dynamics and steady-state be-

haviour. When α
β
≥ 2f22

9f3
, the singular geometry of system (2.2) is such that double epochs of

perturbed slow dynamics occur for ε, δ > 0 sufficiently small, as shown in panel (a). When
α
β
<

2f22
9f3

, the singular geometry of system (2.2) is such that there exist two values µ∓r which
separate MMOs with single epochs of SAOs from relaxation oscillation, in dependence of the
properties of φ(x, y, z) in (2.2c); see panel (b).

both (2.1) and (2.3); however, it captures a plethora of phenomena that are not cap-
tured by either of those systems, as discussed in detail in Section 2.3. Specifically, due
to the absence of a linear term in y in (2.1b), the intermediate dynamics therein is regu-
lar, which implies that the so-called supercritical manifold considered in [Krupa et al., 2008,
De Maesschalck et al., 2016] admits no degeneracies; the fact that no cubic x-dependence
is present in (2.3a), on the other hand, diminishes the global applicability of results in
[Letson et al., 2017] due to the lack of a return mechanism.

The Chapter is organised as follows. In Section 2.2, we describe the geometry of the three-
time-scale Equation (2.2) in the double singular limit of ε = 0 = δ: we define critical and
supercritical manifolds; then, we construct families of singular cycles which form the basis for
MMO analysis of Equation (2.2). In Section 2.3, we study the singularly perturbed system
in (2.2) for ε and δ sufficiently small; we classify the MMO dynamics of (2.2), as illustrated
in Figure 1, by establishing a correspondence with the cycles constructed in Section 2.2. We
summarise the properties of MMO dynamics in the three-timescale context in Section 2.5. In
Section 2.6 we perform a blow-up analysis in the vicinity of the singularity at q− in accordance
with [Letson et al., 2017] and we point out differences in local behaviours between (2.3) and
(2.2), due to the presence of cubic terms in (2.2a). In Section 2.7 we analyse the case where
the fold point of the supercritical manifold lies on the fold line of the critical manifold, cf.
Figure 2.8 panel (b).
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2.2 The double singular limit: geometry and singular

cycles

In this section, we study the double singular limit of ε = 0 = δ in Equation (2.2). To that
end, we first describe the singular geometry for ε = 0; then, we consider the resulting flow in
the limit of δ → 0. Finally, we construct singular cycles which will form the basis of MMO
trajectories for Equation (2.2) when ε and δ are sufficiently small, as considered in Section
2.3 below.

2.2.1 The critical manifold M1

For ε sufficiently small and δ = O(1) fixed, Equation (2.2) is singularly perturbed with
respect to the small parameter ε; in particular, (2.2) describes the dynamics in terms of the
intermediate time t. Rewriting the governing equations in the fast time τ = t/ε, we have

x′ = −y + f2x
2 + f3x

3, (2.4a)

y′ = ε (αx+ βy−z) , (2.4b)

z′ = εδ (µ+ φ (x, y, z)) , (2.4c)

which is a two-timescale system with one fast variable x and two slow variables y and z. The
reduced problem of the above is obtained by setting ε = 0 in (2.2),

0 = −y + f2x
2 + f3x

3, (2.5a)

ẏ = αx+ βy−z, (2.5b)

ż = δ (µ+ φ (x, y, z)) , (2.5c)

while the layer problem is found for ε = 0 in (2.4):

x′ = −y + f2x
2 + f3x

3, (2.6a)

y′ = 0, (2.6b)

z′ = 0. (2.6c)

We will refer to the flow that is induced by the one-dimensional vector field in Equation (2.6)
as the fast flow ; the corresponding trajectories will be denoted as the fast fibres. The critical
manifold M1 for (2.2) is a set of equilibria for (2.6), and is given by

M1 :=
{

(x, y, z) ∈ R3
∣∣ f(x, y, z) = 0

}
=
{

(x, y, z) ∈ R3
∣∣ y = F (x)

}
, (2.7)

where we define

F (x) = f2x
2 + f3x

3. (2.8)

The manifold M1 can be written as M1 = Sa ∪ Sr ∪ FM1 , where

Sa =

{
(x, y, z) ∈ S

∣∣∣ ∂f
∂x

(x, y, z) < 0

}
and Sr =

{
(x, y, z) ∈ S

∣∣∣ ∂f
∂x

(x, y, z) > 0

}
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are normally attracting and normally repelling, respectively, whereas FM1 is degenerate due
to a loss of normal hyperbolicity:

FM1 :=

{
(x, y, z) ∈M1

∣∣∣ ∂f
∂x

(x, y, z) = 0

}
=
{

(x, y, z) ∈M1

∣∣ 2f2x+ 3f3x
2 = 0

}
. (2.9)

In particular, we may write FM1 = L− ∪ L+, where

L− =
{

(x, y, z) ∈ R3
∣∣ x = 0 = y

}
and L+ =

{
(x, y, z) ∈ R3

∣∣∣ x = −2

3

f2

f3

, y =
4

27

f 3
2

f 2
3

}
;

(2.10)

hence, it follows that Sa = Sa− ∪ Sa+ , with

Sa− = {(x, y, z) ∈ S | x < 0} and Sa+ =

{
(x, y, z) ∈ S

∣∣∣ x > −2

3

f2

f3

}
, (2.11)

while

Sr =

{
(x, y, z) ∈ S

∣∣∣ 0 < x < −2

3

f2

f3

}
. (2.12)

The set S therefore consists of a repelling middle sheet Sr and two attracting sheets Sa
∓

that meet Sr along L±, respectively; see Figure 2.2. From the above, it is apparent that
L− always coincides with the z-axis, whereas variation in f2 and f3 translates L+, therefore
“stretching” or “compressing”M1. (Clearly, variation in α, β and µ has no effect on the
geometry of M1.) Finally, the elements of the sets Q∓ defined by

Q∓ =
{

(x, y, z) ∈ L∓ | f(x, y, z) = 0 = g(x, y, z)
}

are called the folded singularities ofM1 on L∓, respectively [Szmolyan and Wechselberger, 2001];
for (2.2), these sets are the singletons Q− = {q−} and Q+ = {q+}, with

xq− = 0, yq− = 0, zq− = 0, (2.13a)

xq+ = −2f2

3f3

, yq+ =
4f 3

2

27f 2
3

, zq+ =
4βf 3

2

27f 3
3

− 2αf2

3f3

.. (2.13b)

Finally, we consider the reduced problem on M1, as given by (2.5), with δ sufficiently
small; Equation (2.5) is then singularly perturbed with respect to the small parameter δ,
written in the intermediate time t. To classify the folded singularities q∓ of M1, we project
the flow of (2.5) onto M1 [Szmolyan and Wechselberger, 2001]: using the algebraic repre-
sentation of M1 f(x, y, z) = 0, we can apply the chain rule to find

−fxx′ = fyy
′,

where fx = (2f2x+ 3f3x
2) and fy = −1 from (2.5). We therefore obtain

−fxx′ = −αx− βF (x)+z, (2.14a)

z′ = δ (µ+ φ (x, F (x), z)) (2.14b)

26



(a) (b)

Figure 2.2: (a) The critical manifold M1 as the set of equilibria for the fast flow of (2.6);
the fast fibres are parallel to the x-direction. (b) The supercritical manifold M2 as the set
of equilibria for the intermediate flow of (2.19); the intermediate fibres are confined to M2

and evolve on planes with z = const.

or

x′ = −αx− βF (x)+z, (2.15a)

z′ = −δfx (µ+ φ (x, F (x), z)) (2.15b)

after a rescaling of time with a factor of fx, which reverses the direction of the flow on
Sr. The folded singularities of Equation (2.2) then correspond to equilibria of (2.15). The
eigenvalues of the latter are given by

λs,w =
1

2

(
−α−

√
α2 − 8δf2µ

)
.

Therefore, for δ > 0 sufficiently small, the folded singularities q∓ are folded nodes
[Szmolyan and Wechselberger, 2001, Letson et al., 2017]. Their strong and weak stable man-
ifolds define “funnel regions” on the corresponding sheets Sa∓ , which essentially determine
the basins of attraction to q∓ on Sa∓ . Here and in the following, we focus on the flow of
Equation (2.2) in the vicinity of the fold line L−; with regard to the strong stable manifold
of the folded node q−, we hence have the following result:

Lemma 4. Let

G (x0, x1; z0;µ) =

∫ x1

x0

F ′(σ) (µ+ φ (σ, F (σ), z0))

ασ + βF (σ)− z0

dσ, (2.16)

where F is defined as in (2.8). Then, for δ sufficiently small, the strong stable manifold of
the origin in Equation (2.15) can be written as the graph

z = δG(0, x; 0, µ) +O(δ2) for x ∈ I, (2.17)

where I is an appropriately defined, fixed interval about x = 0.
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Proof. Given a trajectory of (2.15) with initial condition (x0, y0, z0) on Sa∓ , i.e., with y0 =
F (x0), let s denote the displacement in the x-direction of that trajectory under the corre-
sponding flow. Then, in a first approximation, the displacement in the z-direction is given
by δG (x0, x0 + s; z0;µ), where G is defined as in (2.16); see [Krupa et al., 2008] for details.
The result is obtained by setting x0 = 0 = z0 in the resulting expression, which corresponds
to the unique trajectory of (2.15) that passes through the origin.

An analogous representation can be obtained for the strong stable manifold of the folded
node q+. From the above, we conclude in particular that the funnels of the folded sin-
gularities q∓ are “stretched” as δ decreases. In the limit of δ = 0, q∓ are folded saddle-
nodes (FSN); see again Section 1.6 and [Szmolyan and Wechselberger, 2001] for details. In
[Letson et al., 2017], this has been identified as a novel FSN singularity and has been distin-
guished from the other FSN types, because the vanishing parameter δ is independent from
ε; this singularity has therefore been called the canard-delayed-Hopf singularity (CDH). Lo-
cally, the CDH singularity of (2.2) is qualitatively similar to that of (2.3), and we elaborate
on the quantitative differences due to the higher order terms in the former, as well as their
implications for global phenomena, in Section 2.4 and Section 2.6. For future reference, we
note that the associated strong manifolds (“strong canards”) correspond to the unique inter-
mediate fibres on Sa∓ that cross q∓, respectively, while the corresponding weak manifolds
(“weak canards”) can be locally approximated by the supercritical manifold M2 which is
introduced in the following subsection [Letson et al., 2017].

2.2.2 The supercritical manifold M2

We can view the differential-algebraic systems in (2.5) and (2.15) as slow-fast vector fields
on M1. The layer problem corresponding to (2.5) therefore reads

0 = −y + f2x
2 + f3x

3, (2.18a)

ẏ = αx+ βy−z, (2.18b)

ż = 0 (2.18c)

or

0 = −y + F (x), (2.19a)

−fxx′ = −αx− βF (x)+z, (2.19b)

ż = 0; (2.19c)

we will refer to the above as the intermediate flow, and to the corresponding trajectories as
the intermediate fibres ; see panel (b) of Figure 2.2.

Rewriting Equation (2.2) in the slow time s = δt, we have

εδx′ = −y + f2x
2 + f3x

3, (2.20a)

δy′ = (αx+ βy−z) , (2.20b)

z′ = δ (µ+ φ (x, y, z)) ; (2.20c)
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the reduced system that is obtained from (2.20) is given by

0 = −y+F (x), (2.21a)

0 = αx+ βF (x)−z, (2.21b)

z′ = µ+ φ (x, F (x), z) , (2.21c)

which we will refer to as the slow flow of Equation (2.2). The supercritical manifold M2 is
the set of equilibria for (2.19), and is given by

M2 : =
{

(x, y, z) ∈ R3
∣∣ f(x, y, z) = 0 = g(x, y, z)

}
=
{

(x, y, z) ∈M1

∣∣ z = G(x)
}
,
(2.22)

where we define

G(x) = αx+ βF (x). (2.23)

The manifold M2 can be written as the union M2 = Z ∪ FM2 , where

Z =

{
(x, y, z) ∈M2

∣∣∣ dg
dx

(x, F (x), G(x)) 6= 0

}
(2.24)

is normally hyperbolic, and the set

FM2 : =

{
(x, y, z) ∈M2

∣∣∣ dg
dx

(x, F (x), G(x)) = 0

}
=
{

(x, y, z) ∈M2

∣∣ α + 2βf2x+ 3βf3x
2 = 0

} (2.25)

is degenerate. Equation (2.25) implies FM2 = {p−, p+}, with

p∓ =
{

(x, y, z) ∈M2

∣∣ x = xp∓
}
, (2.26)

where

xp∓ =
−βf2±

√
β2f 2

2 − 3αβf3

3βf3

, yp∓ = F (xp∓) , and zp∓ = G (xp∓) . (2.27)

The points p∓ are called the fold points of M2. Equation (2.27) immediately implies

Proposition 1. The manifold M2 admits

1. exactly two fold points if and only if β2f 2
2 − 3αβf3 > 0;

2. exactly one fold point if and only if β2f 2
2 − 3αβf3 = 0; and

3. no fold points if and only if β2f 2
2 − 3αβf3 < 0.

Remark 1. Under the conditions stated in Proposition 1, the fold points p∓ of M2 are “in-
herited” from the fold lines L∓ of M1, in the sense that G(x) in (2.22) is a cubic polynomial
because F (x) in (2.7) is.
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We note that a necessary (but not sufficient) condition for M2 to have two fold points
is the requirement that β 6= 0. If M2 admits two fold points, then the normally hyperbolic
portion Z of M2 consists of three branches: Z = Z− ∪ Z0 ∪ Z+, where

Z− =
{

(x, y, z) ∈ Z | x < x−p
}
, Z+ =

{
(x, y, z) ∈ Z | x > x+

p

}
, and

Z0 =
{

(x, y, z) ∈ Z | x−p < x < x+
p

}
.

(2.28)

Proposition 2. Assume that M2 admits two fold points, i.e., that β2f 2
2 − 3αβf3 > 0, by

Proposition 1. If β < 0 (β > 0), then the middle branch Z0 of M2 in (2.28) is repelling
(attracting) under the flow of Equation (2.19), while the outer branches Z∓ of M2 are
attracting (repelling).

Proof. The statement follows directly from (2.19b), (2.25) and (2.28).

If β < 0, we may hence write Z = Za− ∪ Zr ∪ Za+ , whereas for β > 0, we may write
Z = Zr− ∪ Za ∪ Zr+ . We emphasise that Proposition 2 refers to the flow on M1 before
desingularisation, cf. Equations (2.14) and (2.19), whereas the direction of the flow is reversed
on Sr after desingularisation; see (2.15) and Figure 2.2.

Remark 2. We remark that the above discussion of the stability of Z in the double singular
limit of ε = 0 = δ is alternative to the approach outlined in [Cardin and Teixeira, 2017],
where x is expressed as a function of y in (2.18b) via the algebraic constraint in (2.18a),
as well as to that in [Letson et al., 2017], where only the stability of the partially perturbed
counterpart of Z with ε > 0 small and δ = 0 is investigated; see Section 2.4 for an extension
of the latter within the framework of Equation (2.2).

Remark 3. By the above, the folded singularities q∓ of M1 are located at the intersections
between M2 and L∓. In the double singular limit of ε = 0 = δ, the points q∓ coincide with
the folded singularities of M1 for ε = 0 and δ = O(1), i.e., in the two-timescale limit, which
stems from the fact that the fast and intermediate Equations (2.2a) and (2.2b) do not depend
on δ in our case.

2.2.3 Relative geometry

In this subsection, we describe the position of the folded singularities q∓ of M1 relative to
each other, as well as of the fold points p∓ ofM2 – assuming that a pair of such points exists
– relative to the fold lines L∓.

Proposition 3. Assume that M2 admits two fold points, i.e., that β2f 2
2 − 3αβf3 > 0, by

Proposition 1.

1. If αβ < 0, then both fold points of M2 lie on Sr;

2. if αβ > 0, then one fold point of M2 lies on Sa−, while the other fold point lies on
Sa+;

3. if α = 0, then one fold point of M2 lies on L−, while the other fold point lies on L+.
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Proof. The result follows from a comparison of the values of x∓ in (2.27) with the x-
coordinates of L∓ in the three cases where αβ < 0, αβ > 0, and α = 0, respectively.

The statements of Proposition 2 and Proposition 3 are summarised in Figure 2.3. We
remark that the symmetry described in Proposition 3 breaks down when O(x2)-terms are
included in the intermediate Equation (2.2b); see [Desroches and Kirk, 2018] for an exam-
ple. If β = 0, then the projection of the critical manifold M2 onto the (x, z)-plane is a
straight line. That case has been studied in [Krupa et al., 2008, De Maesschalck et al., 2014,
De Maesschalck et al., 2016]; recall also Equation (2.1).

(a) β < 0, α < 0. (b) β < 0, α = 0. (c) β < 0, α > 0.

(d) β > 0, α < 0. (e) β > 0, α = 0. (f) β > 0, α > 0.

Figure 2.3: Projection of the supercritical manifoldM2 and of the fold lines L∓ of the critical
manifold M1 onto the (x, z)-plane: in dependence on the parameters α and β, the pair of
fold points p∓ of M2 lies either on Sr (panels (c) and (d)), on Sa∓ (panels (a) and (f)), or
on L∓ (panels (b) and (e)).

We now turn our attention to the location of the folded singularities ofM1 relative to each
other and with respect to the fast and intermediate fibres defined previously; recall Figure 2.2.
We first define planes that contain the folded singularities and that are perpendicular to the
fold lines L− and L+, as follows.

Definition 3. Denote by P∓ the planes P∓ = {(x, y, z) ∈ R3 | z = zq∓}, where zq∓ are the
z-coordinates of the folded singularities q∓ of M1 on L∓, respectively. We will refer to P∓
as normal planes in the following.

Definition 4. The folded singularities q∓ of M1 are said to be

1. geometrically aligned if P− ≡ P+;
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2. geometrically connected if they are not aligned and if P∓ ∩ Z± 6= ∅; and

3. geometrically remote if they are neither aligned nor connected, i.e., if P− 6≡ P+ and
P∓ ∩ Z± = ∅.

In dependence of the parameters α, β, f2, and f3 in Equation (2.2), we have the following
result on the position of q− and q+ relative to each other:

Proposition 4. empty text, merely to move following to new line

1. For αβ < 0, the folded singularities q∓ of M1 are geometrically aligned if α
β

=
2f22
9f3

,

geometrically connected if α
β
>

2f22
9f3

, and geometrically remote if α
β
<

2f22
9f3

.

2. For αβ ≥ 0 with β 6= 0, the folded singularities q∓ are geometrically connected.

3. For β = 0 with α 6= 0, the folded singularities q∓ are geometrically remote.

Proof. The statements follow from Equation (2.13), (2.19b), and the properties of G(x) in
(2.23); see panels (c) and (d) of Figure 2.3 for cases corresponding to the first statement, and
panels (a), (b), (e), and (f) for cases corresponding to the second and third statements.

In what is to come, we will restrict our attention to the case that is illustrated in panel
(c) of Figure 2.3:

Assumption 6. In the following, we assume that α > 0 and β < 0 in Equation (2.2).

Assumption 6 is made for three reasons. First, it is consistent with the Koper model,
Equation (6), after transformation to the prototypical Equation (2.2). (In particular, it
follows that the scenarios illustrated in panels (b) and (e) of Figure 2.3 cannot be realised
in (6).) Second, given β 6= 0, geometrically remote singularities can only be present when
αβ < 0. Third, given Assumption 6, the outer branches of M2 are attracting, while the
middle branch is repelling, which allows for the construction of closed singular periodic
orbits (“cycles”), as will become apparent in the following subsection.

2.2.4 Singular cycles

We now consider the reduced flow on M2. We impose the following assumption on the
function φ(x, y, z) in the slow Equation (2.2c):

Assumption 7. The function φ(x, y, z) in (2.2c) is such that φ(xq− , F (xq−), G(xq−)) = 0,
φ(x, F (x), G(x)) > 0 for x < xq−, φ(xq+ , F (xq+), G(xq+)) ≤ 0, and φ(x, F (x), G(x)) < 0 for
x > xq+.

Assumption 7 ensures that the reduced flow on the portion Za∓ of M2 is directed to-
wards the folded singularities q∓ ofM1. We emphasise that the properties of that therefore
crucically depend on µ; in particular, we have that for µ = 0, a true global equilibrium of
the system coincides with q−; see Section 2.3.
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(a) Remote singularities. (b) Aligned singularities. (c) Connected singularities.

Figure 2.4: Relative geometry of the folded singularities q∓ ofM1 according to Definition 4
(top row); bifurcation of the resulting singular cycles, as described in Proposition 5 (bottom
row).

Assumption 6 and Assumption 7 together imply the existence of singular cycles in Equa-
tion (2.2), the properties of which depend on the relative position of the folded singularities
q∓ ofM1, as classified in Proposition 4. (Clearly, the specific choice of φ(x, y, z) in (2.2c) does
not affect that classification.) Here, these cycles are defined as the concatenation of singular
orbits for the corresponding limiting systems in (2.6), (2.19), and (2.21), respectively.

Proposition 5. Assume that Assumption 6 and Assumption 7 hold.

1. If the folded singularities q∓ ofM1 are geometrically remote, then there exist a singular
cycle evolving on P−, a singular cycle evolving on P+, and a family of singular cycles
in between; each of the cycles in that family evolves on a plane parallel to P∓ that
lies between P− and P+. These cycles are “two-scale”, in the sense that the singular
dynamics on them alternates between the fast timescale and the intermediate timescale
(on M1\M2).

2. If q∓ are geometrically aligned, then there there exists exactly one singular cycle that
evolves on the plane P := P− ≡ P+. This cycle is “two-scale”, in the sense that
the singular dynamics on it alternates between the fast timescale and the intermediate
timescale (on M1\M2).

3. If q∓ are geometrically connected, then there exists exactly one singular cycle that
evolves on a subset of P− ∪ Za− ∪ P+ ∪ Za+. This cycle is “three-scale”, in the sense
that the singular dynamics on it alternates between the fast timescale, the intermediate
timescale (on M1\M2), and the slow timescale (on M2).
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Definition 4 and Proposition 5 are summarised in Figure 2.4, where we recall that the
fast, intermediate, and slow dynamics are given by the limiting systems in (2.6), (2.19), and
(2.21), respectively.

From the fact that (2.2) and (2.15) are slow-fast systems in the standard form of GSPT,
the definition of the “geometric connection” or lack thereof in the sense of Definition 4
combined with Proposition 5 lead to the definition of “orbital connection” or lack thereof as
follows:

Definition 5. white text

1. The folded singularities q∓ are “orbitally remote” if a singular cycle that passes through
q− does not pass through q+; cf. Figure 2.4 (a).

2. The folded singularities q∓ are “orbitally connected” if they are contained in the same
singular cycle, with the latter containing two slow segments, one on Za− and one on
Za+; cf. Figure 2.4 (c).

3. The folded singularities q∓h are “orbitally aligned” if they are neither orbitally remote
nor orbitally connected; cf. Figure 2.4 (b).

We emphasize that q∓ are geometrically connected (resp. aligned or remote) if and only if
they are orbitally connected (resp. aligned or remote), and we have the following observation

Remark 4. Definition 5 is equivalent to the following classification in terms of the x-
coordinates zq∓ of the fold points q∓.

1. The folded singularities q∓h are orbitally remote if zq+ > 0; cf. Figure 2.4 (a).

2. The folded singularities q∓ are orbitally connected if zq+ < 0; cf. Figure 2.4 (c).

3. The folded singularities q∓h are orbitally aligned if zq+ = 0; cf. Figure 2.4 (b).

The above classification would not hold if either (2.2) or (2.15) were written in the non-
standard form of GSPT, where there would not exist linear fast and intermediate directions.

2.3 Global dynamics and MMOs

In this section, we discuss the correspondence between the families of singular cycles con-
structed in Proposition 5 and qualitative properties of MMO trajectories for ε and δ positive,
but sufficiently small, in Equation (2.2). In particular, we give a qualitative characterisation
of the resulting mixed-mode dynamics in dependence of system parameters.

In [Cardin and Teixeira, 2017], it was shown that, in the vein of Fenichel’s Theorem 1 and
Theorem 2, for ε, δ > 0 sufficiently small, the normally hyperbolic manifolds Sa,r perturb to
slow manifolds Sa,rεδ , which are diffeomorphic and lie O(ε)-close (in the Hausdorff distance)
to Sa,r, as well as that the normally hyperbolic subsets Za,r perturb to slow manifolds Za,rεδ ,
which are diffeomorphic and lie O(ε+ δ)-close (in the Hausdorff distance) to Za,r; these slow
manifolds are locally invariant under the flow of (2.2). In particular, Za∓εδ locally approximate
the weak canards of the folded singularities q∓, respectively [Letson et al., 2017], recall (2.15).
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For ε and δ positive and sufficiently small in (2.2), trajectories can be composed from
components that evolve close to fast, intermediate, and slow segments of the correspond-
ing singular cycles, as discussed in Section 2.2. In a first approximation, where the fast
and intermediate segments are approximated as straight lines – the latter in the (x, z)-
plane – trajectories are attracted to the vicinities of both folded singularities q∓ if these
are aligned or connected, and only to one of them if they are remote, as can be seen from
Figure 2.4. (In Section 2.2, we showed that the funnels of the folded nodes q∓ for Equa-
tion (2.2) stretch with decreasing δ; in the three-timescale limit as δ approaches zero, these
funnels can be viewed as having been stretched “infinitely” in one direction.) From the
well-established theory of two-timescale singular perturbations, it is known that SAOs arise
in the passage past folded singularities under the perturbed flow, recall Section 1.6 and
see [Desroches et al., 2012, De Maesschalck et al., 2016, Wechselberger, 2005]; the underly-
ing local two-timescale mechanisms are well understood. We discuss the three-timescale
analogues of these mechanisms in Section 2.4 below. In particular, we conclude that SAOs
are observed “above” or “below”, in the language of Figure 1, depending on which folded
singularity of Equation (2.2) trajectories are attracted to; double epochs of SAOs can occur
when trajectories are attracted to both folded singularities q∓. The mixed-mode dynamics of
Equation (2.2) can hence naturally be classified according to whether the folded singularities
q∓ are remote, aligned, or connected; cf. Figure 2.1.

Singular Hopf bifurcations and onset of global dynamics In a first step, we note
that, under Assumption 6 and Assumption 7, Equation (2.2) with ε, δ > 0 small under-
goes Hopf bifurcations for two values of the parameter µ in (2.2c), which we denote by
µ∓SH ; these bifurcations are referred to as “singular Hopf bifurcations” in the literature
[Guckenheimer, 2008, Koper, 1995, Desroches et al., 2012] and separate regions of oscilla-
tory dynamics from steady-state behaviour in Equation (2.2). For ε = 0 = δ, true equilibria
of (2.2) cross the folded singularities q∓ at

µq− = −φ(xq− , yq− , zq−), µq+ = −φ(xq+ , yq+ , zq+), (2.29)

and the singular Hopf bifurcations of the perturbed system occur at

µ−SH = µq− +O(ε, δ), µ+
SH = µq+ +O(ε, δ); (2.30)

in particular, Assumption 7 implies that 0 = µq− < µq+ in the double singular limit, and
therefore µ−SH < µ+

SH . We consider the asymptotics of µ∓SH for ε and δ positive and sufficiently
small in the following Section 2.4.

We emphasize that, for ε, δ > 0 small and fixed, for µ-values greater than but close to
µ−SH (respectively for µ-values less than but close to µ+

SH), system (2.2) features only SAOs
in the vicinity of L− (resp. L+), i.e. trajectories converge to small periodic orbits that are
product of the two Hopf bifurcations, and the onset (resp. cessation) of MMO-trajectories
is marked by values:

µo = µ−SH +O(ε, δ), µc = µ+
SH +O(ε, δ), (2.31)

cf. Figure 2.1 and see [Krupa et al., 2008, Desroches et al., 2012] for details.
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2.3.1 Aligned or connected singularities

When the folded singularities of M1 are connected, “double epochs” of slow dynamics are
observed in (2.2) for ε, δ > 0 sufficiently small and µ ∈ (µo, µc); see Figure 2.1 and Figure 2.5.

Theorem 4. Assume that Assumption 6 and Assumption 7 hold, that the folded singularities

of (2.2) are aligned or connected, in the sense of Definition 4, i.e. that α
β
≥ 2f22

9f3
in (2.2).

Then, there exist ε0, δ0 > 0 small such that for every fixed (ε, δ) ∈ (0, ε0) × (0, δ0), there
exist µo and µc, given by (2.31), such that system (2.2) features MMOs with double epochs
of perturbed slow dynamics for µ ∈ (µo, µc).

Proof. Consider the sections

∆+ =

{
(x, y, z) ∈ R3 | x =

xq+ + xq−

2
, y >

yq+ + yq−

2
, z >

zq+ + zq−

2

}
∆− =

{
(x, y, z) ∈ R3 | x =

xq+ + xq−

2
, y <

yq+ + yq−

2
, z <

zq+ + zq−

2

}
,

Σ− =
{

(x, y, z) ∈ R3 | x < xq− , y = yq− + ρ1, ρ1 > 0 small
}
,

Σ+ =
{

(x, y, z) ∈ R3 | x > xq− , y = yq+ − ρ2, ρ2 > 0 small
}
,

where the points p∓ = (xp∓ , yp∓ , zp∓) are the fold points of M2, recall (2.27) and see Fig-
ure 2.5. In addition, consider the maps

π−out : Σ− → ∆−, (2.32)

π+
in : ∆− → Σ+, (2.33)

π+
out : Σ+ → ∆−, (2.34)

π−in : ∆+ → Σ−, (2.35)

that are induced by the flow of (2.2).
The return map π = π−in ◦ π+

out ◦ π+
in ◦ π−out : Σ− → Σ− is well defined for all ε, δ > 0

sufficiently small. In particular, the transition maps π∓in in the normally hyperbolic regimes
are covered by [Cardin and Teixeira, 2017]; that is, trajectories with initial conditions on ∆−

(resp. ∆+) are attracted exponentially close to Sa+εδ (resp. Sa−εδ ) following the fast flow of the
perturbed system, and then they are attracted to Za+εδ (resp. Za−εδ ) following the intermediate
flow of the perturbed system, whereon they follow the slow flow towards q+ (resp. q−). The
constants ρ1,2 are sufficiently small such that trajectories with initial conditions on ∆+|z>zq+
(resp. ∆−|z<zq− ) are attracted exponentially close to Za−εδ (resp. Za+εδ ) before they cross Σ−

(resp. Σ+). Moreover, in [Letson et al., 2017] it was shown that trajectories that approach
the vicinity of L+ (resp. L−) exponentially close to Za+εδ (resp. Za−εδ ), diverge exponentially
from the latter at most at a buffer point that is bounded between q+ and p+ (resp. q− and
p−), and that the map π+

out (resp. π−out) is well defined.
Therefore, all initial conditions are attracted to either Za−εδ or Za+εδ (possibly after a jump),

whereon they follow the slow flow until they jump and reach Za−εδ or Za+εδ on the other side,
respectively; this shows the existence of an attractor with double epochs of perturbed slow
dynamics. We emphasise that, although not immediately apparent, the above hold also for
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the case of aligned singularities. At the singular limit ε = 0 = δ, the folded singularities q∓

have the same z-coordinates; in the perturbed system (2.2), ε, δ > 0 small, the buffer points
are bounded between q∓ and p∓, respectively, which means that trajectories jump at points
near L+ such that they cross ∆+ (resp. at points near L− such that they cross ∆−), and are
hence attracted to both Za∓εδ .

(a) (b)

Figure 2.5: Schematic illustration of the emergence of MMO trajectories with double epochs
of perturbed slow dynamics in (2.2), for the case of aligned or connected singularities. (a)
singular geometry and transition maps, (b) corresponding time series for the case of the
Koper model, see Chapter 3.

We remark that Theorem 4 guarantees the existence of an attractor in (2.2) with double
epochs of perturbed slow dynamics; more specific characterisation of properties like peri-
odicity or chaoticity is dependent on the properties of the function φ(x, y, z) in (2.2c) and
hence requires a case-by-case study. Moreover, we note that the “double epoch” regime can
be further divided into cases where SAOs occur “above” and “below”; SAOs are seen “above”
with SAO-less slow dynamics below or vice versa; or“three-timescale”relaxation oscillation is
found, with the flow alternating between fast, intermediate, and slow SAO-less dynamics. A
precise characterisation is dependent on the properties of the function φ(x, y, z) in (2.2c) and
hence also requires a case-by-case study. For instance, for the Koper model from chemical
kinetics studied in Chapter 3, we typically observe double-epoch trajectories with only a few
small oscillations before the jump (cf. Figure 1 and Figure 3.3), while in the Hodgkin-Huxley
equations from mathematical neuroscience studied in Chapter 4, we observe double-epoch
trajectories with either prominent SAOs above and mere slow flow below or vice-versa (cf.
Figure 4.1 and Figure 4.2).

Moreover, in the proof of Theorem 4 we used the fact that the buffer points, i.e. the
point at most where trajectories diverge from Za∓εδ exponentially after crossing L∓ regardless
of their entry points, are bounded between q∓ and p∓, respectively. In Section 2.4 we give
estimates of these buffer points O (

√
ε, δ)-close to L∓, respectively.
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2.3.2 Remote singularities

In the case where the folded singularities of M1 in (2.2) are orbitally remote (recall Defini-
tion 4 and Figure 2.4) the perturbed flow (2.2) with ε, δ > 0 sufficiently small can exhibit
MMOs with single epochs of SAOs, or “two-timescale” relaxation oscillation where the flow
alternates between the fast and the intermediate dynamics for µ ∈ (µo, µc) (recall Figure 2.1
and (2.31)).

To first show the existence of relaxation oscillations in a µ-subregime of (µo, µc), we
combine the approaches of [Krupa et al., 2008] and [Szmolyan and Wechselberger, 2004]. To
leading order in ε and δ, the µ-values which separate the corresponding parameter regimes
can be determined by requiring that the intermediate flow on Sa− is “balanced” by that on
Sa+ ; this is done at the singular limit ε = 0 with δ > 0 sufficiently small, so that we only
consider the flow on Sa∓ , and the z-displacement during a jump (i.e. away from Sa∓) is
negligible, see [Krupa et al., 2008] for details. We define

x0 := −f2

f3

, xmax :=
−2f2

3f3

, x∗max :=
f2

3f3

, (2.36)

where x0 is the x-coordinate of P (L−), x∗max is the x-coordinate of P (L+), and xmax is the
x-coordinate of L+, cf. Figure 2.6 below; we recall that P (L∓) ⊂ S∓ denotes the projection
of L∓ onto S∓ along the fast fibres (2.6a).

We then define

G−0 (z, µ) := G (x∗max, 0; z;µ) , G+
0 (z, µ) := G (x0, xmax; z;µ) , (2.37a)

R(z, µ) := G−0 (z, µ) + G+
0 (z, µ), (2.37b)

where we recall that

G (x0, x1; z0;µ) =

∫ x1

x0

F ′(σ) (µ+ φ (σ, F (σ), z0))

ασ + βF (σ)− z0

dσ,

from Lemma 4, which is obtained by eliminating time in the reduced flow on Sa∓ (2.15) and
integrating. In the following we will also denote

I := (zq− , zq+) (2.38)

To leading order in δ and for µ-values appropriately restricted (as will be clarified below),
the singular trajectory of a point (0, 0, z) ∈ L−|z∈I returns to L−|z∈I at a point (0, 0, ẑ),
where

ẑ = z + δR(z, µ) +O(δ2); (2.39)

in the following, we will show that this map is well defined, cf. Theorem 5 below.
We will say that the flow on Sa− is balanced by that on Sa+ “at” a point with z = z∗ for

δ > 0 sufficiently small if there holds that ẑ = z∗, i.e. if R(z∗, µ) = 0. To find the µ-values
for which the reduced flow on Sa− is balanced by that on Sa+ at either q− or q+, for δ > 0,
we first need to show the following.
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(a) (b)

Figure 2.6: Schematic illustration of the emergence of relaxation oscillation trajectories in
(2.2), for the case of remote singularities. (a) singular geometry, (b) corresponding time
series for the case of the Koper model, see Chapter 3.

Lemma 5. If the folded singularities q∓ of M1 are remote, i.e., if α
β
<

2f22
9f3

, then∫ xmax

x0

F ′(σ)

ασ + βF (σ)− zq∓
dσ > 0,

∫ 0

x∗max

F ′(σ)

ασ + βF (σ)− zq∓
dσ > 0, (2.40)

and

G−0 (zq− , µ) > 0, G+
0 (zq+ , µ) < 0. (2.41)

Proof. There hold that

1. F ′(x) < 0 for x ∈ (x∗max, 0) ∪ (x0, xmax) (i.e. for points on Sa, recall (2.11)),

2. αx+βF (x)− z < 0 for (x, z) ∈ (x∗max, 0)× [zq− , zq+ ], recall the algebraic constraint for
M2 (2.22) and see Figure 2.4 (a),

3. αx+ βF (x)− z > 0 for (x, z) ∈ (x0, xmax)× [zq− , zq+ ], recall (2.22) and see Figure 2.4
(a).

4. µ + φ (σ, F (σ), z) > 0 for (x, zµ) ∈ (x∗max, 0)× [zq− , zq+ ]×
[
µ−SH , µ

+
SH

]
, recall Assump-

tion 7,

5. µ+φ (σ, F (σ), z) < 0 for (x, z, µ) ∈ (x0, xmax)× [zq− , zq+ ]×
[
µ−SH , µ

+
SH

]
, recall Assump-

tion 7.

Using the above, the sign-definitiveness of equations (2.40) and (2.41) follows.

The values µ−b and µ+
b for which the reduced flow on Sa− is balanced by that on Sa+ at q−

and q+ for δ > 0, respectively, to leading order in δ are found by solving R(zq− , µ) = 0 and
R(zq+ , µ) = 0, respectively. The relative position of µ−b and µ+

b on the real line depends on
the properties of the function φ(x, y, z) in (2.2c); we therefore make the following assumption.
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Assumption 8. Denote by µ∓b the µ-values for which

R(zq− , µ
−
b ) = 0, R(zq+ , µ

+
b ) = 0 (2.42)

hold, i.e.,

µ∓b := −

∫ 0

x∗max

F ′(σ)φ(σ,F (σ),zq∓)
ασ+βF (σ)−zq∓

dσ +
∫ xmax

x0

F ′(σ)φ(σ,F (σ),zq∓)
ασ+βF (σ)−zq∓

dσ∫ 0

x∗max

F ′(σ)
ασ+βF (σ)−zq∓

dσ +
∫ xmax

x0

F ′(σ)
ασ+βF (σ)−zq∓

dσ
. (2.43)

We assume that

µ−SH < µ−b < µ+
b < µ−SH .

It is now apparent that from Lemma 5 follows that the denominator in (2.43) is non-
zero. Assumption 8 is essentially an assumption on the properties of the function φ(x, y, z)
in (2.2c), which is make because it is consistent with the Koper model, Equation (6), after
transformation to the prototypical Equation (2.2). We now make an additional assumption
on φ(x, y, z), which is also consistent with the Koper model.

Assumption 9. We assume that ∂zφ(x, y, z) ≤ 0 for z ∈ [zq− , zq+ ].

We remark that Assumption 9 is sufficient but not necessary in order to show the existence
of relaxation oscillators, and we will comment further on this after stating our main result.
Before doing so, we introduce a final preliminary technical result.

Lemma 6. Assume that Assumption 9 holds and that the folded singularities of (2.2) are

remote in the sense of Definition 4, i.e. that α
β
<

2f22
9f3

in (2.2). Then, there holds that

∂µR(z, µ) < 0 (2.44)

and

∂zR(z, µ) > 0 (2.45)

for z ∈ [zq− , zq+ ]×
[
µ−b , µ

+
b

]
.

Proof. There holds that

∂

∂z

[
F ′(σ) (µ+ φ (σ, F (σ), z))

ασ + βF (σ)− z

]
=
F ′(σ)∂z [φ (σ, F (σ), z)] (ασ + βF (σ)− z)

(ασ + βF (σ)− z)2

+
F ′(σ) (µ+ φ (σ, F (σ), z))

(ασ + βF (σ)− z)2 ;

moreover,

1. F ′(x) < 0 for x ∈ (x∗max, 0) ∪ (x0, xmax),
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2. φz(x, y, z) < 0, by Assumption 9,

3. αx+ F (x)− z < 0 for (x, z) ∈ (x∗max, 0)× [zq− , zq+ ], recall (2.22) and Figure 2.4 (a),

4. αx+ F (x)− z > 0 for (x, z) ∈ (x0, xmax)× [zq− , zq+ ], recall (2.22) and Figure 2.4 (a).

5. µ+ φ (σ, F (σ), z) > 0 for (x, z, µ) ∈ (x∗max, 0)× [zq− , zq+ ]×
[
µ−SH , µ

−
SH

]
, recall Assump-

tion 7,

6. µ+φ (σ, F (σ), z) < 0 for (x, z, µ) ∈ (x0, xmax)× [zq− , zq+ ]×
[
µ−SH , µ

−
SH

]
, recall Assump-

tion 7.

Using the above, the sign-definitiveness in (2.44) follows immediately after changing the
order of integration and differentiation therein.

In addition,

∂

∂µ

[
F ′(σ) (µ+ φ (σ, F (σ), z))

ασ + βF (σ)− z

]
=

F ′(σ)

ασ + βF (σ)− z
,

and the sign definiteness of (2.45) follows similarly.

We have introduced the necessary preliminary results in order to show the existence of
stable relaxation oscillations in (2.2), and we now state our main result:

Theorem 5. Assume that Assumption 6 – Assumption 9 hold, and that the folded singular-

ities of (2.2) are remote in the sense of Definition 4, i.e. that α
β
<

2f22
9f3

in (2.2). Then, there

exist ε0, δ0 > 0 small such that, for any fixed (ε, δ) ∈ (0, ε0)× (0, δ0), there exist

µ−r = µ−b +O(δ), µ+
r = µ+

b +O(δ), (2.46)

where µ∓b are given by (2.43), such that system (2.2) has a stable relaxation oscillation orbit
for every µ ∈ (µ−r , µ

+
r ) .

Proof. The proof in based on showing that the assumptions of Theorem 3 are satisfied,
see [Szmolyan and Wechselberger, 2004, Theorem 4]; these assumptions are summarised in
Section 1.5.

• Assumption 1: By construction,M1 is S-shaped with two attracting sheets Sa∓ sepa-
rated by a repelling sheet Sr, recall (2.10), (2.11) and (2.12).

• Assumption 2: The tranversality condition (1.28) is satisfied on L∓|z∈I .

• Assumption 3 and Assumption 4: At the singular limit ε = 0 = δ, one can construct a
1-dimensional map

σ− : P (L+)|z∈I → L−, z 7→ z, (2.47)

where we recall that P : L∓ → Sa± is the projection along the fast fibres (2.6a) of
a point on L∓ to a point on Sa± . For δ > 0 sufficiently small, the map σ− perturbs
smoothly to

σ−δ : P (L+)|z∈I → L−, z 7→ z +O(δ); (2.48)
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in particular, by eliminating time in (2.15), the map σ−δ can be approximated by

z 7→ z + δG−0 (z, µ) +O(δ2). (2.49)

Moreover, since

G−0 (zq− , µ) > 0 (2.50)

for µ ∈ (µq− , µq+) by Lemma 6, the map σ−δ : P (L+)|z∈I → L−|z>zq− is well defined

and σ−δ (z)→ σ−(z) as δ → 0 uniformly in z. In particular, (2.50) implies that the point
on P (L+) with z = zq− is mapped to a point on L− with z > zq− , and by existence

and uniqueness of solutions (since the map σ−δ is induced by the reduced flow on Sa−),
all points on P (L+) with z > zq− are mapped to points on L− with z > zq− . Similarly,
one can construct an analogous, well defined map σ+

δ : P (L−)|z∈I → L+|z<zq+ , under

which points on P (L−) with z ≤ zq+ are mapped to points on L+ with z < zq− .

The composition of σ−δ and σ+
δ defines the return map

π− := σ−δ ◦ σ
+
δ : L−|I → L−|I , z 7→ z + δR(z, µ). (2.51)

Since

∂µR(z, µ) > 0 ∀ (z, µ) ∈ (zq− , zq+)× (µ−b , µ
+
b ),

i.e. since R(z, µ) is an increasing function of µ (recall Lemma 6), and since also

R(zq− , µ
−
b ) = 0, R(zq+ , µ

+
b ) = 0

by Assumption 8, it correspondingly follows that

R(zq− , µ) > 0, R(zq+ , µ) < 0 ∀ µ ∈ (µ−b , µ
+
b ),

and the map π− : L−|I → L−|I is therefore well defined. By the intermediate value
theorem, for any µ ∈ (µ−b , µ

+
b ), there exists z∗ ∈ (zq− , zq+) such that R(z∗, µ) = 0;

therefore, z∗ is a fixed point of π−. Moreover, from (2.44) follows that ∂zR(z, µ) < 0
for all (z, µ) ∈ [zq− , zq+ ]×

[
µ−b , µ

+
b

]
; therefore, the fixed point z∗ ∈ (zq− , zq+) is unique.

This implies the existence of a unique singular cycle for any δ > 0 sufficiently small.

• Assumption 5: Consider the section

Σ− =
{

(x, y, z) ∈ R3 | x < xq− , y = yq− + ρ1, ρ1 > 0
}
,

see Figure 2.6. The return map π− : L− → L− in (2.51) induces a return map
Π− : Σ− → Σ−. Correspondingly, fixed points of π− on L− are connected to fixed
points of Π− on Σ− via trajectories of the reduced flow (2.15) on Sa− , and a fixed point
of Π− is hyperbolic and attracting (resp. repelling) if and only if the corresponding
fixed point of π− is hyperbolic and attracting (resp. repelling).

In the previous part we showed that, for any µ ∈ (µr− , µr+), there exists a unique fixed
point z∗ ∈ (zq− , zq+) of π−. Moreover, since ∂z (z + δR(z, µ)) < 1 for all z ∈ [zq− , zq+ ]
by (2.44), the fixed point z∗ is hyperbolic and attracting, and so is the corresponding
fixed point of Π− on Σ−. This shows the existence of a hyperbolic and attracting
singular periodic orbit.
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The above assumptions are established at the singular limit ε = 0, δ > 0 sufficiently small.
For ε, δ > 0 sufficiently small and z ∈ I, under the flow of (2.2) a trajectory with initial
condition (x∗max, yq+ , z) on Sa−ε,δ (i.e. at the height of P (L+)) is mapped to a point on Sa−ε,δ
(after a large excursion) as

z 7→ z + δR(z, µ) +O(δ2, δε ln ε), (2.52)

and the above map is smooth in z and µ. To see this, first consider the limit ε = 0 = δ,
where there exists a singular cycle connecting the point (x∗max, yq+ , z) to itself, cf. Figure 2.6;
the return map is then the identity. For ε = 0, δ > 0 small, this map perturbs to (2.51). For
ε, δ > 0 small, by [Szmolyan and Wechselberger, 2004, Theorems 3 &4], there is an O(ε ln ε)-
contribution, which arises through the perturbation of the G∓0 functions and is multiplied by
a factor of δ, since at the limit δ = 0 the z-displacement needs to be zero (regardless of ε
being positive or not, recall (2.4)δ=0), and this gives (2.52).

Finally, we remark on the asymptotics of µ∓r in (2.46). According to the formulation of
[Szmolyan and Wechselberger, 2004, Theorem 3], in the case studied therein the return map
(2.52) is written as z 7→ G0(z) + O(ε ln ε), with G0 independent of ε; this can be viewed
as a special case of our return map (2.52) for δ = 1, which, in the same formulation, reads
as z 7→ G0(z) + O(δε ln ε), where G0 = z + δR(z, µ) + O(δ2). Since the existence and
stability of relaxation oscillations depend only on the properties of G0 at the limit ε = 0
[Szmolyan and Wechselberger, 2004], the asymptotics of µ∓r are as given in (2.46).

We reiterate that Assumption 9 is sufficient, but not necessary for the existence of stable
relaxation oscillation orbits as described in Theorem 5. That is, it guarantees the existence
and uniqueness of a singular cycle at the limit ε = 0, δ > 0 small, see third bullet point in
the proof of Theorem 5. In general, the function φ(x, y, z) could be such that more than one
singular cycles exist at this limit, and the stability of each one of them would be studied
individually; this would result to the existence of more than one relaxation oscillation orbits
for ε, δ > 0 small, and some of these orbits could potentially be stable while others could be
unstable. We reiterate that Assumption 9 is satisfied for the case of the Koper model from
chemical kinetics that is studied in Chapter 3.

We now state our main result regarding the existence of MMOs with single epochs of
perturbed slow dynamics.

Theorem 6. Assume that Assumption 6 – Assumption 9 hold, and that the folded singular-

ities of (2.2) are remote in the sense of Definition 4, i.e. that α
β
<

2f22
9f3

in (2.2). Then, there

exist ε0, δ0 > 0 small such that, for every fixed (ε, δ) ∈ (0, ε0)× (0, δ0), there exist µo and µ−r
given in (2.31) and (2.46), respectively, such that system (2.2) features MMOs with single
SAO-epochs for µ ∈ (µo, µ

−
r ).

Proof. Consider the section

Σ− =
{

(x, y, z) ∈ R3 | x < xq− , y = yq− + ρ1, ρ1 > 0 small
}

On the basis of Theorem 4 and Theorem 5, the return map π− : Σ− → Σ− induced by the
flow of (2.2) is well defined for all ε, δ > 0 sufficiently small and µ ∈ (µo, µ

−
r ).
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(a) (b)

Figure 2.7: Schematic illustration of the emergence of MMO trajectories with single epochs of
perturbed slow dynamics in (2.2), for the case of remote singularities. (a) singular geometry
and return map, (b) corresponding time series for the case of the Koper model, see Chapter
3.

Consider now a point (x∗max, yq+ , z) on Sa−ε,δ (i.e. at the height of P (L+)) , with z ∈
(zq− , zq+). The corresponding trajectory returns to Sa−ε,δ (after a large excursion) at a point
with z + δR(z, µ) + O(δ2, δε ln ε), recall the proof of Theorem 5. Moreover, there holds
that R(z, µ) < 0 for all (z, µ) ∈ (zq− , zq+) × (µo, µ

−
r ); this follows from (2.44) and (2.45).

Therefore, the trajectory is “drifting” towards the negative z-direction, until it reaches a
point (x∗max, yq+ , z) on Sa−ε,δ with z < zq− , i.e. until it enters the funnel of q−. We reiterate

that, at a first approximation, the funnel of q− is the area in Sa− bounded by Za− and the
intermediate fibre of (2.19) that crosses q−, which is given by {z = zq−}.

Points (x∗max, yq+ , z) on Sa−ε,δ with z < zq− are attracted to the vicinity of q− and undergo
SAOs. According to [Krupa and Wechselberger, 2010, Hayes et al., 2016], the buffer point,
i.e the point at most which all trajectories diverge exponentially from Za− , lies o(1)-close to
q−. Therefore, there exists ε0, δ0 > 0 sufficiently small, for which there holds in particular
ε0 < (zq+ − zq−)2, δ0 < zq+ − zq− , such that, for all (ε, δ) ∈ (0, ε0)× (0, δ0), trajectories that

diverge exponentially from Za−εδ follow a slow drift towards the negative z-direction, without
interacting with Za+εδ , until they enter the funnel of q−. The above implies the existence of
MMO trajectories with single epochs of perturbed slow dynamics.

We remark that the requirement ε0 < (zq+ − zq−)2, δ0 < zq+−zq− is a sufficient condition
which guarantees that, regardless of how close the folded singularities are in the z-direction,
there exist ε, δ > 0 small such that MMOs with single epochs of perturbed slow dynamics
exist, because the buffer point near L− is such that trajectories that diverge exponentially
from Za− are not able to reach Za+ ; as will become apparent in the Section 2.4 below, the
buffer point lies O(

√
ε, δ)-close to the fold line L−. If q∓ are remote but still relatively close

in the z-direction, then there could potentially exist ε- and δ-values for which trajectories
interact with both Za∓ , and hence system (2.2) features MMOs with double epochs of per-
turbed slow dynamics, or even more exotic patterns, where the two epochs are separated
by LAOs; see Chapter 4 for an example of the latter in the context of the multi-timescale
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Hodgkin-Huxley equations from mathematical neuroscience. We remark that we have not
been able to find such “exotic” behaviour in the context of the Koper model from chemical
kinetics, Chapter 3.

Finally, in regard to the number of LAOs between SAO segments, we have the following
estimate.

Corollary 1. Assume that assumptions Assumption 6 – Assumption 9 hold, and that the

folded singularities of (2.2) are remote in the sense of Definition 4, i.e. that α
β
<

2f22
9f3

in

(2.2). Consider ε, δ > 0 sufficiently small and µ ∈ (µo, µ
−
r ), where µo and µ−r are given

in (2.31) and (2.46), respectively. Denote by pout = (xout, yout, zout) the point at which a
trajectory diverges exponentially from Za−εδ , with zout > 0, and denote by L the number of
large excursions that follow before the trajectory is again attracted exponentially close to Za−εδ .

1. If zout + δR(0, µ) < 0, then L = 1;

2. if 0 < zout + δR(0, µ) < zout, then

L = 1 +

⌊
zout

δR(0, µ)

⌋
, (2.53)

where b c denotes the floor function.

Proof. Follows immediately from Theorem 6.

2.4 Local dynamics and SAOs

In this subsection, we discuss the emergence of SAOs in a vicinity of L∓ in (2.2) when
trajectories are attracted to Za∓ , respectively; we focus on describing the properties of Za−

close to L− here, as the description of Za+ near L+ is analogous.
We first consider the partially perturbed fast Equation (2.4) with ε sufficiently small and

δ = 0:

x′ = −y + f2x
2 + f3x

3, (2.54a)

y′ = ε (αx+ βy−z) , (2.54b)

z′ = 0. (2.54c)

By standard GSPT [Fenichel, 1979, Krupa and Szmolyan, 2001a], we can define slow mani-
folds Sa,rε0 for (2.54) as surfaces that are foliated by orbits within {z = z0}, with z0 constant.
Since the steady states of (2.54) correspond to portions of the supercritical manifold M2,
it follows that Za,rε0 ≡ Za,r, i.e., that the geometry of Za,rε0 ≡ Za,r is, in fact, ε-independent.
However, since it will become apparent that the stability properties of Za,rε0 do depend on ε,
we will not suppress the ε-subscript in our notation.

For ε sufficiently small, Equation (2.54) undergoes a Hopf bifurcation at a point p−DH =(
x−DH , y

−
DH , z

−
DH

)
; the periodic orbits that arise in that bifurcation cease to exist at z−CN ,

where a connecting trajectory between Sa−ε0 and Srε0 is found. In other words, Sa−ε0 and Srε0
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Figure 2.8: Stability of the supercritical manifold M2 on the various portions of Za− , for
ε sufficiently small and δ = 0: at z−DN∓ , the real eigenvalues of the linearisation of Equa-
tion (2.54) aboutM2 in (2.59) become complex, with a corresponding change from nodal to
focal attraction or repulsion, and vice versa; at z−DH , a Hopf bifurcation occurs which gives
rise to small-amplitude periodic orbits. These orbits cease to exist at z−CN , where a connect-
ing trajectory between Sa−ε0 and Srε0 is found. We note that the corresponding z-interval is
of width O(ε), while the spiralling regime is O(

√
ε) wide overall.

intersect transversely within the hyperplane P−CN : {z = z−CN} which lies O(ε)-close to p−DH
in the z-direction. Moreover, two degenerate nodes p−DN∓ are located onM2 around p−DH at

an O(
√
ε)-distance; see Figure 2.8. The asymptotics (in ε) of these objects is summarised

below.

Lemma 7. A Hopf bifurcation of Equation (2.54) occurs at p−DH :
(
x−DH , y

−
DH , z

−
DH

)
∈ Za−ε0 ,

where

x−DH = − β

2f2

ε+O(ε2), y−DH =
β2

4f2

ε2 +O(ε3), and z−DH = −αβ
2f2

ε+O(ε2). (2.55)

Two degenerate nodes p−DN∓ are located at

x−DN∓ = ∓
(√

α

f2

√
ε+

β

2f2

ε

)
+O(ε

3
2 ), y−DN∓ =

α

f2

ε+O(ε
3
2 ), and

z−DN∓ = ∓α
3
2

f 2
2

√
ε+

αβ

f2

(
1∓ 1

2

)
ε+O

(
ε

3
2

)
,

(2.56)

while a canard trajectory is contained in the hyperplane P−CN : {z = z−CN}, with

z−CN = z−DH + αβ
5f2 − 3(1− αf3)

4 (1 + f2) f2

ε+O(ε2). (2.57)

Proof. The hyperplane {z = z−CN}, which contains the transverse intersection between Sa−ε0
and Srε0, can be obtained by Melnikov-type calculations, see Section 2.6. The remaining
estimates follow by considering the Jacobian matrix of the linearisation of (2.54) alongM2,

J =

(
2f2x+ 3f3x

2 −1
εα εβ

)
, (2.58)
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the eigenvalues of which are

ν1,2 =
1

2

[
βε+ 2f2x+ 3f3x

2 ±
√(

βε+ 2f2x+ 3f3x2
)2 − 4

(
αε+ 2βεf2x+ 3βεf3x2

)]
.

(2.59)

Remark 5. The Hopf bifurcation at p−DH is “inherited” from the fact that M2 and L−
intersect in the folded singularity q−: for ε = 0 = δ, the trace of the Jacobian J vanishes at
that point.

It is therefore now apparent how the stability properties of Za,rε0 depend on ε in spite
of the geometry being identical to that of Za,r, respectively. In addition, we recall that
Equation (2.2) with ε, δ > 0 small undergoes Hopf bifurcations for

µ∓SH = −φ(x∓DH , y
∓
DH , z

∓
DH) +O(δ),

where x∓DH , y∓DH , and z∓DH are estimated in Lemma 7.
The location of z−CN is given in the singular limit δ = 0; for 0 < δ � 1, its perturbed coun-

terpart lies O(δ)-close to the corresponding point in the singular limit. We emphasize that if
zq+ ≥ z−CN +O(δ), where zq+ is the z-coordinate of the folded singularity q+ (recall equation
(2.13) and see Figure 2.4 (a)), then the system undergoes a complete canard explosion, see
Figure 2.9 first row. On the other hand, if z−q ≤ z−CN +O(δ) (Figure 2.4 (b)), then the sys-
tem undergoes an “incomplete” canard explosion [De Maesschalck and Wechselberger, 2015]:
the layer problem has two equilibria and the equilibrium corresponding to Zr is a saddle,
therefore at the occurrence of the tangential intersection between Sa− and Sr a homoclinic
connecion is formed from this saddle to itself; see Figure 2.9 second row. The implications of
these two different cases for both the local and the global oscillatory dynamics of the system
is part of work in progress.

Motivated by Lemma 7, we introduce the following notation: for δ = 0, we define the
intervals

I in
nod =

(
−∞, z−DN−

)
, I in

spir =
(
z−DN− , z

−
DH

)
,

Ican =
(
min

{
z−DH , z

−
CN

}
,max

{
z−DH , z

−
CN

})
.

(2.60)

Then, it follows that

1. the manifold Sa−ε0 connects to Za− for z < min
{
z−DH , z

−
CN

}
, while Srε0 connects to Za−

for z > max
{
z−DH , z

−
CN

}
;

2. for f2 <
3
5

(1− αf3) (respectively, f2 >
3
5

(1− αf3)), i.e., for z−CN > z−DH (respectively,
z−CN < z−DH), the Hopf bifurcation at p−DH is supercritical (respectively, subcritical),
with the resulting periodic orbits the ω-limit sets (respectively, α-limit sets) of trajec-
tories on Sa−ε0 (respectively, Srε0).
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(a) z < zDH (b) zDH < z < zCN (c) z = zCN (d) z > zCN

Figure 2.9: The periodic orbits that emanate around Za− at the delayed Hopf bifurcation
increase in amplitude until the z-coordinate reaches the critical value zCN , where a tangential
connection is formed between Sa− and Sr. Depending on the location of the fold point p+,
this could lead either to a complete canard explosion (first row) or to an incomplete canard
explosion (second row).

The resulting geometry is illustrated in Figure 2.8; we emphasise that analogous objects
p+
DH , P+

CN , and p+
DN±

, which are located symmetrically to the above, exist on Za+ .

As has already been pointed out in [Letson et al., 2017], the Hopf point p−DH and the
canard point p−CN on Za− collapse to the origin in the limit of ε = 0; correspondingly, the
origin is referred to as the canard-delayed-Hopf (CDH) singularity in the double singular
limit of ε = 0 = δ. As a result, the folded singularity at q− displays characteristics of both
a Hopf point – in that the trace of the Jacobian in (2.58) vanishes – and a canard point –
in that Sa− and Sr meet along a fold. Moreover, we remark that an “incomplete” canard
explosion occurs at z−CN in Equation (2.3), as the corresponding intermediate problem has
two equilibria, with the equilibrium corresponding to Zr being a saddle forming a homoclinic
connection to itself; see [Letson et al., 2017] for details. On the other hand, Equation (2.2)
could feature either complete or incomplete canard explosion, depending on the relative
position of q− and p+; the implications for the global dynamics of the system are currently
being investigated. We elaborate more on the quantitative differences between (2.2) and
(2.3) near their corresponding CDH singularity, due to the existence of higher order terms
in the former, in Section 2.6.

In the following, we describe the associated two mechanisms: bifurcation delay and sector-
type dynamics. We remark that the former is common in two-timescale systems with two
fast variables, while the latter typically occurs in two-timescale systems with two slow vari-
ables. Therefore, the coexistence of these mechanisms in three-timescale systems is due
to the fact that such systems can simultaneously be viewed as having two fast and one
slow variables, as well as as one fast and two slow variables. (For four-dimensional two-
timescale systems with two fast and two slow variables, that interplay has been documented
in [Curtu and Rubin, 2011].)
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2.4.1 Bifurcation delay

SAOs due to bifurcation delay are typically encountered in two-timescale systems with two
fast and one slow variables. In the context of Equation (2.2), it is realised when trajectories
are attracted to Zεδ

∣∣
z∈Iinnod+O(δ)

or Zεδ
∣∣
z∈Iinspir+O(δ)

, recall (2.60) and Figure 2.8. Following the

slow flow on Za−εδ , trajectories experience a delay in being repelled away from Za−εδ when cross-
ing the Hopf bifurcation point p−DH , as the accumulated contraction to Za−εδ needs to be bal-
anced by the total expansion from Za−εδ [Hayes et al., 2016, Krupa and Wechselberger, 2010].
Specifically, given some point pin = (xin, yin, zin) ∈ Za−εδ , one obtains the x-coordinate of the
corresponding point pout from∫ xout

xin

<{ν1,2 (x)}
µ+ φ (x, F (x), G(x))

dx = 0; (2.61)

here, ν1,2 are the eigenvalues of the linearisation of Equation (2.54) about Za−εδ , as defined in
(2.59). We remark that, in [Krupa and Wechselberger, 2010, Curtu and Rubin, 2011], the
accumulated contraction is balanced by the total expansion across the primary weak canard,
which is an orbital connection between the folded singularity q− and a true equilibrium
of the system on Sr; in our case, that orbital connection can be locally approximated by
Za−εδ [Letson et al., 2017]. Trajectories that are attracted to Zεδ

∣∣
Iinspir

typically exhibit “dense”

SAOs with initially decreasing and then increasing amplitude; see panel (e) of Figure 3.3.
By contrast, trajectories that are attracted to Zεδ

∣∣
Iinnod

are characterised by few SAOs that

are followed by a large excursion; cf. Figure 3.3(c).
The case where trajectories enter the spirally attracting regime I in

spir is naturally studied
in the rescaling chart κ2 which is introduced as part of the blow-up analysis, see Section
2.6 and [Krupa and Wechselberger, 2010, Hayes et al., 2016, Letson et al., 2017], since that
regime is bounded by the degenerate nodes p−DN∓ and, thus, of width O(

√
ε). In that case,

the eigenvalues ν1,2 in (2.59) are complex conjugates, which implies that the corresponding
trajectory of (2.2) undergoes damped oscillation towards Za−εδ . In this case, we have the
following result:

Proposition 6. Assume that Assumption 6 and Assumption 7 hold, and consider (xin, yin, zin) ∈
Za−εδ |Iinspir. Then, the exit point (xout, yout, zout) that is defined by (2.61) satisfies

xout ≤ −xin + xDH +O (ε+ δ) , zout ≤ −zin + zDH +O (ε+ δ) .

if φ (x, F (x), G(x)) is non-increasing for x ≥ xin, or

xout ≥ −xin + xDH +O (ε+ δ) , zout ≥ −zin + zDH +O (ε+ δ)

if φ (x, F (x), G(x)) is non-decreasing for x ≥ xin

Proof. The integral in (2.61) can be written as∫ xout

xin

<{ν1,2 (x)}
µ+ φ (x, F (x), G(x))

dx =

∫ xDH

xin

<{ν1,2 (x)}
µ+ φ (x, F (x), G(x))

dx+

∫ xout

xDH

<{ν1,2 (x)}
µ+ φ (x, F (x), G(x))

dx

= −
∫ xDH

xin

|< {ν1,2 (x)}|
µ+ φ (x, F (x), G(x))

dx+

∫ xout

xDH

<{ν1,2 (x)}
µ+ φ (x, F (x), G(x))

dx
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Recall that to leading order, <{ν1,2 (x)} is an odd function around xDH . If µ+φ (x, F (x), G(x))
is non-increasing, then∫ xDH

zin

|< {ν1,2 (x)}|
µ+ φ (x, F (x), G(x))

dx ≤
∫ −xin+xDH

xDH

<{ν1,2 (x)}
µ+ φ (x, F (x), G(x))

dx,

therefore xout ≤ −xin+xDH+O(ε+δ). The argument for the case where µ+φ (x, F (x), G(x))
is non-decreasing is similar.

On the other hand, when trajectories enter the nodally attracting regime I in
nod, the cor-

responding entry point is typically O(εc) away from the folded singularity q−, with c < 1/2.
One may therefore refer to the unscaled system, Equation (2.2), for the study of that case.
The eigenvalues ν1,2 in (2.59) correspond to strong and weak eigendirections: specifically,
for z < z−DN− , the eigenvalue ν1 represents the weak eigendirection, while the eigenvalue ν2

corresponds to the strong eigendirection; that correspondence is reversed for z > z+
DN−

. Due

to the hierarchy of timescales in (2.2), trajectories are first attracted to Sa−εδ and then to Za−εδ .
Therefore, for initial conditions (x, y, z) ∈ Sa−εδ , trajectories are attracted to Za−εδ along the
weak eigendirection, while for (x, y, z) ∈ Srεδ, trajectories are repelled from Za−εδ along the
strong eigendirection. It hence seems reasonable to balance the accumulated contraction and
expansion using solely ν1 in (2.61). Since the accumulated contraction on the intermediate
timescale has to be balanced by expansion on the fast timescale, we have the following result

Proposition 7 ([Hayes et al., 2016, Krupa and Wechselberger, 2010]). Assume that Assump-
tion 6 and Assumption 7 hold, and consider (xin, yin, zin) ∈ Za−εδ |Iinspir∪Iinnod. Then, the exit point

(xout, yout, zout) that is defined by (2.61) satisfies

xout < x−DN+
+ o(1), yout < y−DN+

+ o(1), and zout < z−DN+
+ o(1).

Remark 6. The result of Proposition 7 is based on balancing weak attraction to, by strong
expansion from Za−, after trajectories cross the Hopf bifurcation point (2.55). It follows from
the analysis in [Hayes et al., 2016] for the passage through such a point in systems with two
fast variables and a slow one, as well as from the analysis in [Krupa and Wechselberger, 2010]
for the passage through a folded saddle-node of type II, and it applies to all trajectories that
enter in I in

spir ∪ I in
nod, with the exception of an exponentially small interval.

In [Letson et al., 2017], the weak contraction towards Za−εδ is balanced by the weak expan-
sion therefrom via ∫ x2DN

xin

<{ν1} dx+

∫ xout

x2DN

<{ν2} dx = 0;

this analysis covers all trajectories that enter in I in
spir∪I in

nod, including canard solutions, and in
this context, the fold point p− was in fact identified as the “buffer point” at which trajectories
have to leave Za−εδ . Here we remark that, according to Proposition 1, M2 can potentially
have no fold point, and the analysis of this case in terms of balancing weak contraction by
weak expansion is left as question for future investigation.

50



Finally, we remark that the existence of an equilibrium point close to p−DH sets a natural
bound on the exit point as follows:

Proposition 8. Let 0 < ε, δ � 1 and assume that Assumption 6 and Assumption 7 hold,
as well as that system (2.2) has j equilibrium points on Za−, j ≥ 1, with x

(j)
eq > xDH . Then

for the exit point we have:

xout ≤ min
j

{
x(j)
eq

}
, zout ≤ min

j

{
z(j)
eq

}
.

Proof. A global equilibrium point with x > xDH has an invariant unstable manifold that
is tangent to an unstable linear subspace, with the latter corresponding to the linearization
of the fast xy-system around M2 at the equilibrium point. Trajectories that have been
attracted to M2 at some point xin < xDH can not cross the invariant unstable manifold of
the true equilibrium point of the full system, therefore they have to jump at most when they
reach its vicinity.

2.4.2 Sector-type dynamics

Sector-type dynamics is typically encountered in two-timescale systems with one fast vari-
able and two slow variables, and it can be described by exploiting the near-integrable
structure of Equation (2.2) in a vicinity of the canard point p−CN , see [Krupa et al., 2008,
De Maesschalck et al., 2016]. Sector-type dynamics is realised when trajectories are at-
tracted to Z

∣∣
z∈Ican+O(δ)

, where Ican is given by (2.60). (We emphasise that, for δ sufficiently

small, Sa−εδ and Srεδ intersect in a canard trajectory that provides a connection between the
two manifolds; recall Section 2.4.) For ε, δ > 0 sufficiently small and zin ∈ Ican + O(δ),
trajectories remain “trapped” and undergo SAOs (“loops”), taking O(µδ

√
−ε ln ε) steps in

the z-direction until they reach a point pout at which they can escape following the fast
flow of Equation (2.2), as will be shown later. The z-coordinate of that point can hence be
approximated by

zout = z−CN + o(1). (2.62)

The number of SAOs that is observed in the corresponding trajectory is due to passage
through sectors of rotation [Krupa et al., 2008], the boundaries of which are so-called “sec-
ondary” canards. Trajectories that are attracted to this regime typically exhibit few SAOs
of near-constant amplitude; see panel (b) of Figure 3.4, where sector-type SAOs are seen in
between delay-type segments.

For our analysis, we perform a sequence of coordinate transformations in Equation (2.2):
we first translate the delayed Hopf point p−DH to the origin, writing

x = x−DH + x̃, y = y−DH + ỹ, and z = z−DH + z̃,

which yields

x′ = −y + f2x
2 + f3x

3 − εβ
(
x+

3f3

2f2

x2

)
+ ε2β2 3f3

4f 2
2

x, (2.63a)

y′ = ε (αx+ βy−z) , (2.63b)

z′ = εδ (µ̃(ε) + φ(x, y, z)) ; (2.63c)
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here, we have omitted tildes for convenience of notation. Notice that µ̃(ε) = µ + O(ε), as
well as that µ̃(0) = µ. Next, we introduce the following rescaling in Equation (2.63):

x =
√
εx̄, y = εȳ, z =

√
εz̄, and t =

t̄√
ε
, (2.64)

which gives

ẋ = −y + f2x
2 +
√
ε
(
−βx+ f3x

3
)
− ε3βf3

2f2

x2 + ε
3
2

3β2f3

4f 2
2

x, (2.65a)

ẏ = αx−z +
√
εβy, (2.65b)

ż = δ
(
µ̃(ε) + φ(

√
εx, εy,

√
εz)
)

; (2.65c)

here, we have omitted overbars for convenience of notation.
Note that for z = 0, Equation (2.65) is a

√
ε-perturbation of a Hamiltonian system with

Hamiltonian function

H (x, y) = αe−2f2y/α

(
−x2 +

y

f2

+
α

2f 2
2

)
, (2.66)

where α and f2 are defined as in Equation (2.2); the solutions of that (integrable) system
are located on level curves γh0 that are given by H(x, y) = h. For H(x, y) = 0, we find the
special solution

γ0
0(t) =

(
α

2f2

t,
α2

4f2

t2 − α

2f2

)
, (2.67)

while for 0 < H(x, y) < (2f2)−2, solutions form a family of periodic orbits γh
+

0 . The special
solution in (2.67) corresponds to a parabola that separates the closed level curves γh

+

0 of H
from the open ones, which are denoted by γh

−
0 ; see Figure 2.10, as well as [Krupa et al., 2008].

For ε, δ > 0 sufficiently small, trajectories that are attracted to this vicinity follow the
perturbations γh

+

ε of the periodic orbits described above. We define by T h(z) the time that
takes for a trajectory with initial condition on the y-axis to return to the y-axis after a small
“loop”, see Figure 2.10 panel (b). We will therefore define a map that gives the coordinates of
the trajectory after a small loop, and we will preferably use the value h of the Hamiltonian of
the unperturbed periodic orbit to refer to the xy-coordinates; see [Krupa et al., 2008, Section
2] for more details.

Proposition 9. (Extension of [Krupa et al., 2008, Proposition 2.2]) Let Π̄ : ∆̄− → ∆̄−, and
consider (h, z) ∈ ∆̄−, where we suppose that h > 0, with h = O(εM) for some M > 0 and
ε > 0 sufficiently small. Consider φ(x, y, z) = −cz +O((x + y + z)2) for c ≥ 0 in (2.2), let
γhε be defined as above, and suppose that the trajectory starting at (h, z) undergoes a small
oscillation (“loop”) before returning to ∆̄−.

1. If c = 0, then

Π̄(h, z) =
(
h+
√
εdh√ε + zdhz +O

((√
ε+ z

)2
)
, z + δµ̃(ε)T h(z) +O(δ2)

)
(2.68)
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(a) (b)

Figure 2.10: Panel (a) shows the level curves of the planar Hamiltonian system (2.66). Panel
(b) contains an illustration of the perturbation of a periodic orbit for system (2.65), projected
onto the (x, y)-plane. Each such loop is associated to a shift in the z-direction, as described
in Proposition 9.

to leading order in ε and δ, where

dh√ε =

∫ Th

−Th

∇H(γh0 (t)) ·
(
−βxh0(t) + f3x

h
0(t)3, 0

)T
dt and

dhz =

∫ Th

−Th

∇H(γh0 (t)) · (0, β)T dt

and T h(z) denotes the time the trajectory takes to undergo a loop.

2. If c > 0, then

Π̄(h, z) =

(
h+
√
εdh√ε + zdhz +O

((√
ε+ z

)2
)
,
µ̃(ε)

c
√
ε

+

(
z − µ̃(ε)

c
√
ε

)
e−cδ

√
εTh(z) +O(δ2)

)
(2.69)

to leading order in ε and δ, where dh√
ε

and dhz are defined as above.

Proof. The derivation of the h-component of Π̄ in both (2.68) and (2.69) is similar to that
in [Krupa et al., 2008, Proposition 2.2]). For the z-part of (2.68), i.e. for when φ(x, y, z) =
O((x + y + z)2), we solve (2.65c). The z-part of (2.69), i.e. for when φ(x, y, z) = −cz +
O((x+ y + z)2), c > 0, follows from solving the linear first order non-homogeneous system:

ż = δµ̃(ε)− δ
√
εcz

which is obtained from (2.65c).

Note that in the above we have T h(z) = O
(√
− ln ε

)
, by [Krupa et al., 2008]. Scaling

back to the original variables, recall (2.64), it follows that the step taken in the z-direction
after one small loop is O(µδ

√
−ε ln ε).
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Remark 7. A full extension of [Krupa et al., 2008, Proposition 2.2] would require us to
consider the general choice of φ(x, y, z) = O(x, y, z) in Equation (2.2), which is, however,
analytically complicated, and is still work in progress.

Let us now relate the integrable structure given by the Hamiltonian in (2.66) to the
dynamics of Equation (2.2) with ε, δ > 0 sufficiently small, as well as to Figure 2.3. For
ε = 0 = δ, (2.2) corresponds to the Hamiltonian system given by (2.66), which has the
structure illustrated in Figure 2.10(a) close to the origin. For ε > 0 sufficiently small and
δ = 0, we have the “unfolding” of the periodic orbits shown in Figure 2.10(a) to the periodic
orbits around M2 in the O(ε)-interval, as illustrated in Figure 2.8. Then, for ε, δ > 0
sufficiently small, the periodic orbits in this O(ε)-interval break down and we have the
perturbed trajectories illustrated in Figure 2.10 panel (b), which give rise to secondary
canards that twist around the weak canard (which is approximated by M2). The dynamics
is locally described by Proposition 9.

Plans for future work include a more detailed investigation of the possibility of chaotic
MMOs. These could either be realised due to period-doubling bifurcations of the local
one-dimensional map (2.69) (or an extension thereof as described in Remark 7), or due
to the existence of homoclinic orbits of Shilnikov-type. We remark that Shilnikov-type
homoclinic orbits have been found numerically in two-timescale counterparts of (2.2) in
[Guckenheimer and Lizarraga, 2015].

2.5 Summary

In summary, the emergence of mixed-mode dynamics in (2.2) can thus be understood as
follows. By standard GSPT [Fenichel, 1979], the normally hyperbolic portions Sa∓ and Za∓

of M1 and M2, respectively, perturb to Sa∓εδ and Za∓εδ , respectively. Given an initial point
(x, y, z) ∈ Sa−εδ , the corresponding trajectory will follow the intermediate flow on Sa−εδ until it
is either attracted to Za−εδ or until it reaches the vicinity of L−. If the trajectory is attracted to
Za−εδ , then it follows the slow flow thereon and can undergo SAOs; if it reaches the vicinity of
L−, then there is no slow dynamics, and the trajectory jumps to the opposite attracting sheet
Sa+εδ , resulting in a large excursion. The above sequence then begins anew; see Figure 2.5,
Figure 2.6 and Figure 2.7 for schematic illustrations: depending on the relative geometry of
the folded singularities q∓ of M1, oscillatory trajectories with single, double, or no epochs
of slow dynamics can occur, as indicated in Figure 2.1.

We emphasise that the “double epoch” regime in panel (b) of Figure 2.1 does not neces-
sarily imply mixed-mode dynamics with two epochs of SAOs but, rather, with double epochs
of perturbed slow dynamics of the corresponding singular cycles. That is, MMO trajectories
are attracted to the vicinity of both branches Za∓εδ and hence exhibit slow dynamics; how-
ever, whether SAOs will occur depends on which regime of Z trajectories enter, by (2.60).
In particular, if a trajectory is attracted to the spiralling region on both Za−εδ and Za+εδ , then
two epochs of SAOs are observed. On the other hand, trajectories that are first attracted
to the spiralling region on, say, Za− , and are then attracted to and repelled from the nodal
region on Za+ , feature SAOs below and mere slow dynamics above. (The corresponding
segment of the associated Farey sequence would be 1s1

0, with s > 0.) Similarly, a trajectory
that is attracted to and repelled from nodal regions on both Za− and Za+ features no SAOs
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at all and is hence a relaxation oscillation with fast, intermediate, and slow components; the
associated Farey sequence would be 1010. In the transition between remote and connected
singularities, exotic MMO trajectories may occur which exhibit segments of two-timescale
relaxation oscillation, SAOs above, and SAOs below. (The associated Farey sequence would
be 1sLk, with L, s, k > 0.) Finally, we postulate that chaotic mixed-mode dynamics may
be possible. However, the above characterisation depends substantially on the particular
form of the function φ in (2.2c); it is hence not feasible to further subdivide that region
in Figure 2.1 exclusively on the basis of system parameters in Equation (2.2). Rather, a
case-by-case study is required.

Finally, we remark on the role of the ratio between the scale separation parameters ε
and δ for the dynamics of Equation (2.2). Locally, in order for the system to exhibit three
timescales and for the iterative reduction from the fast via the intermediate to the slow
dynamics to be accurate, ε and δ need to be sufficiently small, which is akin to asking
“When is ε small enough?” in a two-timescale system. The three-timescale system then
features characteristics of both two-fast/one-slow systems and one-fast/two-slow systems.
We recall that, by Lemma 7, the width of the various regimes on Z is either O(ε) or O(

√
ε).

By [Krupa et al., 2008] and Lemma 4, the“step” in the z-direction taken by trajectories after
a large excursion and re-injection is O(δ); it therefore follows that if δ = O(εc) for 0 < c < 1,
then trajectories will typically not undergo sector-type dynamics, since the width of the
latter regime is O(ε). Hence, delay-type SAOs are expected to dominate in that case. The
above are in accordance with a conjecture made in [Vo et al., 2013]; we present numerical
evidence for this in Figure 3.4 in Chapter 3.

In the remaining of this chapter, we illustrate a brief blowup analysis in the vicinity of
q−. In Section 2.6 we follow the analysis of [Letson et al., 2017] to give an estimate of canard
and buffer points in (2.2) under Assumption 6. In Section 2.7 we analyse the case where
α = 0, β < 0 in (2.2), i.e. when q∓ ≡ p∓, see Figure 2.8 panel (b).

2.6 Blow-up of folded singularities

Here we perform a blow-up analysis at the point p−DH where the delayed-Hopf bifurcation
occurs. Our main focus is to show that all trajectories that approach this point diverge
from Zεδ in an O(ε) neighbourhood of this point. The analysis in this section is based on
[Krupa and Szmolyan, 2001a, Krupa and Wechselberger, 2010]; we will follow the approach
of [Letson et al., 2017], and we will emphasize the differences with the analysis therein due
to cubic terms in (2.2a).

First, using (2.55), we make the following transformation of system (2.2)

x′ = −y + f2x
2 + f3x

3 − εβ
(
x+

3f3

2f2

x2

)
+ ε2β2

(
3f3

4f 2
2

x

)
,

y′ = ε (αx+ βy − z) ,

z′ = εδ (µ̃+ φ(x, y, z)) ,

(2.70a)

in which the origin has been translated to the location of the delayed Hopf bifurcation point
p−DH near L−.
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We consider the blow-up transformation Φ : B = S3 × R→ R4 given by

x = rx̄, y = r2ȳ, z = rz̄, ε = r2ε̄ (2.71)

where r ∈ [0, ρ], ρ > 0 and (x̄, ȳ, z̄, ε̄) ∈ S3; we remark that the parameter δ is not included
in the blow-up transformation. In the following, we study the dynamics in the entry chart
κ1 and in the rescaling chart κ2, and point out the differences to the canonical form (2.3)
studied in [Letson et al., 2017], due to the additional terms in (2.2). The dynamics in the
exit chart κ3 follows from [Szmolyan and Wechselberger, 2004] and we hence omit it here.

2.6.1 The entry chart κ1 : {ȳ = 1}
The blowup Φ1 : R4 → R4 is obtained by setting {ȳ = 1} in (2.71), i.e.

x = r1x1, y = r2
1, z = r1z1, ε = r2

1ε1. (2.72)

After transformation of (2.70) using (2.72) and rescaling time by a factor of r1 we obtain

r′1 =
1

2
r1ε1F1 (r1, x1, z1) (2.73a)

x′1 = −1 + f2x
2
1 + f3r1x

3
1 − ε1x1

(
βr1

(
1 +

3f3

2f2

r1x1

)
+

1

2
F1 (r1, x1, z1)

)
+ ε2

1r
3
1

3f3β
2

2f 2
2

x1

(2.73b)

z′1 = ε1δ
(
µ̃+ φ(r1x1, r

2
1, r1z1)

)
− 1

2
z1ε1F1 (r1, x1, z1) (2.73c)

ε′1 = −ε2
1F1 (r1, x1, z1) (2.73d)

where F1 (r1, x1, z1) = αx1 + βr1 − z1. Notice that (2.73) is a regular perturbation problem
in δ.

The hyperplanes {ε1 = 0} and {r1 = 0} are invariant. In their intersection {ε1 = 0 = r1}
the dynamics is given by

x′1 = −1 + f2x
2
1,

z′1 = 0,

and it contains the lines of equilibria

`a,1 =
{

(0,−1/
√
f2, z1, 0), z1 ∈ R

}
,

`r,1 =
{

(0, 1/
√
f2, z1, 0), z1 ∈ R

}
,

which have eigenvalues λa,1 = −2/
√
f2 and λr,1 = 2/

√
f2, respectively. The dynamics in the

invariant hyperplane {r1 = 0} is given by

r′1 = 0 (2.74)

x′1 = −1 + f2x
2
1 −

ε1x1

2
F1 (r1, x1, z1) (2.75)

z′1 = ε1δ
(
µ̃+ φ(r1x1, r

2
1, r1z1)

)
− 1

2
z1ε1F1 (r1, x1, z1) (2.76)
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and here we recover the lines of equilibria `a,1 and `r,1, and there exist two-dimensional centre
manifolds Na,1, Nr,1, containing the lines `a,1 and `r,1, and whereon (away from `a,1 and `r,1)
ε′1 > 0 [Szmolyan and Wechselberger, 2004]. In the invariant hyperplane {ε1 = 0} we obtain
normally hyperbolic surfaces Sa,1 and Sa,1 which emanate from `a,1 and `r,1, respectively, see
also [Szmolyan and Wechselberger, 2004, Letson et al., 2017].

The dynamics in chart κ1 can be summarized as follows.

Proposition 10 ([Szmolyan and Wechselberger, 2004, Letson et al., 2017]). The following
assertions hold for system (2.89):

1. There exists an attracting three-dimensional centre manifold Ma,1 at `a,1 which contains
the surface of equilibria Sa,1 and the centre manifold Na,1. Moreover, the manifold Ma,1

has the graph representation

x1 = −1/
√
f2 +O

(
(r1 + ε1 + z1)2) =: h− (r1, z1, ε1) (2.77)

for ε1, r1 > 0 small. Finally, there exists a stable invariant foliation F s with base Ma,1

and one-dimensional fibres, and for any c > −2/
√
f2, the contraction along F s in a

time interval [0, T ] is stronger than ecT .

2. There exists a repelling two-dimensional Ck-center manifold Mr,1 at `r,1 which contains
the surface of equilibria Sr,1 and the centre manifold Nr,1. Moreover, the manifold Mr,1

has the graph representation

x1 = 1/
√
f2 +O

(
(r1 + ε1 + z1)2) =: h+ (r1, z1, ε1) (2.78)

for ε1, r1 > 0 small. Finally, there exists a stable invariant foliation F s with base Ma,1

and one-dimensional fibres, and for any c < 2/
√
f2, the contraction along F s in a time

interval [0, T ] is stronger than ecT .

(a) (b)

Figure 2.11: (a) Projection of the centre manifolds Ma,1 and Mr,1 onto the (r1, x1, ε1)-
subspace. (b) Dynamics in Ma,1, and a trajectory emanating from the r1-nullcline and
approaching the r1 = 0-plane, whereon ε1 is increasing.
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Substituting the representation x1 = h−(r1, z1, ε1) from (2.96) into (2.73) and rescaling
time by a factor of ε1 therein gives the flow in Ma,1 as

ṙ1 =
1

2
r1

(
− α√

f2

+ βr1 − z1 +O
(
(r1 + ε1 + z1)2)) (2.79a)

ż1 = δ

(
µ̃+ φ

(
− 1√

f2

, r2
1, r1z1

))
− 1

2
z1

(
− α√

f2

+ βr1 − z1 +O
(
(r1 + ε1 + z1)2))

(2.79b)

ε̇1 = −ε1

(
− α√

f2

+ βr1 − z1 +O
(
(r1 + ε1 + z1)2)) . (2.79c)

The plane {r1 = 0} in (2.79) is invariant, and the dynamics therein is given by

z′1 = δ

(
µ̃+ φ

(
− 1√

f2

, 0, 0

))
− 1

2
z1

(
− α√

f2

− z1 +O
(
(ε1 + z1)2)) , (2.80)

ε′1 = −ε1

(
− α√

f2

− z1 +O
(
(ε1 + z1)2)) . (2.81)

Moreover, the r1-nullcline in (2.79) is given by z1 = βr1 − α√
f2

, whereon there holds that

z′1 > 0. It also follows that r′1 < 0, z′1 > 0 and ε′1 > 0 for z1 > βr1 − α√
f2

. Therefore,

all trajectories with z1 > βr1 − α√
f2

are attracted to the {r1 = 0}-plane and increase in the
ε1-direction, transiting to the rescaling chart κ2, see Figure 2.11.

2.6.2 The rescaling chart κ2 : {ȳ = 1}
The blowup Φ2 : R4 → R4 is obtained by setting {ε̄ = 1} in (2.71), i.e.

x = r2x2, y = r2
2y2, z = r2z2, ε = r2

2, δ = δ2 (2.82)

After transformation of (2.70) and rescaling by a factor of r2 we obtain

x′2 = −y2 + f2x
2
2 + r2

(
−βx2 + f3x

3
2

)
− r2

2

(
3βf3

2f2

x2
2

)
+ r3

2

(
3β2f3

4f 2
2

x2

)
(2.83a)

y′2 = αx2 + βr2y2 − z2 (2.83b)

z′2 = δ2

(
µ̃+ φ(r2x2, r

2
2y2, r2z2)

)
(2.83c)

We first remark that system (2.83) is the unfolding of a canard explosion of the x2, y2-
subsystem in the z2 direction; this canard explosion has implications for the oscillatory
dynamics of the original system (2.2), as described in Section 2.4.

Proposition 11. For fixed f2 > 0, f3 < 0 , α > 0 , β < 0, let 0 < ε� 1, δ = 0 and

zcn = −β ((5f2 − 3)− 3αf3)α

4 (1 + f2) f2

√
ε+O(ε), (2.84)

Then, the slow manifolds Sa−ε and Srε of (2.70) intersect tangentially for zcn.
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Proof. For z2 = 0, system {(2.83a)-(2.83b)} is an r2-perturbation of a Hamiltonian system
with Hamiltonian function

H (x2, y2) = αe−2f2y2/α

(
−x2

2 +
y2

f2

+
α

2f 2
2

)
,

which for H(x2, y2) = 0 has explicit solution

γ0
0(t) =

(
a

2f2

t,
a2

4f2

t2 − a

2f2

)
,

recall Section 2.4, Equation (2.67) and Figure 2.10.
The tangential intersection of the slow manifolds is formed for the value of z2 for which

the Melnikov distance function

Dc(r2, z2) = dr2r2 + dz2z2 +O
(
(r2 + z2)2) , (2.85)

vanishes, see [Krupa and Szmolyan, 2001a]; in the above, the coefficients are given by

dr2 =

∫ ∞
−∞

{
∇H ·

(
−βx2 + f3x

3

βy2

)} ∣∣∣∣
γ00(t)

dt =
e (β (5f2 − 3)− 3αf3)

4

√
πα3

2f 3
2

dz2 =

∫ ∞
−∞

{
∇H ·

(
0
−1

)} ∣∣∣∣
γ00(t)

dt = −e (1 + f2)

√
πα

2f2

Solving Dc(r2, z2) = 0 gives zcn. Scaling back to the variables of system (2.70) gives z−CN as
in (2.57).

We remark that (2.84) generalises the result in [Letson et al., 2017, Proposition 2 (Sup-
plementary Material)], where the result corresponds to the special case f2 = 1, f3 = 0.
Moreover, we notice that the cubic terms in (2.2a) do in fact contribute to the local dy-
namics, as opposed to what is claimed in the discussion in [Letson et al., 2017, Proposition
1].

2.7 The “double fold” case

Here we study the case where the fold points p∓ lie (simultaneously) on L∓, i.e. α = 0 in
(2.2), cf. Figure 2.3 panel (b). We will show that, when trajectories reach this vicinities
in the perturbed system (2.2) with ε, δ > 0, they simply jump to the opposite side. Based
on arguments similar to the ones in Theorem 4, it can be shown that the system features
three-timescale relaxation oscillations; we remark, however, that this scenario is not realised
in any of the systems from applications that we are considering in this work.

Our analysis here will be local in the vicinity of q−, and the analysis near q+ is similar.
For simplicity, we will consider the case where f2 = 1, f3 = 0, β = −1 and µ+φ(x, y, z) ≡ 1,
i.e. we will consider

x′ = −y + x2, (2.86a)

y′ = ε (−y − z) , (2.86b)

z′ = εδ. (2.86c)
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We consider again the blow-up transformation Φ : B = S3 × R→ R4 given by

x = rx̄, y = r2ȳ, z = rz̄, ε = r2ε̄ (2.87)

where r ∈ [0, ρ], ρ > 0 and (x̄, ȳ, z̄, ε̄) ∈ S3; we remark that the parameter δ is not included
in the blow-up transformation. Agein, we study the dynamics in the entry chart κ1 and in
the rescaling chart κ2. Like in the general case studied in Section 2.6, the dynamics in the
exit chart κ3 follows from [Szmolyan and Wechselberger, 2004] and we hence omit it here.

2.7.1 The entry chart κ1 : {ȳ = 1}
The blowup Φ1 : R4 → R4 is obtained by setting {ȳ = 1} in (2.87), i.e.

x = r1x1, y = r2
2, z = r1z1, ε = r2

1ε1. (2.88)

Substituting the above to (2.86) and rescaling time by a factor of r1 gives

r′1 = −r1ε1

2
(z1 + r1) (2.89a)

x′1 = −1 + x2
1 +

x1ε1

2
(z1 + r1) (2.89b)

z′1 = ε1

(
δ +

z1

2
(z1 + r1)

)
(2.89c)

ε′1 = ε1 (z1 + r1) (2.89d)

System (2.89) is regularly perturbed in δ.
The hyperplanes {ε1 = 0} and {r1 = 0} are invariant. In their intersection {ε1 = 0 = r1}

the dynamics is given by

x′1 = −1 + x2
1,

z′1 = 0,

The dynamics in the invariant hyperplane {ε1 = 0} is given by

r′1 = 0, (2.90)

x′1 = −1 + x2
1, (2.91)

z′1 = 0, (2.92)

and it contains the lines of equilibria

`a,1 = {(0,−1, z1, 0), z1 ∈ R} ,
`r,1 = {(0, 1, z1, 0), z1 ∈ R} ,

which have eigenvalues λa,1 = −2 and λr,1 = 2, respectively. Moreover, there exist normally
hyperbolic surfaces

Sa,1 = {(r1,−1, z1, 0), r1, z1 ∈ R} ,
Sr,1 = {(r1, 1, z1, 0), r1, z1 ∈ R} ,
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which emanate from `a,1 and `r,1, respectively, see also [Szmolyan and Wechselberger, 2004,
Letson et al., 2017].

The dynamics in the invariant hyperplane {r1 = 0} is given by

r′1 = 0, (2.93)

x′1 = −1 + x2
1 +

x1ε1z1

2
, (2.94)

z′1 = ε1

(
δ +

z2
1

2

)
, (2.95)

and here we recover the lines of equilibria `a,1 and `r,1, and there exist two-dimensional centre
manifolds Na,1, Nr,1, containing the lines `a,1 and `r,1, and whereon (away from `a,1 and `r,1)
ε′1 > 0 [Szmolyan and Wechselberger, 2004].

The dynamics in chart κ1 can be summarized as follows.

Proposition 12 ([Szmolyan and Wechselberger, 2004, Letson et al., 2017]). The following
assertions hold for system (2.89):

1. There exists an attracting three-dimensional centre manifold Ma,1 at `a,1 which contains
the surface of equilibria Sa,1 and the centre manifold Na,1. Moreover, the manifold Ma,1

has the graph representation

x1 = −1 +O
(
(r1 + ε1 + z1)2) =: h− (r1, z1, ε1) (2.96)

for ε1, r1 > 0 small. Finally, there exists a stable invariant foliation F s with base Ma,1

and one-dimensional fibres, and for any c > −2, the contraction along F s in a time
interval [0, T ] is stronger than ecT .

2. There exists a repelling two-dimensional Ck-center manifold Mr,1 at `r,1 which contains
the surface of equilibria Sr,1 and the centre manifold Nr,1. Moreover, the manifold Mr,1

has the graph representation

x1 = 1 +O
(
(r1 + ε1 + z1)2) =: h+ (r1, z1, ε1) (2.97)

for ε1, r1 > 0 small. Finally, there exists a stable invariant foliation F s with base Ma,1

and one-dimensional fibres, and for any c < 2, the contraction along F s in a time
interval [0, T ] is stronger than ecT .

Substituting the representation x1 = h−(r1, z1, ε1) from (2.96) into (2.73) and rescaling
time by a factor of ε1 therein gives the flow in Ma,1 as

r′1 = −r1ε1

2
(z1 + r1) (2.98a)

z′1 = ε1δ +
z1ε1

2
(z1 + r1) (2.98b)

ε′1 = ε1 (z1 + r1) (2.98c)
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The plane {r1 = 0} in (2.98) is invariant, and the dynamics therein is given by

z′1 = ε1δ +
z2

1ε1

2
, (2.99)

ε′1 = ε1z1. (2.100)

Moreover, the r1-nullcline in (2.98) is given by r1 = −z1, whereon there holds that z′1 > 0.
It also follows that r′1 < 0, z′1 > 0 and ε′1 > 0 for r1 > −z1. Therefore, all trajectories with
r1 > −z1 are attracted to the {r1 = 0}-plane and increase in the ε1-direction, transiting to
the rescaling chart κ2, see Figure 2.11.

2.7.2 The rescaling chart κ2 : {ε̄ = 1}
The blowup Φ2 : R4 → R4 is obtained by setting {ε̄ = 1} in (2.87), i.e.

x = r2x2, y = r2
2y2, z = r2z2, ε = r2

2. (2.101)

Substituting the above to (2.86) and rescaling time by a factor of r2 gives

x′2 = −y2 + x2
2 (2.102a)

y′2 = −y2 − z2 (2.102b)

z′2 = δ (2.102c)

System (2.102) is singularly perturbed with respect to δ, with two fast variables x, y and
one slow variable z. Its critical manifold U2 is given by

U2 =
{

(x2, y2, z2) ∈ R2 | y2 = x2
2, y2 = −z2

}
and it has a fold point at the origin. The branch of U2 with x2 < 0 is attracting,while the
branch of U2 with x2 > 0 is repelling.

Augmenting system (2.102) by including δ as a dynamic variable gives,

x′2 = −y2 + x2
2, (2.103)

y′2 = −y2 − z2, (2.104)

z′2 = δ, (2.105)

δ′ = 0, (2.106)

and it follows that system (2.102) has a centre manifold at the origin given by

Wc =
{

(x2.y2.z2) ∈ R3 | y2 = −z2 + δ +O
(
(x2 + z2 + δ)2

)}
and the dynamics near the origin is therefore approximated by

x′2 = z2 + x2
2 + δ +O

(
(x2 + z2 + δ)2

)
, (2.107)

z′2 = δ, (2.108)

which corresponds to the case of the fold point studied in [Krupa and Szmolyan, 2001a]. For
δ > 0 small, trajectories therefore escape in the positive x2-direction, cf. Figure 2.12.
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(a) (b)

Figure 2.12: (a) Projection of the singular manifold U2 onto the xz-plane; the branch Ua2 is
attracting and the branch U r2 is repelling (b) Dynamics and perturbed branches Ua2,δ and U r2,δ
for δ > 0 small.

To see this, alternatively, consider δ > 0 small; then, from (2.102c), the z2-dynamics is
given by

z2(t) = δt+ z20,

where z20 = z2(0). Substituting the above in (2.102b) and solving the corresponding ODE
gives:

y2(t) = δ(1− t)− z20 + (y20 + z20 − δ)e−t

where y20 = y2(0). It therefore follows that y2 → −∞ as t → ∞, and from (2.102a) it also
follows that x2 →∞ as t→∞, and therefore trajectories escape in the positive x2-direction.

Finally, we remark that, considering the more general case of z-dynamics as in (2.2c),
which would correspond to z′2 = δ (µ+ φ(r2x2, r

2
2y2, r2y2)) in (2.102c), would a canard ex-

plosion for system (2.102) with ε, δ > 0 small when an equilibrium point crossed the vicinity
of the fold line as in [Krupa and Szmolyan, 2001a], instead of a singular Hopf bifurcation of
the full system (2.2) that is realised for α > 0.
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Chapter 3

The Koper model from chemical
kinetics

As the first realisation of our extended prototypical model, Equation (2.2), we consider the
Koper model from chemical kinetics:

εẋ = ky + 3x− x3 − λ, (3.1a)

ẏ = x− 2y + z, (3.1b)

ż = εδ (y − z) , (3.1c)

with k < 0 and λ ∈ R. The above system is a simplification of theoretical models proposed in
[Koper and Gaspard, 1991, Koper and Gaspard, 1992] that describes the spontaneous cur-
rent oscillations observed during the reduction of indium(III) catalyzed by thiocyanate at
a hanging mercury drop electrode; the variable x is related to the electrode potential, and
the variables y and z are related to indium concentrations in particular layers of the elec-
trolyte around the drop. In [Koper, 1995], where it was first introduced, it is stated that
“Although the model cannot be related to any realistic chemistry, it serves as the simplest
possible geometrical interpretation of a bifurcation diagram frequently encountered in non-
linear chemical reactions, known as the cross-shaped phase diagram”.

After dividing both sides of (3.1a) by |k| and using the transformation

x̃ = x+ 1, ỹ = y +
2 + λ

|k|
, z̃ = −z − 1 +

2(2 + λ)

|k|
, (3.2)

Equation (3.1) is brought to the form of the extended prototypical example Equation (2.2),
with

ε =
ε

|k|
, f2 =

3

|k|
, f3 = − 1

|k|
, (3.3a)

α = 1, β = −2, (3.3b)

µ =
k + λ+ 2

k
, and φ(x, y, z) = −y − z; (3.3c)

henceforth, we will refer to (2.2) with the above choice of parameters as the Koper model;
here, k < 0 and λ ∈ R will be our bifurcation parameters.
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From Section 2.2, it is apparent that the effect of the parameter k on the dynamics is
more substantial than that of λ, since variation in k simultaneously affects the timescale
separation (through ε) and the singular geometry (through f2 and f3), as well as the slow
flow and the global return (through µ). Given k < 0 fixed, on the other hand, variation in
λ only affects the slow flow and the global return (through µ). It is therefore the param-
eter k that determines whether the folded singularities in the Koper model are remote or
aligned/connected, and whether the model can exhibit single or double epochs of SAOs. For
given k < 0, the parameter λ can differentiate between steady-state and oscillatory dynamics,
as well as between MMOs and relaxation in the case of remote singularities.

Remark 8. The Koper model can also be written in the symmetric form

εẋ = y − x3 + 3x,

ẏ = kx− 2 (y + λ) + z,

ż = δ(λ+ y − z),

which is invariant under the transformation (x, y, z, λ, k, t) → (−x,−y,−z,−λ, k, t), see
[Desroches et al., 2012] for details.

In the following, we will restrict to the case where λ > 0. Moreover, we will investigate
the dynamics near L− only: by Remark 8, the behaviour near L+ for λ < 0 can then be
deduced by symmetry; cf. also panels (a) and (b) in Figure 1, where the corresponding time
series are seen to be symmetric about the t-axis for k fixed and λ→ −λ.

3.1 Singular geometry

The critical and supercritical manifolds M1 and M2, respectively, for the Koper model are
given by

M1 =

{
(x, y, z) ∈ R3

∣∣∣ y = x2 3− x
|k|

}
and

M2 =

{
(x, y, z) ∈M1

∣∣∣ z = x− 2x2 3− x
|k|

}
;

see Section 2.2. The critical manifold M1 is normally hyperbolic at

S = Sa∓ ∪ Sr, (3.4)

where

Sa− =
{

(x, y, z) ∈M1

∣∣ x < 0
}
, Sa+ =

{
(x, y, z) ∈M1

∣∣ x > 2
}
, and

Sr =
{

(x, y, z) ∈M1

∣∣ 0 < x < 2
}
.

The fold lines of M1 are located at

L− =
{

(x, y, z) ∈ R3
∣∣ x = 0, y = 0

}
and L+ =

{
(x, y, z) ∈ R3

∣∣∣ x = 2, y =
4

|k|

}
;

(3.5)
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the corresponding folded singularities q∓ are found at

q− = (0, 0, 0) and q+ =

(
2,

4

|k|
, 2− 8

|k|

)
, (3.6)

respectively. For the relative position of the folded singularities q∓, we have the following

Proposition 13. Let ε = 0 = δ. Then, the folded singularities of the Koper model are
connected for −4 < k < 0, aligned for k = −4, and remote when k < −4.

Proof. The statement follows from Proposition 4 and (3.3), or by comparison of the z-
coordinates of q− and q+.

The supercritical manifold M2 is normally hyperbolic everywhere except at the fold
points p∓, where

x∓p = 1±
√

1− |k|
6
, y∓p =

(
2±

√
1− |k|

6

)(
1∓

√
1− |k|

6

)2

|k|
, and

z∓p = 1∓
√

1− |k|
6
− 2

(
2±

√
1− |k|

6

)(
1∓

√
1− |k|

6

)2

|k|
.

(3.7)

Based on the above, we have the following

Proposition 14. If −6 < k < 0, then M2 admits two fold points which are located between
the intersections of M2 with L∓, i.e., on the repelling sheet of M1. If k < −6, then M2

admits no fold points.

We reiterate that, due to k < 0, the fold points p∓ in the Koper model cannot cross L∓,
and that the corresponding singular geometry is therefore as depicted in Figure 2.3(c).

Remark 9. In [Cardin and Teixeira, 2017, Example 4.3], M2 is characterized as normally
hyperbolic everywhere, in spite of its graph being S-shaped. Proposition 14 above shows that
M2 can, in fact, potentially admit two fold points at which normal hyperbolicity is lost.

3.2 Classification of three-timescale dynamics

Here, we classify the dynamics of the Koper model in the three-timescale context for various
choices of the parameters k and λ. In particular, we hence construct the two-parameter
bifurcation diagram shown in Figure 3.1. (A two-timescale analogue of Figure 3.1, for one
fast and two slow variables in Equation (6), is presented in [Desroches et al., 2012].)

In a first step, we note that the boundary between steady-state behaviour and oscillatory
dynamics in the Koper model is marked by curves of (singular) Hopf bifurcations at which
the delayed Hopf points p∓DH coincide with true, global equilibria of Equation (2.2):
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Figure 3.1: Two-parameter bifurcation diagram of the Koper model for 0 < ε, δ � 1:
oscillatory dynamics is restricted to the triangular region of the (k, λ)-plane that is bounded
by λ∓SH(k); MMO dynamics is separated from relaxation oscillation by the curves λ∓r = λ∓r (k);
to leading order, the mixed-mode regime is subdivided into regions of either single or double
epochs of SAOs at k = −4.

Proposition 15. Let 0 < ε, δ � 1, and fix k < 0. If k < −2, then the Koper model
undergoes (singular) Hopf bifurcations for λ = λ∓SH(k), where

λ−SH(k) = − (2 + k) +
k2

3
ε+O(δ, ε2) = − (2 + k) +

|k|
3
ε+O(δ, ε2) and (3.8a)

λ+
SH(k) = −λ−SH(k). (3.8b)

Proof. The equilibria of Equation (2.2) are obtained by solving

0 = −y + f2x
2 + f3x

3 = αx+ βy − z = µ+ φ (x, y, z) . (3.9)

Substituting in for x−DH , y−DH , and z−DH from (2.55), using (3.3), and solving for λ, one finds
(3.8a).

It hence follows that oscillatory dynamics is restricted to the triangular area illustrated
in Figure 3.1. A further subdivision of that area is obtained by noting that MMO dynamics
is separated from relaxation oscillation by two curves λ−r (k) and λ+

r (k) = −λ−r (k), which
are found by substituting (3.3) into (2.43) and solving for λ. While analytical expressions
for λ∓r (k) can be obtained by direct integration, these are quite involved algebraically, and
are hence not included here. We remark that the curves λ∓r (k) connect tangentially at
k = −4; cf. Figure 3.1. Numerical experiments show that, for ε = O(10−4) and δ = O(10−2),
the transition between MMO dynamics and relaxation occurs at λ∓r (k) + O(δ), as is to be
expected from Theorem 5.

Finally, the resulting, chevron-shaped region in which MMO dynamics is observed is
further divided into subregions in which either single or double epochs of SAOs are found;
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to leading order in ε and δ, that division occurs at k = −4. Geometrically, the division is
due to the fact that the folded singularities q∓ in the Koper model are remote for k < −4,
while they are connected when −4 < k < 0; see Figure 3.3. We emphasize that, in the
two-timescale context of 0 < ε � 1 and δ = O(1) in the Koper model, MMOs with double
epochs of SAOs occur in a very narrow region of the (k, λ)-plane; that region corresponds
to the regime where both folded singularities are of folded-node type and trajectories are
attracted to both of them through the associated funnels, by [Desroches et al., 2012]. Here,
we have shown that, in the three-timescale context, that parameter regime is “stretched”;
hence, trajectories can reach both folded singularities as long as they are attracted to M2

on both Sa∓ , i.e., as long as the folded singularities are aligned or connected.

Remark 10. Comparing Figure 2.1 and Figure 3.1, we note that panels (a) and (b) of
the former are combined in the latter, as two one-parameter diagrams (in µ) are combined
into one two-parameter diagram in (k, λ); correspondingly, parallel lines with µ constant
in Figure 2.1 are “bent”, and hence intersect, in Figure 3.1. (Here, we reiterate that k
determines the singular geometry of the Koper model, while λ impacts the resulting flow.)

3.2.1 The passage from two to three timescales

When ε > 0 is sufficiently small and δ = O(1), the folded singularities q∓ of the Koper model
are classified as shown in Table 3.1, in accordance with [Szmolyan and Wechselberger, 2001].

Table 3.1: Classification of the folded singularities on q+.

type of singularity q∓ criterion
saddle δ (k ∓ λ+ 2) > 0

saddle-node δ (k ∓ λ+ 2) = 0
node −k2/24 < δ (k ∓ λ+ 2) < 0

degenerate node δ (k ∓ λ+ 2) = −k2/24
focus δ (k ∓ λ+ 2) > −k2/24

The classification of Table 3.1, together with the Hopf curves that separate steady states
from oscillatory dynamics, are illustrated in Figure 3.2.

From Figure 3.2, it is evident that for δ = 1, the kλ-regime where MMOs with dou-
ble SAO epochs are possible, i.e. the regime where both q∓ are of folded node type and
the system has no stable equilibrium, is very narrow; this observation was also made in
[Desroches et al., 2012]. As δ becomes smaller, this regime stretches, and at δ = 1/3 the
bold and dashed curves of the same colour detach. Therefore, as δ decreases and the sys-
tem transits from the two- to the three-timescale limit, it is not only the funnels of q∓ that
stretch, but also kλ-regime in which SAOs can occur at the vicinity of both q∓, and in this
sense MMOs with double SAO-epochs are more robust in the three-timescale context.

3.3 Numerical verification

In this subsection, we verify our classification of the three-timescale dynamics of the Koper
model for various representative choices of the parameters k and λ, as indicated in Figure 3.1.

70



Figure 3.2: The curves corresponding to one of the two folded equilibria being of folded
degenerate node type are shown. For each value of δ, which corresponds to a different
colour, for kλ-values in the regime below the bold curve, the folded singularity q+ on L+ is
of node type. For the same value of δ, and for kλ-values in the regime above the dashed
curve, the folded singularity q− on L− is of folded node type (see also [Desroches et al., 2012]
for a similar graph when δ = 1). Non-steady state dynamics is observed in the triangular
area defined between the two black curves, which correspond to Hopf bifurcations of the
full system, given by (3.8). The narrow diamond-shaped region between the blue and black
curves close to k = −2 is the region where the Koper model features double epochs of
SAOs in the two-timescale setting, δ = 1, as first observed in [Desroches et al., 2012]. By
decreasing δ, the parameter regime where both q∓ are folded nodes stretches, and the curves
of the same colour “detach” at δ = 1/3.

We initially fix ε = 0.01 = δ and λ = 0.5, and we vary k. We recall that the Koper model is
symmetric in λ, and that it hence suffices to consider positive λ-values; see Remark 8.

For k = −2.2 (red circle), the flow of the Koper model converges to a steady state;
cf. panel (a) of Figure 3.3. For k = −3.6 (green asterisk), we observe MMO dynamics with
double epochs of SAOs, since the folded singularities q∓ are connected in that regime. We
note that the dynamics on Za− differs from that on Za+ due to the properties of φ(x, y, z)
given in (3.3) in spite of the singular geometry being symmetric; see Figure 3.3,(c). In
addition, trajectories “jump” close to the degenerate nodes z∓DN+

, which is in agreement with
Proposition 7. For k = −4.4 (blue diamond), the Koper model exhibits MMO dynamics
with single epochs of SAOs, as illustrated in panel (e) of Figure 3.3. Finally, for k = −5.4
(purple triangle), we observe relaxation oscillation; see Figure 3.3(c).

It was shown in [De Maesschalck et al., 2016] that for δ = O(ε2), their prototypical
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(a) k = −2.2, λ = 1.5. (b) k = −2.2, λ = 1.5.

(c) k = −3.6, λ = 1.5. (d) k = −3.6, λ = 1.5.

(e) k = −4.4, λ = 1.5. (f) k = −4.4, λ = 1.5.

(g) k = −5.4, λ = 1.5. (h) k = −5.4, λ = 1.5.

Figure 3.3: Verification of the bifurcation diagram in Figure 3.1 for representative choices of
k, with λ = 1.5 fixed and ε = 0.01 = δ : as k decreases, one observes a transition from (a)
steady-state behaviour via (c) MMO trajectories with double epochs of SAOs and (e) single
epochs of SAOs to (g) relaxation oscillation. The corresponding singular geometry in phase
space is shown in panels (b), (d), (f), and (h), respectively.
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model, Equation (2.1), can exhibit MMOs which contain SAO segments that are the product
of bifurcation delay alternating with sector-type dynamics. In Figure 3.4, we present an
example that indicates sector-delayed-Hopf-type dynamics in the Koper model. We remark
that the canard point p−CN coalesces with p−DH when k = −4 and that the interval Ican hence
vanishes, which follows by substitution of (3.3) into (2.57). Since, in addition, zCD = O(

√
ε),

a crude requirement for the existence of such mixed dynamics is that δ = O(|zCN |c) for c ≥ 1.
Finally, we note that we typically observe more LAO segments between epochs of SAOs for
smaller values of δ than for larger ones, by Equation (2.53) of Proposition 1; see again
Figure 3.4 and recall the discussion in Section 2.5 regarding the role of the ratio between the
timescale separation parameters ε and δ..

(a) δ = 0.1 = O(
√
ε). (b) δ = 0.001 = O(ε

3
2 ). (c) δ = 0.0003 = O(ε2).

Figure 3.4: Mixed-mode time series in the Koper model for ε = 0.01 fixed and varying δ: as δ
decreases, one typically observes more LAOs between SAO segments; additionally, for these
particular parameter values, the model seems to exhibit sector-delayed-Hopf-type dynamics
[De Maesschalck et al., 2016], as is particularly apparent in panel (b); recall Section 2.5 for
a discussion on the ε–δ ratio.

We emphasise that the MMO trajectories described here cannot be viewed, strictly speak-
ing, as perturbations of individual singular cycles, as described in Section 2.2. Rather, we
have shown that if the folded singularities of (2.2) are remote, then there exist ε and δ posi-
tive and sufficiently small such that the Koper model exhibits MMOs with single epochs of
SAOs; correspondingly, we observe double epochs of SAOs if those singularities are aligned
or connected. That statement is corroborated by numerical continuation, as illustrated in
Figure 3.5, where multiple periodic orbits seem to coexist for k, λ, ε, and δ fixed. (A similar
observation was made in the context of the two-timescale Koper model, i.e., for δ = 1 in
Equation (6c) [Desroches et al., 2012, Figure 19].) A more detailed study of the properties
of these periodic orbits in relation to the MMO dynamics of Equation (2.2) is part of work
in progress.
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Figure 3.5: Numerical continuation of periodic orbits in the Koper model with the software
“auto-07p” for λ = 1.5 and ε = 0.1 = δ: one observes coexistence of multiple periodic orbits,
as evidenced by the overlap between the corresponding k-intervals.
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Chapter 4

The Hodgkin-Huxley equations from
mathematical neuroscience

4.1 Introduction

The Hodgkin-Huxley (HH) equations [Hodgkin and Huxley, 1952] comprise a model that
describes the generation of action potentials in the squid giant axon. The particular im-
portance of these equations is due to the fact that they constitute one of the most suc-
cessful mathematical models for the quantitative description of biological phenomena, as
the underlying formalism is directly applicable to many types of neurons and other cells
[Doi et al., 2001, Izhikevich, 2007].

The three currents that the squid axon carries are the voltage-gated persistent potassium
(K+) current, the voltage-gated transient sodium (Na+) current, and the Ohmic leak current,
which are given by the expressions

INa(V,m, h) = gNa (V − ENa)m3h, IK(V, n) = gK (V − EK)n4, IL(V ) = gL (V − EL) ,
(4.1)

respectively; here, V denotes the membrane potential, in units of mV, and m and h are
the activation and inactivation variables of the Na+ ion channel, respectively, while n is
the activation variable of the K+ channel. The conductance density gx and the Nernst
potentials Ex (x = Na,K,L) are given in units of mS/cm2 and mV, respectively. The
original HH equations [Hodgkin and Huxley, 1952, Doi et al., 2001, Izhikevich, 2007] read

CV̇ = I − INa − IK − IL, (4.2a)

ṁ =
1

τmt̂m (V )
(m∞ (V )−m) , (4.2b)

ḣ =
1

τht̂h (V )
(h∞ (V )− h) , (4.2c)

ṅ =
1

τnt̂n (V )
(n∞ (V )− n) , (4.2d)

where C denotes the capacitance density, in units of µF/cm2, and I is the applied current,
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in units of µA/cm2. Moreover,

t̂x (V ) =
1

αx (V ) + βx (V )
and x∞ (V ) =

αx (V )

αx (V ) + βx (V )
, with x = m,h, n, (4.3a)

where the functions αx (V ) and βx (V ) are defined as

αm (V ) =
(25− V ) /10

e(25−V )/10 − 1
, αh (v) =

7

100
e−V/20, αn (v) =

(10− V ) /100

e(10−V )/10 − 1
(4.4a)

βm (V ) = 4e−V/18, βh (v) =
1

1 + e(30−V )/10
, and βn (v) =

1

4
e−V/80 (4.4b)

in the original form of Equation (4.2). In [Doi et al., 2001], the parameters I, τm, τh, and
τn are considered bifurcation parameters, while the values of the remaining parameters are
fixed as

C = 1 µF/cm2, gNa = 120 mS/cm, gK = 36 mS/cm, gL = 0.3 mS/cm,

ENa = 115 mV, EK = −12 mV, and EL = 10.599 mV.

When either τh or τn is large, it is demonstrated in [Doi et al., 2001] that Equation (4.2)
evolves on multiple timescales, which gives rise to mixed-mode oscillatory dynamics, as illus-
trated in Figure 2 therein. However, the geometric mechanisms that are responsible for the
transition between qualitatively different mixed-mode oscillations (MMOs) in the framework
of geometric singular perturbation theory (GSPT) [Fenichel, 1979] were not addressed in
[Doi et al., 2001].

To our knowledge, the first attempt at studying the multi-timescale HH model, Equa-
tion (4.2), on the basis of GSPT was made by Rubin and Wechselberger in the references
[Rubin and Wechselberger, 2007, Rubin and Wechselberger, 2008]. They applied the scaling

v =
V

kv
, τ =

t

kt
Ī =

I

kvgNa
, (4.5)

Ēx =
Ex
kv
, and ḡx =

gx
gNa

for x = Na,K,L, (4.6)

with kv = 100 mV and kt = 1 ms, and considered the following dimensionless version of
Equation (4.2),

γv̇ = Ī −
(
v − ĒNa

)
m3h− ḡK

(
v − ĒK

)
n4 − ḡL

(
v − ĒL

)
, (4.7a)

ṁ =
1

τmt̂m (v)
(m∞ (v)−m) , (4.7b)

ḣ =
1

τht̂h (v)
(h∞ (v)− h) , (4.7c)

ṅ =
1

τnt̂n (v)
(n∞ (v)− n) , (4.7d)

where

γ =
C

kt · gNa
' 0.0083. (4.8)
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(a) I = 20.051 (b) I = 23.051

(c) I = 23.5 (d) I = 26.03452346

(e) I = 26.1209956 (f) I = 26.2

Figure 4.1: Time series of the v-variable in the dimensionless HH model, Equation (4.7), for
ε = 0.0083, τh = 40, and varying values of I = kvgNaĪ: panels (a) and (b) illustrate MMOs
with double SAO epochs; panel (c) gives an example of a transitive, exotic MMO with
double epochs of SAOs separated by LAOs; panels (d) and (e) contain MMOs with single
SAO epochs. Qualitatively similar time series have been documented in [Doi et al., 2001,
Figure 2]; the underlying geometric mechanisms in the phase space that are responsible for
the qualitative properties of the associated MMO trajectories are described in Section 4.3.
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(a) I = 7 (b) I = 9

(c) I = 11 (d) I = 64.5

(e) I = 90 (f) I = 150

Figure 4.2: Time series of the v-variable in the dimensionless HH model, Equation (4.7), for
ε = 0.0083, τn = 100, and varying values of I = kvgNaĪ: panels (a) and (b) illustrate MMOs
with double SAO epochs; panels (c) and (d) contain MMOs with single SAO epochs. The
underlying geometric mechanisms in the phase space that are responsible for the qualitative
properties of the associated MMO trajectories are described in Section 4.4.
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Here, the functions t̂x (v) and x∞ (v) are defined as in (4.3a), with

αm (v) =
(v + 40) /10

1− e−(v+40)/10
, αh (v) =

7

100
e−(v+65)/20, αn (v) =

(v + 55) /100

1− e−(v+55)/10

βm (v) = 4e−(v+65)/18, βh (v) =
1

1 + e−(v+35)/10
, and βn (v) =

1

4
e−(v+65)/80;

in addition, the parameters in (4.7) now read

Ī =
I

kugNa
, ḡK = 0.3, ḡL = 0.0025,

ĒNa = 0.5, ĒK = −0.77, and ĒL = −0.544.

(4.9)

The dimensionless Equation (4.7) captures the different dynamical behaviours of Equa-
tion (4.2) when I is varied and the remaining parameters are fixed, as documented in
[Doi et al., 2001]: panel (b) in Figure 4.1 shows an MMO with double epochs of small-
amplitude oscillations (SAOs); panel (d) illustrates an MMO with single epochs of SAOs,
while panel (f) demonstrates (SAO-less) relaxation oscillation. Finally, panel (c) contains an
MMO with double epochs of SAOs that includes spikes between the epochs of SAOs “above”
and SAOs “below”. We note that, due to the non-dimensionalisation in (4.7) by Rubin
and Wechselberger [Rubin and Wechselberger, 2007], the corresponding I-values differ from
those in [Doi et al., 2001]; moreover, we remark that for ease of comparison and numerical
convenience, Figure 4.1 refers to I rather than to its rescaled counterpart Ī in Equation (4.7).

Under the above assumptions, the parameter γ defined in (4.8) can be considered a small
perturbation parameter. Moreover, the order of magnitude of the characteristic timescale
[t̂m(v)]−1 is larger than those of [t̂h(v)]−1 and [t̂n(v)]−1, as can be seen in Figure 4.3.

(a) (b)

Figure 4.3: Characteristic timescales (a) t̂x(v)−1 (x = m,h, n), (b) tx(v)−1 (x = m,h, n).

We consider the rescaling

Tx = max
v∈(EK ,ENa)

1

t̂x(v)
(4.10)
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and define

tx(v) := Txt̂x(v). (4.11)

Denoting further

V (v,m, h, n) := Ī −
(
v − ĒNa

)
m3h− ḡK

(
v − ĒK

)
n4 − ḡL

(
v − ĒL

)
, (4.12)

M(v,m) :=
m∞ (v)−m

tm (v)
, (4.13)

H(v, h) :=
h∞ (v)− h
th (v)

, (4.14)

N(v, n) :=
n∞ (v)− n
tn (v)

, and (4.15)

δx :=
Tx
τx
, x = m,n, h, (4.16)

one can write

γv̇ = V (v,m, h, n) (4.17a)

ṁ = δmM(v,m), (4.17b)

ḣ = δhH(v, h), (4.17c)

ṅ = δnN(v, n). (4.17d)

In the following, we will suppress the dependence of Equation (4.17) on the parameter Ī,
and will only remark on it as required.

From Figure 4.3, it is apparent that Tm ' 10, while Th ' Tn ' 1. Based on this
observation, in [Rubin and Wechselberger, 2007] it was assumed that δ−1

m = T−1
m = O(γ),

and system (4.17) was thus written as

γv̇ = V (v,m, h, n) , (4.18a)

γṁ = M(v,m), (4.18b)

ḣ = δhH(v, h), (4.18c)

ṅ = δnN(v, n), (4.18d)

where (v,m) are the fast variables and (h, n) are the slow ones. On the basis of centre
manifold theory, Rubin and Wechselberger [Rubin and Wechselberger, 2007] then derived
the following three-dimensional reduction of (4.18),

γv̇ = Ī −
(
v − ĒNa

)
m3
∞(v)h− ḡK

(
v − ĒK

)
n4 − ḡL

(
v − ĒL

)
= V (v,m∞, h, n) , (4.19a)

ḣ = δhN(v, h), (4.19b)

ṅ = δnN(v, n), (4.19c)

where the variable m has been eliminated. However, in their analysis, they considered
0 < γ � 1 and δx = O(1) (x = m,h, n). As a consequence, only MMO trajectories with
single epochs of SAOs were documented in previous works [Rubin and Wechselberger, 2007,
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Rubin and Wechselberger, 2008], in contrast to [Doi et al., 2001, Figure 2]; cf. panels (d),
(e), and (f) of Figure 4.1. As argued in [Desroches et al., 2012], in the two-timescale context
– where SAOs arise due to the presence of a folded node singularity [Wechselberger, 2005]
– the parameter regimes in which MMOs with double SAO epochs are apparent seem very
narrow. By contrast, such MMOs become more prominent in the three-timescale context,
which further attests to our claim that the physiologically relevant mixed-mode dynamics
of the HH model, Equation (4.7), cannot be fully understood via a standard two-timescale
analysis.

In this work, we incorporate the assumption that the variable m is slower than v, but
faster than h and n, which is alluded to in [Rubin and Wechselberger, 2007, Remark 1];
that is, we assume δ−1

m = O(
√
γ) in (4.17). That assumption is realistic, since γ = 0.0083,

Tm = 10, and τm = O(1). Crucially, it allows us to apply GSPT to derive a global three-
dimensional reduction of Equation (4.7) of the form

εv̇ = U(v, h, n; γ, ε, δh, δn), ḣ = δhH(v, h), ṅ = δnN(v, n), (4.20)

where ε = δ−1
m is small; see Theorem 7 in Section 4.2. The geometry of the reduction

in (4.20) encodes the mechanisms that are responsible for the transitions between qualita-
tively different mixed-mode dynamics of the full system, Equation (4.7), as documented in
[Doi et al., 2001] and as illustrated in Figure 4.1 and Figure 4.2, in the presence of three
distinct timescales.

Remark 11. The timescale separation at all levels can be controlled by merely varying the
parameters τx (x = m,h, n) in (4.7) or, equivalently, by variation of δx in (4.17).

Specifically, motivated by [Doi et al., 2001], but also by [Rubin and Wechselberger, 2007,
Rubin and Wechselberger, 2008], we consider the two different cases where either h or n in
Equation (4.20) is assumed to be evolving on the slowest timescale. In other words, we first
take δh > 0 to be small, with δn = O(1); then, we consider the case where δh = O(1), with
δn > 0 small. We show that these two cases are not fundamentally different in terms of their
singular geometry and of the resulting mixed-mode dynamics. In particular, we demonstrate
that, when h is taken to be the slowest variable, the geometric mechanism introduced in
Chapter 2 can reproduce the various firing patterns observed in (4.7), and the bifurcations
between those, with the rescaled applied current Ī the relevant bifurcation parameter. We
explain the transition from MMOs with double epochs of SAOs to MMOs with single epochs
of SAOs and then to relaxation oscillation, cf. Figure 4.1 and Figure 4.2, and we remark on
the “exotic MMOs” that are observed during this transition; cf. Figure 4.1.

The Chapter is organised as follows. In Section 4.2, we present a novel, global geometric
reduction of Equation (4.7) after elimination of the variable m. We relate the dynamics
of the resulting, reduced three-dimensional slow-fast system, Equation (4.20), to that of
Equation (4.17), as well as to the local centre manifold reduction proposed by Rubin and
Wechselberger, Equation (4.19). We then consider the scenario where Equation (4.20) ex-
hibits dynamics on three timescales, in which case the full system in (4.2) exhibits dynamics
on four timescales. In Section 4.3 and Section 4.4, the variable h and n is taken to be
the slow variable, respectively; we demonstrate that the geometric mechanisms proposed in
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Chapter 2 can explain bifurcations of MMOs that have been previously documented, but
not emphasised in the context of GSPT, in the literature, such as in [Doi et al., 2001]. We
conclude the article in Section 4.6 with a summary, and an outlook to future research.

4.2 Global multi-timescale reduction

Equation (4.17) is singularly perturbed with respect to the small parameter γ, written in the
“slow formulation”. Rescaling time in (4.17) as t̃ = t/γ, we obtain the “fast formulation”

v′ = V (v,m, h, n) , (4.21a)

m′ = γδmM(v,m), (4.21b)

h′ = γδhH(v, h), (4.21c)

n′ = γδnN(v, n), (4.21d)

where the prime denotes differentiation with respect to the new time t̃. Furthermore, in the
following we will restrict to the domain (v,m, h, n) ∈ D, where

D := (ĒK , ĒNa)× (0, 1)3, (4.22)

as is also done in [Rubin and Wechselberger, 2007].
Since δm = O(γ−1/2), it is apparent that (4.21) features three distinct timescales if

δh, δn = O(1), with v the fast variable, m the slow one, and h and n the super-slow ones.
The singular limit of γ = 0 gives the one-dimensional “layer problem” with respect to the
fastest timescale,

v′ = V (v,m, h, n) , (4.23a)

m′ = 0, (4.23b)

h′ = 0, (4.23c)

n′ = 0. (4.23d)

Equilibria of (4.23a) define the three-dimensional critical manifold M as

V (v,m, h, n) = 0. (4.24)

Since

∂vV (v,m, h, n) = −m3h− ḡKn4 − ḡL < 0 for (v,m, h, n) ∈ D, (4.25)

the manifold M is normally hyperbolic and attracting everywhere in D. Let

µ(v, h, n) :=

[
Ī − ḡK

(
v − ĒK

)
n4 − ḡL

(
v − ĒL

)(
v − ĒNa

)
h

] 1
3

; (4.26)

then, by (4.24), M can be written as a graph of m over (v, h, n), with

m = µ(v, h, n). (4.27)
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Finally, we emphasise that since δ−1
m = 0.1 and since δm is independent of γ, it holds uniformly

that γ � δ−1
m . Therefore, for γ > 0 sufficiently small, the dynamics of Equation (4.21) can

be effectively reduced to a three-dimensional multi-timescale system, which constitutes our
first main result in this Chapter.

Theorem 7. Consider γ > 0 sufficiently small, and let ε = δ−1
m . Then, the HH model,

Equation (4.21), admits a three-dimensional attracting slow manifold Mγ that is diffeomor-
phic, and O (γ)-close to, M in the Hausdorff distance. The manifold Mγ can be written as
a graph m = µ(v, h, n) +O(γ) and is locally invariant under the flow of

εv̇ =
m∞(v)− µ(v, h, n)

tm(v)∂vµ(v, h, n)
− εδhH(v, h)

∂hµ(v, h, n)

∂vµ(v, h, n)
− εδnN(v, n)

∂nµ(v, h, n)

∂vµ(v, h, n)
+O (γ)

=: U(v, h, n; γ, ε, δh, δn),

(4.28a)

ḣ = δhH(v, h), (4.28b)

ṅ = δnN(v, n). (4.28c)

Proof. The existence of Mγ, its diffeomorphic relation to, and distance from, M follow
from Fenichel’s First Theorem [Fenichel, 1979], since the critical manifold M is normally
hyperbolic everywhere in D, by (4.24) and (4.25). In particular, Mγ is given as a graph of
m over (v, h, n), with

m = µ(v, h, n) + γµ1(v, h, n; γ). (4.29)

The attractivity of Mγ follows from Fenichel’s Second Theorem [Fenichel, 1979], since, by
(4.25), the critical manifold M is attracting everywhere. (See also [Hek, 2010] for a concise
outline of Fenichel’s First and Second Theorems).

Finally, Equation (4.28) for the flow on the slow manifold Mγ is obtained as follows.
Equations (4.28b) and (4.28c) follow immediately from (4.21), as the dynamics of h and n is
independent of m. To derive (4.28a), we first differentiate (4.29) with respect to t̃. Next, we
substitute (4.21b), (4.21c), (4.21d), and (4.26) into the resulting expression and then solve
for v̇, collecting terms. Dividing the resulting system of equations by δm and substituting
ε = δ−1

m gives the desired result.

Theorem 7 implies that, for γ positive and sufficiently small, the dynamics of the full,
four-dimensional HH model, Equation (4.21), is captured by the three-dimensional reduction
in (4.28), where we have eliminated the variable m via the graph representation in (4.29).
We remark that (4.28) is a regular perturbation problem in γ in the slow formulation of
GSPT with respect to the singular perturbation parameter ε; we will therefore restrict to
considering the limit of γ = 0 in the following:

εv̇ =
m∞(v)− µ(v, h, n)

tm(v)∂vµ(v, h, n)
− εδhH(v, h)

∂hµ(v, h, n)

∂vµ(v, h, n)
− εδnN(v, n)

∂nµ(v, h, n)

∂vµ(v, h, n)
, (4.30a)

ḣ = δhH(v, h), (4.30b)

ṅ = δnN(v, n). (4.30c)
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For ε > 0 sufficiently small, Equation (4.30) is itself a slow-fast system in the standard form
of GSPT. Rescaling time in (4.28) as τ = t/ε gives the corresponding fast formulation

v′ =
m∞(v)− µ(v, h, n)

tm(v)∂vµ(v, h, n)
− εδhH(v, h)

∂hµ(v, h, n)

∂vµ(v, h, n)
− εδnN(v, n)

∂nµ(v, h, n)

∂vµ(v, h, n)
, (4.31a)

h′ = εδhH(v, h), (4.31b)

n′ = εδnN(v, n), (4.31c)

The layer problem is then obtained by setting ε = 0 in (4.31)

v′ =
m∞(v)− µ(v, h, n)

tm(v)∂vµ(v, h, n)
, (4.32a)

h′ = 0, (4.32b)

n′ = 0. (4.32c)

The set of equilibria of the above defines the two-dimensional critical manifold M1 as

m∞(v)− µ(v, h, n) = 0, (4.33)

which is equivalent to requiring that

V (v,m∞(v), h, n) = 0; (4.34)

see (4.26) for the definition of µ(v, h, n) and (4.12) for the definition of V (v,m, h, n).
The manifold M1 is normally hyperbolic everywhere except on FM1 , where

∂v [V (v,m∞(v), h, n)] = 0. (4.35)

We note that

∂h [V (v,m∞(v), h, n)] = −
(
v − ĒNa

)
m3
∞(v) > 0 and (4.36a)

∂n [V (v,m∞(v), h, n)] = −4ḡK
(
v − Ēk

)
n3 < 0 (4.36b)

for v ∈ (ĒK , ĒNa), and we define

ν(v, h) :=

[
Ī −

(
v − ĒNa

)
m3
∞(v)h− ḡL

(
v − ĒL

)
ḡK
(
v − ĒK

) ] 1
4

(4.37)

η(v, n) :=
Ī − ḡK

(
v − ĒK

)
n4 − ḡL

(
v − ĒL

)(
v − ĒNa

)
m3
∞(v)

(4.38)

by solving (4.34) for n and h, respectively. The manifold M1 can therefore be written
globally either as a graph over (v, h), with

n = ν(v, h),

or as a graph over (v, n), with

h = η(v, n).

86



Finally, a parametric expression for FM1 can be obtained by using (4.37) and solving the
system {(4.34),(4.35)}. Elementary calculation shows that FM1 is a U -shaped curve, which
can be viewed as the tangential connection of two fold curves L∓; see Figure 4.4.

It follows that the manifold M1 is separated by FM1 into a normally attracting por-
tion Sa, where ∂v [V (v,m∞(v), h, n)] < 0, and a normally repelling portion Sr, where
∂v [V (v,m∞(v), h, n)] > 0; cf. again Figure 4.4. We denote the normally hyperbolic sub-
manifold of M1 by S = Sa ∪ Sr.

Remark 12. It is also now apparent that the restriction to v ∈
(
ĒK , ĒNa

)
stems from

Equations (4.37) and (4.38), since the denominators in those expressions tend to zero when
v → ĒNa or v → ĒK, respectively.

Figure 4.4: The critical manifold M1 of the three-dimensional reduction, Equation (4.28).

The reduced problem on M1 is obtained by setting ε = 0 in (4.30)

0 =
m∞(v)− µ(v, h, n)

tm(v)∂vµ(v, h, n)
, (4.39a)

ḣ = δhH(v, h), (4.39b)

ṅ = δnN(v, n); (4.39c)

then, with regard to the reduced flow on S, we have the following result:

Proposition 16. The reduced flow on Sa is smoothly topologically equivalent to the flow of

v̇ = δh∂h [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h)+δn∂n [V (v,m∞(v), h, n)]N(v, n)|n=ν(v,h),
(4.40a)

ḣ = −δh∂v [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h) (4.40b)

and to that of

v̇ = δh∂h [V (v,m∞(v), h, n)]H(v, h)|h=η(v,n)+δn∂n [V (v,m∞(v), h, n)]H(v, n)|h=η(v,n),
(4.41a)

ṅ = −δn∂v [V (v,m∞(v), h, n)]N(v, h)|h=η(v,n). (4.41b)

87



Proof. Differentiating implicitly the algebraic constraint in (4.34) which defines M1, we
obtain

−∂v [V (v,m∞(v), h, n)] v̇ = ∂h [V (v,m∞(v), h, n)] ḣ+ ∂n [V (v,m∞(v), h, n)] ṅ. (4.42)

Making use of (4.28b) and (4.28c), together with (4.37), on M1 we obtain

−∂v [V (v,m∞(v), h, n)] v̇ = ∂h [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h)

+ δn∂n [V (v,m∞(v), h, n)]N(v, n)|n=ν(v,h),

ḣ = δhH(v, h)|n=ν(v,h).

Rescaling time in the above by a factor of − (∂v [V (v,m∞(v), h, n)])−1, which preserves the
direction of time on Sa while reversing it on Sr, we find (4.40), as claimed. Showing the
equivalence to (4.41) is similar.

We remark that, although systems (4.40) and (4.41) are equivalent on Sa, system (4.40)
(resp. (4.41)) will be more useful when h is taken to be the slowest variable (resp. when n
is taken to be the slowest variable), as this will lead to a two-dimensional slow-fast system
in the standard form of GSPT, as will be apparent in Section 4.3 (resp. Section 4.4). If n is
taken to be the slow variable in (4.40) (resp. if h is taken to be the slow variable in (4.40)),
then the corresponding two-dimensional system is a slow-fast system in the non-standard
form of GSPT, recall Section 1.3 and see Section 4.7.

We emphasise that Equation (4.30) and the centre manifold reduction (4.19) that was
introduced in [Rubin and Wechselberger, 2007] admit the same critical manifoldM1 as is de-
fined by (4.33) – or, equivalently, by (4.34). In other words, the algebraic constraint in (4.33)
corresponds to the v-nullcline in (4.19a), recall (4.12); see [Rubin and Wechselberger, 2007]
for details. However, although the factor of [∂vµ(u, h, n)]−1 in (4.30a) is positive definite,
there are qualitative differences in the dynamics of the two systems due to the terms of order
O(ε) that occur in (4.30), as is discussed in Section 4.5.

Naturally, and as is the case for (4.19), the slow-fast formulation in Equation (4.30)
exhibits dynamics on two timescales when only ε is assumed to be small and δh, δn = O(1);
correspondingly, there is then no separation of scales in the desingularised reduced flow in
(4.40). In the following, we therefore consider the two cases where either τn = O(1) and τh
is large in (4.7) and, hence, δh is small in (4.30); or τh = O(1) and τn is large and, hence,
δh is small. The system in (4.30) then exhibits dynamics on three distinct timescales, with
(4.40) corresponding to the formulation on the “intermediate” timescale. In the following,
we will in turn investigate the resulting mixed-mode dynamics in those two cases.

4.3 The h-slow regime

In this section, we consider the regime where the variable h is the slowest variable in (4.21),
which is realised for δh > 0 sufficiently small and δn = 1, that is, when τh is large and
τn = O(1) in the original HH model, Equation (4.2). In that case, the reduced system on
M1, Equation (4.40), is a slow-fast system written in the standard form of GSPT which
features similar geometric and dynamical properties to the extended prototypical example
introduced in Chapter 2.
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In particular, we will classify the mixed-mode dynamics of Equation (4.21) with γ, ε, δh >
0 small in dependence of the (rescaled) applied current Ī, by applying the analysis outlined
in Chapter 2 to the three-dimensional reduction (4.28). We will show that, in the parameter
regime defined in (4.9), there exist values 0 < Īo < Īa < Īr < Īc of Ī that distinguish
between the various types of oscillatory dynamics in (4.21) for γ, ε, 1/δm, and δh positive
and sufficiently small and δn = O(1). The resulting classification is illustrated in Figure 4.5,
with the corresponding mixed-mode oscillatory dynamics as shown in Figure 4.1. While
such dynamics was previously documented in [Doi et al., 2001], the underlying geometric
mechanisms that generate these various firing patterns, and the transitions between them,
were not emphasised in the context of GSPT. Correspondingly, the Ī-values for which these
transitions occur were not identified.

Figure 4.5: Bifurcation of mixed-mode oscillatory dynamics in dependence of the parameter
Ī in the h-slow case, for ε and δh positive and sufficiently small in Equation (4.28).

As will become apparent through the discussion that follows, the values Īo and Īc are
related to singular Hopf bifurcations of system (4.30), marking the onset and cessation of
oscillatory dynamics, respectively. The value Īa distinguishes between mixed-mode trajec-
tories with double epochs of SAOs and those with single epochs under the perturbed flow
of (4.30), with ε and δh sufficiently small; see panels (a,b) and (d,e) of Figure 4.1, respec-
tively. We remark that transitive, complex mixed-mode patterns featuring double epochs of
SAOs separated by LAOs are observed during the transition from MMOs with double SAO
epochs to those with single epochs, i.e., for Ī-values close to Īa; see Figure 4.1(c). Moreover,
there exists an Ī-value Īr which separates MMOs with single epochs of SAOs from relaxation
oscillation, see Figure 4.1 (e) and (f), respectively.

4.3.1 Singular geometry

In the singular limit of ε = 0, with δh > 0 sufficiently small and δn = 1, the reduced flow in
Equation (4.40) reads

v̇ = ∂n [V (v,m∞(v), h, n)]N(v, n)|n=ν(v,h)+O (δh) , (4.43a)

ḣ = −δh∂v [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h) (4.43b)
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in the intermediate formulation, whereas on the slow time-scale τh = δht, we can write

δhv̇ = ∂n [V (v,m∞(v), h, n)]N(v, n)|n=ν(v,h)+O (δh) , (4.44a)

ḣ = −∂v [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h); (4.44b)

hence, we obtain a slow-fast system in the standard form of GSPT [Fenichel, 1979].
Setting δh = 0 in Equation (4.43) gives the one-dimensional layer problem

v̇ = ∂n [V (v,m∞(v), h, n)]N(v, n)|n=ν(v,h), (4.45a)

ḣ = 0. (4.45b)

Solutions of (4.45) are given by intermediate fibres with h constant. Moreover, since by (4.36)
holds that ∂n [V (v,m∞(v), h, n)] 6= 0, equilibria of (4.45a) define the supercritical manifold
Mh as the subset of M1 where

n∞(v)− ν(v, h) = 0; (4.46)

recall (4.15) and (4.37). The algebraic constraint (4.46) is equivalent to

V (v,m∞(v), h, n∞(v)) = 0, (4.47)

see (4.12) for the definition of V (v,m, h, n).
The manifold Mh is normally hyperbolic on the set H where

∂v [V (v,m∞(v), h, n∞(v))] 6= 0.

Using computer algebra software, calculation shows that the set FMh
= Mh\H where

normal hyperbolicity is lost consists of two points: FMh
=
{
p−h , p

+
h

}
, cf. Figure 4.6.

These two points separate the normally hyperbolic portion H of Mh into two attract-
ing branches Ha∓ , with ∂v [V (v,m∞(v), h, n∞(v))] < 0, and a repelling branch Hr, where
∂v [V (v,m∞(v), h, n∞(v))] > 0; see Figure 4.9. We emphasize that the fold points p∓h lie on
Sr.

In the double singular limit of ε = 0 = δh, the folded singularities Qh =
{
q−h , q

+
h

}
[Szmolyan and Wechselberger, 2001] of (4.28) are given by

q∓h =Mh ∩ L∓; (4.48)

see Figure 4.9. In the following, we will denote

q∓h =
(
vq∓h

, hq∓h
, nq∓h

)
(4.49)

We emphasise that the properties of all geometric objects defined above – i.e., ofMh, FMh
,

and Qh – are dependent on the parameter I or, rather, on its rescaled counterpart Ī.
Next, setting δh = 0 in the slow formulation, Equation (4.44), we obtain the one-

dimensional reduced flow on Mh:

0 = ∂n [V (v,m∞(v), h, n)]N(v, n)|n=ν(v,h), (4.50a)

ḣ = −∂v [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h), (4.50b)
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Differentiating the algebraic constraint in (4.47) implicitly, via

−∂v [V (v,m∞(v), h, n∞(v)] v̇ = ∂h [V (v,m∞(v), h, n∞(v)] ḣ,

and using (4.50b) and (4.38), we find the following expression for the reduced flow on Ha∓

v̇ =
∂v [V (v,m∞(v), h, n)] ∂h [V (v,m∞(v), h, n∞(v))]

∂v [V (v,m∞(v), h, n∞(v)]
H(v, h)

∣∣∣∣
h=η(v,n),n=n∞(v)

. (4.51)

Using computer algebra software, calculations show that the reduced flow on Ha∓ is
directed towards q∓h , respectively, cf. Figure 4.6 panel (c). The resulting singular geom-
etry is summarised in Figure 4.6. Combining orbit segments from the layer flow of Equa-
tion (4.31a)ε=0, the intermediate fibres of (4.45a) onM1, and the reduced dynamics of (4.51)
onMh, one can construct singular or candidate trajectories ; closed singular trajectories are
called singular cycles ; see Figure 4.7 for an illustration of such a trajectory in the three-
dimensional (v, h, n)-space, and Figure 4.6 panel (a) for a projection onto the vh-plane.

(a) (b) (c)

Figure 4.6: In the double singular limit of ε = 0 = δh, the supercritical manifold H consists
of two attracting branches Ha∓ that are separated by a repelling branch Hr. The folded
singularities q∓ of (4.21) lie on Sr, and the flow on Ha∓ is directed towards q∓h . The above
graphs are for Ī = 20/(kvgNa).

We emphasise that, according to the above, system (4.28) with h-slow is in accordance
with the implications of Assumption 6 and Assumption 7 that were made for the extended
prototypical system (2.2) in Chapter 2 to describe bifurcations of its MMO-trajectories based
on the properties of its singular geometry and its singular cycles; namely:

• The critical manifold M1 is S-shaped (away from the tangential connection of L∓),
with two attracting sheets Sa∓ separated by a repelling sheet Sr,

• The supercritical manifold Mh is S-shaped, with two attracting branches Ha∓ sepa-
rated by a repelling branch Sr; moreover, the folds of Mh lie on the repelling sheet
Sr,

• The reduced flow on Ha∓ is directed towards q∓h respectively.

91



Figure 4.7: A singular cycle, as a concatenation of fast, intermediate and slow segments of
(4.31a)ε=0, (4.45a), and (4.51), respectively.

We reiterate that the above assumptions were imposed for the extended prototypical
example (2.2) in Chapter 2, of which the Koper model [Koper, 1995] from chemical kinetics
is a particular realisation, recall Chapter 3. The HH-equations and the Koper model have
been studied extensively in the two-timescale context [Desroches et al., 2012], and here we
show that they are fundamentally not very different in the three-timescale context, in terms
of MMO-bifurcations in relation to their singular geometry.

4.3.2 Perturbed dynamics and and MMOs

By standard GSPT [Fenichel, 1979] and as shown in Chapter 2, for ε, δh > 0 sufficiently small,
there exist invariant manifolds Saεδh and Srεδh that are diffeomorphic to their unperturbed,
normally hyperbolic counterparts Sa and Sr, respectively, and that lie O (ε+ δh)-close to
them in the Hausdorff distance, for ε and δh positive and sufficiently small. The perturbed
manifolds Saεδh and Srεδh are locally invariant under the flow of (4.31). Moreover, for ε, δh > 0

sufficiently small, there exist invariant manifolds Ha∓

εδh
and Hr

εδh
that are diffeomorphic, and

O (δh)-close in the Hausdorff distance, to their unperturbed, normally hyperbolic counter-
parts Ha∓ and Hr, respectively. The perturbed branches Ha∓

εδh
and Hr

εδh
are locally invariant

under the flow of (4.31).
Given an initial point (v, h, n) ∈ Saεδh , the corresponding trajectory will follow the inter-

mediate flow thereon until it is either attracted to Ha
εδh

or until it reaches the vicinity of the
fold line FM1 . If trajectories reach the vicinity of FM1 away from the folded singularities
q∓h , they “jump” to the opposite attracting sheet Saεδh following the fast flow of (4.23a); see
[Wechselberger, 2005, Szmolyan and Wechselberger, 2001]. On the other hand, if trajecto-
ries are attracted to appropriate subregions of Ha

εδh
or to the vicinity of q−h , they undergo

SAOs; details can be found in Chapter 2. We include a brief discussion of SAO-generating
mechanisms, as well as a comparison between (4.19) and (4.28) in that regard, in Section
4.5.
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Therefore, orbits for the perturbed flow of Equation (4.28) with ε and δh positive and
sufficiently small can be constructed by combining perturbations of fast, intermediate and
slow segments of singular trajectories, as described above. In Chapter 2, we showed that the
qualitative characteristics of the resulting MMO trajectories will depend on the properties
of the flow on Saεδh and Ha

εδh
, as well as on the location of the folded singularities q∓h relative

to each other.
In the following, we demonstrate how the various Ī-values that distinguish between dif-

ferent qualitative behaviours of the system (4.31) with ε, δh > 0 small as shown in Figure 4.5
are obtained.

4.3.3 Onset and cessation of oscillatory dynamics

At the singular limit ε = 0 = δh, using computer algebra software, we find that the reduced
flow on H, equation (4.51), has a stable equilibrium point on Sr for Ī ∈ (Ī1, Ī2), where

Ī1 '
4.8

kvgNa
, Ī2 '

280

kvgNa
, (4.52)

cf. Figure 4.8.Moreover, the reduced flow (4.51) has a stable equilibrium point on Ha− for
Ī < Ī1, and on the unique normally hyperbolic branch Ha for Ī > Ī2, cf Figure 4.8, while
the equilibrium point crosses L− for Ī = Ī1 and Ī = Ī2

(a) Ī < Ī1 (b) Ī ∈ (Ī1, Ī2) (c) Ī > Ī2

Figure 4.8: A stable equilibrium of the reduced flow (4.68) (red dot) lies in the attracting
portion Sa of M1 for Ī < Ī1 and Ī > Ī2, panels (a) and (c), respectively, and in the
repelling portion Sr for Ī ∈ (Ī1, Ī2), panel (b). As Ī increases, the distance between L−
and L+ becomes more narrow, and the leftmost branch of H is “moving downwards”. For
Ī & 120/(kvgNa), Mh consists of one normally hyperbolic, attracting branch Ha.

According to Section 2.3, for ε, δh > 0 sufficiently small, the perturbed system (4.31)
undergoes singular Hopf bifurcations for Ī-values that are O(ε, δh)-close to Ī1 and Ī2, and
the onset and cessation of global oscillatory dynamics happens O(ε, δh)-close to these values,
respectively, i.e.

Īo = Ī1 +O(ε, δh), Īc = Ī2 +O(ε, δh),

93



see also [Desroches et al., 2012, Letson et al., 2017, Guckenheimer, 2008, Krupa et al., 2008,
Krupa and Wechselberger, 2010] and Chapter 2. By numerical sweeping, we find that for
γ = 0.0083, ε = 0.1, δh = 0.025 and for parameter values as in (4.9), the onset of oscillatory
dynamics of system (4.21) is at approximately Ī ' 8.1/(kvgNa), while the cessation of oscil-
latory dynamics is at approximately Ī ' 272/(kvgNa), which are O(ε, δh)-close to Ī1 and Ī2,
respectivelly.

4.3.4 From double to single SAO-epochs

At the beginning of this section, we introduced the notion of singular cycles, and we showed
a particular example in Figure 4.6 and Figure 4.7. However, the configuration of the singular
cycle illustrated therein is not the only possible one. Namely, depending on the location of
the folded singularities q∓h relative to each other, singular cycles can pass through only one or
through both of them, as shown in Figure 4.9. We characterise the pair of folded singularities
q∓h based on whether they are “connected” by singular cycles or not, by slightly rephrasing
Definition 5, as follows.

Definition 6. white text

1. The folded singularities q∓h are “orbitally connected” if they are contained in the same
singular cycle, with the latter containing two slow segments, one on Ha− and one on
Ha+, i.e. if q−h > q+

h ; cf. Figure 4.9 (a).

2. The folded singularities q∓h are “orbitally remote” if a singular cycle that passes through
q−h does not pass through q+

h , i.e. if q−h < q+
h ; cf. Figure 4.9 (c).

3. The folded singularities q∓h are “orbitally aligned” if they are neither orbitally remote
nor orbitally connected, i.e. if q−h =q+

h ; cf. Figure 4.9 (b).

Due to the Ī-dependence of of the location of q∓h , the classification in Definition 6 hence
encodes the position of the folded singularities q∓h relative to one another in dependence
of the rescaled applied current Ī. For a given value of Ī, the v-coordinates of the folded
singularities are obtained by solving the system

η(v, n∞(v))−
Ī − ḡL

(
v − ĒK

)
− ḡL(v − ĒL)

3m′(v)m2
∞(v)

(
v − ĒNa

) (
v − ĒK

)
+m3

∞(v)
(
2v − ĒNa − Ēk

) = 0, (4.53)

where η(v, n∞(v)) corresponds to the graph of MH in the vh-plane, recall (4.38), and the
fractional factor corresponds to the graph of FM1 , recall (4.35). It follows that, in the
parameter regime given by (4.9), there exists a unique value Īa such that the singularities
q−h and q+

h are orbitally aligned. By numerical computations, this value is approximately

Īa '
26.5

kvgNa
, (4.54)

recall (4.9). Correspondingly, q∓ are connected for Ī < Īa and remote for Ī > Īa.
It follows that, for Ī < Īa+O(ε, δh), the full system (4.21) with ε, δh > 0 sufficiently small

features MMOs with double epochs of perturbed slow dynamics, cf. Figure 4.10 & Figure 4.1
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(a) I < Īa (b) Ī = Īa (c) Ī > Īa

Figure 4.9: Orbital connection or lack thereof, in accordance with Definition 6. For Ī < Īa,
the folded singularities q∓h are orbitally connected, in the sense that, at the limit ε = 0 = δh,
there exists a singular cycle that passes through both of them and also has slow segments
on both Ha∓ , panel (a). For Ī > Īa, the folded singularities q∓h are orbitally remote, in the
sense that, at the limit ε = 0 = δh, a singular cycles that passes through one of the folded
singularities does not pass through the other, panel (c). For Ī = Īa, the folded singularities
q∓h are orbitally aligned, in the sense that, at the limit ε = 0 = δh, there exists a singular
cycle that passes through both of them but has no slow segments on both Ha∓ , panel (b)

panels (a,b). Correspondingly, for Ī > Īa + O(ε, δh), the full system (4.17) with ε, δh > 0
sufficiently small features MMOs with at most single epochs of perturbed slow dynamics, cf.
Figure 4.10 & Figure 4.1 panels (d,e,f). We elaborate on the transitive behaviour, Figure 4.10
& Figure 4.1 panel (c), as well as on the transition from single epochs of SAOs to relaxation
oscillations in the following parts. By numerical sweeping, we find that for γ = 0.0083,
ε = 0.1, δh = 0.025 and for parameter values as in (4.9), system (4.21) features MMOs with
double SAO-epochs (without LAOs between them) until approximately Ī ' 23.09/(kvgNa),
which is O(ε, δh)-close to Īa.

4.3.5 Transitive, “exotic” MMOs

In Chapter 2 it is clearly stated that MMOs are not, strictly speaking, perturbations of sin-
gular cycles; therefore, other (and more complicated) phenomena might occur in dependence
on the values of ε and δh. In particular, upon variation of Ī, during the transition from
MMOs with double epochs of SAOs to single-epoch MMOs, i.e. for Ī-values close to the
value Īa for which the folded singularities q∓h are orbitally aligned, Equation (4.28) exhibits
MMOs of the type illustrated in Figure 4.1 (c). This is due to the fact that for these par-
ticular values of I and δh, the folded singularities q∓h are remote and sufficiently away from
each other in the slow h-direction such that:

1. the slow flow on Ha−

εδh
is such that trajectories that jump away from Ha−

εδh
are attracted

to Ha+

εδh
after their first jump, whereon they follow the slow flow and SAOs above occur,

2. the slow flow on Ha+

εδh
is such that trajectories that jump away from Ha+

εδh
, although

taken downwards by the slow drift, they reach L− after the first excursion instead of
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(a) I = 20.051 (b) I = 23.051

(c) I = 23.5 (d) I = 26.03452346

(e) I = 29.1209956 (f) I = 26.2

Figure 4.10: Singular geometry of Equation (4.43) which underlies the qualitative properties
of the time series, and the associated MMO trajectories, illustrated in Figure 4.1: as Ī is
varied, the folded singularities become orbitally remote from orbitally connected. Therefore,
system (4.21) with ε, δh > 0 small transits from MMOs with double SAO epochs for Ī < Īa
(panels (a) and (b)) to MMOs with single SAO epochs for Ī > Īa (panels (d) and (e)), via
transitive exotic MMO trajectories when Ī is close to Īa (panel (c)). Then, for Ī > Īr, system
(4.21) features relaxation oscillations.
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being attracted to Ha−

εδh
. Therefore, a number of relaxation-type segments occur before

the trajecotry is attracted to Ha−

εδh
and undergoes SAOs below, see Figure 4.1 and

Figure 4.10, panel (c).

We remark that the above is not surprising, as in Chapter 2 it is explicitly stated that
for a fixed “remote” geometry of the system, one can find ε and δh sufficiently small such
that MMOs with single epochs of perturbed slow dynamics occur. In our example here, ε
and δh are fixed and Ī is varied, which means that the system passes through a geometric
configuration that allows for the phenomenon described above to occur.

By numerical sweeping, we find that for γ = 0.0083, ε = 0.1, δh = 0.025 and for parameter
values as in (4.9), system (4.21) features such MMOs with double SAO-epochs with LAOs
between them until approximately Ī ' 26/(kvgNa), which is O(ε, δh)-close to Īa.

4.3.6 From MMOs to relaxation

When the folded singularities q∓h are orbitally remote, one can compute a critical value
Īr at which MMOs with single epochs of SAOs turn to relaxation oscillation in the full
system (4.28), in accordance with what was described in Section 2.3. In a first approx-
imation, this happens for an Ī-value and around an h-coordinate for which the flow on
Sa− is balanced by than on Sa+ [Krupa et al., 2008]. This establishes the existence of a
two-timescale singular cycle at the limit ε = 0, δh > 0 small, which then by Theorem 3
[Szmolyan and Wechselberger, 2004] implies the existence of a relaxation oscillation in the
perturbed system (4.28) for ε, δh > 0 small.

To establish the existence of a relaxation oscillation, we proceed as in Theorem 5; we
therefore need to show that Assumption 1 to Assumption 5 hold. Assumption 1, Assump-
tion 2 and Assumption 3 hold on the basis of what has been described so far in this Chapter,
and as also shown in [Rubin and Wechselberger, 2007].

To show Assumption 4, we need to establish the existence of a singular periodic orbit Γh
of system (4.40) with ε = 0, δh > 0 small. Eliminating time in (4.40), away from H the flow
on Sa∓ can be approximated by

dh

dv
= −δh

∂v [V (v,m∞(v), h, n)]H(v, h)

∂n [V (v,m∞(v), h, n)]N(v, n)

∣∣∣∣
n=ν(v,h)

(4.55)

where we have omitted O (δh)-terms in the denominator; recall that ∂n [V (v,m∞(v), h, n)] <
0 by (4.36). Denote

• vmax: the value obtained by solving V
(
vmax,m∞ (vmax) , hq+h

, nq+h

)
= 0; that is, the

projection of q−h onto Sa+ along the fast fibres (4.31a)ε=0,

• v∗max: the value obtained by solving V
(
v∗max,m∞ (v∗max) , hq−h

, nq−h

)
= 0; that is, the

projection of a point on L+ with h = hq−h
and n = nq−h

onto Sa− along the fast fibres

(4.31a)ε=0,
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and consider a trajectory on Sa− with initial condition (v∗max, h
∗
max), where h∗max ∈ (hq−h

, hq+h
)

is close to hq−h
. This trajectory reaches a point on L− at an h-coordinate approximately

given by

h = h∗max + δhG−h (hq−h
, Ī) +O(δ2

h),

where we denote

G−h (h, Ī) := −
∫ v

q−
h

v∗max

∂v [V (v,m∞(v), h, n)]H (v, h)

∂n [V (v,m∞(v), h, n)]N(v, n)

∣∣∣∣
n=ν(v,h)

dv;

see again Section 2.3 and recall (2.37). When this trajectory reaches the vicinity of L−, it
connects to a fast segment that reaches Sa+ at a point (vmax, hmax). A trajectory with the
latter coordinates as initial conditions on Sa+ follows the flow (4.43) thereon and reaches L+

at an h-coordinate approximately given by

h = hmax + δhG+
h (hq−h

, Ī) +O(δ2
h),

where we denote

G+
h (h, Ī) := −

∫ v
q+
h

vmax

∂v [V (v,m∞(v), h, n)]H (v, h)

∂n [V (v,m∞(v), h, n)]N(v, n)

∣∣∣∣
n=ν(v,h)

dv.

Therefore, a trajectory that leaves the vicinity of L− at a point with h-coordinate close to
hq− returns to this vicinity after a large excursions to and from Sa+ at a point with ĥ, where

ĥ = h+ δh

(
G−h (hq−h

, Ī) + G+
h (hq−h

, Ī)
)

+O(δ2
h). (4.56)

A trajectory returns to the same h-coordinate after an excursion if the flow on the two sheets
Sa∓ is balanced, i.e. if

G−h (hq−h
, Ī) + G+

h (hq−h
, Ī) = 0, (4.57)

and this trajectory then corresponds to a singular periodic cycle Γh. Solving (4.57) for
Ī, gives the Ī-value Īb for which, to leading order in δ, the singular periodic orbit Γh
exists at the limit ε = 0, δ > 0 sufficiently small, with no slow segments on H, see
[Krupa et al., 2008, Szmolyan and Wechselberger, 2004] for details. Evaluating the integrals
using computer algebra software, this value is obtain approximately

Īb '
29.2

kvgNa
. (4.58)

To show hyperbolicity and stability of the singular periodic orbit Γh, and hence the
existence of a stable relaxation oscillation of the perturbed system ε, δh > 0 small, we need
to show that the derivative of the return map (4.56) is less than one. Numerical evaluation
shows that

∂h(G−h (h, Ī) + G+
h (h, Ī))|h=h

q−
h
,Ī=Īb< 0,
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therefore ∂h

[
h+ δh

(
G−h (hq−h

, Ī) + G+
h (hq−h

, Ī)
)]

< 1 and hence Γh is stable, and so is the

relaxation oscillation of (4.28) for ε, δh > 0 small. Finally, we also calculate that

∂Ī(G−h (h, Ī) + G+
h (h, Ī))|h=h

q−
h
,Ī=Īb< 0;

from the implicit function theorem follows that there is an open Ī-neighbourhood of Īr for
which the system exhibits relaxation oscillation.

The asymptotics for the value Īr at which system (4.21) with ε, δh > 0 small is expected
to transit from MMOs with single SAO-epochs to relaxation are

Īr = Īb +O(δh, δhε ln ε), (4.59)

recall Theorem 5. By numerical sweeping, we find that for γ = 0.0083, ε = 0.1, δh = 0.025
and for parameter values as in (4.9), system (4.21) features MMOs with single SAO-epochs
until approximately Ī ' 26.127/(kvgNa), which is in accordance with (4.59).

We remark that in [Doi et al., 2001], chaotic MMOs were documented during the transi-
tion from MMOs with single SAO epochs to relaxation; cf. Figure 4.1, panel (e). The study
of the mechanisms that are responsible for such behaviour in three-timescale systems of this
form is included in plans for future work.

4.4 The n-slow case

In this section, we consider the regime where the variable n is the slowest variable in (4.21),
which is realised for δn > 0 sufficiently small and δh = 1, that is, when τn is large and
τh = O(1) in the original HH model, Equation (4.2). In that case, the reduced system on
M1, Equation (4.41), is a slow-fast system written in the standard form of GSPT which
features similar geometric and dynamical properties to the extended prototypical example
introduced in Chapter 2.

Similarly to the h-slow case, we will classify the mixed-mode dynamics of Equation (4.21)
with γ, ε, δn > 0 small in dependence of the (rescaled) applied current Ī, by applying the
analysis outlined in Chapter 2 to the three-dimensional reduction (4.28). We will show that,
in the parameter regime defined in (4.9), there exist values 0 < Ī ′o < Ī ′a < Ī ′c of Ī that
distinguish between the various types of oscillatory dynamics in (4.21) for γ, ε, 1/δm, and
δn positive and sufficiently small and δh = O(1). The resulting classification is illustrated in
Figure 4.11, with the corresponding mixed-mode oscillatory dynamics as shown in Figure 4.2.

As will become apparent through the discussion that follows, the values Ī ′o and Ī ′c are
related to singular Hopf bifurcations of system (4.30), marking the onset of oscillatory dy-
namics, respectively. The value Ī ′a distinguishes between mixed-mode trajectories with dou-
ble epochs of SAOs and those with single epochs under the perturbed flow of (4.30), with
ε and δn sufficiently small; see panels (a,b) and (d,e) of Figure 4.2, respectively. Moreover,
there exists an Ī-value Ī ′r which separates MMOs with single epochs of SAOs from relaxation
oscillation, see Figure 4.2 (e) and (f), respectively.
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Figure 4.11: Bifurcation of oscillatory dynamics depending on the parameter I in the n-slow
case, ε, δn > 0 sufficiently small.

4.4.1 Singular geometry

In the singular limit of ε = 0, with δn > 0 sufficiently small and δh = 1, the reduced flow in
Equation (4.40) reads

v′ = ∂h [V (v,m∞(v), h, n)]H(v, h)|h=η(v,n)+O (δn) , (4.60a)

n′ = −δn∂v [V (v,m∞(v), h, n)]N(v, n)|h=η(v,n). (4.60b)

in the intermediate formulation, whereas on the slow time-scale τn = δnt, we can write

δnv̇ = ∂h [V (v,m∞(v), h, n)]H(v, h)|h=η(v,n)+O (δn) , (4.61a)

ṅ = −∂v [V (v,m∞(v), h, n)]N(v, n)|h=η(v,n). (4.61b)

hence, we obtain a slow-fast system in the standard form of GSPT [Fenichel, 1979].
Setting δn = 0 in Equation (4.43) gives the one-dimensional layer problem

v′ = ∂h [V (v,m∞(v), h, n)]H(v, h)|h=η(v,n), (4.62a)

n′ = 0. (4.62b)

Solutions of (4.62) are given by intermediate fibres with n constant. Moreover, since by (4.36)
holds that ∂h [V (v,m∞(v), h, n)] 6= 0, equilibria of (4.62a) define the supercritical manifold
Mn as the subset of M1 where

h∞(v)− η(v, h) = 0; (4.63)

recall (4.14) and (4.38). The algebraic constraint (4.63) is equivalent to

V (v,m∞(v), h∞(v), n) = 0, (4.64)

recall (4.12). Solving (4.64) for n, we can write n = ν(v, h∞(v)) on Mn.
The manifold Mn is normally hyperbolic on the set N where

∂v [V (v,m∞(v), h∞(v), n)] 6= 0.
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Calculation shows that the set FMn =Mn\N where normal hyperbolicity is lost consists of
two points: FMn = {p−n , p+

n }. These two points separate the normally hyperbolic portion N
ofMn into a repelling branch N r, where ∂v [V (v,m∞(v), h∞(v), n)] > 0, and two attracting
branches N a∓ , with ∂v [V (v,m∞(v), h∞(v), n)] < 0; see Figure 4.15. We emphasize that the
fold points p∓n lie on Sr.

In the double singular limit of ε = 0 = δn, the folded singularities Qn = {q−n , q+
n }

[Szmolyan and Wechselberger, 2001] of (4.28) are given by

q∓n =Mn ∩ L∓; (4.65)

see Figure 4.15. In the following, we will denote

q∓n =
(
vq∓n , hq∓n , nq∓n

)
(4.66)

We emphasise that the properties of all geometric objects defined above – i.e., ofMn, FMn ,
and Qn – are dependent on the parameter I or, rather, on its rescaled counterpart Ī.

Next, setting δn = 0 in the slow formulation, Equation (4.61), we obtain the one-
dimensional reduced flow on Mn:

0 = ∂h [V (v,m∞(v), h, n)]H(v, h)|h=η(v,n), (4.67a)

ṅ = −∂v [V (v,m∞(v), h, n)]N(v, n)|h=η(v,n). (4.67b)

Differentiating the algebraic constraint in (4.64) implicitly, via

−∂v [V (v,m∞(v), h∞(v), n] v̇ = ∂n [V (v,m∞(v), h∞(v), n] ṅ,

and using (4.67b) and (4.37), we find the following expression for the reduced flow on Ha∓

v̇ =
∂v [V (v,m∞(v), h, n)] ∂n [V (v,m∞(v), h∞(v), n)]

∂v [V (v,m∞(v), h∞(v), n]
N(v, h)

∣∣∣∣
h=h∞(v),n=ν(v,h)

. (4.68)

The reduced flow on N a∓ is directed towards q∓n , respectively. The resulting singular
geometry is summarised in Figure 4.12. Combining orbit segments from the layer flow of
Equation (4.31a)ε=0, the intermediate fibres of (4.62a) on M1, and the reduced dynamics
of (4.68) on Mn, one can construct singular or candidate trajectories ; closed singular tra-
jectories are called singular cycles; see Figure 4.13 for an illustration of such a trajectory
in the three-dimensional (v, h, n)-space, and Figure 4.12 panel (a) for a projection onto the
vn-plane.

We emphasise that, according to the above, system (4.28) with h-slow is in accordance
with the implications of Assumption 6 and Assumption 7 that were made for the extended
prototypical system (2.2) in Chapter 2 to describe bifurcations of its MMO-trajectories based
on the properties of its singular geometry and its singular cycles; namely:

• The critical manifold M1 is S-shaped (away from the tangential connection of L∓),
with two attracting sheets Sa∓ separated by a repelling sheet Sr,

• The supercritical manifold Mn is S-shaped, with two attracting branches N a∓ sepa-
rated by a repelling branch Sr; moreover, the folds of Mn lie on the repelling sheet
Sr,

• The reduced flow on N a∓ is directed towards q∓n respectively.
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(a) (b) (c)

Figure 4.12: In the double singular limit of ε = 0 = δn, the supercritical manifold N consists
of two attracting branches N a∓ that are separated by a repelling branch N r. The folded
singularities q∓n of (4.21) lie on Sr, and the flow on N a∓ is directed towards q∓n .

Figure 4.13: A singular cycle, as a concatenation of fast, intermediate and slow segments of
(4.31a)ε=0, (4.62a), and (4.68), respectively.

4.4.2 Perturbed dynamics and MMOs

By standard Fenichel Theory [Fenichel, 1979] and as shown in Chapter 2, for ε, δn > 0
sufficiently small, there exist invariant manifolds Sa,rεδn that are diffeomorphic and lie O (ε, δn)-
close in the Hausdorff distance to their unperturbed, normally hyperbolic counterparts Sa,r.
The perturbed sheets Sa,rεδn are locally invariant under the flow (4.31).

Moreover, for ε, δn > 0 sufficiently small, there exist invariant manifolds N a∓,r
εδn

that are
diffeomorphic and lie O (δn)-close in the Hausdorff distance to their unperturbed, normally

hyperbolic counterparts N a∓,r. The perturbed branches N a∓,r
εδn

are locally invariant under
the flow (4.31).

Given an initial point (v, h, n) ∈ Saεδn , the corresponding trajectory will follow the inter-

mediate flow thereon until it is either attracted to N a∓

εδn
or until it reaches the vicinity of FM1 .
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If trajectories reach the vicinity of the fold curve FM1 away from the vicinity of the folded
singularities q∓n , they “jump” to the opposite attracting sheet of Saεδn following the fast flow
(4.23a), see [Wechselberger, 2005, Szmolyan and Wechselberger, 2001]. On the other hand,
if trajectories are attracted to appropriate subregions of N a∓

ε,δn
or to the vicinity of q∓n , they

undergo SAOs, see Chapter 2 for details.
Therefore, orbits of the perturbed system (4.28) with ε, δn > 0 sufficiently small can be

constructed by combining perturbations of fast, intermediate and slow segments of singular
trajectories as described above. Extending the notion of orbital connection of the folded
singularities q∓ or lack thereof as described in the previous section, we can show that when
the folded singularities q∓n are orbitally remote, then for ε, δn > 0 sufficiently small the
perturbed system features MMOs with single epochs of perturbed slow dynamics, while if q∓n
are orbitally connected, the perturbed system features MMOs with double epochs epochs of
perturbed slow dynamics, as shown in Figure 4.5, Figure 4.2 and Figure 4.15. The observed
qualitative behaviour demonstrated in these figures is in agreement with previous works
[Doi et al., 2001].

4.4.3 Onset and cessation of oscillatory dynamics

At the singular limit ε = 0 = δn, using computer algebra software, we find that the reduced
flow on N , equation (4.68), has a stable equilibrium point on Sr for Ī ∈ (Ī ′1, Ī

′
2), where

Ī ′1 '
4.8

kvgNa
, Ī ′2 '

281

kvgNa
, (4.69)

cf. Figure 4.14, and a stable equilibrium point on N a− for Ī < Ī ′1 and on N a Ī > Ī ′2, cf.
Figure 4.14

(a) Ī < Ī ′1 (b) Ī ∈ (Ī ′o, Ī
′
c) (c) Ī > Ī ′2

Figure 4.14: A stable equilibrium of the reduced flow (4.68) lies in the attracting portion Sa
of M1 for Ī < Ī ′o and Ī > Ī ′c, panels (a) and (b), respectively, and in the repelling portion
Sr for Ī ∈ (Ī ′o, Ī

′
c), panel (b). For Ī & 80/(kvgNa), Mh consists of one normally hyperbolic,

attracting branch N a.

According to Section 2.3 and similarly to the h-slow case, for ε, δn > 0 sufficiently
small, the perturbed system (4.31) undergoes singular Hopf bifurcations for Ī-values that
are O(ε, δn)-close to Ī ′1 and Ī ′2, and the onset and cessation of oscillatory dynamics happens
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O(ε, δn)-close to the singular Hopf ones, respectively, i.e.

Ī ′o = Ī ′1 +O(ε, δn), Ī ′c = Ī ′2 +O(ε, δn),

see also [Desroches et al., 2012, Letson et al., 2017, Guckenheimer, 2008, Krupa et al., 2008,
Krupa and Wechselberger, 2010] and Chapter 2. By numerical sweeping, we find that for
γ = 0.0083, ε = 0.1, δn = 0.01 and for parameter values as in (4.9), the onset of oscillatory
dynamics of system (4.21) is at approximately Ī ' 6.6/(kvgNa), while the cessation of oscil-
latory dynamics is at approximately Ī ' 268/(kvgNa), which are O(ε, δn)-close to Ī ′1 and Ī ′2,
respectivelly.

4.4.4 From double to single SAO-epochs

We characterise the pair of folded singularities q∓n based on whether they are “connected” by
singular cycles or not, in accordance with Definition 6, which is equivalent to the following
classification in terms of the n-coordinates nq∓n of the folded singularities q∓n .

1. The folded singularities q∓n are orbitally connected if nq−n > nq+n ; cf. Figure 4.15 (a).

2. The folded singularities q∓n are orbitally aligned if nq−n = nq+n ; cf. Figure 4.15 (b).

3. The folded singularities q∓n are orbitally remote if nq−n < nq+n ; cf. Figure 4.15 (c).

(a) I < Ī ′a (b) Ī = Ī ′a (c) Ī > Ī ′a

Figure 4.15: Orbital connection or lack thereof, in accordance with Definition 6. For Ī < Ī ′a,
the folded singularities q∓n are orbitally connected, in the sense that, at the limit ε = 0 = δn,
there exists a singular cycle that passes through both of them and also has slow segments
on both N a∓ , panel (a). For Ī > Ī ′a, the folded singularities q∓n are orbitally remote, in the
sense that, at the limit ε = 0 = δn, a singular cycles that passes through one of the folded
singularities does not pass through the other, panel (c). For Ī = Ī ′a, the folded singularities
q∓n are orbitally aligned, in the sense that, at the limit ε = 0 = δn, there exists a singular
cycle that passes through both of them but has no slow segments on both N a∓ , panel (b).

Due to the Ī-dependence of of the location of q∓n , the classification in Definition 6 hence
encodes the position of the folded singularities q∓n relative to one another in dependence
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of the rescaled applied current Ī. For a given value of Ī, the v-coordinates of the folded
singularities are obtained by solving the system

h∞(v)−
Ī − ḡL

(
v − ĒK

)
− ḡL(v − ĒL)

3m′(v)m2
∞(v)

(
v − ĒNa

) (
v − ĒK

)
+m3

∞(v)
(
2v − ĒNa − Ēk

) = 0, , (4.70)

where h = h∞(v) corresponds to the graph of MN in the vh-plane, recall (4.37), and the
fractional factor corresponds to the graph of FM1 , recall (4.35). It follows that, in the
parameter regime given by (4.9), there exists a unique value Īa such that the singularities q−n
and q+

n are orbitally aligned. Using computer algebra software, this value is approximately

Ī ′a '
10.1

kvgNa
, (4.71)

recall (4.9). Correspondingly, q∓n are orbitally connected for Ī < Ī ′a and orbitally remote for
Ī > Ī ′a. By numerical sweeping, we find that for γ = 0.0083, ε = 0.1, δn = 0.01 and for
parameter values as in (4.9), system (4.21) features MMOs with double SAO-epochs until
approximately Ī ' 9.4/(kvgNa), which is O(ε, δn)-close to Īa.

It follows that, for Ī < Ī ′a + O(ε, δn), the full system (4.17) with ε, δn > 0 sufficiently
small features MMOs with double epochs of perturbed slow dynamics, cf. Figure 4.10 &
Figure 4.1 panels (a,b). Correspondingly, for Ī > Īa + O(ε, δn), the full system (4.17) with
ε, δn > 0 sufficiently small features MMOs with at most single epochs of perturbed slow
dynamics, cf. Figure 4.10 & Figure 4.1 panels (d,e,f).

In contrast to the h-slow case, we do not find an Ī-value for which MMOs with single SAO
epochs turn to relaxation oscillations. Consider system (4.60) with δn > 0 small. Eliminating
time in (4.60), away from N the flow on Sa∓ can be approximated by

dn

dv
= −δn

∂v [V (v,m∞(v), h, n)]N(v, n)

∂h [V (v,m∞(v), h, n)]H(v, h)

∣∣∣∣
h=η(v,n)

(4.72)

where we have omitted O (δn)-terms in the denominator; recall that ∂h [V (v,m∞(v), h, n)] <
0, by (4.36). Denote

• ṽmax: the value obtained by solving V
(
ṽmax,m∞ (ṽmax) , hq+n , nq+n

)
= 0; that is, the

projection of q−n onto Sa+ along the fast fibres (4.31a)ε=0,

• ṽ∗max: the value obtained by solving V
(
ṽ∗max,m∞ (ṽ∗max) , hq−n , nq−n

)
= 0; that is, the

projection of a point on L+ with h = hq−n and n = nq−n onto Sa− along the fast fibres
(4.31a)ε=0,

and consider a trajectory on Sa− with initial condition (v∗max, n
∗
max), where n∗max ∈ (nq−n , nq+n )

is close to nq−n . This trajectory reaches a point on L− at an n-coordinate approximately
given by

n = n∗max + δnG−n (nq−n , Ī) +O(δ2
n),

where we denote

G−n (n, Ī) := −
∫ ṽ

q−n

ṽ∗max

∂v [V (v,m∞(v), h, n)]N (v, n)

∂h [V (v,m∞(v), h, n)]H(v, h)

∣∣∣∣
h=η(v,n)

dv.
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(a) I = 7 (b) I = 9

(c) I = 11 (d) I = 64.5

(e) I = 90 (f) I = 150

Figure 4.16: Singular geometry of Equation (4.60) which underlies the qualitative properties
of the time series, and the associated MMO trajectories, illustrated in Figure 4.2: as Ī is
varied, the folded singularities become orbitally remote from orbitally connected. Therefore,
system (4.17) with ε, δn > 0 small transits from MMOs with double SAO epochs for Ī < Ī ′a
(panels (a) and (b)) to MMOs with single SAO epochs for Ī > Ī ′a (panels (d) and (e)).
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When this trajectory reaches the vicinity of L−, it connects to a fast segment that reaches
Sa+ at a point (vmax, hmax). A trajectory with (vmax, hmax) as initial conditions on Sa+

follows the flow (4.43) thereon and reaches L+ at an h-coordinate approximately given by

n = nmax + δnG+
n (nq−n , Ī) +O(δ2

n),

where we denote

G+
n (n, Ī) := −

∫ ṽ
q+n

ṽmax

∂v [V (v,m∞(v), h, n)]N (v, n)

∂h [V (v,m∞(v), h, n)]H(v, h)

∣∣∣∣
h=η(v,n)

dv.

Therefore, a trajectory that leaves the vicinity of L− at a point with n-coordinate close to
nq−n returns to this vicinity after a large excursions to and from Sa+ at a point with n̂, where

n̂ = n+ δn
(
G−n (nq−n , Ī) + G+

n (nq−n , Ī)
)

+O(δ2
n) (4.73)

Numerical computations show that

G−n (nq−n , Ī) + G+
n (nq−n , Ī) > 0

for Ī ∈ (Ī ′1, Ī
′
2); therefore, trajectories are attracted to N a+ for Ī in this interval and the

system features MMOs with single epochs of slow dynamics.
We remark that, for the I-values considered in [Doi et al., 2001], the equilibrium of the

system as depicted in Figure 4.16 lies on N r, and this is why in [Doi et al., 2001] the n-slow is
considered to be topologically different than the h-slow one, and it is postulated that chaotic
dynamics can be realised only in the latter. Here we show that by considering large enough
Ī-values, the equilibrium point lies on N a, and motivated also by the timeseries in Figure 4.2
panel (b), we remark that it would be worth investigating whether chaotic dynamics can be
realised in the corresponding Ī regime. The search of such behaviour and the potential study
of the corresponding generating mechanisms is included in plans for future work.

4.5 Local dynamics and SAOs

The local, SAO-generating mechanisms are similar to the ones descrived in Section 2.4 for
the extended prototypical example (2.2), and we discuss them here in brief.

Consider the fast formulation (4.31), which we reiterate here for convenience:

v′ =
m∞(v)− µ(v, h, n)

tm(v)∂vµ(v, h, n)
− εδhH(v, h)

∂hµ(v, h, n)

∂vµ(v, h, n)
− εδnN(v, n)

∂nµ(v, h, n)

∂vµ(v, h, n)
, (4.74a)

=: U(v, h, n; ε, δh, δn)

h′ = εδhH(v, h), (4.74b)

n′ = εδnN(v, n), (4.74c)
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and consider the h-slow case, i.e. ε, δh > 0 sufficiently small and δn = O(1). At the singular
limit δh = 0 with ε > 0 and δn = 1, we obtain the system

v′ =
m∞(v)− µ(v, h, n)

tm(v)∂vµ(v, h, n)
− εN(v, n)

∂nµ(v, h, n)

∂vµ(v, h, n)
= U(v, h, n; ε, 0, 1), (4.75a)

h′ = 0 (4.75b)

n′ = εN(v, n), (4.75c)

whose equilibria are given by Mh. Linearisation of (4.75) about Mh gives the Jacobian
matrix

Ah =

(
∂vU(v, h, n; ε, 0, 1) ∂nU(v, h, n; ε, 0, 1)

ε∂vN(v, n) ε∂nN(v, n)

) ∣∣∣∣
Mh

(4.76)

Eigenvalues of Ah give the regimes where Mh is attracting/repelling in spiralling or nodal
manners under the two-dimensional flow (4.75), recall Section 2.4. In particular, there exists a
point onMh that system (4.75) undergoes a Hopf bifurcation; whether this Hopf bifurcation
is subcritical or supercritical depends on the value of I.

In the fully perturbed system (4.74) with ε, δh > 0 sufficiently small, entrance of tra-
jectories to the spirally-attracting regime implies SAOs of bifurcation delay type, while
entrance to the nodally-attracting regime implies absence of SAOs or existence of only a
few thereof that occur close to the jump point, cf. respectively the SAOs below and above
in Figure 4.1 panels (a) and (b). In both cases, trajectories jump away from Mh not
directly after entering the repelling region but, rather, after the accumulated contraction
has been balanced by expansion, and this is calculated via a way-in/way-out function, see
[Krupa and Wechselberger, 2010, Letson et al., 2017] and Section 2.4 for details, cf. Fig-
ure 4.1 and Figure 4.10. This mechanism is a residual of the 2-fast/1-slow nature of system
(4.74). Moreover, a degenerate node where the stability of Mh turns from spiral to nodal
lies O(

√
ε)-close to the Hopf bifurcation point of(4.75) on Mh.

Finally, the small periodic orbits that emerge at the Hopf bifurcation of (4.75), cease to
exist at a transverse intersection between Saε,δh and Srε,δh that occurs O(ε)-close to the Hopf
bifurcation-point. These periodic trajectories of the partially perturbed system (4.75) with
ε, δh > 0 sufficiently small are associated with secondary canards [Wechselberger, 2005] and
sector of rotations [Krupa et al., 2008]; therefore, if trajectories of the perturbed system are
attracted to this vicinity, the system features canard-induced SAOs, see [Krupa et al., 2008,
De Maesschalck et al., 2016, Desroches et al., 2012] for details. This is a residual of the 1-
fast/2-slow nature of the system.

A detailed quantitative analysis of the above is beyond the scope of this work. However,
we emphasize that, although the reduction (4.19) proposed by Rubin and Wechselberger in
[Rubin and Wechselberger, 2007] and (4.74) have the same critical manifolds M1 and Mh,
there are quantitative difference in terms of the points where the attractivity ofMh changes,
and this is reflected by the fact that the first row in Ah in (4.77) depends on ε, while it would
be independent of ε if one considered the RW-reduction (4.19) instead.

The analysis of the n-slow case is analogous, with a corresponding Jacobian matrix

An =

(
∂vU(v, h, n; ε, 1, 0) ∂hU(v, h, n; ε, 1, 0)

ε∂vH(v, h) ε∂hH(v, h)

) ∣∣∣∣
Mn

(4.77)
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about Mn, and where the function U(v, h, n; ε, 1, 0) contains εH(v, h)-terms, instead of
εN(v, n)-ones.

4.6 Summary

In this Chapter, we proposed a novel and global three-dimensional reduction of the four-
timescale Hodgkin-Huxley equations (4.2) [Hodgkin and Huxley, 1952, Doi et al., 2001], that
is based on a scaled system (4.7) that was proposed in [Rubin and Wechselberger, 2007]; cf.
Theorem 7. Here we considered a reduction to a globally normally hyperbolic and attracting
slow manifold, instead of a local centre manifold reduction in [Rubin and Wechselberger, 2007,
Rubin and Wechselberger, 2008], and we showed that the two reductions feature the same
critical manifold M1. We then showed that, depending on the values of the parameters
of the system relative to one-another, our reduction is itself a three-timescale system. We
emphasise that this three-timescale structure is also apparent in the RW reduction (4.19)
by taking either δh > 0 sufficiently small and δn = O(1), or δn > 0 sufficiently small and
δh = O(1), however these cases were not considered in [Rubin and Wechselberger, 2007,
Rubin and Wechselberger, 2008].

The timescale separation of the reduced system Equation (4.28) allows for further itera-
tive dimension reduction to invariant manifolds, by studying a series of layer problems and
reduced flows. By decomposing the dynamics to segments that evolve on different timescales,
we are able to explain qualitative properties of trajectories such as MMOs and transitions
between MMOs with different qualitative properties, in accordance with the geometric mech-
anisms proposed in Chapter 2; we were thus able to classify such behaviours and transitions
for the original system (4.21).

In particular, for the cases where h or n is taken to be the slowest variable in the four-
dimensional model (4.21), we were able to explain in the framework of multi-timescale
GSPT the different qualitative behaviours which are correspondingly illustrated in Fig-
ure 4.1 and Figure 4.2, as well as the transitions between them, cf. Figure 4.10 and Fig-
ure 4.16, respectively; we reiterate that these behaviours had been previously documented
in [Doi et al., 2001]. The local, SAO-generating mechanisms can also be analysed in an
approach similar the one introduced in Chapter 2, cf. Section 4.5 and Section 2.4.

Finally, in [Doi et al., 2001] it was numerically demonstrated that system (4.2) features
chaotic dynamics in the h-slow case, but the chaos-generating mechanisms were not ex-
plained. Moreover, no chaotic trajectories were found for the n-slow case, and it was postu-
lated that this difference is due to the fact that the equilibrium point in the h-slow case lies
on Ha− , while in the n-slow case it lies on N r, cf. Figure 4.8 and Figure 4.14, respectively.
Here, we showed that by considering larger values of Ī, the equilibrium point in the n-slow
case does in fact lie on N r, cf Figure 4.14 panel (c). Moreover, motivated by the timeseries
in Figure 4.2 panel (c), we remark that it would be worth investigating whether chaotic dy-
namics is possible in this case also, since our analysis shows that, ultimately, these two cases
are not topologically different, as claimed in [Doi et al., 2001]. A more systematic analysis of
the mechanisms that are responsible for this chaotic behaviour and its potential relation to
Shilnikov homoclinic phenomena or to period-doubling bifurcations of small periodic orbits
in the three-timescale GSPT framework for both the h-slow and the n-slow cases is part
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plans for future work.

4.7 Reduced flow on M1 in the non-standard form of

GSPT

In Section 4.3, we consider the reduced flow (4.40) on M1 with h being the slow variable,
i.e. δh > 0 sufficiently small and δn = O(1). Correspondingly, in Section 4.4 we consider the
reduced flow (4.41) on M1 with n being the slow variable, i.e. δn > 0 sufficiently small and
δh = O(1). Both cases corresponded to two dimensional slow-fast systems in the standard
form of GSPT.

Equations (4.40) and (4.41) are obtained by eliminating the n- and h- variable in the
singular limit of (4.28)ε=0, respectively, and in both Section 4.3 and Section 4.4 this corre-
sponds to eliminating the intermediate variable. Here we outline an alternative approach,
namely considering δn > 0 sufficiently small and δh = O(1) in (4.40) and δh > 0 sufficiently
small and δn = O(1) in (4.67), which corresponds to eliminating the slow variable when
studying the reduced flow onM1, and which gives two dimensional slow-fast systems in the
non-standard form of GSPT [Wechselberger, 2020].

4.7.1 The h-slow case

At the singular limit ε = 0, for δh > 0 sufficiently small and δn = 1, the reduced flow
Equation (4.41) yields

v′ = δh∂h [V (v,m∞(v), h, n)]H(v, h)|h=η(v,n)+∂n [V (v,m∞(v), h, n)]N(v, n)|h=η(v,n) (4.78a)

n′ = −∂v [V (v,m∞(v), h, n)]N(v, h)|h=η(v,n), (4.78b)

while in the slow formulation τn = δnt we can write

δhv̇ = δh∂h [V (v,m∞(v), h, n)]H(v, h)|h=η(v,n)+∂n [V (v,m∞(v), h, n)]N(v, n)|h=η(v,n)

(4.79a)

δhḣ = −∂v [V (v,m∞(v), h, n)]N(v, h)|h=η(v,n). (4.79b)

System (4.78) is a slow-fast system in the non-standard form(
v̇
ṅ

)
= B(v, n)N(v, n) + δhP (v, n), (4.80)

see [Wechselberger, 2020] and recall Section 1.2, where

B(v, n) =

(
∂n [V (v,m∞(v), h, n)]
−∂v [V (v,m∞(v), h, n)]

)
, P (v, h) =

(
∂h [V (v,m∞(v), h, n)]

0

)
Setting δn = 0 in the intermediate formulation Equation (4.78) gives the two-dimensional
layer problem

v′ = ∂n [V (v,m∞(v), h, n)]N(v, h)|h=η(v,n) (4.81a)

n′ = −∂v [V (v,m∞(v), h, n)]N(v, h)|h=η(v,n). (4.81b)

110



Equilibria of (4.81a) define the supercritical manifold Mh as the subset of M1 where

n∞(v)− n = 0 (4.82)

recall (4.14).
The Jacobian matrix J|Mh

of the linearisation of the layer problem (4.81) evaluated along
(v, n) ∈Mh is

J|Mn=

(
∂n [V (v,m∞(v), h, n)] (∂vN(v, h)) ∂n [V (v,m∞(v), h, n)] (∂hN(v, h))
−∂v [V (v,m∞(v), h, n)] (∂vN(v, h)) −∂v [V (v,m∞(v), h, n)] (∂nN(v, h))

)
and has one trivial eigenvalue λ0 = 0 and one nontrivial eigenvalue given by

λh(v) =tr (J|Mh
)

see [Wechselberger, 2020] for details.
The manifold Mh is normally hyperbolic on the set H where

λh(v) 6= 0. (4.83)

Calculations show that the set FMh
= Mh\H where normal hyperbolicity is lost consists

of two points, FMh
=
{
p−h , p

+
h

}
. These two points separate the normally hyperbolic part

H into a repelling branch Hr, where λ(v) > 0, and to two attracting branches Ha∓ , where
λ(v) < 0, see Figure 4.17. We remark that the fold points p∓h , lie on Sr see Figure 4.17.

(a) Ī < Īa (b) Ī = Īa (c) Ī > Īa

Figure 4.17: Singular geometry featuring singular cycles. For Ī < Īa the folded singularities
q∓h are orbitally connected, for Ī = Īa ' 26.5

kvgNa
they are orbitally aligned and for Ī > Īa they

are orbitally remote, c.f. Definition 6.

Non-stationary solutions of the layer problem (4.89) are not characterized by n = const
like in the standard form case, cf.Figure 4.9 and Figure 4.17. By eliminating time in (4.78)
and since N(v, h) 6= 0 away from Mh, we can write

dv

dn
=
∂n [V (v,m∞(v), h, n)]

∂v [V (v,m∞(v), h, n)]

on S\Mh.
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Setting δh = 0 = ε in the slow formulation (4.61) gives the reduced problem

0 = ∂n [V (v,m∞(v), h, n)]N(v, h)|h=η(v,h) (4.84a)

0 = −∂v [V (v,m∞(v), h, n)]N(v, h)|h=η(v,h). (4.84b)

The slow flow on Mh is given by(
v̇
ṅ

)
=

[
det (B|P )

〈∇H,B〉

(
−∂nN
∂vN

)] ∣∣∣∣
Mh

, (4.85)

see [Jelbart and Wechselberger, 2020], and the reduced flow on Ha∓ is directed towards q∓h ,
respectively. The resulting singular geometry is summarised in Figure 4.17.

Notice that, by (4.82), the geometry of H is independent of the parameter Ī, and the
orbital connection or lack thereof of q∓h is encoded in the layer problem (4.81).

4.7.2 The n-slow case

At the singular limit ε = 0, for δn > 0 sufficiently small and δh = 1, the reduced flow
Equation (4.40) yields

v′ = ∂h [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h)+δn∂n [V (v,m∞(v), h, n)]N(v, n)|n=ν(v,h) (4.86a)

h′ = −∂v [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h), (4.86b)

while in the slow formulation τn = δnt we can write

δnv̇ = ∂h [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h)+δn∂n [V (v,m∞(v), h, n)]N(v, n)|n=ν(v,h)

(4.87a)

δnḣ = −∂v [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h). (4.87b)

System (4.86) is a slow-fast system in the non-standard form [Wechselberger, 2020](
v̇

ḣ

)
= B(v, h)H(v, h) + δnP (v, h), (4.88)

where

B(v, h) =

(
∂h [V (v,m∞(v), h, n)]
−∂v [V (v,m∞(v), h, n)]

)
, P (v, h) =

(
∂n [V (v,m∞(v), h, n)]

0

)
Setting δh = 0 in the intermediate formulation Equation (4.86) gives the two-dimensional
layer problem

v′ = ∂h [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h) (4.89a)

h′ = −∂v [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h). (4.89b)

Equilibria of (4.89a) define the supercritical manifold Mn as the subset of M1 where

h∞(v)− h = 0 (4.90)
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recall (4.14).
The Jacobian matrix J|Mn of the linearisation of the layer problem (4.89) evaluated along

(v, h) ∈Mn is

J|Mn=

(
∂h [V (v,m∞(v), h, n)] (∂vH(v, h)) ∂h [V (v,m∞(v), h, n)] (∂hH(v, h))
−∂v [V (v,m∞(v), h, n)] (∂vH(v, h)) −∂v [V (v,m∞(v), h, n)] (∂hH(v, h))

)
and has one trivial eigenvalue λ0 = 0 and one nontrivial eigenvalue given by

λn(v) =tr (J|Mn)

see [Wechselberger, 2020] for details.
The manifold Mn is normally hyperbolic on the set N where

λn(v) 6= 0. (4.91)

Calculations show that the set FMn = Mn\N where normal hyperbolicity is lost consists
of two points, FMn = {p−n , p+

n }. These two points separate the normally hyperbolic part
N into a repelling branch N r, where λ(v) > 0, and to two attracting branches N a∓ , where
λ(v) < 0, see Figure 4.15. We remark that the fold points p∓n , lie on Sr see Figure 4.15.

(a) Ī < Ī ′a (b) Ī = Ī ′a (c) Ī > Ī ′a

Figure 4.18: Singular geometry featuring singular cycles. For Ī ′ < Ī ′a the folded singularities
q∓n are orbitally connected, for Ī ′ = Ī ′a ' 10.1

kvgNa
they are orbitally aligned and for Ī > Ī ′a they

are orbitally remote, c.f. Definition 6.

Non-stationary solutions of the layer problem (4.89) are not characterized by h = const
like in the standard form case, cf.Figure 4.15 and Figure 4.18. By eliminating time in (4.86)
and since H(v, h) 6= 0 away from Mn, we can write

dv

dh
=
∂n [V (v,m∞(v), h, n)]

∂v [V (v,m∞(v), h, n)]
.

on S\Mn.
Setting δh = 0 = ε in the slow formulation (4.61) gives the reduced problem

0 = ∂h [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h) (4.92a)

0 = −∂v [V (v,m∞(v), h, n)]H(v, h)|n=ν(v,h). (4.92b)
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The slow flow on Mn is given by(
v̇

ḣ

)
=

[
det (B|P )

〈∇H,B〉

(
−∂hH
∂vH

)] ∣∣∣∣
Mn

, (4.93)

see [Jelbart and Wechselberger, 2020], and the reduced flow on N a∓ is directed towards q∓n ,
respectively. The resulting singular geometry is summarised in Figure 4.15.

Notice that, by (4.90), the geometry of N is independent of the parameter Ī, and the
orbital connection or lack thereof of q∓n is encoded in the layer problem (4.89).
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Chapter 5

The El-Niño Southern Oscillation
model from climate science

5.1 Introduction

The El-Niño Southern Oscillation (ENSO) phenomenon is associated with the variation in
winds and sea surface temperatures over the Pacific Ocean. It is composed of the El-Niño
and La-Niña phases, when, respectively, warm or cold water develops in the central and east-
central equatorial Pacific Ocean. Although highly irregular, these patters are oscillatory in
nature.

Here we consider the dimensionless system

x′ = x (x+ y + c(1− tanh (x+ z))) + ρδ(x2 − ax), (5.1a)

y′ = −ρδ(ay + x2), (5.1b)

z′ = δ(k − z − x

2
), (5.1c)

with x ≤ 0, y ∈ R, z ≥ 0, c > 1, k ∈ (0, 1), a > 0, which captures the dynamics of the ENSO
phenomenon [Roberts et al., 2016]. The variable x corresponds to the temperature difference
between the eastern and western Pacific surface water, y corresponds to the departure of
the western Pacific surface ocean temperature from a climatological mean state, i.e. the
temperature that the tropical Pacific would attain in the absence of ocean dynamics, and
z represents the western Pacific thermocline depth anomaly. The parameters c, k, a are
scaled. The parameter c is proportional to the maximum temperature difference between
the eastern and western Pacific surface water, the parameter k is related to the discharging
(recharging) process for El Niño (La Niña) events, and corresponds to the ratio of some
reference depths over the sharpness of the thermocline, and, finally, the parameter a is the
constant of Newton’s law of cooling applied to the difference of the western Pacific surface
ocean temperature from the climatological mean state, see [Roberts et al., 2016, Section 2a.]
for more details.

In [Roberts et al., 2016], system (5.1) was studied in the two timescale context, that is,
for δ > 0 sufficiently small and ρ = O(1). Here we study system (5.1) in the three-timescale
context, that is, for δ, ρ > 0 sufficiently small. We apply Geometric Singular Perturbation
Theory (GSPT) to analyse the behaviour of system (5.1) in dependence of variation of the

117



parameters c, k, a > 0. Our focus is again on the various types of mixed-mode oscillations
(MMOs) that the system exhibits, and on explaining the transitions between qualitative
different scenarios.

(a) MMO with plateau (b) Relaxation oscillation with plateau

(c) MMO with SAOs above (d) Plateau-less relaxation oscillation

Figure 5.1: Outline of some possible MMO trajectories of Equation (5.1)
.

Our approach in this Chapter goes in the opposite direction than in Chapter 4. That is,
in Chapter 4, our aim was to explain the various documented qualitative behaviours from
previous works, using the theory developed in Chapter 2. On the other hand, in this Chapter
our aim is to gain insight about the possible qualitative behaviours of trajectories of system
(5.1) based on its singular geometry in the three-timescale framework, and to uncover new
scenarios that had not been previously documented. To this end, we identify the roles of the
parameters c, k, a > 0 in the behaviour of system (5.1) in the aforementioned three-timescale
setting, δ, ρ > 0 sufficiently small. We expose the following hierarchy: first, we show that the
parameter c is associated with the geometric properties of two-dimensional invariant mani-
folds. Following an approach similar to Chapter 2, Chapter 4, we show that the dynamics
on these manifolds are described by two dimensional slow-fast systems whether in the stan-
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dard or in the non-standard form [Wechselberger, 2020]. For fixed c > 1, the parameter k
is associated with the geometric properties of one-dimensional immersed invariant subman-
ifolds. The parameter a is not associated with the properties of the geometry of invariant
(sub)manifolds, but it is associated with dynamical phenomena such as Hopf bifurcations
and the reduced flow on these (sub)manifolds.

Some examples of MMOs of system (5.1) are outlined in Figure 5.1. We emphasize
that, from the trajectories illustrated in this figure, only the ones with a plateau above
were documented in [Roberts et al., 2016] in the two-timescale context (we present a wider
variety of qualitatively different examples in Section 5.3 for the three-timescale case). The
distinction between oscillatory trajectories with different qualitative properties is based on
extending the notion of relative position of folded singularities of Chapter 2 to the notion
of relative position of sets where normal hyperbolicity is lost in general. This distinction
is also potentially relevant in the two-timescale context. For the MMOs that do feature a
plateau above, we address the bifurcation delay phenomena, which are relevant also in the
two-timescale context but which were left as open question in [Roberts et al., 2016] and also
in a system with similar geometry [Duncan et al., 2019].

The Chapter is organised as follows. In Section 5.2 we study the singular limit(s) of
system (5.1) and we investigate different geometric scenarios in dependence its parameters.
In Section 5.3 we relate the various singular geometries to the qualitative behaviours of the
perturbed system, Equation (5.1) with δ, ρ > 0 sufficiently small. We summarise our findings
in Section 5.4. As an appendix, we include a blow-up analysis of the self-intersection of the
critical manifold of (5.1) in Section 5.5.

5.2 Singular limit

5.2.1 The slow manifold M1 =MP ∪MS

Consider δ > 0 small. System (5.1) is then written in the fast formulation, and the overdot
denotes differentiation with respect to the fast time t. In the intermediate formulation, i.e.
by a rescaling of time τ = δt, system (5.1) is written as

δẋ = x (x+ y + c(1− tanh (x+ z))) + ρδ(x2 − ax) (5.2a)

ẏ = −ρ(ay + x2) (5.2b)

ż = k − z − x

2
(5.2c)

At the singular limit δ = 0, the layer problem is defined from Equation (5.1) as

x′ = x (x+ y + c− c tanh (x+ z)) =: F (x, y, z) (5.3a)

y′ = 0 (5.3b)

z′ = 0 (5.3c)
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and the reduced problem is defined by setting δ = 0 in Equation (5.2)

0 = x (x+ y + c(1− tanh (x+ z))) (5.4a)

ẏ = −ρ(ay + x2) (5.4b)

ż = k − z − x

2
(5.4c)

Equilibrium solutions of the one-dimensional problem Equation (5.3) define the critical man-
ifold M1 =MP ∪MS , where

MP =
{

(x, y, z) ∈ R3 | x = 0
}

(5.5)

MS =
{

(x, y, z) ∈ R3 | x+ y + c(1− tanh (x+ z)) = 0
}
. (5.6)

By (5.6), MS can be written as a graph of y over x and z as

y = −x− c(1− tanh (x+ z)) =: h(x, z). (5.7)

Remark 13. The plane MP = {x = 0} is invariant for the full system (5.1), and in what
is to follow, we will restrict to x ≤ 0.

The stability ofM1 is given by linearisation with respect to the fast variable x in (5.3a)

Fx = x
(
1− csech2(x+ z)

)
+ (x+ y + c(1− tanh (x+ z))) ; (5.8)

the normally hyperbolic subset of MS is therefore defined as

S =
{

(x, y, z) ∈MS | Fx|y=h(x,z) 6= 0
}
, (5.9)

where, from (5.8) and (5.7),

Fx|y=h(x,z)= x
(
1− csech2(x+ z)

)
. (5.10)

For x < 0, the attracting and repelling subsets Sa,Sr ⊂ S are therefore respectively given
by

Sa =
{

(x, y, z) ∈MS |
(
1− csech2(x+ z)

)
> 0
}
, (5.11a)

Sr =
{

(x, y, z) ∈MS |
(
1− csech2(x+ z)

)
< 0
}
, (5.11b)

notice that we have accounted for the x factor in (5.10) which is not included in (5.11). The
manifold MS is not normally hyperbolic at FS =MS\S, where

FS =
{

(x, y, z) ∈M1 |
(
1− csech2(x+ z)

)
= 0
}

= L− ∪ L+; (5.12)

the fold curves L∓ separate the normally hyperbolic part as S = Sa− ∪ Sr ∪ Sa+ , and they
are given as graphs in the xz-plane by

L∓ : z = −x∓ arcsech

{
1√
c

}
. (5.13)

120



Similarly, by (5.5),MP is given as a graph x = 0; the normally hyperbolic subset ofMP
is therefore defined as

P = {(x, y, z) ∈MP | Fx|x=0 6= 0} , (5.14)

where, from (5.8) and x = 0,

Fx|x=0= y + c(1− tanh (z)). (5.15)

The attracting and repelling subsets Pa and Pr are therefore respectively given by

Pa = {(x, y, z) ∈MS | y + c(1− tanh (z)) < 0} . (5.16a)

Pr = {(x, y, z) ∈MS | y + c(1− tanh (z)) > 0} . (5.16b)

The manifold MP is not normally hyperbolic at FP =MS\P ,

FP = {(x, y, z) ∈M1 | y + c(1− tanh (z)) = 0} . (5.17)

The above geometric objects are illustrated in Figure 5.2. In the following, we study the
reduced flows on MS and MP under the assumption that these flows are slow-fast systems
themselves, i.e. for ρ > 0 sufficiently small.

Figure 5.2: Critical and supercritical manifolds of system (5.1).

5.2.2 The reduced flow on MP

The reduced flow on MP is given by setting δ = 0 in (5.4)

ẏ = −ρay, (5.18a)

ż = k − z; (5.18b)

it is linear with explicit solutions

y(t) = y0e
−ρat, z(t) = k + (z0 − k)e−t, (5.19)
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from which we can parametrise

y(z) = y0

(
z − k
z0 − k

)ρa
. (5.20)

System (5.18) admits a stable node at pn = (0, k) with eigenvalues λs = −1, λw = −ρa; we
will refer to the associated eigenspaces as the strong and weak eigendirections, respectively.
We remark that the coordinates (y∗, z∗) of the intersection of the corresponding trajectory
with FP can be calculated by solving

y0

(
z∗ − k
z0 − k

)ρa
+ c (1− tanh(z∗)) = 0.

Considering ρ > 0 sufficiently small, System (5.18) is a slow fast system in the standard
form, where y is the slow variable and z is the fast one. In the slow formulation, i.e. by a
rescaling time as s = ρτ , System (5.18) is written as

ẏ = −ay (5.21a)

ρż = k − z (5.21b)

The layer problem on MP is given by setting ρ = 0 in (5.21)

ẏ = 0, (5.22a)

ż = k − z, (5.22b)

and its solutions, as can also be seen by setting ρ = 0 in (5.19), are given by straight fibres
with y = const. Equilibria of (5.22) define the supercritical manifold

M2P =
{

(x, y, z) ∈ R3 | x = 0, k − z = 0
}

(5.23)

and the reduced flow on M2P is obtained by setting ρ = 0 in (5.21)

ẏ = −ay (5.24a)

0 = k − z (5.24b)

Linearising the fast flow (5.22b) with respect to z follows thatM2P is normally hyperbolic
everywhere.

We make the following observation:

Lemma 8. The stable node (0, k) of System (5.18) lies on Pr for all c, k, a > 0.

Proof. From (5.15) we have that Fx|{x=0,y=0,z=k}> 0 ∀ c, k, a > 0; from (5.16) follows that
(0, 0, k) lies on Pr.
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5.2.3 The reduced flow on MS

Differentiating the graph expression (5.7) of M1 gives ẏ = hxẋ + hz ż; inserting this in the
reduced flow (5.4) and rearranging gives(

1− csech2 (x+ z)
)
ẋ = c

(
k − z − x

2

)
sech2 (x+ z) + ρ

(
ah(x, z) + x2

)
ż = k − z − x

2

which is singular along FS . Rescaling time by a factor of
(
1− csech2 (x+ z)

)
in the above

gives

ẋ = c
(
k − z − x

2

)
sech2 (x+ z) + ρ

(
ah(x, z) + x2

)
(5.26a)

ż =
(
1− csech2 (x+ z)

) (
k − z − x

2

)
. (5.26b)

System (5.26) is a slow-fast system in the non-standard form [Wechselberger, 2020](
ẋ
ż

)
= N(x, z)f(x, z) + ρG(x, z) (5.27)

where

N(x, z) =

(
csech2 (x+ z)

1− csech2 (x+ z)

)
, f(x, z) = k − z − x

2
, G(x, z) =

(
ah(x, z) + x2

0

)
(5.28)

The intermediate problem at the double singular limit ρ = 0 = δ is obtained by setting ρ = 0
in (5.26):

ẋ = c
(
k − z − x

2

)
sech2 (x+ z) (5.29a)

ż =
(
1− csech2 (x+ z)

) (
k − z − x

2

)
. (5.29b)

Non-stationary solutions of (5.29) will be called the intermediate fibres. We remark that in
the above we have eliminated the slow variable y, as opposed to the analysis of the extended
prototypical example in Chapter 2 and to that of the Hodgkin-Huxley equation Chapter 4,
where in the corresponding reduced problems on the critical manifoldsM1 we had eliminated
the intermediate variable. We remark on the difficulties that arise from this in Section 5.3.

Lemma 9. For initial conditions (x0, z0) ∈ Sa, the intermediate fibres of (5.29) are given
as graphs z = ζ(x;x0, z0), where

ζ(x;x0, z0) = −x+ arctanh

{
x− x0 + c tanh (x0 + z0)

c

}
(5.30)
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Proof. By (5.29), for k − z − x
2
6= 0 we write

dz

dx
=

1− csech2 (x+ z)

csech2 (x+ z)
=

1

csech2 (x+ z)
− 1 =

cosh2 (x+ z)

c
− 1. (5.31)

Writing u = x+ z, du
dx

= 1 + dz
dx

gives

du

dx
=

cosh2 (u)

c
.

Separating variables, integrating and switching back to the original coordinates gives the
result.

The supercritical manifold M2S as the set of equilibria of (5.29) is given by

M2S =
{

(x, y, z) ∈ R3 | x+ y + c
(

1− tanh
(x

2
+ k
))

= 0, k − z − x

2
= 0
}

(5.32)

The Jacobian of the linearisation of the intermediate problem about M2S has one trivial
eigenvalue λ0 = 0 and a nontrivial one given by

λ(x, z) = 〈∇f,N〉

= −1 +
csech2 (x+ z)

2
,

recall (1.9). Therefore, M2S consists of the normally hyperbolic part Z:

Z = {(x, y, z) ∈MP | λ(x, z) 6= 0} (5.33)

which is the union Z = Za ∪ Zr, where

Za = {(x, y, z) ∈MP | λ(x, z) < 0} , Zr = {(x, y, z) ∈MP | λ(x, z) > 0} , (5.34)

and the folds FM2S are defined as

FM2S = {(x, y, z) ∈MP | λ(x, z) = 0} . (5.35)

Moreover, the folded singularities ofMS are defined as the set Q =M2S∩L∓ = {q−, q+},
recall Chapter 2. The coordinates of the folded singularities q∓ = (xq∓ , yq∓ , zq∓) are

xq∓ = −2k ∓ 2arcsech

{√
1

c

}
, yq∓ = h (xq∓ , zq∓) , zq∓ = 2k ± arcsech

{√
1

c

}
(5.36)

It is crucial that the above coordinates depend on the parameters c and k, although we will
suppress this dependence in the notation in the following.

In the previous Chapters we emphasised that the singular geometry, and especially the
sets where normal hyperbolicity at the singular limit is lost, play an important role in the
dynamics of the perturbed system in relation to the properties of MMOs. In particular, we
showed that the positions of the folded singularities q∓ relative to each other can distinguish
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between MMOs with different qualitative properties. We emphasize that for system (5.1),
from (5.36) it easily follows that q∓ are always remote. Extending the above notion, we
will focus on the position of q∓ relative to FP ; we emphasize that these are both sets where
normal hyperbolicity is lost, but in different manners. More accurately, we will focus on
the projection of q− onto MP relative to FP , and as we will show later this is important in
distinguish between MMOs with different qualitative properties in the perturbed system.

We start with the following observation:

Lemma 10. If

−k + 2arcsech

{√
1

c

}
< 0, (5.37)

then xq+ < 0.

Proof. Follows immediately from (5.36).

The implication of Lemma 10 is that q+ lies on the left of the {x = 0} plane, i.e. on the
portion of L+ adjacent to Sa+ for x < 0. Equation (5.37) is satisfied for (c, k) above the
dashed curve in Figure 5.5 (b)

Similarly to the previous Chapters, we denote by P (·) the projection of a point on L∓
onto a portion of the critical manifold along the fast flow, in particular onto the first portion
that the fast fibre that emanates from this point intersects with (cf. Figure 5.3 panels (a)
and (c)).

Lemma 11. Denote

Aq−(c, k) := yq− + c(1− tanh (zq−)), (5.38)

where yq− and zq− are given by (5.36).

1. If Aq−(c, k) = 0, then P (q−) ∈ FP ;

2. If Aq−(c, k) > 0, then P (q−) ∈ Sa+;

3. If Aq−(c, k) < 0, then P (q−) ∈ Pa.

Proof. The first point follows by requiring that yq− and zq− , which are given in (5.36) and
depend on c and k, satisfy the algebraic constraint in (5.17). The other two points follow by
using the yq− and zq− coordinates in (5.16).

Lemma 11 implies that, if the parameters c and k satisfy Aq−(c, k) = 0, then at the
singular limit δ = 0 = ρ, the folded singularity q− is connected to FP by a fast fibre of (5.3),
and is illustrated in Figure 5.3 (b). More generally, we will denote by p∗ = (x∗, y∗, z∗) the
point on L− that is connected to FP by a fast fibre of (5.3), i.e.

p∗ =
{
p ∈ L− | P (p) ∈ FP

}
; (5.39)
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(a) Aq−(c, k) < 0 (b) Aq−(c, k) = 0 (c) Aq−(c, k) > 0

Figure 5.3: Illustration of Lemma 11. If Aq−(c, k) < 0, then P (q−) ∈ Pa, which implies that

there exists a singular cycle with a segment evolving in the plane {x = 0} and not in Sa+ ; in
Section 5.3, this (c, k)-parameter regime will be associated with oscillatory trajectories that
feature plateau above in the perturbed system δ, ρ > 0. If Aq−(c, k) > 0, then P (q−) ∈ Sa+ ,

which implies that there exists a singular cycle with a segment evolving in Sa+ and not in
the plane {x = 0}; in Section 5.3, this (c, k)-parameter regime will be associated with the
existence of oscillatory trajectories without plateau above in the perturbed system δ, ρ > 0,
in dependence also of the parameter a.

by the geometry of the system it follows that p∗ is unique for fixed c and k, and that

P (L−|y>y∗) ⊂ Sa
+

, P (L−|y<y∗) ⊂ Pa.

Moreover, we will denote by q∗ = (xq∗ , yq∗ , zq∗) the point on L− that has the same y- and
z-coordinates as q+, (i.e. q∗ lies on the same plane that is parallel to the fast fibres as q+);
that is

q∗ =
{

(x, y, z) ∈ L− | y = yq+ , z = zq+
}

; (5.40)

Lemma 12. Denote

Aq∗(c, k) := yq+ − arcsech

{
1√
c

}
− arctanh

{yq+
c

+ 1
}
− c

(
1− tanh

{
arcsech

{
1√
c

}})
(5.41)

where yq+ is given by (5.36).

1. If Aq∗(c, k) = 0, then P (q∗) ∈ FP ;

2. If Aq∗(c, k) > 0, then P (q∗) ∈ Pa;

3. If Aq∗(c, k) < 0, then P (q∗) ∈ Sa+.
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(a) Aq∗(c, k) > 0 (b) Aq∗(c, k) = 0 (c) Aq∗(c, k) < 0

Figure 5.4: Illustration of Lemma 12. (a) If Ap∗(c, k) > 0, then the location of q+ is such
that there exists no singular cycle with endpoint in Sa+ that passes through q+ – notice that
the singular trajectory that emanates from q+ does not form a closed orbit. In Section 5.3,
it will be illustrated that MMOs with SAOs above are not possible in this (c, k)-regime. (c)
If Ap∗(c, k) < 0, then there exists a singular cycle with endpoint in Sa+ that passes through
q+, panel (c); in Section 5.3, it will be illustrated that MMOs with SAOs above are in fact
possible in this (c, k)-regime, in dependence of the parameter a.

Proof. To show the first point, we require that

y+
q = y∗;

recall that p∗ = (x∗, y∗, z∗) is defined in (5.39) and q∗ = (xq∗ , yq∗ , zq∗) in (5.40). Then,

z∗ = arctanh
{yq+
c

+ 1
}
,

by the algebraic constraint in (5.17). Moreover,

x∗ = arcsech

{
1√
c

}
− z∗,

by the algebraic constraint in (5.12). The first point in the statement follows by requiring
that

yq+ = h(x∗, z∗), (5.42)

recall (5.7) and (5.36), and the other two points follow from the properties of the function
Aq∗(c, k).

Lemma 12 is illustrated in Figure 5.4. Lemma 11 and Lemma 12 are summarised in the
following corollary.

Corollary 2. Denote

D1 = {(c, k) ∈ (1,∞)× (0, 1) | Aq−(c, k) < 0, Aq∗(c, k) > 0} ,
D2 = {(c, k) ∈ (1,∞)× (0, 1) | Aq−(c, k) > 0, Aq∗(c, k) > 0} ,
D3 = {(c, k) ∈ (1,∞)× (0, 1) | Aq−(c, k) > 0, Aq∗(c, k) < 0} ,

as shown in Figure 5.5.
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1. If (c, k) ∈ D1, then P (q−), P (q∗) ∈ Pa;

2. If (c, k) ∈ D2, then P (q−) ∈ Sa+, P (q∗) ∈ Pa;

3. If (c, k) ∈ D3, then P (q−), P (q∗) ∈ Sa+.

Corollary 2 implies that, if (c, k) ∈ D1, then there exists no singular cycle that passes
through q− and which has segments that evolve on Sa+ . Moreover, if (c, k) ∈ D2, then there
exists a singular cycle that passes through q− and which has a segment that evolves on Sa+ ,
but there exists no singular cycle that passes through q+ and which has a segment that
evolves on Sa+ . Finally, if (c, k) ∈ D3, then there exist a singular cycle that passes through
q− which has a segment that evolves on Sa+ , and a singular cycle that passes through q+

which has a segment that evolves on Sa+ , see Figure 5.3 and Figure 5.4. We will relate the
above parameter regimes to properties of MMOs of (5.1) for δ, ρ > 0 sufficiently small in
Section 5.3.

(a) (b)

Figure 5.5: (a) Parameter regimes described in Corollary 2. For (c.k) ∈ D1, the projection
of the folded singularity q− lies in Pa; for (c.k) ∈ D2, the projection of the folded singularity
q− lies in Sa− , and the projection of a point on L− with the same y- coordinate as q+ lies
in Pa; for (c.k) ∈ D3, the projection of the folded singularity q− and of a point on L− with
the same y- coordinate as q+ lie in Sa− , cf. Figure 5.3 and Figure 5.4.
(b) parameter regimes described in Corollary 3. For (c.k) ∈ A1 (i.e. below the red curve),
there exist a− = a−(c, k) > 0 and a+ = a+(c, k) > 0, with a− > a+, such that an equilibrium
point peq of the slow flow, computed by (5.44), lies on Sr for a ∈ (a+, a−). For (c, k) ∈ A2,
there exists a+ = a+(c, k) > 0, such that an equilibrium point of the slow flow, given by
(5.44), lies on Sr for a > a+. For (c.k) ∈ A3, there exists no a > 0 such that an equilibrium
point of the slow flow, given by (5.44), lies on Sr. Note that the dashed purple curve is not
meant to divide A1 and A2 into further subregions, and that it is related to the location of
q+ in accordance with Lemma 10.

Moreover, the reduced flow on M2S is given by(
ẋ
ż

)
=

[
det (N |G)

〈∇f,N〉

(
−∂zf
∂xf

)]
, (5.43)
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see [Jelbart and Wechselberger, 2020]. Equilibria onM2S are found either by calculating the
reduced flow (5.43), or by requiring that, in addition to the algebraic constraints in (5.32),
the reduced flow thereon vanishes, i.e. (ay + x2) = 0 by Equation (5.1b); this is equivalent
to solving

ax− x2 + ac
(

1− tanh
(x

2
+ k
))

= 0. (5.44)

It immediately follows that the equilibrium of the slow flow on M2S lies on Sa− (resp.
on on Sr) if xeq < xq− (resp. xeq > xq−), see for instance Figure 5.3. Solving (5.44) for a we
obtain

a =
x2

x+ c
(
1− tanh

(
x
2

+ k
)) , (5.45)

and we denote

a∓(c, k) :=
x2
q∓

xq∓ + c
(

1− tanh
(
xq∓

2
+ k
)) . (5.46)

If a−(c, k) > 0 (resp. if a+(c, k) > 0), then for fixed (c, k) ∈ (1,∞) × (0, 1), an equilibrium
point lies on q− (resp. on q+) for a = a−(c, k) (resp. for a = a+(c, k)). The graphs of
a∓(c, k) = 0 on the ck-plane are shown in Figure 5.5, panel (b).

Corollary 3. Denote

A1 =
{

(c, k) ∈ (1,∞)× (0, 1) | a−(c, k) > 0, a+(c, k) < 0
}
,

A2 =
{

(c, k) ∈ (1,∞)× (0, 1) | a−(c, k) < 0, a+(c, k) > 0
}
,

A3 =
{

(c, k) ∈ (1,∞)× (0, 1) | a−(c, k) < 0, a+(c, k) < 0
}
,

as shown in Figure 5.5.

1. If (c, k) ∈ A1, then ∃ a∓ = a∓(c, k), given by (5.46), such that

(a) if a+ = a+(c, k), then peq ≡ q+,

(b) if a− = a−(c, k), then peq ≡ q−,

(c) if a ∈ (a+, a−), then xeq ∈ (xq− , xq+);

2. If (c, k) ∈ A2, then ∃ a+ = a+(c, k), given by (5.46), such that

(a) if a+ = a+(c, k), then peq ≡ q+,

(b) if a > a+, then xeq < xq+, and 6 ∃ a > 0 s.t. peq ≡ q−

3. If (c, k) ∈ A3, then 6 ∃ a > 0 s.t. peq ∈ Sr.
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To see the above more clearly, consider (c, k) such that a−(c, k) = 0. Then, for a = a− =
0, we have that xeq = xq− . For (c, k) ∈ A1, it holds that a−(c, k) > 0, i.e. xeq = xq− for
some a = a− > 0. Symbolic calculations show that, the parameter a in (5.45) is a decreasing
function with respect to x for x ∈ (xq− , xq+); therefore, for a < a−, we have that xeq > xq− ,
and the equilibrium point lies on Sr (see again Figure 5.3). The argument is similar for
a+(c, k) and values a > a+; however, notice that for (c, k)-values below the dashed purple
curve in Figure 5.5 (b), it holds that xq+ > 0 by Lemma 10, and q+ lies on the right of
the plane {x = 0}; therefore, as will be apparent in the following, for (c, k)-values below the
dashed purple curve in Figure 5.5 (b), a+ is irrelevant.

We now combine the two panels in Figure 5.5 into one figure, separating the ck-plane
into six parameter regimes as shown in Figure 5.6. In Section 5.3 we will relate these
parameter regimes to qualitative properties of MMOs of (5.1) for δ, ρ > 0 sufficiently small,
in dependence of the parameter a.

Figure 5.6: Combination of the two panels of Figure 5.5 into one figure, dividing the ck-
plane into six parameter regimes that correspond to different qualitative scenarios of MMOs
and transitions between them, in dependence of the parameter a. The dashed purple line is
not meant to further divide the (c, k)-parameter regimes and does not distinguish between
different qualitative behaviours, but is associated with the a-values that separate oscillatory
dynamics and steady state.

Remark 14. Using the implicit function theorem, from (5.1a) and (5.44), one can deduce
that for δ, ρ > 0 sufficiently small and a = O(1), an equilibrium of system (5.1) lies O(δ, ρ)-
close to an equilibrium point on M2 given by solving (5.44). This is not true, however, for
a � 1, as the time-scale separation in the standard form of GSPT of (5.1) breaks down
because of the large O(aρ)-terms on the RHS. Further investigation of the latter is included
in plans for future work.

5.3 Outline of dynamics

Here we will illustrate various MMO scenarios of system (5.1) with δ, ρ > 0 in dependence
of the parameters c, k and a. We start with general remarks on the perturbed dynamics.
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5.3.1 Perturbed dynamics and delayed loss of stability

Normally hyperbolic parts

Based on GSPT for normally hyperbolic manifolds [Fenichel, 1979, Cardin and Teixeira, 2017]
and in accordance with Chapter 2, it follows that, for δ, ρ > 0 sufficiently small, there exist
invariant manifolds Paδρ, Prδρ, Sa

∓

δρ , Srδρ. The perturbed manifolds Sa∓δρ and Srδρ are diffeomor-
phic, and lie O(δ)-close in the Hausdorff distance, to their unperturbed, normally hyperbolic
counterparts Sa∓ and Sr, respectively. Since MP is invariant for system (5.1) for all δ, ρ,
it holds that Paδρ ≡ Pa, Prδρ ≡ Pr. These manifolds are locally invariant under the flow of
(5.1).

Moreover, for δ, ρ > 0 sufficiently small, there exist invariant manifoldsM2P,δρ, Zaδρ, Zrδρ
that are diffeomorphic and lie O(δ+ ρ)-close in the Hausdorff distance to their unperturbed
counterparts M2P , Za, Zr, respectively. These manifolds are locally invariant under the
flow of (5.1).

Loss of normal hyperbolicity

We start by describing the behaviour of trajectories near the vicinity of FP .
Initially, in the perturbed system (5.1) with δ, ρ > 0 sufficiently small, the slow sheet Srδρ

is “detached” from the plain {x = 0}. The plain {x = 0} is invariant under the flow of (5.1),
and trajectories that evolve on Srδρ exit a vicinity of {x = 0} following fast fibres; this can be
shown by introducing an appropriate scaling at the vicinity of FP , see Section 5.5 for details,
and [Poggiale et al., 2020] for a similar analysis in a two-dimensional Rosenzweig–MacArthur
model with similar singular geometry.

For δ, ρ > 0 small, a trajectory of (5.1) that enters an O(δ) neighbourhood of Paδρ but

O(
√
δ)-away from FP , follows the slow flow (5.18) therein. After crossing the vicinity of

FP and instead of being “immediately” repelled away from an O(δ)-neighbourhood of Prδρ,
it follows the slow flow (5.18) therein until the accumulated attraction to Paδρ is balanced by
repulsion from Prδρ. This is calculated using the way-in/way-out function:∫ zout

zin

Fx|x=0

k − z
dz = 0, (5.47)

recall (5.15) and see [De Maesschalck, 2008]; this phenomenon is also known as Pontryagin’s
delay of stability loss and has also been used in a system with a similar self-intersecting
critical manifold in [Sadhu, 2019]. We remark that this approach is also applicable but
was not implemented in the analysis of a two-dimensional Rosenzweig–MacArthur model in
[Duncan et al., 2019].

Lemma 13. Let δ, ρ > 0 sufficiently small and consider a point (xin, yin, zin) in an O(δ)
neighbourhood of Paδ,ρ and outside an O(

√
δ) neighbourhood of FP . A trajectory under the

flow of (5.1) with initial condition (xin, yin, zin) leaves an O(δ) neighbourhood of Paδ,ρ at a
point (xout, yout, zout) for which

W (zin, zout) :=

∫ zout

zin

yin

(
z−k
zin−k

)ρa
+ c (1− tanh(z))

k − z
dz = 0 (5.48)
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holds.

Proof. The result is based on [De Maesschalck, 2008] and follows from (5.47) and (5.20). The
restriction O(

√
δ)-away from FP is related to the scalings introduced for the local analysis

in Section 5.5.

Unfortunately, the exit point (xout, yout, zout) is not given by an explicit expression.
We now turn our attention to the behaviour of the perturbed system (5.1) near FS for

δ, ρ > 0 sufficiently small. We describe the scenarios near L− and the description of L+ is
similar.

When trajectories reach the vicinity of the fold line L− away from the vicinity of the
folded singularity q−, they “jump” to the opposite attracting sheet following the fast flow,
see [Wechselberger, 2005, Szmolyan and Wechselberger, 2001]. On the other hand, when
trajectories are attracted to the vicinity of q− or to appropriate subregions of Zaδ,ρ, they
undergo SAOs. Namely, Zaδ,ρ can be decomposed to nodally and spirally attracting regimes.
If trajectories are attracted to the latter regime, then they undergo SAOs of bifurcation delay
type, while if trajectories are attracted to the former, then they typically undergo no SAOs,
see Chapter 2 for details.

Singular Hopf bifurcations

Here we discuss the distinction between steady states and oscillatory dynamics of system
(5.1), in dependence of the parameter a, for fixed (c, k) ∈ (1,∞) × (0, 1). We first observe
that, near the fold lines L∓ and away from {x = 0}, system (5.1) can be transformed to
either the extended prototypical example (2.3) or to the canonical form (2.1).

It then follows that, for (c, k) ∈ A1, system (5.1) with δ, ρ > 0 sufficiently small undergoes
singular Hopf bifurcations for a = a−(c, k) +O(δ, ρ), since for a = a−(c, k) an equilibrium of
the slow flow (5.43) crosses the fold line L− at the singular limit δ = 0 = ρ.

Similarly, for (c, k) ∈ A2, for which also (5.37) holds, i.e. above the dashed purple
curve in Figure 5.5 (b), system (5.1) with δ, ρ > 0 sufficiently small undergoes singular Hopf
bifurcations for a = a+(c, k) +O(δ, ρ), since for a = a+(c, k) an equilibrium of the slow flow
(5.43) crosses the fold line L+ at the singular limit δ = 0 = ρ in the negative x-orthant.

For (c, k) ∈ A3, there exist no a > 0 for which an equilibrium of the reduced flow (5.43)
crosses a fold line L∓ at the singular limit δ = 0 = ρ in the negative x-orthant, therefore
system (5.1) converges to a steady state for all a > 0.

5.3.2 Oscillatory trajectories

Here we present the main qualitative results of this Chapter and we summarise the oscillatory
dynamics of system (5.1) for δ, ρ > 0 sufficiently small. We combine panels (a) and (b) of
Figure 5.5 into Figure 5.6, thus separating the ck-plane into further regimes, and we remark
on the dynamics of system (5.1) for c, k-values in each one of these regimes.

In all numerical simulations below, we consider δ = 0.01 = ρ.
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• (c, k) ∈ V1 = D1 ∩ A1

Fix (c, k) ∈ V1, as shown in Figure 5.6.
By Corollary 2, it holds that P (q−), P (q∗) ∈ Pa. Moreover, by (5.46), there exists

a− = a−(c, k) for which peq ≡ q−, i.e an equilibrium point given by solving (5.44) coincides
with the folded singularity q−, and for a < a−, it holds that peq ∈ Sr. Therefore, for
a ∈ (0, a−), system (5.1) features singular cycles that have segments which evolve on Pa,
and for δ, ρ > 0 sufficiently small, system (5.1) features oscillations with plateau above, for
0 < a < a− +O(δ, ρ).

In particular, fixing (c, k) = (1.4, 0.2), we calculate that a− ' 4.57. Numerically, we
obtain that system (5.1) converges to a steady state for a & 4.5. Some simulated trajectories
for (c, k) fixed in this regime and various values of a, with δ = 0.01 = ρ, are illustrated in
Figure 5.7.

(a) (b)

(c) (d)

Figure 5.7: For all (c, k) ∈ V1, see Figure 5.6, oscillatory trajectories of system (5.1) feature
plateau above. For fixed (c, k) ∈ V1, there exists unique a− = a−(c, k) > 0 for which an
equilibrium point of (5.1) coincides with q−. For 0 < a < a−, system (5.1) exhibits oscillatory
dynamics. Moreover, for a close to a−, system (5.1) exhibits MMOs with SAOs below.
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Finally, we observe that during the transition from oscillatory dynamics to steady state,
the system features MMOs with SAOs below, see Figure 5.7. Unfortunately, we are not able
to apply the techniques described in Chapter 2, recall Lemma 4 and Theorem 5, where we
used the slow drift in order to predict the transition from relaxation oscillations to MMOs
with SAOs below in dependence of a, since this slow drift is not available from the reduction
in (5.29) and from the elimination of time in (5.31), as z therein is the intermediate and not
the slow variable. Further investigation of this is included in plans for future work.

• (c, k) ∈ V2 = D2 ∩ A1

Fix (c, k) ∈ V2, as shown in Figure 5.6.
By Corollary 2, it holds that P (q−) ∈ Sa− , P (q∗) ∈ Pa. In addition, by (5.46), there

exists a− = a−(c, k) for which peq ≡ q−, i.e an equilibrium point given by solving (5.44)
coincides with the folded singularity q−, and for a < a−, it holds that peq ∈ Sr. Moreover,
there exists a+ = a+(c, k) for which peq ≡ q+, i.e an equilibrium point given by solving (5.44)
coincides with the folded singularity q+. However, for (c, k)-values below the dashed purple
curve in Figure 5.6, the value a+ is irrelevant. For (c, k)-values in this regime (i.e. below
the dashed purple curve), and for δ, ρ > 0 sufficiently small, system (5.1) features oscillatory
dynamics for 0 < a < a− +O(δ, ρ).

In particular, fixing (c, k) = (1.4, 0.4), we calculate that a− ' 25.55. Numerically, we
obtain that system (5.1) converges to a steady state for a & 25.5. Some simulated trajectories
for (c, k) fixed in this regime and various values of a, with δ = 0.01 = ρ, are illustrated in
Figure 5.8.

Moreover, we observe that there exists a value ap that distinguishes between MMOs that
feature plateaus from those that do not, i.e.

1. system (5.1) features MMOs with plateaus above for a ∈ (0, ap),

2. system (5.1) features MMOs without plateaus for a ∈ (ap, a
−).

In a first approximation, we estimate ap as the a-value for which the equilibrium point
peq = (xeq, yeq, zeq), recall (5.44), lies in the plane given by {y = y∗}, recall (5.39). This is
obtained by approximating the unstable manifold W(peq) of peq by

W(peq) =
{

(x, y, z) ∈ R3 | y = yeq +O(δ, ρ)
}
.

Then, for a < ap it holds that P (L− ∩ W(peq)) ∈ Pa, while for a > ap it holds that
P (L− ∩ W(peq)) ∈ Sa

−
, and oscillatory trajectories do and do not feature plateaus above,

respectively, cf. Figure 5.8.

• (c, k) ∈ V3 = D3 ∩ A1

Fix (c, k) ∈ V3, as shown in Figure 5.6.
By Corollary 2, it holds that P (q−), P (q∗) ∈ Sa− . In addition, by (5.46), there exist

a− = a−(c, k) for which peq ≡ q−, and a+ = a+(c, k) > 0 for which peq ≡ q+, and for
a+ < a < a− it holds that peq ∈ Sr. Therefore, for δ, ρ > 0 sufficiently small, system (5.1)
features oscillations oscillatory dynamics for a ∈ (a+ +O(δ, ρ), a−+O(δ, ρ)), and oscillatory
trajectories with plateau are not possible.
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(a) (b)

(c) (d)

Figure 5.8: For (c, k) ∈ V2, see Figure 5.6, oscillatory trajectories of system (5.1) can either
feature plateau above or not. For fixed (c, k) ∈ V2, there exists unique a− = a−(c, k) > 0 for
which an equilibrium point of (5.1) coincides with q−. For 0 < a < a−, system (5.1) exhibits
oscillatory dynamics. Moreover, there exists ap such that for a < ap, system (5.1) exhibits
MMOs with plateaus above, while for a > ap, system (5.1) exhibits MMOs without plateaus
above.

In particular, fixing (c, k) = (1.06, 0.4), we calculate that a+ ' 0.2 and a− ' 61.02.
Numerically, we obtain that system (5.1) converges to a steady state for a . 0.5 and for
a & 40. (This seeming discrepancy for large a-values is related to Remark 14.) Some
simulated trajectories for (c, k) fixed in this regime and various values of a, with δ = 0.01 = ρ,
are illustrated in Figure 5.9.

• (c, k) ∈ V4 = D2 ∩ A2

Fix (c, k) ∈ V4, as shown in Figure 5.6.
By Corollary 2, it holds that P (q−) ∈ Sa− , P (q∗) ∈ Pa. In addition, by (5.46), there
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(a) (b)

(c) (d)

Figure 5.9: For (c, k) ∈ V3, see Figure 5.6, oscillatory trajectories of system (5.1) can not
feature plateau above. For fixed (c, k) ∈ V3, there exist unique a− = a−(c, k) > 0 and a+ =
a+(c, k) > 0 for which an equilibrium point of (5.1) coincides with q− and q+, respectively.
For a+ < a < a−, system (5.1) exhibits oscillatory dynamics.

exist a+ = a+(c, k) > 0 for which peq ≡ q+, and for a > a+ it holds that peq ∈ Sr –
we emphasize that there exist no a− = a−(c, k) > 0 for which peq ≡ q−. Therefore, for
δ, ρ > 0 sufficiently small, system (5.1) features oscillatory dynamics without plateau for
a ∈ (a+ +O(δ, ρ), a− +O(δ, ρ)).

In particular, fixing (c, k) = (1.4, 0.7), we calculate that a+ ' 0.1. Numerically, we obtain
that system (5.1) converges to a steady state for a . 0.1. Some simulated trajectories for
(c, k) fixed in this regime and various values of a, with δ = 0.01 = ρ, are illustrated in
Figure 5.10.

We remark that, similarly to the previous case, the above analysis is valid only for
a = O(1); i.e., for a � 1, the terms multiplied by a in (5.1) become large, therefore the
three-timescale separation where x is fast, y is intermediate and z is slow as described here
is no longer valid, in accordance with Remark 14. The study of this case is included in plans
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for future work.
Moreover, similarly to the case where (c, k) ∈ V2, we observe that there exists a value

ap = ap(c, k) that distinguishes between MMOs that feature plateaus from those that do not,
i.e.

1. system (5.1) features MMOs with plateaus above for a ∈ (0, ap),

2. system (5.1) features MMOs without plateaus for a > ap and a = O(1).

(a) (b) (c)

(d) (e) (f)

Figure 5.10: For (c, k) ∈ V4, see Figure 5.6, oscillatory trajectories of system (5.1) can either
feature plateau above or not. For fixed (c, k) ∈ V3, there exist unique and a+ = a+(c, k) > 0
for which an equilibrium point of (5.1) coincides with q+. For a > a+, system (5.1) exhibits
oscillatory dynamics. Moreover, there exists ap such that for a < ap, system (5.1) exhibits
oscillatory trajectories with plateaus above, while for a > ap, system (5.1) exhibits oscillatory
trajectories without plateaus above. Finally, for a-values close to a+, system (5.1) exhibits
MMOs with SAOs above. Notice that the LAOs of the latter consist of segments with
plateau, due to corresponding intermediate segments on Pa, and compare with Figure 5.11.

• (c, k) ∈ V5 = D3 ∩ A2

Fix (c, k) ∈ V5, as shown in Figure 5.6.
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By Corollary 2, it holds that P (q−), P (q∗) ∈ Sa− . In addition, by (5.46), there exist
a+ = a+(c, k) > 0 for which peq ≡ q+, and for a > a+ it holds that peq ∈ Sr – we emphasize
that exist no a− = a−(c, k) > 0 for which peq ≡ q−. Therefore, for δ, ρ > 0 sufficiently small,
system (5.1) features oscillatory dynamics for a > a+ and a = O(1).

In particular, fixing (c, k) = (1.2, 0.7), we calculate that a+ ' 1.6. Numerically, we obtain
that system (5.1) converges to a steady state for a . 2.2. Some simulated trajectories for
(c, k) fixed in this regime and various values of a, with δ = 0.01 = ρ, are illustrated in
Figure 5.11.

(a) (b)

(c) (d)

Figure 5.11: For (c, k) ∈ V5, see Figure 5.6, oscillatory trajectories of system (5.1) can not
feature plateau above. For fixed (c, k) ∈ V5, there exists unique a+ = a+(c, k) > 0 for which
an equilibrium point of (5.1) coincides with q+. For a > a+, system (5.1) exhibits oscillatory
dynamics. Finally, for a-values close to a+, system (5.1) exhibits MMOs with SAOs above.
Notice that the LAOs of the latter consist of “typical” relaxation oscillation segments, due
to corresponding intermediate segments on Sa− , and compare with Figure 5.10.

We remark that, similarly to the previous cases, the above analysis is valid only for
a = O(1); i.e., for a � 1, the terms multiplied by a in (5.1) become large, therefore the
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three-timescale separation where x is fast, y is intermediate and z is slow as described here
is no longer valid, in accordance with Remark 14. The study of this case is included in plans
for future work.

• (c, k) ∈ V6 = D3 ∩ A3

Fix (c, k) ∈ V5, as shown in Figure 5.6. For this case, there exist no a > 0 for which system
(5.1) features oscillatory dynamics, since such a-values exist only for (c, k) ∈ A1 ∪ A2.

5.4 Summary

In this Chapter, we extended the analysis in [Roberts et al., 2016] to the three-timescale
context of Equation (5.1), i.e. for δ, ρ > 0 sufficiently small. We explored the properties
of oscillatory trajectories in dependence of the parameters c, k, a of Equation (5.1), and we
associated them with the geometric properties of the system at the singular limit δ = 0 = ρ.

In Section 5.2 we studied the geometric properties of the critical and supercritical mani-
folds of (5.1) at the singular limit δ = 0 = ρ, and we illustrated various scenarios in terms of
the locations of sets where normal hyperbolicity is lost relative to each other. We showed that
the parameter c is associated with the geometric properties of the two-dimensional critical
manifoldM1 of (5.1) at the singular limit δ = 0. For fixed c > 1, at the double singular limit
δ = 0 = ρ, the parameter k ∈ (0, 1) determines the geometric properties of the supercritical
manifold M2. Finally, the value a does not affect the singular geometry of the system, but
for a fixed geometry, it can distinguish between steady state and oscillatory dynamics, as
well as between different qualitative properties of oscillations, via the reduced flow on the
invariant manifolds of the system.

In Section 5.3, we showed various qualitative behaviours of oscillatory dynamics of (5.1)
in dependence of its geometry, for δ, ρ > 0 sufficiently small. By considering these various
geometric configurations, we were thus able to find new qualitative behaviours that had not
been documented in previous works. In particular, in reference to Figure 5.6, we showed
that:

1. If (c, k) ∈ V1, only oscillations with plateau above are possible, cf. Figure 5.7;

2. If (c, k) ∈ V2, oscillations with or without plateau are possible, in dependence of the
parameter a, cf. Figure 5.8;

3. If (c, k) ∈ V3, only oscillations without plateau are possible, cf. Figure 5.9;

4. If (c, k) ∈ V4, oscillations with or without plateau are possible, in dependence of the
parameter a; moreover, MMOs with plateau above can also potentially feature segments
of SAOs above, cf. Figure 5.10;

5. If (c, k) ∈ V5, only oscillations without plateau are possible, which, in dependence of
the parameter a, can also potentially feature SAOs above. cf. Figure 5.11;

Finally, in Section 5.5 below, we briefly address the dynamics in the vicinity of the self-
intersection of the critical manifold M1 for δ, ρ > 0 small.
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5.5 Blow-up analysis of FP
Here we study the vicinity of FP of system (5.1) with δ, ρ > 0 sufficiently small, recall (5.17),
with particular interest in the perturbed sheets Sa+δρ and Srδρ; recall that P = {x = 0} is
invariant under the full flow (5.1). The fold lines L∓ intersect with P at

z∓∗ = ∓arcsech

{√
1

c

}
, (5.49)

recall (5.13); we then have that

FP =

{
Sa+ ∩ P for z > z+

∗ ,
Sr ∩ P for z < z+

∗ .
(5.50)

We start by considering the partially perturbed system Equation (5.1) with δ > 0 suffi-
ciently small and ρ = 0. Solutions are then characterised by y = y0, and we can therefore
write

x′ = x (x+ y0 + c(1− tanh (x+ z))) (5.51a)

z′ = δ(k − z − x

2
) (5.51b)

y′ = 0 (5.51c)

We choose k and y0 such that there exists z0 so that p0 = (0, y0, z0) ∈ FP , and Bδ(p0) ∩
M2 = ∅; by (5.15) we have y0 + c(1− tanh (z0)) = 0. Since we restrict ourselves away from
M2, the results outlined below hold to leading order for ρ > 0 sufficiently small.

We translate the origin to the point p0 by the change of coordinates z̃ = z − z0. This
gives

x′ = x (x+ y0 + c(1− tanh (x+ z + z0))) , (5.52a)

z′ = δ(k − z − z0 −
x

2
), (5.52b)

y′ = 0, (5.52c)

where we have dropped the tilde for convenience. We Taylor expand tanh (x+ z + z0) on
the RHS of (5.52a) to obtain

x′ = x (x− c̃x− c̃z) , (5.53a)

z′ = δ(k − z − z0 −
x

2
), (5.53b)

y′ = 0, (5.53c)

where, for convenience, we have denoted.

c̃ := c(1− tanh2 (z0)).

In regard to the above parameter, we make the following observation, which is important for
the blow-up analysis to follow.
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Lemma 14.

c(1− tanh2 (z0)) ≶ 1 for z0 ≷ z+
∗ .

Proof. Simple calculations show that c(1 − tanh2 (z+
∗ )) = 1, where we recall that z+

∗ =

arcsech
{√

1
c

}
, recall (5.49); moreover, c̃(z0) = c(1 − tanh2 (z0)) is a decreasing function of

z0.

The above implies that c̃ < 1 for points in Sa+ ∩ P , and c̃ > 1 for points in Sr ∩ P .
Moreover, we are interested in the region where

k − z0 < 0, (5.54)

as this implies that the curve FP is above M2P in the {x = 0} plane. If this were not the
case, then trajectories would first reachM2P and then would reach FP ∩M2P , which is not
the case that we are considering here.

We now consider the following blow-up transformation Φ : S2 × R→ R3,

x = rx̄, z = rz̄, δ = r2δ̄. (5.55)

which we will apply to the origin of the two dimensional system

x′ = x (x− c̃x− c̃z) , (5.56a)

z′ = δ(k − z − z0 −
x

2
), (5.56b)

where we assume that y = y0, recall (5.53). We will show that the dynamics for δ, ρ > 0 suffi-
ciently is as demonstrated in Figure 5.12. The weights in (5.55) are similar to the analysis of
a transcritical singularities in [Krupa and Szmolyan, 2001b]; notice, however, that although
system (5.56) features a transcritical bifurcation, the z-axis therein is invariant, and therefore
the analysis of this case is slightly different to the one in [Krupa and Szmolyan, 2001b].

(a) δ = 0 = ρ (b) δ, ρ > 0 (c) δ = 0 = ρ (d) δ, ρ > 0

Figure 5.12: Self-intersection of M1 projected onto the xz-plane. For δ, ρ > 0, Sa+ and Sr
detach from the {x = 0} plane and connect with the fast flow.
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We remark that system (5.56) features similar geometry to slow-fast Rosenzweig–MacArthur
models studied in [Duncan et al., 2019, Poggiale et al., 2020], as well as to a two-timescale
ecosystem model studied in [Sadhu, 2019]. A geometric desingularisation of the self intersec-
tion of a critical manifold of Rosenzweig–MacArthur model is included in [Poggiale et al., 2020];
here, we present an augmented analysis, in dependence also of the parameter c̃ in (5.56).

5.5.1 The entry chart κ1 : {z̄ = 1}
The blow-up Φ1 : R3 → R3 in the entry chart κ1 : {z̄ = 1} is given by

x = r1x1, z = r1, δ = r2
1δ1. (5.57)

Substituting (5.57) into (5.56) and rescaling time by a factor of r1 gives

r′1 = r1δ1

(
k − z0 − r1 −

r1x1

2

)
(5.58a)

x′1 = x1 (x1 − c̃x1 − c̃)− x1δ1

(
k − z0 − r1 −

r1x1

2

)
(5.58b)

δ′1 = −2δ1

(
k − z0 − r1 −

r1x1

2

)
(5.58c)

The planes {δ1 = 0} and {r1 = 0} are invariant. Their intersection is the invariant negative
x1-axis, whereon the dynamics is given by

x′1 = x1 (x1 − c̃x1 − c̃) , x1 < 0. (5.59)

The dynamics in the invariant plane {δ1 = 0} is given by

r′1 = 0, (5.60a)

x′1 = x1 (x1 − c̃x1 − c̃) , (5.60b)

while the dynamics in the invariant plane {r1 = 0} is given by

x′1 = x1 (x1 − c̃x1 − c̃)− x1δ1 (k − z0) , (5.61a)

δ′1 = −2δ1 (k − z0) . (5.61b)

We distinguish between the two cases where either c̃ ≤ 1 or c̃ > 1 as follows:

1. c̃ ≤ 1: In this case, there exists a hyperbolic and attracting equilibrium for the flow
(5.59), pa,1 = (0, 0, 0), with corresponding eigenvalue λa = −c̃.
In the plane {δ1 = 0}, system (5.60) has an attracting line `a,1, which emanates from
pa,1.

In the plane {r1 = 0}, there exists a one-dimensional centre manifold Na,1 at pa,1, along
which δ1 increases for δ1 > 0 (recall that k − z0 < 0 from (5.54)).

2. c̃ > 1: In this case, there exist two hyperbolic equilibria for the flow (5.59), pa,1 =
(0, 0, 0) and pr,1 = (c̃/(1 − c̃), 0, 0), which are respectively attracting and repelling,
with corresponding eigenvalues λa,1 = −c̃ and λr,1 = c̃.
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In the plane {δ1 = 0}, system (5.60) has attracting and repelling lines `a,1 and `r,1,
respectively, which emanate from pa,1 and pr,1, respectively.

In the plane {r1 = 0}, there exist one dimensional centre manifolds Na,1 and Nr,1 at
pa,1 and pr,1, respectively, along which δ1 increases for δ1 > 0 (recall that k − z0 < 0
from (5.54)).

The implications of the above are summarised in the following proposition.

Proposition 17 ([Krupa and Szmolyan, 2001a]). The following assertions hold for system
(5.58):

1. For c̃ > 0 , there exists an attracting two-dimensional Ck-center manifold Ma,1 at pa,1
which contains the line of equilibria `a,1 and the centre manifold Na,1. The manifold
Ma,1 corresponds to the invariant subspace {x1 = 0}. Moreover, there exists a stable
invariant foliation F s with base Ma,1 and one-dimensional fibres, and for any K > −c̃,
the contraction along F s in a time interval [0, T ] is stronger than eKT .

2. If c̃ > 1, there additionally exists a repelling two-dimensional Ck-center manifold Mr,1

at pr,1 which contains the line of equilibria `r,1 and the centre manifold Nr,1. For
r1, δ1 > 0 small, the manifold Ma,1 is given as a graph x1 = hr,1(r1, δ1), The branch
of Nr,1 in r1 = 0, δ1 > 0 is not unique. Moreover, there exists an unstable invariant
foliation Fu with base Mr,1 and one-dimensional fibres. For any K < c̃, the expansion
along Fu in a time interval [0, T ] is stronger than eKT .

(a) c̃ ≤ 1: blow up of Sa+ ∩ P (b) c̃ > 1: blow up of Sr ∩ P

Figure 5.13: Dynamics in the entry chart κ1.

We reiterate and emphasize that when c̃ ≤ 1, we are essentially blowing up a point on
Sa+ ∩ P , and when c̃ > 1, we are essentially blowing up a point on Sr ∩ P , cf. Figure 5.13
and Figure 5.2. Because of the angles of intersection between these manifolds and P , we are
only able to trace Sr in this chart for c̃ > 1. Notice, that in this chart there also exists a
repelling centre manifold in the x1-positive orthant for c̃ ≤ 1, which we disregard, since we
are only interested in dynamics restricted to x1 ≤ 0.
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5.5.2 The rescaling chart κ2 :
{
δ̄ = 1

}
The blow-up Φ2 : R3 → R3 in the rescaling chart κ2 :

{
δ̄ = 1

}
is given by

x = r2x2, z = rz2, δ = r2
2. (5.62)

Substituting (5.62) into (5.56) and rescaling time by a factor of r2 gives

x′2 = x2 (x2 − c̃x2 − c̃z2) , (5.63a)

z′2 = k − z0 − r2z2 −
r2x2

2
; (5.63b)

setting r2 = 0 in the above gives

x′2 = x2 (x2 − c̃x2 − c̃z2) , (5.64a)

z′2 = k − z0. (5.64b)

The x2-axis in (5.64) is invariant. Moreover, the x2-nullclines are given by z2 = x2 (1− c̃) /c̃.
Above the x2-nullcline, there holds that that x′2 > 0, and below the x2-nullcline, there holds
that x′2 < 0. Moreover, from (5.64b), it holds that z′2 < 0 everywhere, since k − z0 < 0 from
(5.54). The dynamics in this chart is summarised in Figure 5.14.

(a) c̃ > 1: blow up of Sr ∩ P (b) c̃ < 1: blow up of Sa+ ∩ P

Figure 5.14: Dynamics in the rescaling chart κ2.

Trajectories evolving on the invariant z1-axis in chart κ1 transit to trajectories evolving
on the invariant z2-axis in chart κ2, and trajectories with x1 < 0 in chart κ1 transit to
trajectories with x2 < 0 in chart κ2 as depicted in Figure 5.14; this idea we will be made
more precise in the Summary subsection below.

5.5.3 The exit chart κ3 : {z̄ = −1}
The directional blow-up Φ3 : R3 → R3 in the exit chart κ3 : {z̄ = −1} is given by

x = r3x3, z = −r3, δ = r2
3δ3. (5.65)
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Substituting (5.65) into (5.56) and rescaling time by a factor of r3 gives

r′3 = −r3δ3

(
k − z0 − r3 −

r3x3

2

)
(5.66a)

x′3 = x3 (x3 − c̃x3 + c̃)− x3δ3

(
k − z0 − r3 −

r3x3

2

)
(5.66b)

δ′3 = 2δ3

(
k − z0 + r3 −

r3x3

2

)
(5.66c)

The planes {δ3 = 0} and {r3 = 0} are invariant. Their intersection is the invariant negative
x3-axis, whereon the dynamics is given by

x′3 = x3 (x3 − c̃x3 + c̃) , x3 < 0. (5.67)

The dynamics in the invariant plane {δ3 = 0} is given by

r′3 = 0, (5.68a)

x′3 = x3 (x3 − c̃x3 + c̃) (5.68b)

while the dynamics in the invariant plane {r3 = 0} is given by

x′3 = x3 (x3 − c̃x3 + c̃)− x3δ3 (k − z0) , (5.69a)

δ′3 = 2δ3 (k − z0) . (5.69b)

We again distinguish between the two cases where either c̃ ≤ 1 or c̃ > 1 as follows:

1. c̃ > 1: In this case, there exists one hyperbolic and repelling equilibrium for the flow
(5.67), pr,3 = (0, 0, 0), with corresponding eigenvalue λr,3 = c̃.

On the plane {δ3 = 0}, system (5.68) has a repelling line `a,3, which emanates from
pr,3.

On the plane {δ3 = 0}, there exists a one-dimensional centre manifold Nr,3 at pa,3 ,
along which δ3 decreases for δ3 > 0 (recall that k − z0 < 0 from (5.54)).

2. c̃ ≤ 1: In this case, there exist two hyperbolic equilibria for the flow (5.67), pr,3 =
(0, 0, 0) and pa,3 = (−c̃/(1 − c̃), 0, 0), which are respectively repelling and attracting,
with corresponding eigenvalues λr,3 = c̃ and λa,3 = −c̃.
In the plane {δ3 = 0}, system (5.68) has attracting and repelling lines `r,3 and `a,3,
respectively, which emanate from pr,3 and pa,3, respectively.

In the plane {δ3 = 0}, there exist one dimensional centre manifolds Nr,3 and Na,3 at
pr,3 and pa,3, respectively, along which δ3 decreases for δ3 > 0 (recall that k − z0 < 0
from (5.54)).

The implications of the above are summarised in the following proposition.

Proposition 18 ([Krupa and Szmolyan, 2001a]). The following assertions hold for system
(5.66):
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1. For c̃ ≤ 1, there exists a repelling two-dimensional Ck-center manifold Mr,3 at pr,3
which contains the line of equilibria `r,3 and the centre manifold Nr,3. The manifold
Mr,3 corresponds to the invariant subspace {x1 = 0}. Moreover, there exists a stable
invariant foliation Fu with base Mr,3 and one-dimensional fibres, and for any K < c̃,
the expansion along Fu in a time interval [0, T ] is stronger than eKT .

2. If c̃ > 1, there additionally exists an attracting two-dimensional Ck-center manifold
Ma,3 at pa,3 which contains the line of equilibria `a,3 and the centre manifold Na,3. For
r3, δ3 > 0 small, the manifold Ma,3 is given as a graph x3 = ha,3(r3, δ3). Moreover,
there exists an unstable invariant foliation F s with base Ma,3 and one-dimensional
fibres. For any K > −c̃, the attraction along F s in a time interval [0, T ] is stronger
than eKT .

(a) c̃ ≤ 1: blow up of Sa+ ∩ P (b) c̃ > 1: blow up of Sr ∩ P

Figure 5.15: Dynamics in the exit chart κ3.

We reiterate and emphasize that when c̃ ≤ 1, we are essentially blowing up a point on
Sa+ ∩ P , and when c̃ > 1, we are essentially blowing up a point on Sr ∩ P , cf. Figure 5.13
and Figure 5.2. Because of the angles of intersection between these manifolds and P , we are
only able to trace Sr in this chart for c̃ ≤ 1. Notice, that in this chart there also exists a
repelling centre manifold in the x1-positive orthant for c̃ > 1, which we disregard, since we
are only interested in dynamics restricted to x1 ≤ 0.

5.5.4 Summary

The changes of coordinates between the charts κij : κi → κj are given by

• κ12 : κ1 → κ2;

x2 = δ
−1/2
1 x1 z2 = δ

−1/2
1 r2 = r1δ

1/2
1 (5.70)

• κ23 : κ2 → κ3;

x3 = x2z
−1
2 r3 = r2z2 δ3 = z−2

2 . (5.71)
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It is therefore apparent that trajectories that lie in the plane {x1 = 0} in chart κ1 transit to
trajectories that lie on the axis {x2 = 0} in chart κ2, and subsequently to trajectories that lie
in the plane {x3 = 0} in chart κ3 as expected, since {x = 0} is invariant for the full system.
Trajectories with x1 < 0 in chart κ1 that are attracted to the plane {x1 = 0} therein transit
to trajectories with x3 < 0 in chart κ3, and follow the fast fibres if c̃ > 1, or are attracted to
Sa+ if c̃ ≤ 1.

We emphasize that the analysis here covers anO(
√
δ)-neighbourhood of FP . For trajecto-

ries that enter an O(δ) neighbourhood of P at points O(
√
δ) away from FP , the accumulated

contraction needs to be balanced by expansion using the way-in/way-out function (5.47) be-
fore exiting an O(δ) neighbourhood of P , as described in [De Maesschalck, 2008].

Finally, since in none of the scenarios outlined in Section 5.3 trajectories approached a
neighbourhood of FP ∩M2, a detailed blow-up analysis of the latter is left as part of future
work.
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Chapter 6

Conclusions

The main focus of this work was the dynamics of three-timescale systems of ODEs. In
Chapter 1, we presented a brief introduction to the standard and the non-standard forms of
geometric singular perturbation theory. We described the notion of invariant slow and su-
perslow manifolds of three-dimensional slow-fast systems as the backbone of their dynamics.
We additionally showed that, even in case where a three-dimensional system is written in
the standard form of GSPT, i.e. each variable admits its own timescale, the reduced flow
on its two-dimensional slow manifold can potentially correspond to a slow-fast system in the
non-standard form of GSPT.

In Chapter 2, we introduced an extended prototypical example, that features an S-shaped
supercritical manifold embedded in an S-shaped critical manifold in a fairly symmetric man-
ner. This topological setting is featured by many systems in applications and encodes crucial
information about mixed-mode oscillations (MMOs) with different qualitative properties and
transitions between them. We introduced the notion of orbital connection of the folded singu-
larities of the system or lack thereof, and we associated the former to mixed-mode oscillations
(MMOs) with double epochs of perturbed slow dynamics and the latter to MMOs with single
epochs of perturbed slow dynamics and relaxation oscillations.

In Chapter 3, we demonstrated that the Koper model from chemical kinetics represents a
particular realisation of our extended prototypical example for a specific choice of parameters;
therefore, the results from Chapter 2 are directly transferable to this system. Although the
Koper model has been extensively studied in the two-timescale context, to our knowledge,
its MMO-dynamics had not yet been studied in the three-timescale context. Here we inves-
tigated the passage from two to three timescales, and we showed that MMOs with double
epochs of perturbed slow dynamics are more robust than in the two-timescale context.

In Chapter 4 we studied the four-dimensional, four-timescale Hodgkin-Huxley equations
from mathematical neuroscience in the standard form of GSPT. We introduced a novel and
global three-dimensional reduction using GSPT, by reducing the flow to an invariant, three-
dimensional, normally hyperbolic slow manifold. Then, we showed that, when either the vari-
able h or the variable n is taken to be the slowest variable in the resulting three-dimensional,
three-timescale flow, the system exhibits geometric characteristics and bifurcations of MMOs
similar to the extended prototypical example that we introduced in Chapter 2. Moreover,
we briefly exposed the viewpoint where the reduced flow on the slow manifold of the three-
dimensional system can be treated as a slow-fast system written in the non-standard form
of GSPT, where the notion of orbital connection of folded singularities of lack thereof can
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be extended in this setting.
In Chapter 5 we studied a three-dimensional, three-timescale system that describes the

El-Niño Southern Oscillation phenomenon. The critical manifold of this system is the union
of an S-shaped manifold and a plane which intersect transversally. We extended the notion
of relative positions of folded singularities to the notion of relative positions of sets where
normal hyperbolicity is lost, and we related this to the various MMO-scenarios that can
occur, which had not been documented in previous works. Moreover, we studied the vicinity
of the intersection between the two critical manifolds in more detail, and we gave estimates
about bifurcation delay phenomena, which were left as open questions in previous works.

In conclusion, in this work, we were mostly interested in the global dynamics of three-
timescale systems, in relation to qualitative properties of mixed mode oscillations. A pos-
teriori, it was evident that three-timescale systems simultaneously feature characteristics
of two-fast/one-slow and one-slow/two-fast systems. Therefore, the local analysis in re-
gions were normal hyperbolicity is lost can be carried out by combining and/or extending
techniques from these two cases. The underlying geometric mechanisms of the extended
prototypical example of Chapter 2, mainly the notion of orbital connection or lack thereof of
folded singularities, proved useful in classifying the behaviour of systems with similar topo-
logical properties, like the Koper model of Chapter 3 and the Hodgkin-Huxley equations of
Chapter 4. Moreover, by extending these notion, and in general putting emphasis on the
configuration of the singular geometry, we were able to uncover qualitative behaviours that
had not been documented before for the ENSO model of Chapter 5.

Questions that emerged in the process, such as the potential occurrence of period doubling
bifurcations, local and global implications of complete and incomplete canard explosions,
and the possibility of Shilnikov-type homoclinic orbits, are included in plans for future work.
Moreover, plans for future work also include the study of torus canards [Burke et al., 2012]
in three-timescale systems [Baspinar et al., 2021], and investigating whether any techniques
and notions described in this work can be transferred in that context, investigating for
instance whether the existence of a supercritical manifold provides further insight into the
problem, or makes phenomena that are delicate in the two-timescale setting more robust in
the three-timescale one.
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