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Abstract

We consider linear, mildly ill-posed inverse problems in separable Hilbert spaces
under Gaussian noise, whose covariance operator is not identity (i.e. it is not a
white noise problem), and use the Bayesian approach to find their regularised solu-
tion. Specifically, our goal is to regularise the prior in such a way that the posterior
distribution achieves the optimal rate of contraction. The object of interest (an
unknown function) is assumed to lie in a Sobolev space. Firstly, we consider the
so-called conjugate setting where the covariance operator of the noise and the co-
variance operator of the prior are simultaneously diagonalisable, and the noise has
heterogeneous variance. Note this similar to the work done in [Knapik et al., 2011],
albeit for the homogeneous variance case. Hence, we derive the minimax rate of
convergence, the contraction rate of the posterior distribution and subsequently,
discuss the conditions under which these rates coincide. The results are numeri-
cally illustrated by the problem of recovering a function from noisy observations.
Secondly, motivated by Poisson inverse problems, we consider Gaussian, signal-
dependent noise (i.e. non-conjugate setting). Using [Panov and Spokoiny, 2015] we
obtain Bernstein von-Mises results for the posterior distribution, and consequently
derive the contraction rates and conditions for its optimality as well.



Lay Summary

This thesis studies ill-posed Inverse problems, using the Bayesian approach. Infor-
mally, an inverse problem is derived from a cause-effect relationship. Specifically, we
wish to estimate the cause given that we have (indirectly) observed the effect. Most
readers in fact are already familiar with such a problem, since Medical Imaging using
X-rays is ubiquitous in real life.

The complexity of an inverse problem is directly linked to how ill-posed it is. An
inverse problem can be ill-posed for several reasons. In this thesis, we shall assume the
ill-posedness is due to the indirect nature of our observations. Compounding matters, is
the fact these observations will contain noise.

These two propeties, (ill-posedness and noise) make it nigh impossible to solve Inverse
problems in the classical manner. Specifically, our aim should not be to to recover
an exact solution, which explains the observed effect perfectly, but an approximate
solution, which takes into account the presence of noise. Approaches that do so are called
Regularisation methods, and are comprised of Deterministic and Statistical methods.

Deterministic methods account for the noise, but do not exploit the structure of
it. Statistical methods, on the other hand, use all the information regarding the noise
structure and therefore are deemed as superior. However, note statistical methods will
generally be more computationally expensive.

In this thesis, Bayesian statistical methods are used. Specifically, all the information
we currently know about the cause (even if we have none) forms part of the prior. Thus,
given an observation, we can update the prior, (and consequently the information we
have regarding the cause); this updated information is referred to as the posterior.

Consequently, the efficacy of the Bayesian method can be gauged by the quality of
the information contained in the posterior. Specifically, as the noise in our observations
decreases, the posterior should determine the true solution with increasing accuracy.
Informally, the rate at which it does so, is called the contraction rate.

These contraction rates will depend on the properties of the inverse problem, as well
as the smoothness of the prior. Thus, by controlling the latter, we can improve our
contraction rates.

Typically, the contraction rates are compared to a benchmark of sorts. This bench-
mark takes into account all possible methods, and every possible true solution. In our
setting, this benchmark is referred to as the minimax rate, and will depend on the
smoothness of the true solution as well. Consequently, a contraction rate is deemed
optimal if it achieves the minimax rate.

Thus, the aim of this thesis is find priors that lead to the optimal contraction rate,
for different noise structures. In our setting, optimality will depend on how well the
smoothness of the prior matches the smoothness of the true solution.

Subsequently, we consider Gaussian noise with two different covariance structures.
In the first case, we assume the Gaussian noise has non-constant variance. Hence, we
derive the minimax rates, the contraction rates, and conditions under which the optimal
rate coincides with the minimax rate.



In the second case, we assume the Gaussian noise has signal-dependent variance.
Informally, this means that the variance of the noise is also dependent on the unknown
true solution. Subsequently, we derive the contraction rates, and its corresponding
optimality conditions.

Finally, we conclude this thesis by discussing possible extensions and applications of
the highlighted results.
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1 Introduction

1.1 Layout of this Thesis

This thesis comprises of six sections. In Section 1, we state the layout of this thesis,
provide an overview of inverse problems, along with a relevant literature review, and
discuss inverse problems in both the finite and infinite dimensional setting.

In Section 2, we review [Knapik et al., 2011], and highlight the relevant results.
Specifically, under the prior © ~ N(0,A), with Gaussian white noise Z ~ N(0, 1),
the posterior u|Y is derived in Proposition 2.1, ( [Knapik et al., 2011]’s Proposition
3.1). Subsequently, by explicitly categorising the behaviour of the singular values of
K, A and pg in Assumption 2.1, the contraction rates are derived in Theorem 2.1,
([Knapik et al., 2011]’s Theorem 4.1).

In Section 3, under the prior  ~ N(0,A), with Gaussian Heterogeneous noise Z ~
N0, WWT), the posterior u|Y is derived in Proposition 3.1. Subsequently, by explicitly
categorising the behaviour of the singular values of K, A, W and pg in Assumption
3.1, the minimax and contraction rates are derived in Proposition 3.2 and Theorem 3.2,
respectively. Furthermore, contraction rates are also derived in Theorem 3.1 under a
general setting, (Assumption 3.2), where the behaviour of the singular values of K, A,
W aren’t restricted. In addition, we derive contraction rates for the case where there
is noise in the covariance operator, and conclude the section by numerically illustrating
the problem of recovering a function from noisy observations.

In Section 4, we review [Panov and Spokoiny, 2015] and highlight the relevant re-
sults. Specifically, we discuss the assumptions stated in [Panov and Spokoiny, 2015)’s
Section 2.1, and subsequently review Theorem 9 (Local Approximation), and Theorem
10 (Concentration). Consequently, we highlight how the previously mentioned theorems
are used to derive the BvM results under a Uniform prior (Theorem 1), and a Gaussian
prior (Theorem 2).

In Section 5, we consider direct and indirect inverse problems with signal-dependent
noise. Specifically, Theorems 5.1 and 5.2 provide Bernstein-von Mises results for the
posterior distribution for the direct problem, which is defined in Section 5.1. Subse-
quently, Theorem 5.3 states Bernstein-von Mises results for the posterior distribution
for the indirect problem, which is defined in Section 5.3. Note, these aforementioned
theorems rely on a concentration result, which is proved in Theorem 5.4. Consequently,
the contraction rates for the direct and indirect problems are derived in Theorems 5.6
and 5.7, respectively.

In Section 6, we identify gaps in the literature and state how the results from Sections
3 and 5 can be used to address them.

1.2  An Overview of Inverse Problems

Remark 1.1. Most of this report’s introductory material regarding inverse problems and
the methods used to tackle them are based on [Alquier et al., 2011], [Kaipio and Somersalo, 2006],
and [Engl et al., 1996]. Keywords and statements will be highlighted to aid the reader.



Inverse Problems can be found in many disciplines, such as Astronomy (restor-
ing blurred images from the Hubble Space telescope, [Adorf, 1995]), Financial Math-
ematics (calibrating derivative pricing models, [Lagnado and Osher, 1997]), Image Pro-
cessing (radiography, [Hunt, 1970]) and Physics (solving the inverse heat conduction
problem, [Beck et al., 1985]). Even differentiation can lead to an inverse problem, see
[Engl et al., 1996]’s Section 1.1 and [Anderssen and Bloomfield, 1974].

Generally, an inverse problem is derived from a cause-effect relationship. We define
the forward problem as estimating the effect given the cause. Conversely, we define the
inverse problem as recovering the cause given that we have (perhaps indirectly) observed
the effect.

This notion of indirect observations of some cause (i.e. function) is usually modeled
via an operator K. Thus, from a mathematical point of view, inverse problems usually
correspond to the inversion of K.

Since the base requirement for estimation is the notion of distance (norm) and con-
vergence (completeness), we begin by formulating the inverse problem in a Banach
Space setting:

Y = Kp, (1)

where Y € ) denotes the effect we observe, ;1 € X denotes the cause we wish to recover,
and (X,]]-||x), (V]| -||y) are our Banach spaces. The operator K : X — Y is typically
called the Forward or Observation operator. Hence, in an inverse problem we observe
Y and aim to recover pu.

Additionally, if K is the identity operator, the problem is referred to as direct,
otherwise it is called indirect. Furthermore, if K is injective and continuous (bounded)
the solution is unique and approximable, respectively.

Observe, recovering p in Model (1) is rather straight-forward assuming K is invert-
ible. Naturally, in most inverse problems K is not invertible and hence we require an
alternative method for addressing its inversion, so as to obtain a precise reconstruction.
One way is to use Least Squares, i.e.

e = inf ||Y — K.
fus ﬁlgxll £l

Furthermore, one could also encounter the following scenarios, which would make
the inverse problem harder to solve:

e There may exist an object, i # 0 € X s.t K i = 0, thereby resulting in the mapping
no longer being unique, (since even though p # (i + ), Kp = K(i + p)). This
corresponds to the operator having a non-trivial null space, (Uniqueness).

e There may exist Y € ) such that Y # Kpu, Yu € X, i.e. the solution of the inverse
problem may not exist. This may well be the case when dealing with very noisy
images, (Eristence).

e There may exist objects 1, u2 € X such that while 1 and pe are far apart in X,
Kpu1 and Kpus are close in ). Thus when solving the inverse problem, one could
easily arrive at the wrong p, (Stability).



This motivates the definition of ill-posedness. Hadamard introduced the concept of
a well-posed problem (see [Hadamard, 1932]), using the principles mentioned above and
defined below.

Definition 1.1. An inverse problem is well-posed if there exists a unique solution that
depends continuously on'Y (i.e. the Uniqueness, Existence and Stability conditions de-

scribed above hold).

Furthermore, any problem that is not well-posed is defined as ill-posed.

Note, continuity w.r.t Y, ( i.e. the Stability condition), is typically the crux of the
matter in inverse problems.

Well-posedness is particularly hard to guarantee in the presence of noise. Specifically,
consider Model (1) but now with additive noise Z, (noisy inverse problem):

Y=Ku+eZz, (2)

where Y, K and p satisfy the assumptions from Model (1), Z € ) is unknown and € is a
non-negative constant.
We assume that
1Zlly <1,

and refer to € as the noise level. Hence, as ¢ — 0, the noise disappears and we recover
Model (1).

Note, the existence and uniqueness of solutions is akin to identifiability in statistics.
Furthermore, while it will not be discussed in this thesis, one can can show the existence
and uniqueness of a least squares solution via the use of a Moore-Penrose (generalised)
inverse of K.

Observe, recovering p in Model (2) is no longer straight-forward, even if there exists
a unique solution and we assume K is invertible, due to the aforementioned stability
condition. To elucidate, let

p=K'Y =K YKu+2).

There is no guarantee that j is close to the true y, even if ||Z||y is small, since K !
may be sensitive to even the smallest perturbations in Y. For instance, this can happen
when K ! is unbounded, (see Section 1.3.3).

Thus, the issue is that we are looking for an exact solution rather than an approzimate
solution; approximate in the sense, that our solution must not reproduce the data, Y,
exactly, but rather within experimental errors. However this space of approximate solu-
tions is too vast, due to the very nature of our ill-posed problems.

Consequently, methods to enforce stability and choose an approximate solution in
a meaningful way led to the birth of Regularisation Methods. In this thesis we shall
assume ill-posedness is due to the stability condition. As discussed later, said stability
condition will be dictated by the behaviour of K’s eigenvalues, (see Definition 1.8).



Remark 1.2. Note, in the finite dimensional setting, non-continuity w.r.t. Y is equiva-
lent to assuming K is ill-conditioned (i.e. a high condition number; for more details and
examples see Sections 1.3.1 and 1.4.4). However, a problem can be well-conditioned (i.e.
have a low condition number) and still be ill-posed (if for instance, the non-uniqueness
or the non-existence scenarios hold).

Classical Regularisation Methods are deterministic in nature, and rely on Least
Squares. Most importantly, they assume the existence of a true solution to Model
(2), i.e. po.

The most famous classical method is the Tikhonov Regularisation Method [Engl et al., 1996]:

iy = inf ||V — Kji M|
fix ;}Qx” illy + Al

where A > 0 is some tuning parameter. Comparing [y to [i;s, the additional term
||fi||x (referred to as energy) enforces stability by penalising rough fi.

Consequently, one can study the convergence properties of [iy to pg, as € — 0.
As one can expect, the rate of convergence will depend directly on A, and indirectly on
K and pg. Furthermore, we would expect A — 0 as € — 0, hence A\ must be a function
of e.

Thus, a choice rule for A can be constructed which incorporates information about
€, K and pg. One can even use Y in the construction of said rule, (this is described as
data driven or Empirical). [Hamarik et al., 2012] contains choice rules for A\ when € is
under and over-estimated.

Subsequently, one can establish a benchmark by bounding every regularisation method’s
best convergence rate from below. Hence, the performance of a given regularisation
method can be gauged by comparing its convergence rate (under a given choice rule for
A) against the aforementioned benchmark.

For the deterministic noise model, (2), we can define the benchmark using the worst
noise risk:

sup sup || — pl[%
peX ||Z]|ly<1
This risk, as well as the rates of convergence, are stated in [Engl et al., 1996]. Fur-
thermore, Table 1.3 in [Alquier et al., 2011] lists the worst noise risk for when p belongs
to different classes of functions as well.
Note, for the Statistical approach, (discussed further below), this benchmark will be
embellished under the guise of minimazx error.
While the regularised least squares approach is well-developed, as stated in [Hofinger and Pikkarainen, 2(
“a main criticism is that ...convergence rate result depends on € which can be seen as
a worst-case scenario.” Hence, the use of statistics to improve these convergence rate
results.
Statistical Regularisation Methods are used when at least one of the variables in
Model (2) is stochastic; typically, and in this thesis, the noise (Z) will be random,
with known distribution.



In a Frequentist setting, convergence results are usually given using the mean square
error [Wahba, 1977]. However, there are results using other metrics, such as [Hofinger and Kindermann, 200
for the Ky Fan metric and [Engl et al., 2005] for the Prokhorov metric. Note, the lat-
ter metric involves convergence in distribution while the former involves convergence in
probability.

In this thesis, the Bayesian approach will be employed; specifically Z, and there-
fore Y, will be random, and we will assume a prior on u. Hence, using Bayes’ rule, the
posterior distribution u|Y will be derived. Thus, under the Bayesian approach, u|Y is
the regularised solution of Model (2).

Note, [Stuart, 2010] and [Kaipio and Somersalo, 2006] provide an excellent introduc-
tion to the Bayesian formulation of inverse problems, as well as containing a myriad of
examples. [Stuart, 2010] also gives conditions for the resulting posterior distribution to
be well-defined i.e. normalisable and Lipschitz wrt Y (c.f. Theorem 4.1 and 4.2); the
latter implying that the posterior mean and covariance operator are continuous wrt Y.
This is relevant when considering inverse problems in an infinite dimensional setting
with a non-Gaussian prior. This result was later derived for Besov priors as well in
[Dashti et al., 2012].

Consequently, having obtained the regularised solution i.e. u|Y, we can use it to
construct estimators (such as the posterior mean) or credible sets. However, the biggest
obstacle in most Bayesian applications is obtaining a closed-form expression for u|Y.
Thus, classical Bayesian analysis relied on conjugate priors, see [Box and Tiao, 1973].

Due to recent advancements in technology, there do exist several computational
methods for sampling the posterior, such as the Monte Carlo method, which is used
in [Beskos et al., 2015]. Still, such methods require extensive computer time, therefore
it is of importance to have good analytic approximations which are much simpler to
compute.

For example, in classical statistics, the Central Limit Theorem (CLT) can be used to
obtain normal approximations, the latter being computationally inexpensive. Similarly,
in the Bayesian setting, Laplace (1774) (and later Bernstein (1917) and von Mises (1931))
discovered that the posterior distribution could be well-approximated by a normal dis-
tribution with mean equal to the Maximum Likelihood Estimate (MLE) and covariance
matrix equal to the inverse of the Fisher Information matrix. This result came to be
known as a Bernstein-von Mises (BvM) type result, and is also called the Bayesian
CLT due to its similarity to the classical CLT.

Le Cam [Le Cam, 1953] was the first to formalise this result, in which he assumed a
parametric model, with i.i.d observations and large sample sizes. His work has undergone
several modifications and extensions, such as being shown to hold for non-independent
observations in [Heyde and Johnstone, 1979]. Even the assumption of a parametric
model was improved upon, i.e. [Shen, 2002] and [Castillo and Rousseau, 2015] show
BvM results for the semi-parametric framework. Furthermore, sharper approximations
than that achieved via normal approximation can be obtained by expanding the poste-
rior, as shown in [Johnson, 1970]. More recently, Panov and Spokoiny [Panov and Spokoiny, 2015]
obtained BvM results in a non-classical setup allowing for finite samples and model mis-



specification.
Note, BvM results for the infinite dimensional setting are still in their infancy. There
is still hope however; Castillo and Nickl (in [Castillo and Nickl, 2013] and [Castillo and Nickl, 2014])
obtained BvM results for the full non-parametric model, under a weaker notion of con-
vergence (based on the Lipschitz metric). In Sections 2 and 3 we will exploit conjugacy
to obtain the posterior distribution, while in Sections 4 and 5 we will use BvM type
results to approximate the posterior distribution.
Subsequently, all that remains is to analyse the convergence properties of u|Y for
Model (2). This is easier to compute in the separable Hilbert Space setting:

Y=Ku+ez, (3)

where € is the noise level, € H;j a separable Hilbert Space, and a known, injective,
continuous, linear operator K maps p into another separable Hilbert space, Ha. If we
assume Z is Gaussian white noise process, (c.f. Definition 1.5), then (3) is referred to as
the Gaussian white noise model.

As stated previously, one’s computations are easier since not only can we define a
norm using the Hilbert Space’s inner product and therefore use all the theory from the
Classical Approach, but, more importantly, we also obtain the notion of orthogonality.
The latter allows us to decompose Model (3) into its sequence space counterpart:

Y, = k‘i,ui + eZ;, for all i > 1, (4)
where, for orthonormal bases {¢;}:°, and {¢;}:2, of H; and Hj respectively,

Zi = (Z, Qi) Hys i = (b Gi)py, and Y = (Y, i) g,

and k? correspond to the eigenvalues of KK, (see Section 1.4.3 for more details).

Note, since the Hilbert space is separable it guarantees the existence of a countable
orthonormal basis, which is important in our analyses. A thorough treatment of Models
(3) and (4) is provided in Section 1.4.

Note, this decomposition also allows us to take an unobservable Gaussian random
variable in a Banach (or Hilbert) space and instead address it as a sequence of Gaussian
random variables in R. Furthermore, the norm of any element can be expressed using
this decomposition as well, via Parseval’s Identity.

Consequently all that remains is to discuss what it means for p|Y to converge, its
corresponding convergence rates and the construction of a so-called benchmark.

In the Bayesian approach, convergence is described in the Frequentist setting and
relies on two notions: Posterior consistency and Posterior Contraction Rates; the latter
being the cornerstone of this thesis. Note, both these notions rely on the existence of
some underlying true parameter L, (hence the Frequentist setting).

Recall in the Frequentist setting, estimators fi are deemed consistent if they converge
(in probability) to the truth pp, assuming the data, Y, was generated using the true
probability distribution IP,,. Likewise in the Bayesian setting, we define consistency on
our posterior.



Specifically, we start with a (sometimes imprecise) prior on the parameter space, H;
and update it with the given data, Y, to obtain our posterior. It is therefore of utmost
importance to know whether the posterior becomes increasingly accurate and precise
when data is collected indefinitely. This property is known as posterior consistency.

Definition 1.2. We say the posterior distribution of u|Y, II(-|Y") is consistent at pg, if
for every neighbourhood of o, B(po),

P
II(B(uo)°lY) 4% 0, as e — 0,
where P, ensures that Y was generated using fio.

Thus, posterior consistency guarantees the concentration of the posterior distribution
around the truth ug. Note, however it does not quantify the performance of the posterior,
and hence we cannot compare two different posteriors using the notion of consistency.

It is well known that for virtually all finite dimensional problems, the posterior
distribution is consistent under mild conditions, see [Ibragimov and Has’minskii, 1981],
[Le Cam, 1986] and [Ghosal et al., 1995]. Informally, this is because the likelihood is
prominently peaked near the true parameter for large sample sizes, hence one is able
to show that the posterior distribution can be approximated by a normal distribution
(which is referred to as a Bernstein-von Mises (BvM) type result).

Verifying consistency in the infinite dimensional however is no easy task. As shown
in [Freedman, 1963| consistency can fail to hold in even the most simplest cases; in the
paper the constructed prior puts positive mass on every neighbourhood of the truth, yet
the posterior converges to the wrong distribution.

There are several results that guarantee posterior consistency in the infinite dimen-
sional setting. For instance, Doob [Doob, 1949] showed that for every prior distribution
on a given parameter space, posterior consistency held for any underlying truth, assum-
ing said truth had non-zero prior mass. However, there is no reason to assume that this
is the case, i.e. the true parameter may belong to the prior distribution’s null set.

Fortunately, Schwartz [Schwartz, 1965] was able to prove consistency for any pa-
rameter assuming the existence of some tests and positive prior mass on every Kull-
back—Leibler neighborhood of said parameter. These results were later extended to weak
and L; neighbourhoods by [Barron et al., 1999], [Ghosal et al., 1999] and [Walker, 2004].
Please see [Diaconis and Freedman, 1986], and [Choi and Ramamoorthi, 2008] for fur-
ther details regarding posterior consistency.

Subsequently, to judge asymptotic performance, we consider the (related) notion of
contraction instead. Specifically, we allow the radius e of the neighbourhoods (of ),
B(1), to depend on €, and hence aim to find the smallest e such that consistency holds.

Definition 1.3. The posterior distribution of p|Y, II(-|Y"), contracts around pgy with
contraction rate € | 0 if

P
I({e: [l = poll;r, = Me[Y}) =0,

for every sequence M — oco.



Note again that IP,, guarantees that Y was generated using po. Furthermore, by
definition, posterior contraction will imply posterior consistency.

For a finite n-dimensional model, Le Cam [LeCam, 1973] showed that the posterior
distribution achieved the optimal rate of contraction under the Hellinger metric. In
particular, one can use the Bernstein-von Mises Theorem to show ¢ = n~1/2, assuming
the model is suitably differentiable.

For a infinite dimensional model, with i.i.d observations [Ghosal et al., 2000] ob-
tained general results under the Total Variation, Hellinger and La-metrics. This result
was then extended to a non-i.i.d framework in [Ghosal and van der Vaart, 2007]. Note,
[Shen and Wasserman, 2001] obtained similar results to [Ghosal et al., 2000], but under
stronger conditions.

The seminal paper on posterior contraction rates for linear ill posed problems with
conjugate Gaussian priors, in the infinite dimensional setting is [Knapik et al., 2011]. In
[Knapik et al., 2013], under the same setup as [Knapik et al., 2011}, a severely ill-posed
linear inverse problem is studied, and the posterior contraction rate derived. In both of
these papers, the noise is assumed to be i.i.d standard normal.

Conversely, [Agapiou et al., 2013] and [Florens and Simoni, 2016] studied the case
when the covariance operator of the noise is not a constant (i.e. not identically dis-
tributed). Furthermore, the work done in [Agapiou et al., 2013] doesn’t require the si-
multaneous diagonalisable assumption, as required in [Knapik et al., 2011] and [Knapik et al., 2013],
however the rates are sub-optimal.

All that is left to discuss, w.r.t asymptotic performance, is our benchmark.

Definition 1.4. In the Frequentist setting, the Maximal Risk of an estimator [i is

sup R(fL, ),
rEH:
and the Minimaz Rate is
7"e(f-[l) = H}f sup R(lau /JJ)’ (5)
K peH
where R : Hy x Hy — [0,00] is some risk function and the infimum is taken over all
estimators of p (i.e. all measurable functions fi : Hy — Ha).

Note, i will typically be a function of Y, hence the presence of € in r.(H).
Typically, and in our thesis, R(ji, p1o) will correspond to the L? norm (also known as
Mean Integrated Squared Error):

R(ft, pt0) = Epo||ft — pro .

The Minimax Rate will be the benchmark our contraction rates are compared against.
Observe how the posterior contraction rate provides an upper bound for the rate of
estimation, since any ¢’ < e will also be a contraction rate. Conversely, the minimax
rate via Markov’s Inequality will provide a lower bound for the posterior contraction
rate. Note, it is well-known that these rates of convergence depend on the ill-posedness
of the inverse problem and smoothness conditions on y, (see [Alquier et al., 2011]).



In [Bissantz et al., 2007] minimax rates are derived for several Classical Regularisa-
tion methods, including SVD and Tikhonov estimators. Minimax rates for Statistical
Approaches generally use the results from [Pinsker, 1980], which provides conditions for
a linear estimator to be minimax. For instance, it is used in [Cavalier, 2008] to derive the
minimax rates for Model (3) with Gaussian white noise; specifically, the minimax rate
for the Sobolev class of functions is n=8/(1+28+24) " Similarly, minimax rates for severely
ill-posed problems with analytic functions are given in [Golubev and Khasminskii, 1999]
and [Golubev and Khasminskii, 2001].

As seen in both the Classical and Bayesian approach, optimal convergence/contraction
requires some optimal choice of the tuning parameter, A, that often relies on the un-
known smoothness of the function pg. This has led to more recent concepts like adaptive
estimation, which circumvent this condition.

A a prior is called rate-adaptive if it achieves the optimal rate without knowledge of
the truth’s smoothness. Generally the smoothness class is indexed, and one may or may
not know the value of said index for the truth puyg.

Results are known for Model (3), where Z has Homogeneous (i.e. constant) vari-
ance, (aka the Gaussian white noise model). For instance, [Ray, 2013] considered both
the mildly and severly ill posed setting using non-conjugate priors, notably sieve and
wavelet series priors, obtaining suboptimal rates. More recently, [Ray, 2017] investigated
adaptive Bernstein—von Mises (BvM) theorems for the Gaussian white noise model as
well.

Additionally, [Knapik et al., 2016] discussed two different ways of obtaining adaptive
rates; both involve a a data-driven choice of a prior’s tuning parameter in order to
automatically achieve an optimal bias-variance trade-off. The first involves putting a
prior distribution on the tuning parameter itself, and the second is likelihood-based.

[Szabé et al., 2013] used a plug-in estimator of the prior scale parameter for direct
models under white noise, while [Florens and Simoni, 2016] did the same for inverse
problems with heterogeneous noise. In a different setting, [Knapik and Salomond, 2018]
showed that adaptive hierarchical mixture models lead to optimal posterior contrac-
tion rates. Furthermore, [Rousseau and Szabo, 2017] considered the likelihood based
approach, i.e. they studied the concentration properties of the Empirical Bayes poste-
rior.

For inverse problems, only the approach of [Johannes et al., 2020] (i.e. using the
truncation number) leads to the posterior distribution contracting at the optimal rate
(under white noise).

Finally note, inverse problems can be identified as linear or non-linear based on
their forward operator, K. Non-linear inverse problems are far more complex, but can
generally be linearised [Stefanov and Uhlmann, 2009]. A survey of non-linear inverse
problems can be found in [Engl and Kiigler, 2005]. Similar to their linear counterparts,
non-linear inverse problems were generally tackled using a least squares formulation
[Tarantola and Valette, 1982], however recently neural networks have also been used to
find solutions [Obornev et al., 2020].

Of particular import is Nickl’s work on non-linear inverse problems using the Bayesian



approach. Note, we touched on some of his work when discussing BvM results ([Castillo and Nickl, 2013]
and [Castillo and Nickl, 2014]). Additionally, in [Nickl and Sohl, 2017] posterior con-
traction rates were obtained for a reflected diffusion model, and most recently, in [Giordano and Nickl, 2020]
consistency results were obtained using Gaussian process priors.
In this thesis we shall assume the forward operator K is linear. However, later on
in Sections 4 and 5 we will allow the variance of the noise Z to depend on pu, which
introduces non-linearity into our probability model for Y. Regardless, even if an inverse
problem is non-linear, they can be linearised. Consequently, this thesis’s results are still
applicable.
In the next section, we shall review how one can construct estimators using the
Classical (Deterministic) and Statistical Approaches. Special attention will be paid to
SVD (Singular Value Decomposition) methods and how one can use them to obtain
Sequence Space models.
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1.3 Finite Dimensional Setting

We begin by assuming Model (3), but in the finite dimensional setting, R™:
Y=Ku+ez, (6)

where Z is a random m-dimensional vector, e € RT, n € RP, Y € R™ and K € R™*P,
Note, in this section, given a vector x, x; will refer its ¥ component.

1.3.1 Ill-Posedness

Recall, we assume an inverse problem is ill-posed if the solution doesn’t depend continu-
ously on Y. This in turn can be categorised via the behaviour of K (or more specifically
K1 if it exists.)

Note if m = p, then K is a square matrix, and hence the problem reduces to solving
a system of linear equations. If m > p, which is often the case in real life, i.e. if one
has more observations than variables, the problem changes into a Least Squares problem
(c.f. Section 1.3.2).

Recall that K : RP — R™ is continuous if and only if there exists ¢ such that

K pll < cllpll, Yu e R,

where the norm ||| is the standard Euclidean norm. Thus we see that K never lengthens
a vector by more than a factor of c. Hence, we can naturally define the length of the
operator K by setting it to be the smallest c, i.e.

1Klop = minfe > 0 : || Kul| < ellull, vu € R?}.
Furthermore, it can be shown that

|| K pal|
[[ 2]

In addition, when Y is observed with error, one defines the condition number of K
(cond(K)) as the maximum ratio between the relative error in p (i.e. ||K~teZ||/||[K~1Y]])
and the relative error in Y (i.e. ||eZ]|/||Y||). Hence since

|| K|]op = max{ cueRP Where,u#O}zlmax{HK,uH}.

lll=1

IIK‘leZII/IIK‘lYH:(\IK‘lez\l)( Y]]
leZ[/11Y]] lez|l “IE=Y]]

) = cond(K) := ‘|K71HOPHKHOP'

Subsequently, having defined a matrix’s condition number, we can investigate its role
in the ill-posedness of an inverse problem, (specifically, its effect on the non-continuity
w.r.t Y). Therefore, let us assume we solve the noisy problem (Model 6) and obtain
the solution fi. We then wish to ascertain how close [ is to the exact solution of the
non-noisy problem.

11



Denoting the true solution as pg one can show using classical perturbation theory,
(c.f. [Ralston and Rabinowitz, 2001]) , that

— [ VA
o = Al _ oy 121,
|10l Y]]
where || - || is the standard Euclidean norm.

Thus, a large condition number could imply that i was very far from g regardless
of how small the perturbation, €Z, was. Consequently, even the presence of rounding
errors could produce a useless approximation of pg. Hence the need for Regularisation
Theory.

Note that we state a matrix, K, is well-conditioned if cond(K) is small. Subsequently,
the larger this number, the more ill-conditioned the matrix becomes. A far more rigorous
definition of ill-posedness, via ill-conditionedness, is given for the infinite dimensional
case in Section 1.4.4.

1.3.2 Least Squares Method

We begin by recalling some definitions and terminology, with regards to the rank of
matrices. A matrix has full row rank when each of its rows are linearly independent
and full column rank when each of its columns are linearly independent. In the case
of a square matrix, we say that it has full rank if all columns and rows are linearly
independent. Note, a square matrix has full rank if and only if its determinant is non-
zZero.

Furthermore, for a non-square matrix, it will always be the case that either its rows
or its columns (whichever is larger in number) are linearly dependent. Thus when we say
that a non-square matrix is full rank, we mean that either the row or the column rank
is as high as possible, given the shape of the matrix. So for example, if there are more
rows than columns (m > p), then the matrix is full rank if the matrix is full column
rank.

Observe, if K is square and has full rank then it is invertible and one can find a
single solution, whilst if K has full row rank then there can exist an infinite number of
solutions or no solution. If K has full column rank and Y is in the range of K, then
there will exist a unique solution, otherwise no solution will exist.

Hence, for the cases where no solution exists, the best one can do is find an approx-
imate solution via Least Squares i.e.

min ||V = K2,
HER™
where ||-||2 is the standard Euclidean norm. The solution to this equation, i.e. the Least
Squares estimator is
i, = (KTK)'KTY.
Recall that if K has full column rank then (K7 K)~! does indeed exist.

Now, assume K is ill-conditioned. Hence, even if one were to invert the operator the

solution obtained would be erroneous (assuming K1 exists).

12



Numerically, if we knew €Z was small, we could obtain a solution via Least Squares by
ignoring the term €Z in our calculations. However, K is ill-conditioned, hence our Least
Squares solution, fi,,, would be incorrect, which we demonstrate in the next section.

1.3.3 lll-Posed Example using Matrices
The problem (taken from Chapter 1 of [Hansen, 2010]) is as follows:

0.16 0.10 0.01

min ||Y — Kpl||2, where K = [ 0.17 0.11| andY = K <1> + [ —0.03

g 2.02 1.29 0.02
Note || - ||2 is the standard Euclidean norm. One would expect the solution to be

1 .. .
close to 1 however, as we shall see, this is not the case. The least squares solution,

along with some alternate solutions, are

S (TOLN ey (0
lu’ls - _8.40 ) Ml - O ILL2 - 2.58 ’

with residual errors 0.022, 0.031 and 0.036, respectively. The reason we obtain such
erratic behaviour is due to K being ill-conditioned i.e. it has a very large condition
number (1097.5 in fact).

Consequently, let us now consider an alternative method for recovering p, one which
regularises K in some sense (i.e. a Regularisation Method).

1.3.4 Classical (Deterministic) Approach: Tikhonov Regularisation

While there are numerous deterministic regularisation approaches, we shall restrict our
attention to the most famous one: the Tikhonov Regularisation Method

This method tries to ensure one obtains a smooth solution whilst also fitting the
data, Y, adequately, i.e.

fin = arg(min ||Y" — Epl[*+ 22|l

where A is our regularisation parameter and || - || is the standard Euclidean norm or
the norm generated by a Hilbert space’s innner product, whichever is relevant. As we
can see, the term ||Y — Kpu||? controls the goodness of fit whilst ||u||> ensures that the
solution obtained is regular. Furthermore, by alternating A one could ensure that we
either fit the data, Y, more accurately or make our solution smoother.

The Tikhonov approach is akin to a Least Squares approach, hence the latter can be
used to easily derive a solution for the former. Recall that for any vectors u and v,

() - (Z)T (1) =l + ol
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Hence, one can rewrite the Tikhonov problem as follows:

()~ ()

where letting A — 0 recovers the Least Squares problem.

As stated in our Introduction, Model (3) is easier to analyse in the Sequence Space
setting. The same can be said for Model (6). Both models can be decomposed using
Singular Value Decomposition (SVD) methods, as discussed in the next section.

2

min |[Y — Kp|> 4+ A?||u/|?> = min — [y = (KTK + X2I)"'KTY,
H H

1.3.5 Singular Value Decomposition Method and Ill-Posedness Revisited

This section requires familiarity with the SVD (Singular Value Decomposition) of a ma-
trix, hence for those unfamiliar with the topic we would recommend [Trefethen and Bau III, 1997].
Subsequently, for m > p, we can express K € R"™*P using its Singular Value Decompo-
sition, i.e.
K = FYET,

where F' € R™™ ¥ € R™P and E € RP*P. Note, £ = (¢1,...,¢p) and F =
1,-..,%m) are orthogonal, 1.e. = Ix, an = I,y xm. Furthermore,
@ © h l,ie. ETE =I,4, and FTF =1, Furth

Y = diag(k1,...,kp), where ky > ko > ...k, >0,

where the {k;}}_; are known as the singular values of K.

Consequently, if m = p, one can define the inverse of K, if it exists, as K1 =
EX~'FT. Note that if K is a symmetric positive-definite matrix, then the singular
values equal K’s eigenvalues. Additionally, the matrix K has full rank, and therefore
an inverse, only if all of its singular values are non-zero. If K is singular then k, = 0.
Thus, one can show that

1K |lop = k1, and ||K~]op = k"

Whilst the above is not proved here, one can find the proof in [Trefethen and Bau III, 1997].
Consequently, the condition number of K can then be simplified to

cond(K) = ﬁ
kp

First, let us try to recover p in the absence of noise, whilst continuing to assume that
K is ill-conditioned. Note F’s orthogonality implies

Y=Ku < Y=FSE')y — F'y =xET,..
Therefore, using Least Squares

fhowa := min ||V — Kp|| = min ||FTY = SET 4]
1 I
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Thus, since X is a diagonal matrix with (possibly) some zero diagonal elements,

p T
Z Y opi
Msva = T¢Z ]I{kzyéo}?

=1

where Iy corresponds to the Indicator function.

Whilst this solution is valid when there is no noise, if the converse is true, this method
amplifies any noise present due to the decreasing k; (a consequence of the large condition
number). Thus, one again, the need for Regularisation Methods.

Note that the {p;}", form an orthonormal basis for the range of K, whilst the
{¢i}¥_, do the same for RP, with K¢; = k;p; . Therefore,

P P
p=>Y (u'e)e = K=Y (1" ¢i)kipi.
i=1 i=1
Furthermore, if Y is in the range of K then
m
Y => (Yo
i=1

Thus, the SV D method can also be used to decompose the terms p, Kip and Y.
Additionally, define k; =0 for i > p, Y; = YTgoi, wi = p’¢; and assume

m
i=1

Then
m m
Y=Kp+eZ < > Yoo =Y [t di)ki + ezl
=1 =1

<~ Y, = piki + €z, for i <m.

The latter is referred to as the Sequence Space Model.

Note, we can use an analogous method to recover u and obtain the sequence space
formulation for the infinite dimensional setting as well. Next, we construct SVD estima-
tors.

1.3.6 SVD Estimators (TSVD, SSVD, and Tikhonov)

Recall, for the noisy model (6), we can construct the naive SVD estimator (by ignoring
Z)

"y,
~ K3
Iu’svd — Z E¢l I[{k,ﬁﬁ()}’
i=1
where Y; := Y7 ;.
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Observe, there will be some components that are dominated by noise. For instance,

assume
m
Z = E zigoi,
i=1
then
Y ez
ki ki’

where the k; form a decreasing sequence. Hence, the best way to proceed would be to
discard these noisy components by retaining the first N components. Doing so leads to
the TSVD method and the estimator,

"y,
latsv(i = Z #¢Z H{kﬁéo}
i=1 "

Note that the truncation parameter, N, should be chosen based on the noisy com-
ponents rather than the size of the k;.

There is also a variant of the TSVD, known as the Selective SVD (SSVD), where
one discards components if their magnitude is below a certain threshold, 9, i.e.

X Y
|Y;|>6

This method is advantageous when there exist several Y; that are small. Obviously,
for problems where Y; decay one can expect little difference between the two methods.

The advantages of both these methods is that they are easy to compute for differ-
ent N and 0. However, they both require the computation of the SVD which can be
computationally overwhelming when tackling large scale problems.

In addition, whilst not obvious at first, the Tikhonov problem is similar to the SSVD
as well. Using the SVD of K, i.e. K = FXET and recalling that EET = I, we can see
that

fix = (EX?’ET + ¥EEN)'ESFTY = BE(X* + MI) 'ETEXFTY
= E(X?+ X)) xFly

P
Y;
= i7-®i Ly, 20
; "k P Hkiro)
where the filtering factor,

Ti

kB if k2 > A2,
RN K22, i K2 < A%

Consequently, we see that 7; either retains or shrinks the component k%’, and unlike
the SSVD (and TSVD) does not require the computation of the SVD. Furthermore, the
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filtering occurs in a smooth fashion unlike in the SVD methods. Much more could be
said about these methods and their effectiveness and we encourage the reader to consult
[Hansen, 2010] for further details.

As we can see, most estimators in the Classical Approach are constructed naively,
i.e. the noise is ignored. Subsequently, the best way to proceed would be to use our
knowledge of Z’s randomness to find a solution, i.e. employ Statistical methods. How-
ever, note under certain conditions, these Statistical Methods will in fact coincide with
the Deterministic Methods described above.

1.3.7 Statistical Approaches: Maximum Likelihood Method

Whilst regularisation methods ignore the stochastic attributes of the noise, statisti-
cal methods view Y as a realisation of a random process. In this section we as-
sume u deterministic and our goal is to estimate the parameters that characterize Y'’s
probability distribution (i.e. a Frequentist setting). This section is largely based on
[Bertero and Boccacci, 2020].

Note that in Section 1.3.10, we shall discuss methods for when p is instead a random
process (i.e. a Bayesian setting). Additionally, we shall also show, under certain condi-
tions, that the Maximum Likelihood Method is equivalent to the Least Squares Method
and the Bayesian Method to Tikhonov Regularisation.

Consider the finite dimensional noisy model (6). To proceed with our analysis we
must make several assumptions.

e First, Z and consequently Y, will correspond to m-dimensional random vectors.

e Second, we shall assume the expectation of Y is Ky, i.e. given a probability
density, py (-), the

E(Y) = / y py (y)dy = Kp.
However 1 is unknown, thus we make a third assumption.

e We shall assume Y € {Y (1)} := {Ki + eZ| € RP}, and the probability density
of Y(f), i.e. py(-|ft), is known.

Consequently, our problem is as follows: Given y, i.e. a noisy image, which is a
realization of the random vector Y, which member of the family {Y (&)} is most likely
to represent u? This can be answered using the Mazimum Likelihood (ML) Method.

Given Y =y, we can evaluate Y’s probability density assuming an arbitrary f, and
denote it as

L) = py (5170,

where L(f1) is called the Likelihood Function. Subsequently, the Mazimum Likelihood
Estimate of u is the fi that maximises L(fi):

firr = mng(ﬂ).
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Informally, it is the object & which maximises the probability of observing the given y.
Obviously we can find the maxima of this function by evaluating its derivatives.

However, if there are a large number of variables involved, not only could the compu-
tations be quite complex, our Likelihood function may also contain several local maxima;
though in that case we would choose the global maximum. Additionally, if the compo-
nents of our random vector Y were independent, our likelihood function would be the
product of functions. Consequently, since evaluating the derivative of the product of
functions can be quite cumbersome, we can simplify the forementioned problem by con-
sidering

I(7i) = n L(ji) = Inpy (ylj0).

Note the log-likelihood function’s (I(f)’s) maxima are the same as its counterpart,
L(f1). We conclude by demonstrating the ML method for when the noise is Gaussian, as
well as Poisson. Additionally, under these conditions, the Maximum Likelihood method
will coincide with the Least Squares estimator.

1.3.8 ML Method: Gaussian Noise

In most cases, we tend to assume the noise, Z, is a zero mean Gaussian random vector,
i.e. the components of Z, Z;, are normal random variables with mean zero. Thus, for
the noisy finite dimensional model (6),

E(Z) =0 = E(Y) = K.

Thus assuming the Z; are correlated, with correlation matrix X, the joint density of
Z =zis .
_ YTz z
pz(z) = [2m)"(5)]) 2 exp(———5—),
where |3| is the determinant of ¥, and (-) is the scalar dot product.
If the Z; have zero expectation then (X); ; = E(Z;Z;). This in turn implies that 3
is positive semi-definite, since

Szoz=Y (O E(ZZiz) z]—IEZZZZzZz] E((z- Z)%) > 0.
i A

In addition, ¥ is positive definite and therefore invertible, i.f.f. P(Z; = 0) # 1 for all
i. Thus, from now on we shall assume the latter so as to ensure !, and consequently

pz(+), exist.
Furthermore, note that the Z; would be uncorrelated if > was a diagonal matrix, i.e.

(E) 6 = =0; 57%

where o2 is the variance of Z; and 0;; is the Kronecker delta function. Consequently,
since the Z; are uncorrelated and normally distributed, this would imply they were
independent as well. In addition, if 01-2 = g2 for all i, then ¥ = o1, and the corresponding
model is referred to as the white noise model.
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Regardless, if the additive noise, Z, has zero expectation we know that py (y|u) =
pez(y — Kp), subsequently

Y Ny —Kp) - (y— Kp)
2

py (ylp) = [(2m) "B 72 exp(~ );
where |X| refers to the determinant of X.
Therefore,
YNy - Kp) - (y — Kp)

() = —%[m In(27) + In(€?|3])] — 5 .

Hence, we see that the

finr = mjxl(ﬂ) = min e2X Ny —Kp)- (y— Kp).

Note that in the case of white noise, i.e. when ¥~ = 721,
finey, = maxI() = min(y — Kp) - (y = Kp) = min [ly — Kpll*

which is equivalent to the Least Squares problem. Hence, the ML Method suffers from
the same weaknesses as the Least Squares Method, i.e. not being continuous w.r.t Y.
Please see Section 1.3.2 for more details.

1.3.9 ML Method: Poisson Noise

As discussed in Sections 3.5 and 6, we would like to study Poisson inverse problems in
the future. Therefore, consider (6) where Z is multivariate Poisson, i.e. Z; ~ Pois(\;).
Then for \; sufficiently large,

Zi—Xi D
— N(0,1),
o Ne

via the Central Limit Theorem (CLT).
Consequently,

(yi — (Kp); — eX)?
2€2)\;

Yim N((Kp)i + ehis X)) = py; (yiln) = [27eA] 712 exp(— )-

Therefore, using our results from Section 1.3.8 with (X); ; = A\id;; implies

finrs, = max () = mine *X7N(G = Kp) - (5 = Kp), (7)
where §; = y; — (K p); — €.

Note that (371);; = A;'6;;, and whilst we knew the variance in Section 1.3.8, in
this section we shall assume \; is a function of p and is therefore unknown. However,
these unknown parameters can be replaced by their likelihood estimates.
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Thus, recalling that Y; ~ Pois();), we can state its log-likelihood,

ION) =y nh — In(yi!) — Ny = I'(\) = i ~ 1, and I"(\) = — &

Thus we can use the above to infer the maximum of I()\;) is i = yi. Subsequently,
using these substitutions in (7) our ML Method would provide us with the following
Weighted Least Squares problem for Y = y:

L = maxl mm 1 —€ K
b = 2 Z Yi y M)

Thus we have seen that statistical methods are equivalent to classical deterministic
methods (i.e. Least Squares) under certain conditions. Next, we shall discuss Bayesian
methods and how they can be equivalent to Tikhonov regularisation methods.

1.3.10 Bayesian Methods

In this section, we assume the noisy model (6), where Y and p are also random pro-
cesses, with known probability distributions py(-) and p,(-), and realisations y and fi,
respectively. The distribution of u is referred to as the prior.

Thus, our problem now consists of obtaining information about u given that we have
an observation of Y, i.e. y. This information can be obtained by computing p,y(-),
which is known as the a posteriori density function of .

Due to the relationship above, the probabilistic nature of the problem above can be
encapsulated by the joint distribution of only 2 of the 3 variables (Y, p, and Z). Typi-
cally, we choose p and Y, and denote their joint probability as p, vy (f, y). Consequently,
due to the relationship between joint and marginal distributions, we obtain

pult) = / Puy (fi,y) dy.

Furthermore, since we know py (y|p) and p,(fi), one can ascertain that
Puy (1Y) = py (Yl)pu(R)-

Subsequently, we can now deduce

oy Py (y)  py Wla)pu (i)
Py (B18) = s = () a7

which is known as the Bayes Formula.

Now note that whilst p,y(fily) does not give us a unique estimate but a set of
possible estimates, (with corresponding probabilities), we can nonetheless use it to com-
pute various approximations of p. In practice, we tend to use the Expectation or the
Maximum Aposteriori Estimate (MAP) of p, i.e.
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e the Expected value of u given Y,
= EGlY) = [ V) d

e the MAP of p given Y,
firrap = mgXpMY(ﬂ\Y)-

Note that if p,(fi|Y") has a unique global maximum, around which it is concentrated,
then i = fip,4p. We generally assume p to be normally distributed, since the Normal
distribution is flexible and robust. Furthermore, in the presence of white noise, the
posterior distribution can be computed easily as it too will be Gaussian (as we see in
the subsequent section). However, whilst Bayesian methods are flexible and allow one
to implement sophisticated constraints, they are also computationally expensive.

1.3.11 Bayesian Method: Gaussian Case

For the Gaussian case we shall assume the following:
e 7 ~ N(0,%), which implies
_ Tz 2
p2(2) = [2m)"S) 2 exp(- =),

e 1~ N(0,A), which implies
_ _ A
Pulit) = [(2m)PIA[ /2 exp(— =),

e 1 and Z are independent random vectors, which in turn implies

E(niZ;) = 0.

Consequently, since py (y) = pez(y — Kp), using Bayes formula we know the joint
probability of (u,Y) is
Puy (1y) = py (Yli)pu(i) = pez(y — Ki)pu(i)

25— 1( RN ( — TCT S1a -
= (22 exp(~ B W Ry g 12 e A

= (2P| A] 7 exp(— 5 B(7i ),

where ®(j1,y) = € ?X "y — Kpi) - (y — Ki) + A1 a - f.
Subsequently, from the above equations, we know the marginal distribution of Y will
be normally distributed as well, with E(Y) = 0 and

Var(Y) = KVar(p) KT 4 Var(eZ) + 2Cov(Kp,eZ) = KAKT + 2% + 2e KCov(p, Z)
= KAKT 4+ €%,
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Let V := KAKT + 2%, Then Y ~ N(0,V), with

py () = [2m) V]~ V2 exp(~ 2L Y),

and hence

p I Z1IA]
V]

pupy (ily) = PY D) o0

Pr () 72 exp(— 5 [ (71, ) ~ Vg 4],

This not only implies that ©|Y is normally distributed, but that i = fip;4p. Whilst
the latter statement is not proved in this project, it is in [Bertero and Boccacci, 2020].
Furthermore,

finrap = mlsllXpu\Y(mY) = mﬂin@(ﬂ, g9) = rnﬂin 672271@ —Kp)-(y— Kpi) + A fi

Hence if ¥ = ¢%I and A = 0, then [y ap = jir, from Section 1.3.8, which is a Least
Squares problem. Additionally, if ¥ = 2] and A = A2I, then we obtain a Tikhonov
Regularisation problem, i.e.

fiarar = min||y - Kfil)* + N2,

where A = A\/o and || - || is the standard Euclidean norm.

Thus we see that statistical methods can be equivalent to the classical deterministic
methods under certain conditions. Subsequently, the rest of this project will consist of
reviewing and adapting the results presented in [Knapik et al., 2011]. However before
doing so it would be wise to review Gaussian processes in Hilbert spaces, Appendix A.1,
along with SVD in infinite dimensions, Section 1.4.3.

1.4 Infinite Dimensional Setting

This section will require that the reader be familiar with several aspects of Operator
theory and Hilbert Spaces. For a brief review of the following concepts please peruse
Appendix A.1. Subsequently, consider the problem of estimating p given the infinite
dimensional model (3).

Note, in this section, given an element x in some Hilbert space, x; will refer its
eigenvalue, and no longer correspond to any vector notation.

1.4.1 Classical (Deterministic) Approaches

Since inner products, and their induced norms, are well defined on Hilbert Spaces, the
arguments used in Sections 1.3.2 and 1.3.4 still hold in the infinite dimensional setting.
Consequently, the Least Squares problem is

in ||y — K
;gglz\l il a5
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where || - || g, is the norm induced by H;’s inner product, (-,-)p,, for i =1,2.
The existence of a solution is guaranteed if Y € R(K)@ R(K)*. Furthermore, if
(KTK)~! exists, then the solution can be explicitly written as
i, = (KTK)KTY,

where K7 is the adjoint of K.
Similarly the Tikhnov estimator is

1y = a in L ,
fix = arg min A(w)
where

La(p) = |IY = Kplfzg, + X[|pll,

and A > 0 is some tuning parameter.
By considering the differential of Ly(u) in h € Hy, and noting its strict convexity for
any A > 0,
jn= (KTK + XI)'K1Y.

Consequently, just as in the finite setting, we can decompose model (3) using SVD.

1.4.2 Generalisation of Stochastic Noise in Infinite Space

Before discussing Singular Value Decomposition, it would be wise to consider how one

defines stochastic noise in a Hilbert Space. Observe, that Z cannot be realised as a

random element in Hy. It is interpreted as a process instead, i.e. Z = {Z; := (Z,h)q, :

h € Hs}. Subsequently, Z;, can now be viewed as a random element, as required.
Formally, Z : Hy — L*(Q, S, P) is a bounded linear operator, where (2, S, P) is some

probability space and L?(-) is the space of all square integrable measurable functions.
Thus, for all elements g1, go € Ho, we can define the mean

EZg, =E(Z,9i)n, = (m, gi)m,, for i=1,2,
for some m € Hs, hereafter referred to as the mean function. Likewise, the covariance
Cov(Zy,, Zy;) = (Mgi, 9j) Hy» for i, j = 1,2,

for some bounded linear operator A : Ho — Ho, hereafter referred to as the covariance
operator. Consequently, we can now define a white noise Gaussian process in Hs.

Definition 1.5. We define Z to be a Gaussian white noise process in Ho, denoted as
Z ~ N(0,1), if the mean function m = 0, the covariance operator A = I, and Zy, is
normally distributed.

Note, if Z is Gaussian white noise (i.e. Z ~ N(0,I)) then
EZQi = <07gi>H2 =0, and (COU(ZQN Zgj) = <gi’gj>H2 = Zgz‘ ~ N(Ov ||gl||2)

Additionally, the following definition will be important when considering Heteroge-
neous Stochastic Noise (Section 3).
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Definition 1.6. For any bounded linear operator A : Hy — Hy, we define AZ by
<AZ7 h‘>H2 = <Z7 ATh>H27

for all h in Hs.

1.4.3 Generalisation of Singular Value Decomposition in Infinite Space
Consider the following theorem from [Alquier et al., 2011] (Theorem 1.1):

Theorem. Let A : H — H be a self-adjoint, compact linear bounded operator. Then
there exists a complete orthonormal set F:= {¢; : j € I} of H consisting of eigenfunc-
tions of A, with corresponding eigenvalues a;. Here I is some index set and Ap; = a;¢p;
forjel. The set J:={je€l:a;#0} is countable and

Ah =" aj(h, ¢;);,
jel
for all h € H. Moreover, for any § > 0 the set Js :={j € I : |aj| > 6} is finite.

Assume the operator K is compact, then KT K : Hy — H; is strictly positive and
self-adjoint. Thus, applying the above theorem implies KT K possesses countably many
positive eigenvalues (also called singular values) {k2}°, that are non-increasing and
converge to 0. Additionally, KT K¢; = k2¢; for i € N, with {¢;}3°, being a complete
orthonormal basis of Hj.

Subsequently, for {¢;}°, € H;, we can define its (normalised) image under K by
{pj}2, € Ha, where

pj =k ' Ko;.

Note, that {¢;}7°, will be orthonormal as well, since
(@i i) = ki "k (K i, Koy) = ki 'k (KT K ¢i, ¢5) = kiky i, ) = ki k165,

where ¢; ; is the Kronecker delta function.
Therefore, since

KTp; =k 'K"K¢; = k; 'K 05 = k;jo;,

we have that
Koj = kjp;, and KT p; = kjp;.

Consequently, we obtain the following definition:

Definition 1.7. We state A admits a Singular Value Decomposition (SVD) if, for all
heH,

AT Ah = Za L) bi,
where a; are the eigenvalues of A, and {¢j}f§1 is an orthonormal basis of H.
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Thus, assuming K is compact, the SVD of K is
o0
K'Kh=7 k(h,¢;)é;,
i=1

for any h € H;.
Furthermore, using {¢;}°; and {¢;}2,, any p € H; can be expressed in the form

o
= Z i i,
=1

where p; := (u, ¢i) i, and its image in the form
oo 0.0]
Kp= ZMK@ = Z kiipi.
i=1 i=1
Additionally, assuming Z is a stochastic process Z; € Ho,
Yi = (Y, 0i) i, = (K, i), +(€Z,0i) 1, = kipti + €Z;,

where Z; .= (Z, i) 1,
Consequently,

(o)
Y =) Y
=1

Thus, analogous to the finite dimensional setting, we obtain the following Sequence space
model

Y=Ku+eZ < Y; =kjpu; +¢Z;, forall ¢ >1.

1.4.4 1ll-Posedness and SVD Estimators

Subsequently, just as in the finite dimensional setting, we can use the SVD of K to
describe the ill-posedness of the model (4).
Recall, we can construct the naive SVD estimator

oo
R Z Y
,usvd = é¢’b
=1

However, since k; | 0, the errors (Z;) in Y; will eventually explode. Consequently the
problem is ill-posed, and this ill-posedness is defined by the rate at which k; | 0. Infor-
mally, this gives us a notion akin to ill-conditionedness even in an infinite dimensional
setting.

Definition 1.8. If there exists ¢ > 0 such that the k; = O(i~%) then q is the degree of
ill-posedness.
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o If0 < q <1, then the problem is mildly ill-posed.
e Ifq > 1, then the problem is moderately ill-posed.
o Ifk; = O(e™™), then the problem is severely ill-posed.

Remark 1.3. [Wahba, 1977] was one of the first to discuss this method for measuring
ill-posedness. As stated in [Cavalier, 2008], there exist other ways of defining the degree
of ill-posedness, such as using the noise structure, the smoothness assumptions on p or
the smoothing properties of K. For instance, [Mathé and Pereverzev, 2001] discusses
ill-posedness in a Hilbert Scales setting.

Thus, once again just as in the finite dimensional setting, we see that the SVD of K
is susceptible to noise, hence the need to employ regularisation methods. Fortunately,
as we saw with f[i,,4, the estimators constructed in Section 1.3.6 will hold in the infinite
dimensional setting as well.

Specifically, the TSVD estimator is

N
R Z Y,
,utsvd - ?Z¢Z7
i=1 "

with truncation parameter N.
Additionally, the Selective SVD (SSVD) is

. Y
)uss'ud == Z kTZQSZ
Y;[>6

Furthermore, just as in the finite dimensional setting, the Tikhonov problem is similar
to the SSVD as well. Using the SVD of K,

=

<ﬂ)\7¢i>H1 = <(KTK+ AQI)ilKTYa ¢1>H1 = Ti?)

where the filtering factor,

Ti

kT, if k2 > A2,
RPN K22, i 2 < A%

1.4.5 Statistical Approaches

Whilst the Bayesian Approach for the infinite dimensional setting will be discussed in
Sections 2 and 3, in this section we will restrict our attention to the Maximum Likelihood
(ML) method for Gaussian white noise. However, Section 5 considers a setting similar
to that in Section 1.3.9, (Poisson noise); specifically, the noise is signal dependent i.e. it
depends on u.
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Note, once again, we will follow the outline depicted in the finite dimensional setting,
c.f. Sections 1.3.7 and 1.3.8. Hence, recall for some stochastic process Z with known
probability measure,
P = mELLXL(ﬂ)a

where L(f1) is the Likelihood Function.
Let Z be Gaussian white noise, as defined in Section 1.4.2. Then,

Y|~ N(Kp,eI).
Consequently,
s 1
200 =TT (2m e exp(— et = ki)

Thus, using Parseval’s Identity,

1 1
L(jt) = — exp(—=€2||Y — Kji||?
() o) exp(—g e || £l |7z,

where ¢(y) € (0,00) is the normalising constant. Therefore,

fiarr = m;}XL(ﬂ) = mﬁin Y — Kﬂ’”%{g

Note, its equivalence to the Least Squares problem, just as in the finite dimensional
setting, c.f. Section 1.3.8.
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2 Bayesian Inverse Problems with Homogeneous Variance

Remark 2.1. In this section, we review the paper: Bayesian Inverse Problems with
Gaussian Priors (2011) by Knapik et al. Therefore, all of the results stated are from
said paper, i.e. [Knapik et al., 2011].

The objective of the paper, [Knapik et al., 2011], was to estimate a parameter p from
an observation Y given Model (3), i.e.

Y =Ku+eZ,

where € is the noise level, u € H;y a separable Hilbert Space, and a known, injective,
continuous, linear operator K maps p into another separable Hilbert space, H2. Note
that Kp is perturbed by scaled Gaussian white noise Z, (c.f. Definition 1.5), and we
shall set

€= T

[Brown and Low, 1996] states that, by letting n — oo, the model above (i.e. trying to
recover i completely) is asymptotically equivalent to a non-parametric inverse regression
model (i.e. estimating p pointwise via some experiment).

Now the Bayesian approach consists of computing the posterior distribution for p by
putting a prior on the parameter. In this paper, Gaussian priors are used, since they are
conjugate to the model, and hence result in the posterior being Gaussian as well, and
therefore easily derived.

Note that this paper is reviewed partially as we are only interested in whether and
at what rate the posterior distributions contract to the true parameter pg as € — 0, or
equivalently as n — oo.

In summary, under the prior g ~ N(0,A), with Gaussian white noise Z ~ N(0,1),
the posterior u|Y is derived in Proposition 2.1, ( [Knapik et al., 2011]’s Proposition
3.1). Subsequently, by explicitly categorising the behaviour of the singular values of
K, A and pg in Assumption 2.1, the contraction rates are derived in Theorem 2.1,
([Knapik et al., 2011]’s Theorem 4.1).

2.1 Formal description of the problem with Homogeneous Variance

For this subsection, we will require the reader to be familiar with Gaussian processes
and Functional Analysis for Hilbert Spaces. Feel free to peruse Sections 1.4.2 and 1.4.3,
and Appendix A.2 for more details. Subsequently, let (-,-)pm, and || - ||z, refer to the
inner product and induced norm of H;, respectively.

Observe, the stochastic noise Z from Model (3) cannot be realised as a random
element in Hy. Therefore, it is interpreted as a process instead, i.e. Z = {Z :=
(Z,h)m, : h € Hy}. Consequently, Z;, can now be viewed as a random element.

Thus, for all elements g1, g2 € Ho, we can define the mean

EZg, = E(Z, g;)r, = (M, gi) 1y, for i =1,2,
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for some m € Hs, hereafter referred to as the mean function. Likewise, the covariance
Cov(Zy,, Zy;) = (MNgi, 9j) iy, for iy j = 1,2,

for some bounded linear operator A : Hy — Hs, hereafter referred to as the covariance
operator.

Consequently, we define Z to be a Gaussian white noise process in Hj, if the mean
function m = 0, the covariance operator A = I, and Z; is normally distributed. We
denote said process as

Z ~ N(0,1).

Note, Z has Homogeneous variance, (also referred to as constant variance).
Observe,

EZgi = <Oagi>H2 =0, and COU(Zin Zgj) = <gi’gj>H2 = Zgi ~ N(O> ||gl||2)

Additionally, if given an orthonormal basis for Ha, {¢;}52,, the EZ,, = 0, and the
Cov(Zy,, Zy,) = (pi» 0j) Hy = 0ij, Where §; ; is the Kronecker delta function. Therefore,

Z,, ~ N(0,1).

Subsequently, Model (3) can be interpreted as a Gaussian process as well, where
Y = {Yh = <Y, h>H2 the HQ}, with

1
EYgz = E(<K,u +eZ, 9i>H2) = E(<K:uagi>H2 + %Zgi) = <K:uagi>H2v

and covariance
1

1
Cov(Yy,,Yy,) = Covl({ K+ —=Z, gi) i, (K pu + T

NG

1
= ECOU(ng Zg;)

Z’gj>H2)

1
= 5<g¢,gj>H2-

Thus,
1
Y|pw~ N(Ku, HI)'

Having described the statistical properties of the model, let us look at how one can
use the SVD decomposition method to recover p, (c.f. Section 1.4.4).

Recall that if the operator K is compact, then the self-adjoint operator K7 K : Hy
H, possesses countably many positive eigenvalues k? and K TK¢; = k2@, for i € N, where
the {¢;}:°, are the orthonormal basis of H;. Additionally, by constructing a sequence
{pi}32, such that K¢; = k;p; we form an orthonormal basis for the range of K in Hs.
This also implies that KK ¢; = kf(pz

Note, from here on out we shall assume there exists an orthonormal basis of eigen-
functions for KT K, rather than K being compact.
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Consequently, any p € H; and its image (under K) can be expressed in the forms
w= Z i Pis
i
and

)

Kp=>Y wKei = (uiki)pi.
Subsequently, since Z(¢;) ~ N(0,1), the

E(Y (1)) = (Kp, iy, = O (niki) @i pi) by = piki,

K3
and the covariance function is
1 1
Cou(Y(i), Y(9))) = (@i, —¢jm = i
Hence, we see that Y (y;) are independent with N (u;k;, %) distributions, and our
original problem of recovering p is now equivalent to recovering {z;}5°;.
Thus, we consider the Sequence space model instead,

Y; = kijp; + €Z;, for all ¢ > 1,

where Y; :=Y,,, and Z; := Z,,.

If k; — 0, (this will definitely be the case if K is compact), the problem is ill-posed,
and this ill-posedness is defined by the rate at which k; | 0, (see Definition 1.8). In this
paper, it was assumed that the problem was mildly ill-posed, i.e. for some q > 0,

ki =i 9

Note that the larger the value of ¢, the harder the estimation of u, since the decay
is faster. Please see Section 1.4.4 and Definition 1.8 for further details regarding ill-
posedness.

The Minimax rates (c.f. Definition 1.4) are defined over the Sobolev space of order

B, i.e.
o0
§% = {u e Hy : |Jullgs < oo}, where [[ul[§s = Y p7 i,
i=1

Remark 2.2. For those unfamiliar with such a Sobolev space the above is akin to the
following Hilbert space, which is based on another form of decomposition i.e. the Fourier
Decomposition,
o0
WH(T) = {pe L*(T): Y  (L+n*+n*+...0*)|i(n)]* < oo},
n=-—00

where [i is the Fourier series of u. Further details regarding such spaces can be found in
[Evans, 1998].

Observe, the purpose of both these spaces is to ensure that the singular values of
u decay sufficiently rapidly. Subsequently, the Bayesian method (c.f. Section 1.3.10) is
used to find the posterior distribution of p given Y.
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2.2 Prior and Posterior Distributions

Assume the prior for pis N (0, A), and that the noise Z is independent of p. Subsequently,
via congjugacy, the joint distribution of (Y, u) is Gaussian, as is the posterior distribution
of p|Y i.e. the conditional distribution of y given Y.

Remark 2.3. The proof for the equivalence of posterior to the prior w.r.t. abso-
lute continuity has been omitted due to it being highly technical, but can be found in
[Knapik et al., 2011].

Note, from here on out we shall assume K7 K and A have the same eigenfunctions,

Le. {¢i}2).

Proposition 2.1 (Homogeneous: Posterior). If u is N(0,A) distributed and 'Y given u
is N(Kp,n~tI) distributed, then I1,(-|Y), the conditional distribution of p given Y, is
N(AY,S,) on Hy where,

S, =A—An"'+ KAKT)AT,
and A : Hy — Hy is the continuous linear operator
A=A T+ AVPKRTRAY2)TIANZKT = AKT (07 T+ KAKT) L

The posterior distribution is proper (i.e. S, has finite trace) and is equivalent to the
prior (in the sense of absolute continuity).
Note this proposition was proved by Knapik et al, [Knapik et al., 2011].

The proof for this proposition has been split into several parts and can be found
in Appendix B.1. Therefore, we see that even though the distribution of Y|u was im-
proper, the posterior distribution is proper. Furthermore, note that the mean of p|Y is
random whilst its covariance operator S,, is deterministic. Subsequently, having found
the posterior distribution we can construct estimators (c.f. Section 1.3.10) and derive
contraction rates, which we compare to the minimax rates.

2.3  Minimax Rates

Assume there exists an underlying true parameter pg. Consequently via regularisation
methods, such as generalised Tikhonov, one can show that the minimax rate of estima-
tion, (see Definition 1.4), over the unit ball of this space, w.r.t || — uol|m, is

et 1=~ B/(1+20+2q)
where p is an estimator of . The proof for said optimal rate can be found in [Cavalier et al., 2002]

and [Cavalier, 2008]. Consequently, our goal is to determine the rate at which u contracts
to po with probability 1.
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2.4 Contraction Rates for the Posterior

Before we can discuss the contraction rates for p, (c.f. Definition 1.3), we need to make
some assumptions.

Assumption 2.1. The operators KT K and A have the same eigenfunctions {pi}24,
with eigenvalues {k?}5°, and {\;}32,, satisfying

No=72i71720 and CNTI <k < CiTY,

n

for some a > 0,q > 0,C > 1 and 7, > 0 such that nt2 — co. Additionally, the true
parameter g € S8 for some > 0.

Remark 2.4. Observe, that \;, or more specifically t,, will be a function of the noise
level € = n=Y/2. Furthermore, there do exist methods for estimating € in the event that
it is unknown, see for instance [Coeurjolly et al., 2014].

We briefly highlight the purpose of « in the above assumption. Recall, we assume
uw~ N(0,A), and we require p to belong to some Sobolev space (S”), with probability
1, a priori. Therefore, via Markov’s Inequality, this is equivalent to us showing

oo oo o
E() i) <oo = > N =) 72T < oo = a >,
=1

%
i=1 i=1

where the Expectation can be brought inside the sum due to A being a trace class
operator. Hence a would characterise, a priori, the regularity of our estimator, u.
Similarly, 8 would characterise the regularity of g, i.e. the true parameter. In addition,
assuming n72 — oo ensures the rates described in Theorem 2.1 converge to 0. Note that
T, allows us to fine-tune the rate obtained when we choose «, thereby ensuring that we
achieve the optimal rate.

Note that convergence to pg w.r.t a random variable p means that the probability of
our i generating outcomes that are close to ug approach 1 as n — oo. Informally, our
goal is to show that our estimator p converges to the true function pg and that it does
so at a particular rate ¢,, with probability 1.

This is equivalent to us showing that for any rate greater than e, i.e. M,e, where
M,, — oo, our estimator diverges, or more specifically, u converges to pg via this new
rate with probability 0. Note that Markov’s Inequality tells us,

E(||pe — poll3r,)
Mzer
where I, (-|Y) is the posterior probability distribution of u|Y".
Consequently, we can find €, and show divergence for any M,, by using the above
inequality, or more specifically, calculating the expected distance between p and g (i.e.
E(|| — poll%;, ) and then choosing &7 to be bigger than said expectation. Therefore, re-

E _ 2
gardless of the M,, chosen, the %jﬁlﬁ)

in proving (8) for data, Y, that was generated using po hence we take the E,, of (8).

o({p € Hy : |lp— pollfy, = Mzer|Y}) < (8)

— 0. Lastly, note that we are only interested

32



Subsequently, given Assumption 2.1, we arrive at the theorem below, (as stated in
[Knapik et al., 2011]), which shows that II,,(-|Y) contracts at a rate of &, as n — oco; a
rate that depends on all four parameters of the inverse problem, i.e. «, 3,7, and q. Note
however, that ¢ and (§ are fixed, and thus one only has control over o and 7,,.

Theorem 2.1 (Homogeneous: Contraction). Given Assumption 2.1, the E, 1L, ({p :
[l — pollm, = Mpen|Y'}) — 0, as n — oo, for every M, — oo where

En = (n,,-r%)—ﬁ/(1+2a+2q)/\l + Tn(nTg)—a/(1+2a+2q)_

The rate is uniform over pg in balls in S°. In particular,
1. If 7, = 1, then e, = n~(Fra)/(1+20+2q)
2. If B< 1+ 2a+2q, then e, = n P/(+26+20) for 1 = pla=P)/(1+26+29)
8. If B> 1+ 2a+ 2q, then g, > n~P/0+28429)  for every scaling ,.
Note this theorem was proved by Knapik et al, [Knapik et al., 2011].

The proof for this theorem can be found in Appendix B.2. Recall that the minimax
rate over a Sobolev ball, S, is ¢ = n~P/(1+26+29)  Consequently, if the scaling 7,
is fixed, then by the theorem above, the optimal rate can only be achieved if a = £.
Additionally, the forementioned theorem implies that, if 8 < 1+ 2« + 2¢q, the optimal
rate can still be achieved as long as 7 is scaled appropriately. However if 5 > 1+ 2a+ 2¢
then regardless of the scaling used the optimal rate can never achieved. This is also the
case if the scaling is fixed and o # f.

In conclusion, note that the discrepancies between the regularity of x4 and po (i.e. «
and () affect the contraction rates. Thus, we should ensure that p is at least as smooth
as po if we wish to achieve the optimal rate of contraction. Subsequently, let us now
obtain the minimax and contraction rates for the Heterogeneous case.
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3 Bayesian Inverse Problems with Heterogeneous Variance

In this section, our objective will be to estimate a parameter p from an observation Y
given the Model: .
Y =Ku+eZz, (9)

where 1 € Hy, a separable Hilbert Space and a known, injective, continuous, linear
operator K maps g into another separable Hilbert space, Ho. In addition, we shall set
the noise level

Bl

Most importantly, we define
Z=WZ~N©OWWT),
where Z is the Gaussian white noise process in Ha, (see Definition 1.5), i.e.
Z ~ N(0,1),

and W : Hy — Hs is a continuous linear operator. Note Z now has Heterogeneous
variance, unlike in Section 2.

In summary, under the prior p ~ N(0,A), with Gaussian Heterogeneous noise Z ~
N (0, WWT), the posterior u|Y is derived in Proposition 3.1. Subsequently, by explicitly
categorising the behaviour of the singular values of K, A, W and pg in Assumption
3.1, the minimax and contraction rates are derived in Proposition 3.2 and Theorem 3.2,
respectively. Furthermore, contraction rates are also derived in Theorem 3.1 under a far
more general setting, (Assumption 3.2), where the behaviour of the singular values of K,
A, W aren’t restricted. In addition, we derive contraction rates for the case where there
is noise in the covariance operator V := WW7, and conclude the section by numerically
illustrating the problem of recovering a function from noisy observations.

3.1 Formal description of the problem

The format of this subsection will follow that of Section 2.1. Thus, we will require
the reader to be familiar with Gaussian processes and Functional Analysis for Hilbert
Spaces. Feel free to peruse Sections 1.4.2 and 1.4.3, and Appendix A.2 for more details.
Regardless, let (-,-)p, and || - ||g, refer to the inner product and induced norm of Hj,
respectively.

Observe, the stochastic noise Z cannot be realised as a random element in Ho.
Therefore, it is interpreted as a process instead, i.e. Z = {Z), := (Z,h)y, : h € Ha}.
Consequently, Zp, can now be viewed as a random element.

Therefore, Model (3) can be interpreted as a Gaussian process as well, where ¥ =
{Yh = <Y, h>H2 che HQ}, with

- 1 -
EYy, = E(Ku+€eZ,9)n,) = E(Ku, gi)u, + %Zgi) = (Ku, gi)i,,
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and covariance

Thus,
1
Y|p~ N(Kp, EV),

where V := WWT. Note V, just like the identity element of Hy in the Homogeneous
variance setting, does not have to be of trace class.

Having described the statistical properties of the model, let us look at how one can
use the SVD decomposition method to recover p, (c.f. Section 1.4.4).

Recall that if the operator K is compact, then the self-adjoint operator K7 K : H; —
H; possesses countably many positive eigenvalues kf and KTK¢; = kZQ ¢; for ¢ € N, where
the {¢;}?2, are the orthonormal basis of H;. Additionally, by constructing a sequence
{pi}2, such that K¢; = k;p; we form an orthonormal basis for the range of K in Hs.
This also implies that KK ¢; = kZ¢p;.

Before continuing, we shall assume there exists an orthonormal basis of eigenfunc-
tions, (denoted by {¢;}32,), for KT K, rather than K being compact. Furthermore, we
shall also assume that there exists an orthonormal set of eigenfunctions for WW7 and
that they are the same as KK’s eigenfunctions, i.e. {p;}%;.

Therefore,

Vi = WWTe = o,

Hence, denote

Zi = {Z,0i) iy, Wi =, di)ar,, and Y := (Y, 0;) .

Subsequently, any p € Hy and its image (under K) can be expressed in the forms
p=> pidi,
i

and

Kp= ZMiK¢i = Z(kiﬂi)@i-

Additionally, we can show
EZ; = B(Z, i)m, = (0, i) m, = 0,

and
Cov(Zi, Z;) = (Vei, o)y, = (WW i, 0)) 1, = 070i 5,

where §; ; is the Kronecker delta function. Thus,

Z; ~ N(0,07).
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Consequently, the

B(Y (i) = (Kp, oiym, = (Y (Kigti)pir i)ty = Fipui,

(2

and the covariance function is

1 1 1
Cov(Y (94), Y (05)) = (ﬁV‘Pia‘PﬂHz — <HWWT901‘7903'>H2 = ;0?5133'-

Hence, we see that
1

1/;‘ ~ N(Mlk’u 70_2)7
n

)

and our original problem of recovering u is now equivalent to recovering its singular
values {£;}32;.
Thus, we consider the Sequence space model instead,

Y; = ki + eZ;, for all i > 1.

If k; — 0, (this will definitely be the case if K is compact), the problem is ill-posed,
and this ill-posedness is defined by the rate at which k; | 0, (see Definition 1.8).

Just as in Section 2, we assume that our problem is mildly ill-posed, i.e. for some
q =0,

k; < 4.

Note that the larger the value of ¢, the harder the estimation of u, since the decay
is faster. Please see Section 1.4.4 and Definition 1.8 for further details regarding ill-
posedness.

The Minimax rates (c.f. Definition 1.4) are defined over the Sobolev space of order

B, i.e.
o0
% = {ue Hy: |ul% < oo}, where ||ulls = 3 i,
i=1
Consequently, we obtain the following posterior distribution.

3.2  Prior and Posterior Distributions

Proposition 3.1 (Heterogeneous: Posterior). If i is N(0,A) distributed andY given
i8 ]\I(K;},nAV) distributed, then I1,(:|Y"), the conditional distribution of p given'Y', is
N(AY,S,) on Hy where,

Sp=A— AN~V 4+ KAKT)AT,
and A : Hy — Hj is the continuous linear operator
A=AV 4 AVPKTRAY?)TINZKT = AKT(n7'V + KAKT) 7Y,

1.2 ~
)‘Z]_;:i < 00. The posterior distribution is proper (i.e. S, has finite trace).

assuming ;=
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We shall proceed just as we did in the homogeneous case i.e. by splitting the proof
into several segments. We will begin by deriving the joint probability distribution, and
then the posterior distribution. Subsequently, for the latter, we will simplify A, and
show S, is proper. Note that we haven’t proved the equivalence between the prior and
posterior distribution (w.r.t. their absolute continuity) as it is rather technical and is
not required in our inferences.

Thus, let us begin by deriving the joint probability distribution. Whilst computing
the joint distribution was not necessary for my proof, those wishing to apply the proof
described in [Knapik et al., 2011] will find the following useful.

Joint Distribution: Assuming Y|y ~ N(Kp,n V) and p ~ N(0,A) we wish to show
their joint probability is

0 n‘lv—l—KAKT KA 0 n_laf—i—kf)\i ki
e ), (VN ) Ly (0), (7 0,

Recall that if the normal random variables X1, X2 have the joint density

1 1 (= m)® | (w2 — p2)? (z1 — 1) (@2 — p2)
[z, 22) = ex + )
( ) 2no1094/1 — p? p(2(1 - ,02)[ o? o3 P 0109 )

2

— Xl,XQ ~ N( (Ml) , ( 01 P012U2> )
w2 pPo201 05

Hence, since Yj|u; ~ N(kipi,n~to?) and p; ~ N(0,);), we know

%
2,2

T 115
[y? + k22— 2yikip; + T

D,

T (Wis i) = f(yilpi) f (1) o< exp(;?[yi — kipis) )exp(ﬁui) = exp(@
—(nXik? + 02) [ y? N w; 5 k;i)\}/Z Yilki
2072 k2N +n~lo? N (Nik? +n102)1/2 (\ik2 + n710§)1/2)\il/2

— exp(

\1/2
which gives us our desired result. Note that p := ()\1152-%;\—1152)1/2 and 1 — p? = (n\;k? +
2

02)71o? as required. O
Consequently, we derive the posterior distribution in the sequence space setting.
2
Posterior distribution: Singular Value form: Since Y; ~ N (k;ui, %) and p ~ N(0,A),
(which implies p; := (i, i), ~ N(0,\;)), we can find the posterior distribution of ;|Y;
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i.e.

-n
Fpalys) o f(yila) £ (1) o exp( Ly = kipu]*) exp(53- 1)
o (—”[2+k22 Qi ke +Ui2ﬂz2])
= exXpP(——=|vys ‘s — ik L
p 202 Yi i g Yiri A
—(n)\,-kz + 02) 2 yzkm)\z
— i 3 2 _9 ;
exp( 202\; i nAik? + o? pal)
e — AR 7)o ki
= oxp( 202\ i nik? + 012] )
which implies
1Y ~ N( )- (10)

n\ik? + o2’ n\ik? + o?
Consequently, noting that (10) are exactly the singular values of AY and S, concludes

the proof. O
Next, we seek to simplify the form of A.

Simplifying A: Note that for any compact linear operator B : H; — Hoy the following
identity holds:
(I+BB")"'B=B(I+B"B)™" (11)

Thus defining D = n~'V, we see that
D+ BB" =D+ D 'BB") = D'*(I + D"Y/?BB"D~'/?)D'/?,
The last equality following from D’s symmetry. Consequently, setting B := AY/2KT,

A=AY2(D+ BBT)"'B=AY2D"'2(1 + D~1/2BBTD~1/2)"1p-1/2R
— AYV2D=Y2(1 £ BBT)B,

where B = D™Y2B = pl/2y—12\12KT, Hence, we must prove Bis a compact linear

operator, in order to use the identity (11) and simplify A.
Note that B is a Hilbert-Schimidt operator if the tr(BBT) < oo, i.e. if

. 22
tr(BBT) = tr(nVV2AV2 KT KAV2y —1/2) = "Z )\lel =
N o,

Consequently, noting that Hilbert-Schmidt operators are compact operators concludes
the proof. Please see Appendix A.1 for more information regarding Hilbert-Schmidt
operators. 0

Finally, we show that S, is proper.
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S,, is proper: First note that A — S, is non-negative definite i.e. ((A — Sp)h,h)g, > 0
since

nA2k? nA2k?
(A= Sn)h =" b~ A - - >
Sn Z 2+ nk2)\ b5 = (A= 5n) Z o nsz 0,

where hj := (h,®j)m,. Hence S,, is bounded above by A and since A is of trace class so
is Sy,. O

Subsequently, we now derive the minimax rates for the Heterogeneous case.

3.3 Minimax Rates

Just as we did in the homogeneous case, we must make the following assumption in order
to find our contraction rates.

Assumption 3.1. The operators KT K and A have the same eigenfunctions {pi}2,
Similarly, KKT and V have the same eigenfunctions {pi}2, as well. Furthermore thezr
eigenvalues {k2}2,, {\i}2,, and {02}, satisfy

No=rrittT?e OrliTt <k <G and Cy Y < oy < Cad?,

for some a > 0,q > 0,7 € R,C1,Cy > 1 and 7, > 0 such that nt? — oco. Additionally,
the true parameter g € S8 for some 5> 0.

Note that there are now additional assumptions involving the decay of ¢; and the
eigenfunctions of V. Hence, one can show that the degree of ill-posedness for Model (9)
is now ¢ = (¢+7), (c.f. proof of Propostion 3.2). In addition, since ¢ is fixed, alternating
v (the rate at which o; decays) can lead to our problem becoming well-posed (¢ < 0).

Regardless, before discussing the contraction rates, we shall state the Minimax rates,
(see Definition 1.4), for Model (9) in the following proposition.

Proposition 3.2. The Minimax rates, €),, for the heterogeneous case are

B
n” TR | if y > _71”‘1,
i A ) 2, ify =~
n=1/2, if v < —ﬂ.
B ,
Note, n~ F25+2@+) is generally referred to as the non-parametric rate, and n=? as the

parametric rate.

Note two proofs have been listed. The first is based on [Cavalier et al., 2002], and is
rather elegant and intuitive. In addition, it naturally describes the degree of ill-posedness
of Model (9), denoted by G. However, it requires ¢ > 0, hence the inclusion of a more
rigorous second proof, which is based on [Belitser and Levit, 1994] and [Tsybakov, 2009].
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Proof. Recall, the sequence space model

Y; = kipi + €Zi,
can be rescaled by o; > 0 to obtain

f/z‘ = l;‘z'uz' + eZ;,

where v i
= k== and, Z~ N(0,1)

0 i

Vi —

and Z; ~ N(0,1).

The optimal rate of this scaled model is given in ([Cavalier et al., 2002], however in
order to derive it we must first evaluate its degree of ill-posedness, §.

We do so by investigating the singular values of K, i.e. ki = ki/o; < i~@t) | the
latter equality following from Assumption 3.1. Consequently ¢ = (¢++) and the optimal
contraction rate is 5

n  1+22+2¢ when ¢ > 0.

O]

Proof. In order to prove Proposition 3.2 we shall mainly use Theorem 3 from [Belitser and Levit, 1994],
and for v particularly small we shall use Theorems 2.1 and 2.2 from [Tsybakov, 2009].

Note the model studied in [Belitser and Levit, 1994] is defined using spectral values,
i.e.

Y; = 0; + €5;6, where &~ N(0,1), 6; > 0 and the small parameter € > 0. (12)

However, Model (12) is equivalent to the Heterogeneous Model (9) if

- . oi
Yi:=—, 60, =p;, e:=— and &;:= T = 49,
i

NG

where ¢ = (¢ + 7).
Furthermore, in [Belitser and Levit, 1994], it is assumed the true parameter 6y € ©,
where

0=0(Q)=1{0: Za?@z < Q,
=1

and {a;}°; is a non-negative sequence converging to infinity. However, we assume
o € SP, where 8 > 0 (see Assumption 3.1). Subsequently, defining

a; =i = © c SP.
Thus, having described the setting, our goal is to find the minimax risk,

ez =1 =1d(©) = inf sup Egy|[6 — ol 3,
0 6pocO

We can find this by using [Belitser and Levit, 1994]’s Theorem 3, which is as follows
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Theorem. Define c. to be the solution of the equation

€ ZO’ a;i(1—ca;)+ = cQ.
and N := N.(©) = max{i : a; < ¢ '}. If condition

Z a7 (1 — ceai)t
loge = =o(1), €—0, (13)

(&)

(; a;67 (1 — ccai)4)?

holds, then

N N
=) 67— (e Y _7a:)(1+0(1)), €—0.
=1 =1

In order to use this theorem, we must first find ¢, and N. Note

- _1
(l—ce(zl)+—(1—ceﬁ)+—0<:>>2>c6 = N=lc "] (14)
Consequently,
0o N N N
62 Z&?al(l o C€ai)+ — 62 212p+ﬁ(1 _ Cg'l‘ﬁ) — 62 Zi2p+ﬁ _ 0662 Zi2p+25'
i=1 i=1 i=1 i=1

Note, we could use the following equation (derived by bounding a sum by its integral)
to bound the above sums,

N

N11+1
D it = (140(1)) as N —oo, if k> —1. (15)
— k+1
However, this requires
1+
2q+5>—1:>q+’y>—Tﬁ (16)

which we will now assume unless stated otherwise, (we consider the case ¢ + v < —#

at the very end of the proof).
Consequently, one can show via (15) that

N 2G+6+1 N2G+28+1
2 ~2 2
Y 6%l - )y = [P (1 +0(1)).
€ . o-lal( Ceaz)“l‘ [ 2q /B 1 Ce€ 2@' 2/8 1]( 0( ))

Omitting the factor (14 o(1)) for now and using (14) implies

_2q+6+1 _2q+26+1
5 3

oo
2 ) 2 Ce 2 Ce 2 —F B
€ orai(l —ceaj)s =€ ——— —C€6"——— =€"Ccc 7 —,
Z il i)+ 25+ B+1 2§+ 268+ 1 16
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where ¢1 :=2¢G+ f+ 1 and ¢o := 2¢+ 26 + 1.

Consequently,
6226§a¢(1—c€a¢)+ =cQ — €%’ . =cQQ =
i=1
B 50 4o d N=e? = (P 5010 17
= €2 — — co .
o= (G ol) and N=c ' = (£ B Aro). ()

Furthermore, observe that N — oo as € — 0. We require the former expression to
hold in order to use (15). Thus, having found ¢, and N, we can use the above theorem
if we verify condition (13).

Observe however that

00 N
24 2 24
l; a;o; (1 — Ceai)+ Z a;o; NAG+28+1

= O(yagrzsee) =

IN

(i aic2(1 — cea;)4)? (g: a;iG?)?

Furthermore, note that eé — 0 as € — 0, since (16) = c2 > 0. Hence, we see that
condition (13) is indeed satisfied.

Therefore, we can now use the theorem to find the rates for the three different cases
in Proposition 3.2. Thus,

N

N
e < €2 g %0 — (e, E i24HF),
i=1

=1

Subsequently, in order to bound the above terms, we consider 3 cases.
Case 1: 2¢ > —1 = 2G+ 8 > —1. Hence, we can use (15) and (17) to show

N24+1 N2¢j+6+1 5 _2G+1 5 28 _9B8

_ — 6 7 Vo5 ) — c
2971 “2qiarl @i+ Do - OUe)) =0 =),
1

v

TEXGQ[

Ce

since we defined € := at the start of this proof. Note Proposition 3.2’s

en = Ve

since we are interested in Egq||0 — 6o, , rather than Eg,||0 —6o||7;,, (c.f. Theorem 3.2).
Case 2: 2¢ = -1 = 2q+ B > —1. Before, we proceed please note that, by
bounding a sum via its integral, we can obtain the following

N
Zz’fl =InN+Cc+0(1l), as N — oo, where C, is the Euler constant.
i=1

Consequently, since N — oo as € — 0, we can use the above and (17) to derive

NB

re < [In N — ce?] = O(EIN)=0n 'nn).
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Finally, setting €, = /rc concludes this case’s proof.
Case 3: 2¢ < —1. Using the following asymptotic expansion,

1
Ziﬂ;fl:,(1+o(1)) as N — oo, if k>0,
- K

and (15), we can show

1 c N2at6+1 24+1 23

g1 s a1 S OCR- () = ) =0~ (H)2) =0,

Te X €

as € — 0, since 2¢ < -1 = i—ﬁ > 1. Thus, € = O(e) = (’)(nfé).
2
Finally, we consider the case: g+v < —#. Note, the latter implies ¢+~v+1/2 < 0,
since 5 > 0.

We can find a lower bound for

EMOH/AL_NOH%IN

using Theorems 2.1 and 2.2 from [Tsybakov, 2009] with d(ug, 1) = ||u2 — ||z, and
© = SP(A). For that we need to find two elements sz, u1 in S%(A) such that d(ps, 1) >
By, for some B > 0 and KL(P,,, P,,) < a < oo where v, is the rate defined in the
proposition. Here P, is the probability distribution of Y generated by Model (9). Then,
for any estimator /i and g € SP(A),

9~ 1
B[t 211t = pol 3] 2 (B/2)* max <4exp<—a>, g

We take 1 = 0 and po = ), poie; such that po; = B, for i = ig > 1 and
p2,i = 0 otherwise. Such po belongs to SP(A) if >, 'QBugi = z’2’8(B¢ )2 < A2 e if
1o < (A/B)l/ﬂw_l/ﬁ Also, d(pg, 1) = /> ; 143 i = Bibp. Using spectral decomposition,
it is easy to compute the Kullback-Leibler distance:

1 kP
KL(PH&?P )_2[2 2 2 —1
i

€70,

[ckB (q+v)¢7216—2 — 1] .

l\.')\r—t

As ¢ +v+1/2 < 0, take 9, = € and iy such that ip < ¢ 2/(a+) B~2/@t7) then o =
0.5 kB 2i i Aaty) _ }, so that the rate is 1, = e.

For the upper bound, consider the estimator i = y;/k;I(i < i1) with 41 to be specified
later. Then,

~ -2
Epollit = pol3, = Bup Y Wi/ki — pr02)* + > gy <> ot /b2 +i7 7> %2 |
i<iy >0 1<i1 1>17]
<O AT 4042,

<11
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If g+~ +1/2 <0, then 3, ; 2™ < C, and
Epllit = polliy, < CE + i A% < O,

with i; = e V8.
O

Having found the optimal rates, we can now discuss the contraction rates achieved
by our posterior distribution.

3.4 Contraction Rates for the Posterior
3.4.1 Contraction Rates for General Setting

In order to derive the contraction rates, (c.f. Definition 1.3), in a general setting we
require only the following assumption.

Assumption 3.2. Operators KK and A have the same eigenfunctions {ei}, with
etgenvalues {kf} and \;, respectively. Similarly, Operators KK and V have the same
eigenfunctions {¢;}, with eigenvalues {k?} and o?, respectively. Additionally, the true
parameter jg € SP for some 8 > 0.

Note, that we make no assumptions regarding the behaviour of the eigenvalues,
in contrast with [Knapik et al., 2011] who assume the mildly ill-posed setting. Conse-
quently, we present a general result that can be applied for any \;, k; and o; satisfying
stated conditions.

Theorem 3.1. Given Assumption 3.2, and a monotonically increasing sequence U?/[Aik?],
the By I, ({p 2 || — pol| 7, = Mpen|Y'}) = 0, as n — oo, for every M, — oo where

1/2
B
= 220'2k‘ +z_25+2)\ +e max[ak;/\] ,

1<ie
1<te 1 >0

with ie = max{i : 620'2-2 < k?)\l} The rate is uniform over pg in balls in SP.
Proof. The main tool we are going to use is Markov inequality:
P(|li — pollm = Men | Y) < M™% E(||i — pollF, | Y)-

Note, if we show that E, E(||x — ,LL()H%H | Y) < Ce2 for some C > 0 independent of &,
then &, is the rate of contraction of the posterior distribution.
Under Assumption 3.2, using Parseval’s identity, we have that

E(|lw— pol* | Y) ZE — p0)* 1 Y] = [Var(ui | V) + B[l Y] = p04)°]-

7
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Taking the expected value with respect to the true distribution of ¥ and using the
explicit form of the posterior distribution (10), we have

2 Yiki\; 2 o2\
Epo[Var (pi | Y)] + Epo [(Elpal Y] — 10,4)°] = Eyg N gl Mo *“ii}ﬁ%f;fg?
__CokN s 4jﬁ;i_ T 2
 [Nik? + €20?2)2 N\ik? + €202 e 2\k? + o?

g o2\ . 252 2
= Ik 1 o2 %ZAW+@ ’
as the first term is less than the third one.

Recall that 02/[\;k?] is an increasing sequence. Denote ic = max{i : o2/[\;k?] <
¢~ 2}. Then,

)\
Sl‘z—afkmf“f?;“ LA

and

6201-2i_6 2

2
_ O' 1
= HNOH§564ZM%¢ [ KN } + [ ol % Z,"LOZ

1<ie >4
4 022_’3 2 23
< H/,l,o”sﬂ € max[k2>\ ] + Ci,

)

where ﬁg,i = ,ug,iim/H,uoH%ﬁ and ||pol3s = 2, ,ug,iim. The lower bound can be proved
by taking o such that fig; = 1 for one of the i < i, and fip; = 0 otherwise to get the
first term, and fig; = 0 for ¢ # 4. + 1 and fip; = 1 for @ = i + 1 to get the second term
(up to a constant).

Hence,

2:-812
lopy .
S5 = ||l 25 [e‘*max[ ] +i;%

K2\

Combining these results together, we obtain

2:—8 2
2 - 2§ : 27,—2 2 : ' 4 ol 23

i<ie i>ic

Hence, setting €, such that

2,872
_ g;1 -
6TLQEMOE(H:U’ M0||2|Y /\5 2§ :U 7 +§ :)\ +e rlnax[kQ)\ :| +Ze 2 :O(l)’
1<1ie 1>%e
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ensures that
EyoP({p: Iln— poll = MealV'}) < M5By Bl — ol P | ¥) =50, as e, = 0,

for every M — oo.
O

The first two terms of €, (in Theorem 3.1) represent variance and squared bias terms,
respectively, and the remaining terms involve prior parameters A; that can be chosen.

Note that this theorem easily generalises to the case of non-monotonic sequence
A\ik? /o2, with the range i > i, becoming I. = {i : 07 /[\k?] > €2}.

Remark 3.1. The posterior distribution can contract at parametric rate € if {O'Z-Q o1
is such that > 72, U?kﬁ < C < oo, under the appropriate choice of prior parameters
{A\i}2,. See Section 3.4.2 for details in the case of polynomially decaying o;.

3.4.2 Contraction Rates for Mildly Ill-posed Setting

Consequently, let us derive contractions rates, (c.f. Definition 1.3), for the mildly ill-
posed setting where k; < i79, (as done in [Knapik et al., 2011]). As observed in Section
3.3, the sequence space model for Model (9)

Y; = kipi + €Zi,
can be rescaled by o; > 0 to obtain
Y; = %i/ﬁi + €Z;,

where
Y/i:ﬁa ];7,:E anda ZZNN(Oﬁl)
ogs ogs
and Z; ~ N(0,1).

Thus the proof used to derive the contraction rates in [Knapik et al., 2011] will also
hold for Model (9) and therefore Theorem 3.2, albeit with a different degree of ill-
posedness ¢ = q + 7.

Note that the contraction rate depends on all five parameters of the inverse problem,
ie. a,fB,v,m and q. However ¢, 8 and ~ are fixed, and one only has control over o and

Tn-

Theorem 3.2 (Heterogeneous: Contraction). Given Assumption 3.1, the E, IL,({x :
[l — wollm, = Mpen|Y'}) — 0, as n — oo, for every M, — oo where

B
(nr2) " (FEare@ M 47 (nr2) TR | if > — 122

n 2
_ B
Ep = (nT,%) (Traat2@r AV 4 n_l/z[ln(nTﬁ)]l/Q, ify=— 1-52q.
(B .
(n72) (Traatagry D L2 lf_lJEQq —a<y< _1+22q'

The rate is uniform over pg in balls in SB. In particular,
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1. If r, =1,

(B o __ Bra
n~ Tz N 4 T TRty = O(n~ 22, if v > _%_

_ s
en = n~ (TFEerzE M) 4 n~12(Inn)/2, if v = ——122‘7.
_ s _ 8 1
n~ (Tt M +n /2= O(n (1+2“+2(Q+7)/\2)), if ——1';2‘1 —a<y< ——1';2‘1.

2. If B<14+2a+2(qg+) and

___a=B B
nTEERE) = g, = O(n T2 ),  if y > _%,

1+2a+2(g+7) 1
Tn X n 48 2 = gn:O(nié[lnn]%)7 Zf’y:_%
1+20+2(a+7) 28
n a3 — gn:(')(n_%), if—%_a<ﬁy<_%'
3. If B> 1420 +2(q+7) then
_— B
en >>n 22 for all T, if v > _%'
e = O Hlnnl}) for 7= O(n %), ify = 15,
1
en = O(™2) for cach 7, > Cn~d,  if —1420 Zo <y < 182

Proof. Just as done in [Knapik et al., 2011], (c.f. Appendix B.2), we must evaluate and
asymptotically bound the terms ||AK o — ug||%{1,n_1tr(flV/~1T) and tr(S,). This is
because, given the posterior distribution I, (-|Y"), Markov’s Inequality applied on the
first moment of y — po implies

1
L, ({p € Hy : ||t — po|[3, > M2e2|Y}) <

2
— — dIl Y).

However, since u|Y ~ N(AY,S,) and AY|u ~ N(AKu,n 'AVAT), we know (using
Proposition A.1)

/ 1 = poll7g, AL (u]Y) = Bl — polfzy, = [|AY — pol[7y, + t2(Sn) =

Hy
EpoBll1 = pollf, = [|AK po — pollzr, +n~ ' tr(AVAT) + tx(S,,).
Consequently, defining k := k; /0i,

o [AK o — poll3y, = |12, kitoiAgs — 32, ol |,

:”Zk .Mgﬁ_z i |2 :ZM:ZM%J
Ok T A PP T L G Sk IN)E T A (L k)

The penultimate equality following from Parseval’s Identity.
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o tr(AVAT) =tr(AKT(n='V + KAKT)2VKAT)

2\ ko? n? \2k?
- ki (————— 2 '2ki)\i — ARSI R 2 A
=L T 2 T P 2 (B

noting that V is symmetric.
o tr(S,) = tr(A — A(n~'V + KAKT)AT)
Aj 0 Aj
Z 02 + nk2)\ EJ: 1+ nl?:?-)\j.
Hence, given Assumption 3.1, we know the bounds on k; and U , thus

1+ nNCT205 2720 <14 n\k? <14 n\CPC3200) —
Ci(1 +nXii~20) <14 nX\k? < Cuy(1 4+ nhii ™) =
14+ nX\k? <1+ n\i— 2,

where § = ¢ + 7, C; = min(1,C;%C5?) and C, = max(1,C7C3). Consequently, via
Assumption 3.1 again,

i HAK:LLO - MOH%{l =

Z L = Z 13 — J[110] 2 Z 15,3/ 1110l %5
(1+ nk2\;)? (1 + nr2i—1-20-27)2 0llgs — (1 + nr2i-1-2020)2

ol 3 s < nolfes s 3t
S8 i (1 + nr2i—1-20-24)2 = S8 lillgr<1 5 +m-2@ T9am 242’

where [L(QM = Mai/HMOH%B .

o tr(AVAT) =
n2NE n2rdi—2—40-2

Zz‘: (1 + n)\z];.’L?)Q - 27,: (1 + n’T%’L 1720472(?)2 .

U)z
Il

o tr(S,
—1-2«a

Zl—l—?’LkQ v21_{_n7—2212a 24"

Finally using Lemma 8.1 from [Knapik et al., 2011], i.e. Lemma B.1, one obtains

~9 28

; — (== A2
sup 17 n72zﬁl—2a—2(j)2 — (an%) (120723 )’
l1allgp <177 n
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by setting r = 8,t = 0,u = 1 + 2 + 2G,v = 2 and N = nr2. Consequently ||AK g —

7ﬂ~/\2
piol B, = [0l 3 (nr) "o,
Similarly using Lemma 8.2 from [Knapik et al., 2011], i.e. Lemma B.2, along with
setting S(i) = 1,r = =1/2,t = 2+ 4da + 2q,u = 1+2a—|—2q,v =2and N = n7?, we

obtain

(nﬂ%)_ﬁgzigg, if v > — 1+2q.
Z e ) (n?)7? > i, ify = —#.
—~ (1 + nr2i—1-20-27)2 i<(n3)(/w
' (n72)~2, if v < — 120
Thus 5
72(n72)” TH2at2 if v > 1';2‘1
nttr(AVAT) < )Ty i iy = -
<(nr2)1/w
2(nt2)7 1, if v < — 1+2q

Furthermore setting S(i) = 1,r = —1/2,t = 14+ 2a,u = 1 + 20+ 2¢,v = 1 and
N = n72 in Lemma B.2, we obtain

_72@ .
L (nT2)” TF2at2q if v > ——1';2'1.
y —1l—zax L .
P —— ) i ify =
—~ 1+ nr2i—1-20—-24 i< (nr2)(1/w)
K3
(nt2)~1, if y < — 1120,

Note, in Lemmas B.1 and B.2 u > 0, hence from here on out we shall assume
C(I+2a+2q) 1429
2 B 2

This constraint can also be found in Theorem 3.1, where

2
9i _ _ —2;1420+2(q+7)
k2 |
is a monotonically increasing sequence if
142
1+2a+2(g+7) >0 = 7> -— 7

Subsequently, we can see that the

1 - 3 I -
Ma({p e = piolln, = MazlVE) < 5 (14K 0 — pollfy, + ™ ex(AVAT) + t2(S,)

n-n
(28 __2a
wrzz ol 2 (nr2) ™ TF2erm ") 4 972 (nr2)  acaa, if 7> — 55
28 A9 _ .
< { gl ()™ ™y 2minrly ™ ity = <
i<(n72) (/v
1+2q

(28 A9 _
(|10l |25 (n72) = (F2ar2i?) 4 272 (n72) 1], if y < —

2.2
Mnsn
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Hence, setting

(B o
(nT??L) (1+2a+2<(1+"/)/\1) + Tn(nTg) 1+2a+2(g+7) |

if y > — L 2q
—(=AN1 —
Ep 1= (nTTQL) (1+2"‘+2<‘1+7) ) +n 1/2(

—1y1/2 _ 1+2
S Thle if v = —=5-1.

i<(n72)(1/w)

(B
(nr?) (TFzar2@ M) +nl/2 ify < — 1+2‘1

ensures that the E, IL,({x : || — pol|a, = Muen|Y'}) — 0 for every M,, — oo
Note,

( T2 < ( 12 =
2 /

i<(nr2)1/

w2 (In(nr2)"?,

i<(nr2)(1/w)

thus we can further simplify ¢,.

Next, let us see how one obtains the rates stated in the theorem

Proof. e Setting 7, = 1,
a BAa
(e M) T W) = O(n” TR ), if 4 > — 142,
En =

(— B A1 .
n~ (et M + n_l/Q(ln n)l/?7 ify=— 1-;2q‘
B B -1
n~ Ttz ) 4 12 - O TR, g

a<y<— 1+2q
o If 3 <1+ 2+ 2G then &, can be minimised by setting

a—p

o p . —L.‘- 1+2q
ni+2A+2d — ¢, = O(n 1+2/3+2q)7 if v> = .
1+2a+2(g+7y) _ 1 1 1+2a+2(g+7y) 1
Th=9yn ? = g, =0 2[In(n" 2% )]2), lffy:_ﬂ.
1+2042§—28 1 .
n 4B = &, =0(n"2), 1f—1+T2q a<y<-— 1+2q.
Note for the case when v = —#,

— 2 71+2a+ﬁ2(q+7) _1/
en = (n77) +n

2u_1/2(1n(n7' N2,
This can be simplified by using the following order-preserving inequality,

a+bS a? + b2

; —. (18)

Consequently, ignoring constants,

en < [(n72) TR 40~ In(nr2)] V2, (19)

1+2042(g+1)
Subsequently, the minimum of the R.H.S. of (19) is attained when 7,, = O( 13

%)_

50



e If 3 >1+2a+2¢ and v > —%, then the minimiser of the positive, increasing
function e, (1) i.e.

1+a+2§ 1+2a+24
™= O(n” TRT) = g (r7) = O(n” Tie).

6 .
Hence, we see that for any scaling 7, €,(7,) >>n~ 1+#26+27 if and only if

1+ 20+ 2§ 3

= < ~ < = =
3+4a+6¢ 1+4+28+2G 24_1;24;%‘:2(1 2_|_1J%2

— 1+20+2¢<p,

which is indeed the case.

o If 3> 1+4+2a+2Gandy = qu , then using (18), we can show that the minimiser
of e(7) is

NI

P =0(n"1) = £,(r*) = O(n" 2 [In(n2)]2).
e If 5> 1420+ 2§ arlld —% —a << —1+—22q, then the decreasing e, (1) =
O(n=1?)if 1, > Cn71.
U

Observe that when v > — 1+2q , the rates obtained are similar to the homogeneous
case, albeit with a different degree of 1ll—posedness specifically ¢ = q 4+ . Furthermore,
when v = — 1+2q , the optimal parametric rate (n™ 2) can be achieved, up to a logarithmic
factor, (In n)l/ 2. Please see Proposition 3.2 for more details about the optimal rates.

When 7, = 1, i.e. when the scaling is fixed, if v > —%, then the optimal rate can
only be achieved if a = .

Note,

1+2 1+2

— —;q—a<7§— zq<:>0<1+2a+2(q+'y)§2a.
Therefore,
1+ 2¢ 1+2¢q 15} I5;
— —a<y<— = — < :
2 YT =TT7 20 S 1+2a+2(q+7)
Consequently, when —# —a<y< —@, we can achieve the optimal rates if o < g3,

since

a<f —= 1 < p
2 7 14+2a+2(q+7)
Thus, p has to be, at most, as smooth as pg in order to achieve said optimal rates.
When 8 < 1+ 2a + 2(q + ) we see that the optimal rates can be achieved if the
appropriate scaling is used. However, whilst @ > ( in order to achieve the optimal
non-parametric rate (for v > —%), in the case when —% —a<vy< —HTQ‘], the
optimal rate is achieved regardless of a’s relationship with 3.
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When 8 > 14+2a+2(q+7) and if v > —1+—22q, we see that the optimal rate can never
be achieved regardless of the scaling used, just like in the homogeneous case. Conversely,
if —# —a<vy< —# the optimal rate can be achieved if the appropriate scaling is
used.

Therefore, unlike in the homogeneous case, if the scaling is not fixed and if —% —
a<vy< —% then the optimal rates are achieved regardless of a’s relationship with
B. This agrees with our intuition, since the problem is well-posed i.e. ¢ < 0, when
_ 1429 < 142

51— <y < ——51L

3.5 Conclusion

To summarise, in the homogeneous case, we were able to obtain the contraction rates,
(see Theorem 2.1) given the following assumptions:

e 3{¢;}2°, an orthonormal basis of eigenfunctions for KT K.

e KTK and A have the same eigenfunctions {¢;}32,, with eigenvalues (k?) and (\;),
satisfying
No=712i71722 and CTLiTI <k < Ol

for some a > 0,q > 0,C > 1 and 7, > 0 such that n7? — oc.
e The true parameter pg € S° for some 3 > 0.

Furthermore, for the heterogeneous case, not only did we require the assumptions
above, but we needed additional ones regarding V, and its eigenvalues o2, in order to
obtain the contraction rates, (c.f. Theorem 3.2). These additional assumptions are as
follows:

e 3{p;}3°, an orthonormal basis of eigenfunctions for V := WW7.

e KKT and V have the same eigenfunctions {¢;}2;, with V’s eigenvalues (0?)
satisfying
1. . )\zkf
Cy i <oy < Coi”, and Z 5- < 00,

. i

for some Cy > 1.

Subsequently, in the heterogeneous case, we saw that the ill-posed inverse problem
became well-posed for particular values of v. What was surprising however, was our
achievement of the optimal rate even when 8 > 1+ 2o+ 2(q + ), unlike in the homoge-
neous variance setting, (see Theorem 2.1). Consequently, understanding why this occurs
could help us better understand the problem as a whole.

Another question we may ask ourselves (whilst still being in the mildly ill-posed
setting) is whether it is possible for our posterior rates to converge to the optimal rates
without fine-tuning our prior regularity parameter, i.e. «. This is indeed true in the
homogeneous case, as proved in [Ray, 2013]’s Proposition 3.2 and [Knapik et al., 2016]’s
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Theorem 2.5, where in some instances the rates achieved were n=1/2, up to a logarith-
mic factor. Subsequently, investigating whether optimal, adaptive priors exist for the
heterogeneous variance case would be one possible avenue worth investigating.
In the future, we would like to study inverse problems with Poisson noise, which
are more complex than their Gaussian counterparts; such problems can typically be
found in Tomography, such as Single Photon Emission Computed Tomography (SPECT)
[Bauschke et al., 1999], and Emission Computed Tomography (ECT) [Gourion and Noll, 2002].
Another issue worth studying in the future, is when the covariance operator V,
specifically o;, is observed with noise. The next section contains our first attempt at
doing so.

3.6 Noise in Covariance Operator V/

In this section we assume that the covariance operator V is unknown. Hence, we use a
plug in estimator, V', with singular values

62 =04, (20)

where 07 < %7, and § € (0, 1].

Recall, the contraction rate will be affected by €267 which, for large enough i, will
be dominated by the noise €219 Consequently, we seek to investigate the effect this
has on our contraction rates.

3.6.1 Contraction Rates for General Setting

Theorem 3.3. Given Assumption 3.2 and a monotonically increasing sequence 67 /[ \ik?],
the Euo Iy ({p : || — pol|l 5y = Mnen|Y'}) = 0, as n — oo, for every M, — oo where

1/2

2 2 28 i’ S 2a2 k2)\2

_ - 11 11

Yotk il 4> N te max[k2/\ ] +Z€202+ Siee|
1<ie >0 >0 ? i>1s

with ic = max{i : 202 < k?\;} and is = max{i : 02 > e=2%}. The rate is uniform over
o in balls in SP.

Proof. Under Assumption 3.1, using Parseval’s identity, we have that

E(|l — pol* | Y) ZE — p0.0)* Y] =Y [Var(ui | Y) + (ElplY] = p,)?].

7

Taking expected value with respect to the true distribution of the data and using the
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explicit form of the posterior distribution (10), we have

E Y 4+ K, [(B[u;|Y 2= Yikidi i 67N
ol Var (pi | Y)] + Epo (B[] Y] = p10,)7] = Epg N2 + 257 — poq| + m
G iy 262 7
\ik? + 26212 O | \ik? + €267
52N

+ i
€ 2\k? + 62
Note,
)\zkg + 626'2-2 — 7_73 i—l—?oc—Qp + 62[1.27 + 6—25] _ 7_2 2—1—204—219 + 62Z~2’y + 62(1—(5)7

and %7 is either constant or monotonic. Hence, denote i, = max{i : \;k? > €267} and
i5 = max{i : O'iz > 6_26}.

Consequently,
1= N 9 . 95x979 ~ Y 7915 -

R G T 2 P T 2

i<i5 5242 242

kS A; k2 Nz

- 24 17

<D k) S5 D Sy
1<ie z>7,6 7 i>15
252y .
o= 3 TS 2522 3 ),
T Ak +€%0; i<ic i>ic

As for the remaining term,

€ 0’2 €70, B 2
ZILLOZ [W} ||M0H56 Zﬂm [M]

<ol S [ ]+ ol S

1<% 1>

2
< lhalls | S [For| +i07|.

1<ie

where ,L_Lai = Maiiw/ﬂ,ﬂo”%@- The lower bound can be proved by taking o such that
fio; = 1 for i < iy and fip; = 0 for ¢ > iy to get the first term, and fig; = 0 for ¢ < i,
and fig; = 1 for i > i, to get the second term.

Hence,

2

-8 2
g, L
SQ/\H/,LOHS,Q [e4max[ k:2/\ ] +1625
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Combining these results together, we obtain

2 2 2 2 i SR KN L,Z)\Z
E(lp — poll” 1Y) = ZU k + i +Z)‘ t+e IZIE;‘X[ k2 } +Z 6;(7; +Z€2(11—15)‘

1<ie >0 >0 ? 1>

O]

Thus, we see that the effect of the plug in estimator on the contraction rate is
described by the last two terms.

Subsequently, we conclude this section by providing an example of an ill-posed inverse
problem with heterogeneous variance, using the Volterra operator.

3.7 Example using Simulated Data

We illustrate our results using simulated Y and the Volterra operator [Halmos, 1982].
We set Hy = Hy = L?[0,1] and use the eigenbasis

oi(x) = VB cos((i — 5)ma).

For practicality we shall truncate po(x), hence define

N
= Z 1o,iPi ()

where N is the truncation parameter. Furthermore, we shall set

pio.; == i>/%sin(d).

Note, we require pg € S?, which is indeed the case when 8 = 1, (this can be shown
using Dirichlet’s test, [Voxman and Goetschel Jr, 1981]). Furthermore, we consider the
Volterra operator, K : L2[0,1] — L?[0, 1], where

T 1
Kp(x) ::/O u(s)ds, and K7 pu(z) ::/ w(s)ds.

The eigenvalues of KK and the eigenbasis for the range of K are
. 1 2 9.1 . . 1 .
ki = (i — 5) 7272, and @;(z) == V2sin((i — 5)7rm) for every i €N,
where k; < 79 with ¢ = 1. Additionally, as discussed in Section 3, we define

. 2:-1-2a Y
Ni =710 , and o; := 277,

with 7. =1 and v = 1.
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Figure 1: Graphs of ul'(x), Yo(z) and Y (z), (i.e. the truncated true function, the
noiseless data set and a noisy data set, respectively), with e = 107% and N = 2000.

Figure 1 displays the (truncated) true function Y (z), along with the observed func-
tion Yp(z) := Kud' (r) and its noisy counterpart Y (z); the latter being simulated as
follows:

Yilpo,i ~ N(po,iki, €07).

Consequently, the posterior distribution will be

N

AN @)Y ~ NS

i

Yikihio(z) i 20?3 (x)
)\ikiz + 5201.27 )\Z-ki2 + 620'?

).

7

We can therefore obtain posterior pointwise credible bands for each x. Hence, by
altering € and «, we can dictate the degree of noise in our model, and the smoothness
of our estimator, respectively.

Each of the panels in Figure 2 correspond to an independent realization of Y (x), with
N = 2000. The blue, red and green curves are the true curve (u)) (z)), the posterior
mean and the posterior pointwise credible bands, respectively. The panels also show 500
realizations from the posterior distribution for various values of x. Note, the 6 panels
correspond to the following 6 values of o = (0.5,0.75,1,2,3,5).

There are several conclusions that can be drawn from the panels in Figure 2. For
large values of «a, i.e. a prior that is too smooth, not only do the confidence bands
fail to contain the true curve, they also collapse to an incorrect curve. The optimal
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Figure 2: Plots of pl’(z) (blue lines) along with the posterior mean (red line), 95%
pointwise credible intervals (green curves) and 500 draws from the posterior (dashes) for
a = (0.5,0.75,1,2,3,5), respectively, with ¢ = 1073/2 and N = 2000 in all cases.
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alpha appears to be 0.75, which is less than S (the smoothness of pg(x)). In addition,
the posterior mean estimates the true curve (u'(x)) poorly, even for small €, i.e. for
e = 1073/2. This is due to the very nature of ill-posed inverse problems, c.f. Figure 1
(note how different the graphs of Yy(x) and Y (x) are, even though e is small).

Recall that as e — 0, the posterior mean will converge to uo(z) if the prior parameters
satisfy conditions of Theorem 3.2, and the choice of the parameters affects the rate of
convergence. To that end, consider Figure 3, which is constructed in exactly the same
fashion as Figure 2, albeit with e = 107 instead. Nonetheless, just as in Figure 2, an
over-smooth prior is still inaccurate, even for a very small e. However, unlike in Figure 2,
the posterior mean has converged to the true function. Furthermore, the optimal alpha,
(a = 0.75), remains unchanged. In conclusion, our simulations show oversmooth priors
remain inaccurate, and their posterior means continue to converge to the truth slowly,
even as € — 0.

o8



o - o -
T - T -
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
™ — o -
o~ — ~ -

-1
1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 3: Plots of plY(z) (blue lines) along with the posterior mean (red line), 95%
pointwise credible intervals (green curves) and 500 draws from the posterior (dashes) for
a = (0.5,0.75,1,2,3,5), respectively, with ¢ = 107* and N = 2000 in all cases.
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4 Finite sample Bernstein - von Mises Theorems

Remark 4.1. In this section, we review the paper: Finite Sample Bernstein — von Mises
Theorem for Semiparametric Problems (2015), by Panov and Spokoiny. Therefore, all
of the results stated are from said paper, i.e. [Panov and Spokoiny, 2015]. However,
some of the notation will be changed in order to maintain consistency. Additionally, we
shall also return to using vector notation, hence given a vector z, x; will refer its it
component.

We begin this section by discussing our motivation for studying Bernstein - von Mises
Theorems. As mentioned in the conclusion of Section 3, we would like to study inverse
problems with Poisson noise; such problems can typically be found in Tomography, such
as Single Photon Emission Computed Tomography (SPECT), [Bauschke et al., 1999],
and Emission Computed Tomography (ECT), [Gourion and Noll, 2002].

As seen in Section 1.3.9, using a Gaussian approximation for Poisson noise results in
the variance of Y being dependent on p as well. Inverse problems such as this are said
to have Signal Dependent noise; the terminology arising from Signal Processing inverse
problems wherein which p refers to the signal one is interested in recovering.

Problems involving signal dependent noise are encountered in many fields, such as Bi-
ology [Delpretti et al., 2008], Medicine [Nichols et al., 2002] and Astronomy [Snyder et al., 1993].
In these applications, (as outlined in [Foi et al., 2008]), the noise will comprise of two
components: the Poisson component models the signal-dependent part of the error (gen-
erally due to the photon-counting process), and the Gaussian component models the
signal-independent part of the error (which can be caused by electric and thermal noise).

Generally, the techniques used to solve these models involve ignoring one of the error
components, or approximating the model in some way. For instance, in [Foi et al., 2008]
they use the fact that a Poisson Distribution, with parameter A\, can be approximated
by a Normal distribution, with mean and variance equal to A, just as we do in Section
1.3.9.

As stated in [Jezierska et al., 2012], these compromises are due to the inherent na-
ture of the model, i.e. the probability distribution for the proposed model is continuous-
discrete, and the log-likelihood involves an infinite sum. Consequently, (in [Jezierska et al., 2012]),
they frame the problem in an optimisation setting, where they argue their cost function
(the Poisson-Gaussian negative log-likelihood) is p-Lipschitz differentiable, hence it can
be expressed as a sum of simpler functions, which are easier to work with.

These difficulties therefore motivated our study of models where the variance of the
(Gaussian) noise, Z, depends on 1. However, in our setting i.e. for the Bayesian ap-
proach, assuming signal dependent Gaussian noise means that we lose conjugacy, and
hence are unable to derive a posterior distribution. Consequently, we use Bernstein-Von-
Mises type theorems from [Panov and Spokoiny, 2015] to obtain the posterior distribu-
tion; specifically we obtain non-asymptotic bounds for it that are Gaussian in nature.
Subsequently, we can use these bounds to derive our contraction rates.

The results in [Panov and Spokoiny, 2015] are for a finite dimensional parameter, are
non-asymptotic (w.r.t. the dimension of the parameter of interest) and are stated for
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the direct problem. Hence, we initially consider the finite dimensional, direct problem,
Y; =mi+eZ;, for i <p,

where € is the noise level, and Y;,n;, Z; are components of the vectors Y,n,Z € RP,
respectively. Furthermore, the Z; are independent, zero mean Normal random variables,
whose variance is dependent on 7, (the latter will be touched upon further in Section 5).
In addition, we will assume there exists some underlying true parameter 7y € R?; our
goal being to recover said parameter.

Subsequently, we are able to derive corresponding results for the indirect problem by
setting

ni = ki,
and thus recover py € RP, by setting o ; = 10,/ k;.

Note that these results are non-asymptotic w.r.t. p. Therefore, by letting p — oo we
can in fact recover infinite dimensional versions of 79 and ug, which we shall denote as
ng° and pg°, respectively.

Hence, analogous to Sections 2 and 3, we shall assume 7° € S and u$° € S#, where
the Sobolev space,

o0
S% = {h: ||h]|g < oo}, where ||h|[F. =) h? i**.
i=1

Consequently, we shall set
7783 =no,; and /‘8?@' = po,;, for <p,

where the left hand side of each equation corresponds to a singular value, and the right
hand side to a vector component. Thus, using the results from [Panov and Spokoiny, 2015]
we will be able to recover the first p singular values of 75° and pg°. Furthermore, we will
be able to study the effect increasing p has on our results.

In summary, we discuss the assumptions stated in [Panov and Spokoiny, 2015]’s Sec-
tion 2.1, and subsequently review Theorem 9 (Local Approximation), and Theorem 10
(Concentration). Consequently, we highlight how the previously mentioned theorems
are used to derive the BvM results under a Uniform prior (Theorem 1), and a Gaussian
prior (Theorem 2).

4.1 Formal description of the problem

The results of [Panov and Spokoiny, 2015] rely primarily on [Panov and Spokoiny, 2015)’s
Theorem 9. Specifically, let  be the parameter of interest, and assume it lives in the
parameter space T C RP, (with 79 denoting the true underlying parameter).

Remark 4.2. The semi-parametric framework is used in [Panov and Spokoiny, 2015];
it is assumed one is interested in recovering only a subset, 0 of n, with the target of
estimation Oy := Ilgng, for some mapping Iy : T — R%, where a < p. We however are
interested in recovering the entire 1, hence we will set Ily to be the identity map, with

a=p.
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We suspect there exists a neighbourhood around 79 where 7 concentrates, i.e. To(rp).
Furthermore, inside T (ro) we suspect n behaves almost like a normal random variable.
Hence, we partition Y, i.e.

n=nl{n € To(ro)} +nl{n € T\Yo(ro)} = v, + 1rs-

Thus, the goal is to show that the posterior distribution of 7yg is negligible and that
the posterior distribution of 7y, is nearly normal.
Both of these results are dependent on the so called Ezcess,

L(n,no) :== L(n) — L(no),

where L(n) corresponds to the log-likelihood function.

Theorems 10 and 11 (from [Panov and Spokoiny, 2015]) address 7y, while Theorems
12 and 13 address 7y,, however all of these theorems rely on the excess being bounded.
This is proved in [Panov and Spokoiny, 2015]’s Theorem 9, which states

e one can use a quadratic process L(n, n9) instead of L(n,ng) for n € Yo(rop),
e and, L(n,no) is bounded by a quadratic deterministic term outside of Yo(rp).

Note that both of these bounds are quadratic, (and rely on Dy which is defined in Section
4.2); see Remarks 4.3 and 4.4 for how this leads to Normality.

Remark 4.3. Approzimating L(n,no): Local Normality: For n € Yo(rg) we will use

|[Do(n = m0)|I>
L(n,m0) = & Do(n—mo) = 5
which is proportional to a Normal density. We can make this exact by considering,
_ L =
m(&) = 5 + log(det D) — plog(v27).

Subsequently, by noting ||z||*> = 2"z,

_|1Do(n — [0 + Dy "&DII?
2

m(&) + L(n,no) = + log(det Dy) — plog(v2m),
corresponds to the log-density of the normal law with mean n° = 170+D61£ and covariance
matric DO_Q.

Remark 4.4. Approximating L(n,no): Global Normality: Note, for n & To(ro), we will
use the fact that
bl Do(n —mo)|I?

L(777770) < 2 )

where
|| Do (1 = no)l?
2
corresponds to the log-density of the normal law with mean ny and covariance matrix
(bDo)fQ.

+ log(det[b'/2Dyg]) — plog(v/2m),
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Note, L(n,no) is a random process, due to the data Y. Hence, its approximation
(via L(n,no)) holds only on a random set €, (x). Specifically, Theorem 9 states that on
To(ro),

P(IL(n,m0) — L(n,m0)| < A(ro,x)) > 1 —e™7,
where A(rg, z) denotes an upper bound for the approximation error. In addition, it also
provides a deterministic upper bound for L(n, 7o) outside of Yo(r9) as well.

Consequently, all we need to do now is to prove the concentration properties of 7y¢
(on ©,(x)). Theorem 10 (and 11) from [Panov and Spokoiny, 2015] address this matter.

Specifically, Theorem 10 discusses the concentration properties of the posterior for the
full parameter space T, while Theorem 11 does the same but for the targeted parameter
space Op (we are however not interested in the latter). In Theorem 10, this concentration
property is described by the random quantity

fT\TO(TO) exp{L(n, no) }dn
Jryingy xXPLL(n,m0) }dny

p(ro) = (21)

Observe, it can be shown that,
P(n & Yo(ro)[Y) < p*(ro),
For instance, let

C:/Texp{L(n,no)}dn,

and assume it is finite. Then, by using C' as a normalisation constant, we can treat
exp{L(n,mo)} as a density function hence,

O Frvrg o) P{E o)} E(1({n & To(ro)}))
CT Jry ey UL m0) Yy E(I({n € Yo(ro)}))

_ P({n & Yo(ro)})
P({n € Yo(ro)})
>P({n & Yo(ro)})-

Furthermore, Theorems 12 and 13 provide local (Gaussian) upper and lower bounds
for the Posterior Expectation, respectively. These in turn can be used to derive approx-
imate posterior distributions for when the prior is Uniform (Theorem 1) and Gaussian
(Theorem 2); the latter being the theorem we are most interested in.

Hence, in order to use Theorem 2, we must verify the conditions for Theorems 9 to
13, which are listed in the next section.

p*(ro) =

4.2 Assumptions

The conditions in [Panov and Spokoiny, 2015] consist of local and global assumptions on
L(n). The global conditions have to be fulfilled on the whole of T := RP for some p > 0.
Conversely, the local conditions have to hold for n € Yo(rg) with some fixed value r:

To(ro) :=={n € Y : |[Do(n —no)l| < ro}, (22)
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where

Dj = —V?EL(1), (23)
and
no = arg max EL(n). (24)
neY

The stochastic component of L(n) is defined as,

¢(n) = L(n) — EL(n), (25)
the log-likelihood ratio as,
L(n,m0) = L(n) — L(no), (26)
the hessian of the expected log-likelihood as,

D (n) = —=V*EL(n), (27)

and the score as,
¢ =Dy VL(m). (28)

Hence, the local conditions are as follows:
(ED3): (Local Exponential Condition) There exists a constant vy > 0, a constant

w > 0 and for each r > 0 a constant X(r) > 0 such that for all n € To(r):
i V() Vg

log E exp{ = 1<
sup logEexp{— < ,
P1,P2ERP w HD0¢1H ||D0¢2H 2

|| < W(r). (29)

The above condition describes the exponential moment of the gradient V((-) inside the
local neighbourhoods of g, i.e. To(r).

Remark 4.5. Assumption (ED3) is used in [Panov and Spokoiny, 2015]’s Theorem 9,
and it only needs to hold for r < ry for some rqg > 0. See Section 4.3.1 for more details.

(Lo): (Smoothness of Expected Log-Likelihood) There exists a constant d(r) such
that it holds on Yo(r) for all » < rg

|Dg ' D§(n) Dyt — Ly < 6(r). (30)

The above condition is needed to ensure the second order smoothness of the expected
log-likelihood EL(n) inside Yo(ro). Specifically, it ensures that —EL(n,n9) can be ap-
proximated by a quadratic function of 1 — 7 in the neighbourhood of 7.

(I): (Identifiability) There exists a constant a > 0 such that

a’Dj > %2 (31)

The above condition relates the matrices DZ and ¥3.

In fact, it is shown in [Spokoiny, 2012] that (Lg) will correspond to the Kullback-
Leibler divergence between IP,, and I,,,. Hence, conditions (Lg) and (I) follow from the
usual regularity conditions on the family {P,}, [Ibragimov and Has'minskii, 1981].
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Similarly, the global conditions are:
(EDy) : (Global Exponential Condition) There exists a constant vy > 0, a positive
symmetric matrix %2 satisfying Var(V{(no)) < ¥3 and a constant X > 0 such that

V¢ (no)
sup log E exp{s
e ]

The above condition describes the exponential moment of the gradient V{(-) at np.
(Ly): (Global Identification Condition) For any r there exists a value b(r) > 0 such
that rb(r) — oo, r — 0o and

2.2
vy

2 )

} <

|| <N

—EL(n,m0) > r*b(r), forall n with 7= |[Do(n —mno)||- (32)

The above condition ensures that the deterministic component of the log likelihood
EL(n,no) is competitive with its variance Var(L(n,n))-

Remark 4.6. In our setting, Assumption (L) strictly speaking, does not hold, as rb(r)
does not go to infinity. However, as shown at the end of Section 5.8.9, this will not
matter and the BuM result will still hold.

Subsequently, let us briefly discuss how the above assumptions are connected to the
quadratic process LL(n,n9) on Yo(r). Typically, L(n) is decomposed into its deterministic
and stochastic components:

L(n) = EL(n) + ¢(n).

Assumption (Lg) allows us to approximate the smooth deterministic function EL(n)—
EL(n9) around a neighbourhood of 19 by the quadratic term —||Dq(n — 10)||?/2-
Similarly, Assumptions (EDy) and (ED3) allow us to linearly approximate ((n) —

¢(no) = (n—m0)" V¢ (o).
Thus, on Yo(r),

L(n,no) = L(n,no) = (n —no)" V¢(no) — | Do(n — no)[|*/2.

However, the error from this approximation (on Yo(r)) grows quadratically with r
and starts to dominate at some critical value of r. This can be circumvented by either
shrinking or stretching ||Do(n — 10)||?/2 as required. This shrinking/stretching factor
will be dependent on the constants defined in (Lg), (EDy), (ED2) and (I).

Lastly, we need to show the process L(n,n9) concentrates around Y(r), in order for
its approximation by L(n,n9) to be valid. Assumption (L,) (along with Assumptions
(EDy) and (ED3)) ensure that the concentration probability P(ny & Yo(rp)) is indeed
small enough, for some critical value rq.

4.3 Approximation Theorems
4.3.1 Local Approximation Theorem

Theorem ([Panov and Spokoiny, 2015]’s Theorem 9). Suppose the Assumptions (EDy),
(ED>), (Lg) and (I) from Section 4.2 hold for some ro > 0. Then on a random set Q. ()
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xT

of dominating probability at least 1 — e~

|L(n,m0) —L(n,n0)| < A(ro,z), n€ Yo(ro),
where
A(rg, ) = (8(ro) + 6rpzm(z)w)rg,
2u(z) = 2p"% + V2 + RTH R 2z + 1)4p,
Yo(ro) == {n:|[Do(n —no)ll <ro}.

Moreover the random vector £ = D(;lVL(no) fulfills on a random set Qp(x) of dominat-
ing probability at least 1 — 2e™*

1€1* < 25 (),
where 2%(x) = pp + 6Apz, with
B:=Dy'$2D; !, pp:=tr(B), A := Amaz(B).
Furthermore, assume (L,) with b(r) = b yielding

~EL(1,10) = b]|Do(1 — 10)|I?,

for each n € Y\Yo(ro). Let also

2
r> g{zB(x) + 6vpzm(x + log(2r/ro))w}, T > 10.

Then,
b
L(n,mo) < *§|\D0(7I —m0)||*, € T\ Yo(ro),

holds on a random set Q(x) of dominating probability at least 1 — 4e™".

The spread value, A(rg,x), controls the quality of the local approximation, with
§(ro)ré measuring the the error of the quadratic approximation due to Assumption (Lg)
and 6vpzg(x)wrd controlling the stochastic term ((n). Additionally, the constraints on
p are due to zg(x); specifically its connection to the entropy of the parameter space.
Consequently, we will need A(rg,z) to be small in order for our approximation to be
valid.

4.3.2 Concentration Theorem

Theorem 4.1 ([Panov and Spokoiny, 2015]’s Theorem 10). Suppose the conditions of
[Panov and Spokoiny, 2015]’s Theorem 9 hold. Then it holds on ., (x)

p*(ro) < exp{2A(ro, ) + v(ro) }o "2 P(| 2] = brf), (33)

with
v(ro) := —log P(||Z + &[] < rolY).
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If ro > zp(x) + z(p, z), then on Q(x),
v(rg) < 2e %,

where 22(p, x) = p + [\/6.65 V (6.62).

This theorem states conditions on 7 for the posterior to concentrate on Yo(rg). Fur-
thermore, we can use [Panov and Spokoiny, 2015]’s Lemma 7 to simplify said conditions
and obtain:

Corollary 4.1. Assume the conditions of the above Theorem. Then the additional
inequality brd > 22(p,z + Llog §) ensures on a random set Q(x) of probability at least
1—4e ",

p*(ro) < exp(2A(rg, x) + 2% — x).

4.3.3 BvM under Uniform Prior

Subsequently, using [Panov and Spokoiny, 2015]’s Theorems 9 and 10, (along with Corol-
laries 3 and 5), the BvM results for the posterior probability are derived, under a non-
informative (a.k.a Uniform) prior.

Theorem 4.2 ([Panov and Spokoiny, 2015]’s Theorem 1). Suppose the conditions of
Section 4.2 hold. Let the prior be uniform on Y. Then there exists a random set Q(x)
of dominating probability at least 1 — 4e™* such that

[1Do(7 = n")[* < 4A(r, ) + 167,
||I, — Do®?Dy|| < 4A(ro,z) + 1677,
where
7:=E@Y), &%:=Cov(nY), n°=mn+Dg'¢.
Moreover, on (x) for any measurable set A C RP
exp(—2A(rg,x) —8e *)P(Z2 € A) —e™®
< P(Do(n —11°) € A]Y)
< exp(2A(rg, x) + 5e” *)(P(Z € A)),
where Z is a standard Gaussian vector in RP .

This theorem states the BvM result for the posterior under a Uniform prior. The
random point n° can be viewed as a first order approximation of the MLE 1. Hence,
the BvM result claims that 7 is close to 1°, &2 is nearly equal to Dy 2 and Dy(n —n°)
is nearly standard normal conditional on Y.
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4.3.4 BvM under Gaussian Prior

The BvM results obtained under the Uniform prior can also be extended to the Gaussian
prior, II. Intuitively, this is because any smooth prior can be locally approximated by a
Gaussian one.

Assumption 4.1. Let the prior measure II = N(0,G~2) on RP satisfy the following
conditions:

|Dy ' G*Dy || < 6 < 1/2,
tr(Dy'G*Dyt)? < 67,

|D& G| < 65,
where DzG = D(Q) + G2,

Note, the uniform prior can be viewed as a limiting case of a normal prior as G — 0.
Hence, given Theorem 4.2, we can ask ourselves how small should G be to ensure the
BvM result? The answer is given by [Panov and Spokoiny, 2015)’s Lemma 8, which
requires d¢, 0, and d5 to be small. Consequently, we obtain the following theorem:

Theorem 4.3 ([Panov and Spokoiny, 2015]’s Theorem 2). Suppose the conditions in
Section 4.2 and Assumption 4.1 holds. Then it holds on a random set Q(zx) of dominating
probability at least 1 — be™™

P(Do(n — 6°) € A|Y) exp(—2A(rg,x) — 8¢ M)[P(Z € A) — o] —e™ 7,
P(Do(n —6°) € A|Y) < exp(2A(ro,z) + 5e %) [P(Z € A) + o] + 7%,

v

where )
0:= 5[(1 +66)(305 + dzp(x))® + 0712,
Subsequently, we can see that the error in our BvM result is controlled by A(rg, x)

and g, with the latter dictating how well IT approximates the uniform prior from Theorem
4.2. Thus, we need to ensure both terms are o(1) in order for the BvM result to hold.
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5 Bernstein - von Mises Theorem and Contraction Rates for Direct and
Indirect Inverse problems with Signal-Dependent Noise

Remark 5.1. We would strongly recommend perusing Section 4 before continuing. Ad-
ditionally, in this section we will use vector notation, hence given a vector x, x; will
refer its ith component.

As discussed in Section 4, we begin by considering the finite dimensional, direct
problem,

Y; =n; +€Z;, for i<p, (34)

where € is the noise level, and Y;,7;, Z; are components of the vectors Y, n, Z € RP, re-
spectively. The Z; are independent, zero mean Normal random variables, whose variance
is dependent on 7, (the latter will be touched upon further in Section 5.1). In addition,
we set

€= —.
Vn
Furthermore, we will also assume there exists some underlying true parameter 7y € R?;
our goal being to recover 7.
Note, we will be able to derive results for the indirect problem by setting

ni = ki,

and thus recover 119 € RP, by setting puo; := 10,i/ki.

Nevertheless, in the Bayesian setting we lose conjugacy, and hence are unable to
derive a posterior distribution. Therefore, we use Bernstein-Von-Mises type theorems
from [Panov and Spokoiny, 2015] to obtain the posterior distribution; specifically we
obtain non-asymptotic bounds for it that are Gaussian in nature. Subsequently, we can
use these bounds to derive our contraction rates.

Note that their results are non-asymptotic w.r.t. p. Therefore, by letting p — oo we
can in fact recover infinite dimensional versions of 7y and g, which we shall denote as
ng° and pg°, respectively.

Hence, analogous to Sections 2 and 3, we shall assume 7° € SP and u$° € S#, where
the Sobolev space,

S% = {h: ||h]|g < oo}, where ||h|[Fa =Y h7 i**.
=1

Consequently, we set
7783‘ =1)o,; and /‘8?@' = po4, for i <p,

where the left hand side of each equation corresponds to a singular value, and the right
hand side to a vector component. Thus, using the results from [Panov and Spokoiny, 2015]
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we will be able to recover the first p singular values of 75° and pg°. Furthermore, we will
be able to study the effect increasing p has on our results.

In summary, Theorems 5.1 and 5.2 provide Bernstein-von Mises results for the pos-
terior distribution for the direct problem, which is defined in Section 5.1. Subsequently,
Theorem 5.3 states the BvM results for the posterior distribution for the indirect prob-
lem, which is defined in Section 5.3. Note, these aforementioned theorems rely on a
concentration result, which is proved in Theorem 5.4. Consequently, the contraction
rates for the direct and indirect problems are derived in Theorems 5.6 and 5.7, respec-
tively.

5.1 Formal description of the Direct problem

Assume Model (34), with n5° € S%. In this section, we set

Zi ~ N(0,g%(m)),

where g(n;) : R — R.
Consequently,

Y; ~ N(ni, €9°(ns))- (35)

In addition, let T and 79 denote the parameter space and the true parameter, re-
spectively. We define
;= argmax EL(n),
0 gmaxEL(y)

where L(n) represents the log-likelihood.
Subsequently, we assume a Normal prior on 7;, i.e.

ni ~ N (0, \;),

where \; = 72i~(112%) and nr2 — oo, with a, > 0.

Hence, our aim is to derive the posterior distribution of n|Y’, which in turn will help
us estimate {no;}7_;, i.e. the first p singular values of n§° € SP:. However, because the
variance is signal-dependent, (see (35)), there is no longer conjugacy. Therefore, we ap-
proximate the posterior distribution using the results from [Panov and Spokoiny, 2015].
Note, this will require us to study the behaviour of L(n) around nyg.

Thus, define a local neighbourhood around 79 as follows:

To(ro) :={n €Y :|[Do(n —mo)ll <ro},

where
D§ = =V*EL(np).

Consequently, having implemented the framework from [Panov and Spokoiny, 2015],
(please see Section 4 for more details), we can now derive Bernstein-von Mises results
for the direct case.
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5.2 Bernstein-Von Mises Results: Direct Problem

Before we can state the results however, we need the following assumptions regarding
g%(+) to hold. The first corresponds to its global properties, while the second addresses
its local behaviour on a compact set. Note, the latter effectively implies ¢?(-) and its
derivatives will always be bounded, but the nature of these bounds will change (i.e.
whether they are dependent on r and n).

Assumption 5.1 (Global). g(z) is positive, continuous and injective. Additionally,
g(x) will be uniformly bounded from below by ¢, and |¢'(x)| will be uniformly bounded
from above by C, where ¢ and C are positive constants, which are independent of r, €
and p.

Remark 5.2. Note, the constants ¢ and C are required to prove Proposition 5.7, and
Theorem 5.4.

Assumption 5.2 (Local). For a given g(-) and any r < 2 miny<;<,(Dp);;, where D3 :=
~V2EL(ng), the following exist for 1 <i < p:

max  |g(ni)| =m0, min  [g(mi)| =m0,
Ns:(Mi—0,:)2<r2(Dg “)is 03:(ni—n0,5)2<r2(Dg “)ii
max ) \g’(m)l =My 1, min ) !9/(777;)| =My,
Ni:(ni—n0,:)2<r2(Dg “)ii N3:(ni—n0,:)2<r2(Dg “)ii
max - 19" ()] == M 2,5 min , 19" ()| := M 2,04,
ni:(1i—10,:)2<r2(Dg “)i ni:(ni—n0,:)2<r2(Dy )i
max lg" ()| == My 3.0,

73:(ni—n0,1)2<r2(Dg )i i

Note, all these terms are separated away from 0 and oo by constants, which are indepen-
dent of r, € and p.

Note, in the classical Bernstein-von Mises Theorem, the posterior distribution is
centered around the MLE. However, the posterior distribution given below is centered
at 0 = ny + Dy 2VL(?]O), which can be viewed as the first order approximation to the
MLE.

Theorem 5.1 (General Bounded Case). Let g2(n;) satisfy Assumptions 5.1 and 5.2.
Under the setting described in Sections 5.1 and 5.2: on a random set Q(x) with probability
at least 1 — 6e™, for x < p, n € To(ro), and r3 < o(n), we have

exp(—2A(rg,z) — 8¢ )[P(Z € A) —p] — e ®
< P(Do(n—n") € AJY)
< exp(2A(rg,x) + 5e” F)[P(Z € A) + o]l + e %,
as long as A(rg,z) < 1/2, where Z is a standard Gaussian vector in RP,
A(rg, z) < (p'? + 2213, and

22 (nr2)2p2(iH200) {(T{4p2+4[°‘5_551 +p+ ),

, if 24 4a.—283. >0,
o = n p (T;4p—2(1+201c) +p+ q;)7

if 2+ 4ae—28. < 0.
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Whilst for n & Yo(ro) we have with probability at least 1 — 3e™", on a random set
Q(z), for x large enough and 13 > Cp,

2
P({n & YTo(ro)|Y}) < Cexp < — %0 + /3zp + g

+1
2

logp + (p — 2) logrg + A(ro, z) + 26_5”)

Remark 5.3. Specifically, in the general case, R =< nl/?, zm(x) < P2 4212y <1,
5(ro) < o(1), w = n"Y2, zp(z) < p"/? + 212 and z(p,x) < [p + x|"/2. Furthermore, the
condition, x < p, is used to simplify results and isn’t actually necessary.

Remark 5.4. As stated in Remark 4.6, in our setting rb(r) /4 oo. Hence we can’t use
the results obtained when Assumption (L, ) holds. Consequently, we derive our own upper
bound on the tail posterior probability in Theorem 5.4, and we show that n° converges
weakly to no, for large n, in Proposition 5.1, (c.f. Z; and its moments).

Corollary 5.1. Given Assumption 5.2, the results derived in Theorem 5.1 are unaffected
by the nature of g>(-), for n large enough.

When g¢%(n;) is linear, we must consider a Truncated Normal prior on 7; to ensure
g%(n;) remains non-negative. Furthermore, the Gaussian approximation will hold if the
elements of T (rg) are separated away from zero, (c.f. Section 5.8.4). Thus the following
additional assumption.

Assumption 5.3. We assume
ni ~ TN(0, \;),

with support equal to [0, 00), A; = T,%z'*(“r?“c) and nt2 — oo, where a, > 0. Additionally,

)

min 79,; > cg > max .
1Zigp 10 1<i<p (Do)

Consequently, we derive BvM results for the case considered in [Foi et al., 2008], i.e.
when the variance of Z; has an affine formulation based on 7;,

g*(n;) = am; +b.

Theorem 5.2 (Linear Case). Let n; satisfy Assumption 5.3 and g°(n;) = an; +b, (where
a,b > 0), satisfy Assumptions 5.1 and 5.2. Under the setting described in Sections 5.1
and 5.2: on a random set Q(x), with probability at least 1 —6e~", for x < p, n € To(ro),
and r3 < o(n), we have

exp(—2A(rg,x) —8e “)P(Z€ A) —p] —€e "
< P(Do(n —n°) € A]Y)
< exp(2A(ro,z) +5e *)[P(Z € A)+ o] +e7 7,
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as long as A(ro,z) < 1/2, where Z is a standard Gaussian vector in RP,
A(ro,z) = (p'2 + 2228, and

0% = (n72)~2pR(1+2ac) (rytp?Hilee=Bl 4 p+a), if 2440 — 28 >0,
" (rp tp 20200 pp ), if 24+ 4a— 26, <0,

Whilst for n & Yo(ro) we have with probability at least 1 — 3e™", on a random set
Q(x), for x large enough and r3 > Cb,

2
({0 # To(ro)lV) < Coxp (— 2 + /3y + §
p+1

2

logp + (p — 2) logrg + A(ro, z) + 26_5”)

Remark 5.5. Specifically, in the linear case, ¥ < n'/2, zg(zx) < p'/2 + 21/2, 1y < 1,
5(ro) < o(1), w=xn"Y2, zp(z) < [p+ x]"/2, and z(p,z) < [p + x|"/2. Furthermore, the
condition, T X< p, is used to simplify results and isn’t actually necessary.

Corollary 5.2. For cp < 7‘8 < Cn, x =< p, and n large enough,

o 0> = o(1) if the following conditions hold:

— 2, 2\1/(2+40e—2Be .
p = o((n72)/(+20e+1/2)y 4 g {p—o((fnnw [@tdac=26e)) - if 2 4 A, — 26, > 0,

nTE — 00, o/w.

o Ifp>n=t = o(1), then A(rg,x) = o(1).

o If A(rg,z) = o(1), 0> = o(1) and c is chosen sufficiently large, then P({n ¢
To(ro)[Y}) = o(1).

Remark 5.6. If the conditions stated in Corollary 5.2 hold, then Theorems 5.1 and 5.2
imply that BuM holds.

5.3 Formal description of the Indirect Problem
We now consider the indirect version of Model (34) by setting
ni = ki,

with k; < i~ for ¢ > 0, and ug° € S°.
Consequently,

Y; ~ N (kipi, €97 (m;)). (36)
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In addition, let T and o denote the parameter space and the true parameter, re-

spectively. We define
10,

ki
Subsequently, we assume a Normal prior on j;, i.e.

Mo, =

ND;L' ~ N(O) 5‘2)7

where \; = 72~ (1129 with nr? — oo, and a > 0.

Hence, our aim is to derive the posterior distribution of u|Y, which in turn will help
us estimate {uo;}_;, i.e. the first p singular values of u° € S8 . However, as discussed in
the direct case setting (c.f. Section 5.1), there is no longer conjugacy. Therefore, we ap-
proximate the posterior distribution using the results from [Panov and Spokoiny, 2015].

Note, if 7 € Yo(rg), then pu € Yo(rg), where

(D§)ii = (D)iiki, and Yo(r) = {p: |[Do(r— po)l| < r}.

Consequently, having implemented the framework from [Panov and Spokoiny, 2015],
(please see Section 4 for more details), we can now derive Bernstein-von Mises results
for the indirect case.

5.4 Bernstein-Von Mises Results: Indirect Problem

Note, the posterior distribution described below is now centered at 9 := uo,i+(l~?8);} (VuL(10))i-

Theorem 5.3 (General Bounded Case: Indirect Case). Let g2(n;) satisfy Assumptions
5.1 and 5.2. Under the setting described in Sections 5.1, 5.2, and 5.3, on a random set
Q(x) with probability at least 1 — 6e~%, for u € Yo(ro), and r3 < o(1)p~2In, we have

exp(—2A(rg,x) —8e ")[P(Z € A) — o] —e™ "
< P(Do(u — %) € A[Y)
< exp(2A(ro,z) +5e” *)[P(Z € A) + o] + e %,

as long as A(rg,z) < 1/2, where Z is a standard Gaussian vector in RP,
A(rg,z) < [pl/Q + 2% 4 (p*In~ta + 1)4]9‘1+17”fl/2 n*1/2r8, and

P = (nr2)2pp02asa) | 0 4 p ), if 2+ 2[a+q)+2fa—p]>0,
’ (rtp20420%a) Lp ) if 24 2o+ g+ 2[a — 8] <0,

Whilst for i & Yo(ro) we have with probability at least 1 — 3e™*, on a random set
Q(x), for x large enough and r% > Clp + ],

2
P({n & Yo(ro)|Y'}) < Cexp ( - ZO +\/3zp + g

+1 B
5 logp+ (p— 2)logro + A(ro, z) + 2 )
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Remark 5.7. Specifically, in the general case, X = p~in'/2 zm(x) < pl/2 4 /2 4
(p*Ina + Ddpttin=12, vy < 1, §(ro) = 0(1), w < n V2, 25(z) =< [p + 2]Y/2, and
2(p, ) < [p + ]'/2.

Corollary 5.3. For cp < 7"3 < o(1)p~2in, x = logn, and n large enough,

e 0> =o(1) if the following conditions hold:

p= O((nTg)l/(1+2[a+q]+1/2))’
d {p = o((ranr2)V/ @r2leralt2e=iD) - if 24 2a+ g + 2o — 6] > 0,
an

4
nr, — 00, o/w.

2

o Ifp=o(nt/Crt) p=o(n'/?), p=o([Zr]"/®), and p = o(n'/(7%2)), then
A(rg,z) = o(1).

o If A(rg,z) = o(1), 0> = o(1) and c is chosen sufficiently large, then P({n ¢
To(ro)|Y}) = o(1).
5.5 Concentration Theorem: General Bounded Case

Theorem 5.4 (Concentration: General Bounded Case). Suppose the conditions (EDy),
(ED3), (Lo) and (I) from Section 4.2 hold for some rg > 0. Then on a random set
Q. (z) of dominating probability at least 1 — 3e™*, for ro > 4y/x V [z5(x) + z(p, x)],

r P
p*(ro) < Cexp < 7 +/3xp + 5 (37)

p+1
2

logp + (p —2)logro + A(ro, x) + 2690),

where C is an absolute constant and
2%(z) := pp + 6Apz,
with B := Dy'Y2DyY, pp:=tr(B), Ap:= Anaz(B),
22(p,x) == p+ [\/6.6pz V (6.6x)].

Furthermore, this result will also hold when a flat normal prior is used, assuming
Assumption 4.1 holds.

Corollary 5.4. Given the conditions of Theorem 5.4 and the setting described in Section
5.11.1, p*(ro) is of the same form as that in the direct setting (37), assuming ||[rDy*|| =

o(1).

Remark 5.8. In the direct setting, we assumed ||rDy || = o(1) instead.
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5.6 Contraction Rates: General Bounded Case
5.6.1 The Setup

Recall, using the results from Sections 5.2 and 5.4, we can derive the posterior distribu-
tion of 7Y and p|Y’, which in turn will help us estimate {no;}*_; and {uo,};_,, which
by definition coincide with the first p singular values of ng° and pg°. Therefore, in this
section, we gauge how effective n and p are at recovering ng° € SPe and He® € S8,
respectively.

We do so by trivially extending n and p to the infinite dimensional setting. Specifi-
cally, we construct 7°°, such that for i < p, 77° := n;, while for ¢ > p, n?* = 0. Similarly,
we construct x>, such that for ¢ < p, p° := p;, while for 7 > p, p2° := 0.

Furthermore, since we only recover the first p singular values, we can trivially consider
an infinite dimensional prior on 7, such that for i < p, n?° :=n; ~ N(0, \;), while for
i > p, ny° = 0 with probability 1. Similarly, we consider a prior on u®, such that for
i <p, u*:=p; ~ N(O, :\1), while for i > p, p2° = 0 with probability 1.

Thus, 7™ and x> are well-defined estimators of §° € S and u&® € S?, respectively.
Consequently, we can derive the contraction rates of #°° and p®°, under the setting
described in Sections 5.1 and 5.3.

Observe,

E([[7 — noll*) + E(|[76°| [&p.)

IL({n> : ||n> = ni°|* > Mpes|Y}) <

M3ze? ’
and
0o (|00 00|[2 2 2 E(l|p — pol*) + E(|| 45 l|fp.)
H’ﬂ<{:u“ : H:u — Ho H > Mngn’Y}) < M2e2 )
n-n
where
2| e =Y _ 7.
i>p
5.6.2 Results

Hence, we list the approximated posterior distribution, its moments, and finally the
Mean Squared Error. All of the results are for the setting described in Section 5.6.1:

Lemma 5.5. (Approzimated Posterior Distribution) Given Assumption 4.1, Theorem
5.1 implies the centered scaled posterior distribution is approximately standard normal,
i.e. Do(n— o) ~ N(0,I), on a set Q(x) of probability 1 — 5e™*, where

ilo = no + Dy 2V L(np),

(D=2, = n~g%(m0,i)
0 T o1 g/ (no)]2
g (1) by | g )
VL)) = A (Vi = i)y (V= ) — L
(VL(m0)) n*193(770,i)( o) 717192(770,2')( ) 9(m0.0)
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Consequently, for the direct case, we obtain the following proposition:

Proposition 5.1 (General Bounded Function: Direct Case). Let the conditions given
in Lemma 5.5 hold fori=1,...,p. Then,

E(n:|Y:) <m0, + [Ai(Y; — n0,3)* + Bi(Y; — o) + Cil,
Var(ni|Y;) < (Do)}

where

A 9'(no,:) 1 n”"g(no,:)g (10,:)
1

= y BZ = 5 and Cl = — .
9(m0,i)(1 +2n=1[g'(10,1)]?) 1+ 2n~g (n0,)]? 1+ 2n~1g (n0,)]?

Furthermore, if we define X; = A;(Y; — 770,@')2 + Bi(Y; — noi) + C;i and assume
Yilnoi ~ N(noi,ng*(no,)), then

Eﬂo,z‘<Xi) =0,
Vary, ,(X;) = A72n"2g" (o) + Bin™ g% (1m0,0)-
Please see Appendix C.7 for details regarding the proof.
Thus, the MSE is as follows:

Corollary 5.5 (Mean Square Error). Let the conditions given in Proposition 5.1 hold.
Then,

EyoElln — mol|* <

1

(Dg?)ii + AF2n~2g* (o) + Bin ™' g (no,s).-

p
=1

Furthermore, for the indirect case, i.e. when n; = k;u;

P
EuEllw — ol S Y ki (Dg%)ii + ki *[A720 29" (kipo,t) + Bin ™ g% (kipo ).
i=1
Please see Appendiz C.9 for details regarding the proof.

Corollary 5.6 (Excess Bias). Let the conditions given in Proposition 5.1 hold. Assume
ng° € SP%. Then, the excess bias

[116° ] Rp.ce = O(p™2%).
Furthermore, for the indirect case, where pug® € S8,

163 [0 = O(0™7).
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Proof. Note, for x € 5S¢,

ollfpee =D a7 =Y afi®i <p 20y 2%
i>p i>p i>p
< p~ 2|

O]

Hence, we can now derive the contraction rates and show that it satisfies the BvM
conditions.

Theorem 5.6 (Contraction Rates: Direct Case). Given Assumptions 5.1 and 5.2, for
the setting described in Section 5.6.1, the Ep IL,({n>° : |[n> — n5°||* > Mpe,|Y}) — 0,
as n — oo, for every M, — oo, where

11
2p2.

en=p P +n
Furthermore, optimality is achieved when p* = nﬂ’cﬁ, with
U T,
Additionally, p* will satisfy the assumptions in Corollary 5.2 if

e when no scaling is used, i.e. T2 =1, we have the following condition:

Be > [(ae + i) v 1.

e otherwise, i.e. when 72 # 1, we have the following conditions:

W . 5 )
2Bc+1
/BC>17 and 0(7—7%): n ? Zfﬂc< ac+ 5
n~l2, if Be > 20 + 1.
11 1 2 2[ac—Bc|+1/2
Remark 5.9. The conditions . > [(ac + 7) V 1] and o(77) = n~ 28+, come

from Assumption 4.1, specifically ||D51G2770||2 = o(1). Said assumption is used in
[Panov and Spokoiny, 2015]’s Theorem 2, and could possibly be sub-optimal. Note, in
their more recent work [Spokoiny and Panov, 2020/, they no longer have this condition
however their setting doesn’t apply to ours.

Proof. [Deriving the Contraction Rates:]
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Using Corollaries 5.5 and 5.6, along with Propositions 5.8, 5.9 and 5.10 imply

B I ({07 2|07 = n5°[| = Mnen|Y'})

c ., _ S _ -
< s (07 Y (D5 )i+ [A72n 726  (m0,) + Bin g% (m0,)])
Mex i=1
< Pyt n e nl
T Mieg
< ¢ [p=2Pe + (2n~t +n72)p).
T MZed

Hence, setting
-8 11
En=p " +mn 2p2,
ensures that the E, IL,({n°° : |[n> — ng°|| > Mpe,|Y'}) — 0 for every M, — oo.
Furthermore,

-8 _1 1 1 Be+1 S
p XN 2p2 <= n2 X P2 < p XX n2betl,

1
Thus for p* = n28+1
en NI
[Proving p* satisfies BvM conditions:]
Recall we have the following conditions from Corollary 5.2:
For ¢p < 7“(2) < Cn, z =< p, and n large enough,

27 2)1/(2Hdac=26e)y i 9 4 Aoy, —

4

p3n—1 _ 0(1>7 p= 0((n73)1/(1+2a°+1/2)), and {p = 0((7—7171’7'”
nt, — 00, o/w.

Let us consider each of the bounds separately, initially for the case where the tuning
parameter isn’t used and later when it is.
For 72 = 1, and p®n~—! = o(1) we have

—-1<0

[p*]Pn! = nPeri T = o(l) <=
28 + 1

— 3<268.+1 < 1<g..
For 72 = 1, and p = o((nr2)"/(1+20c+1/2)) we have

1 1

1 1
po=n on ) 26 +1 "1+ 200 +1/2

1
= 1+2a.+1/2<26,+1 ac+1<ﬁc.
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For 72 = 1, and [p = o((r2n72)"/(?+4ac=28)) "and 2 + 4a. — 28, > 0 or equivalently

Be < 200+ 1],
_1 1 1
p* = n2PeFl = o(n?iac=28 ) <= 2+ 4o, — 20, <2B.+1 <= a.+ 1 < Be.

For 72 = 1 and 2 + 4o, — 28. < 0 (or equivalently 8. > 2a. + 1), n7t — oo will
always be true.

Hence, for 72 = 1: B, > [a. + 1 V 1] satisfies all cases.

Next we consider the cases when 72 is used.

For p?>n~! = o(1) we have

[*]3 -1 _ ﬁ*l_ 1 1
p*3n~! = n2de =o0(l) <= 1< p..

For p = o (nr2)"/(1+20c+1/2)y we have,

% 1 2 1 14+2ac+1/2 9 1+2ac+1/2_1 2
p* = nPetl = o((n7y) 1H20et1/2) <= n = 2Petl = o(nt)) <= n  2Pet] = o(T})
1+4[ac—Bc] 4 4 _ 144[ac—Bc]
= n 2Bc+1 e O(Tn) <— TTL — O(n 2Bc+1

We also have the condition (from the definition of \;): n72 — oo, which is equivalent

to assuming 7,, 2 = o(n) . Thus, we require

_ 1+4fac—Bc]

T, - =o(n 28+l /\nz).

For p = o((r2n72)Y/ (+4ae=2:)) "and 2 + 4o, — 2. > 0 (or equivalently f. < 20 + 1,
1+4[Oéc_60] > _1)

OF —25.41
1 _ 2+dac—28c 4
p* = nIE — o((rinrd) G2y TR o)
1+4[ac—Bc] 4
= n 2Bt =o(ry).
Thus our conditions overlap. Furthermore, % > —1, thus,
—4 _1+4[ac*5c] ) _1+4[Oéc*/8¢:]
T, =o(n 2+l An®)=o(n 28+ ).

Hence, it remains to be shown that for 244, —28. < 0 (or equivalently 8. > 2a,.+1
or % < —1), nt} = oo, which is equivalent to assuming (n73)~! = o(1). Our

conditions overlap if

_ 1+4[ac—pBc]
mh=o0(n" 1 An?An)=o(n),

1+4[ac_ﬁc] < —1.

since —5-— <
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Thus,
_ 1+4[ac—Bc]
4 oln” " 2F1 ), if B <20+ 1,
o(n), if B. > 2a.+ 1,
or equivalently,

2[ac—PBcl+1/2

0(7_2) _n o 2ett if Be < 20+ 1,
n=1/2, if B. > 20 + 1.

O]

Theorem 5.7 (Contraction Rates: Indirect Case). Given Assumptions 5.1 and 5.2, for
the setting described in Section 5.6.1, the B, IL,({u™ : || — u®||> > Mpe,|Y'}) — 0,
as n — oo, for every M, — oo, where

en=p P+ n_%pq'%. (38)
Furthermore, optimality is achieved when p* = n'/CB+d+1) ytp
. -8
g, = n2B+q)+1
Additionally, p*, will satisfy the assumptions in Corollary 5.3 if

e When no scaling is used, i.e. 72 =1, we have the following condition:

1
B > max{a + 1,1 —q}.

e Otherwise, i.e. when 72 # 1, we have the following conditions:

nlo=Al+1/2)/(26+2¢+1) = if 9 4 2l + ] + 2[a — B] > 0,

>1—gq, and o(1?) =
B 1 () {n_1/2, if 2+ 2[a +q] +2[a — p] < 0.
Proof. [Deriving the Contraction Rates:]

Using Corollaries 5.5 and 5.6, along with Propositions 5.8, 5.9 and 5.10 imply

C
Epo ({1 |1 = w57 || = Mnen|Y'}) <

—28 -1 —2\,. 2
_M%E%[p + (2n~" 4+ n"")pp™].

Hence
7 B 4 =50t
En=p " +n 2piTz,

ensures that the E, IL,({u™ : [|u> — pg°|| = Mpen|Y'}) — 0 for every M, — oc.
Furthermore, we see

1 1 1 1 1
piﬁ = nfipq+§ “— n2 xp,ﬁ+q+§ <~ p = n2BFo+1,
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1
Thus, when p* = n26+a+1
-8
E:L s n2BFa+1
[Proving p* satisfies BvM conditions:]

Recall we have the following conditions from Corollary 5.3:
For ¢p < r% < o(1)p~2n, x = logn, and n large enough we need to show:

"% 11/(3042) 1/(q+2)
] ), p=o(n )

, p=o(n'?), p= 0([logn

_ 2. _2\1/(2+42[a+q]+2[a— .
p = o(nr2)/ 1+ 2atd+1/2)) g {p —4 o((m2n72)V/ C+2letd+2la=B)y - if 2 4 2[a + ¢] + 2[a — 8] > 0,
nT, — 00, o/w.

Hence, we have 7 conditions, and the last 3 of them involve 7,, therefore they will
need to be derived for 72 = 1, and 72 # 1.
For the first condition, i.e.

Pt = O(n1/(2q+1)) e pl/@B+2¢+1) _ 0(n1/(2q+1)) e pQe+1)/(28+2¢+1) _ o(n)
e p(20+1)/(28420+1) -1 _ o(1)
— (2¢+1)/(28+2¢+1)—1<0 <= 2¢+1<28+2¢+1
— [/>0.
For the second condition, i.e.
P = 0(n1/3) s pl/@B+2¢+1) _ o(n1/3) s p3/(28+2¢+1) _ o(n)
e p3/(2B+20+1)—1 _ o(1)
<~ 3/(28+29+1)—1<0 < 3<268+2¢+1
— [f>1—q.

For the third condition, i.e.

* n2 n2 n2
pt = 0([@]1/(3%-2)) — nl/(2,3+2q+1) _ 0([@]1/(3%—2)) — n(3q+2)/(2,8+2q+1) _ O(IOgn)
= nBat2/ 282042150y — (1)

— n(3q+2—2[25+2q+1})/(25+2q+1)

e W/ (26+20+1) 156y = o(1),

logn = o(1)

which will always hold, since 3,¢q > 0.
For the fourth condition, i.e.

p* = o(n'/ 02y — pl/CBF2aHY) — (p1/(a42)) . p(a+2)/(28+20+1) — ()
e p@t+2)/(2B8+2q+1)-1 _ o(1)
— (¢+2)/(20+2¢+1)—1<0 <= ¢g+2<28+2¢+1

1 q
< > — — —.
p 2 2
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For the fifth condition, with 72 = 1, i.e.

p* = o(nl/AF2eta+1/2)y 0y 1/ @B20+1) — o1/ Q@lotd+3/2)) oy (2lotal+3/2)/(2B+2011) — 4(p)
s pClatd+3/2)/(26+2¢+1)-1 _ o(1)
— (la+q/+3/2)/26+2¢+1)—-1<0
— 2a+q|+3/2<28+2¢+1

1
= 6>a+1.

For the sixth condition, with 72 = 1 and 2 + 2[a + ¢] + 2[a — 3] > 0, i.e.

p* = o(nt/@+2etd2a=bly oy pl/FH201Y) = (1) CH2atd420-B)) oy (242t +2la=B)/(254+2011)
s p@tlotd+2Aa—F)/@F+20+1)-1 — (1)

— (2+2[la+q +2(a-p])/28+2¢+1)—1<0
— 2+ 2la+ql+2a—-p]<28+2¢+1

1
= [f>a+ 1
For the seventh condition, with 72 = 1 and 2+ 2[ac +¢] + 2[a — 8] <0, i.e. nT? — o0
will always be true.
Thus, for all 7 conditions to be true,with 72 = 1, we require

11 ¢

1
4’2 2

B > max{a + 1

717Q}:max{a+ 71*(]}‘

Next, let us re-evaluate conditions 5-7 for when 72 # 1:
For the fifth condition, with 72 # 1, i.e.

p* = o((nr)V/(+2otd+1/2)) ey 1/ (RB+2041) — ((p72)1/(Rlota]+3/2)y
s plotal8/2)/(2B4201) _ (22

(2[a+q]+3/2)/(28+2¢+1)—1 _ 0(75)

— N
e n(2[a—ﬁ]+1/2)/(2ﬂ+2q+1) — O(Tz).
For the sixth condition, with 72 # 1 and 2 + 2[a + ¢] + 2[ac — 8] > 0 (or equivalently
(2la — Bl +1/2)/(28 +2¢ + 1) > —1/2), i.e.
p* = o((r2nr2)Y/ @t2otdt20apy oy 1/ (2B420H1) — o((prt)l/ 2+ 20etdl+2la—p)))

s p(@2atd+2a—B)/(26+20+1) _ oty

— pH2otd+2da—pl)/@F+20+1)-1 _ (74

s pla=BIHD/@B420+1) _ 504

n

s pQla—A1/2)/(BH2041) _ o(r2)

nl-

~—
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For the seventh condition, with 72 # 1 and 2+ 2[a+¢q] +2[a— 8] < 0 (or equivalently
2la—=p1+1/2)/(28+2¢+1) < —1/2), ie.

ntt = o0 = (ntH)l=o0(1) <= n! =o(r}

n

) = n~ V2 =o(r).
Thus, for 72 # 1 and 2 4 2[a + ¢] 4+ 2[a — 8] > 0: we require 8 >  — 4 v 0, and

o(r2) = p(2la—BI+1/2)/(28+2041)

whilst for 72 # 1 and 2 + 2[a + ¢] + 2[a — B8] < 0(or equivalently (2[a — 8] +1/2)/(28 +
2¢+1) < —1/2): we require 8 > 3 — 4V 0 and

o(r2) = n(Cla=B141/2/(2842041) \/ p=1/2 _ p-1/2,

2

Note, we also have an extra condition from J\;, which requires n7; — oo. This

condition however will always be dominated by conditions 6 or 7, and hence is irrelevant.
O

5.7 Conclusion

We begin by discussing the Bernstein-von Mises Theorems for the direct and indirect
case. Note, the results in these theorems will be valid only if the approximation errors
A(rg,z) and g are small. The first two theorems, (Theorems 5.1 and 5.2), address the
direct problem. Antithetically, Theorem 5.3 addresses the indirect problem.

Specifically, Theorem 5.1 claims that Do(n—n°) is nearly standard normal conditional
on Y, for some general bounded ¢?(-). In addition, as stated in Corollary 5.1, these results
are unaffected by the nature of g2(-).

Similarly, Theorem 5.2 claims that Do(n —n°) is nearly standard normal conditional
on Y, assuming a truncated prior and a linear g?(-). Furthermore, Corollary 5.2 provides
conditions for the aforementioned approximation errors to be o(1).

Additionally, note how the posterior distribution given by Theorems 5.1 and 5.2 is
centered at 0 := 1y + Dy 2VL(no), which can be viewed as the first order approximation
to the MLE. This is similar to the classical Bernstein-von Mises Theorem, where the
posterior distribution is centered around the MLE.

Subsequently, analogous to the direct case theorems, Theorem 5.3 claims that Do(,u—
u0) is nearly standard normal conditional on Y, for some general bounded ¢*(-). Fur-
thermore, Corollary 5.2 provides conditions for the corresponding approximation errors
to be o(1).

In addition, note that once again the posterior distribution is centered at u{ := pg;+
(D%);il(V#L(uo))i, which can be viewed as the first order approximation to the MLE.
Thus, each of the Bernstein-von Mises theorems is similar to its classical counterpart.

Some of our conditions are also similar to the ones obtained in [Panov and Spokoiny, 2015].
Specifically, in Section 4 of [Panov and Spokoiny, 2015], for the i.i.d case, it was shown
that the condition p = o(n'/3) had to be satisfied for the Bernstein-Von Mises result
to hold. Furthermore, it could not be dropped or relaxed in a general situation, hence
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it was referred to as the critical dimension. As seen in Corollaries 5.2 and 5.3 we too
obtain the same exact condition.

However, as discussed in Remark 5.9, there is no guarantee that the conditions stated
in [Panov and Spokoiny, 2015] are optimal. Thus, for instance, it might still be possible
to improve our contraction rates. A possible method for gauging the optimality of
[Panov and Spokoiny, 2015]’s conditions would be to consider the case where g%() is a
constant function, and compare the corresponding rates with those derived in Section 2.

Nevertheless, when considering the indirect case, the Bernstein-von Mises results
were derived under the mildly ill-posed setting (i.e. k; < p). However, Bernstein-von
Mises results for the severely ill-posed setting k; = O(e~™), (see Definition 1.8), would
also follow under the framework used in Sections 5.1 and 5.3.

Furthermore, [Panov and Spokoiny, 2015] considered a semi-parametric framework
where the model could be mis-specified. In our setting, a mis-specified model would
affect the variance as well, since the noise considered is signal dependent. Consequently,
one could derive the corresponding Bernstein-Von Mises results, and ascertain the effect
g*(+) has on the approximation errors.

Note, we delay the discussion on how the Bernstein-Von Mises results in this section
can be applied to linear Poisson inverse problems to Section 6.
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5.8 Preliminaries for Proofs of Theorem 5.4, Theorem 5.1 and Theorem 5.3
5.8.1 Outline for Proofs

We begin by deriving the likelihood and its derivatives for the direct model defined in
Section 5.1 . Subsequently, we verify the assumptions from Section 4.2 in order to use
the paper’s theorems, stated verbatim in 4.3.

Specifically, we use [Panov and Spokoiny, 2015]’s Theorem 2 to obtain local bounds
on the posterior, and [Panov and Spokoiny, 2015]’s Theorem 9 to obtain our own bounds
on the tail posterior probability, c.f. Theorem 5.4. We present the proof of Theorem 5.4
in Section 5.9, the proof of Theorem 5.1 in Section 5.10 and the proof of Theorem 5.3
in Section 5.11.

Furthermore, the proof of Corollary 5.2 is provided in Section 5.10 as well.

5.8.2 Likelihood Derivations

We begin by deriving the likelihood and its derivatives for a general g?(-), with the true
value 79 € RP. Note these derivations are only valid if Assumption 5.1 holds.

Let no = (no,1,--.,M0p) and n = (n1,...,mp), where ¥; ~ N(m,n_lg2(m)). Conse-
quently,

In = (Yi—m)*
f(Yz‘WJ - 27— (772) p( 27’1_19 (7]1)

p p
L(n) = plog o) Zog %Z :
= =1

P p 2
Z ?70 i) N Z (m0,i — 1)
— 2 g*(mi)

=1

l\.')M—t

p
Eno L("?) Z log 772

p
P 1og( ) p
By, L(n0) = 5 log (- Zlog (m0.4)) = 5-

Given Assumption 5.1, (see C.6 for further details), 7y is the unique maximum of
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E,,L(n), and VE,,L(n) = 0 at 79. Subsequently,

w0~ Z'EZ,” “ 835 + ‘—””?ili"”v
;mEnoL(”) = gln_o’fg;(zg + ("0’;_132(;;(’7") + 5;((?7)) (9°(m0,0) = 9*(m)),
;lEmL(nm) =0,
e A=y
g 0i = mi)° Z”L_%&ﬁ%@ﬁ —9°(m))
) 3(m0i — 1m:)* + 2nlg;(_nli;:(rn?;%l(92(no,i) —9°(m))
Furthermore,

¢(n) = L(n) — EpyL(n)

_ - g 0) + (o — mi)? = (Yi— m)?

= 2n=1g% (1) ’

(V) = gl S0y,
(Vm): = T T (3, — g2 i)

(V20 =~ 2=y G2 (s = 0 = 74200,

g "(m:)

n=tg®(m)

(

[)]

~ gy [ 0i)> = (n0,g —m:)* ="' g%(mo,0)),
(V2¢(n))ij =0, when i# j,
(V2¢(n0))ii = —49/(32’%927;;70’i) nf’f;gﬁ?;zl) [(Y; —10.4)% —n " g% (n0.4)]
3l m)l? |
n~1g*(mo,i)

— (Mo —mi)* —n" g% (o)),

[=2(Y; — mi) + 2(no,i — ni)]

[(Y; = m0,0)* = n ™ g% (10.)]-
Note, in our model V{(ny) = VL(no) — VE,,L(no) = VL(no), since VE,;L(ny) = 0.
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Furthermore,

_Ep(Y5) — o n g (n0:)

]ETYO (VC(T/O))’L - n_lg2(770 z) n_lg3(770 Z) [ETIO (Ytb - Uo,i)2 - n_IQQ(TIO,i)] =0,

since Yi|noq ~ N(nog,n~"g%(no,:))-
Denote (30)7; = Cov((V{(n0))i (V¢(m0));), where £§ € RP*P. Since the Y; are
independent, Cov((V((n0)):, (V{(n0));) = 0.

Furthermore, the results from C.10 (with X = Y; — 194, 0% = n"1g?(nos), a =

1 _ 9'(770,1') :
n=1g2(no:) and b= nflg"’(no,i)) imply

Var((V¢(m))i) = a’o® + 2b%0* = n_lg; TP 2[‘;'((77770(”?))]2. (39)

Therefore, 33 is a positive-symmetric, diagonal matrix and (V{(no)); are independent
random variables. Specifically,

1 g’ (m0,i) 12 S
(20)2 .= {”192(770,1) + [g(ﬂo,i)] ’ it i=j, (40)
Z?]
0, o/w.

5.8.3 Fisher Information Matrix: Dg
Recall, D3 := —V?EL(np), i.e the Fisher Information matrix, specifically,

82
(Dg)l,] = _8?767715‘:770[’(770) = 07
Ul
0? 1
D3)ii = ——=—5E, L(no) = +2
Do) o™ (o) n~1g%(no:) [g(no,i)

14207 g (o))
g (noy)
n + 2[g(no,i))?
92 (10.i)
= (58)ii-

Furthermore, using Assumption 5.2 at r = 0, one can show

5.8.4 Local Neighbourhoods: Y(r0)
We shall need to show the local conditions regarding L(n) hold for n € To(rp). Recall,

To(ro) :=={n € Y : |[Do(n —no)l| < ro},

88



where D = —V2EL(np). Observe,

P
1Do(n = no)lI> =Y (Dg)ii(n: —mos)®, and
i=1
2 2 _ 9'(n0i) 2 2
(DO)l,Z(nZ - 770,i) = n_IQQ(nO,i) (771 — 7o, 2) + 2[ 9(770 z) ] (771 - 77071') :
Furthermore, for n € To(ro),
p 7'2
> (D3)ii(mi = moi)® <15 = (i —mos)® < D20 ,
i=1 (Dg)ii

therefore we obtain the following corollary:

Corollary 5.7. Given Assumption 5.2, the following exist for 1 < i < p:

(770 z) —1
max E | < g(no:)m P= Mg 1
03:(1i—110,:)2<r3(Dy ?)ii g(m) Mook ot

g’(n‘)‘
g(m:)
g" (i)

max , |
ni:(Mi—n0,:)2<r3(Dg *)si

_]_ L .
Mg, Lu,i™Myg 014 *= Mro,2,

max \ | < My, -1 N
0i:(ni—n0,:)2<r2(Dg )i i g(?’]l) 70,2,u,8 Mg 0,13 70,3,15
2 er2(Dr |g (770,1') —9 (772)| < 92(7707i) + m?"o,O,u,i = Merg 4,

ni:(Mi—n0,:)2<r3(Dg “)e,e

(41)

This corollary was only used once, and that was to obtain a rough bound for the
term 0(r) in Assumption Lo, (c.f. C.4) which in turn motivated the results in Section

5.8.8.

5.8.5 Identifiability Condition: I

In the parametric case, the identifiability condition from [Panov and Spokoiny, 2015]

and reduces to those stated in Spokoiny (2012), i.e

Ja >0 s.t. a®?DE > %2,

where D3 := —V?EL(np), i.e the Fisher Information matrix. Sections 5.8.2 and 5.8.3

show that in fact, E% = D%, hence this condition holds with a = 1.

5.8.6 Assumption E D

Given » € R and ¢ € RP, consider

¥TVCm) HEX 4V (o))

S SRR “Sovll

)7
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due to the independence of (V{(no));.

Note,
Yi —no, g (n0,i) 2 —1 2
\Y i = — + : Yi—moi)”" —n i
( C(TIO)) 717192(770,1‘) nflgg(noﬂ') [( 7o, ) g (770, )]
1 9 (M0,i) w2
=— X, + =X =1
n=12g(no) 9(n0,3) | ]
_ 9(m0si) 1o 1 x. _ 9(m.)
g(moq) " nV2g(mos)” " g(nos)’
where v
X, = _fiTMod N(0,1).

— nmY2g(n0)
Lemma 5.8. Given X ~ N(0,1), and a < 1/2

1
2 _ 2
where )
1 b b
A2 = —— B = —— — —_ .
2a’ 2a’ C=c 4a
Furthermore,
5 1 b?
log Eexp(aX +bX—|—c):—ilog(1—2a)—a+[c+a—4 2].

0 —

Proof. Note, when a < 0,

aX2+bX—|—c:a(X+%)2—l—(c——)

1

where

1 b b2

A% = —— _2
2a’ 2a’ 4a

Consequently,

1 9 22
exp(az® + bx + c¢) exp(——) dx
NoT p( ) exp(—)

1
= / T exp(arz® + bz + ¢) dx

Eexp(aX? +bX + c) :/

L @B da

1
e —
) / V/2m A3 <P 2A2

= A exp(Ch),

= Ay exp(C
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where

Note, the requirement on a; < 0, rather than a.
Thus,

1
log Eexp(aX? +bX +¢) =log A1 + C1 = _§logA1_2 +C

1 1 b?
= ——log[—2(a — = —
5logl=2(a = 5)]+c— ——
1 2
:—ilog(1—2a)—{—c—4a_2—a—|—a
= gt —20)—atera— 2
=—;log a)—atcta— 0.
Corollary 5.8. For |a| < 1,
1 — (2a)"
—2log(1—2a)—a:a2+2a2kzl(€i)2.
Furthermore, for |a| < %,
1 2
—§log(1—2a)—a§3a .
Proof. Note, using Taylor series (with |2a| < 1)
1 1 o
—ilog (1 —2a) 52 k
k=1
Thus,
1 1 L (2g)FH2
—§log(1—2a)—a:a+a2+§ > (kaj_Q -
2a 2
=a’+ 2) ]({:a) =a®+2a
k=1 +2
9 2a
<a®+2a (2(1 =a“ + 2a”| ]
1-—2a
k=1
2a
<a®+2 :
R
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Note, by the modulus’ definition,

2a 2a 2a
<1 «— <1 d, ——>—1
T2/ < 1—-2q¢ = MY 177947
However,
20 _20-141
1-2¢  1—-2a 1—2a’
Thus,
| 2 | <1 <= <2 and >0
an .
1—2a' — 1—2a — " 1—2a

By comparing both these cases with #—1, where z := 1 — 2a, we see

v
o

1
<2 and, >0 = mzi and,

o= 8
IV
IS

1
= Zza and,

In conclusion, for |a| < 1,

2a H
1—2a
< a’ + 2a® = 3a>.

1
—§log(1 —2a) —a < a® + 2a?[|

Proposition 5.2. For |x| < (4H)™!,

T
sup log E{%M} < 252
YERP [Zo?||

where,

1 ! ;
H — max ’ g (770,7«> ’
1<i<p (20)i,i 9(10,i)

Proof. Using Lemma 5.8 and Corollary 5.8, we can show

¥i(V¢(10))i b

logE = logE X2+ b, X +¢;) <3a%+e; +a; —
og Eexp(s ol ) =logEexp(a;X° + b;X +¢;) < 3a; + [¢i + a; 4%_2]
= |ai| < !
al < =
1| = 47
where
g (n0,) 1 Y
g = 08 L= g and, hy = .
Y g(s)” T T (o) ’ ' X0



Note,

. / . » oo 1 /
‘ai| _ ‘% 21/% g (770,7«)’ _ ’ n ( £¢)ZZg( )’ < ’%’ max ’ g (770:1
[Zov[| 9(m0,4) (X0)ii |[Zo?ll g(no, 1<i<p (o) 9(n0,i)
Therefore, for all i,
1
|%’H < - = |al‘ S Za
where .
1 g'(nos)

Thus, indeed

»i(V{(no))i 9 b? 2 b?
FAYSNJty a2 , A i — 347 i
opy ) =80 Flata—prml=sa+ o0

< 3LLZ2 + b?,

log E exp (s

where the last inequality follows from |a;| < 1.
Finally, since

%2 (Eow)fz

h2 =
T (%02 [[Zov ]2
a2 = h2 g (7)0 i)
! (770 Z)
1
by = h}
n 2(770,1')

we can deduce

1 g (n0,3)
b? 4 2a7 = h? +2 Y = 2 (20)?,
[n_ng(W) [ ~ 7] (Zo)

Therefore,

_Wi(V¢(m) - p
§ logE § A
og Eexp(s HE(WH Z:13 +b;

< " 2(2d? +b?)

o

1
£ 7 (20¢)?,i 2
[(20)2 HEWIIQ(EO)@J

)

@E\%

2 Yoy ”]
Z [HZWHQ

< 2%2.

93




Note, using the results from Section 5.8.3, along with Assumption 5.2,

L g'(noq) | L 12

Thus

Hence, the terms in Assumption EDq are:

Z/()Xl,

N=n
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5.8.7 Assumption ED,

Lemma 5.9. Note,

(VQC(U))W‘ = az‘XiQ + b;X; +¢;, where

P =

Y — oy
n=12g(no;)

~ N(0,1),

g"(m) _ 3lg'(m))?

a; = 92(770,0[93(7”) g*(m;) }
b; = 1/29(770,1‘)[_7%

+ 2(n0,i — ﬂi)ﬁ

Furthermore, given Assumption 5.2 (and Remark 4.5), the following exist for 1 <
i1 <pandr <ry:

max
ni:(ni—m0,:)%2<

max
ni:(mi—10,:)% < (DQ

max

)’L'L

2
() — N2 T
i (7]1 770,7,) _(D(z))i,i

’ci| < Ay, p,i-

The proof for the lemma can be found in C.3.1.

Proposition 5.3. For |»| < w(4H)™ !,

where,

sup logEexp{— *

P1,P2ERP

Ui V() <

w [[Dotal] - [|Dotel

max ’ Au.r,i ‘
1<z<p <D2)zz

2(D0)zzn g (770 )

’}7 —5 sup sup (

a2 & b2
aj +b;

1<p n; €Y (r) (Df‘)‘)i,i

“),

Proof. Using Lemma 5.8 and Corollary 5.8, we can show

logE exp{

where

s 1,1 (V2C(N))iitba,i

w || Dot || - [| Dotz

A; = h;a;,

}

B; = h;b;,

1
— |4, < T

CZ' = hici and, hz =

95

=logEexp(A; X2 + B;X + C;) < 3A7 + [Ci + A; —

x 1/}171'7/1271'

w || Dot || - [[Dota||

N |ai| < aupi = Mg, ulmro it Smfr,l,u zm;éu]f(no,i),
(Dg)i,z
ra _
[bil < buri = A1 uinmeg ; + e Jn=2g(n0,0),

2

4A—2

J)



Note,
> P12
A. — h a; < |— ’ ’
A = hilladl < 11501 Dol
< s |(Do)iitv1,il|(Do)iitb2,l
~'w(DR)ii  |[Dotprll - || Dotal|

[|aw,ril

||aw,r,i|

Quri |7

- ’(Dﬁ)m‘ w

||

Ay r
w

< ||Zwr
= Vaiag(p7)

|loo

Therefore,
|| 1 1
Ple s — <~
w ~ 4 |4il < 4’

where
Gy, r

diag(D}
Thus, indeed

s 1, (V2C(N)iib2 9
log B exp{ — - — e S3AT+H G+ A -
o8 E exp Dl 1 Dovall :

B2 , B
A2 i
14, o At

2 —4A4A;

<347 4+ B?

J’ﬁ w%,ﬂb%,z )(CL2 +b2)
w? [|Dotp1||? - |[Dotbo| 27" "

< 3(£2 (Dg)iﬂ'd}ii(Dg)i,z’d}%,i)(a? + bf)
= w? [[Doth|[? - [|Dovel[* 7 (Dg)isi

< 3(

where the second inequality follows from [4;| < 1.

Recall,
1 9'(no,i)
(Do) n~1g%(no:) [g(no,i) ]
_ 1+ 2n"g' (no,1)]
n~1g*(no,i)
=n
Furthermore,
Qi = M2y 1 4 3mE iy 5197 (n0.),
= m?"_,617l71 [mr,Q,u,imr,O,l,i + mz,l,u,i} °
Therefore,

mT,O,l,’i [mr,Z,u,imr,O,l,i + mr,l,u,i]

H =
n
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Using the results and assumptions from Section 5.8.8, as well as Assumption 5.2, we
obtain the following bounds,
a; < Co,
b; < Con'/?,
H=n"!,
ZZ +b? n

sup sup L < Cpsup
vy (D§)ii i<p (Dg)isi

1<p n;eY(
< C()’n_l .

where Cj is a constant dependent on 79 and independent of r and n.

Therefore, since
< (W)™,

-2 azz + b?
w™?sup sup 1
i<p mer(r) (Dg)ii

we can show vy =< 1, if w?n =< 1.

Additionally,
5] < w@H) ™ < n 2 < nl/2,

Consequently, the terms in Assumption EDs are as follows
wn = 1,
vy =<1,
g(r) =< nl/2.
Finally, note vy and g(r) are of the same order as the corresponding terms in As-

sumption EDy.
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5.8.8 Assumption Lg
We wish to show ||Dy*D2(n)Dy" — I,|| < 1/2 for all n € To(r), where r < 7. Recall,

105" Do) Dy = L]l = max
1+ 207" [¢' (o) 1 1 o Ao — mi)
e < n=tg*(no,i) [n_192(77i> 9 m) n=1g3(m)
) (no.i —ni)* + 7%_‘11(392(770,2-) —g*(m))
n=1g*(n;)
3(noi — mi)* + 20" g*(mi) + 30" (¢*(mos) — 92(771'))] ~ 1>2
n=tg*(m)

m&X<(D@Z§U%Oﬂ%¢—1>2

1<i<p

+ g’ (n:))?

- < L+2n""g'(0:)]* 9°(0,1)
1<i<p \ 1+ 2n~ g/ (no,0)]* 9%(mi)
(Lt 2n‘1[g’(no,¢)]2)_1[ | ,)4(170,1- — i)
n=tg?(no,) Y nmtgd ()
) (no.i —ni)* + n‘ll(ggz(no,i) —g*(m))
n=tg3(m)
ﬁmw—mﬁ+%ﬂ@%m»—fw»02
n=1g(m;) '
Note, how the first term corresponds to a ratio which one hopes would be close to 1.

Similarly, the other terms are dependent on the neighbourhood around 7y;. Now that
we’ve gained some insight as to why Lg should hold, consider the following proposition:

-1

+ [g' ()]

Proposition 5.4. Given Assumptions 5.1 and 5.2:
max |(Dy?)i,i(D§(n))ii — 1| < max M;,
i<p i<p

where
r

M; = sup  |[log((DG(m))i)] |,
Do md(m)l[ (Do (m)ia)l |
and .
||7"D51\| =o(1) = M; =o(1).

Proof. Let us assume g € C3(R) and let y := n;. Consequently, on any compact domain,
g and its derivatives are bounded. Furthermore, since g > 0 everywhere, and (D3(n)):;
is diagonal,

n~ g (y)]2 o
fiy) = (D)) = LE2 WOy A0a— )

n~1g%(y) n=tg3(y)
— )2+ (g2(nos) — g2
") (10, — ) +n71 ;g( y(;?o,) 9°(y))
, 3 i — 2 3n—1 2 ) — 2
g ) (0 — ) +nlg4((i/ )(no,) g (y))’
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will be a continuous function. Consequently, there must exist a compact neighbourhood
around 7o ;, such that

(DG ())ii—(Dg)iil < Mi <= (Dg?)i,il(D5(n))ii—(D5)ii

= |(Dy)ii(DE(0))ii—1| < Mi(Dy?)is

. _ (D3)i
Subsequently, choosing M; = =5

L|I> <1)2.

Next, we will explicitly derive the terms M; := M;(Dy 2)“ and r%, as well as the
conditions required for M; — 0, as n — 0.

Let Q(n;) = D3(n;), then using the Mean Value Theorem,

and 7“(2) = 131<1;1 (Dg)m-]no,i—m\z ensures HDo_ng(n)Do_l—

1Q(1:) — Q10,4 Q|
== < sup  (Do)iilni —no
(D§)ii €Y (r0) (D§)ii
!
< 7 sup Q']

(D0)isi mset(re) (D§)ii

Thus M; = ﬁ SUD,, € (r) (LI)Q;‘- -. Note, for n — oo,
7,1 ? 0/)i,%
M; =0 = |(Dy*)ii(D§(n))is — 1| — 0.
Furthermore,
ry = min (D§)iilmoi = nil® < |[Do(n —mo)[[*.
Finally, recall,
0 1 4(no.; — i)
I, ) L77 :_7_9’77. S L
ong " ) = =iy ~ 9 gy
+ o (i) (no,i —mi)* +n""(g° (o) — 9°(mi))
' n=tg3(n;)
v 2300 — mi)? + 20 g? () + 30 (g% (o) — 9 (m:))
— [g'(m)] :

717194(771')
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Therefore,

Kl o 9mi) 49" (i) (o —mi) — 49" (i) re 240 — m)
877§E"°L( )= 20T () n1g3(n;) 3l () n=1g4(n;)
(noi —m)* +n (g% (no) — g% (i)
n=1g3(n;)

w2005 — mi) = (29(ni)g’ (m:))
o m) n=1g%(m;)
) (0 —n:)* + n (g% (no,i) — 9> (n:))

n~tg*(n;)
3(noi —ni)* + 20" g% (i) + 30" (9% (no.s) — 9° (i)
) n=tg*(n;)
/ —6(no.i — m:) +4n" " g(ni)g'(m) — 60" (g(m1)g’ (n:
g )P (0. —mi) + i(zég(iz)) (9(ni)g’ (mi))
, 3 ,i_i2 2n712 i 3”71 2 ,i_2 i

+4[g (772')]3 (770 77) + gn(_nl;;('m) (g (770 ) g (77 ))
. g (m) o (moi —ni)* + 1" (g% (m04) — g°(mi)
B 671‘193(771‘) o m) n=1g3(n;)

—g"( A)6(T70,i_77i)

~Lg3(n;)
L m\2 n_12i TZ_12 i_2i
_ [g/(m)g,,(m)]9(no,z )"+ 6 gn(n1 ;4J(rn€j) (9”(n0,i) — 97(ms))

+9" (n)

— 34" (mi)g' (i

—2[g' (n:)g" (s

Lo 2 18(n0,i — i)
I S )
312(n0 — mi)* + 100" g2 (i) + 120~ (g% (n0.i) — 9*(mi))
n~tgd(n;) '

+ [g'(m)]

Consequently,

@< 162 ) 4 g g U ) = 9700,

9*(n) (m:)

+1g ) )

1l ) ey 20 mi)® + 6912%3 9(g*(mo,i) — 9%(m:)) |
)

g (P 20 = mi)® + 1092;;7(1-7)]; 12(g°(10,0) — 9°(m:)) .
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Note, since n € Y(r)

T
; — 0. < .
il = Dy

ThU.S, for r < To and Nei € (770,1'7 771) U (7717 770,1')7

21/ .
9% (n0.2) — 9> ()| < (Do)iilni — moal - W
< (Do)i,i|[92]/(n0i)|
< —— sup |[¢*)(m)l

(D0)ii niex(r)

21/
sup g 1 \"ni)l
(DU)iﬂ' €Y (o) H ] ( )|

Observe,

g*(n:) = g*(n:) — 9> (o) + 9% (m0,0)
< 9*(no4) — 4> ()| + 9° (10,0)-
Hence, any term in |Q’| whose numerator is dependent on g?(n;) or |n; — 94| can be
bounded. In addition, Assumption 5.2 can be used to bound the denominator with a

constant independent of n and 7.
Similarly,

g (i) =9 (m) — g (o) +' (n0,3)
< 9" (noi) — ')l + ¢’ (n0,2)
<

sup |g" (mi).
(D0)isi ;€Y (ro) '

Thus, since (Do)%i = n (c.f. Section 5.8.3),

Q' i
(l‘)o)‘Q S CHgl(Th)‘ + ("70,@' - 771)‘ + ‘(7’]0,75 — 171)2‘ +n 107"0]
2
T r 1
<c + +n CT ,
> [(DO)i,i (DO)%,i 0]

where c and C,, are constants, the latter being dependent on ry.
Consequently,

r r Q|
sup

— 0.
(Do)ii (Do)isi miex(ro) (D)7
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Note, we need the above to hold for all 4, i.e.

r
max — 0.

i<p (Dp)ii
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5.8.9 Assumption L,
Note,

—EL(n,m0) = —E[L(n) — L(1no)]

p 2
(noi —mi)* g°(n0.)
N K log Z 2n 1 Zlog 9(m) =, 292(m)>

g (ma),
g o8l 9 (m) )~

since 952(27;])5) log(Z (27;])13)) —1 >0 for all g?(n;), (c.f. C.5). This bound helps us derive

the results below, and is used in Theorem 5.4 as well.

Proposition 5.5. Assume that for any r = ||Do(n —no)|| > 70

max 9(771) :Mi(UOaga”) € (0700)7 L= 17"'apa (42)
ni:mE€Yo(r)

where M;(no, g,n) can depend on ng, n and g (and possibly derivatives of g) but not on
n (and not on r).
Then, for any r = [|Do(n — mo)|| = 7o,

—2EL(n,n0) > b — min 92 (10,4)

[1Do(n —mo)lI> =7 " LMP[L+ 20719 (m0.0))?] ]

for all n € Yo(r). (43)
Note that rb(r) = br is non-decreasing.

In particular, condition (42) holds if

1. g is bounded from above, e.g. g(x) < Cy for all x, then M; = C,.

Proof. Observe,

_2]EL(777770) p (7702_771)2 p (Dg)zz(noz_nZ)Q 1o ) .

Dot =) = - 7 = T n= 9" (mi)(Dg)ii

Dol - P > 2 2 Tg2m) Dol )P~ 2= TDoln—moyp " 9 (P
Furthermore,

P () (D] = (D211 420 (g )
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For n € Yo(r), using assumption (42),

g2 (n:)(D2)is]! > min] 9(1o,i)

2N +2n Y i 21-1
i aXy,.peYo(r) g("?i)] [ (g (770’ )) ]

> min 7212(770,1) [L+ 2071 (g (n04)%] 1| = b
g M'L (7707 g, TL)

Proposition 5.6. Assume that for any r = ||Do(n —no)|| > 7o

max |(g°) (n:)| = Mi(no, g,n) € (0,00), i=1,...,p, (44)
n::mEYo(r)

where Mi(ng, g,mn) can depend on ng, n and g and its derivative(s) but not on n (and not

onr).
Then, for any = Doty ~ m)l = o,
Datn—mllP = ") = i Dy (DR, €Tl

(45)
Note that rb(r) is of the form r/(c+ar) with a,c > 0 which is non-decreasing for r > 0.
In particular, if g*(z) = a + cx, then M;(no, g,n) = c.

Proof of Proposition 5.6. Observe,

_QEL(naTZO) p (770,i N ni)2 B p (D(%)Z,Z(WO,’L . ni)Q 1o, N
ot - m)IP = 2 3T Do —mllP ~ 2 1Do(n -l "¢ WP

> mi ~1,200\(D2). ]-1
> f;l;gp[” 9°(ni)(Dg)i.q]

i=1

Using the Mean Value Theorem,
g* (i) = g* (o) + (i — m0.0)[9°] (nes),
where 7¢; € (10,4, 1:). Note that if 7; € Yo(r), then n,; € To(r). Hence for n; € Yo(r),
9% () < ¢*(m03) + (Do)ilms = moil - |[9°) (i) |/ (Do)isi < 9% (no.0) +1M;/ (Do)

< ||Do(n —mno)|| < 7.

using assumption (44) and (Do)i.i|ni — n0.i
Hence for n € Yo(r),

1 n

min [n~"'g? i 2”_l_min =
19’9[ 9" (m)(Dg)ia) ™" 2 mi [gQ(no,z-HrMi/[(Do)i,i]
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Proposition 5.7 (General Bounded Case). For any r = ||Do(n — no)|| > 70,

72EL(77’ 770) . T -1
—— " > }(r) := min|l + c
[ Do (1 — m0)|[? () =il (Do)i,i |
with ¢ being independent of n, r and p. Note that rb(r) is of the form r/(1 + ar) with
a > 0, which is non-decreasing for r > 0.

for all n e Yo(r). (46)

Proof. Observe,

M z (770z "71)2 o 2 (Dg)i,i(no,i—’r}i)z n_l 2
Dol —mIE = 2= 3@ Doty —m)E ~ 2= Dot —myp " ¢ (1Dl

> min (=1 g?(n:)(DF)id) "

Now,

2 .
P ) (DR~ > br) = L) S pn o1 (g )2

We evaluate < (?0 S) by employing the Mean Value Theorem, i.e.

2(no,i) + (i — 10.0)[%) (i)

gm)=g
< ¢*(no,i) + |(mi — m0,i)|I[g°) (nei)|
g

r

*(no,) - (1+m0)- (47)

IN

Note that if n; € Yo(r), then 1. € Yo(r), hence we use Assumption 5.1 to obtain
the last inequality, with ¢ being independent of n, r and p.
Hence,

2
> min 2 (m0.1) > min[l + -
i< g*(mi) — isp (Do)ig

O]

As stated in Remark 4.6, in our setting rb(r) /4 oco. Hence we can’t use the results
obtained when Assumption (L,) holds: i.e. an upper bound for the tail posterior prob-
ability, p(r) (defined in (21)), and proving that the centering parameter in the BvM
result, n°, is close to 19 with high probability.

Consequently, we derive our own upper bound on the tail posterior probability in
Theorem 5.4, and we show that n° converges weakly to 79, for large n, in Proposition
5.1, (c.f. X; and its moments).
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5.8.10 Assumption 4.1

Recall, n € R?, and ng° € SPe where the Sobolev space,

§% = {h |[h|[Zs, < oo}, where [[h]2,, = S h2 2%,
=1

Furthermore, we consider a prior on 7; ~ N(0,);), where \; = 72i~(1+2%) and
nt? — oo, with a, > 0.
Consequently, the precision matrix G? from Assumption 4.1 will be defined as

G7,27, — )\;1 — 7—77,_2i1+2ac'
In addition, let
2 2
9o.p = maxg-(1o,)-

Note, given Assumption 5.2, this constant can be ignored. However, we chose to track
it for a possible future application.
Thus,

_ 120N g o) L+ 20 g (o)) 4+ AT g% (o)

+A

D2). . = (D3, .4+(G?). . = -
(De)ii = (Do)iit(G s n=1g%(no,:) ’ n~1g2(no,i)

Furthermore,

—2i1+2ac

12 (po N1
1056205 = mase| 1SRN
i 142ty (no,)]

= (n73) " 'p' g5,

tr(D-1G2D-1)2 — onTlP o)A (o 2\—2 2(1+42a) 4/,
r(Dy 0 ) = E [1+2n*1[g’(770 )]2] = (n7)) E i max g (M0,s)
i=1 it ;

= ( 2)—2p2(1+2a6)+196’

| < max n g (o),

nr,

-
Subsequently,
12 7—1 nty 1/(142
ID5'G* Dt || = 0 <= p = of(—52)"/(1F22)),
0,p
12 =12 T3 1)/(1420041/2
tr(Dy 'G?Dy1)? = 0 <= p = o (—52)Y/ (12t /2y,
gO7p

Thus, all cases are satisfied when p = 0((%)1/(1”%“/2))

0,p

. Let us assume the latter

holds from now on.
Then by observing,

G ()i~ (11200 > 1 = i < (gg pnri)t/(1420),
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and letting iy = (g nr2)1/(1+20) e can deduce

2
nTn e
_ 0((T)1/(1+2 +1/2))

= = O(iN).
90,p

3

Thus,

p —17, 2 —-1,.-1.2
- Z L+2n"g" (moi)]* + Ay n™ g% (nos) , — _
D212 = , i ) 1/2 y~1 z,2

)
n g2 (0,0 Ay s
142071 g (no.)]? + A "% (no)
n=IA? Uo,i
<" g2(n0.4) + 219" (n0.4) /9 (m0.4)]> + A, 'n !
n—17_n—412+4ac7737i
T ) T
1+2a(‘ Bp) 2 250
Y
— gop+zl+2ac n7—2) 1
jlH2ac—26c g i2Bc

Y
2
; gop (nr)im(t+2ee) 41

PNIN [ 1420.—2Bc 2 52
7 c 5077071/1/ BC

I
tﬂﬁ

.
Il

I
.tﬂ%

7

IA
Q
'M*@

—_

1=

< Cr;2
- n —2 (0 72);— (142
i=1 gO,p(nTn)Z (1+20c)
PAIN
—1_—4 2 24+4a.—26:V0 2 2
< Cn o tgp ot e E o170
i=1

< Cnlrtgd pP e 2BeV0 ooy 2,

Subsequently, to show HD51G2770H2 = 0(1) we need to consider 2 cases.
Case 1: Assume 2 + 4o, — 28, > 0, then

IDG G ol = o(1), <= g7, 2 (na) ' pPHaee20e) = o(1)

TQTLT _
— p= O(( )1/(2—1—404L QBL))

gg?p
Case 2: Assume 2 + 4o, — 28, < 0, then
—1,~2 2 an; 1
1Dg Gmol|” = o(1), <= (gT) = o(1).
0,p
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However, by Assumption 5.2 gap = 1, thus we require
nTi — oo.

Consequently, the conditions are as follows:

_ ((TANTRE N1/ (2440 —28. .
p:o((nTﬁ)l/lJrQale/Q) and p—o((ﬁ) [@Hdac=28c)y - if 2 4 4oy, — 2B, > 0,
90717 nT;ll — OO, O/W.
Furthermore,

1D ' G* Dy || < Cgyp () ' H20) = 5
tr(DalG2Dal)2 < Cg&i(nTg)_2p2(1+2aC)+l _ 537«
DG Gl [* < Cgg oy () ~HpHAaem 200 = 7,
where all 3 terms are o(1), given the conditions hold.
Note, due to Assumption 5.2, 9o, 12) = 1, and therefore can be viewed as negligible.
Regardless, one could use the above derivations to investigate the effect of relaxing the

local assumptions on g(-). Note, this would lead to additional (non-trivial) terms in the
bounds that depend on g?(ng) as well, and their asymptotics would need to be tracked.
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5.9 Proof for Theorem 5.4

The outline for the proof is as follows:
1. We need to bound the tail posterior probability P({n & Yo(ro)|Y}).

2. This can be done by bounding p*(rg) (with high probability) since P({n &€ Yo(ro)|Y'}) <
p*(ro). Recall, p*(ro) is a random quantity which describes the concentration prop-
erties of the posterior.

3. Note: [Panov and Spokoiny, 2015] provides a probability bound for p*(rg), c.f.
Section 4.3’s [Theorem 10]. However this bound is only valid if Assumption L,
holds - and in our setting it does not. (See Section 5.8.9 for further discussion on
Assumption L,.)

4. Hence, we need to derive a new probability bound for p*(rg), where recall

Jevro(ry) exP{L(n,m0) (1) dny
Jtore) exP{L(n,m0) }r(n)dn

p*(ro) =

5. First, we obtain this new bound for p*(ry) under a uniform prior, and later we
show how we can use this result to obtain a bound for p*(rp) under a Normal
prior.

6. Thus we need to consider exp{L(n,no)} over the set T\Yo(ro) and Yo(rp), for the
numerator and denominator, respectively.

7. For the numerator term on Y\ Y((r¢): We aim to bound L(n, n9) from above, with
large probability. Next, we evaluate the relevant integral:

(a) Bounding L(n,n0) from above, with large probability:
i. We begin by centering L(n,np) i.e.

L(n,mo) = EL(n,n0) + [L(n,m0) — EL(n,n0)] = EL(n, 10) + (1, 70)-

Hence, we've split L(n,n9) into 2 terms: EL(n,7n0) - a deterministic term
(which we will bound by DT, defined in (48)) and {(n,n)- a random
term (which we will denote by RT). Consequently, we seek to bound DT
and RT from above, (the latter with high probability).

ii. We can bound DT by using Proposition 5.7 and Assumption 5.2, which
for r > ro implies

—b(M)||1Do(n —mo)[* _ =b(r)r* _  r?
2 2 - 2[1+CDZP]7

EL(”? 770) <

where Dy, := min;<,(Dg); ;.
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iii. We can bound RT with high probability over the set YT\Y¢(rg) using
[Laurent and Massart, 2000].

iv. Before we use the lemma however we need to show that its prerequisite
condition (50) holds. Specifically, (50) requires us to bound log E exp(a X2+
bX +¢), for X ~ N(0,1). However, this condition is similar to Assump-
tions EDO and FD2. Hence, we can use Lemma 5.8 and Corollary 5.8
to bound it, (just as we did for EDO and ED?2).

v. Hence we can use the result from [Laurent and Massart, 2000], i.e. (51),

to show
RT < e/x(r + +/3p),

with large probability (at least 1 —e™7).
vi. Thus the integrand of the numerator term in p*(r¢) will be bounded from
above by exp(DT + RT) < exp (— W}] + Vz[r +/3p]) = f(r, ).
Op

(b) Evaluating the integral of f(r,x) over T\ Yo (rp):

i. We first change variables to obtain a sphere in p-dimensions, i.e.

z; = (Do)ii(ni —noi) = T\Yo(ro) = {z : |[z]| > ro}.

Consequently, we can express x; using spherical co-ordinates, and inte-
grate with respect to dr. Furthermore, the integration will take place
over the following interval: (rg, 00). During this process, we will assume
ro > 44/x in order to simplify our bounds.

ii. Finally, we will use the asymptotic bound for the Upper Incomplete
Gamma Function, [Abramowitz et al., 1988] and Stirling’s Formula to
simplify the obtained bound on the numerator of p*(rg).

8. For the denominator term on Yo(rp):

(a) On the set YTo(rp), we've proved conditions (EDy), (ED2), (L) and (I) hold
for some rg > 0. Thus,

IL(n,10) — L(1,70)| < Aro,z), 1 € To(ro),

on a random set €, (z) with probability at least 1 — e™, c.f. Section 4.3’s
[Theorem 9.

(b) Thus for the denominator term in p*(rg), we can use Remark 4.4 from Section
4, along with Equations (46) and (47) to bound it. Specifically, since L(n, 7o)
is quadratic, exp{LL(n,n9)} will be a normal density (up to some normalising
constants and the error term A(rg, x)).

9. Hence, we obtain a bound on p*(r¢) with probability at least 1 —3e™", (c.f. (37)),
under the assumption: rg > 4/z V [zp(x) + z(p, x)].
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10. However this is a bound under a uniform prior, and as stated in Section 5.6.1, we
need a bound under a normal prior.

11. Fortunately it was proved, in [Panov and Spokoiny, 2015]: Theorem 2 (c.f. [Panov and Spokoiny, 2015
(55) and Lemma 8 for more details), that the posterior distribution obtained un-
der a flat Normal prior, N (0, G~2), can be approximated via the uniform prior, if
Assumption 4.1 holds.

Proving 7(a)i: Recall,

P p
p n n (Y; —mi)
L(n) = Llog(24) = 371 )2 7
(n) 5 Og(2ﬂ) ; og(g(m)) —5 z:: 20
B 0r) = Dlo(25) — 3 loslon) — § 32 L0002y~ (e )
" 2 S Y22 gP) 245 gP(m)
B L(10) = flog Zlog 9(no,i)) — g.
Let v
i — M0,
Xi=—7—"—~N(0,1).
n=1/2g(1o,i) ©1)
Then,
L(77,770 L L( )
p p
p n (Y; —m)
(2 )= Stentatn) — 5 3=
~ 2o <3>—2ij0 (glm)) — 232 i)
5 108(5 - 2 g(g(m.)) = 5 2= )
p P
9(no,1) 1 2 N (Yi —mi) >
= log =)+ = X7 — =
<z_; (g(m)) 2; 2; 9%(n:)
Note,
o 9*(noi) g(QQ(nO,z)) >0
9%(ni) 9°(ni) 7
for all g2(n;), (c.f. C.5).
Furthermore,
(Y —m)? _ ([Yi — moa] + [no,i — mi])? = X2+ M i 2X~M.
n~tg*(no,i) n~tg2(no,:) b g2 (nog) n—12g(10,)
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Therefore,

(7701) 9*(og) o 19 (m0a)
L o) (121 m) )+ 9%(m:) = 9%(mi) 1])
1 2(0,) 12, (05— mi)? (o, —mi)
(2 ;X 29 (1) X+ n_192(770,i) " 2Xln_1/29(770,7;)]>
—1]

1
_ 22;
Z 7702 m 1/22X (o — m) 9(n0,)
-1

i—1 g%(ni)
_ _% i(XiQ B 1)[92(770,i> )

— 9%(n:)

1< 0 0,i

5 77 i 771 - n1/2 ZX No,i — m)g(? l)) .

1=1 1=1 g i
Hence, we can set
1 (0 — mi)?
DT .= — —_— (48)

2 ; n=1g?(m:)

Note, Section 5.8.9 corroborates that indeed

In addition, we can set

1 - 2 _ 92(770,1')7 nl/2 9(n0,:)
RT := 2;()(1 1)[g2(m) 1] — ;X No.i — m) 20 (49)

Proving 7(a)iv. We wish to use the following result from [Laurent and Massart, 2000]
(Pg 1326):

Lemma. Let Z denote a random variable, v > 0, and ¢ > 0. If

log(Ele"]) < 72 (50
0 e —_
& —2(1—cu)’
then for any positive x,
P(Z > cx 4+ V2vx) <e ™. (51)
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Note that via Lemma 5.8 and Corollary 5.8, for |a;| < 1,

b2

log Eexp(a; X* + b; X + ¢;) < 3aZ + [c; + a; — da. Z_ 2]
: ¥

=3a; + [¢; + a; + 5 :4%,]

< 3a; + b7 + [e; + ail,

where the last inequality follows from |a;| <

1
Z.
Thus, by setting ¢; = —ay,

log Eexp(a;(X? — 1) +b;X) = logEexp(a; X* + b; X — a;)
< 3a? + b7

Consequently, for s|a;| < %,

logEexp(%Z ai( X% = 1) 4+ b;X) < 52 Z 3a? + b7,
i<p i<p
since the X; are independent.

Note, the coefficients of X; in RT are as follows:

1 g(mog)
“ = 5l 9%(n;) )
1/2 (i = m0,1) 9% (no,i)
g(noi)  g%(mi)

bi:n

Using Assumption 5.1,

1 9*(no.i 1
i < 31+ 150 < Sl

b = /2101 = 10| g (mo,)
g(’?o,i) 92(772)

where C] and Cy are independent of r, n and p.

< Co(Do)iil (i —mo,i)l-

Hence, setting » = [2(1 + C1)]~, implies »|a;| < I, and therefore (52) holds.

Additionally,

2
>
e Z 3a? + b7 < 07(17 +72),
i<p
where ¢ is independent of r, n and p.
Consequently, (52) implies

2

log(E[e*fT]) < 61%(19 +r?).

113

(52)



Proving: 7(a)v. Consequently, we can use (51), with to Z = RT, and ¢ = 0, to show
P(RT < V2vx)=1—P(RT > V2vz)>1—e€",

where
(p+72)

v:ZZSa?—i—b? <
1<p
Note, for A,B >0
v< A?+ B* < (A+ B)?
= Vo< VA2+ B2 < A+ B.
Thus,
RT < v/x(r + /p),

with at least 1 — e~ 7.

Proving 7(b)i. Using the following substitution

zi = (Do)ii(mi — moq) = Y\Yo(ro) = {z : ||z|| > ro},
where
dx; = (Do) dn;.
Furthermore, since Dy is a diagonal matrix

p

H(Do)m‘ = det(Do).

i=1

Subsequently, for x € RP, we can represent cartesian co-ordinates as spherical co-
ordinates using the following change of variables:

x1 = rcos(6y),
x9 = rsin(fy)cos(02),

x3 = rsin(fy)sin(02)cos(6s),

xp—1 = rsin(f1)sin(62) - - - sin(fp—2)cos(0p—1),

xp = rsin(by)sin(02) - - - sin(0p—1),

where 01,...,0,_2 € (0,7] and 6,,_1 € (0, 27].
Consequently,

/ dn = / det(Dy')dz = / det(Dy') s(p) P~ tdr,  (53)
T\Yo(ro) [|z]|>ro T>T0
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where ||z|| is the Euclidean norm, and s(p) is the surface area of the p-dimensional unit
sphere, i.e.

®) orP/2
s(p) = ———=.
I'(p/2)
Using (53)
| ey an= [ fra)a(yt) se) ot
T\Yo(ro) r>rQ
2
= / exp (— rir +Vz[r +1/3p]) det(Dg') s(p) P! dr
T>70 2[1 + cDi]
Op
2
r
= det(Dg") s0)eV ™ [ exp (= g Vi)
" T>T0 ( 2[1+ CDop] )
Recall, we require |[rDy || = o(1) (for 7 < ro) in order for Assumption Lg to hold,

(c.f. Proposition 5.4). Thus, for Dy, := min;<,(Dy); i, we must have that ro < Dg,.
Therefore, for r > rg,

r? < 1 . ( 2 1. )
- < ——min{r‘,c 'r
2l +ep] ~ 2 ’ o
< —gmin{r, ¢ Doy}
ro. _1
§—§m1n{r0,c Do}
0
< -2y
) r
Assume,
ro > 4v/x.
Then, this implies
o To, To 7o o 70
2> D42 O > 2>
1 \/:E_O<:>4(+4 4) \/E_0<:>2 \/5_4
Hence,
2
exp (- 21r7r +v/ar) <exp(— D Var) < exp(—r(r—0 — V1)) < exp(—r(r—o)).
Thus,

[ exp(utnm)) dn < der(Dg) sV [ et ar
T\ Yo(ro)

r>r0

Using the following substitution,

:U:%OT:>dw :%dr,
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leads to

/ exp{L(n,n0)} dn < det(Dy*) s(p)e\/%(4)p/ e TxP! da
T\Yo(ro) x>

70 i
4
-1 \V3zp 4 D 7“[2)
< det(D; ) s(p)e (%) F(pvz),

where I'(+, -) refers to the Upper Incomplete Gamma Function, which is defined as follows:

[(p,a) ::/ e xPL da.
T>a

O

Proving 7(b)ii. We use the following result from [Abramowitz et al., 1988] (c.f. Equation
6.5.32 ) to bound I'(+,-): For z € C

F(a,z)wza_le_z[1+a;1 + (a_l)z(“_m ) (54)

as z — oo in |arg 2| < 3Z.
3T

In our case z € R, therefore |arg z| = 0 will indeed be less than <, and hence

[(a,z) < Cz e,

for large z.
Therefore,
—1 V3zp 4 1 8
exp{L(n,m0)} dn < Cdet(Dy") s(p)eV™™(—)P()P e ™
T\ Yo (ro) ro. 4
= Cdet(Dy) 2072 | oo B
R TP e '

Finally, recall Stirling’s Formula, (which holds for large p):

Pl ~ v/2mp(E).
Thus,
2 3
/ exp{L(1,m0)} dn < Crdet(Dy") 2072 [y/ 27rp/2(]i)”/2]‘147“§*26‘70+m
T\Yo(ro) ¢
1 o 78
< Cydet(Dyt) 8rP—1)/2 [p(p+1)/2(%)p/2]—1rg 2~ +V3ap
= Cydet(Dyt) /287 (0—1)/2 o=/ §— 244 log p+(p—2) log

O]
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Proving 8b. Thus for the denominator term in p*(rg), we can use Remark 4.4 from
Section 4, along with Equations (46) and (47) to bound it. Specifically, inside Yo (7o),
on Q(z) with probability at least 1 —e™*,

/ wmummnmnmvawww—m@»/ exp(L(17, 7o) + m(€) di
Yo(ro Yo(ro)

> eXP(—A(TOJU) - m(g) - V(TO))v

where

v(ro) := —log(P(||Z + &[] < rolY)),

|I£H2

m(&) :==m(§) == — + log(det Dg) — plog(v/2n).

Recall, ¢ = Dy 'V L(no) fulfils on a random set Qp(x) of dominating probability at
least 1 —2e™*

€1 < 2B (x).
Hence, assume
ro > ZB(-’E) + Z(p7 x)a
where
25(2) == pp + 6Apz,
with B := Dy'S3Dy !, pp:=tr(B), Ap = Amaz(B).
22(p,x) = p+ [\/6.6pz V (6.62)].

Then using [Panov and Spokoiny, 2015)’s Lemma 7, on a random set Qp(z) of dom-
inating probability at least 1 — 3e™%,

exp(m(£)) = exp(—|[¢][%/2)(2m)"*/? det(Dy)
< (2m)7P/2 det(Dy),
v(ro) = —log(P(||2 + &[] < rolY))
log(P(|[Z]] + [I€]] < rolY))
log(P(||Z]| < 2(p, z)|Y))
[

< -
< -
< —log[l — (B([|Z]] > 2(p, 2)[Y))]
<277,

2e

where the latter follows from
—log(1 —a) < 2a.

Thus,
[A exp{L(n, 1)} dn]~" < exp(A(ro, x) + m(€) + v(ro))

< (2m)7P/2 det(Dy) exp(A(rg, z) + 2¢77).
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Proving 9. Hence, with probability at least 1 — 3e™* and assuming ro > 4\/z V [zp(z) +

z(p, )]
p*(TO) < C(27r)_p/2 det(DO)eXp(A(’l‘g, ) + 26—:5)
det( ) 217/287[-(17 1)/2 —*O-F\/W-&-B—Mlogp—i-(p—% log ro

— 87~ 1/2 - 4 +\/3a: +B—p—+1logp+(p—2)10gr0+A(rg,z)+2e_x'

5.9.1 Proof of Corollary 5.4

Let Ho = (MU,l) ERRR) MO,p) and n= (Nla v 7Hp)7 where Y, ~ N(klulvn_IQQ(kzul)) Conse-
quently,

1 (Yi — kipsi)?
Yilpi) = exp(—————+——),
f( ‘Iu) 2mn= g (kz/%) p( 2n_192(kiﬂi)
P 2
p n (Y; — kips)
L(p log log(g(kip:)) — = AT Bl
"= Z 2 ; 9% (kips)
L(po) = Zlog so)) — 13 i hirto)?
i) = 3 —~  g*(kipos)
A 1“01 1 s (o — kipti)?
E L/.L flog log ZMZ _ _n Wittos = Kabls)”
Ho ( ) Z 22 zMz 2 ; 92(]%'“2,)
p
By L(po) = *10g Zlog kifoi)) — 3
Let v
i — R0
i=—5 5 ~N(0,1).
n=2g(kipo,i) (0.1)
Then,
L(p, po) == L(p) — L(po)
P p
= (Zlog( Z”‘“ Z Z zﬂz >
i—1 zuz - 1
Note,
2 kz ) 2 k‘l i
g Kiptoi) o0 9" (Rittoi)y o

g
g% (ki) g% (ki)

for all g?(n;), (c.f. C.5).
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Furthermore,

(Y; — kipi)? _ ([Yi = kipo] + [kipoi — kipui))? (kipo,i — kipi)? (kipo,i — kipi)

= X2+ +2X

n=1g?(kipo,) n=1g?(kipo,) " g3 (kipog) "2k i)
Thus,
Llpopo) <~ 300 - s
T 2 9? (kipi)
1¢ zMOz - z,U'z 12 g(kiio.z)
a5 X z i z i) 5
2 ; Z Ho s )gz(kiui)

Hence, we can set

2~ n7lg?(kips)

RT = ,1 zp:()@ . 1)[g2(k’i,u0,i) 1] - nl/2 zp:X'k'(uo o M,)g(kiuo,i)
27 9*(kips) — TR T g2 (ki)

Recall, the indirect setting and the definition of Dy can be found in Section 5.3.
Subsequently, we can bound DT by using Proposition 5.7 and Assumption 5.2. Note,
that
—2EL(11, o) & 0i—k P k2(DR)i (o, 2 _
/~L 1% . Z z,u i ZMZ - Z O i N i /;z) [n 1g2<kiﬂi)(D(%)i,i] 1,
1Do(p — mo)lI> ~ £ 2(kip)|1 Do(u = mo)l2 = |1Dolk — o)

remains unchanged from the direct setting. However, we need to apply the Mean
Value Theorem (for the indirect case) when deriving b(r), specifically, when bounding
[n=tg?(kip;)(D3);i] ! from below. Thus, we obtain:

(ki) = g% (kipo ) + (i — po.i) g% (Kipeed)) ki
< g*(kipto ) + ki (i — 100.0)[1[9%) (Kipiei)|

k;r
< g*(kipos) - (1+ —=—0).
Do)i g
Therefore,
—b(r)|[Do(pe — po)l|* _ —b(r)r® _ r* kir .4
EL (4, pio) < 5 =—5—<-3 rygg[l +c(D~ ) L,
' 0)i,i
where

bop = mln(Do)i’i = p_qnl/z.
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Subsequently, we proceed to bound RT. Note, the coefficients of X; in RT are as
follows:

_ 1 G (kipio ;)

a; = =1 —
5! 9? (kipi)
b; = nl/? ki(po,i — pi) QQ(ki,UJO,i)‘
g(kipoi)  g*(kipss)
Using Assumption 5.1,
( i L0, z) 1
a;] < =14 |20 < 2[4+ 0y
|ai [ E 2 (higti) =3l ],

ki|(#0i—ui)|g (Kipeo,s)
bi| = n'/? ’ == < Coki (Do) (o — i
|bi] gkaing) g2 Ckns) 2ki(Do)iil(po: — i)l
< Co(Do)iil(pos — 1)l

where C7 and Cy are independent of r, n and p.
Hence, setting » = [2(1+ C1)]~", implies »|a;| < 1, and therefore (52) holds.
Additionally,

2
»
3 307 + b} < 5 (p+ r?),
i<p
where ¢ is independent of r, n and p.
Consequently, (52) implies

2

log(E[e 7)) < ¢ =

5 P+,

Thus,
RT < \/z(r + \/p),

—T

with probability at least 1 — e
Subsequently, the integrand of the numerator term in p*(rg) will be bounded from

above by exp(DT + RT) < exp (— 1+c 7+ Valr +/3p)) = f(r,z).

Summarizing for the indirect case: The bound for DT has changed, while the RT
remains unaffected.
Using the following substitution

i = (Do)i(pi — poi) = T\Yo(ro) = {z : [|z]| > ro},

where 3
dx; = (Do) dps,
implies
2
~ - ’," o
[ explLupo)} dn = det(DF") s [ exp (= 5ol Var)
F\To(ro) >ro [1+ep,]
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Recall, for Assumption Ly we need to bound
max (D 2)ii(D§(n)ii — 1] = max |([ki Do) ™2)i(k7 DG (1)) — 1

= max |(Dy )i (D§(1))ii — 1]-
i<p
Thus we need ||rDy || = o(1) (for r < rp) in order for Assumption Lg to hold, (c.f.
Proposition 5.4). Thus, for Dg, := minigp(f)o)m, we must have that rg < cDoﬂp for any
¢ > 0, (assuming n is large enough).
Therefore, for r > g,

r? kir o 1r? 1 _ T !
_Er.nén[l_‘_c D ] ) ] kr 17 9 . -1 ki
1<p ( 0)2,1 mangp[l + C(D~0)i Z] mangp[r + C(D~o)i Z]
1 Dy)i.q
S*C - :ffminr,c 1( O)M]
2 max;<p[r ’C(DNOZ)i,i] i<p k;
T _1(Do)isi
< _ 3
- 2 rg;l[m,c k; ]
< _g min[ro, ¢~ (Do)i;] = —5 min{ro, ¢~ Doy}
[
< —r—or,
- 2

since k; =19 > 1 for allj.
Consequently, for |[rDy?|| = o(1),

L — 4 7“2
[ explLinm)} dn < det(D") (o) T, "D).
T\Yo(ro) 7o

Similarly, for the denominator, noting the change of variables,

/ exp{L(n,m0)} dn > exp(—A(ro, x) — m(€)) / exp(L(1, 7o) + 7€) dp
Yo(ro) Yo(ro)

> exp(—A(ro, z) — m(§) — v(ro)),
where
v(ro) == —log(P(|[Z2 +£| < molY))
1§18

m(§) := -t log(det Dg) — plog(v2m).

Hence, with probability at least 1 —3e™* and assuming ro > 4/ V [zp(z) + 2(p, x)]

2
p* (TO) < 087r71/267%+\/37p+g7% log p+(p—2) log ro+A(ro,z)+2e~* )

In conclusion, p*(rg) is of the same form as that in the direct setting.
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5.10 Proof of Theorem 5.1

Proof. Recall, the pertinent terms from Section 4.3’s [Theorem 2] are

A(ro, x) := (8(ro) + 6voza(z)w)rs,
zn(z) = 2p"/% + V2x + R (R ™2z + 1)4p,

1
0= 5[(1+ 66)(365 + b0z (2))? + 62]1/2

The terms vp,w and N come from Assumptions EDg and EDs. The term, vy, is
present in both of the aforementioned assumptions; however, as shown in their respective
sections, both are asymptotically a constant. In Assumption EDs, this is achieved by
choosing w? appropriately. Hence, I/g = 1 in both assumptions.

The term 0(rp) and the condition on g come from Assumption Lg; the latter will
rely on the asymptotic bound for D3 derived in Section 5.8.3.

Thus, we have

- L g' (o) p— ~1/2)-
N = (4H) ! < ST =
(4H) [1][2%}; | (20)i,i 9(n0,) I e
— /2
oale) = 207 4 VB N N+ U
= pl/2 4 212 ¢ (n"tz + 1)4pn71/2
= p1/2 + $1/2,

w < n_1/2,

Furthermore, (as derived in Section 5.8.10), when

2 2
2 — o((TanTAN1/(2+4ac—2c) . B
p = o((TnyL/1+2ac+1/2) - apg p=o(("gz ) ), if 24 4dae —28. > 0,
gO,p nTé — 00, O/Wa

the terms d¢, d,,., and 05 are o(1), where
IDg ' G2D5 || < b6 = Cg&i(nTg)—lp(1+2ac)7
tr(Do_lGQDo_l)Q < 53 _ Cg&i(nT,f)_QpQ(l*Q“c)“,

1D G?ol? < 62 = Cgy 27y, 2 ()~ pEHiee=20V0,
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The terms in g relate to the matrices ¥y and G. Specifically, z%,(a:) = pp + 6Bz,
with
B:=Dy'S2D; !, pp:=tr(B), Ap:= Ana(B).

In our case B = I, therefore pp = p and Ap = 1.

Consequently,
ZB(.Z‘) = [pB + 6)\3.%']1/2
= [p+a]'?,
1
0= 5[(1+06)(30; + dazp(x))* + 57, ] /2

= [1- (53 + 0225 (x)) + 6212 = (87 + 62z (x)) + 621"/
= [02 + 02 [p + )]V

Note §2p = 62, and the latter is o(1) (given the conditions on p stated above). Hence,
G

tr?
o=o(1).
If, 2 + dae — 28, > 0,

8 ,7_n—2(nTg)—1p1+2ac+1+2[a0_Bc]
b (n72) Tp(720)
= 7 2plt2oe—he],
Else, if 2 + 4a. — 28, < 0,
Gy _ T ()
S (n7-72l)—1p(1+2occ)
_ Tn—Qp—(l-i-QOcc)_

Therefore,

2

P grlnrd) 2R {(T;4p2+4[ac—ﬂcl +p+a),  if 2+ 4dac— 2B > 0,

i (r74p7204200) L p 4 g), if 2+ 4o, — 26, < 0.

Note, (as stated in Section 5.8.10), Assumption 5.2 implies g, 2 = 1, and therefore
its negligible. Regardless, one could use the above derivations to investigate the effect
of relaxing the aforementioned assumption. This would lead to additional (non-trivial)
terms in the bounds that depend on g2(n9) as well.

For n & To(rp): We will use Theorem 5.4, which contains the following terms:

2(p,x) = [p+ 1/6.6pz V (6.61)]"/2
< [p+a]'?,

15 2 VoV zp(x) + 2(p, o))
=c(p+ ).

Hence, for simplicity assume x < p, which implies r > Cp.
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5.10.1 Proof for Corollary 5.2

Let us derive the conditions needed in order for these probability bounds to be mean-
2 2

ingful. By construction ¢ = o(1), for p = 0((;}%5)1/(1“0‘0“/2) A (7TZQT")1/(3+40‘6_260)).
0,p 0,p

Furthermore, wrt A(rg, z), (and assuming large enough D)

Alrg,z) < (pl/2 + :Bl/Q)wr%
= p1/2wr8.

Hence, since 72 > Cp, we can deduce
9 0 )

3
A(rg,z) = 0(1) < p2wri=0(1) <« % = o(1).

Finally, for p*(rg) = o(1), (defined in Theorem 5.4), it suffices to show that

r p D
~0 mp+ L~ Llogp+ plogro, - —oo

and A(rg,z) = o(l). The latter condition already holds therefore let us focus our
attention on proving the former condition.

Recall, we assumed x =< p, therefore x < cop. Furthermore, we assumed rg > c1p,
thus set 7’% = c1p. Hence,

2
,
—f—l—@—i—%—%logp—l—plogro

c1p p p p
< - = — =1 =
<=7 + cop + ) Og[rﬁ]

1
< —B(cl —4eg — 2+ 2log(—)
4 C1

)

= —g(cl —4eg — 2 — 2log(cq)).

Thus, since x grows faster than 2 log(z), choosing ¢y sufficiently large ensures p*(rg) =

o(1).

124



5.11 Proof of Theorem 5.3
5.11.1 Preliminaries

Recall, in the indirect case, we assume 7; := k;u;, with k; <79, p € RP, and pg° € S8,
where the Sobolev space,

S8 — {h: ||h|\§5 < oo}, where Hh||§5 = th i%P,

i=1

Furthermore, we set a prior on p; ~ N (0, 5\1), where \; = Tn2i7(1+2a) and nT2 — oo, with
a > 0. In addition, by comparing the indirect and direct settings, we see that 5. = 5+¢,
and a, = o +q.

Consequently, if n € To(rp), then

/4

p
> (DR)eilmi = noa)® < g = > (D§)aiki (i — po.a)* <7
=1 =1

p
= Y (D§)ii(mi — pos)* < 13-
=1

Therefore, if n € To(rp), then pu € To(ro), where
(D§)ii = (DR)iski, and To(r) := {u: |[Do(u— po)l| <7}
Furthermore, V,(-) = k;Vy,(+). Thus,
=m0+ (D5);; (Vo L(10))s
= kipto.i + k5 (k7 D5); ki (VL (10))i
= kilpoi + (D8);; (VuL(po))i]
= klugv

where
pi = po + (D8); 1 (VuL(po))i-
Subsequently,
Do(n —n") = Do(u — p°).

Thus, we now state the proof.
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5.11.2 Proof

Plugging in our expressions for a., 8. and Dy into the terms from Section 4.3’s [Theorem
2] lead to:

1 "(no.4
N = (4H)"! < [max g (mo.) 7! < [max i%n

_ ~1/2]-1
1=ip (Do) 9(10,0) 1<i<p

=p n'/?,

zu(z) = 202 + V22 + XTI (R2z 4+ 1)4p
- p1/2 + .’EI/Z + (qun—laj + 1)4ppqn—1/2
= P2 4 212 4 (P g 4 1)dpttln V2,

Note, Assumption E£Dy depends on
(V2Cm)ii = (Vo< - (Vum)® = (V¢ (n))ii - (ki)*.
Hence,

bi < n'?k? =

b? n'/2k2)?
w2 sup —— < w2 Sup% —winTlx1 = ¥ =1,
i<p (Dg)i,i i<p (Kin)

where b; and w are derived in Section 5.8.7.

Therefore,
WV=nl —
1/3 = 1.
Furthermore,
oD = 0(1) = "B = o(1) = 13 = ofp%n).
Consequently,

6(ro) = o(1),
A(rg, z) = (8(rg) + 6vozE(x)w)re

= 2 (z)wrs

= |p"2 + 22 4 (P?In" o + 1)4pitin1/? n*1/2r(2].
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Furthermore, for

zp(z) = [pp + 6)\335]1/2
= [p+2]'/?,

and

2 2)1/(2+2[o¢+q]+2[a—ﬂ}))’ if 2+ 2[a+q]+2[a—pB] >0,

p= 0(<n7_n2)1/1+2[oz+q}+1/2), and {p :4 0((TnnTn
nr, — 09, o/w,

we know (just as in the direct case) ¢ = o(1), where

(rtp2Hala=bl 4 4 g), if 2+ 2[a+q] + 2[a — f] >0,

2 o 2\—2, 2(1+2[a+q])
¢ = (nm) P {(T;4p—2<1+2[a+ql> tpta), if 242a+q +2a—8 <0

Finally, for n & To(r) (and equivalently for 1 & Yo(ro)), we use Corollary 5.4. Note,
the assumption in the corollary will hold, since we've already assumed ||roDy || = o(1).
Thus, we conclude the proof by noting that

2(p,x) = [p+a]'?.

5.12 Proof of Corollary 5.3

We derive the conditions needed in order for the bounds in Theorem 5.3 to be meaningful.
Naturally we require x < Cp, and x — oo, therefore setting x = logn seems reasonable.
Hence, we need show that for x = logn and cp < 73 < o(1)p~2In: ¢*> = o(1) and

A(rg, ) = o(1). Consequently, set 72 = cp . Note, this would imply
p = o(nt/2a+1)),

Recall, by definition ¢? = o(1), if

n

p:O((n75)1/1+2[a+q}+1/2)7 and { )
nr, — 00, o/w.

Furthermore,

A(ro, z) = [pm +2' + (p"'n e + 1)4pq+1n_1/2] n 22

_ [2]1/2+{£]1/2+p3q+1m1/2 zt/? +pq+1 2
i n n3/2  pl/2 n 0
32 p

_|_
nl/2 n2 n

3q+2 4. pq+2

v[p

—~
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Hence, A(rg,z) = o(1) if the following holds:

2
p=o(n'?), p= 0([1;;; BT, and p = o(n!/(0F2),
Additionally, for the tail posterior probability, (c.f. Corollary 5.4):
if A(rg,z) = o(1), 0> = o(1) and c is chosen sufficiently large, then P({n & Yo(ro)|Y'}) =

0(1); just as in Corollary 5.2, albeit with a different upper bound on ry.
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5.13 Preliminaries for Proof of Contraction Rate Theorems in Section 5.6
We can bound each of the terms in Corollary 5.5 using Propositions 5.8, 5.9 and 5.10.

Proposition 5.8 (Sum 1). For the direct case,

P

> (Dg?)ii = O(n"'p).

i=1
For the indirect case, assuming k; < i~ 9, where ¢ > 0, and using Lemma 5.10,
P
Dk (Dg )i = O~ pth,
i=1

Proof. For the direct case, recall (D3);; < n as shown in Section 5.8.3. Hence,

P p
Z(D(TQ)M =n! Zl =0O(n!
i=1 i=1
For the indirect case, since ¢ > 0,
P p p
S D= Y e = 3 e )
- g 49* (o)
< Uo=nm S 2063 (g )
B ; Ang?(no,i) Z '

since Assumption 5.2 implies g*(no;) < 1.

Proposition 5.9 (Sum 2). Given A; = g(mi)(152(:(_)’12'[)57/(770&)]2), one can show
AZ2n2g (o) = O(n™2).

For the direct case,

p
Z A22n"%g" (o) = O(n?p).

=1

For the indirect case, assuming k; < i~ 9, where ¢ > 0, and using Lemma 5.10,

p
> kA7 gt () = O(n?pH).

=1
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Proof. Note,

42902 (o) = | L2072 )

g(no,:)(1+2n"1[g

2 g (mi)g(nog) o a® : 4ng®(no,i) E
n2 (14 2n=g (n0,:)]%) 2n2 4ng®(no ;) + 2a?
a® A4Ang*(10:) o o

2m2 4ng? (7701) =0(n™).

<

Hence, using Lemma 5.10,

ZAQ% g*(m0s) < 221 = (1+0(1)),
i=1
2400 2 4 2N 2 n_2p2q+1
Zki Ai2n""g (noq) <n ZZ ‘= W(l +0o(1)).
i=1 i=1
g
Proposition 5.10 (Sum 3). Let B; := ——5—1t7——, then

1+2n=1{g’(n0,:)]
Bin"'g*(no;) = O(con™).

For the direct case,
p
> Bln'g?(no;) = O(n”'p).

Furthermore, for the indirect case, assuming k; < i~ % where ¢ > 0, and using Lemma
5.10 imply

p
> k2B g (nog) = O(n”'p*t).
=1

Proof. Note,
ntg*(no,i) _ n~ g2 (no,i) [4ng?(no,:))?
[1 4 2n~1g'(n0,1)]?]? [4ng?(no,i) + 2a2]?

n='g*(noq)[4ng®(m)” -
= [4ng?(no,i)]? =07,

B?nilg (n0) =

using Assumption 5.2.
Therefore for the direct case,

p

p
> BinT'g* (i) =n"t Y 1=0(n""p).
=1

=1
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Hence, assuming k; < ¢, where ¢ > 0, and using Lemma 5.10 imply
- . ) n1p2atl
Zk BZn'g?(nos) < n qu 5011 ——(1+0(1)).
O
The following lemma is used to bound the terms in Propositions 5.8, 5.9 and 5.10.

Lemma 5.10. Partial sums of the sequence {z’k}zozl, where k € R, can be approximated
as follows:

N Nfi-i—l
Zi“:m+1(1+0(1)), as N — oo, if k> —1.

N
Zz’"‘:lnN(l—i—o(l)), as N — oo, if k=-1.

N

1
E i_’ﬁzil(l—i-o(l)), as N — oo, if k> 1.
: R —
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5.14 Preliminaries for Proof of Theorem 5.2
5.14.1 Proof outline

We begin by confirming the global and local assumptions regarding ¢(-) hold. Hence,
we derive the likelihood and its derivatives for our model. Subsequently, we verify the
assumptions from Section 4.2 in order to use the paper’s theorems, stated verbatim in
4.3.

Specifically, we use [Panov and Spokoiny, 2015]’s Theorem 2 to obtain local bounds
on the posterior, and [Panov and Spokoiny, 2015]’s Theorem 9 to obtain our own bounds
on the tail posterior probability, c.f. Theorem 5.4. Finally, we present the proof in
Section 5.15.

5.14.2 Verifying Assumptions 5.1 and 5.2

Recall, ¢*(n;) = an; + b, where n;,a,b > 0. Furthermore, n9 = (101,--.,70,p) and
n=(m,...,np), with ¥ ~ N(n;,n"1g?(n;)). Hence, let us confirm the global and local
assumptions regarding g(-) hold.

e Assumption 5.1 is satisfied, if for all i < p: n; > —g + ¢, for some ¢ > 0.

e Assumption 5.2 is satisfied, since g(+) is bounded over compact sets and monotonic
increasing.
Lemma 5.11. The derivatives of g(n;) can be expressed using g(n;) itself, i.e.

a2

g (n:)

Corollary 5.9. The constants defined in Assumption 5.2 exist, and are as follows:

/ a 1"
9 () =5, and g (n;) = —
(1) 29(n7) (1)

2 _ —1 2 _ . -1y .
My 0.0 = @(Moi +7(Dg i) + b, M0 = a(noi —r(Dg  )ii) + b,
a a
My 1ui = s My 1,14 = s
er,O,l,i er,O,u,i
a2 a2
Mr2ui = 73 My21i = 53
4m§,0,l,i ’ 4m§,o,u,z’

Proof. Note, g — g¢? is bijective and strictly increasing, therefore (maxg)? = max g°.

Additionally, the derivatives of g can be expressed using g itself, c¢.f. Lemma 5.11.
Hence, the maximum and minimum of our functions over the set {n; : (n; — 170.)? <

r2(D0_ 2)”} will lie on the boundary, and note D is easy to manipulate since it’s a

diagonal matrix.
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5.14.3 Likelihood Derivations

In this section we show that ng is the unique maximum of E, L(n), and VE, L(n) =0
at no-
If needed, the likelihood and its derivatives are detailed below, along with the unique-
ness’ proof which follows from Assumption 5.1 and C.6.
Specifically,
1 (Yi —m)?

f(Yilmi) = exp(—

e T 0 2 a5

P log(1y L 3 ool (an N Yiem)?
L(n) = L(Y|n) = 5 log(; ) 2;1g(( 1 + b)) Zgn—l(ani+b)’

i=

P P
P n. o (Mo —mi)? a7701+b
E, L(n) = Zlog(2) = 2§~ Z007 2N oo (an, + b) —
0 (n) 2 Og(2ﬂ_) 2 ; (a'fh + b) Z Og G/TI + g CLT]Z + b
Subsequently,
iL(n) ____a (Yi —mi) a(Y; — n;)?
on; 2(an; +b)  n~Yam; +0b)  n~(am; 4 b)?’
O L(y) = (10,i — M) n a(no; —m)* | a*(noi —mi)
on; n=Yan; +0b)  2n~Y(an; +b)2 = 2(am; +b)?

The function, g(n;), satisfies the condition stated in C.6. Thus, 7y is the unique
maximum of E, L(n), and VE, L(n) =0 at no.

5.14.4 Fisher Information Matrix: D(Q)

In this section we show that the Fisher Information Matrix, i.e. D3 := —V?EL(n), is a
positive, symmetric diagonial matrix, where

_ 2ng%(nos) + a”

D
(Do)is 29*(n0,4)
~ 2n(ano; +b) + a?
2(&77(),1‘ +b)?
=n,
(D§)ij =0.

If needed, the intermediary results (along with the proofs) are stated below:
R L(n) = (10,i — 1) a(mo; —mi)* @ (o — i)
o~ ™ n~(an; +b)  2n"Y(an; +b)>  2(anm; +b)?’

82
—EF,,L(n) =0,
8772'8773' 70 ("7)

62

(Dg)i,j = _MEWOL(WO) = 0.
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Furthermore,

2 2/ /
;ﬁEmL(n) = iln_o’fgg (:773 + (770’;_123)(%(%) + 53((:77?) (9°(m0,0) = 9*(m))
_ 1 _almoi—m)  a(noi — )
n~tan; +0) n~Yan; +b)2  n~(an; +b)?
_ a*(noi — i) _ a’ _ a® (1o — i)
n~(an; +b)%  2(an; +b)2  (am; +0)3 7
0? 1 a?

0N _
(Dg)ii = —aTﬁEnoL(no) =

_ 2n(ano; +b) + a?
2(ano,; +b)?

+
n=Y(ano; +b)  2(ano, + b)?

=n.

5.14.5 Likelihood's Stochastics: V{(np)

In this section we discuss the stochastic part of the Likelihood. Recall, {(n) := L(n) —
E,, L(n), and in this case (V((no)); are independent (zero mean) random variables, whose
covariance matrix (X2) is a positive-symmetric, diagonal matrix. Specifically,

V((no) := VL(no) — VEy,L(no) = VL(10),
Eny (V¢(0))i = 0,
Cov((V¢(m0))is (V¢(m0));) == (Z0)i; = O,

B ~ 2n(ano; +b) + a?
Var((V¢(no))i) == (20)?,1' © 2(ano; + b)?

If needed, the intermediary results, along with the proofs, are stated below:

¢(n) = L(n) — EpyL(n),

Y — o a _
(VC(T,))Z = n_l(aT/i 3_ b) + Tl_l(m]z' + b)3/2 [(Y; - 771)2 - (77071‘ - 771)2 -n 1((17707%‘ + b)]?
o Yi—o, a N2 -1 ,
(VC(UO))Z - nil(aT/O,i + b) + nfl(aﬁo,i + b)3/2 [(}/Z 77071) n (6”70,l + b)]

Note, in our model V{(ny) = VL(no) — VE,,L(1n0) = VL(no), since VIE,;L(no) = 0.
Furthermore,
Ep, (Yi) — mo, g’ (10,i)
nlg*(mog) g (o)

Eyo (VC(n0))i = [Eno (Yi — n0,i)* —n " 'g*(n04)] = 0,

since Y|no,; ~ N (no.i,n " g% (n0,))-
Denote (EO)ZZ,J- = Cov((V¢(m0))i, (V¢(m0));), where X2 € RP*P. Since the Y; are
independent, Cov((V{(no)):, (V¢(n0));) = 0.
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Furthermore, the results from C.10 (with X = Y; — o, o’ = n‘192(1707i), a =

m and b = %) imply
Var((VC(m0)):) = 0% + 26%0 = — ; N 2[9/(770,1‘) )
n=tg*(no,i) 9(no.i)
= ! + a? _ 2n(amo; +b) + a?
; n_l(ano,i + b) 2(0,7’]071' =+ b)2 - 2(0177071' 4 b)2

Therefore, 33 is a positive-symmetric, diagonal matrix and (V¢(n9)); are independent
random variables.

5.14.6 Local Neighbourhoods: Y(r0)

In this section we show that the local conditions regarding L(n) hold for n € Yy(ro).
Subsequently, we obtain the following bound for 1 € Yo(ro),
3 2 2(ano; + b)?

i — n0i)? < = . 55
(77 770,) = (D(Q))z,z TOQn(an(),i—}-b)-l-Cﬂ ( )

If needed, the intermediary results, along with the proofs, are stated below.
Recall,

To(ro) :={n €T : [[Do(n —mo)l| <o},
where D = —V2EL(1np). Observe,

p

1Do(n —no)l1* =D (D§)si(ni — moa)?, and
=1

2(a7707i -+ b) + nta?

o )2
o Tamog + 07 ")

(D3)ii(ni — mo,i)? =

Furthermore, for n € To(ro),

6 _ 2 2(ami+b)
(D3)i 0 2n(ano,; + b) + a?

(i —no,i)? < (56)

5.14.7 Assumption E D

In this section we derive the terms stated in Proposition 5.2.
Observe,

~—

H = max | L g (n | = max | ! 2(1
1<i<p (Z0)ii g(noi) = 1<i<p (Xo0)is 2% (o)

_( 29" (110,4) 2@
2ng?(noi) +a?”  2g%(no,i)
V2a
(2ng%(no,i) + a?)'/?
~n 12
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where the penultimate expression is bounded using Assumption 5.2.

Thus

N = (4H)"' = n'/2

Hence, the terms in Assumption EDg are:

Z/(]Xl,

N=n

5.14.8 Assumption E Dy

Corollary 5.10. Using the results from Section 5.8.7, we show

sup sup (a? + b
1<p n; €Y (r) (Dg)m

Consequently, setting

implies vy < 1.
Furthermore,

|| < N(r) := wdH) ! <

Proof. Recall,

) =an+b, g (m)=

where 7;,a,b > 0.
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1

(. /(.12
a;=n" 92(77077;)[ g (771) 3[9 (771)] ]

nLg3(m)  n-lgt(m)

_ 12 —a’ sa
=n"yg (no’i)[4n_1g6(771) - 4n—lgﬁ(m)]
2
2 N
= 9" (n0,i)! gﬁ(m)]
_ _a2[g2(770,i)]
g%(m) 7
s i 4d'(m) oy G
by =n " 2g(no )| g3 () + 200, mn*ng(??o,i)]’

2a —a?

B

=n"2g(no) [~

— 42y — M) ——————
n=tg*(n;) (. 77)71‘196(?%)
= 2900 120 1 202 (05 — i),
g%(m)
- —nl/Qmma[gQ(m) P 0m0) + 8 0)] + 200 — i),
12900 1t )+ 6P (n0.) + 2020 — )
g%(mi)
_ 1/29(770,i) 2 )
=-n 2ag”(10,:)],
g5 29
_2a 1/293(770,1)
- 6(m.
g (771)
Thus,
4
2 2 419 (770,z) 2 g (TIO,i)
a; +b; =a + 4a"n
L2y A
0294(770i) 2 2
= —[a” + 4ng=(no,i)]
920n) |
2(1294(770 z) 2 2
~[a” + 2ng°(no,:)]
2 |
Furthermore,
1 g/(770 z) 2
D2 : - + 2 )
(Do) n=1g%(no,i) [9 7701)]
1 a?

= +
n~tg2(noi)  29*(no:)
_ 2ng*(no,i) + a®
2g*(n0,:)
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Therefore,

ai + b < 2a*g* (o)

(Ddii = g"%(m)
Y U 1 ]
= g%(m) 2ng*(o) +a?
< 01[92(770,1')]6'

- n g*(m)

2g*(0,:) 2

2 2
a“ + 2n N=——m———
[ g (77071)][2n92(7707i)+a2

Subsequently, using (57) and (58), and letting G; = gg(?:;fg), implies

G?<|G?-1|+1

<(l-e) W rRIV2 11

2
€
< 1
S1-. +
= 0(1),
since ¢; € (0,1/2].
2 2
Thus, 53;;?? = O(n~ 1), and consequently we can choose w s.t. w?n = O(1) as well.
0/%,1

Additionally, using Corollary 5.9,

Qu,ryi 1

| =<n"".

H =
1255 | (Dg)ii

5.14.9 Assumption L
Corollary 5.11. Let n € Yo(ro), where

1 n(ano, + b)]1/2>'

ro = o( min [- + 2

1<i<p'2
Then,

max |(Dy ' D§(n) Dy " — Ip)ial < o(1).
1<i<p
Proof. Assume n; = 19; + 6;. Then, we must find a bound for |(Dgy?2);;(D3(n))i; — 1|,
which holds for all n € Ty(r), where r is fixed.
As stated at the beginning of Section 5.8.8, |(Dgy?)is(D3(n))is — 1| can be seen as
the combination of ratio and neighbourhood terms.
We begin the proof by bounding the ratio:

138



Recall,
Lt 207 g ()] *(mos)
1+ 2n=Yg' (n04)]? 9%(n:)
(14‘2”_1[9/(770,2')]2)—1[’ ' )w‘
n~1g%(no,i) Y tgd(ns)

|(Dg®)ia(D§ ()i — 1] < |

16" () (no; —m)* +n~ ( (m0q) — g (m))|
(771>
3(no,; — ) + 307 g% (o) — g*(mi))
+ |[g' (m))? : :
Ly’ (mi)] g1 ]
Observe,
_ a 9(no,i)12
1+ 20" g (m:))? _ 1+2n 1[29(n¢)]2 _ g*(mo.s) + [ ?gz) J?
L+ 2ng' (noa)? 14 20~ g1 9%(no.i) +
97 Ona) + C[%]Z te—c
g%(no,) + ¢
Pmos)
ey U
g*(mog) + ¢’
where ¢ = g—z
Let G; = (?;7’11)) hence,
AT (N2 A2 2 _
L+ 2n~1g (n0,4)]* g%(mi) g%(nos) +c
— G2 [G2-1)(GE-141)—1
g*(noi) + ! I )
= (G2 -1+ [(G2— 1)+ (G2 —1)].
( ) 2000 + c[( )"+ ( )]
Note,
a2 1= 90 —g*(m) _ almoi—m) _ a(no,i — i)
! g%(ni) g%(ni) 92(mi) — g% (n0,i) + 9*(n0,i)

_ a(no,i — 1)
a(n; —no,i) + 9%(no,i)

Therefore using the Reverse Triangle Inequality,

‘GQ _ 1’ < | a(no,i — 771) ‘ _ a|5l| _ d’L’dL‘
9*(oi) +a(ni —nos)  19%(mos) — aldill |1 — dildil|”
where d; = m
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Since n; € To(r),

5, < r(DF); 72
Furthermore,
_ 2g* (10, 2a? 1 ng?(nos 1
di(Dg)Hlﬂ = @ 29 (10,1) - 1/2 _ [ a ~ 1/2 _ [7+ng (;70,1)]—1/2 _ [*+Ri]_1/2,
’ 92 (no,i) “2ng*(mo,i) + a 2ng*(no,i) + a 2 a 2

where R; = "920520”').

Hence,

_ 1 _
dildi| < rdi(D3); 1 = rly+ RV
Let
1
€ = 7"[5 + R;]7"/?, and assume ¢ € (0,1/2]. (57)
Consequently,
|1 —di|di|]]| > 1— e,
and
1
G =1 < (L —e)'rl5 + Ry 72 (58)
Note,
c _ 1 _ 1 _ 1
9*(moi) +¢ g2l01) 4 g a ng7 (1) 4 S O2Ri 417
and
1 < 1, if Ry =0(),
2R; +1 7 |0, if R; — oo.
Therefore,

L+2n7 g ()] ¢*(n0s)

G- 1P2+|G? -1
L+ 2n71[g (n0,4)]? g%(mi) I "+ I

C
<2 -14+ —-—"
<16 ‘+92(770,i)+c

167 =1 + 167 —1]]

=|G? — 1| +

2

<B(1— )"l + RV

1
2R; +1

<(1+ )G? — 1

The next part of the proof consists of bounding each of the neighbourhood terms:
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Considering each of the neighbourhood terms:

4(noi — mi) —12na|d;| _1 2naldi| 9" (mo.i)
D)7 () 0 — W) ()1 = (D});} ’
(D3)7,}'g' (mi) n-1g3(n;) < (Do) g () (Do) 9* (o) g*(m)
2nd 0
(DO) 1 ‘ ‘|G4|
2n
= (D) TGl

3);-19"(771-)(”0’2‘_”")“nllg(sg(;(.?)m’i)_92(’”))\é(D?))‘l 0152 4 gl

B 465(n;)
2
= (D)7} 2" 1G5(182 + nLals;
( >”496< Sl 5]
= (D) 1 d3|G6|[62+n Lals

= d;(Dg);; -~ |GPId7 67 + n™tad]|6q]).

ZZ 4d

- 3(no.i — m)* + 30 (g*(no.s) — 9°(mi)) 3a n -
IN—17 7 2 -1 ST g2 1
ii 19 \Th - — : < X 5 03
3n _
= ()" d3\GG\[52+n sl
2 130 6252 -1_ 2
= d; (DO)i,i M‘Gi’[diéi +n" ad;|0]].
Hence,
2 —1/.2 2
_ i — i) +n" (g% (i) — 9°(mi))
D1, Z,(770, 77) ,
’( 0)1,19 (77) _193(772') |
_ 3(noi — mi)* + 30~ (g% (no,i) — 9*(mi))
IO P o Ums) |
g*(n)
< @O L IGHIES & n ad? ).
Note,
2/ 12y—1 1 -1
di (D) < [§+Rz] ;
n_ng(nog) o
d;a a? = Ri.
Consequently,
1
2D <4 RI'R <1
HOD = <[5+ R



Furthermore,

Gl = (@1 = (@ - 1417
=1+2(G? - 1) + (G? —1)?,

GS=GIG? =[1+2(G? - 1)+ (G? - 1)}(G? -1 +1)
=14+2(G? - 1)+ (G2 - 1) +(G? = 1) +2(G? —1)* +(G? —1)?
= 1+3(G$—1)+3(G§— 12+ (G —1)3,

and since
€;

1
GF—1]<(1- 61’)_17“[5 + RV < ——

— €

<1

we can deduce
1GH < 1+2\G$—1y+yG2—1\2 <1+3|G? -1
<1+3(1—¢)! [ + R]7V2,
GP| < 1+3|G} 1 +3\G? — 1P +|G] - 1P <1+7GF -1
<1+7(1— ei)*lr[% + Ry 7V2,
In addition, recall

d|5|<r[ + R~V

4
—_— d;10;
n*lg3(,m) (X d ’G | | |

To bound the remaining terms, note that
d|5]<r[ + RV < =

Furthermore,
BT (1) < [+ RN+ ) = [+ R R+ ]
Owd d;a 2 ! U a
1 1 1 1 1 1 1
=[+R| MRi+-+s-Z]=1+[c+R]'[>-=
[+ R R+~ 45— 5] =1+ [ + R = o]
1 1 2
<1492--2]1==2.
s+ [a 2] a
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Therefore,

|(D[2))_lg”(771) (770,1' - T’Z>2 + n_l(QQ(UO,i) - 92(77@)) |

n=tg3(n;)
_ 3(moi — mi)* + 30 (g% (no,i) — 9*(mi))
+ D2 1 / ; 2 , 5
‘( O)zz [g (77 )] n_lg4(m) ‘
< AR 1G0T ) dls)
b ’La/

< 2 1+7(1—ei)_17“[1+R~]_1/2 r[1+R-]—1/2
iy a 2 1 2 (

27 1 1
< 2l 1-1/2 o a-12pt 1-1
> 0 |:T[2 + Rz] + 7(1 51) r [2 + R’L] :|

2 1
< a(1+7(1—e,~)1)[r[2 +Ri]1/2].

In conclusion,

(D5 DG = Byl < [ + 12| (30— ) 201430 - ) )+ 204+ 70— ) 1)

= [r[; + ’Lgig?%—l/2] (21 + %] +[9+ %](1 —e) ).

Note, throughout this proof we’'ve assumed (57). This leads to the following result,

_ _ 1 ng*(nos), 1 14 _
12 L_ 73y < - i) 1—1/2 - _ .1
lrg%\(l?o Dy(m Dy~ = Ip)iil < nax rlg+ =21 (2[1+a]+[9+ 11 —e) )
14. 1

, }[2]_1) max €;

1
261(2[1+5]+[9+ max
ISP

= (20+ @) max e;.

a’ 1<i<p
Let,
€= max ¢
1<i<p
and note, € € (0,1/2]. Furthermore, for all 1,
1 1o b g (0a)
r[§ + R;] =0(l) <= r= 0(121%1])[5 + T] ).
Consequently,
max |(Dy ' Dg(n)Dy" — Ip)ii| < €(20 + @)
e o 0 pliil = a

B L n(ano +0) .10
= r= 0(1%15[5 + T] );

where € € (0,1/2].
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5.14.10 Assumption L,

In this section, using Proposition 5.6, we can show

a

bry <14+ ——
O

rn V2T < (LA

where ¢ = nllin 70,i-
i=1,...,

The calculations are stated below.

r n
b(r) = min[g*(no,;) + al”!
i (Do)ii ~ (Dg)is
.12 -1
= min i)+ a
; [97(10,4) Do) ]
a
= min|l + rn /2 -1
i | 9%(Mo,i)
= Lrn_lm]_l.

acop +b

Furthermore, we can bound the last expression using Assumption 5.2.

5.14.11 Assumption 4.1

Recall, n € R?, and ng°® € 5P where the Sobolev space,

§% = {h+ |||, < oo}, where [[h]2,, = S A2 2%,
=1

Furthermore, we consider a truncated prior on 7, ~ T'N (0, \;), where \; = T,%z'*(lwo‘c)
and n7? — oo, with a, > 0.

Consequently, the precision matrix G2 from Assumption 4.1 will be defined as follows:
(G = )\i_l = 7, 2i1+2a¢_In addition, let gap := max; g?(n0;). Note, given Assumption
5.2, this constant can be ignored. However, we chose to track it for a possible future

application.
Thus,
1+ 2n""[g'(10,0)] 14207 g (no,)* + A, 'n"1g%(no,)
D2). . = (D3, .+(G?). . = it N = ) i A
(D6)ii = (Do)sit(G)es n=1g%(mo,:) o n=1g%(1mo,:)
Hence,
n g (o)A 4

_ _ g
D1G2D-1| =
I 0 0 | m?X | 1+ 271_1[9/(770,2')]2 i 4n92(,,7 D+ 2¢2 '™
e |4(Tﬁ)_1(m)0,i + b)2it 2o .
i 4n(ano; +b) + 2a?

4 )
| = max (10,:) —2;(142ac)
Oa
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Observe,

b<lany;+0bl <aM +b = |any; + b <1,
4nb < |4n(ano; + b) + 2a?| < [4(aM 4 b) + 2a*|n = |4n(ano; + b) + 2a*| < n.
Hence,

D5 G205 < Cmax | T
) n

2)-1;1+2ac
< C(nry) i,

If required, note,

1Dy G*Dy | = o(1), <= (n72)~'p!+2ee = o(1)

—p= 0((n7‘§)1/(1+2°‘0)).
Furthermore,
n g (mo )Nt

14 2n=g' (m04)]?

p (72)71i1+2ac )

SCZH -

P
< C(nr)™2) itH2ee)
i=1

p
tr(Dy'G*Dgt)? =) |

=1

< C(n7’§)‘2p2(1+2a°)+1.
Again, note,
(DG G251 = 0(1), <= (nr) PRI = o(1)
= p=of(nr2)V/ 201/,
Consequently, from this point on let us assume

p= o((nrﬁ)l/(lwac) A (mﬁ)l/(H?ac“/?)) _ O((n7§)1/(1+2ac+1/2))‘

Subsequently,
p —1r7,./ 2 -1, -1 2
- L4+2n" g (noa)]" + A7 n 9% (o) \—172 =1 12
IDG' Gnol> =D I( : ! 222 A o
¢ ;[ n=1g?(no,) s ol
p

ng? (o)A *nd
< 1+ 2n71g/ (n0,0)]2 + A; 'n=1g2(mo0,i)

p

_ Z 494(770,i)778,i
AnX2g2(no,s) + 20227 + 4Xig* (10,)

i=1

B z”: 4g* (o, ) ;A
— Aildng®(no,i) + 2a%] + 4g* (10,1)
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Observe
Ni[dng® (o) + 2a%] + 4g* (o) < Nifn + 1] + 1< A\n + 1.

Note,
\in = nT2i~ (+20) > 1 = < (m,%)l/“““c).

Thus, let iy = (n72)/(1+20¢)  Hence,
p= O((TLT )1/(1+2ac—|—1/2) _ O(iN).
Consequently,

4 i )L
DGR |2 = Z g* (o, )noZz( i) i
Ai[4ng®(no,i) + 2a2] 4 4g*(10,:)

N _
VZN p4g (770,1')"73,@'()‘1‘) ! X i 2
L Ain “ oz
=1 1=iN
lN/\p -1
<y
)\n
zN/\p

Z 7701)‘2 ? 71

IN/AD
- Z 7—71_41'(24'40%)” 772 2Bc;—26c
=1
INAP
< C’n_1¢;4p2+4°‘6_256\/0 Z 178714-2,66
=1
SCTL 1 —4p2+4ap 2BCVO||770||%C'

Thus,
HD 1G2770H2 < CTL ' 4p2+4ac—26cV0

Subsequently, to show || D G?np||?> = o(1) we need to consider 2 cases.
Case 1: Assume 2 + 4a. — 25, > 0, then

1D5 Gl = o(1), <= 7.7 2(n72)~ 1p(2+dac=260) _ (1)
= p = of(r2nrd) /e 280)
Case 2: Assume 2 + 4o, — 28, < 0, then

DG G*oll* = (1) = (n7,) ™" = o(1).
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Thus, we require

4
nr, — 00.

Consequently, the conditions are as follows:

_ 2, -2\1/(2+4ac.—208.
p= O((nTg)1/1+2ac+1/2), and {p _4 O((TnnTn) / )),
nT, — 00,

if 2+4a,—28.>0,
o/w.

Hence,
151 G2Dg || < Cnm) ~'p! 20 = 6,

tr(DglGQDo_l)z < C’(anL)’QpQ(lHO‘C)H — 52

tr?

DG Gl < O () ~ipiee=200 = 5,
where all 3 terms are o(1), if the above conditions hold.
5.15 Proof of Theorem 5.2
Proof. Recall, the pertinent terms from Section 4.3’s [Theorem 2] are

A(ro,z) :== (6(ro) + 6VOZH(x)w)r(2],
zn(z) = 2p"% + V2x + R (R™2z + 1)4p,
0 1= 51+ 8)(30, + Sop(2))? + 8212
The terms vy, w and N come from Assumptions EDy and EDy. The term, vy, is

present in both of the aforementioned assumptions; however, as shown in their respective
sections, both are asymptotically a constant.

The term w? is from EDj and satisfies w?n = O(1)
The term X = (4H)™!, where

The term §(r) and the corresponding condition on ry come from Assumption Ly.
Specifically, 6(r) = o(1), assuming

_ .1 n(ano; +0)1/0
rog = o(élilgp 5 + 2 174).

The terms in p relate to the matrices g and G. Specifically, z%,(a:) = pp + 6Bz,
with

B:=Dy'S2D;!, pp:=tr(B), Ap:= Ana(B).
In our case B = I, therefore pp = p and Ap = 1.



Furthermore, we assume Il = N (0, G~2), where
1D5'G2Dg | < b <1/2,

tr(Dy ' G*Dy ') < 67,

1D G*mol| < 5,

where DQG = D(Q) + G2. These terms are evaluated in Section 5.14.11.
Writing it out explicitly: For n € To(rp) we have

_ 1 g (nos) - 1/
_ 1. , 1, —1/21-1
R=(H)T = [1IISl?§?|(DO)i,i 9(m0.1) ==
—nl/2,
zu(z) = 202 + V22 + R (R 2z 4+ 1)4p
= p"/? + 2% 4 (n"tz+ 1)41071*1/2

= pl/2 4 412,

w xn_l/Q,
Vg < 1,
.1 n(any; +b)

2 _ s 1/212
rg=o 1%1;11)[2 +— 1)

= 0(”)7

30
(5(7“0) = 6(20 + E) =€

1 n(ano; +b), 1/
=ro max[o + —— 5]

= ron_1/2
=o(1),

A(ro,x) = (8(ro) + 6rozm(z)w)ry
= (o(1) + (/% + 2"/ )w)r
= (p*/? 4+ zY?)wrd.

Furthermore, for

20y72)1/ (2 H4ac=26)) i 9 o, —

D= 0(<n7_3)1/1+2ac+1/2), and {p :4 0((TnnTn
nrT, — 00, o/w,
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the terms d¢, d,,., and 05 are o(1), where

D5 G2Dg Y| < 66 = C(nr2) " plit2ee),
tr(DO*1G2D61)2 < 53 _ C(n7§)‘2p2(1+20‘0)+1,
DG G| |? < 62 = 7, % (nr2) " p(FHaae=28V0,
zp(z) = [pp + 6Apa]'/?

= [p+a]'/2,

1
0= 5[(1 +06) (305 + dozp(z))? + 02]"/2
= [1- (83 4 0228 (2)) + 0%)"% = (67 + 6225 (2)) + 62]'/2
= [0+ 02 [p + «])V/2.
If, 2 + 4o, — 26. > 0,

55 Tn—z(nTg)—1p1+2ac+1+2[ac—ﬁC]
. (n72)~1p(1+2ac)

— T;2p1+2[ac*ﬁc} .

Else, if 2 + 4. — 26, <0,

0y ()~
b (nr2)1p(1+2ad
— 2 (14200)
Therefore,
72 < (nr2)~2p2(14200) (rAp?Hilec=bl L p 1 2), i 24 da. — 28, > 0,
" (1 4p~204200) Ly 4 2),  if 24 4o, — 26, < 0.

For n & Yo(ro):
We use Theorem 5.4, where

z(p,x) = [p+ \/6.6pz v (6.62)]"/?
= [p+a]'/?,
15 > VoV (2(2) + 2(p,2))]”

Hence, for simplicity assume x < p, which implies 73 > Cp.
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6 Discussion

The main contributions of this thesis are in Sections 3 and 5. Thus, we begin by dis-
cussing Section 3.

Recall, the minimax and contraction rates (Proposition 3.2 and Theorem 3.2, respec-
tively) in Section 3 were derived for the mildly ill posed setting k; < iP, see Assump-
tion 3.1. However, these results can also be derived for the severely ill-posed setting
ki = O(e~%), (see Definition 1.8). Severely ill-posed problems can be found for instance
in [Thanh et al., 2008], which uses Infrared Thermography to detect buried landmines.
Note, [Agapiou et al., 2014] derive posterior contraction rates for the severely ill-posed
setting as well. Thus, we could use our results to ascertain whether their rates are
minimax optimal.

We could also assume there exists some error in the forward operator, such as where
the singular functions of K are known but not its singular values. Consequently, we
could formulate this as a Plug-in estimator problem, as discussed in Section 3.6 for the
covariance operator V. Such issues arise in various problems, such as in statistical in-
ference for econometric problems with instruments [Florens and Simoni, 2016], and are
discussed in [Cavalier and Hengartner, 2005], and [Hoffmann and Reiss, 2008]. Further-
more, we don’t have to assume a deterministic condition as done in Section 3.6, (c.f.
Equation (20)). Instead we could assume the existence of a consistent estimator of the
singular values (k; or 0;). Subsequently, we could explicitly describe the effects these
Plug in Estimators have on the contraction rates.

Note, we could also assume that the eigenfunctions of K or V are unknown. Fortu-
nately, there exists methods for estimating unknown eigenfunctions as well. For instance,
we could implement the work done in [Koltchinskii and Lounici, 2017], who proposed a
way of estimating eigenvectors based on the sample covariance matrix.

Another question one may ask is whether it is possible for our posterior rates to
converge to the optimal rates without fine-tuning our prior regularity parameter, i.e.
«. This is indeed true in the homogeneous case for the mildly ill-posed setting, as
proved in [Ray, 2013]’s Proposition 3.2 and [Knapik et al., 2016]’s Theorem 2.5, where
in some instances the rates achieved were parametric, up to a logarithmic factor. For our
setting (i.e. the inhomogeneous case), we could construct the empirical Bayes posterior
with a plugged-in maximum marginal likelihood estimator of the prior scale under an
appropriate Gaussian prior, as was done for the direct problem by [Szabé et al., 2013],
and study whether it achieves the minimax rate.

Note, all of these proposed extensions will be implemented in our upcoming paper,
Bochkina and Rodrigues (2021).

Subsequently, let us discuss Section 5. As mentioned previously, we would like to
study inverse problems with Poisson noise; such problems can typically be found in To-
mography, and some advances have been made in this field. For instance, [Cavalier and Koo, 2002]
studied Poisson linear inverse models and used an approximation lemma ([Cavalier and Koo, 2002]’s
Lemma V.1) to bound their Poisson estimation risk by a corresponding Gaussian es-
timation risk. Additionally, [Reynaud-Bouret, 2003] used penalized projection esti-
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mators to estimate the intensity of inhomogeneous Poisson processes. Furthermore,
[Bochkina and Green, 2014] derived Bernstein-von Mises results for well-posed Poisson
linear models.

Hence, we could apply the results from Section 5 to linear inverse problems with
Poisson noise, and derive the corresponding Bernstein-von Mises results and contraction
rates. The latter would extend the work done in [Cavalier and Koo, 2002] from the
Frequentist setting to the Bayesian setting. In addition, our Bernstein-von Mises results
would be for Poisson linear inverse problems, unlike [Bochkina and Green, 2014] whose
Bernstein-von Mises results are for well-posed Poisson linear models.
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A Linear Operator Theory and Gaussian Distributions: Hilbert Spaces

A.1 Linear Operators

In this section we shall list certain theorems regarding Hilbert spaces, as they will be
essential when describing Gaussian processes. Whilst the proofs of these theorems will
not be presented, they can be found quite easily, for instance in [Kuo, 1975].

Theorem A.1. A Hilbert space, H, is separable iff it has a countable orthonormal basis.

Recall that a Hilbert space, H, is called separable if it contains a countable, dense
subset i.e, there exists a sequence {h,}>2, where h, € H, such that every non-empty
open subset of H contains at least one element of the sequence. Separability provides
us with a notion of a space’s size. Note that if a space is finite or countably infinite it is
separable, since we can define our sequence to be the set itself. Furthermore, note that

even though R is uncountable, it is separable as we can define {h,,}>2 .

Theorem A.2. Let A be any linear operator of a separable Hilbert space H. Then for
any two orthonormal bases of H, {en}o2 and {d,}5°,, the

n=1 n=1

o

Note that the above theorem implies that if Y ||Ae,||?; converges (or diverges) for
n=1

some {e, }7° ; then it does so for all the other bases. Consequently, we can define a new

type of operator.

Definition A.1. A linear operator A, of H, is called a Hilbert-Schmidt operator if for
(o]

some orthonormal basis {en}2 | of H, the . ||Aen||3 < oo, where || - ||g is the norm

n=1
on H. Furthermore, the Hilbert-Schimidt norm of A is

S
1AllFrs =D || Aenl [
n=1

One can show that the Hilbert-Schmidt norm is the same regardless of the orthonor-
mal basis chosen and that it bounds the operator norm of A. Consequently, denoting
L(H) as the collection of bounded linear operators on H and Lg(H) as the collection of
Hilbert-Schmidt operators on H, we see that Lg(H) C L(H).

On a side note, if H is finite dimensional then Lg(H) = L(H), whilst if H is infinite
dimensional then Lg(H) # L(H). For instance, the identity operator of H is in L(H)
but not in Lg(H). Subsequently, let us discuss how one can compare two H-S operators.

Definition A.2. Having defined the H-S norm, we can define the Hilbert-Schmidt inner
product of A and B as follows,

e}

(A,B)ys = (Aen, Ben)n.

n=1
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We now have the tools to discuss trace-class operators. However, before doing so we
shall need to discuss compactness and compact operators. Recall, that the closure of a
set B C H, denoted as cl(B), consists of B along with its limit points, or alternatively,
cl(B) = BU OB, where 0B is the boundary of the set B.

Definition A.3. An open cover of a set A in a metric space X is a collection of open
subsets of X, {G;}, such that A C |J,; G;

Definition A.4. A subset E of a metric space X is compact if every open cover of E
contains a finite subcover i.e for every open cover {G;}, A C U?:l Gj.

Definition A.5. An operator of H is called compact if it maps any bounded subset of
H into a set whose closure is compact.

Note: Every Hilbert-Schmidt operator is compact. Additionally, if A is a compact
operator then AT A is as well, where AT is the adjoint of A. Furthermore, note that
AT A is self-adjoint as well. Hence, consider the following theorem:

Theorem A.3. If A is a self-adjoint compact operator, then there exists an orthonormal
basis {en}>2 of H such that

Ax = Z An (T, en) ren,

n=1
where A, € R and A\, — 0 as n — 0.

The A,s are called eigenvalues, and the e,s eigenvectors. In addition, the A\, > 0,
when A is positive definite. Recall that A is positive definite if for every non-zero z € H,
(Az,2)g > 0. Thus one can show AT A is positive definite as well.

Consequently, for any compact operator A, one can apply the above theorem to AT A,
which subsequently helps form the following definition:

[ee]
Definition A.6. A compact operator A of H is called trace-class if >, A\, < oo, where
n=1

the Aps are the eigenvalues of (AT A)Y/2,
One can show that A is a Hilbert-Schmidt operator iff > A2 < oo, where the \,s
n=1

o0
are the eigenvalues of (AT A)Y/2. In this case, ||A||%q = 3 A2.
n=1

Subsequently, we can define the collection of H’s trace-class operators as Lp(H ), and
if A€ Ly(H) the trace-class norm of A as,

n=1
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Definition A.7. If A € Ly(H) the trace of A is defined as

oo

tr(A) := Z(Aen, en) H,

n=1
where {e,}5° 1 is any orthonormal basis of H.

Subsequently, we can now discuss Gaussian processes in a Hilbert space.

A.2 Gaussian Distributions

Remark: In this subsection, we shall always assume any norm and inner product is of
H, unless otherwise stated.

Definition A.8. Let H denote a real, separable Hilbert space. A H-isonormal Gaussian
process is a family of real-valued random variables, W = {W), : h € H}, defined on a
probability space (Q, 3,P) such that Wy, is a centered Gaussian random variable Yh € H
and for h,g € H, the E(W,W,) = (h, g).

Definition A.9. A Gaussian distribution on the borel sets of a Hilbert space, N (v, ),
has a mean v € H and a covariance operator, A : H — H, which is non-negative definite,
self-adjoint and linear. The operator is also of trace class, i.e. it is a compact operator
oo
whose eigenvalues (N\;) are summable, (Y A\ < 00).
i=1
Consequently, a random variable G € H has a N(v,A) distribution if and only if
{Gh := (G,h) : h € H} is a Gaussian process with the following mean and covariance
functions:

EG}, = (v, h), and Cov(Gj, G4) = (Ah, g).

Recall that, w.r.t A’s orthonormal eigenbasis {¢;}52,, Ap; = A;, hence the G; := Gy,
are independent, univariate N(v;, \;), where v; := (v, ¢;).

Note that the Identity element of H would not be a trace class operator, hence
we must define standard normal distributions separately i.e. using isonormal Gaussian
processes. Regardless, the iso-normal Gaussian process, W, could be thought of as a
random variable with a N (0, I) distribution.

Finally, the following proposition should elucidate the importance of trace class op-
erators w.r.t. Gaussian distributions. Note that (-,-)y, and || - ||z, refers to the inner
product and norm of H;, respectively.

Proposition A.1. Assume we have two separable Hilbert spaces Hi and Ho, where

the former has the orthonormal basis {¢;}32,. Let p|lY ~ N(AY,S,) and Y|u ~

(Kp,n= V), where A : Hy v~ Hy, K : H — Ho and V : Hy — Ho are continuous
linear operators. Consequently, we can show that the

Ellp — pollfr, = [1AY — pol[3y, + tr(Sn), and (59)

Epuol|AY = pioll3r, = ||AK po — prol[3r, +n~"tr(AVAT). (60)
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Recall that when we take E,,Y we assume the data, Y|p ~ (Kp,n='V), has been gen-
erated from = pg.

Proof. (59:) We shall use the following implications:
peH = MZZM@',
i=1
M|Y ~ N(AY’ Sn) — ,Uf7,|Y ~ N(<AY, qbi)Hla <Sn¢lv ¢i>H1)7 and
Var(ui) = Epi — (Bui)?.

where p; := (u, ¢;) . Thus, we can show that the

o0 o0 o0
Ellp = pollz, =EID (i — 100 ill7r, =B (i — poi)® = > Epif + g ; — 2p0,Eps
=1 =1 =1

o

N
Il
—

oo
Var(ui) + (Bpi)® + pg; — 2p0.: B = > Var(p) + B — po.i)?
=1

M

(Sndi, i), + ((AY, iy, — (1o, by, )* = tr(Sn) + ||AY — po| |7, -
=1

-
Il

O]

Proof. (60:) We shall use the following implications:

Y~ (Kp,n V) = AY ~ (AKpu,n AV AT),
AY € Hi = AY =Y (AY)¢;,

=1

where (AY); := (AY, ¢;) i, . Subsequently, proceeding in the same way as we did in the
previous proof,

By ||AY = pol[3, =Y Vary, ((AY);) + (B (AY); — p1o,0)?
=1
= n"Yr(AVAT) + || AK o — piol|%, -
]

Note the above proposition only holds if the distributions of p|Y and AY |y are
proper, i.e. if their covariance operators have finite trace.
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B Proofs for Section 2

B.1 Proof for Proposition 2.1

Note that computing the joint distribution was not necessary for my proof, but those
following the proof described in [Knapik et al., 2011] might find the following useful.

Joint Distribution: Assuming Y |u ~ N(Kp,n 1T) and p ~ N(0, A) we must prove their
joint probability is

0\ (n '+ KAKT KA 0\ (n'+EN kX
Vo () ("M D = e w((0) (7 )

Recall that if the normal random variables X1, X2 have the joint density

1 —1 [(361 —2M1)2 e p2)® 2p($1 — p) (2 — M2)])

f(@1,22) = exp
( ) 2wo1094/1 — p? (2(1 - p?) oy o3 0102

2
— XX N(8) (7).
2 po201 03

Hence, since Yj|p; ~ N (k;pi,n~ 1) and p; ~ N(0,)\;), we know

2
—n —n 1
Fir i) = Fyilpa) f (i) o< exp(—=lys = ki) exp(Gyoiy) = exp(— [y + ki = 2ikspsi + 1)

—(n)\,kf + 1)
2

1/2
y? " Mi 9 ki, Yilbi ),

[leAZ_i_n—l )\z o ()\Zk.?+n—1)1/2 ()\lk712+n71)1/2)\21/2

— exp(

kid? 2 2 —1
uenenz and 1—p = (nAik7 +1)

as required. O

which gives us our desired result. Note that p :=

Posterior distribution: Singular Values: Since Y; ~ N (ki;, =) and g ~ N(0,A), (which
implies p; := (u, i), ~ N(0,);)), we can find the posterior distribution of 1;|Y; i.e.

Flalye) o F i) () ox exp( = Ty — ki) e )

= exp( Y2 + K22 — 2yikipsi + b )
2 1 1" VI nAZ
X exp( 2)\1‘ [Mi N/\zkf? T 1/%])
exp(——3 i~ X1 )
which implies
il Yi ~ N )-

n/\zkf +1’ n)\zkf +1
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Claim: We can use the distribution of the singular values above to infer that u|Y ~
N(AY, S,).

Proof:

Note, given an orthonormal basis, {b;}?°, and a linear operator M, if Mb; = m;b;
then M~ Mb; = b; = M~ (m;b;) thus M~'b; = 2. Hence,

AY =AY Yipi =Y YiAp; =Y YAKT(n '+ KAKT) o

1 nY;\ik;
= Y;AKTg i = (
Zi: n ot Rk Z 11 k2,

Therefore,

T 14 nk2N

as required. Similarly, (keeping in mind that A is symmetric),

E(ui|Y) = (AY, ¢i) i,

Snt; = Apj — A(n ' T+ KAKT)AT¢; = A¢; — AKAT

n\ik; Aj
= XNjoj — AkjAj fj = Njdj — Wkﬂj% g k2/\ bj.
Hence,
Aj Aj
Cov(pi, p5Y) = (Pis Sndj)m, = <¢u kg/\ b5, m@‘j?
5N\
as needed. O

Simplifying A: Note that for any compact linear operator B : H; — Hs the following
identity holds:
(I+BBT)"'B=B(I+B'B)™". (61)

Thus defining Q := n~'1, we see that
Q+ BB =Q(I +Q 'BBT) = Q21 + Q'/2BBTQ"1/?)0/2,
The last equality following from €’s symmetry. Consequently, setting B := AV/2K7T
A=A72Q+ BBT) B = AYV2Q7V2(1+ Q7 V2BBTQ7Y2)"I0"/2B
— AV20-12(1 + BBT)1B,

where B = Q" Y2B = n/2AY2K7T . Hence, we must prove B is a compact linear operator,
in order to use the identity (61) and simplify A.
Note that B is a Hilbert-Schimidt operator, i.e tr(BB”T) < oo, since

tr(BBT) = tr(nA'PKTKAY?) = n ) Ak <n ) (MCT) =nCP () N) < o0
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where the penultimate equality follows from the fact that
ki <O@G™P) <:>C 1P < k; < C1i7P for some C; > 0.

This concludes the proof since we know that every H-S operator is compact, c.f.
Appendix A.1. O

Sy is proper: First note that A — S, is non-negative definite i.e. (A — Sy)h,h)p, >
since

n/\Qk2 n/\2/~c2
(A= Sp)h = h2 A—S,) h2
Z i1 ¥ kQ)\ = Z J1+nk2A

where h; := (h, ;) m,. Hence S, is bounded above by A and since A is of trace class so
is S,. O

B.2 Proof for Theorem 2.1

Proof. Given a probability measure P, Markov’s Inequality dictates that

P({x € X |f(z)] > e}) < /IfldIP’

Subsequently, given the posterior distribution IT,(-|Y"), Markov’s Inequality applied
on the second moment of yu — pg implies

1
M (e 11 o= ol > MERYY) < s [ = ol dLa ).

Hy

However, since p|Y ~ N(AY,S,), we know (using Proposition A.1) the
Ellp — pollt, = /H 11— poll, dlLn(plY) = [|AY — pollf, + tr(Sn) =
1
Bl — ol = I1AK o — pioll%, +nMtr(AAT) + ta(S,).
Note that when we take E, Y we assume the data, Y|pu ~ (Ku,n"'I), has been

generated from p = pg. Furthermore, recall that the trace of an operator is equal to the
sum of its spectral coefficients. Consequently,

o [[AK o — poll7y, = 135 kipoiAei = 325 mo.idil [,

nAiki &r
:szzﬂ[)zl_i_ k2A (ZS’L Z,U/OZ(z)ZHHl Zm

The last equality following from Parseval’s Identity.
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o tr(AAT) =tr(AKT(n 1 + KAKT)2KAT)
2)\2k2
=3 Aok i =y L
Z 1~|—/<:)\l<:) zi:(umikgﬁ
o tr(S,) = tr(A — A(n'T + KAKT)AT)
Y N
7 1+ ’I’Lk‘?)\j

Hence, given Assumption 2.1, we know k;’s bounds and thus

14+ nNC727% <1+ nk2) < 14+ 0\C% P —
C1(1 4+ nXi™2P) <1+ nk?\; < Co(1 4+ nXi~ ) —
1+ nk?X < 1+n\i 2P

)

where C; = min(1,C~2) and Cy = maz(1,C?). Consequently, via Assumption 2.1
again,

o ||AKpo — poll, =

2 2 9
a Ho,i _ 2 1.4/ 110l 5
Z (1+ nk-Q)\ ) ; (1+ nTgi—l—Zoz—Zp)Q - HMOHsﬂ % ( -

2;—1—2a—2p)2
1+ nr2i—1-2a=2p)

~9 )
= llmol %5 3" o <lollys s S ,
S - (14 nr2i—1-20=2p)2 — S il o<1 5 1 4 n72i—1-2a=2p)2

where /1(2)’1- = M%,i/HNOHQSﬂ :
o tr(AAT) =
i (1 +n>\iki2)2 - i (1 —|—TL’7'7%Z 1-20=2p)2”

o tr(S,) =
1-2a

Zl+nk:2)\ vzl+n72z 1-2a-2p°

Finally using Lemma 8.1 from [Knapik et al., 2011], i.e. Lemma B.1, one obtains

~2

i T A2
sup (1+n7_2i_11_2a_2p)2 (’I’LT) (1+2a+2p )’
Hﬂ”sﬁgl i n

by setting ¢ = 3,t = 0,u = 1 + 2o + 2p,v = 2 and N = n72. Consequently ||AK o —
28 a9
ol 3, = Ilol[3s (n72)~(Treasz2),
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Similarly using Lemma 8.2 from [Knapik et al., 2011], i.e. Lemma B.2, along with

setting S(i) = 1,q = —1/2,t = 2+ 4a +2p,u = 1 +2a +2p,v = 2 and N = n72, we

obtain
Z'—2—4a—2p

Z (1 + nTTQLZ‘—l—Qoz—2p)2

i

2 _ 1+4a+2p
= (nr2) Tizat,

14+da+2 2
Thus n~'tr(AAT) < Tg(nTg)_l'ﬂz*‘QZ—i_l = T,%(m-ﬁ)_m.

Furthermore, setting S(i) = 1,¢ = —1/2,t = 1+ 2a,u = 1 + 2a + 2p,v = 1 and
N = n72 in Lemma B.2, we obtain

i7172a (
2 : 2,—1—-2a—2p
- 14+ n7zi P

2 _ 20
1+2 2
nTy) 2t

Subsequently, we see that the tr(S,) < Tfl(nn%)*l”zc?ﬁp. Thus, the
1 _
Epo ({112 11 = poll = Muen|Y}) < <5 (IAK po = paol 77, +n ™ tr(AAT) + tr(Sy))
2

M2e2

1 (28 e
= W("M"%ﬂ (nTnz) (a2 4 273(71,73) 202 )
n

(—B . a

Hence, setting &, := (n72) (1+2a+2p/\1)+7n(nrﬁ) +2a%2p ensures that the E, IL, ({x :

[l — pollm, = Mpen|Y'}) — 0 for every M,, — co. O
Next, let us see how one obtains the rates stated in the theorem.

Proof. e Setting 7, = 1 implies

—(—2—= A1) ___a ___Bha
671 =n 1+2a+2p + n 1+2a+2p — O(n 1+2a+2p)7

; o
SINCe 15,79, < 1.

a—p
o If 3 <14 2a+ 2p, then ¢, can be minimised by setting 7, =< n1+28+2r as this
ensures both terms in €, are of the same order. To see this, define ¢, := 14+2a+2p
and cg := 1+ 25 + 2p, and note that

SR |, GG | 2 o =
- ) B o’ 4n B a B:nﬁ+nﬂ:0(nﬁ)7

as required.

o If 3 > 1+ 2a+2p, then g, = (n72)"1 + Tn(nTg)WHZHP. Note that this is a
positive, increasing function wrt 7. Consequently, we can find its minimiser, 7y, as

follows:
-1_-2 —a ZZay
en(T)=n""T "4+ necrtea
QCa 1+a+2p 1+a+2p

ni 3+4a+6p — O(ni 3+4a+6p )

142
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Thus
’ ___ca ___ca _ 14+2a+2p
en(Te) = Cqn~ 3+4at6p 4+ Cyn~ 3+iattr = O(n~ 3+ia+op ),

-8 .
Hence, we see that for any scaling 7, £,(7,) >> n~ 1#26+2r if and only if

L+ 2a+2p b — L < L — 1+20+2p<p
« 9
3+4a+6p 1+28+2p 2+1+12§252p 2+% b

which is indeed the case. Note that, just as in the previous case, the minimiser of
e, was achieved when the terms where of the same order.
O
B.3 Technical Lemmas from [Knapik et al., 2011]

The following lemmas are used in the proofs for Theorems 2.1 and 3.2. The first is
Lemma 8.1 from [Knapik et al., 2011]:

Lemma B.1. For anyr > 0,t > —2r,u >0 and v >0, as N — 00,

it
sup i : - Nf((t+2r)/u)/\v'
lellsr<1 5~ (L4 Nim)Y

Moreover, for every fized £ € S™, as N — oo,

2:—t .
N2 /ine 3 L .o if (t+2r)/u < v.
(LN e omnos i (¢ 420) fu > .

i

The last assertion remains true if the sum is limited to the terms i < ¢NY*, for any
c> 0.

Finally, Lemma 8.2 from [Knapik et al., 2011] is as follows:

Lemma B.2. For any t,v > 0,u > 0 and (&) such that |&| = i7"~ Y28(i) for r > —t/2
and a slowly varying function S : (0,00) — (0,00), as N — oo,

N~ +20/ug2(N/wy - if (¢ 4 2r)/u < v.

5 git )N S0 /i if (42 u=.
(1+ Ni—w)v i<N1/u

' N7°, if (t+2r)/u>wv.

Moreover, for every ¢ > 0, the sum on the left is asymptotically equivalent to the same
sum restricted to the terms i < cNY* if and only if (t 4+ 2r)/u > v.
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B.4 P-series
A p-series,
1
IES
€N
converges if p > 1 and diverges if p < 1. Note,
. 1
> "= =
i€N i€N

will converge if a < —1 and diverge otherwise, ( since —a=p >1 <= a < —1).
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C Proofs for Section 5

C.1 Proof for derivations involving L(n)

i) = Wexﬂ—m%
- glog<2—> - ;log(g(ﬁi)) - ZZ b
By L) = 2 log(22) - glog(g(m)) -3 ; i )
= glog(%) - élog(g(m)) - % é 9922(2(;)) - ZE: W

Given Assumption 5.1, (see C.6 for further details), 7y is the unique maximum of
E,,L(n), and VE,,L(n) = 0 at 79. Subsequently,

0 L(n) = g’(m)) n (ng—ﬁz) n (Y; — mi)%g' (mi)

O () g2 () ng3(m)
9 Lino.) = g og) | Yi—mi) | (Yi—n04)%9 (mo)
on YT glm) 07l (s) T 0P
0 _ (moi—mi) | (nog—mi)*9' (i) | g'(m) , -
amEHOL( )_ n_lgg(m) + n— g (7’1) =+ 93(772') (g (770,@) g (Th))
9 L (o =m04) | (noi —m0i)*9'(noi) | 9'(04)
8mE7IOL(nO’Z) - n g2 (noy) * n=1g3(no,i) * 93(770,1')(9 (o) = 9°(0,))
= 0.
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Furthermore,

P on1g2 ) N2 (V)2
Gl = L) = By L(y) = Y " s S ()
i=1 )

(V600 = et T3 2 = = = ),

Y; 29" (i) (Yi — mi " (mi -
(V2(0))ii = ) 97277_2;3(771')77 ) + n_glg(g(q)h) [(Yi —m)? = (mo; — m)* — n ' g% (m0,4)]
n_g1;22)7]i) [=2(Y; —mi) + 2(no,i — mi)]
/(y.)12
- 2L (5, 02 — (s = ) = 7 P )

(V3¢(1))ij =0, when i+ j,

Yi —noi "(n0,i _
(Vs = s L) = g

2 o Y; 49" (n0,)(Yi — m0,3) g" (10,:) 212
(V=C€(m0))ii = n_lg2(770,¢) n_193(770,z’) n_193(770,7;) (Y 770,1) g (Uo,z)}
39’ (10,1)]?

T g (n.) [(Y; = m04)* = n ™ g% (m0,0)]-
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C.2  Proof for deriving Fisher's Information Matrix, i.e Dg

Note,

) (Mo —m)  (mos —m)%g' (i) g (m)
R L) =12 :
o " ) n=1g%(n;) n=1g3(n;)

82
(D§)ij = —mEnOL(Wo) =0,
1 2(no,i — ni)g’ (mi)
9 R, L) = — ’
onz ™ ) n=1g?(n;) n=1g3(m;)
2(no,i — ni)g’ (mi) + (noi —m)%g" ()~ 3(noi — mi)%g’ (m:))?

n=1g3(m) n=1g3(m) n=tg*(n;)

3 ma) = o) — S g1 ()

w <
W
—
S
~
Q

(9°(no,i) — 9% (mi))

vy A =)

T g Y () n=1g3(n;)

") (n0i — i) + 1" (g°(m04) — g°(mi))
' n=1g3(n;)

o vg2300 —mi)* 207 g () + 30" (g% (n0,) — 97 (mi))
[9"(mi)] n—lg4(m)

o 1 9'(10,3)
DQii:—iE L = +2 112 — 22“
( 0) ) 87712 10 (770) n_192(770,i) [9(770,1)] ( O) )

g9*(mi)
1

I

C.3 Assumption ED,: Proofs
C.3.1 Derivation of V2((n)
Recall,

29" m)(Yi—mos) 9" (ni)

2 =
(V)i = === 505 n~1g3(n;)

(Vi —m:)? = (0 — m)* — n g% (m0,4)]

+ o) + 2~ )
/(o \12
- E%[(Yi — )% = (o — m:)> — n” " gP (mo)]-
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Note,

Yi—mi =Yi—ni + 10, — N0,
= (Yi —n0,) + (0, — i),
(Y; = m)? = [(Y; — no) + (mo; — mi)]?
= (Y —n04)* + (o — 1:)* + 2(Y; — m0.) (noi — i)

Hence,
29'(n:) (Y — noi " (ni -
(V26 = -2 =) S5, 2+ s — )5 = ) — 7200
2%~ )

!(on\12
- s%[(ﬁ —10,i)? + 2(noi — m)(Y; — o) — g% (n0,i)]

= CLZ)(Z2 + bzXz + Ci,
where

X — Y — o N

"o 2g(m4) MO,
B 1 ; 3 / ; 2
a; =" 192(770,i)[n_g19(;](37l) n[—gl‘;Z(L]l)]

oo g 3lg(m))?
—7 (no’l)[g?’(m-) g (mi) }
44’ i a;
b= n_l/Qg(no’i)[_ n—gg(%i) 20 = m)n_lgz(ﬁo,i) ’

C.4 Assumption Lg: Proofs

Proof: Rough Bound using Corollary 5.7 Observe, for any functions f(z) and g(x),
[f (@) + g(2)]* < [max |f(x)] + max|g(x)[]*.

Consequently, using the above inequality and noting that the Dg(n) are diagonal
matrices,
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2
105 D3 D5 = 1 = s (D) (DB~ 1)

~ nax 1+2n" g (noi))* -1 1 Ao —mi)
1<i<p (( n=1g2(no,:) A n1g?(m) Y () n=tg3(m)
(n0i —ni)* + 1" (g% (m04) — 9°(mi))
~Lg3(m)
oo 2300 = m)? 4 207 g (m) + 30 (g2 (o) — 62 () L\
g (i) o lg1() ] 1)

+ 4" (m)

R (_ 1 9*(mi) Al —m) ¢ () g°(no,i)
1<isp \ L4+2n7tg (no,)]? ¢*(mi) 1+ 2n7 g (n0,4)]* 9(n:) 9*(mi)
9" (i) 9°(no4) (o — m)* + 1~ (g% (o) — g*(ni))
]

g(mi) g*(ni) L+ 2n=1 g/ (no,:)]?
g m))? 9% (n0,i) 3(m0i — mi)* + 30" (g% (m0,i) — g7 (mi))
g*(m)  g*(m) 1+ 2ntg'(no,)]?
oy g
200 i 2 ) 1)
m?ﬂ,l,z 4mr72,im72»,1,i7“(D071)i,i
= 1<'L<p 14 2n=1¢ (no,)]? + 1+ 2n=1tg'(no,:)]?
2

r2ATLE ] an—1g! (0.4))2

where the terms (m,. ;) are defined in Corollary 5.7.

+ 2(D62)i,imz,2,z’ + 1] = 4(r),

2 . 2 .
C.5 Proof of % — log(ggz(?’;’;’))) —1 >0 for all n;

Let y := 9922(?35), then

—lny—1>0 <= y>hy+1 < e’ >ey, (62)

for y > 0. Define a(y) = ¥ and b(y) = ey.
Case 1: When y =1, a(1) = b(1). Furthermore,

a'(y) =e’ >V (y) =e,

for y > 1, hence a(y) will grow faster than b(y) (for y > 1). Hence, (62) is indeed true
for y > 1.

Case 2: When y = 0, a(0) > b(0). Furthermore, when 0 <y < 1, a’(y), b (y) > 0 and
a'(y) < V'(y), hence both a(y) and b(y) are increasing, and b(y) is growing faster than
a(y), (which could lead to them intersecting, after which b(y) > a(y)). Hence, (62) will
not hold if b(y) intersects a(y) inside the interval (0,1). Fortunately, while b(y) does
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intersect a(y), it does so at y = 1 which is outside the interval (0, 1). Hence, a(y) > b(y)
for 0 <y < 1.

Specifically, a(y) > b(y) for y # 1 and a(y) = b(y) for y = 1, therefore (62) is indeed
true for y > 0.

C.6  Proof for unique maximum of E, L(n)

Recall,
D n n <= (10, — i) P 1 % (m04)
By, L(n) = 5log(5 ) =5 D Ion i > log(g(m) = 5> 2
i=1 v i=1 i=1 v
p p p 2
p n., n~x— (Mo —m) gmoi),  1~x—=9°(n0:)
= log - : —plog(g(no,i)) + » log =3 :
2 °8(50) 7 ; 9%(n:) (glrm)) ; [g(m) | 2; 9% (i)
P n nm (M0 — 1) 1, 6%(10) 9%(10,4)
=2 —oy ~ 2~ log[ 1 00)),
2 (27T92(770 )2 ; 9%(ni) 2 ;( 9% (i) | *(m:) X
p 2 p 2 2
P n n (o — i) 1 . 9°(n0,) 9*(Mo,)
max [k, L < =log(———) — — min g - — min "~ —lo : .
) <5 g(27792(770,i)) 2 ; a 9%(n:) 173 = m (92(77@-) d 9%(n:) )
Note, o o
i M0 = 16)" _ (0i — i) _o
nio g% (m) G*) o
Furthermore, using C.5,
2 2 2 2
g°(10,:) 9°(n0,i) .9 (Mos) g°(10,:)
= — =] >1 = min = — : =1,
g%(ni) [92(m) 1= i ( 9%(ni) [92(m) )

when g(n;) = g(no,;). Therefore, ny will be the unique maximum of E, L(n) iff g(-) is
unique at every 7o ;.

C.7  Proof for Proposition 5.1

Recall,
iio = 10 + Dy 2V L(10),
oy nT'gP(moy)
(DO )i,i_ I 2
1+ 2n=1[g (n0,)]
/ /
g (n0) 9 1 g’ (10,1
VL)) = —02ll_(Y; — 1g3)? + ————— (Vi — no.) — T
( (7]0))% n,193(7707i)( % 770,1) n7192(n0,i)( ) 770,1) g(UO,i)
Thus,
/ /
~ - g (770i) 2 g (770 i)
—Fa) =1 — s — (D72, | =2 oy = (Y —py,) = O
(= o) = = o = (Do) n‘lgf”(no,z-)( F )" n_192(770,i>( £ M) 9(no,i)

=1 — 10 — [Ai(Yi —10.4)? + Bi(Y; —no.) + Cil,
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where

g (n0,) 1 ny
A; = , B; = d C;=—A; 2.
g(n0.)(1 +2n=1[g/ (10.4)]?) an n=g”(no,i)

1+ 2n~"g'(no.:)]*’
Therefore, applying Theorem 2 to the direct case, and the indirect case i.e. 1; := k;u;

E((n —i0)ilY;) =0 = E(n:|Y;) = flos = mos + [Ai(Y; — n0,i)* + Bi(Y; — o) + Cil,
= E(:|Y;) = po,i + k; [Ai(Yi — Kipto i) + Bi(Yi — ko ;) + Cil,
Var((Do)similYi) =1 = Var(mi|Yi) = (Do);
= Var(ui|Ys) = k; 2(Dy ?)ii-

For the direct case, let X; := A;(Y; — noi)* + Bi(Y; — no:) + C; and assume Y; ~
N(n;,n"1g?(n;)), then using C.8 ,

Ey; no.s(Xi) = AiBy; 0 (Vi — n0,i)° +BEY|7;OZ( —1o,i) + C;
= Ain"'g* (o) + Ci =
Varyimo,i(X.) — AZVCLTYMO (Y; — 770,) + B? TVary, . (Y: —n0,)
= A72n72g" (o) + Bin =g (m0,0)-

C.8 Proof for Var(Y; — ny;)?

Recall E(XP) = oP(p — 1)!'[{p is even} when X ~ N(0,0?%). Hence, let X :=Y; — o,
then X ~ N(0,0?%), where 02 = n=1g?(no,;) . Consequently,

E(Y; = no) = E(X) =0,

E(Y; —m.)* = E(X?) =0?,

E(Y; - ma) = E(X*) = 3llo* = 304,

Var(Y; —no:)? = Var(X?) = E(X*) — [E(X?))* = 20*.

C.9 Proof for Corollary 5.5

For the posterior distribution, where we set n := n|Y" for brevity,
p P
Elln — o[ =E2(m —04)° ZVar i) + (En; —no)? = ZVar(m) + X7,

EoElln —mol|? ZVW 1) + Eno (X ZVGT i) + Vary, (Xi) + [Eyy (X))
=1 i=1

= (Dg?)ii + A72n72g* (no) + Bin~ g% (10,0),
where X? = (En; — 10,1)%.
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For the indirect case, i.e. when n; = k;u;
p ~
Ellp — poll* = Z — po,i)? ZVGT’ pi) + (Bp — po,)® = ZVC”“(/M) + X7,

p
EM0E| |1 — po |2 ZVCL’I“ i) + Euo ZVGT i) + Va’/“‘uo( i)+ [Euo (XZ)}Q
= =1

k7 2(Dy %) + ki 2[AZ2n 2 g (kipo ;) + Bin~ g? (ko )],

7

M*@I

1

.
I

where X2 (Ep; — NO,i)Z‘
We proved the above statements using the following lemma:

Lemma C.1. If {X;}! | are random variables and (¢;)!_; € RP, then

p
EY (Xi—ci)® =) EX] +¢ —2¢EX;

i=1 =1

p
= ZV(I’I"(X@) + (EXI)Q + C? — 2¢EX;

= Var(X;) + (EX; — ¢;)”.

Furthermore,

p
EZX2 = Z ([X; — EX;] + EX;)?

p
=Y E(X; - EX;)? + [EX,]” + 2E(X; — EX,)EX;

C.10 Proof for Var(aX + bX?)
Note, for X ~ N(0,02), E(XP) = oP(p — 1)!'I{p is even}. Consequently,

Var(aX +bX?%) = E(aX +bX?)? — [E(aX +bX?))? = E(a’X? + v X + 2abX3) — PE(X?))?
= a?0?% + 3?0 — [b6?)? = a®0? + 2070,

where a,b € R.
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C.11 Proof of Elexp(AX? + BX + ()], where X ~ N(0,0?)
Given that X ~ N(0,0?),

1 2
2 2 =
Elexp(AX” + BX 4 C)] = W exp(Az® + Bz + C) exp(—5 ) dz
1 1.,
= exp(C / N exp(—f[( 2A+ ﬁ)x — 2Bz]) dx.

Let A= (—24+ %) = 12202 and B = BA~!, then

(<24 + )a? —9Bx = A(a® — 2Bx) = Al(x — B)® - B = A(z - B)> — AB®.
g

Hence,
1 1
Efexp(AX? + BX + C)] = ex C/ exp(—=[(—24 + —)2? — 2Bz]) dx
[exp( )] = exp(C) p(—5I( ) )
1 1.~ ~ s
=ex C’/ exp(—=[A(x — B)? — AB?)) dx
p(C) N p(—5A( ) )
1- - 1 1~ .
=ex C—i—ABQ/ exp(—=A(z — B)?) dz
G 1= 1 (z — B)?
- ~AB?
exp(C + 5 )/x Wexp( 552 ) dx,
where 62 = /:1_1.
Thus, if B and & are well-defined,
1-2A40%\~1/2 _ 2
Elexp(AX? 4+ BX +C)] = i exp(C + %BQ(%)*)
o o
1 B2%g?
= i PO s o)

C.12 Proof for Lemma 5.11

Proof. The derivatives of g can be expressed using g itself, i.e.

a
g = 5y 0= (9°) =294,
" ag’ a?

292 4g3
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