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Abstract

Nonequilibrium statistical mechanics deals with noisy systems whose dynamics

breaks time-reversal symmetry. Stochastic Markov processes form a mathemat-

ical framework for a unified theory of nonequilibrium phenomena, particularly

at the microscale where fluctuations play a dominant role. The development of

both theory and useful applications has been aided by minimal, exactly solvable

models, where the logical connection between model feature and behaviour can

be ascertained. In this thesis I consider a number of biologically inspired models

in relation to two aspects of the long-time statistics of nonequilibrium processes:

the attainment of a nonequilibrium steady state, and steady-state fluctuations

using dynamical large deviation theory.

For the first topic, I consider two models of particles moving stochastically

on a ring under no-crossing interactions. The first is of two lattice run-and-

tumble particles, each of which moves in a persistent direction interspersed by

‘tumble’ reorientation events. I extend the previously known steady-state solution

to a solution for all time, in the sense of obtaining a diagonalization of the

Markov generator of the process. The spectrum exhibits eigenvalue crossings

at exceptional points of the tumbling rate, which leads to a singular dependence

of the relaxation time to the steady state on this parameter. In the second

model of heterogeneous single-file diffusion, I solve for the steady state of N

driven particles with individual diffusion properties. This reveals an inter-particle

ratchet effect by which the particle current is disproportionately affected by slow-

diffusing, rather than slow- or fast-driven, particles. The model generalizes to

higher dimension without compromising the solution structure, if a key property

of quasi-one-dimensionality is maintained. In both models, the relation of key

model features to generalized notions of reversibility forms an overarching theme.

For the second topic, I first consider a random walker on a linear lattice and the

effect that adding internal states to the walker has on the emergence of singular

i



behaviour in the fluctuations of either the velocity observable or the time spent

at a given site. In particular, I use generalizations of the run-and-tumble particle

and probe the trajectories associated with the different fluctuations regimes that

this model can exhibit. I show that internal states can either have a drastic

influence on the likelihood of a large deviation, or none at all. I then extend

the dynamical large deviation formalism for diffusions to the case of reflective

boundaries and current-like observables. In particular, this allows the large

deviations of the particle current in the heterogeneous single-file diffusion to be

obtained analytically. These are found to coincide with those of a single diffusive

particle with certain effective parameters, in interesting contrast to comparable

studies on the lattice.

In total, this thesis makes contributions to: conceptual aspects of irreversibility;

exact solutions to commonly studied nonequilibrium models; the description

of mechanisms underlying nonequilibrium phenomena; and to dynamical large

deviation methods.
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Lay summary

Imagine recording through a microscope the jittery motion of a grain of pollen in

a glass of water. If you played that video side-by-side to the same video played in

reverse, a viewer would not be able to infer which video corresponded to the actual

sequence of events. This is because the grain of pollen is at thermal equilibrium

with the water and its randomness is therefore ‘time-reversible’. Many noisy

systems, in particular those related to the workings of livings cells, are not time-

reversible and are called nonequilibrium processes. While physicists have a far-

reaching theory for equilibrium processes, the search for general laws that govern

nonequilibrium processes is still ongoing.

One of many complementary paths towards an understanding of nonequilibrium

processes, is the study of simple mathematical models whose statistics can be

calculated exactly. Simple models help clarify key concepts in the theory, develop

mathematical tools, and point towards interesting nonequilibrium behaviour that

may generalize beyond the particular model studied.

In this thesis I solve the equations that describe the random motion of particles

in two such simple models. Both consist of particles moving in one dimension,

under the constraint that they cannot pass through each other. In the first

model, the way an individual particle moves can be seen as a idealization of the

motion of certain bacteria. The second model is inspired by the diffusion of ions

through pores in cell membranes. My main contributions with this work lie in

describing how time-irreversible aspects of the long-time statistics connect to the

basic mathematical ingredients of the models, and in developing mathematical

techniques applicable to other models as well.
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Introduction

The long-time behaviour of nonequilibrium systems

Road traffic, schools of fish, lasers, intracellular processes, climate systems,

avalanches, ecological populations, epidemics—all are examples of nonequilibrium

systems because they break the assumption of equilibrium physics, that on the

relevant temporal or spatial scales a state free of net currents of matter or energy

is assumed [6, 7]. While equilibrium physics, through equilibrium statistical

mechanics and thermodynamics, comprises coherent theories that span from

the microscopic scale to the astronomical, nonequilibrium physics is more often

described as a collection of useful mathematical tools and ideas to be tailored to

the situation at hand. However, for time-irreversible systems that can be modelled

as a certain kind of stochastic process—a nonequilibrium Markov process—there

is at least a unifying mathematical framework within which core concepts can

be defined with precision; and within which results of some generality can be

sought, and, in fact, have been found [8, 9]. In both of these endeavours, the

study of minimal models defined by simple stochastic-dynamical rules has been

instrumental [10–12]. Such models often take inspiration from the biophysical

processes occurring within or between cells, as these are strongly influenced by

thermal fluctuations, while also being far from equilibrium in order to maintain

life functions. When the rules defining a model are not constrained a priori by

the need to reproduce time-reversible behaviour at long times, the results can be

surprising, such as an abrupt change in dynamical behaviour at a critical value

of a model parameter [13], and difficult to predict without solving or simulating

the process.

In this thesis, I investigate the long-time behaviour of nonequilibrium Markov

processes with the use of analytically tractable minimal models inspired by

biophysical examples. A stochastic process is simply a quantity X(t), such as
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the position of a particle in space, that evolves in time t according to some

stochastic rules [14–16]. The Markov property states that the stochastic rules

only depend on the instantaneous value of X, as opposed to on the history

(or the future) of the process. This implies that the probability distribution

P (x, t) for X(t) = x is evolved in time by a mathematical ‘generator’ easily

defined from kinetic rules with a direct physical meaning. Under commonly

assumed conditions, these processes relax over some characteristic time scale τrel

towards a unique stationary or ‘steady’ state where the statistics of X(t)—the

distribution P and all time-correlations of X—do not change with time. However,

the statistics in a steady state may not be invariant with respect to the direction

of time: a steady state that contains net, stationary probability currents, and

is therefore statistically irreversible, is called a nonequilibrium steady state (a

ness); a process that relaxes towards a ness is, in the terminology of this thesis,

a nonequilibrium process.

I ascribe two meanings to the phrase ‘long-time behaviour’, which serve to

organize this thesis into two parts. The first meaning refers to the description

of (nonequilibrium) steady states, their average behaviour, and relaxation

characteristics. Often, τrel is long compared to time scales of individual changes

in the value of X(t), and an exact steady state appears only as t → ∞, strictly

speaking. In a steady state, while the statistics are time-invariant, X(t) still

fluctuates around its typical behaviour in a way consistent with the statistical

average. Over any observation time window T , we may observe an atypical

behaviour, such as a large deviation of an observable (i.e. a function of X(t))

from its typical value. The characterization of such events, all of which become

rare as T � τrel, is the second meaning of ‘long-time’.

In the first part of this thesis, I seek original, exact solutions to two significant

variations of a model with a paradigmatic status in the study of nesss: the asep

(for ‘asymmetric simple exclusion process’) [10, 13, 17]. The classic asep consists

of particles randomly hopping left or right on a one-dimensional lattice under

conditions of volume exclusion between particles. Its open-boundary version is

the poster-child of a boundary-driven nonequilibrium phase transition [18, 19],

where asymmetric injection and extraction of particles at the boundary sites

control different regimes of the net particle current (Figure 1a). The periodic

case, of more relevance to this thesis, also produces a ness when the particles are

biased in their hopping direction (but no phase transition) and generates a net

current that is limited by inter-particle blocking. In addition to being a general
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Figure 1 Lattice run-and-tumble particles and heterogeneous single-file diffu-
sions as extensions of the (periodic) asep.

model for understanding the phenomenology of one-dimensional transport, from

vehicular traffic to the motion of molecular motors along microtubules inside cells,

the asep has captured the interest of physicists and mathematicians seeking

to understand the subtle symmetries that enable exact solutions to certain

many-body problems [17]. By exact solution is usually meant an explicit or

implicit analytical representation of the time-dependent distribution P (x, t), or

its stationary limit P ∗(x), in terms of known functions. In the spirit of previous

work on the asep and other exactly solvable models, in the models I study, I set

out to (i) discover interesting effects that are only possible out of equilibrium; (ii)

understand how such effects are logically related to the mathematical features

that define the model; (iii) understand when—and then why—the model can be

exactly solved.

The first model that I consider has each particle in the periodic asep stochasti-

cally and independently alternate between an exclusively right-moving state and

left-moving state [20] (Figure 1b). This makes each particle an idealized version
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of a microswimmer such an E. coli bacterium, whose motion is referred to as

‘run-and-tumble’ [21]. Such particles fall into a class of nonequilibrium systems

called ‘self-propelled active particles’, characterized by the conversion of energy

into motion [22, 23]. Self-propelled active particles interacting with obstacles or

other particles display an array of fascinating behaviour due to the phenomenon

of jamming. While much progress has been made on the phenomenology of

interacting systems of active particles, e.g. on ‘motility-induced phase separation’

that gives a general mechanism for cluster formation even in the absence of

attractive forces [24, 25], few exact results have been obtained in scenarios of

more then just a single active particle, which sets the challenge.

The second variation on the asep that I consider transposes the model to the

continuum ring, and lets each particle have unique parameters for their motion

(drift and diffusivity) (Figure 1c). The continuum asep is commonly called

‘single-file-diffusion’ (sfd) and has been used to model, for example, the diffusion

of particles through pores in minerals or cell membranes [26]. In the heterogeneous

sfd, the key symmetry of particle-exchange is broken. The typical particle

current around the ring can be expected to depend on the whole set of model

parameters in some interesting way, to which I apply the considerations (i), (ii),

(iii) above.

In the second part of this thesis, I use dynamical large deviation theory (dldt)

[27–29] to explore the trajectories associated with atypical values in observables

of nonequilibrium Markov processes. Large deviation theory, in general, concerns

the study of ‘small’ probabilities that decay at an exponential rate with some

large parameter [9, 30]. In dynamical large deviation theory, that parameter is

the large observation time T . At the heart of dldt is a change in perspective

from the view of the statistics of the ‘microstates’ x that X(t) can attain, to

the statistics of trajectories ωT = {x(t)}Tt=0 that X(t) generates over the time

window T . Remarkably, the mathematical structure of equilibrium statistical

mechanics is essentially a ‘static’ large deviation theory in the particle number

N . Therefore, we find in dldt ‘dynamical’ generalizations to partition functions,

thermodynamic potentials, and phase transitions that is the stuff of equilibrium

theory. dldt is increasingly seen as offering a fundamental structure for systems

far from equilibrium [9, 31, 32], and has produced results of celebrated generality.

These include ‘fluctuation relations’ relating the probabilities of events Q (e.g.

an amount of heat dissipated into a thermal reservoir) to their ‘opposites’ −Q
(the same amount of heat extracted) [33–35], and ‘thermodynamic uncertainty
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relations’ that give universal bounds on the likelihoods of current fluctuations

[36, 37].

dldt also gives practical tools to quantify the structure of rare fluctuations

in specific models. I apply these tools to models of one-dimensional random

walkers with internal states to explore the conditions under which singularities

can develop in the ‘dynamical potentials’ relating to the velocity observable and

the observable of time fraction spent at the origin. In particular, I use a model

of an asymmetric run-and-tumble particle, where the asymmetry in hopping can

be played out against the asymmetry in direction-reversal to interesting effect.

In the last 15 years or so, a construction in dldt has frequently applied in

the physics literature, that allows the character of trajectories associated with a

given fluctuation to be described by an ‘effective process’. This gives a view onto

understanding the mechanism behind fluctuations and is consistently employed

in my study of fluctuations in multi-state random walks.

I also consider how to extend the dldt to study currents in diffusion processes

that have reflective boundaries. Many processes in physics and beyond are

modelled with reflecting boundaries [38], and extending the theory to be

applicable in these cases constitutes a key extension of the basic dynamical large

deviation formalism. In particular, the heterogeneous sfd can be mapped to

a reflected diffusion, and I study the statistics of its collective particle current.

Thus, the second part of the thesis sees us revisiting the models from the first

part under a different set of questions.

As a whole, this thesis makes original contributions to exact results in the specific

models of run-and-tumble particles and heterogeneous single-file diffusions; to

the description of nonequilibrium effects in these models; to development of

solution techniques for lattice- and continuum-space processes; and to the theory

of dynamical large deviations.

Below we take a tour through the chapters of this thesis, with a more detailed

description of the questions asked and answers obtained.

A tour of this thesis

The thesis contains six chapters divided into two parts. Each part begins

with a background chapter, to give general context, explain the mathematical
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framework, and fix notations. The subsequent two chapters then focus on

an original research question related to the general topic of the thesis part,

as introduced above. Each of the four original-research chapters contains a

background opening section, adapted to the specialized topic of that chapter.

The thesis closes with a Conclusions section tying together the different strings

spun in the four main chapters.

Part I

Chapter 1:

Background on nonequilibrium Markov processes

I introduce the theory of nonequilibrium Markov processes that forms the

mathematical and conceptual backdrop of this entire thesis. Most of the

elements presented here can be gleaned from a collection of classic textbooks

on nonequilibrium statistical mechanics [6, 7] and applied probability theory [14–

16]. However, I have adopted a mode of presentation that I believe is unusual,

aiming to give a not-too-technical yet general view of the mathematical structure

as such, while organizing the developments around concepts of (ir)reversibility

that are of particular interest to physicists.

After a more general opening section inspired by [8], in which I elaborate upon

why the Markov property is so central to the structure of nonequilibrium theory,

the chapter focuses on jump processes that evolve in continuous time on countable

state spaces. Jump processes have a certain primacy, in that processes on

continuous state spaces can be constructed as limits of jump processes. Indeed,

I introduce diffusions, epitomized by Brownian motion, from this point of view,

showcasing a diffusive limit technique that will be employed repeatedly in the

following chapters.

Chapter 2:

Exceptional points and singular relaxation times for run-and-tumble particles

Following earlier work [20, 39], I study a minimal model of ‘active matter’ in the

form of run-and-tumble particles (rtps) on a ring lattice. Each particle hops

stochastically in a given direction (‘runs’) that stochastically reverses (‘tumbles’)

with a rate ω. Volume exclusion prevents a particle from hopping onto an already
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occupied site.

Firstly, I use the model to clarify a fundamental point, that it is the combination

of persistence and interaction with obstacles (e.g. other particles) that cause non-

Boltzmann stationary distributions in active systems through the breaking of a

generalized reversibility property.

The main objective of the chapter is then to derive the exact, time-dependent

solution to the model, in the spirit of the periodic asep. While the N -particle

version of the latter is solved by a ‘Bethe ansatz’ [17, 40], this technique fails for

the rtps, and a solution must be sought de novo. I solve the one- and two-rtp

problems exactly for all times using generating function techniques applied to

diagonalize the matrix that generates the stochastic evolution of the process.

The main physical result is that the relaxation time of the process to the

previously known stationary distribution [39] has a singularity as a function of

the tumbling rate ω. This is because at exceptional points ω∗ of this parameter,

the process generator experiences eigenvalue crossings, only possible due to the

breaking of (non-generalized) reversibility.

The ambition to extend the solution to particle number N > 2 is thwarted by

the considerable complexity of the two-particle solution, which shows that even

in minimal models of many-body active matter systems, exact solutions may be

a bridge too far.

The results of this chapter have been published in [1].

Chapter 3:

An inter-particle ratchet effect in heterogeneous single-file diffusion

I consider the model of single-file diffusion (sfd) where N particles drift and

diffuse on a ring without overtaking. The latter constraint is modelled as reflective

boundary conditions of one particle with respect to any other. I treat the case of

non-identical particles having constant individual drifts and diffusivities.

While the time-dependent solution of the heterogeneous sfd could not be

obtained exactly by any traditional means, I show that the stationary distribution

has a simple factorized form similar to the asep with particle-wise disorder [41–

43]. The steady state of this model is out of equilibrium because there is a

net current of particles around the ring. On the continuum as opposed to the
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lattice, however, it becomes clear that the diffusivities control the current, which

is strongly biased towards the drift of the particles with the lowest diffusivities

due to a diffusion-ratchet effect.

The same ratchet effect was found in a non-trivially related model of filament-

driven membrane growth [44]. This motivates the objective of the second half

of this chapter, which is to generalize the model as far as possible, in order to

understand what precisely are the critical features that afford an exactly solvable

steady state. By considering instead of a narrow channel, a ‘tube’ in d dimensions,

I show that the condition of ‘quasi-one-dimensionality’ is key, meaning that no

particle is able to overtake all others in the tube. This effectively forces a common

net velocity of all particles in the long-time limit. In the analysis, the ‘irreversible

drift’ [45] of the process, analysed from a phase-space geometrical point of view, is

central. Because the irreversible drift is not zero, the process is out of equilibrium,

but with respect to an emergent frame of reference moving at net particle velocity,

it appears reversible, which promotes exact solvability.

In the generalized model, there is also a generalized diffusion ratchet effect, where

the current is affected by any deviation from triviality of the total diffusion matrix,

e.g. particle disorder or spatial anisotropy.

The results of this chapter have been published in [4].

Part II

Chapter 4:

Background on dynamical large deviation theory

I present dynamical large deviation theory (dldt), used to study the long-

time deviations from typical behaviour in Markov process, i.e. sustained steady-

state fluctuations. There are two fundamental questions the theory addresses:

how to quantify via ‘rate functions’ the exponentially decaying probabilities of

sustained fluctuations with a large observation time T , and how to characterize

the trajectories which give rise to these fluctuations through an ‘effective process’.

I first recount some basics of large deviation theory. Then, for jump processes,

I derive the ‘level 2.5 large deviation principle’ which provides the rate function

corresponding to the empirical probability density and empirical probability flow
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of a Markov process. From this result, I derive the rate functions corresponding

to time-averaged observables such as integrated currents, entropy production,

and occupation times, by the large-deviation method of contraction, which also

furnishes the effective process for these observables. The analogous results for

diffusion processes are also presented. This chapter follows entirely the primary

literature, in particular [28, 46–48], but gives a self-contained and fully detailed

derivation of the contraction-from-level-2.5 approach that aspires to be a useful

reference for new entrants to the topic of dynamical large deviations.

Chapter 5:

Rare trajectories of multi-state random walkers

The large deviations of dynamical observables in simple random walks or diffu-

sions have recently been used to investigate under what conditions singularities

can develop in rate functions, or in the associated ‘scaled cumulant generating

function’ (scgf) that is a akin to a ‘dynamical’ free energy density. I apply the

theory of Chapter 4 in exactly deriving the rate functions and effective processes

for examples drawn from class of one-dimensional random walkers with internal

states.

First, I consider the velocity observable for an asymmetric version of an rtp. By

a tuning of the parameters such that the time-scale of tumbles becomes large

to that of hopping, one finds a near-flat branch of the rate function separating

fluctuation regimes which a smooth cross-over in their associated trajectories as

revealed through the effective process. At a different tuning of the parameters,

corresponding to a curious giant degeneracy of the process generator’s spectrum,

the rate function coincides with that of an asymmetric random walk without

internal states, but the associated trajectories are qualitatively different. These

two examples show that internal states can have either have a drastic influence

on the likelihood of a large deviation, or none at all.

Second, I consider for the asymmetric rtp the time spent at the origin, to examine

the presence of a dynamical phase transition following [49, 50]. Consistent with

previous reasoning about which conditions enable this phenomenon, it appears

whenever the particle has a non-zero net velocity, and separates a dynamical phase

of trajectories localized around the origin, from one where trajectories spend only

part of the time around the origin, and then escape.

The results of this chapter have been published in [2].
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Chapter 6:

Dynamical large deviations in the presence of boundaries

I consider how to adapt the dynamical large deviation theory for diffusions to the

presence of reflective boundaries. This development is motivated by an interest

in understanding what general influence boundaries have on dynamical large

deviations, and of allowing dynamical large deviation calculations to be carried

out for specific reflected diffusions. In particular, the heterogeneous single-file

diffusion from Chapter 3 can be mapped to a reflected diffusion, and the question

of how the diffusion-ratchet effect influences current fluctuations is of interest.

Formally, the general problem amounts to deriving boundary conditions for

certain ‘tilted generators’ associated with the given reflected diffusion and

dynamical observable of interest. In a previous work [51], the boundary conditions

were found for the case of dynamical observables that are of the occupation-time

type, using an argument of operator duality. In this chapter we focus instead on

current-like observables, to which this argument from duality does not transfer.

Instead, I construct a tilted generator for a jump process, such that in the diffusive

limit we obtain from it the sought-after boundary conditions. With this main

result established, we find as a general consequence that the effective process is

also a reflected diffusion.

In applying the new formalism to the heterogeneous N -particle sfd, I find that

the fluctuations in the collective particle current are identical to those of just a

single particle with certain averaged drift and diffusivity parameters. I give exact

expressions for the rate function and the effective process. The latter reveals

that sustained current fluctuations arise by all particles modifying their average

velocities by the same amount ∆v, regardless of the individual parameters of

the particle, but ∆v itself depends on all particle properties. The results are

in interesting contrast with lattice models such as the asep, where collective

current fluctuations imply not only changes in individual particle velocity but

also effective repulsion between particles [52], an effect not surviving the diffusive

limit, apparently.

The work in this chapter was done in external collaboration with Johan du

Buisson and Hugo Touchette and published in [5].
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Part I

Relaxation to a nonequilibrium

steady state
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Chapter 1

Background on nonequilibrium

Markov processes

1.1 The Markov property in nonequilibrium physics

In nonequilibrium statistical mechanics, systems are ubiquitously modelled

as time-homogeneous, ergodic Markov processes. Here we introduce these

mathematical concepts, and attempt to give an overview of why they provide the

appropriate mathematical framework for defining ‘nonequilibrium conditions’ in

a general way. In later sections, we will specialize to jump processes and diffusion

processes, which are forms of Markov processes useful is constructing specific

models.

1.1.1 Whence stochasticity and Markovity?

To quantitatively model the dynamical behaviour of any kind of system, we assign

to it a state X(t) at time t, taking values in some state space X for times in T .

Depending on the situation, time may be modelled discretely or continuously.

Likewise, the state space may be a discrete set or some subset of Rd. In physics,

there are many reasons why the state X(t) cannot be known with certainty at a

given time t, so that X(t) is a random variable, and the sequence over all times

constitutes a stochastic process. Consider, for example, the prototypical model of

statistical mechanics, with X(t) the 6N positions and momenta of an N -particle
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fluid in a box:

� Even if the laws of motion are deterministic, X(t) may contain uncertainty

due to imperfectly known initial conditions, amplified by deterministic

chaos;

� If the particles experience non-elastic collisions with the box walls main-

tained at some temperature, the external environment constitutes a

persistent random influence on X(t);

� If we coarse-grain the box into spatial cells described by the their average

particle number and momentum, the dynamics at the level of cells must be

described stochastically even if the microscopic dynamics is deterministic.

Regardless of the origin of stochastic behaviour, for many disparate systems, it

is often found that the ‘right choice’ [6] of state variables justifies the assumption

of the Markov property:

Conditioned on the present state, past and future sequences of states

are statistically independent.

Intuitively, this can be thought to reflect a principle of causal closure, in that the

state variables encode all proximate influences on their own evolution (whether

forward or backward in time) available at that level of description.

To express the Markov property mathematically, let us denote the probability of

a sequence of states, ordered in time by tN > . . . > t0 > . . . > t−M , as

P(M+N+1)(xN , tN ; . . . ;x0, t0; . . . ;x−M , t−M) :=

P[X(tN) = xN , . . . , X(t0) = x0, . . . , X(t−M) = x−M ],

(1.1)

where P is the probability measure of the process. Then the Markov property

states that

P(M+N+1|1)(xN , tN ; . . . ;x0, t0; . . . ;x−M , t−M | x0, t0) =

P(N |1)(xN , tN ; . . . ;x1, t1 | x0, t0)PM |1(x−1, t−1; . . . ;x−M , t−M | x0, t0).

(1.2)

(The subscript on P is used to distinguish functions with different argument
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structure.) In particular, if we divide (1.2) by PM |1, we obtain

P(N |M+1)(xN , tN ; . . . ;x1, t1 | x0, t0; . . . ;x−M , t−M) =

P(N |1)(xN , tN ; . . . ;x1, t1 | x0, t0),

(1.3)

often taken as the definition of the Markov property under the slogan that

“Markov processes have no memory”. This definition is in fact equivalent to

(1.2) [8, 15], but obfuscates the prediction-retrodiction symmetry of the

Markov property.

The Markov property can in some instances be systematically derived for a

coarse-grained process, e.g. for a colloidal particle in a bath; when a classical

phase space is naturally partitioned into regions separated by effective energy

barriers, as for suspensions of chemical reactants, or configurational transitions

of macromolecules [6, 53]; and more generally by the projection operator method

applied to (quantum) Hamiltonians and the separation of ‘fast’ and ‘slow’ modes

of evolution [7, 54]. In other cases from biophysics and ecology, to economics,

and sociology, the Markov property is a reasonable modelling assumption, without

which stochastic modelling becomes very difficult, because, as we shall see next,

it is central to thinking about processes in terms of initial distributions and

dynamical rules.

1.1.2 Prediction vs. retrodiction

A key conceptual and practical consequence of the Markov property is that

it allows a process to be defined in terms of an initial distribution and an

independently defined evolution operator, that encodes the ‘dynamical laws’ of

the model. This is in contrast to the most general process, which must be defined

by the entire set {P(n)}∞n=1.

Let us interpret t0 as the initial time of our process, and define the initial

distribution

µ(x0) := P(1)(x0, t0). (1.4)

We denote the probability distribution at a later time by

Pµ(x, t) :=
∑

x0∈X

P(1|1)(x, t | x0, t0)µ(x0), t > t0. (1.5)
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Let us further define the forward evolution operator from t to t′ > t by

Ut′,t(x
′, x) := P(1|1)(x

′, t′ | x, t). (1.6)

Note that if we notationally treat it as a matrix, it satisfies a composition rule

with a semi-group structure in the time arguments,

Ut′′,t = Ut′′,t′Ut′,t, t′′ > t′ > t. (1.7)

Using the Markov property, we have for t′ > t > t0,

P(2|1)(x
′, t′;x, t | x0, t0) = P(1|1)(x

′, t′ | x, t, x0, t0)P(1|1)(x, t | x0, t0) (1.8a)

= P(1|1)(x
′, t′ | x, t)P(1|1)(x, t | x0, t0). (1.8b)

Multiplying by µ(x0) and marginalizing over x and x0, we arrive at the

Chapman-Kolmogorov equation (CKE)

Pµ(x′, t′) =
∑

x∈X

Ut′,t(x
′, x)Pµ(x, t). (1.9)

Thus, we can take the view that the ‘physics’ of a stochastic system is contained

in the operator Ut′,t, separated from the initial condition µ. Furthermore, due to

the semi-group property, we have that for an infinitesimal time-step ∆t (or the

minimal step if time is discrete)

Ut+∆t,t = e∆tHt , (1.10)

with Ht an (infinitesimal) forward generator, in many ways similar to a

quantum Hamiltonian. Beyond Section 1.1 of the thesis, we will focus exclu-

sively on continuous-time Markov processes that are also time-homogeneous,

meaning that Ht = H, and therefore Ut′,t =: Ut′−t = exp[(t′ − t)H]. Physically,

the interpretation of time-homogeneity is that the dynamical laws themselves

are constant in time, e.g. because the model contains no time-varying external

parameters. In Section 1.2 we will review jump processes on countable state

spaces, for which H (then to be denoted W) is a transition rate matrix. In

Section 1.3 we derive diffusion processes that evolve in continuous space, and

for which H (then to be denoted L†) is a differential operator of diffusion type.

The definition of a Markov process as an initial distribution together with an

evolution operator forward in time, produces implicitly an evolution operator
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backward in time through Bayesian inversion:

Ūt,t′(x, x
′) := P(1|1)(x, t | x′, t′) = Ut′,t(x

′, x)
Pµ(x, t)

Pµ(x′, t′)
. (1.11)

It is the operator inverse of Ut′,t and also has the semi-group property. Due to

the prediction-retrodiction symmetry, we could instead have considered a fixed

final distribution

ν(xf ) := P(1)(xf , tf ), (1.12)

(with tf > t′ > t) and defined probabilities

P̄ν(x, t) :=
∑

xf

P (x, t | xf , tf )ν(xf ). (1.13)

These probabilities would evolve by

P̄ν(x, t) :=
∑

x′

Ūt,t′(x, x
′)P̄ν(x

′, t′), (1.14)

where Ūt,t′ could be defined independently of ν, whereas Ut′,t would be the

dependent quantity via Bayesian inversion. While (1.14) might have been called

a backward Chapman-Kolmogorov equation, this term is instead reserved

for another evolution, that of initial conditions being pushed backward in time,

P (xf , tf | x, t) =
∑

x′

U †t′,t(x, x
′)P (xf , tf | x′, t′), (1.15)

where U †t′,t(x, x
′) = Ut′,t(x

′, x) is usually called the backward evolution

operator.

A subtle point raised by Uffink [8], is that by choosing to define a Markov process

from the prediction point of view, we inadvertently introduce a certain ‘arrow of

time’ at the statistical level. In particular, if the forward evolution operator is

time-homogeneous, this is not necessarily true of the backward evolution operator,

unless Pµ(x, t) is time-independent. As we shall see next, this feature of the

mathematical theory will allow us two separate the notions of ‘nonequilibrium’

as relaxation from a special initial condition towards a stationary limit, and as

indefinitely maintained conditions of irreversibility.
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1.1.3 The meaning of ‘nonequilibrium’

Nonequilibrium physics concerns processes that are irreversible in time. For

Boltzmann, Gibbs, and their peers, ‘nonequilibrium’ tended to refer to the

transient regime of a thermal system, typically an isolated gas, relaxing towards a

macroscopic equilibrium state from some special, nonequilibrium initial condition.

Onsager, and later Prigogine, would refocus nonequilibrium physics on dissipative

steady states, exemplified by chemically reacting suspensions and convection cells

in which stationary currents of mass and heat are indefinitely maintained (on

the relevant time-scales). ‘Nonequilibrium’ then refers to the physical conditions

under which the system evolves, e.g. under external heating or internal chemical

activity, rather than the accident of initial distribution. We aim here to present

a mathematical definition of a nonequilibrium process in this latter sense of

‘nonequilibrium’ as internal or external conditions of the process that maintain

irreversible behaviour indefinitely, regardless of initial conditions. We must first

define stationarity and reversibility.

A stochastic process X∗(t) is a stationary process if its statistics are time-

translation invariant. That is, if for all τ ,

P[X∗(tn + τ) = xn, . . . , X
∗(t1 + τ) = x1] = P[X∗(tn) = xn, . . . , X

∗(t1) = x1].

(1.16)

A stationary process will also be referred to as a steady state. Relatedly, a

stationary or steady-state distribution P ∗ of a Markov process X(t), is one

for which the Chapman-Kolmogorov equation (1.9) is invariant,

P ∗(x′) =
∑

x∈X

Ut′,t(x
′, x)P ∗(x), (1.17)

for any t, t′. If X(t) has initial condition µ = P ∗, then X(t) will be a stationary

process.

One immediately wonders about the existence and uniqueness of stationary

distributions for Markov processes, and what limit, if any, a given initial

distribution converges to with time:

lim
t→∞

Pµ(x, t)
?
= P ∗µ(x)

?
= P ∗(x). (1.18)
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Clearly, if the process is not time-homogeneous, one has no reason to expect any

stationary distributions to exist; but perhaps a periodic limiting distribution, if

the process is periodically driven [55]. A Markov process that convergences from

any initial distribution µ to a unique stationary distribution P ∗ is called ergodic,

in which case we can say the process itself converges towards a stationary process,

X → X∗. A detailed discussion of the pre-conditions for ergodicity is deferred to

Section 1.2.2 in the context of jump processes.

If we consider a process X(t) on T = [0,+∞), we can over the observation time

window T obs = [0, T ] define the reverse process

X̂(t) := X(T − t). (1.19)

(If the interpretation of X(t) contains coordinates that are momentum-like, then

physical time-reversal may entail also conjugating those coordinates; we will

discuss such generalized notions of reversed processess in Section 1.2.5.) X(t)

is reversible if it is statistically indistinguishable from its reverse process, over

all observation time windows:

P[X(tn) = xN , . . . , X(t1) = x1] = P[X̂(tN) = xN , . . . , X̂(t1) = x1] (1.20)

for any N ≥ 1, xn ∈ X , tn ∈ T obs, and for any T > 0. For X(t) a Markov process,

the reverse process X̂(t) is also Markovian, but with initial distribution

µ̂(x) = Pµ(x, T ), (1.21)

and evolution operator

Ût′,t(x
′, x) = UT−t,T−t′(x, x

′)
Pµ(x′, T − t′)
Pµ(x, T − t) . (1.22)

A Markov process is hence reversible if

µ̂(x) = µ(x), (1.23)

and

Ût′,t = Ut′,t, t′ > t, (1.24)

for any T > 0. The first conditions implies that µ = µ̂ = P ∗ is a stationary

distribution, and hence that X(t) is a stationary process. For X(t) being
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stationary and time-homogeneous, so that Ut′,t = Ut′−t, the second condition

can be expressed as the condition of detailed balance

Us(x, x
′)P ∗(x′) = Us(x

′, x)P ∗(x). (1.25)

Detailed balance expresses that the probability flow from any state x to another

state x′ is exactly balanced by the reverse flow, over any time scale. When X(t)

is interpreted as a physical process, e.g. the positions of colloidal particles in a

bath, probability flow translates to a physical flow of mass or energy, and detailed

balance implies the absence of net, physical currents on any spatial scale captured

by the model.

We can then define a nonequilibrium steady state (ness) as a stationary

process that is not reversible (i.e. is irreversible). In particular, a stationary,

time-homogeneous Markov process constitutes a ness if the condition of detailed

balance is violated. For ergodic Markov processes, that converge asymptotically

to a unique steady state from any initial distribution, whether that steady state is

a ness or not must be a property of the process generator (i.e. of the dynamical

rules of the process), because it is independent of the initial distribution. In

this instance we can define a nonequilibrium process as one whose eventual

steady state is a ness, and, similarly, an equilibrium process as one with

an equilibrium (reversible) steady state. In the terminology we will adhere

to, the non-stationary regime of an equilibrium process will not be referred to

as nonequilibrium. Thus we are excluding from consideration the very long-

lived states associated with the slow approach to equilibrium in disordered

systems [56]. Furthermore, our terminology contrasts with some fields such as

ecological population modelling and economic/evolutionary game theory, where

(non)equilibrium is synonymous with (non)stationarity, and nonequilibrium

steady state means a limit-cycle distribution.

Note that, for non-ergodic processes, it is generally not possible to judge whether

the time-reversal non-invariance of state sequences is due to special initial con-

ditions (i.e. ‘nonequilibrium’ in the historic sense of relaxation or transience), or

due to some intrinsic quality of the dynamical rules (‘nonequilibrium conditions’).

This is precisely because there is no unique steady state that isolates only

the latter aspect of irreversibility. For non-Markovian processes, there is not

necessarily even an evolution operator than can be interpreted as ‘dynamical

rules’ defined independently of the initial distribution. These points emphasize

how central the ergodic Markov assumption is to consistently formalize the notion
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Figure 1.1 The trajectory of a jump process

of a nonequilibrium process.

It is important to be mindful that the above definition of a (non)equilibrium

process is a purely mathematical one, designed to formalize our physical ideas.

Whether a real system is judged in or out of equilibrium by this definition will

depend on how it has been modelled, specifically on the spatial and temporal

scales that the model faithfully represents. Models of self-propelled, active

particles that move by consuming chemical energy are a case in point. Without

explicit inclusion of the state of the energy resource in the model description,

they undergo nonequilibrium dynamics. If the resource is also included in the

description, one may find that the previous model merely represents a short-

time, non-stationary regime of what is now an equilibrium process [57]. In a

large system of active particles without alignment interactions, the breaking of

time-reversal symmetry due to steric interaction at the mesoscopic level may be

hidden at the coarse-grained level of clustering dynamics, which can be mapped

to an equilibrium model [58].

1.2 Jump process theory

We now consider continuous-time Markov processes on countable state spaces,

then known as jump processes1 (Figure 1.1). Apart from being a form of process

with useful applications, it is also fundamental, in that Markov processes in

continuous space, whether Lévy flights or drift-diffusions, can be constructed as

limits of jump processes [14]. Furthermore, many basic concept of nonequilibrium

physics that we shall define—e.g. current, activity, entropy production—are most

conveniently defined in the jump process language.

1Or ‘discrete’ jump processes, as jump processes with jumps drawn from a continuous range
are also possible—but we will not be concerned with the latter.
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1.2.1 The Master equation and its generator

We let X(t) be a time-homogeneous Markov process in continuous time on the

countable state space X 3 x, y, z, etc. The initial distribution we denote µ, and

the probability at a later time P (x, t) = Pµ(x, t). The time evolution operator

(1.6), due to its semi-group structure, has the exponential form

Us(y, x) = (esW)(y, x), (1.26)

with (forward) generator

W(y, x) := lim
s→0

d

ds
P[X(s+ t) = y | X(t) = x] (1.27a)

= lim
s→0

P[X(s+ t) = y | X(t) = x]− δx,y
s

(1.27b)

For x 6= y we write

W(y, x) = W (y, x), (1.28)

which are the transition rates from2 x to y. By convention we let W (x, x) = 0.

For y = x, we have

W(x, x) = lim
s→0

d

ds

{
1−

∑

z 6=x

P[X(s+ t) = z | X(t) = x]

}
(1.29)

= −ξ(x), (1.30)

where we define the escape rates

ξ(y) :=
∑

z∈X

W (z, y), (1.31)

the probability per unit time of leaving the state y. By construction, W is column

stochastic, meaning that for each column the rows sum to zero,

∑

y

W(y, x) = 0. (1.32)

2In this thesis, I have settled on W (y, x) for x → y, rather than W (x, y), W (y | x) or
W (x → y), as it the form most notationally consistent with W being a matrix acting on the
right. Other conventions were used in some of my publications.
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Consider now the Chapman-Kolmogorov equation (1.9),

P (y, t+ s) =
∑

x∈X

Us(y, x)P (x, t), (1.33)

and apply lims→0 d/ ds. We then arrive at the master equation

∂tP (y, t) =
∑

x

W(y, x)P (x, t) (1.34a)

=
∑

y

[W (y, x)P (x, t)−W (x, y)P (y, t)] . (1.34b)

The master equation states that the change in probability at a given state is

determined by the difference of instantaneous loss and gain terms. We can define

J(y, x; t) := W (y, x)P (x, t)−W (x, y)P (y, t), (1.35)

and interpret it as the probability current across bond x → y at time t. The

probability current is often directly related to a physical current of matter or

energy.

In practice, a jump process will be defined by a state space X , a set of transition

rates {W}, and the master equation, to be thought of as a function of the

initial distribution µ which often is not thought of as defining the model per

se. This can be called a kinetic view of model-making [12] because it is centred

on implementing dynamical rules that are not necessarily constrained a priori by

the need to reproduce some imposed distribution (e.g. a Boltzmann distribution).

Below we consider some examples, as illustrated in Figure 1.2:

(a) A random walk on a graph. X(t) is the position of a particle that moves

between the nodes x ∈ X of a weighted, directed graph, with edges (y, x) ∈
E ⊂ X×X of weights w(y, x). The particle hops from its current position x to

y at a rate proportional to the weight of the edge, hence W (y, x) = γw(y, x),

where γ determines the units of time.

This example illustrates the point that any jump process can be thought of

as a random walk on some graph.

(b) A run-and-tumble particle. X(t) is the state of a self-propelled particle,

which has a position n on a linear lattice and an orientation σ ∈ {1,+1}
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Figure 1.2 Illustrations of the jump processes described below.

(=left/right). The particle propels itself one site in the direction of its

orientation at a rate γ, and reverses its orientation at a rate ω. The non-zero

transition rates are then

W ((n+ σ, σ), (n, σ)) = γ, W ((n,−σ), (n, σ)) = ω. (1.36)

This model will be studied in-depth in Chapter 2 were more background on

the motivation of this model is also provided.

(c) Birth-death process. X(t) is the number n of individuals of a well-mixed

population of a species S. An individual reproduces asexually at a rate

b (S
b→ S + S) and dies naturally at rate d (S

b→ ∅). Every individual

encounters every other at a rate c, and one of the two dies in competition

(S + S
c→ S). The rates are then

W (n+ 1, n) = bn, W (n− 1, n) = dn+ cn(n− 1). (1.37)

This is an example of an absorbing process because X = 0 is an absorbing

state which the process can never leave if attained.

(d) The periodic ASEP. X(t) denotes the positions of N asymmetric random
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walkers existing on a lattice ring of L sites. Each walker attempts to hop

forward by one site at a rate p+ = p, and backward by one site at a rate

p− = q, and only succeeds if the target site is empty—these are hardcore

exclusion interactions. The states have the structure x = {n1, . . . , nN}
with ni the position of particle i. This gives transition rates W (x′, x) = p± if

x′ and x differ only by n′i = ni ± 1 with ni ± 1 6= ni±1, for exactly one index

i.

This is the periodic version of the asymmetric simple exclusion process

(asep), a paradigm of the kinetic approach to nonequilibrium theory [10, 12,

17]. In the case p = q the ‘asymmetric’ is replaced by ‘symmetric’ (ssep),

and if p > 0, q = 0 by ‘totally asymmetric’ (tasep).

(e) The open ASEP. Hardcore-excluding asymmetric random walkers hop with

rates p and q on a linear lattice of L sites. On the boundary site 1, a particle

is injected with rate α if the site is empty; a particle at the boundary site L

exits with rate β. Due to non-conservation of particle number, the states x

have the structure {τ1, . . . , τL}, where τn ∈ {0, 1} is the occupancy of site n.

The transition rates are written down similarly do (d).

Continuing with the general properties of jump processes: The waiting-time

distribution w(τ | x, t) is the probability density of waiting a time τ before a

jump occurs, given that we find the process in state x at time t. The probability

that the particle jumps in a small time-interval ∆τ after time τ is the probability

of not jumping up to time τ , times the probability of making some jump in the

interval ∆τ :

w(τ | x, t)∆τ =

(
1−

∫ τ

0

dτ ′w(τ ′ | x, t)
)
× ξ(x)∆τ. (1.38)

By differentiation, this equation becomes ∂τw = −ξw with the solution that

waiting times are exponentially distributed with the escape rates as parameter:

w(τ | x, t) = ξ(x)e−ξ(x)τ . (1.39)

Jump process trajectories (Figure 1.1) are thus generated by a state-dependent

‘Poisson clock’ that dictates when to jump, and an embedded discrete-time

process dictating where to jump at those times. This we will use in Chapter 4 to

write down the jump-process path-probability.
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For functions F : X → R, we can define an evolution operator L by

(LF )(x) := lim
dt→0

1

dt
〈F (X(t+ dt))− F (X(t)) | X(t) = x〉 (1.40a)

= ∂t 〈F (X(t))〉x . (1.40b)

It can be checked directly from the definitions that L = W>. This is

the backward generator of X(t) (often simply called the ‘generator’ in the

mathematical literature). It and the forward generator are duals or adjoints in

the sense that

〈F,WP 〉 = 〈LF, P 〉 (1.41)

with respect to the inner product

〈F, P 〉 :=
∑

x

F (x)P (x). (1.42)

Whether we define a jump process via an initial distribution and a forward vs.

a backward generator is a matter of taste. Physicist tend to prefer the forward

approach, and mathematicians the backwards.

L is the generator of the backward master equation [14, 59] (the infinitesimal

form of the backward CKE (1.15)), expressing the evolution of probability as we

push the initial condition further back in time:

∂−tP (x′, t′ | x, t) := lim
∆t→0

P (x′, t′ | x, t−∆t)− P (x′, t′ | x, t)
∆t

(1.43a)

=
∑

y

L(x, y)P (x′, t′ | y, t). (1.43b)

The backward master equations finds its use in first-passage time calculations

[60].

1.2.2 Ergodic relaxation to stationarity

Recall that X(t) is ergodic if there exists a unique stationary distribution P ∗ such

that

lim
t→∞

Pµ(x, t) = P ∗(x), (1.44)
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independent of the initial distribution µ. In particular, such a limit should be a

stationary solution of the the master equation (1.34), and therefore satisfy global

balance:

∑

y

[W (y, x)P ∗(x)−W (x, y)P ∗(y)] = 0. (1.45)

To address the question of when ergodicity holds, consider the formal solution

to the master equation if W can be assumed diagonalizable with eigenvalues λi

and left and right eigenvectors Li, Ri. Because W does not need to be symmetric

it can have distinct right and left eigenvectors, but they can be chosen to be

orthonormal,

∑

x

Li(x)Rj(x) = δij. (1.46)

The evolution operator is then

Ut(y, x) = (etW)(y, x) =
∑

i

Ri(y)eλitLi(x), (1.47)

giving

Pµ(x, t) =
∑

i

eλit(Li · µ)Ri(x). (1.48)

Ergodicity is seen to follow if W has a dominant eigenvalue of λ0 = maxi Reλi =

0, which is simple, and corresponds to a left eigenvector L0 ≡ 1 and a right

eigenvector R0 = P ∗. The ‘spectral gap’ λ1 − λ0 = λ1, i.e. the sub-dominant

eigenvalue, sets the the time scale of the longest-lived non-stationary mode, i.e.

the relaxation time τrel = −1/Reλ1.

When can λ0 = 0 be guaranteed? For finite state spaces, this follows from [15, 61]:

The Perron-Frobenius (PF) theorem. Suppose the square,

non-negative, finite-dimensional matrix M is irreducible: for each

pair (y, x), there is a chain (y, xn, . . . , x1, x), n ≥ 0, such that

M(y, xn) · · ·M(x1, x) > 0. Then M has a ‘Perron-Frobenius’ eigenvalue

r corresponding to a right eigenvector R and a left eigenvector L, such

that

(i) r is real, non-negative and simple (i.e. has a one-dimensional
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A

B

C

Figure 1.3 In this state transition graph, the component A is transient, in that
once exited into either B or C, A cannot be re-entered. B and C
are irreducible components, because within each component any two
states are connected by a directed path. The stationary distribution
for a jump process on this this graph has the form P ∗(x) = 0 for
x ∈ A and P ∗(x) = pP ∗B(x) + (1− p)PC(x), x ∈ B ∪C, where PB/C
is the unique stationary distribution for each irreducible component
treated as a separate system. The factor p depends on the initial
distribution (e.g. p = 1 if the initial condition is all in B) and the
stationary distribution is therefore not unique.

eigenspace);

(ii) r is the dominant eigenvalue in the sense that r ≥ |λ| and r >

Reλ, for any other eigenvalue λ;

(iii) minx
∑

yM(y, x) ≤ r ≤ maxx
∑

yM(y, x) with one equality

forcing the other;

(iv) R and L can be chosen to have strictly positive entries. Further-

more, they are the only eigenvectors of any eigenvalue for which

this is true.

To apply the pf theorem to continuous-time Markov processes with finite state

spaces, we let M = W + maxy ξ(y) × 1, with 1 the identity matrix. M then

satisfies the conditions of the theorem if W is irreducible, meaning that there

exists some directed path between every pair of states graph of possible state

transitions. To understand why this is a necessary property, in particular for

property (iv), consider the state transition graph in Figure 1.3 and the explanation

in the caption.

The pf eigenvalue r of M is related to the dominant eigenvalue λ0 of W as

r = λ0 + max
x

ξ(x). (1.49)
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Part (iii) of the theorem then gives r = maxx ξ(x) and hence λ0 = 0. The

eigenvectors L,R are the same for M and W. In particular, R is the unique

stationary distribution P ∗ (once normalized), with strictly positive entries, and

L is the vector of ones (following from column-stochasticity).

To extend the pf theorem to infinite matrices, there are some challenges

associated with making the state space of the associated jump process infinitely

large:

� If there is no upper bound on the escape rates, it is possible for the process

to ‘explode’ and make an infinite number of transitions in a finite time.

� The process may stray infinitely far away from any given state, returning

only a finite number of times over arbitrarily long time intervals: such a

state is non-recurrent or transient.

Non-explosion, irreducibility, and the existence of a recurrent state are sufficient

conditions for ergodicity (see [15] for the rather technical steps involved in proving

this statement.) In practice, if we believe a unique stationary distribution ought

to exist on physical grounds, and we are able to find a candidate, we will be

content to proclaim that as the solution.

1.2.3 Reversibility and detailed balance

Let X(t) be an ergodic Markov process, converging towards the stationary process

X∗(t) with stationary distribution P ∗(x). To find the generator of the reversed

process X̂∗(t) = X∗(T − t), we note that in the stationary, time-homogeneous

case (1.22) can be written

Ûs(y, x) = Us(x, y)
P ∗(y)

P ∗(x)
. (1.50)

By differentiating, we find

Ŵ(y, x) = W(x, y)
P ∗(y)

P ∗(x)
. (1.51)
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The process is reversible if the generators of X∗(t) and X̂∗(t) are identical; Ŵ =

W. This amounts to a time-instantaneous version of detailed balance,

W (y, x)P ∗(x) = W (x, y)P ∗(y). (1.52)

This is clearly a special case of global balance (1.45). Eq. (1.52) also follows

directly by applying lims→0 d/ ds to the detailed balance relation (1.25).

Given ergodicity, P ∗ is implicitly determined by the rates, and can even be

expressed in terms of them using Kirchhoff’s formula [62]. A condition for detailed

balance expressed only using the rates ought therefore to exist, and indeed that

result is due to Kolmogorov [63]. Denote by C = (xn, . . . , x2, x1, xn) a directed

cycle of states in X , and by Ĉ the same cycle in reverse sequence. Then detailed

balance holds if for all cycles

W (C) = W (Ĉ), (1.53)

where these quantities are the product of the rates over all transitions in the cycle

[64]. Measuring the presence or absence of reversibility in cycles is one direct way

of determining whether an experimental system is out of equilibrium at a chosen

coarse grained scale [65].

1.2.4 Characterisation of nonequilibrium steady states

We have defined a ness as a stationary process that violates detailed balance.

Therefore, a ness has a nonvanishing stationary probability current

J∗(y, x) = W (y, x)P ∗(x)−W (x, y)P ∗(y) (1.54)

across some (or all) bonds (y, x) in its transition graph.

What information is necessary to fully specify a ness? Unless we also know

the rates W defining the model, given just a distribution P ∗ it is impossible

to tell whether the steady state is in equilibrium or not. It has therefore been

proposed [10, 64] that a ness should be characterized by {P ∗, J∗}, the stationary

distribution, and the currents across all bonds. This information is sufficient

classify the reversibility status of a steady state, because equilibrium steady

states are of the form {P ∗, 0}. The remaining degrees of freedom on which two

processes can differ while giving the same {P ∗, J∗} were later dubbed traffic [46],
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a symmetric counterpart to the current:

T ∗(x, y) := W (y, x)P ∗(x) +W (x, y)P ∗(y), x 6= y. (1.55)

The traffic measures the steady-state ‘activity’ across a bond, not distinguishing

the direction of transitions. It has turned out to be an important quantity in the

study of glassy systems [66], and of fundamental importance in nonequilibrium

fluctuation and response theory [67–69].

Inspired by these works I propose that the complementing roles of currents and

traffics in the theory is most apparent via a matrix decomposition. First, let us

introduce Π := diag P ∗, that is

Π(x, y) = P ∗(x)δx,y. (1.56)

Then from (1.51), and using L = W>, we can write the backward generator of

the reversed process as

L̂ = Π−1WΠ. (1.57)

Then define the two matrices

J := Π(L̂− L), T := Π(L̂ + L). (1.58)

Alternatively, they can be expressed as

J = WΠ− (WΠ)>, T = WΠ + (WΠ)>. (1.59)

Therefore, by construction J> = −J while T> = T. Furthermore we find that

J(x, y) = J∗(x, y), and in particular J(x, x) = 0; and T(x, y) = T ∗(x, y) for x 6= y,

and T(x, x) = −2ξ(x)P ∗(x). We can solve for W as

W =
1

2
(J + T)Π−1. (1.60)

Let 1 be the vector of ones. Then from 1>W = 0 (column-stochasticity) and

1>J = 0 (global balance) follows also 1>T = 0, or

P ∗(x)ξ(x) =
1

2

∑

x:x 6=y

T ∗(x, y). (1.61)
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In particular the average escape rates 〈ξ〉 =
∑

x 6=y T
∗(x, y), the total activity in

the stationary state [70].

The triplet {Π, J,T} (where the appropriate constraints on the elements of these

matrices can be inferred from the above) is thus equivalent to W. Therefore, once

we have taken into account all general quantities that may be of potential interest

in the ness—the state distribution, the currents, and the traffics—this amounts

to the full detail of the model. The crux is of course that, given W, deriving the

stationary distribution P ∗ explicitly may be incredibly difficult.

Exact solution techniques for steady states form an industry, with notable

examples being the matrix-product ansatz pioneered for solving the open asep

[13], generating function methods, or even direct iteration [71], complemented

by approximation techniques, such as continuum limits or large system size

expansions [6].

1.2.5 Generalized reversibility

Time-reversal is ultimately a physical concept, and it sometimes involves not only

reversing the sequence of states that constitute a trajectory, but also inverting

the signs of ‘odd’ variables such as momentum-like states, or external parameters

such as magnetic fields.

Nothing at the level of generality we have hitherto adhered to can be said in

the last case involving external parameters [14]. If the rates Wλ depend on

the parameter λ, then comparing trajectories under Wλ to the time-reversal

of trajectories generated by W−λ amounts to comparing trajectories from two

processes that can be arbitrarily different. A specific model for the effect

of λ is required. In stochastic thermodynamics [35] this comes from the

criterion of local detailed balance: for each λ the Wλ satisfy detailed balance

with respect to P ∗λ (x) ∝ exp[−βVλ(x)] where Vλ(x) is an energy function, e.g.

Vλ(x) = V0(x) + λM(x), if λ is a field and M the ‘magnetization’ of the state.

For ‘closed, isolated, physical systems’, i.e. those completely determined by

a Hamiltonian, an ‘appropriate’ phase-cell coarse-graining leads to a detailed

balance relation involving also the reversal of magnetic fields [6].

In contrast, the case of odd state variables can be treated in a more general

fashion. We imagine that each state x ∈ X has a unique ‘dynamically reversed’
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[16] state θx ∈ X , such that θ(θx) = x. That is, θ is an involution on X . For

example, if x = (p, q) contains a momentum p and a position p, then θx = (−p, q).
For X∗ stationary we define its dynamical reversal with respect to θ by

X̂θ(t) := θ(X∗(τ − t)) (1.62)

and call X∗ dynamically reversible with respect to the involution θ if its is

statistically indistinguishable from X̂θ. The stationary distribution of X̂θ(t) is

P ∗(θx) and its forward generator

Ŵθ(y, x) = W(θx, θy)
P ∗(θy)

P ∗(θx)
. (1.63)

For dynamical reversibility to hold we require that the stationary distributions

of X∗(t) and Xθ(t) coincide,

P ∗(θx) = P ∗(x), (1.64)

and their forward generators are the same, Ŵθ = W, that is

Ŵθ(y, x)P ∗(θx) = W(θx, θy)P ∗(θy). (1.65)

The off-diagonal elements give (using (1.64))

W (θy, θx)P ∗(θx) = W (x, y)P ∗(y) (1.66)

which we recognize as an extended detailed balance. The diagonal entries

give

ξ(θx) = ξ(x), (1.67)

dynamical reversibility of escape rates.

The matrix decomposition scheme introduced in Section 1.2.4 is readily gener-

alized. Let Θ be the permutation matrix such that (ΘF )(x) = F (θx), that is

Θ(x, y) = δx,θy. It follows that Θ = Θ−1 = Θ>. Then we can write the backward

generator of X̂θ(t) as

L̂θ = (ΠΘ)−1WΠΘ. (1.68)
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We then define

Jθ := Π(L̂θ − L), Tθ = Π(L̂θ + L) (1.69)

If Π and Θ commute, i.e. (1.64) holds, then

ΘJθ>Θ = −Jθ, ΘTθ>Θ = Tθ. (1.70)

The elements of these matrices are interpretable as generalized currents and

traffics.

What is the significant difference between satisfying reversibility or dynamical

reversibility? In the first case, using detailed balance in the form J = WΠ −
ΠW> ≡ 0, the matrix

V := Π−1/2WΠ+1/2 = Π+1/2W>Π−1/2 (1.71)

is symmetric. W is thus similar3 to V, and is therefore called symmetrizable. W
therefore has the same spectrum as V, which is necessarily real.

We may attempt a similar construction in the case of extended detailed balance,

Vθ := (ΠΘ)−1/2W(ΠΘ)+1/2 = (ΠΘ)+1/2W>(ΠΘ)−1/2. (1.72)

Θ±1/2 does exist but is in general a complex matrix. For Vθ to be Hermitian and

thereby guaranteed to have a real spectrum, we need (ΠΘ)±1/2 to be Hermitian,

which is not necessarily the case.4 Thus, even if a system satisfies extended

detailed balance, it can in principle have a complex spectrum, as long as it breaks

ordinary detailed balance. This has consequences for the relaxation behaviour,

as we will encounter in Chapter 2.

3A matrix A is similar to B if A = P−1BP for some P
4This question in posed as an exercise in [6, V.6.15]
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1.2.6 Activity, dissipation, and entropy

In addition to X being ergodic, suppose that if W (x, y) > 0, then also W (y, x) >

0. Then we can define [72] activity parameters

a(y, x) :=
√
W (y, x)W (x, y) (1.73)

and dissipation parameters

q(y, x) := ln
W (y, x)

W (x, y)
(1.74)

such that

W (y, x) = a(y, x)eq(y,x)/2. (1.75)

Activity parameters are by definition symmetric, a(y, x) = a(x, y), while

dissipation parameters are anti-symmetric, q(y, x) = −q(y, x). If detailed balance

pertains

q(x, y) = V (x)− V (y), (1.76)

with V (x) = − lnP ∗(x). Conversely, whenever the dissipation parameters are

all on the form (1.76) for some potential V , detailed balance follows. It is easy to

see that P ∗(x) is then independent of the activity parameters, and P ∗(x) ∝ e−V (x).

If X(t) represents the the state of a thermal equilibrium system interacting with

an environment, then V (x) = βH(x), with β the inverse temperature and H

an energy function, and we recover the Boltzmann distribution. The dissipation

parameter is then the change in energy of the system in one jump divided by

temperature, that is the heat (taken with sign) ejected into the environment.

In contrast to an equilibrium steady state, a ness in general does depend on

activity parameters. One can easily generalize the above decomposition to when

a generalized detailed balance pertains.

We can further define the Shannon-Gibbs entropy of the process as

S(t) := −
∑

x

P (x, t) lnP (x, t) = 〈− lnP (·, t)〉t , (1.77)

which is known to be a Lyapunov function for the ergodic process and decreases to
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a stationary value [14]. IfX(t) represents the state of a thermal system interacting

with an environment, we are in equilibrium statistical used to interpret S(t) as

the thermodynamic entropy of the system. Taking the time derivative,

dS

dt
= σ − φ, (1.78)

where the entropy production rate σ and entropy flux φ (to the environment)

are defined [73, 74]

σ(t) :=
1

2

∑

x,y

J(y, x; t) ln
W (y, x)P (x, t)

W (x, y)P (y, t)
, (1.79)

φ(t) :=
1

2

∑

x,y

J(y, x; t)q(y, x), (1.80)

where J is the non-stationary probability current (1.35). In steady state the

change in system entropy is always zero, and entropy production and flux balance.

For an equilibrium process, both σ and φ vanish identically in the steady state.

Thus, from the initial definition of the jump process in terms of rates, springs a

host of derived quantities: time-asymmetric currents, dissipation parameters, the

entropy; time-symmetric traffics, activity parameters, and escape rates. There are

further generalizations to these quantities at the level of trajectories. Framing

the theory in these terms has promoted a fundamental, yet counter-intuitive

insight into nonequilibrium physics: the steady state and weak fluctuations (i.e.

linear response) are completely determined by entropic quantities; nonequilibrium

steady-states and fluctuations (both linear and higher order), on the other hand,

can depend strongly on what has been termed ‘frenetic’ quantities, the time-

symmetric counterpart to entropy. Because frenetic effects tend to be kinetic and

microscopic in origin, this insight has cast doubt on the validity of macroscopic

approaches to a far-from-nonequilibrium thermodynamics, which are built around

maximum-entropy principles [72, 75, 76].

1.3 Diffusion processes

We give here a brief review of diffusion process in Rd based on taking the limit of

zero lattice spacing for a planar random walk described by a master equation. Not

only is this an intuitive way to understand the construction of diffusion processes,
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p1

p2

q1

q2

Figure 1.4 Anisotropic random walk on the hypercube (illustrated in 2D)

30a

Figure 1.5 Illustration of how a Brownian trajectory appears as the limit of
small lattice spacing for random walk trajectory.

but it is in itself a useful tool that we will employ in deriving result new results

for diffusion processes in later chapters.

1.3.1 The diffusive limit

We consider a Markov jump process N(t) on a hyper-cubic lattice L = Zd, to

be thought of as the position of a random walker. As depicted in Figure 1.4, the

walker only moves one step τ̂ i in direction i at a time, according to the rates

W (n+ τ̂ i,n) = pi(n), (1.81a)

W (n− τ̂ i,n) = qi(n). (1.81b)

The master equation is thus

∂tP (n, t) =
∑

i

{[
pi(n− τ̂ i)P (n− τ̂ i, t)− pi(n)P (n, t)

]

+
[
qi(n+ τ̂ i)P (n+ τ̂ i, t)− pi(n)P (n, t)

]}
.

(1.82)
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We now embed the lattice into continuous space via a lattice constant a,

L → La ⊂ Rd, so that n ∈ L corresponds to x = an ∈ La. Clearly, as we

spatially ‘zoom out’ on the system by letting a approach 0, the lattice becomes

progressively denser in continuous space (Figure 1.5). But we must also view the

system over longer time scales, in order to see a discernable displacement over

a length scale that is well approximated as continuous. Thus we scale the time

parameter from t → ta depending on a in some yet-to-be specified way. The

hopping rates, whose units are in inverse time, then become a-dependent, and

we posit a general series expansion in a for them that also takes into account the

lattice’s embedding in continuous space:

pi → p
(a)
i (n) =

∑

k

a−kα
(k)
i (x), (1.83a)

qi → q
(a)
i (n) =

∑

k

a−kβ
(k)
i (x). (1.83b)

We define a probability density ρa which for a small enough we shall treat as a

continuous function of x,

ρa(x, ta) := P (x/a, ta)/a. (1.84)

With the above definitions, the density’s time evolution, expanded in a, is given

by

∂taρa =
∑

i

{
−∂xi

∑

k

a1−k(α
(k)
i −β(k)

i )+
1

2
∂2
xi

∑

k

a2−k(α
(k)
i +β

(k)
i )
}
ρa, (1.85)

plus higher order terms in a. In order for there to be a sensible limit as a → 0,

the sum over k must run no higher than to 2, and we must have α
(2)
i = β

(2)
i . Then

if we define

α
(2)
i = β

(2)
i = Di (1.86)

α
(1)
i − β(1)

i = Fi, (1.87)

we obtain the Fokker-Planck equation (fpe) for the density of the diffusion

process X(t):

∂tρ(x, t) = −∇ · F (x)ρ(x, t) +∇ · (∇ · D(x)ρ(x)). (1.88)
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with drift vector F and diffusion matrix D. (For t and ρ we drop the previous

subscript a rather than put 0.) Because we used a hyper-cubic lattice and only

allowed jumps in the orthogonal directions, D is diagonal, but in general it only

needs to be symmetric and positive-(semi)definite.

1.3.2 Representation as stochastic differential equation

While the probability density ρ(x, t) evolves smoothly under the fpe, the trajec-

tories that correspond to this process are continuous but nowhere differentiable

(as one intuits from Figure 1.5). As any textbook on the subject of stochastic

processes will show (e.g. [14]), diffusions can be constructed through an Euler

scheme,

X(t+ ∆t) = X(t) + F (X(t))∆t+ B(X(t))∆W(t), (1.89)

whose statistics matches the fpe (1.88) as ∆t → 0. In the above, B is

any matrix such that D = (1/2)BB>, and W(t) is the Wiener process whose

increments ∆W(t) have components ∆Wi(t) =
√

∆tNi(t) where theNi are drawn

independently from a normal distribution with zero mean and unit variance.

Because ∆W(t)/∆t = O
(
∆t−1/2

)
, the trajectories or not differentiable. The

limit of the above Euler scheme can however be represented as a stochastic

differential equation (sde) written

dX(t) = F (X(t)) dt+ B(X(t)) dW(t), (1.90)

which is easiest thought of as a short-hand for the above Euler scheme, but can be

given a rigorous mathematical definition and a ‘stochastic calculus’. This sde is

written in the Ito convention, meaning that to generate X(t+ ∆t) we evaluate

F and B at the previous step X(t). If we instead choose the midpoint rule,

X(t+∆t) = X(t)+F

(
X(t+ ∆t) + X(t)

2

)
∆t+B

(
X(t+ ∆t) + X(t)

2

)
∆W(t),

(1.91)

known as the Stratonovich convention, the discretization scheme corresponds

to an fpe

∂tρ = −∇ · F ρ+∇ · D∇ρ = −∇ · J , (1.92)
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with a probability current following the simple expression

J = F ρ− D∇ρ. (1.93)

When the noise is not multiplicative, meaning that B is a constant matrix, the Ito

and Stratonovich conventions are equivalent. In this thesis we will for the most

part not deal with multiplicative noise. When we do, we will avoid ambiguity by

defining the ‘drift’ as the F that appears in (1.92).

1.3.3 Generators of diffusion

It is useful to express diffusion processes X(t) in terms of their forward and

backward generators, as we did for jump processes. Matrices (of infinite size)

then graduate to differential operators. The fpe can from this point of view be

written as

∂tρ(x, t) = (L†ρ)(x, t), (1.94)

where

L† := −F · ∇+∇ · D∇ (1.95)

is the forward generator or Fokker-Planck operator, analogous to L> = W for

a jump process. The inner product analogous to (1.42) is

〈ρ, φ〉 :=

∫

Rd
dx ρ(x)φ(x). (1.96)

With respect to this inner product, L† is adjoint to the backward generator L,

〈
L†ρ, φ

〉
= 〈ρ,Lφ〉 , (1.97)

for any ρ, and φ in the respective domains of these operators. Specifically, the

paired domains are such that the inner product remains well defined and that ρ

and φ vanish together with their gradients at infinity. Through integration by

parts of the left-hand side of (1.97) using (1.95), one finds

L = F · ∇+∇ · D∇. (1.98)
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The proper definition of the backward generator is as in (1.40), which one shows

is equivalent to (1.98).

Reversibility for a diffusion process is defined just as for a jump process. Following

(1.57) we find the backward generator of the reversed process to be

L̂ = ρ∗−1Lρ∗ = L − 2J∗

ρ∗
· ∇, (1.99)

where ρ∗ is the stationary distribution of the process (assumed to exist and be

unique under ergodicity) and J∗ the stationary probability current. Reversibility

requires L̂ = L, which holds if and only if J∗(x) ≡ 0. It follows in this case of

detailed balance that

ρ∗(x) =
1

Z
e−Φ(x), (1.100)

where

∇Φ(x) = −D−1(x)F (x). (1.101)

Conversely, if for a given F and D the potential Φ exists, then detailed

balance pertains. We will have more to say about the existence of potentials

in Section 3.3.2. The ideas of generalized reversibility for jump processes in

Section 1.2.5 can be treated similarly for diffusions.

We have here introduced diffusions in unbounded domains. In Section 6.1 we

discuss the presence of physical boundaries and how to derive corresponding

boundary conditions on the forward and backward generators.

1.4 Summary of main concepts

Time-homogeneous ergodic Markov processes are an appropriate mathematical

structure for many noisy nonequilibrium systems. Firstly, they allow processes to

be characterized by an initial distribution, and an infinitesimal generator. They

contain an inherent ‘arrow of time’ with regards to statistical uncertainty growing

over time, such that initial conditions can relax to steady states. However,

whether irreversibility pertains in the steady state is separate to the question

of relaxation, and serves to define equilibrium vs. nonequilibrium conditions in a

model-neutral way.
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The setting of continuous time and discrete state space X , leads to jump

processes. Their probability P (x, t) evolves in time by the master equation (1.34),

involving the forward generator W, defined in terms of the probabilitiesW (y, x) dt

of transitioning from x to y in an infinitesimal time interval dt.

For a jump process, the conditions for ergodicity, i.e. relaxation to a unique

steady state, are dictated by the Perron-Frobenius theorem. A nonequilibrium

steady state by definition is irreversible, which for a jump process means it

violates the detailed balance condition (1.52). Generalized forms of reversibility,

with respect to a conjugation of variables such as momentum reversal, amount

to satisfying conditions (1.64), (1.66), and (1.67). If either reversibility or

generalized reversibility pertains, the steady state is of the Boltzmann type, but

the latter, in contrast to the former, supports complex spectra of W. Entropy

production, dissipation, and other ‘physical’ quantities can be defined in a general

way for jump processes.

The setting of continuous time and continuous trajectories in Rd leads to diffusion

processes. These can be constructed from the diffusive limit applied to a jump

process, or via stochastic differential equations. A diffusion process is defined

by a drift vector F , representing a deterministic force, and a diffusion matrix

D, controlling the bias and strength of uncorrelated noise. The evolution of

probability is governed by the Fokker-Planck equation (1.94) expressed using the

forward generator L†, which has assumed the Stratonovich convention for the

drift. The backward generator L (1.98) is the dual to L† with respect to the

inner product (1.97). This aspect of formalism will be relevant in Chapter 6

where we consider how to derive boundary conditions for diffusion processes.
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Chapter 2

Exceptional points and singular

relaxation times for run-and-tumble

particles

2.1 Background

2.1.1 Run-and-tumble particles

The symmetric random walk is the simplest prototype for the motion of a colloidal

particle in an environment at thermal equilibrium. By judiciously adding one

or a few ingredients that break detailed balance, we discover prototypes for

nonequilibrium phenomena. One such alteration is allowing correlations between

the directions of subsequent steps of the walk, also known as persistence. In

the simplest implementation of persistence, a random walker in one dimension is

endowed with an ‘orientation’ σ ∈ {−1,+1}. It makes jumps of size ∆n = σ at a

constant rate γ, and flips its orientation σ → −σ at another rate ω (Figure 2.1).

γ
ω

ω

γ

Figure 2.1 Simple model of a persistent random walk: hopping occurs at rate γ
in the direction indicated by the internal state which reverses with
rate ω.
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(a) E. coli path (b) RTP realization
in R3

Figure 2.2 (a) Adapted from [21]: 2D projection of an experimental swim
trajectory of a freely suspended E. coli bacterium. (b) A realization
of RTP motion in three continuous dimensions. The ith leg of the
trajectory is a displacement vector xi = vτin̂i, where v is a constant
speed, τi an exponentially distributed time interval, and n̂i a vector
distributed uniformly on the unit sphere.

Thus the position and orientation taken together satisfy the Markov property,

but the position alone does not. Such persistent random walks (prws) first

appeared in the physics literature around 1920 to model a particle’s movement

in a turbulent flow (see historical references in [77, 78]). Later examples include

the modelling of photon propagation in various media [79, 80], animal movements

[81], polymer conformation [82], molecular cargo transport [83].

The most prominent application of the prw is however in the context of active

matter, where it is conventionally referred to as a run-and-tumble particle

(rtp). The name is inspired by the way certain flagellated bacteria such as E.

coli move, making ‘runs’ of a random length before ‘tumbling’, whereby a new

direction is chosen at random (Figure 2.2). The microbiology of this motion

came under close study in the 1970s [21] and eventually became a topic of

physical modelling in the 90s [84]. Over recent years, the single rtp, either

on- or off-lattice, has been studied under almost every condition found in the

statistical-mechanics repertoire: confinement [85], potentials [86], thermal noise

[87–89], random or inhomogeneous environments [20], resetting [90], and so

on. The result often contrasts with that of a passive particle due to jamming,

which makes rtps accumulate around obstacles. Mutually interacting rtps

have therefore been studied as a minimal example of a generic cluster-formation

phenomenon for active particles, dubbed motility-induced phase separation [25]:

due to interactions, which may be purely repulsive, e.g. hardcore exclusion, active

particles slow down in regions of higher particle density, which further increases

the density and establishes a feedback loop resulting in large clusters. Interacting
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0.05

0.1

0.15

Figure 2.3 Solution to the telegrapher’s equation at t = 2 for parameters v = 1
and ω = 1.5 with an initial condition localized at x = 0 and
split evenly between the + and − directions. The arrows represent
delta functions that move outward at the speed v coming from
realizations that never reverse direction of propagation up to time t.
In between these a deformed Gaussian distribution is found coming
from realizations that reverse direction many times.

rtps have been treated at the level of fluctuating hydrodynamics [20, 24, 91, 92],

as well as in on-lattice simulations [93]. Exact results for a microscopic model of

interacting volume-excluding rtps are limited to the steady-state for two particles

in one periodic dimension [39, 94].

In this chapter we will consider the complete time-dependent solution to the

lattice model of rtps for a single particle or for two particles interacting through

hardcore exclusion [1]. Before we present the motivations and main conclusions of

this work, let us dwell on a fundamental characteristic of the rtp: it interpolates

between diffusive and ballistic motion.

2.1.2 Interpolating diffusive and ballistic motion

The rtp interpolates between diffusive and ballistic motion. This is perhaps

most easily appreciated from the continuum counterpart to the lattice model in

Figure 2.1. The master equation of the lattice model is

∂tP+(n, t) = γ[P+(n− 1, t)− P+(n, t)] + ω[P−(n, t)− P+(n, t)], (2.1a)

∂tP−(n, t) = γ[P−(n+ 1, t)− P−(n, t)] + ω[P+(n, t)− P−(n, t)]. (2.1b)
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Applying the continuum limit with lattice spacing a→ 0 as in Section 1.3.1, with

n/a→ x, Pσ(n)/a→ ρσ(x), γ/a→ v, we find

∂tρ+(x, t) = −v∂xρ+(x, t) + ω[ρ−(x, t)− ρ+(x, t)], (2.2a)

∂tρ−(x, t) = +v∂xρ−(x, t) + ω[ρ+(x, t)− ρ−(x, t)]. (2.2b)

It is useful to consider the sum of and difference between these two equations,

which yields equations in the total density ρ(x, t) = ρ+(x, t) + ρ−(x, t) and

difference q(x, t) = ρ+(x, t) − ρ−(x, t). By considering ∂2
t ρ one finds by

straightforward substitutions that ρ satisfies the telegrapher’s equation [95]

1

2ω
∂2
t ρ(x, t) + ∂tρ(x, t) =

v2

2ω
∂2
xρ(x, t). (2.3)

The telegrapher’s equation interpolates the diffusion equation and the wave

equation: we choose a time scale τ ; if ω � τ−1 we can neglect the second-order

time derivative in the left-hand side and the equation reduces to the diffusion

equation; in the other limit, ω � τ−1, the first-order time-derivative dominates

and the equation reduces to the wave equation.

The telegrapher’s equation on the infinite line with initial condition ρσ(x, 0) =

δ(x)/2 can be be solved in the Laplace domain and then inverted (see [90] for

the full expression). In Figure 2.3 the solution at an intermediate time is plotted,

showing the combined effects of the ballistic propagation of the probability wave-

fronts and the in-between diffusive regime. In particular, we can calculate the

mean-squared displacement as [95]

〈
x2(t)

〉
=

1

2

( v
ω

)2 (
2ωt− 1 + e−2ωt

)
, (2.4)

from which we see that 〈x(t)〉2 ' (vt)2 (ballistic scaling) for t� ω−1 and 〈x2(t)〉 '
2Dt with D = v2/(2ω) (diffusive scaling) for t� ω−1.

2.1.3 Persistence through a spectral lens

Let us return to the one-dimensional lattice model in Figure 2.1. In [20, 96]

this model was extended to include N rtps that interact via hardcore exclusion.

It is then an ‘active’ generalization of the simple exclusion process. Paralleling

how the single rtp interpolates between diffusive and ballistic motion, the rtp
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exclusion process interpolates between the ssep1 as ω → ∞ and the tasep as

ω → 0 (assuming the particles are aligned at t = 0 as the initial orientations get

frozen in). On a ring, the ssep is an equilibrium model since it satisfies detailed

balance, whereas the tasep is a nonequilibrium model, and in a sense strongly

so, since no single transition can be reversed in a single event. The rtp exclusion

process is therefore of interest as a model whose ‘degree’ of nonequilibrium is

tunable by a continuous parameter. Does its behaviour change smoothly with ω

or is there a change in character at some critical, intermediate value?

As special cases of the asep, both the ssep and tasep are exactly solvable—

what about the rtp exclusion process? It is not expected that it will satisfy

the Yang-Baxter equations that guarantee the integrability of the former models

[17]. Only the ness for two rtps has been previously obtained [39] and it reveals

a structure reminiscent of the Bethe-ansatz that solves the asep but that is

distinctly different in that it places an anomalous weight on the jammed particle

configuration. It is therefore a worthwhile question to attempt a solution of

the two-particle rtp exclusion process in the hope that it reveals a novel Bethe-

generalizing pattern that may allow solution of the N -particle model. By solution,

we mean a method of diagonalizing the finite-dimensional generator of the model,

just as the Bethe-ansatz furnishes the eigenvalues and eigenvectors for the asep

[10, 17]. However, rather than positing an ansatz for the solution, we must derive

the solution de novo.

We furthermore expect a spectral decomposition to give a useful view onto the way

the process depends on ω. From the fact that ω →∞ represents an equilibrium

model with a real spectrum, and ω → 0 a nonequilibrium model with a complex

spectrum, there must logically be eigenvalue crossings occurring as ω is varied.

Is there any significance attached to those values of ω where eigenvalues cross?

Next, we define explicitly the N -rtp exclusion process on the ring lattice,

and analyse it with respect to generalized reversibility. We thereby gain a

fundamental understanding of how interactions and persistence conspire to break

time symmetry. We then obtain the exact solution to the single rtp problem

as a reference case for the much more challenging two-particle problem, treated

thereafter.

1See example (d) on p.24 for the definition.

46



2.2 N-particle lattice model

2.2.1 Master equation

We consider a one-dimensional lattice ring of L sites, on which N run-and-tumble

particles live on distinct sites. Each rtp has the identical hopping rate γ and

tumbling rate ω, and carries out its motion subject to hardcore exclusion: an

attempt to hop onto an already occupied site is rejected.

A system configuration is denoted (σ,n), with a vector of particle orientations

σ = (σ1, . . . , σN), σi ∈ {−1,+1}, and a vector of particle positions n =∑N
i=1 niêi = (n1, . . . , nN). We denote the probability of a configuration at time t

by Pσ(n, t), leaving the initial condition implicit. To implement the periodicity

of the ring, we allow ni ∈ Z while imposing the condition

Pσ1...σN (n1, . . . , nN ; t) = Pσ2...σNσ1(n2, . . . , nN , n1 + L; t). (2.5)

We suppose an initial n′ for which 1 ≤ n′1 < n′2 < . . . < n′N ≤ L, and therefore

periodicity implies that for n at later times 1 ≤ n1 < n2 < . . . < nN ≤ L also.

However, n1 does not refer to the position of the same physical particle across

time. The first argument corresponds to the particle closest to the right (i.e.

clockwise) of the reference site 0 implicit in the initial conditions. If given a

complete trajectory of the system it is possible to track the individuality of the

particles in time, however.

We introduce some notation to express the master equation compactly. Let θi be

an operator acting on the ith particle by flipping its orientation,

θi(σ1, . . . , σi, . . . , σN) = (σ1, . . . ,−σi, . . . , σN); (2.6)

define IL(n,m) = {1 if n 6≡ m mod L; else 0} as the indicator function for n

and m being distinct lattice sites; and allow the indexing convention n−i = nL−i.

Then
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ξ(y) = 0
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1 1

ξ(θy) = 2
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1
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(b)

Figure 2.4 (a) RTPs interacting through hardcore exclusion with a wall (above)
or each other (below) lack generalized reversibility because the escape
rate ξ is not invariant under orientation reversal. (b) An rtp with
a modified reflection rule that prevents jamming at the wall does
satisfy generalized reversibility.

∂tPσ(n, t) = γ
N∑

i=1

[
Pσ(n− σiei, t)IL(ni − σi, ni−σi)

− Pσ(n, t)IL(ni + σi, ni+σi)
]

+ ω
N∑

i=1

[Pθiσ(n)− Pσ(n, t)]. (2.7)

For convenience we choose units of time such that γ = 1.

2.2.2 Interactions break generalized reversibility

Clearly, detailed balance is broken in the rtp exclusion process because a particle

in the + state may jump n → n + 1 (if not obstructed) but never n + 1 → n

unless it first reverses its orientation: if y′ and y differ by the allowed jump of

one particle, then W (y′, y) > 0 implies W (y, y′) = 0. Considering just a single

rtp on a ring, it does however satisfy a generalized detailed balance with respect

to the conjugation of the state y = (n, σ) to θy = (n,−σ). We may in this

case think of the orientation as a momentum. This analogy breaks down if the

particle is allowed to interact through hardcore exclusion with an obstacle, which

could be a hard wall or another particle, because the ‘momentum’ is not reflected,

and instead the particle becomes jammed. The orientation remains an intrinsic

property of the particle which affects the probability of leaving a blocked site.
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To show that a generalized reversibility under θ =
∑

i θi does not pertain in

the case of interacting rtps, it is sufficient to disconfirm one of (1.64), (1.66),

and (1.67). That (1.67) on the escape rates is not satisfied can be ascertained

without the need to solve for the stationary distribution. Comparing ξ(y) and

ξ(θy) for any configuration y one can deduce that they differ by twice the number

of unobstructed nearest-neighbour pairs of particles. It is sufficient however to

understand the inequivalence for just two particles, or for a particle and a hard

wall, both illustrated in Figure 2.4a.

The above example demonstrates that it is not so much the breaking of detailed

balance through self-propulsion that is the critical aspect of active matter, but

rather the further lack of generalized reversibility due to interactions. To further

argue this point, consider a modified rtp model with reflecting walls at sites 1

and L (Figure 2.4b). Jumping L−1→ L immediately flips the particle to −, and

jumping 2→ 1 flips it to +. Furthermore, the particle cannot flip back until it has

left the wall, so that (−, 1), (+, L) are no longer accessible configurations. In this

case the internal state is more like a momentum that flips due to random collisions

in the interior sites, and by elastic collision at the boundary. To implement this

scenario, we complement (2.1) with boundary conditions

∂tP+(1, t) = P−(2, t)− P+(1, t), (2.8a)

∂tP−(n, t) = P+(L− 1, t)− P−(L, t). (2.8b)

The involution θ now acts trivially on the boundary states as θ(+, 1) = (+, 1),

θ(−, L) = (−, L) but flips the orientation in the interior. We see that the flat

stationary density solves this master equation. The flat distribution also trivially

satisfies invariance under θ, and trivially furnishes generalized detailed balance

both in the bulk and at the boundaries. In the bulk the escape rate is 1 +ω, and

on the boundary 1, but in either case it is invariant under θ. Thus generalized

reversibility pertains.

2.3 Solution for a single particle

We consider now the case N = 1. We can draw on the analysis of the continuum

model in Section 2.1.2 to intuit the the behaviour of the lattice model, but the

periodicity makes a considerable difference in that there exists a steady state,

and a relaxation towards it, and the left and right wavefronts will eventually
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meet halfway round the ring.

The master equation (2.7) reduces to

∂tP+(n, t) = P+(n− 1, t)− P+(n, t) + ω[P−(n, t)− P+(n, t)], (2.9a)

∂tP−(n, t) = P−(n+ 1, t)− P−(n, t) + ω[P+(n, t)− P−(n, t)], (2.9b)

with periodicity

Pσ(n+ L, t) = Pσ(n, t). (2.10)

Our goal is to solve the master equation through a spectral decomposition of the

forward generator W.

For convenience we will use the Dirac’s bra-ket notation commonly imported

into statistical physics from quantum mechanics. We partition the state space

X = S ⊗ N , where S is the ‘spin’ or orientation degree of freedom, and N is

physical space, the lattice ring. A natural basis vector for X is then

|σ, n〉 = |σ〉 ⊗ |n〉 (2.11)

where |σ〉 is a basis vector of S and |n〉 of N . Periodicity suggests the convention

|n+ L〉 = |n〉. The forward generator can then be expressed

W =
L∑

n=1

{
|+, n+ 1〉〈+, n|+ |−, n− 1〉〈+, n|

+ ω
[
|−, n〉〈+, n|+ |+, n〉〈−, n|

]
− (1 + ω)|n〉〈n|

}
.

(2.12)

If we define

|P (t)〉 :=
L∑

n=1

∑

σ=±

Pσ(n, t)|σ, n〉, (2.13)

then the master equation reads

∂t|P (t)〉 = W|P (t)〉. (2.14)

An alternative basis for N is the Fourier basis, whose vectors we denote by |k).
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It projects onto the spatial basis as

(k|n〉 =
1√
L
znk , zk = e2πik/L. (2.15)

We have defined ‘bras’ (k| as complex transposes of ‘kets’ |k) so that the

orthogonality of the Fourier basis holds as (k|l) = δk,l. We can then express W
in the Fourier basis by the following projection that generates a linear operator

on S:

S(k,l) := (k|W|`) (2.16)

=
{
w(k)|+〉〈+|+ ω|+〉〈−|+ ω|−〉〈+|+ w(−k)|−〉〈−|

}
δk,l (2.17)

where

w(k) = zk − (1 + ω). (2.18)

In the Fourier basis, W is apparently block-diagonal, with each non-zero block

S(k,l) simply a matrix

S(k) :=

(
w(k) ω

ω w(−k)

)
(2.19)

if we employ the standard representation

|+〉 =

(
1

0

)
, |−〉 =

(
0

1

)
. (2.20)

The purpose of this seemingly overcomplicated way of performing a Fourier

transform, is to make it clear that the eigenvalues of W are precisely the

eigenvalues of S(k) collected for k = 1, 2, . . . , L. This is now readily appreciated

because we have taken W first as an abstract linear operator on a 2L-dimensional

space, and then found a block-diagonalizing basis. It follows also that W is

diagonalizable if an only if each S(k) is. We now perform the diagonalization of

S(k).
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(d) ω = 0

Figure 2.5 One-particle spectrum (2.21) in the complex plane for L = 31. Blue
circles: right band (s = +1); yellow diamonds: left band (s = −1).
(a) For ω > 1 the eigenvalues come in two separate real bands. (b)
At ω = 1 there is an L-fold degeneracy at the eigenvalue −2. (c) As
ω is further decreased, pairs of real eigenvalues cross and separate
as complex conjugate pairs. The arrows indicate how the crossing is
approached. (d) At ω = 0 the spectrum is a unit circle shifted left
by −1.

2.3.1 Spectrum: band structure and eigenvalue crossings

The eigenvalues of S(k) (2.19) are found to be

λ(s)(k) = −2 sin2
(
πk
L

)
− ω + s

√
ω2 − sin2

(
2πk
L

)
, (2.21)

where s = +1 indicates the ‘right band’ and s = −1 the ‘left band’. By the

symmetry λ(k) = λ(L − k) the spectrum is always doubly degenerate (except

possibly for k = L/2). This is clearly due to the spatial inversion symmetry of

the problem.

We consider now the qualitative changes to the spectrum as ω is varied, as

demonstrated in Figure 2.5. For ω > 1, the spectrum is necessarily real, and

for large ω

λ(+)(k) = −2 sin2

(
πk

L

)
+O (1/ω) , (2.22a)

λ(−)(k) = −2 sin2

(
πk

L

)
− 2ω +O (1/ω) . (2.22b)
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In the symmetric walk limit, ω → ∞, the left band (s = −1) diverges, implying

the disappearance of these modes. The remaining eigenvalues are those of the

symmetric walker with jump rate 1/2: the initial jump rate γ = 1 in the direction

of the particle’s orientation is now split equally between left and right jumps.

At exactly ω = 1, the eigenvalue −2 becomes L-degenerate (Figure 2.5b) as

λ(s)(k) = −2 + cos

(
2πk

L

)
+ s

∣∣∣∣cos

(
2πk

L

)∣∣∣∣ . (2.23)

This degeneracy comprises the least negative half of the left band (‘upper left

band’) and most negative half of the right band (‘lower right band’). Whereas

the relaxation times of all modes are in general dependent on the system size

L, at ω = 1 half of them are not. The degeneracy allows what we shall call

a macroscopic eigenvalue crossing of the upper left and lower right bands,

because O (L) eigenvalues participate.

For ω ≤ 1, at the special values

ωk := | sin(2πk/L)|, (2.24)

the eigenvalue λ(−)(k) from the lower (upper) left band and the eigenvalue λ(+)(k)

of the lower (upper) right band coalesce. For smaller ω, they leave the real

line as a complex conjugate pair (Figure 2.5c). Precisely at the crossing, S(k),

and hence also W, becomes non-diagonalizable. The consequences for a spectral

decomposition of W in this case are described in Section 2.3.2.

As ω approaches zero (Figure 2.5d),

λ(s)(k) = −2 sin2

(
πk

L

)
+ is

∣∣∣∣sin
(

2πk

L

)∣∣∣∣ . (2.25)

The spectrum is identical to that of the totally asymmetric walker, defined by

either ∂tP (n) = P (n − 1) − P (n) or ∂tP (n) = P (n + 1) − P (n), but four-fold

degenerate as the two equivalent orientation sectors decouple.

2.3.2 Eigenvectors and the matrix exponential

With the spectrum of W determined, we turn our attention to finding bases for its

eigenspaces. If |us(k)〉 is an eigenvector of S(k) corresponding to the eigenvalue
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λs(k), then

|vs(k)〉 ∝ |us(k)〉 ⊗ |k) (2.26)

is an eigenvector of W. We have that

|us(k)〉 ∝
(

ω

w(k)− λ(s)(k)

)
(2.27)

and the two vectors for s = ±1 for any k are linearly independent if ω is not

tuned to n special value (2.24). Assuming no such tuning, W is diagonalizable,

and its matrix exponential as appears in the formal solution (1.48) of the master

equation is

exp[Wt] =
L∑

k=1

∑

s=±1

eλs(k)t|us(k)〉〈us(k)| ⊗ |k)(k| (2.28)

Finally,

Pσ(n, t) = 〈σ, n| exp[Wt]|P (0)〉, (2.29)

where the only obstacle to a compact result is the need to invert a Fourier

transform.

If we do let ω = ωk for some k, then the eigenspace of S(k) has dimension

one. Since W is block-diagonal, its exponential is the block-diagonal of the

exponentiated blocks: thus we consider how to calculate exp[S(k)].

Define N(k) = S(k) − λ(k)1. A matrix constructed in this way is in general

nilpotent, i.e. taken to some power becomes the zero matrix. The smallest such

power will be less than or equal to the algebraic multiplicity of that eigenvalue

(in fact equal to the ‘index’ of the eigenvalue, the dimension of the largest Jordan

block), which presently is two. We can therefore conclude immediately that

N2(k) = 0, which can also be verified from the explicit expression

N(k) =

(
−i sin

(
2πk
L

)
ωk

ωk i sin
(

2πk
L

)
)
. (2.30)

The matrix exponential then evaluates to

exp[S(k)t] = exp[λ(k)tI +N(k)t] = eλ(k)t(I +N(k)t). (2.31)

54



0 0.2 0.4 0.6 0.8 1 1.2

5

10

15

20

τmax

ω

L = 25

L = 20

L = 15

L = 10

Figure 2.6 One-particle relaxation times. Coloured lines: longest relaxation
time involved in spatial dynamics. The global cusp-shaped minima
occur at ω = ω∗(L). Dashed line: the tumble mode with relaxation
1/(2ω).

That is, the dynamical modes which project onto this subspace have exponential

decay, modulated by a linear time dependence.

2.3.3 Dynamical exponent and singularity in relaxation time

From (2.21) we determine the spectral gap, i.e., the least negative, non-zero

eigenvalue, which sets the longest time-scale τmax of relaxation towards the steady

state. From this exact result we are particularly interested in the dynamical

exponent z defined by τmax ∼ Lz. For diffusive systems z = 2, for instance.

The relaxation times are for each mode (s, k) given by τs(k) = −1/Reλ(s)(k).

Clearly τ+(k) ≥ τ−(k), and both τ+(k) and τ−(k) attain their longest values for

small k (or very large k, by symmetry). The two k = 0 modes yield the zero

eigenvalue corresponding to the steady state and a mode with relaxation time

1/(2ω). The latter is the typical time for an initial distribution localized to one

orientation sector to spread into both. We refer to this mode as the ‘tumble mode’

since it does not contribute to the spatial relaxation dynamics: the corresponding

eigenvector of S(0) is (1,−1)> which has zero projection onto 〈+|+ 〈−| = (1, 1)

in

P (n, t) = P+(n, t) + P−(n, t) = ((〈+|+ 〈−|)⊗ 〈n|)|P (t)〉. (2.32)

We focus instead on the spatial relaxation, where the longest relaxation time is
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given by the k = 1 mode of the right band: τmax := τ+(1). With

ω∗(L) := ω1 = sin(2π/L), (2.33)

we find

1/τmax =





1 + ω −
√

1− ω∗2 −
√
ω2 − ω∗2, ω > ω∗

1 + ω −
√

1− ω∗2, ω ≤ ω∗.
(2.34)

τmax is plotted in Figure 2.6. For any L, it is minimized at ω = ω∗ at which τmax

has a cusp and is non-analytic. (The shortest possible relaxation of the kth mode

similarly occurs at ω = ωk.) Since ω∗ is in general small,

τopt = τmax|ω=ω∗ ≈
1

ω∗
∼ L, (2.35)

i.e. the dynamical exponent z = 1, and not 2 as for the symmetric and totally

asymmetric walk limits. It is possible to obtain any dynamical exponent 1 < z < 2

by choosing ω ∼ L−z.

These results are consistent with the work of Diaconis et al. [97] on a discrete-time

random walk corresponding to the rtp with reflecting walls as in Figure 2.4b.

The definition of the model took the tumbling probabilities to be 1/L and hopping

probabilities 1 − 1/L, corresponding to the optimum we derived above. Rather

than looking at the decay rate of the dominant non-stationary mode as a measure

of the relaxation time of the model, they considered the total variational norm

||P − P ∗||TV =
1

2

∑

σ,n

|Pσ(n, t)− P ∗σ (n)|, (2.36)

which was proven to decay exponentially fast, with rate 1/L.

2.3.4 Discussion

In summary, we have found a non-analyticity in the relaxation time versus ω

at ω∗, that separates a region of strictly exponential relaxation (ω > ω∗) from

one of oscillatory exponential relaxation (ω < ω∗). At exactly ω∗, the relaxation

is exponential modulated by a linear time dependence; cf. (2.31). The value

ω∗ = sin(2π/L) minimizes the relaxation time and has the optimal system size

scaling. The non-analyticity is due to a real-to-complex eigenvalue crossing, such
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that the dominant non-zero eigenvalue experiences a branch point at ω∗ and

there has a non-diagonalizable eigensubspace. Kato [98] introduced the term

exceptional points for such points in parameter space where eigenvalues of a

linear operator coalesce. Exceptional points have been studied in other areas of

physics dealing with non-Hermitian matrices, such as open quantum system and

multichannel scattering where their effects can be observed experimentally [99].

Finally, to give an intuitive explanation for the presence of an optimum in the

relaxation, consider that with respect to the value of ω there is a trade-off between

reaching sites far away from the initial one, and diffusing the probability (cf.

Figure 2.3). In the limit of infinite persistence, we have a ballistic particle, and

uncertainty in position comes only from the rate of jumping. At the other end

of purely diffusive motion, it takes a long time to reach a site far away from the

initial one for the first time. In between there must be an optimum, such that

persistence gives a short time to visiting all sites while the particle motion is still

sufficiently stochastic to diffuse the initial probability mass. With a tumbling

rate ∼ 1/L, the particle tends to reverse its direction O (1) times per lap around

the ring, and within the time of O (L) it takes to make a few laps, it will be

hard to predict where the particle is as this depends sensitively on the number of

tumbles.

2.4 Solution for two interacting particles

We now consider the case of two rtps on a ring with hardcore exclusion. We

employ a reduced description where we only track the separation n = n2 − n1

between the particles in addition to their orientations σ1 and σ2. The model

satisfies the following master equation, which can be derived from (2.7) for N = 2,

or written down directly from the particle dynamics as

∂tP++(n) = P++(n+ 1)In6=L−1 + P++(n− 1)In6=1

+ ω [P+−(n) + P−+(n)]− [In6=1 + In6=L−1 + 2ω]P++(n),

(2.37a)

∂tP+−(n) = 2P+−(n+ 1)In6=L−1 + ω [P++(n) + P−−(n)]

− 2 [In6=1 + ω]P+−(n),

(2.37b)

∂tP−+(n) = 2P−+(n− 1)In6=1 + ω [P++(n) + P−−(n)]

− 2 [In6=L−1 + ω]P−+(n).

(2.37c)
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∂tP−−(n) = P−−(n+ 1)In6=L−1 + P−−(n− 1)In6=1

+ ω [P+−(n) + P−+(n)]− [In6=L−1 + In6=1 + 2ω]P−−(n),

(2.37d)

where IQ = {1 if Q is true; else 0}, and we have suppressed the time argument

for brevity. The periodicity constraint (2.5) becomes

Pσ1σ2(n, t) = Pσ2σ1(L− n, t). (2.38)

The particle separation argument n is defined as the clockwise measurement from

the first particle to the second, as ordered by the indices; (2.38) expresses the

arbitrariness of which particle is labelled the ‘first’.

We seek a spectral solution to the master equation, obtained by substitution of

the elementary solutions

Pσ1σ2(n, t) ∝ eλtuσ1σ2(n) (2.39)

into (2.37). That is, we seek the right eigenvector |u〉 with components uσ1σ2(n)

corresponding to the eigenvalue λ of the forward generator W. Because W is

not symmetric, nor even similar to a symmetric matrix as we shall see, the left

eigenvectors necessary for projection of the initial condition are not simply the

complex transposes 〈u|. (This highlights the limitation of the Dirac-notation in

dealing with non-Hermitian matrices.) We will however confine our analysis to

deriving the right eigenvectors, as the left ones can in principle be obtained by

the same method applied to the backward master equation.

In Section 2.4.1 we will solve the spectral problem using a generating function

approach, sometimes called the kernel method. To prepare the ground for these

calculations we first simplify the problem at hand by exploiting the formal

symmetries of (2.37).

First, we note the invariance of this set of equations under P++ ↔ P−−, as (2.37a)

turns into (2.37d) and vice versa. Similar to the notation in the one-particle

section, let the state space be X = S1⊗S2⊗N (now N = {1, 2, . . . L− 1}) with

natural basis vectors |σ1, σ2, n〉. Let R be a permutation matrix with

R|+,+, n〉 = |−,−, n〉, R|−,−, n〉 = |+,+, n〉, (2.40)
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and that otherwise acts as the identity. Second, we have invariance under

Pσ1σ2(n)↔ Pσ1σ2(L− n) with which we associate a matrix S with

S|σ1, σ2, n〉 = |σ2, σ1, L− n〉. (2.41)

Clearly R2 = S2 = 1, the unit matrix. Therefore the possible eigenvalues of R

and S are r = ±1 and s = ±1, respectively. By construction, these matrices

commute with W as they are symmetries of it,

W = RWR = SWS. (2.42)

Therefore, if |u〉 is an eigenvector of W with eigenvalue λ, then so are

R|u〉, S|u〉, and SR|u〉 = RS|u〉. (2.43)

From these we can create the linear combination

|u : s, r〉 := |u〉+ sS|u〉+ rR|u〉+ srSR|u〉 (2.44)

which satisfies

W|u : s, r〉 = λ|u : s, r〉, R|u : s, r〉 = r|u : s, r〉, S|u : s, r〉 = s|u : s, r〉.
(2.45)

We will therefore always choose the eigenvectors |u〉 of W such that they are

also eigenvectors of R and S, belonging to the ‘sector’ indexed by the eigenvalue

tuple (r, s). Because of the periodicity (2.38), the solution Pσ1σ2(n) will only

be constructed using eigenvectors in the sectors (±1,+1). We therefore neglect

the sectors (±1,−1) from the outset. Of the remaining sectors, we will refer to

(+1,+1) as the symmetric sector in the sense that its eigenvectors satisfy

u++(n) = u−−(n), (2.46)

and the (−1,+1) as the antisymmetric sector because

u++(n) = −u−−(n). (2.47)
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2.4.1 The kernel method and root parametrization

We define a vector-valued generating function by

g(x) :=
L−1∑

n=1

xnu(n), u(n) :=



u++(n)

u+−(n)

u−+(n)


 . (2.48)

It is invertible by u(n) = (1/n!)(∂nxg)(0). Because either (2.46) or (2.47) holds, it

is not necessary to include u−−(n) in u(n). We seek first closed equations for the

components of g. For example, the eigenvalue equation obtained by substituting

(2.39) into (2.37b) is

λu+−(n) = 2u+−(n+1)In6=L−1+ω [u++(n) + u−−(n)]−2 [In6=1 + ω]u+−(n). (2.49)

We multiply this equation by xn and sum over n from 1 to L − 1, evaluating it

term by term. We find for the first term in the right-hand side, for instance,

L−1∑

n=1

xnu+−(n+ 1)In6=L−1 =
L−1∑

n=2

xn−1u+−(n) = x−1g+−(x)− u+−(1), (2.50)

and can similarly express all terms using the components of g and boundary

values of u. The end result of proceeding this way with all the equations is

(µ(x) + ν(x))g++(x) + ω(g+−(x) + g−+(x)) = (1− x)(1− sxL−1)u++(1)

(2.51a)

ν(x)g+−(x) + ωδr,1g++(1) = (1− x)u+−(1), (2.51b)

µ(x)g−+(x) + ωδr,1g++(1) = −s(1− x)xL−1u+−(1), (2.51c)

(µ(x) + ν(x))g++(x) + rω(g+−(x) + g−+(x)) = (1− x)(1− sxL−1)u++(1).

(2.51d)

Here we have used u++(n) = ru−−(n) and u+−(n) = su−+(L − n) for |u〉 in the

sector (r, s). Furthermore we have introduced the functions µ, ν and the shifted

eigenvalue ζ as

µ(x) := x− ζ

2
, ν(x) :=

1

x
− ζ

2
, ζ := λ+ 2(1 + ω). (2.52)
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The equations (2.51) can be written in matrix form as

H(x, λ)g(x) = b(x), for x 6= 0, (2.53)

where H(x, λ) := A(x)− λI, and A(x) and b(x) will be explicitly given later on,

and depend on the sector (r, s). The elements of A(x) are all rational functions of

x, and therefore the determinant of H(x, λ) is too. We have the two alternative

factorizations

detH(x, λ) = −
3∏

i=1

(λ− λi(x)) =
1

p(x, λ)

m∏

i=1

(x− zi(λ)). (2.54)

The denominator p(x, λ) is a polynomial in x with zeroes different from the m

zeroes zi(λ) of the numerator. We fix ω, and choose some λ from the actual

spectrum (which is finite). Then, H(x, λ) will be invertible for all x but those

coinciding with some zi(λ), so that

g(x) =
p(x, λ)∏k

i=1(x− zi(λ))
C>(x, λ)b(x), (2.55)

where C>(x, λ) is the transposed matrix of cofactors of H(x, λ). Since g(x) is by

definition continuous, the above expression must hold even in the limits x→ zi(λ)

for which H(x, λ) is not invertible. For this limit to exist we require that the poles

in the denominator be cancelled by zeroes of corresponding order in C>b,

C>(zi(λ), λ)b(zi(λ)) = 0, for i = 1, . . . ,m. (2.56)

This constitutes a set of implicit equations in λ that determine in full the

spectrum associated with any chosen sector (r, s). With the spectrum in principle

determined, choosing any particular eigenvalue λ, the solution (2.55) for the

generating function can be inverted to obtain the corresponding eigenfunction.

It will prove advantageous to change basic variables from λ to the set of ‘roots’

zi = zi(λ). To close the equations in these variables, additional constraints

relating the zi are derived by eliminating λ between z1 = z1(λ), z2 = z2(λ), etc.

The eigenvectors can also be expressed in terms of these roots. At this point, we

separate the analysis for the two relevant sectors, considering first the symmetric

sector, which proves to be larger and more complex than the antisymmetric one.

We let ω > 0 in both cases, to thereafter treat the singular limit ω = 0 separately.
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The symmetric sector

In the sector (r, s) = (+1,+1), the matrix H(x) in (2.53) becomes

H(x) =



µ(x) + ν(x) ω ω

ω ν(x) 0

ω 0 µ(x)


 . (2.57)

Its determinant is

detH(x) = (µ(x) + ν(x))(µ(x)ν(x)− ω2), (2.58)

which vanishes for x in the set of roots {z1,
1
z1
, z2,

1
z2
}, where

µ(z1) + ν(z1) = 0, µ(z2)ν(z2) = ω2. (2.59)

From here on we refer only to z1 and z2, and not their reciprocals, as ‘the roots’.

Solving the quadratic equations (2.59) yields

z1 =
ζ

2
+

√
ζ2

4
− 1, (2.60a)

z2 =
ζ

4
+

1

ζ

(
1− ω2

)
+

1

2

√
ζ2

4
− 2(1 + ω2) +

(
2(1− ω2)

ζ

)2

. (2.60b)

(The reciprocals differ by the sign of the square root terms.) It follows that

(x− z1)(x− 1/z1) = x(µ(x) + ν(x)), (2.61a)

(x− z2)(x− 1/z2) = −2x

ζ
(µ(x)ν(x)− ω2), (2.61b)

whence p(x, λ) appearing in (2.55) equals −2x2/ζ.

At this point the eigenvalues are not yet known. Instead of determining the

eigenvalues explicitly, we seek tractable and closed equations in z1 and z2, whose

solutions then produce the eigenvalues through the inversion of (for example)

(2.60a),

λ = z1 +
1

z1

− 2(1 + ω). (2.62)

Since there are two independent variables (z1 and z2) we need two equations,

which we refer to as root-parametrized eigenvalue equations.
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The first one is derived by eliminating ζ between the two equations (2.59).

Employing the notational shorthand z̄ = 1/z, the result is

(z1 + z̄1) [2(z2 + z̄2)− (z1 + z̄1)] = 4(1− ω2). (2.63)

Already, it is apparent that ω = 1 is a distinguished value.

The second root equation is derived from the pole cancellation condition (2.56)

and is more involved. We require the transposed matrix of cofactors

C> =




µν −µω −νω
−µω µ(µ+ ν)− ω2 ω2

−νω ω2 ν(µ+ ν)− ω2


 (2.64)

and the vector b(x) which we decompose as

b(x) = B(x)ũ, (2.65)

where

B(x) = (1− x)




1− xL−1 0 0

0 1 0

0 0 −xL−1


 , (2.66)

and

ũ = u++(1)




1

0

0


+ u+−(1)




0

1

1


 . (2.67)

The fact that b(x) depends through ũ on the components of (∂xg)(0) implies no

additional constraints on u++(1) and u+−(1) over ũ 6= 0 and whatever comes of

the pole cancellation condition; the inversion (2.55) is already self-consistent for

(∂xg)(0).

The pole cancellation condition (2.56) gives one equation per component, of which

there are three, for each of the four poles z1,
1
z1
, z2,

1
z2

. However, due to the

reciprocity of the poles, and the relations (2.59), they are not independent. One

finds that all the conditions are satisfied if and only if

0 = (1− z1)[ωµ(z1)(1− zL−1
1 )u++(1) + ω2(1 + zL−1

1 )u+−(1)], (2.68a)
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0 = (1− z2)µ(z2)[−ω(1− zL−1
2 )u++(1) + (µ(z2)− ν(z2)zL−1

2 )u+−(1)].

(2.68b)

We think of u++(1) and u+−(1) as constants (for a given λ), so at first sight

(2.68a) and (2.68b) may appear to be independent. However, they are not, as

becomes clear from writing them in matrix form as

(
1− z1 0

0 1− z2

)(
µ(z1)(1− zL−1

1 ) ω(1 + zL−1
1 )

−ω(1− zL−1
2 ) µ(z2)− ν(z2)zL−1

2

)(
u++(1)

u+−(1)

)
=

(
0

0

)
.

(2.69)

We require ũ 6= 0 as otherwise |u〉 = 0 and is not an eigenvector. Therefore, the

determinant of the matrix product in (2.69) must vanish. This implies the two

possibilities

(1− z1)(1− z2) = 0 (2.70a)

or

µ(z1)(1− zL−1
1 )(µ(z2)− ν(z2)zL−1

2 ) = −ω2(1 + zL−1
1 )(1− zL−1

2 ), (2.70b)

from which we will derive the second root equation.

If (2.70a) is satisfied, then either z1 = 1 or z2 = 1, which creates a double pole in

(2.55) because z1 = 1/z1 or z2 = 1/z2. The other possibilities of having double

poles come from z1 = −1, or z2 = −1, or z1 = z2, which are in fact possible

solutions of (2.70b). In the symmetric sector, only z2 = 1 cancels the double

pole by a corresponding double zero in (2.68). We leave the treatment of this

special case to the end of this section. z1 = 1 is admissible in the asymmetric

sector, treated in the next section. The other cases are inconsistent. There are

further special solutions of (2.70) for which a factor on either side of the equality

(2.70b) evaluates to zero, e.g. zL−1
1 = zL−1

2 = 1. These cases confine both roots

to a discrete set of possible values independently of ω. However, the first root

equation (2.63) must also be satisfied and it depends explicitly on ω. Therefore,

these cases can only be consistent for particular fine-tuned values of ω. We omit

the derivation of these values, noting only that they occur for ω ≤ 2 and are

expected to be the exceptional values for which eigenvalue crossings occur, and

to imply non-diagonalizability; compare with the one-particle analysis.

Generic case. Leaving these special cases for now, we continue with the generic

case in which (2.70b) is non-trivially satisfied. Then solving for u++(1)/u+−(1)
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in (2.68a) and (2.68b) we get

u++(1)

u+−(1)
= − ω

µ(z1)

1 + zL−1
1

1− zL−1
1

=
µ(z2)− ν(z2)zL−1

2

ω(1− zL−1
2 )

. (2.71)

Making judicious use of (2.59) and (2.62), we can rewrite the right equality of

(2.71) explicitly in terms of z1 and z2, arriving at our second root-parameterized

eigenvalue equation (2.72b), stated besides the first, (2.63),

(z1 + z̄1) [2(z2 + z̄2)− (z1 + z̄1)] = 4(1− ω2), (2.72a)

zL−1
2 =

2z2 − (z1 + z̄1)

2z̄2 − (z1 + z̄1)
· (z̄1 − z̄2) + (z1 − z̄2)zL−1

1

(z̄1 − z2) + (z1 − z2)zL−1
1

, (2.72b)

where, as before, z̄ = 1/z. The equations (2.72) furnish the exact solution of the

spectrum in the symmetric sector (excepting the special cases listed previously).

Note that both equations are invariant under either of the transforms z1 → z̄1 or

z2 → z̄2. Hence, if (z1, z2) is a solution, then so are (z1, z̄2), (z̄1, z2), and (z̄1, z̄2).

Nonetheless, they give the same eigenvalue. Note also that z1 = z2 remains a

spurious solution of (2.72), as explained above, and must be discarded.

Special case z2 = 1. We return now to this case, responsible for two special

modes: the steady state and a ‘tumble mode’ with the L-independent eigenvalue

λ = −4ω, analogous to the one-particle case. Solving (2.63), the steady state has

the real root

z1 = 1 + ω +
√
ω(2 + ω) (2.73)

(cf. [39]). The tumble mode has

z1 = 1− ω +
√
ω(ω − 2), (2.74)

which transitions from the real line to the unit circle for ω < 2. In both cases, in

order to ensure ũ 6= 0 we must choose from (2.68a)

u++(1)

u+−(1)
=

ω

µ(z1)

1 + zL−1
1

1− zL−1
1

. (2.75)

(This is the left equality of (2.71) and z2 = 1 also solves (2.72b). In practice,

we will not need to treat this case separately from the generic one when deriving

the eigenvectors or solving (2.72) numerically.) For the tumble mode, (2.75) is

undefined for ω such that z1 is an (L − 1)-root of 1. Such ω correspond to an
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eigenvalue crossing with a mode from the antisymmetric sector, as becomes clear

from the next section.

The antisymmetric sector

In this sector, it follows immediately by adding and subtracting (2.51a) and

(2.51d) that

g++(x) =
x(1− x)(1− xL−1)

(x− z1)(x− 1/z1)
u++(1), (2.76a)

g+−(x) = g−+(x) = 0, (2.76b)

with z1 defined by (2.60a) as before. The poles can be cancelled if and only if

zL−1
1 = 1. Letting θm = mπ/(L− 1), m = 1, 2, . . . L− 1, the eigenvalues are

λm = −4 sin2 θm − 2ω. (2.77)

For the case of z1 = 1, the eigenvalue is λ = −2ω, which we denote as another

L-independent tumble mode. The relaxation time of this mode is 1/(2ω), twice

that of 1/(4ω) for the tumble mode in the symmetric sector. If the probability

distribution has an initial condition with P++(n, 0) = P−−(n, 0) it will not involve

the antisymmetric sector, and hence not the slower decaying tumble mode. We

may therefore suppose that it is related to the spreading of the probability mass

between orientation sectors where both particle move in the same direction (i.e.

between the ++ and −− sector). Similarly, the faster tumble mode should be

related to relaxation between same-direction and opposite-direction orientation

sectors (i.e. between either of +−/−+ and either of ++/−−).

The ω = 0 limit

For ω = 0 the orientation sectors are decoupled (i.e. the Markov matrix is

completely reducible). Now r disappears from the equations (2.51), indicating

a double degeneracy of the eigenvalues. Remaining in s = +1, g++(x) is identical

to (2.76a), whereas

g+−(x) =
x(1− x)

1− ζ
2
x
u+−(1), g−+(x) =

(1− x)xL−1

ζ
2
− x

u+−(1). (2.78)
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If u+−(1) is to be non-zero, we must take ζ = 2, i.e. λ = 0, to cancel the poles.

Then

g+−(x) = xu+−(1), g−+(x) = xL−1u+−(1). (2.79)

Clearly, this gives u+−(n) = δn,1u+−(1) and u−+(n) = δn,L−1u+−(1), which are

the jammed steady states of the respective orientation sector. Obviously, for

λ = 0 we will find u++(n) = u++(1). For other eigenvalues, consistency requires

u+−(1) = 0 and the eigenvalues are associated exclusively with the dynamics of

the ++ (or −−) orientation sector. These eigenvalues are just (2.77) with ω = 0.

2.4.2 Spectrum: band structure and eigenvalue crossings

We now study the spectrum as a function of ω and L by a combination of numerics

and analytical results. For generic parameter values we find 2(L−1) eigenvalues,

which is half the dimension of the Markov matrix. This is expected since we

are restricted to the two s = +1 sectors out of four. The picture that emerges

is plotted and described in detail in Figure 2.7. For large ω, the spectrum is

structured into real bands which interact via eigenvalue crossings as ω tends to

zero producing a complicated pattern.

The spectrum is pieced together from the following results. The steady state

and the two L-independent tumble modes with λ = −2ω,−4ω were found

analytically in the previous section, as well as the entire antisymmetric sector

of eigenvalues (2.77) for arbitrary L and ω > 0. For ω = 0 the formula

(2.77) is again applicable but the spectrum is doubly degenerate (except the zero

eigenvalue). For the symmetric sector, the eigenvalues are given by solving (2.72)

and substituting their solution into (2.62). In general, we do this numerically.

While the roots generally fall on or near clear contours in the complex plane, we

have omitted plotting the solutions to the roots in favour of plotting the resulting

spectrum. For ω > 2 it is possible to obtain an asymptotic analytic solution

to the eigenvalue equations, derived in Appendix 2.A. This is facilitated by the

numerical observation that in this region the roots form three groups, one with

z1 on the unit circle and z2 real, and vice versa for the other two groups. Using
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this as an ansatz we find three real bands of eigenvalues

λm = −4 sin2 θm −
sin2 2θm

ω
+

2 sin2 2θm
Lω

+ h.o.t., m integer,

(2.80a)

λm = −4 sin2 θm
2
− 2ω +

2 sin θm sin 2θm
Lω2

+ h.o.t., m odd integer,

(2.80b)

λm = −4 sin2 θm − 4ω +
sin2 2θm

ω
− 2 sin2 2θm

Lω
+ h.o.t., m integer,

(2.80c)

where θm = πm/(L − 1) and ‘h.o.t’ signifies terms with higher order reciprocals

of L or ω.

As a side remark: for L ∼ 30, I have constructed the Markov matrix explicitly on a

computer and solved numerically for the spectrum and eigenvectors. Those results

are fully consistent with what we obtained by independent means, as presented

in this section and the next. The naive numerical approach has the drawback of

requiring all eigenvectors to be found and their symmetries determined, in order

to select only the eigenvalues belonging to the two relevant symmetry sectors.
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(e) ω = 0.005
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Figure 2.7 Plot of the two-particle spectrum in the complex plane for L = 30.
Different L produce the same pattern of eigenvalues. Blue circles:
symmetric sector; orange diamonds: antisymmetric sector. (a) The
symmetric sector comes in three separate bands for ω ≥ 2 where the
separation is linear in ω. (b) In the range 2 ≥ ω > 1 the bands cross,
creating small excursions into the complex plane. (c) At exactly ω =
1 there is degeneracy proportional to L at λ = −4 as a ‘macroscopic
eigenvalue crossing’ takes place, just as in the one-particle case. (d)
As the bands continue to cross, pairs of eigenvalues are sent out onto
a deformed circle. (e) As ω approaches zero, the circle collapses
towards λ = −2. (f) At ω = 0 the symmetric and antisymmetric
sector have the same eigenvalues (except the zero eigenvalue of the
steady state which lies in the symmetric sector).

69



2.4.3 z1,2-parametrized eigenvectors

The generating function expressed in the roots z1 and z2 is inverted in Section 2.B

to yield the eigenvectors. Here, we state the eigenvectors for any given eigenvalue

λ, using (2.60) to define the roots from the shifted eigenvalue ζ = λ+ 2(1 + ω).

Take first ω > 0. The eigenvectors in the antisymmetric sector are given by

u++(n) = zn1 + zL−n1 (2.81a)

u+−(n) = u−+(n) = 0 (2.81b)

u−−(n) = −u++(n). (2.81c)

Since in this sector z1 are (L − 1)-roots of unity, the non-zero components are

essentially Fourier basis functions. The symmetric sector has eigenvectors

u++(n) = ν(z1)
zn1 + zL−n1

1− zL1
− ω2 zn2 + zL−n2

µ(z2) + ν(z2)zL2
, (2.82a)

u+−(n) = ω
(

1 + 2
ζ−2

δn,1

)[zn1 − zL−n1

1− zL1
+
ν(z2)zn2 + µ(z2)zL−n2

µ(z2) + ν(z2)zL2

]
, (2.82b)

u−+(n) = u+−(L− n), (2.82c)

u−−(n) = u++(n), (2.82d)

where µ(z) = z−ζ/2 and ν(z) = µ(1/z). The eigenvectors have two components,

one involving z1 and one z2. In addition, the opposed orientation components

have an ‘anomalous weight’ on the jammed states u+−(1) and u−+(L− 1). A few

eigenvectors are shown in Figure 2.8.

For ω = 0, the orientation sectors are decoupled, so the relative scaling of the

different orientation components is irrelevant,

u++(n) = zn1 + zL−n1 (2.83a)

u+−(n) ∝ δλ,0δn,1 (2.83b)

u−+(n) ∝ u+−(L− n) (2.83c)

u−−(n) ∝ u++(n). (2.83d)

As a general observation on the basis of the uniqueness of the generating function

inversion, a given eigenvalue cannot have distinct eigenvectors from the same

sector. At an ω where two eigenvalues with eigenvectors in the same symmetry
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Figure 2.8 Plot of some normalized eigenvectors for L = 30, ω = 1.2 (cf.
Figure 2.7b) versus lattice site n. Blue graphs: u++(n). Orange
graphs: u+−(n). Full drawn lines show real part, dotted lines show
imaginary part. (a) Most negative eigenvalue. (b) An arbitrary
complex eigenvalue. (c) The least negative non-zero eigenvalue
(spectral gap).

sector cross, the associated subspace becomes non-diagonalizable, just as in

the one-particle case. However, we do not attempt to derive the generalized

eigenvectors or projection operators for these cases.

2.4.4 Nonequilibrium steady state

The steady state distribution, P ∗σ1σ2
(n), has been found and discussed in-depth

by Slowman et al. [39], but for completeness we state it here in the context of

the full spectral solution. The steady state always lies in the symmetric sector

(assuming ω > 0 as we do throughout this section); being independent of initial

condition, a symmetry argument implies P ∗++(n) = P ∗−−(n). We derived earlier

that the roots for the steady state are z1 = 1 +ω+
√
ω(2 + ω) (2.73) and z2 = 1.

The steady state distribution is then

P ∗++(n) =
1

ZL

(
(1 + ω)

zn1 + zL−n1

1− zL1
+ ω

)
, (2.84a)

P ∗+−(n) =
1

ZL
(ω + δn,1)

(
zn1 − zL−n1

1− zL1
+ 1

)
, (2.84b)

P ∗−+(n) = P ∗+−(L− n), (2.84c)

P ∗−−(n) = P ∗++(n), (2.84d)

where the normalization is

ZL =
L−1∑

n=1

∑

σ1,σ2∈{+,−}

uσ1σ2(n) = 4

[
ω(L− 1) + (1 + z1)

1− zL−1
1

1− zL1

]
. (2.85)
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Figure 2.9 Coloured lines: longest system-size dependent relaxation time.
Dashed lines: relaxation times 1/2ω and 1/4ω. Each coloured curve
has two minima and cusps (cf. Figure 2.6).

2.4.5 Relaxation time

The longest relaxation time τmax, disregarding the tumble modes, is obtained

from the numerical solution of the spectrum as a function of ω and plotted in

Figure 2.9. While we do not have exact expressions for the values ω∗1,2(L) at the

two cusps, numerics suggests they scale as ∼ 1/L (for L larger than about 20),

in analogy with the one-particle case. The scaling away from the region between

ω∗1(L) and ω∗2(L) is again ∼ L2.

2.4.6 Discussion

We were able to solve the 2-rtp problem, albeit in the relative coordinate. The

solution has an intriguing structure given implicitly via the root equations (2.72)

that are reminiscent of Bethze equations. However, it is not clear how one would

generalize the obtained solution either to two particles in absolute coordinates,

or to an ansatz for the 3- or N -particle problem. Whether these problems are

amenable to analytical solution remains an open question, but the complexity of

even the two-particle case moderates expectations.

Let us nonetheless guess at some features of the N -particle solution. Certainly,

the spectrum will be divided into some number of symmetry sectors. We would

expect to find branch-point type eigenvalue crossings at exceptional points; these

have been proven to exist in the Bethe ansatz solution of the N -particle asep

[100, 101]. Generalizing our obtained results rather naively, we conjecture that

the spectrum consists of a number of real bands for ω & N , which cross in
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complicated ways for smaller ω. Tumble modes related only to the orientation

dynamics will be present, possibly at λ = −2k, for k = 1, 2, . . . , N . It would be

interesting to see if the number of cusps in the relaxation spectrum is related to

the number of particles by some simple rule.

After the publication of the material in this chapter ([1], January 2019), Das et

al. continued this line of inquiry by considering the two-rtp problem on the

continuous ring, with the addition of thermal noise ([102], August 2020). The

spectrum was found to exhibit a band structure analogous to the lattice case.

Somewhat counter-intuitively, on the continuum the addition of thermal noise

makes the model easier to analyse than without it. This is because hardcore

exclusion can then be implemented by certain simple boundary conditions on the

probability density, and density delta-spiked due to jamming [39] are smoothed

out to exponentials. In the next chapter, we will study a continuum model of N

particles that drift and diffuse with individual parameters. While we will study

this model in its own right, it does describe as a special case the dynamics of

the thermal rtp model for times between tumble events. In an epilogue to the

next chapter we will assess the feasibility of obtaining an N -rtp steady state by

adopting the continuous, thermal setting.
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Appendices for Chapter 2

2.A Asymptotic solution of two-particle spectrum

for ω > 2

Here, we solve the polynomial equations (2.72) to order 1/L, in the regime ω > 2.

Guided by the numerical solution, we make the ansatz that either z1 or z2 lies on

the unit circle. The first assumption produces the middle band, and the second

ansatz the left and right bands.

2.A.1 The middle band

Starting with an ansatz for z1 on the unit circle, we assume it differs from an

(L− 1)-root of negative one by an argument of order 1/L,

z1 = exp

[
i

(
θ − f(ω, θ)

L
+O

(
L−2

))]
, (2.86)

where θ = θm = πm/(L − 1) and m is an odd integer up to 2(L − 1) − 1. We

rewrite (2.71) as

zL−1
2 =

µ(z2)µ(z1) + ω2ρ(z1)

ν(z2)µ(z1) + ω2ρ(z1)
, ρ(z1) :=

1 + zL−1
1

1− zL−1
1

, (2.87)

which stands in for (2.72b). To leading order, zL−1
1 = −e−if , so that

ρ(z1) =
1− e−if(ω,θ)

1 + e−if(ω,θ)
= iT (ω, θ), T (ω, θ) := tan[f(ω, θ)/2]. (2.88)
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Using the fact that z1 is on the unit circle, we rewrite (2.72a) as

z̄2 = −z2 +
1− ω2

Re z1

+ Re z1. (2.89)

Note that µ(x) = x−Re z1, so that µ(z1) = iIm z1. Then substituting (2.89) and

(2.88) into (2.87), one obtains

zL−1
2 = − z2 − Re z1 + ω2T/Im z1

z2 − 1/Re z1 − ω2 (T/Im z1 − 1/Re z1)
. (2.90)

Due to the reciprocal symmetry, we can without loss of generality take |z2| < 1 .

Then lim
L→∞

zL−1
2 = 0, which implies that the numerator in the r.h.s. above vanishes

in this limit. Hence

ẑ2 := lim
L→∞

z2 = cos θ − ω2T (ω, θ)

sin θ
. (2.91)

We take now the L→∞ limit of (2.89), and substitute the expression (2.91) for

ẑ2. Introducing the parameter ε = 1/ω2,

[
cos θ − T

ε sin θ

]−1

− T

ε sin θ
=

ε− 1

ε cos θ
. (2.92)

Straightforward manipulations lead to the quadratic equation

T 2 − [ε sin θ cos θ + (1− ε) tan θ]T + ε sin2 θ = 0, (2.93)

with solution

T (ω, θ) =
1

2
[ε sin θ cos θ + (1− ε) tan θ]

±
√

1

4
[ε sin θ cos θ + (1− ε) tan θ]2 − ε sin2 θ.

(2.94)

The choice of root relates to the reciprocal symmetry of the solutions, and we

can without loss of generality take the consistent combination of negative root

and tan θ > 0.

Although f(ω, θ) has now been found exactly, the expression is unwieldy. Settling

for a truncated Laurent series in ω, a computer algebra package finds for us

f(ω, θ) =
1

ω2

(
1 +

1

ω2

)
sin 2θ +O

(
ω−6

)
. (2.95)
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The corresponding eigenvalue is given by λ = 2Re z1 − 2(1 + ω). Substituting in

(2.86) and (2.95), and expanding up to relevant orders,

λm = −4 sin2 θm
2
− 2ω +

2 sin θm sin 2θm
Lω2

+ h.o.t., (2.96)

where h.o.t. implies terms with higher reciprocal orders of ω or L.

2.A.2 The left and right bands

For values of z1 that lie on the real axis, the corresponding z2 lies instead on the

unit circle. In particular, there are are two distinct z2’s (with different z1’s) close

to every root of positive one. We make the ansatz

z2 = exp

[
i

(
ϕ− h(ω, ϕ)

L
+O

(
1/L2

))]
, (2.97)

where ϕ = ϕm = 2πm/(L − 1), m = 1, 2, . . . , L − 1. We can then proceed in

much the same way as with the previous ansatz, but interchanging the role of z1

and z2. First, (2.72b) is written

zL−1
1 = −ω

2 + µ(z1)η(z2)

ω2 + ν(z1)η(z2)
, η(z2) =

µ(z2)− ν(z2)zL−1
2

1− zL2
, (2.98)

and (2.72a) is solved

z1 + z̄1 = 2
[
Re z2 + q

√
ω2 − (Im z2)2

]
, (2.99)

where q = ±1 selects between the two solutions. Then, since ζ = z1 + z̄1, we have

µ(z2) = iIm z2 − q
√
ω2 − (Im z2)2, (2.100a)

ν(z2) = −iIm z2 − q
√
ω2 − (Im z2)2. (2.100b)

It follows that (to leading order)

η(z2) =
i(Im z2)(1 + zL−1

2 )− q
√
ω2 − (Im z2)2(1− zL−1

2 )

1− zL−1
2

(2.101a)

= i(Im z2)
1 + zL−1

2

1− zL−1
2

− q
√
ω2 − (Im z2)2 (2.101b)
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=
Im z2

T (ω, ϕ)
− q
√
ω2 − (Im z2)2, (2.101c)

where T (ω, ϕ) := tan[h(ω, ϕ)/2]. Without loss of generality we assume |z1| < 1,

so that taking the limit L→∞ of the left equation in (2.98) leads to

µ(ẑ1) = − ω2

η(ẑ2)
. (2.102)

This we express using (2.99) and (2.101) as

ẑ1 = cosϕ+ q

√
ω2 − sin2 ϕ− ω2T (ω, ϕ)

sinϕ− q(
√
ω2 − sin2 ϕ)T (ω, ϕ)

. (2.103)

Now, going back to (2.99), we solve for ẑ1 to obtain

ẑ1 = cosϕ+ q

√
ω2 − sin2 ϕ+ q′

√(
cosϕ+ q

√
ω2 − sin2 ϕ

)2

− 1, (2.104)

where q′ = ±1 selects the positive or negative root solution. Dividing by ω and

taking the limit to infinity, we discover the consistency requirement q′ = −q.
Combining the last two equations,

ω2T (ω, ϕ)

sinϕ− q
√
ω2 − sin2 ϕT (ω, ϕ)

= q

√(
cosϕ+

√
ω2 − sin2 ϕ

)2

− 1. (2.105)

After rearranging we find

h(ω, ϕ) = 2 arctan




q sinϕ

ω2

[(
cosϕ+ q

√
ω2 − sin2 ϕ

)2

− 1

]−1/2

+
√
ω2 − sin2 ϕ


 .

(2.106)

This we expand using computer algebra to

h(ω, ϕ) =
q sinϕ

ω
+

sinϕ cosϕ

2ω2
− q sinϕ (cos 2ϕ+ 5)

12ω3
+O

(
ω−4

)
. (2.107)

Once z2 is known, the eigenvalue is obtained from (2.99) and expanded,

λm = −4 sin2 ϕ

2
−2ω(1−q)− q sin2 ϕ

ω
+

2q sin2 ϕ

Lω
+

3 sinϕ sin 2ϕ

2Lω2
+h.o.t. (2.108)
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2.B Derivation of two-particle eigenvectors

Here we determine the generating function by evaluating the inversion (2.55). We

begin with the symmetric sector. Define for convenience

J(x) = µ(x)ν(x)u++(1)− ωµ(x)u+−(1). (2.109)

The first component of the generating function can then be expressed

g++(x) = − 2x2(1− x)

ζ(x− z1)(x− 1
z1

)(x− z2)(x− 1
z2

)
[J(x)− xL−1J(1/x)]. (2.110)

Since J(1/x) ∼ 1/x, it follows that x2(1−x)J(1/x) ∼ x, and therefore the second

term is∼ xL once the factors in the denominator are expanded in geometric series.

It is thus unimportant, since by the definition of g(x) all powers above L− 1 will

eventually cancel out. Hence we write

g++(x) = −2x

ζ
· x(1− x)J(x)

(x− z1)(x− 1
z1

)(x− z2)(x− 1
z2

)
+O

(
xL
)
. (2.111)

We perform a partial fraction decomposition of the large fraction, possible since

the numerator is ∼ x3;

g++(x) = − 2x

ζ

{
z1(1− z1)J(z1)

(x− z1)(z1 − 1
z1

)(z1 − z2)(z1 − 1
z2

)

+
1/z1(1− 1/z1)J(1/z1)

( 1
z1
− z1)(x− 1

z1
)( 1
z1
− z2)( 1

z1
− 1

z2
)

+ perm.

}

+O
(
xL
)
,

(2.112)

where ‘perm.’ implies a repetition of the terms to its left but with z1 and z2

permuted. The pole cancellation conditions (2.68) imply succinctly

J(zi) = zL−1
i J(1/zi), i = 1, 2. (2.113)

Using (2.113), together with the algebraic identity

( 1
z1
− z2)( 1

z1
− 1

z2
) = 1

z2
1
(z1 − z2)(z1 − 1

z2
), (2.114)
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the expression (2.111) simplifies to

g++(x) =
2(1− z1)J(1/z1)

ζ(z1 − 1
z1

)(z1 − z2)(z1 − 1
z2

)

[
zL1 x

z1 − x
+

x
1
z1
− x

]
+ perm. +O

(
xL
)
.

(2.115)

Recognizing the power series

x

a− x =
∞∑

n=1

(x/a)n, (2.116)

we have found

g++(x) =
2(1− z1)J(1/z1)

ζ(z1 − 1
z1

)(z1 − z2)(z1 − 1
z2

)

L−1∑

n=1

[zn1 + zL−n1 ]xn + perm., (2.117)

since higher order terms must cancel out. Denote the prefactors by

A1ν(z1) :=
2(1− z1)J(1/z1)

ζ(z1 − 1
z1

)(z1 − z2)(z1 − 1
z2

)
, (2.118a)

−A2ω :=
2(1− z2)J(1/z2)

ζ(z2 − 1
z2

)(z2 − z1)(z2 − 1
z1

)
. (2.118b)

Then

u++(n) = A1ν(z1)(zn1 + zL−n1 )− A2ω(zn2 + zL−n2 ). (2.119)

To find the second component, u+−(n), we define for convenience the two

functions

K(x) := ωµ(x)u++(1) + ω2u+−(1), (2.120a)

K ′(x) := µ(x)(µ(x) + ν(x))u+−(1)

=
µ(x)

x
(x− z1)(x− 1/z1)u+−(1).

(2.120b)

With these definitions

g+−(x) =
2x

ζ
· x(1− x)

(x− z1)(x− 1
z1

)(x− z2)(x− 1
z2

)
[K(x)−K ′(x)]+O

(
xL
)
. (2.121)

The K(x) term can be decomposed into four partial fractions since K(x) ∼ x,
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leaving the numerator ∼ x3. The K ′(x) term already cancels two of the poles and

x in the numerator, after which two partial fractions can be taken. The result is

g+−(x) = − 2(1− z1)

ζ(z1 − 1
z1

)(z1 − z2)(z1 − 1
z2

)

[
K(1/z1)x
1/z1 − x

+
K(z1)z1x

z1 − x

]
+ perm.

+
2(1− x)u+−(1)

ζ(z2 − 1
z2

)

[
µ(z2)

x

z2 − x
− ν(z2)

x
1/z2 − x

]

(2.122)

We make use of the following relations,

K(z1) =
ω

ν(z1)
zL−1

1 J(1/z1), (2.123a)

K(1/z1) = − ω

ν(z1)
J(1/z1), (2.123b)

K(z2) =
µ(z2)

ω
zL−1

2 J(z2) +K ′(z2), (2.123c)

K(1/z2) =
ν(z2)

ω
J(1/z2) +

ν(z2)

µ(z2)
K ′(z2), (2.123d)

and the geometric series (2.116), to find

g+−(x) = A1ω
∞∑

n=1

[zn1 − zL−n1 ]xn + A2

∞∑

n=1

[ν(z2)zn2 + µ(z2)zL−n2 ]xn

− 2(1− z2)K ′(z2)

ζµ(z2)(z2 − 1
z2

)(z2 − z1)(z2 − 1
z1

)

[
ν(z2)

x
1/z2 − x

+ µ(z2)
z2x

z2 − x

]

+
2(1− x)u+−(1)

ζ(z2 − 1
z2

)

[
µ(z2)

x

z2 − x
− ν(z2)

x
1/z2 − x

]
.

(2.124)

Considering (2.120b), the last two lines almost cancel, leaving only a term

(2/ζ)xu+−(1). We have then found

u+−(n) = A1ω(zn1 − zL−n1 ) +A2(ν(z2)zn2 +µ(z2)zL−n2 ) +
2

ζ
u+−(1)δn,1. (2.125)

This we can rearrange to

u+−(n) =

(
1 +

2

ζ − 2
δn,1

)(
A1ω(zn1 − zL−n1 ) + A2(ν(z2)zn2 + µ(z2)zL−n2 )

)
.

(2.126)
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Finally, we want to choose the arbitrary overall scaling of the eigenvectors such

that A1 and A2 become simple expressions. The ratio A1/A2 is already fixed by

u++(1)/u+−(1) which must satisfy (2.71). Rather than attempting to simplify

(2.118) directly, we substitute (2.119) and (2.125) into the eigenvalue equation

corresponding to (2.37c) for n = 1, which reads simply

ζ

2
u−+(1) = ωu++(1). (2.127)

After trivial rearrangements, the above equation gives

A1

[
ζ

2
(z1 − zL−1

1 ) + ν(z1)(z1 + zL−1
1 )

]
= A2

1

ω

[ζ
2

(µ(z2) + ν(z2)zL−1
2 )

+ ω2(z2 + zL−1
2 )

]
.

(2.128)

The bracket on the left-hand side can be written using ν(z1) = −µ(z1) (2.59) as

(
ζ

2
z1 + ν(z1)z1

)
−
(
µ(z1) +

ζ

2

)
zL−1

1 . (2.129)

After using the definitions of µ and ν (2.52), the resulting expression is

1− zL1 . (2.130)

For the left-hand-side bracket in (2.128) we use ω2 = µ(z2)ν(z2) (2.59) to express

it as

µ(z2)

(
ζ

2
z2 + ν(z2)z2

)
+ ν(z2)

(
ζ

2
+ µ(z2)

)
zL−1

2 . (2.131)

After simplifying the above using (2.52), it is clear that we can choose

A1 =
1

1− zL1
, A2 =

ω

µ(z2) + ν(z2)zL2
. (2.132)

This concludes the derivation of eigenvectors for the symmetric sector.

The non-zero eigenvector (2.76a) of the asymmetric sector is obtained by the

same method of partial fraction decomposition and geometric series expansion as

above.
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Chapter 3

An inter-particle ratchet effect in

heterogeneous single-file diffusion

3.1 Background

3.1.1 Single-file diffusion

Particles moving in single file under stochastic influences have been considered

by modellers from as early as 1955 with the transport of ions through pores in

the squid giant axon [103]. Another, more recent, physical realization of particles

moving through narrow channels come from diffusion though zeolites, a mineral

with parallel pores of sub-microscopic dimensions [104, 105]. Both lattice (the

asep) and continuum models have been employed in relation to narrow-channel

transport, but the continuum version lends itself particularly well to derive the

famous result that the mean-square displacement of a tagged particle grows sub-

diffusively as t1/2, indicating the profound influence crowding can have on the

effective speed of transport. This result was first derived by Harris in 1965 [106],

with several alternative proofs appearing in later years (see references in [26]).

As is common, we will refer to non-overtaking particle dynamics on the continuum

as single-file diffusion (sfd), although some authors apply this term also to

lattice dynamics. Because sfd is related to the asep through the diffusive limit, it

is no surprise that advances in solving the asep and sfd under various conditions

have been made in parallel. For sfd, some highlights include the exact N -
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particle solution on the infinite line, and its marginalization to the one-particle

distribution [107]; exact solution in a box using the Bethe ansatz [108]; and for

time-dependent external forcing [109]. It has been found that, on the infinite line,

the t1/2 scaling appears only in the finite-density limit, and otherwise a transient

regime gives way to diffusive scaling [110]. We shall therefore in this chapter

be particularly interested in the case of periodic boundary conditions, which is

expected to be analogous to the infinite-line, finite-density scenario in several

relevant aspects.

In harmony with the philosophy of Chapter 1, we introduce in this background

section the mathematical formulation of sfd via the diffusive limit applied to

the asep. We then review the exact solution on the ring via the Bethe ansatz.

This exercise will illustrate the key role the assumption of identical particles

plays in solving the model, and inspire us to pose the question that will drive

the further sections of this chapter—what exact results can be derived for non-

identical particles?

3.1.2 The diffusive limit of the ASEP

Recall that in the periodic asep, each of N particles hops forwards (clockwise)

with rate p and backwards (anticlockwise) with rate q, unless the target site

is already occupied (hardcore exclusion). For configurations where all particles

have at least one empty site ahead and behind them, the system behaves for a

short time interval as N non-interacting particles, each of which obeys a master

equation

∂tPi(ni, t) = pPi(ni − 1, t)− qPi(ni + 1, t)− (p+ q)Pi(ni, t), (3.1)

with conserved ordering ni < ni+1 (modulo periodicity). The joint probability

distribution PN evolves in this no-collision time interval as
∏N

i=1 Pi(ni) does.

In the diffusive limit, detailed in Section 1.3.1, we therefore obtain that the

continuous probability density ρN in a time interval where the particles are far

enough apart not to interact evolves as

∂tρN(x, t) =
N∑

i=1

[
−v∂xi +D∂2

xi

]
ρN(x, t), (3.2)
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with conserved ordering xi+1 > xi and where, for a the lattice constant,

v = lim
a→0

a(p(a)− q(a)), D = lim
a→0

a2(p(a) + q(a)). (3.3)

Consider now a lattice configuration where all particles are free, except that

particle 1 at site n1 = n is adjacent to particle 2 at site n2 = n + 1. At this

configuration, the master equation reads (if we selectively suppress some position

arguments for brevity)

∂tPN(n, n+ 1, n3, . . . , nN ; t) = [pPN(n− 1, n+ 1)− qPN(n, n+ 1)]

+ [qPN(n, n+ 2)− pPN(n, n+ 1)]

+
N∑

i>2

[pPN(n, n+ 1, . . . , ni − 1, . . .)

− qPN(n, n+ 1, . . . , ni + 1, . . .)],

(3.4)

Expanding in the lattice constant a,

∂tρN(x, x+ a, x3, . . . , xN ; t) = − ap(a)(∂x1 − ∂x2)ρN(x, x+ a) +O (1)

+
N∑

i>2

[−a(p(a)− q(a))∂xi + a2(p(a) + q(a))∂2
xi

+O (a)]ρN(x, x+ a).

(3.5)

Notice that ap(a) = D/a + O (1), which makes the first term in the right-hand

side the one of lowest order, 1/a. Therefore, multiplying the equation by a and

taking a→ 0 we find

D(∂x1 − ∂x2)ρN(x, t) |x1=x2 . (3.6)

This can be written more suggestively as

Ji(x, t) = Jj(x, t) for xi = xj, (3.7)

where

Ji(x, t) = vρN(x, t)−D∂xiρN(x, t) (3.8)

is the probability current associated with the motion of particle i, if the other
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xi

xj

{xk}k 6=i,j

xi = xj

n̂

Figure 3.1 Illustration of the phase-space boundary for SFD

particles are held fixed. The condition (3.7) states that the probability currents

must coincide for any two particles that physically touch. Furthermore, if we

interpret the process of N particles in one dimension as one ‘super particle’ in N

dimensions, then the hardcore exclusion constraint between any pair of physical

particles becomes an impassable (N − 1)-dimensional hyperplane for the super

particle. At each ‘no-crossing’ hyperplane xi = xj with normal

n̂ =
1√
2

(êi − êj), (3.9)

there is a reflective boundary condition

n̂ · J(x, t)|xi=xj = 0, (3.10)

stating that the total probability current normal to the boundary is at all times

zero. The geometry of the situation is illustrated in Figure 3.1.

Just as particles in the asep can block each other, but cannot not push, so

reflective boundary conditions do not model transfer of momentum. There are

subtleties in interpreting exactly how trajectories of reflected diffusions behave

at the boundary due to the non-differentiability of Brownian motion; we will

discuss this later in Section 6.1.2. Another thing to note is that in the diffusive

limit our particles have become point-like, but that this is not essential. An sfd

with finite-sized particles is trivially mapped to a system of point-like particles,

because the dynamics only depends on the separation between particles, whether

measured centre-to-centre for point-like particles, or edge-to-edge for finite-sized

particles.
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3.1.3 Bethe-ansatz solution of the homogeneous SFD

As noted in Chapter 1, one route to solving the asep is via the coordinate Bethe

ansatz [17, 111]. But as Elliott Lieb states [112, p.5]: “In some sense the ‘natural’

setting for Bethe’s ansatz is the continuum (line segment) rather than the lattice

because some of the technicalities involved simplify there.” Let us review how it

solves the homogeneous sfd.

The first step in the ansatz is to note that the free fpe (3.2) has elementary

solutions e−λ(k)tek·x where

λ(k) = v1 · k −Dk2, 1 = (1, 1, . . . , 1)>. (3.11)

We see that λ(k) = λ(k′) if k and k′ only differ by a permutation of their

elements. Hence we can take the elementary solutions as e−λ(k)tψk(x) where the

spatial function is a linear combination of all ways to distribute the N ‘momenta’

kj over the N particles:

ψk(x) :=
∑

s∈SN

Ase
∑
j ksjxj =

∑

s∈SN

As
∏

j

zxjsj , (3.12)

with zi := ekj , and SN the set of permutations on the N -tuple (1, . . . , N). The

central idea of the Bethe ansatz is to suppose that e−λ(k)tψk(x) solves not just

the free fpe but also the periodicity and the no-crossing boundary conditions

through a consistent choice of amplitudes As = As(k) and ‘Bethe roots’ zi.

Substituting the Bethe ansatz into the periodicity condition

ρN(x) = ρN(x+ L1), (3.13)

with L the ring circumference, one finds that in order to be consistent for all

relevant x one must have

Ac◦s
As

= eksN , (3.14)

where c is the ‘cycle’ permutation operator that shifts all elements to the right

by one:

c ◦ s = c ◦ (s1, s2, . . . , sN) = (sN , s1, . . . , sN−1). (3.15)
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In particular, by iterating (3.14) one concludes

e
∑
j kj = 1. (3.16)

To satisfy the reflective boundary conditions (3.10) we must have

As = Aτi,i−1◦s, (3.17)

where τi,i−1 swaps the two indicated elements:

τi,i−1 ◦ (s1, s2, . . . , si−1, si, . . . sN) = (s1, s2, . . . , si, si−1, . . . sN). (3.18)

Applying this relation repeatedly, we realize that As = A, a constant that may

be put to unity. Going back to (3.14) this gives

kj = 2πimj, mj ∈ Z. (3.19)

The general solution is then

ρN(x, t) =
∞∑

m1=−∞

· · ·
∞∑

mN=−∞

cm1...mN e
−[4π2D

∑
j m

2
j+2πiv

∑
j mj ]t

∑

s∈SN

e2πi
∑
j msjxj ,

(3.20)

where the cm are to be determined form the initial conditions. In particular, let

us suppose a localized initial condition

ρN(x, 0) = δ(x− y). (3.21)

Using the Fourier representation of the delta function we have cm = e−2πim·y and

therefore

ρN(x, t|y, 0) =
∑

s∈SN

N∏

j=1

∞∑

mj=−∞

e−[4π2Dm2
j+2πivmj ]te2πimj(xsj−yj)

=
∑

s∈SN

N∏

j=1

ρ1(xsj , t|yj, 0).

(3.22)

In the last line we have identified ρ1(x, t|y, 0) as the solution to the one-particle

problem on the ring, starting from position y. Note that while ρ1 is normalized

over x ∈ [0, L], ρN is normalized over all x ∈ [0, L]N subject to the constraint
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x

t1

2

1

2

(a) Reflecting trajectories

x

t1

2

2

1

(b) Crossing trajectories

Figure 3.2 Two non-interacting identical Brownian particles cannot be distin-
guished at a point of crossing. The left and right scenario therefore
have identical probability.

that x must represent the same particle ordering as y.

That the N -particle distribution can be thus constructed from the one-particle

distribution follows from the particle-exchange symmetry stemming from the

assumption of identical particles: non-crossing trajectories of reflecting particles

can be mapped to crossing trajectories of non-interacting particles, as shown

in Figure 3.2. This argument was used by Harris in 1965 [106] in his original

treatment of single-file diffusion of identical Brownian particles, where the

position of the ith particle can be constructed as

Xi(t) = ith-max{X̃1, . . . , X̃N}, (3.23)

for {X̃j}Nj=1 a set of non-interacting Brownian motions.

Next we consider how the solution structure (3.22) breaks down due to the lack

of particle-exchange symmetry for a heterogeneous system.

3.1.4 Introducing particle-wise disorder

It is natural to want to consider a sfd system where the particles are not all

identical. For instance, a membrane pore may be permeable to several types

of ion or molecule. Alternatively, being interested in the behaviour of a tracer

particle, one may suppose it is different than all other particles, for example by

being selectively driven by an external field. To cover all cases, one ideally would

like a solution to the problem with full particle-wise disorder. Therefore, let

each particle i diffuse with its individual diffusion coefficient Di, and with drift
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vi. For the moment, we do not consider space-dependent or particle-separation

dependent parameters, although these generalizations are of obvious interest.

The fpe now reads

∂tρN(x, t) = −v · ∇ρN(x, t) +∇ · D∇ρN(x, t), (3.24)

where we have defined v := (v1, . . . , vN)> and D := diag{D1, . . . , DN}. The

no-crossing boundary conditions amount to

(vi − vj)ρN(x, t)|xi=xj = (Di∂xi −Dj∂xj)ρN(x, t)|xi=xj . (3.25)

The attempt to solve this problem by the Bethe ansatz fails already in the first

step: the proposed eigenvalue λ(k) = v · k − k · Dk has in general no exchange

symmetries for the components of k. Then, we cannot build basis functions with

enough undetermined coefficients to allow us to solve all the no-crossing boundary

conditions.

A second attempt to generalize from the solution of the identical-particles case is

to posit again a ‘permanantal’ (determinant without sign changes [109]) structure

for the density. Indeed, this form is more general than the Bethe ansatz, because

it solves the identical-particle problem with individual drift F (xi, t) [109]. We

thus posit

ρN(x, t | y, 0) =
1

ZN

∑

s

∏

i

ρ
(i)
1 (xi, t | ysi , 0), (3.26)

where the superscript i on the one-particle density indicates that this function

uses the parameters vi, Di. (3.26) satisfies the fpe (3.24), but not necessarily the

boundary conditions (3.25). Curiously, the ansatz works on the infinite line for

arbitrary N if the diffusivities but not the drifts are disordered, as one checks by

substitution. However, the normalization constant for the infinite-line solution

depends non-trivially and non-symmetrically on the Di’s and cannot be computed

analytically for N larger that just a few particles [113]. On the ring the ansatz

fails for arbitrary N unless particles are identical.

Having thus moderated our hopes that deriving an exact time-dependent solution

is a tractable problem for the fully disordered case on the ring, we focus instead on

the lesser challenge of obtaining the exact steady-state distribution and current.

Indeed, for the periodic asep or tasep with disordered hopping rates, the
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t0
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Figure 3.3 (a) Illustration of heterogeneous single-file diffusion on a ring. (b)
Space-time plot of a typical realization. Due to hardcore exclusion,
i.e. reflection, the particles’ paths do not cross.

nonequilibrium steady state was derived in the late 90s by a mapping to a zero-

range process with site-wise disorder [41–43]. It was then found in the tasep (no

backward hopping) that if the individual forward hopping rates pi were drawn

independently from a power-law f(p) ∼ (p − c)γ with support in [c, 1], then

platoon-formation—O(N) queue-formation behind the slowest particle—occurs

above a critical density of walkers if γ > 0, in a way mathematically analogous

to Bose-Einstein condensation. For the disordered asep where hopping occurs

in both directions, however, although the steady-state was found analytically,

drawing physical consequences from it was difficult due to its complicated

dependence on the model parameters [41, 43]. We find in the next section that

on the continuum, where some algebraic complexity is reduced, the steady state

solution shows that it is the least diffusive particle, not the slowest one, that

‘enslaves’ the others.

3.2 Heterogeneous single-file diffusion

We reiterate the definition of the model: N particles exist on a ring, each

one i moving with constant intrinsic drift velocity vi and diffusing with

diffusivity Di, unable to overtake any other particle. All together, the positions,

velocities and diffusivities are x = (x1, . . . , xN)>, v = (v1, . . . , vN)>, and

D = diag{D1, . . . , DN}. The probability density (dropping now the N subscript)
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is given by the set of equations





∂tρ(x, t) +∇ · J(x, t) = 0, Fokker-Planck equation (3.27a)

J(x, t) = vρ(x, t)− D∇ρ(x, t), probability current (3.27b)

ρ(x, t) = ρ(x+ L1, t), periodicity (3.27c)

Ji(x, t)|xi=xj = Jj(x, t)|xi=xj ∀i, j, no-crossing b.c. (3.27d)

ρ(x, 0) = δ(x− x0). initial condition (3.27e)

3.2.1 Exact steady-state solution

The steady-state density ρ∗(x) is solved for by an exponential ansatz, similar to

how a factorized ansatz solves the lattice version of the model:

ρ∗(x) =
1

Z
ek·xΘ(x), (3.28)

where Θ represents the constraint that particles must appear in the same order

on the ring as they do in the initial configuration x0. Assuming without loss of

generality that the ordering of particles is 1, 2, 3, . . . (periodically),

Θ(x) =
N∑

j=1

θ(xj − xj−1) · · · θ(x2 − x1)θ(x1 − xN) · · · θ(xj+2 − xj+1), (3.29)

where θ is Heaviside’s step function. The stationary probability current under

this ansatz is

J∗(x) = (v −Dk)ρ(x). (3.30)

The no-crossing boundary condition (3.27d) requires that

vi −Diki = vj −Djkj, (3.31)

which must hence equal some constant, v̄, say, independently of the particle index.

Therefore

ki =
vi − v̄
Di

. (3.32)

The constant v̄, which will turn out to be the particles’ common net velocity, is

determined from the periodicity condition (3.27c), which requires
∑

i ki = 0, and
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therefore

v̄ =
N∑

i=1

(
D−1
i∑

j D
−1
j

)
vi. (3.33)

One can check that (3.28) with (3.32) and (3.33) also satisfies the stationarity

condition, ∇ · J∗(x) = 0.

It is useful to introduce the effective diffusivity D via

1

D
:=

N∑

i=1

1

Di

. (3.34)

We can then express (3.33) more suggestively as

v̄

D
=

N∑

i=1

vi
Di

. (3.35)

D also features in the prefactor of the (t → ∞) mean-square displacement of

unbiased random walkers with heterogeneous diffusivities [114, 115].

To prove that v̄ is indeed the common net velocity, note that for each particle i

it is given by integrating the ith component J∗i (x) of the probability current over

phase space, and presently

Ji(x) = v̄ρ(x). (3.36)

The best strategy to determine the normalization constant of (3.28) is to change

variables to the ‘gaps’ yi between a particle i and its clockwise neighbour particle

i+ 1 (with N + i equivalent to i),

yi := xi+1 − xi. (3.37)

The following notational convention is useful:

yi:j = yi + yi+1 + yi+2 + . . .+ yj =





∑j
l=i yl, i ≤ j

0, i > j
. (3.38)
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We then go from absolute coordinates xi to gap coordinates via

xi = x1 + y1:i−1. (3.39)

This allows us to rewrite

k · x = x1

N∑

i=1

ki

︸ ︷︷ ︸
=0

+
N∑

i=1

kiy1:i−1 =
N∑

i=1

ki+1:N yi, (3.40)

where the last equality follows from writing out the sums in the previous step

term by term and summing up the coefficient for each yi before summing over i.

For our convenience, let us define

wi := ki+1:N = −k1:i. (3.41)

Then the exact stationary probability distribution may be expressed as

ρ∗(x) = ρ∗1(x1)×ρ∗gaps(y(x)) =
1

L
× 1

ZN(w;L)
exp[w ·y]δ

(
N∑

i=1

yi − L
)
, (3.42)

a product of the flat one-particle distribution (1/L) and the gap distribution.

Note that the gap distribution factorises into weights ewiyi for each gap, but the

gaps are still correlated due to the global constraint that they sum to L, as implied

by the delta function. The partition function ZN is defined

ZN(w;L) :=

(
N∏

i=1

∫ ∞

0

dyi e
wiyi

)
δ (L− y1:N) . (3.43)

To solve the integrals, we decouple them by applying a Laplace transform on the

ring circumference,

Z̃N(w; s) :=

∫ ∞

0

dLe−sLZN(w;L) (3.44a)

=

∫ ∞

0

dy1 · · · dyN ew·y
∫ ∞

0

dLe−sLδ(yi − L) (3.44b)

=
N∏

i=1

∫ ∞

0

dyi e
(wi−s)yi (3.44c)

=
N∏

i=1

1

s− wi
, (3.44d)
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where we have chosen the real part of s larger than any wi. We perform a partial

fraction decomposition

N∏

i=1

1

s− wi
=

N∑

i=1

ai
s− wi

, (3.45)

where we can determine that

ai =
N∏

j=16=i

1

wi − wj
(3.46)

using Heaviside’s cover-up method. Inverting the Laplace transform term by term

we find the final closed form

ZN(w;L) =
N∑

i=1

ewiL
N∏

j=16=i

1

wi − wj
. (3.47)

3.2.2 An inter-particle ratchet effect

We now study how the distribution of particle properties affects the common net

velocity. We can write (3.33) as a weighted sum

v̄ =
∑

i

αivi, (3.48)

αi :=
D

Di

=
D−1
i∑

j D
−1
j

≥ 0,
∑

i

αi = 1. (3.49)

Now consider the Di to be i.i.d. random variables. The αi are then dependent

but still identically distributed, which together with their conservation law implies

[αi]D = 1/N , where [·]D denotes averaging over the diffusivity disorder. Hence

[v̄]D =
1

N

N∑

i=1

vi, (3.50)

the right-hand side of which is the sample mean over velocities, independently of

the diffusivity distribution chosen. In particular, this is the same as for particles

with identical diffusivity. If also the vi are considered i.i.d. random variables,

with a well-defined mean u, then

[v̄]D,v = u. (3.51)
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I II

IIIa

IIIb

IV

Figure 3.4 In this illustration of the inter-particle ratchet effect, the blue particle
(‘shepherd’) has positive drift and small diffusivity; the red particle
(‘sheep’) has zero drift and higher diffusivity. I→II: the shepherd
catches up with the sheep. II→III: a fluctuation creates a separation,
which is more likely the sheep meandering forward (IIIb) than the
shepherd backward (IIIa). IIIb→IV: shepherd again catches up.
Through rectification, the sheep gets a non-zero net velocity.

However, the typical current v̄typ may be very different from u, meaning that the

current is not self-averaging over the disorder, assuming there is some spread in

individual velocities (if all vi = u then v̄ = u independently of the diffusivities).

Now, (3.48) is a sum of i.i.d. random variables Ri = αivi. It is well known that

if the distribution of R has a power-law tail ∼ R−(a+1) with 0 < a < 1, then the

sum will be dominated by one particular i, say i∗ [18]. The physical significance

of this is that particle i∗ dictates the current. To illustrate a situation where

self-averaging does not occur, assume finite support for the velocity distribution,

and consider Prob(1/Di) ∼ (Di)
a+1, 0 < a < 1, for Di small, for example by

drawing Di from the appropriate Gamma distribution. Then αi∗ will be of order

one and v̄ ≈ vi∗ . For instance, if the vi are ±|v| with equal chance, then the

typical current will be either ≈ ±|v|, which is different from [v̄]D,v = 0.

Turning now to the distribution of particle gaps, ideally one would like to average

the exact gap distribution (3.42) over various disorder distributions. However,

due to the complexity of e.g. the partition function (3.43), this is forbiddingly

difficult. Instead, we make progress by assuming a simple case where particle

one, say, is dominating, so that v̄ ≈ v1, whereas the other N − 1 particles can

approximately be treated as having identical parameters v and D. Then

v̄ = αv1 + (1− α)v, α =
1

1 + (N − 1)D1

D

, (3.52)

and for the non-dominant particles

ki =
v − v̄
D

=
v − v1

D + (N − 1)D1

=: −k, (3.53)
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whereas

k1 = (N − 1)k (3.54)

due to the conservation law
∑

i ki = 0.

We seek the particle density ν(x) a clockwise distance from the dominant particle

one. It is possible, but arduous, to perform the necessary marginalization over the

joint position distribution. Fortunately, the exact result can be obtained by the

following heuristic argument. We replace the dominant particle with a hard wall

moving at fixed velocity v̄. A single (v,D)–particle trapped between two hard

walls moving at velocity v̄ would have spatial distribution∝ exp[−((v−v̄)/D)x] =

exp[−kx], where x is the position relative to the left wall. By the reflection-

symmetry of Brownian trajectories [107], identical particles in single file behave

as a set of non-interacting particles (as discussed in Section 3.1.3). We therefore

expect the density

ν∗(x) = (N − 1)
ke−kx

1− ekL , (3.55)

which can be proved exactly from (3.42) (see the calculations in Section 3.2.3).

Without loss of generality we assume v1 > v so that 1/k > 0 gives the

characteristic length scale over which particles are clustered ahead of particle

one. It is thus apparent that when diffusion enters the picture, a ‘shepherd’

particle that is both fast and has low diffusivity can force ‘sheep’ particles ahead

of it to speed up through a ratchet effect: if a gap opens up between the shepherd

and the sheep, it is most likely to be because a sheep diffuses forward than the

shepherd diffusing backward. The shepherd is then quick to close the gap. This

is illustrated in Figure 3.4. Similarly, a stubborn ‘donkey’ particle with speed

v1 < v and low diffusion will slow down the faster ‘horse carriages’ behind it if

the horses are more diffusive.

3.2.3 Driven tracers in a passive bath

A typical question in statistical mechanics is to determine the response of an

interacting particle system when a force is applied to it. For an equilibrium

system experiencing a small perturbation, classical linear response theory governs

the outcome. Out of equilibrium, an array of intriguing response phenomena are

possible. For example, in the case of a single driven particle, a tracer, which
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can overtake the surrounding passive particles with some rate, this parameter

separates phases in the tracer current [116], and can enable absolute negative

mobility [117].

We investigate the physics of a system of non-overtaking, unbiased, identical

particles with diffusivity D, where a subset of particles, tracers, are subjected

to an additional force which gives them a constant drift v. This is essentially

a two-species sfd, a special case of the fully heterogeneous model whose steady

state we have solved. Using (3.57) we can obtain the marginal distribution of the

tracers. What, effectively, is the interaction between the tracers as mediated by

the interstitial ‘bath particles’?

For the heterogeneous sfd it turns out to be possible to explicitly marginalize

the stationary distribution over any subset of particles. Select a subset of M

particles, with index τ1, . . . , τM , and let zi be the gap between particle τi and

τi+1. Using the colon summation notation (3.38),

zi = yτi:τi+1−1, (3.56)

with yi the gap between particle i and i+ 1, as before. Then

ρ∗{τ}(z1, . . . , zM) =

〈
M∏

i=1

δ
(
yτi:τi+1−1 − zi

)
〉

(3.57a)

=
1

ZN(w1, . . . , wN ;L)

(
N∏

i=1

∫ L

0

dyi e
wiyi

)
δ (L− y1:N)

M∏

i=1

δ
(
yτi:τi+1−1 − zi

)

(3.57b)

= δ (L− z1:M)

∏M
i=1 Zτi+1−τi(wτi , . . . , wτi+1−1; zi)

ZN(w1, . . . , wN ;L)
. (3.57c)

For the last step, we note that the product of delta functions decouples the

integrals into ‘blocks’ [τ1, τ1 + 1 . . . τ2 − 1] [τ2, . . .] · · · [τM , . . . , N ], each of which

by definition recovers a partition function (3.43) for the appropriate arguments.

Let particle τn be the nth tracer, in front of which there are bn bath particles

until the next tracer, as shown in Figure 3.5. The total number of tracers is NT

and the bath particles number NB = b1:NT = N − NT . Recall the definitions

wi = ki+1:N (3.41) and ki = (vi − v̄)/Di (3.32). For a two-species setup (T - and
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z1

b1=4︷ ︸︸ ︷

z2

b2=2︷︸︸︷
· · ·

zNT

bNT =3︷ ︸︸ ︷

Figure 3.5 Sketch of driven tracers in a passive medium. Blue balls are tracers
and red balls are passive bath particles. The distance between a tracer
i and the next is zi, and there is a number bi of bath particles in
between.

B-particles), ki is either

kB =: −k or kT = (NB/NT )k. (3.58)

Since k is the only continuous parameter on which the distribution depends, the

assumptions that all particles have diffusivity D, and that vT > 0 whereas vB = 0,

imply no loss of generality. Then

k = v̄/D = fTvT/D > 0, (3.59)

where fT = NT/N is the fraction of tracers. We need to calculate partition

functions of the form

Zbn+1(wτn , . . . , wτn+bn ; zn) =
bn∑

i=0

exp[wτn+i zn]
bn∏

j=06=i

1

wτn+i − wτn+j

. (3.60)

To this end we write the weight factor in the exponential as

wτn+i = kτn+i+1:N = kτn+i+1:τn+1−1 + kτn+1:N

= (−k)(bn − i) + (−k)gn. (3.61)

By definition, −kgn := (NT − n)kT + bn+1:NT kB, which, using the expressions for

kT and kB (3.58), can be written more meaningfully as

gn = b̄n− b1:n =
n∑

m=1

(b̄− bm), (3.62)

where b̄ = NB/NT is the average number of consecutive bath particles. Next, the

difference of weight factors in the product in (3.60) can be written

wτn+i − wτn+j = (−k)(j − i). (3.63)
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Hence

bn∏

j=06=i

1

wτn+i − wτn+j

=
1

kbn
(−1)bn−i

i!(bn − i)!
. (3.64)

Putting these results together,

Zbn+1 =
e−kgnzn

kbnbn!

bn∑

i=0

(−1)bn−ie−k(bn−i)zn
(
bn
i

)
(3.65a)

=
e−kgnzn

bn!

(
1− e−kzn

k

)bn
. (3.65b)

Finally, the tracer gap distribution comes out as

ρ∗{τ}(z1, . . . , zNT ) = δ

(
L−

NT∑

n=1

zn

)
1

ZN

NT∏

n=1

e−kgnzn

bn!

(
1− e−kzn

k

)bn
. (3.66)

If we compare this marginalized distribution to the original distribution (3.42),

we see that the structure of a factorization over the particle labels, with a global

conservation constraint, is retained, but the functional form of the weight factor

is different (viz. Zbn+1 vs. exp[wnyn]). Let us try to interpret the augmented

structure of the weight factor.

To understand the origin of the exponential exp[−kgnzn] in the weight factor,

we reverse-engineer the sfd of NT driven particles that in the absence of any

intermediate bath particles would result in the distribution

ρ∗no-bath(z1, . . . , zNT ) = δ

(
L−

NT∑

n=1

zn

)
1

Zno-bath
NT

NT∏

n=1

e−kgnzn . (3.67)

Comparing the exponential constant −kgn with wn in (3.42) for fixed diffusivity

D, we deduce that the effective velocity of the nth tracer in the no-bath model

must be

un = uref − v̄bn = uref − [bn/(1 + b̄)]vT , (3.68)

where uref is a reference velocity that cannot be inferred from the stationary

distribution alone, but which is not important for our purposes. Thus, a tracer

with fewer bath particles ahead of it in the the tracer-and-bath sfd, would in

the no-bath mock have a larger (signed) effective velocity un. As a result, it
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disproportionally compresses the space to its neighbours in the positive direction.

This effect grows with the parameter k. For instance, taking NT = 2, if b1 > b2,

then typically z1 will be large, as tracer two with fewer bath particles in front of

it succeeds in compressing the relatively fewer bath particles in front of it until

it gets close to tracer one. On the other hand, if all bn = NB/NT there is no

heterogeneity and all gn = 0. As one then expects from symmetry, typically all

zn ≈ L/NT , and the remaining factor (1 − e−kzn)bn/(kbnbn!) of Zbn+1 determines

the distribution ρ∗{τ}.

To interpret this remaining factor, consider a single bath particle trapped in

a box [0, L] whose boundaries move forward at velocity v̄. Its position with

respect to the left box boundary would be distributed with cumulative density

qB(x) ∝ 1 − exp[−kx]. The probability of finding bn indistinguishable particles

crammed into [0, zn] would be

qbnB (zn)/bn! , (3.69)

as we make use of the reflection principle discussed in Section 3.1.3. This is

precisely the second factor in the gap size weight Zbn+1.

Putting the pieces together, we conclude that the full gap distribution (3.66) may

be viewed as a product of two subsystems, each of which factorises: one describing

a system of tracers without bath particles with heterogeneous effective velocities,

and one representing a system of bath particles distributed in boxes, the space

between a pair of tracers. The weight for a single gap size zn is then the product

of the weight for gap size zn in the tracer subsystem multiplied by the probability

that bn bath particles occupy space less than zn in the bath subsystem. However,

these subsystems are correlated through the conservation of space and the global

current established cooperatively by all particles.

We close this section by making a comparison to a closely related lattice model

[118]. There, symmetric random walkers (bath particles) and totally asymmetric

walkers (tracers) move under hardcore exclusion on lattice in continuous time.

Ref. [118] considered the ring geometry, for both one and several tracers. For a

single driven tracer, an exponentially decaying pile-up of bath particles was found

ahead of it: compare (3.55) with v = 0, D > 0 for the bath particles and v1 > 0,

D1 = 0 for the tracer. For a system with several tracers, a cooperation effect was

described where the system current grows with the density of tracers, in a way

dependent on the tracers’ relative placement in between symmetric particles. In
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(a) Periodic SFD

filaments membrane

(b) Filament ratchet

Figure 3.6 (a) In SFD no particle can cross its neighbour. (b) In the N -filament
ratchet, we put the absolute length xi of the N filaments as mutually
non-interacting particles on the real line. Each filament however
cannot cross through the membrane, represented as particle N + 1.

our present continuum model, according to (3.48) the common net velocity will

be

v̄ = fTvT , (3.70)

independent of the placement of the tracers. It should be observed, however,

that our model is the continuum limit of the lattice model with a non-totally

asymmetric walker as the tracer, which in the limit makes an important difference,

as otherwise the tracers move deterministically and ratchet the bath particles with

one hundred percent efficiency, giving v̄ = vT . The conclusion is that there are

interesting effects in the lattice models, relating to finite size and fluctuations in

totally asymmetric movement, that do not survive the continuum limit.

3.2.4 Comparison to a filament ratchet

A recent paper by Wood et al. [44] introduced a model for membrane growth,

where a number of filaments grow by polymerization and extend a membrane in

the growth direction through a ratchet effect (Figure 3.6b). A central result of

that work was the solution for the net velocity v̄M of the membrane, when the N

filaments have constant nominal growth rates vF,i with a diffusivity DF,i, whereas
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the membrane has a nominal velocity −vM and diffusivity DM:

v̄M =
−vMD

−1
M +

∑N
i=1 v

(i)
F,iD

−1
F,i

D−1
M +

∑N
i=1D

−1
F,i

. (3.71)

This expression is formally identical to (3.33) derived for single-file diffusion.

What explains this correspondence?

Figure 3.6 shows how to map the Brownian many-filament ratchet to a particle

problem directly comparable to sfd, but not equivalent to it. The absolute

positions of the membrane and each filament correspond to the positions of

particles on an infinite line. In either figure panel, two particles that cannot

cross one another are connected by a dashed line. For the periodic domain shown

on the left, it is intuitively clear that if the ‘graph of mutual exclusions’ (dots

and dashed lines in Figure 3.6) includes all particles—whether any given two

particles are directly connected—then they are geometrically constrained to have

a common net velocity. This is true also for the infinite line, with the caveat that

the model parameters must allow the particles to cluster rather than disperse in

the long-time limit.

While the mapping of the filament ratchet to a particle problem similar to sfd

convinces us that the two models will behave similarly, it does not make the

quantitative agreement of the net velocity formulas immediately obvious. That

this formula applies to all the models with a connected graph of mutual exclusions

follows from making the ansatz J∗i (x) = v̄iρ
∗(x). Then the no-crossing condition

Ji = Jj on the boundary immediately implies v̄i = v̄j, so that all particles in the

graph of mutual exclusion must have the same v̄.

In the next section we shall attempt to generalize as far as possible the sfd model

while retaining the property that makes its steady state exactly solvable. The

key, as it turns out, is the property that no particle is able to overtake all others.

3.3 A quasi-one-dimensional generalization

3.3.1 Hard spheres in a d-dimensional tube

As a generalization of the heterogeneous sfd, we consider spherical particles

in a d-dimensional tube which has one periodic axial direction r̂ (although an
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Figure 3.7 Tube geometry: constant cross section and periodic or infinite axial
direction. Illustrated here for dimension d = 3.

infinite tube can be treated as well [4]), and a cross section that is constant

along the tube, but otherwise of arbitrary shape, as illustrated in Figure 3.7. As

before, the particles interact mutually by volume exclusion, but now also with

the boundary of the tube. Based on the insights of Section 3.2.4, we make the

critical assumption that no particle is able to overtake all others, a property we

will refer to as quasi-one-dimensionality.

The motion of the particles is overdamped, so that the system is fully described

by the spatial coordinates Q(i)(t) in d dimensions for the particles i = 1, . . . , N .

We organize these into

X(t) :=




Q(1)(t)
...

Q(N)(t)


 =

N∑

i=1

êi ⊗Q(i)(t), (3.72)

where êi is a standard basis vector of RN and ⊗ is the Kronecker product. X(t) is

thus an (N×d)-dimensional diffusion process evolving in a state space Γ ⊂ Rd×N

representing all possible configurations of the particles inside the tube geometry.

We first construct the phase space Γ and then define the stochastic dynamics.

The tube is a spaceQ ⊂ Rd within which there is a unique axial direction r̂ that is

unbounded whereas all other directions are bounded. The boundary ∂Q is axially

constant, meaning that a boundary normal n̂ is always orthogonal to r̂. Each

particle i ∈ {1, 2, . . . , N} inherits a copy Q(i) of Q, so Γ ⊂ Q(1)×· · ·×Q(N). The

inclusion is strict because we have yet to exclude phase space points forbidden

due to physical volume exclusion. The components of x ∈ Γ are organized like

(3.72) as

x =
N∑

i=1

êi ⊗ q(i), (3.73)
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with q(i) ∈ Q(i). The part of the phase space boundary ∂Γ arising from particle

i touching the tube walls at q ∈ ∂Q is

Bi(q) := {x ∈ Γ : ||q(i) − q|| = ri}, (3.74)

where ri is the radius specific to particle i. We compute the boundary normal by

applying the gradient operator

∇ := ∇x =
N∑

i=1

êi ⊗∇q(i) (3.75)

to the locus ||q(i) − q|| = ri. The result is

n̂(x) = êi ⊗ δq̂(x), x ∈ Bi(q), (3.76)

with δq̂ = (q(i) − q)/ri as illustrated in Figure 3.8a. Note that δq̂ · r̂ = 0.

For mutual volume exclusion between particles we consider an ‘interaction graph’

G where a node represents a particle, and an edge between two particles signifies

that they mutually exclude volume. For example, as per Figure 3.6, sfd on a

ring has the complete graph, and the filament ratchet a star graph. If (i, j) ∈ G,

then we must introduce a boundary surface

Bij := {x ∈ Γ : ||q(i) − q(j)|| = ri + rj}. (3.77)

Its normal is

n̂(x) =
1√
2

(êi − êj)⊗ δq̂(x), x ∈ Bij, (3.78)

where δq̂ ∝ q(i) − q(j), illustrated in Figure 3.8b.

The full phase space boundary is then

∂Γ =

( ⋃

i,q∈∂Q

Bi(q)

)⋃

 ⋃

(i,j)∈G

Bij


 . (3.79)

Γ is the restriction of Rd×N that lies inside or on this boundary. If the geometry

of the tube and particles is such that a certain ordering of particles is logically

preserved, e.g. as is necessarily the case for SFD (d = 1 and G the complete

graph) then the process is confined to the sector Γx0 ⊂ Γ containing the initial
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riδq̂q

q(i)

r̂

(a) Particle–boundary

(ri + rj)δq̂

q(i)

q(j)

(b) Particle–particle

Figure 3.8 Direction of incidence δq̂ for collision between particle i and a wall
or between particle i and particle j.

condition x0.

We now define the dynamics of the diffusion X(t) through the Fokker-Planck

equation (1.92) and additional boundary conditions. The fpe reads

∂tρ(x, t) +∇ · J(x, t) = 0, x ∈ Γ \ ∂Γ, (3.80)

using the probability current

J(x, t) = v(x)ρ(x, t)− D(x)∇ρ(x, t). (3.81)

The above matches the Stratonovich rather than Ito sde with drift v if D depends

on x (see Section 1.3.2). On the phase space boundary ∂Γ the process is reflected,

meaning that the probability flow through boundaries must vanish:

J(x, t) · n̂(x) = 0, x ∈ ∂Γ. (3.82)

The remaining conditions differ depending on whether the tube is periodic or

infinite. In the following we will suppose periodicity (details on the infinite tube

can be found in my publication [3]). Thus we require invariance under translating

the whole system by one axial period L,

ρ(x+ Lτ , t) = ρ(x, t), (3.83)

where we have defined the global translation vector

τ :=
N∑

i=1

τ̂ (i) = 1⊗ r̂, (3.84)
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constructed from the vectors

τ̂ (i) := êi ⊗ r̂ (3.85)

that move particle i forward axially a unit distance, keeping all else constant. By

assuming more strongly translation invariance of the model parameters, i.e. axial

homogeneity of the tube,

v(x+ rτ ) = v(x), D(x+ rτ ) = D(x), r ∈ R, (3.86)

we obtain (3.83) automatically.

It is in relation to periodicity that the quasi-one-dimensionality supposition comes

into play. Had we not assumed this property, then there would exist some possible

trajectory ωT = {x(s)}Ts=0, where x(T ) = x(0) + Lτ̂ (i), that is, where particle i

has made one net circulation of the tube, while the other particles have not. Then

x(0) and x(T ) are physically the same due to tube periodicity and therefore we

would need to impose,

ρ(x+ Lτ̂ (i), t) = ρ(x, t). (3.87)

However, if no such trajectory exists for particle i, i.e. it is prevented by other

particles from circling the tube by itself, then there is no logical reason to impose

(3.87). We will see that the absence of (3.87) as a necessary constraint is key to

the solvability of the model.

3.3.2 Solving for the irreversible drift: an inverse FPE

solution method

There exist certain ‘potential conditions’ [45, 119, 120] which make the steady

state of a diffusion process solvable in terms of an explicit integral—i.e.

the process is integrable. In this section we derive these conditions in an

unconventional way, tailored to the presence of a phase space boundary.

A steady-state density ρ∗(x) for the process X(t) in its original coordinates exists,

as guaranteed by the boundedness of the phase space of the periodic tube. Let

us define the function u(x) by

J∗(x) = u(x)ρ∗(x). (3.88)
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Assuming ρ∗(x) > 0 for all x, this definition is unambiguous. We take the

components of X(t) to be even under time reversal. Then u(x) is called the

irreversible drift [45] for reasons to become clear. Eliminating J∗ for u in the

stationary versions of (3.80), (3.81), and (3.82) the result is





∇ · u(x) + u(x) · ∇ ln ρ∗(x) = 0, x ∈ Γ \ ∂Γ, (3.89a)

∇ ln ρ∗(x) = D−1(x)[v(x)− u(x)], x ∈ Γ \ ∂Γ, (3.89b)

u(x) · n̂(x) = 0, x ∈ ∂Γ. (3.89c)

By combining (3.89a) and (3.89b) we can view (3.89) as a closed equation for

u(x),

{
∇ · u(x) + u(x) · D−1(x)[v(x)− u(x)] = 0, x ∈ Γ \ ∂Γ, (3.90a)

u(x) · n̂(x) = 0, x ∈ ∂Γ, (3.90b)

together with the definition of a potential Φu(x) by

∇Φu(x) = −D−1(x)[v(x)− u(x)]. (3.91)

This potential generates the probability density through

ρ∗(x) =
e−Φu(x)

Z
, (3.92)

following the path-independent integration

Φu(x)− Φu(c) =

∫ x

c

dy · ∇Φu(y). (3.93)

The assumed existence and uniqueness of the steady state has two important

consequences: For given v(x) and D(x), the problem (3.90) (together with any

additional boundary conditions, like periodicity) has a unique solution u(x) that

makes (3.91) integrable.

But we can turn the logic around. Instead of fixing v(x) and D(x), which implies a

specific u(x), we assume that u(x) is of a certain form, which imposes restrictions

on which v(x) and D(x) are consistent with this form. The constraints on v(x)

and D(x) are that they must solve (3.90) for the given u(x) while also making

(3.91) integrable. For example, u = 0 is always a trivial solution of (3.90).

Equation (3.91) then states the well-known integrability conditions for a detailed-

balanced system, as stated in Section 1.3.3.
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Observe that given a process X(t) with drift vector v(x) and diffusion D(x)

leading to irreversible drift u(x), we can always define a new process X′(t) with

the same steady state density but satisfying detailed balance: take this process

to have v′(x) := v(x) − u(x) and D′(x) := D(x). The trivial solution u′ = 0

is then the most general one because it assumes no new integrability conditions

on v′(x) and D′(x) in order to solve for Φ′u′(x) ( = Φu(x)). This shows that

the irreversible drift u(x) is the part of the drift without which detailed balance

holds, but the density remains the same, hence its name.

To make progress with the tube problem, consider the following ansatz for the

solution u(x):

(i) The direction û is constant

(ii) The magnitude u(x) 6≡ 0 is invariant in the û-direction,

u(x) = u(x+ sû) for all s ∈ R. (3.94)

The condition (i) is motivated by the observation that there may exist such a

constant direction that solves all the reflective boundary conditions. We make

the ansatz

û ∝
∑

i

ûiτ̂
(i) (3.95)

(recall (3.85)). Then û · n̂ = 0 for the normal (3.76) of particle-wall boundary,

and holds as well for the normal (3.78) of the particlei-particlej boundary if

ûi = ûj. (3.96)

Let us assume that all particles are connected in the graph of mutual exclusions,

but not necessarily that the graph is complete. Then it follows that û = τ̂ .

The condition (ii) has the effect that ∇ · u(x) = û · ∇u(x) = 0. Then u(x) can

be solved for algebraically from (3.90a) as

u(x) =
û>D−1(x)v(x)

û>D−1(x)û
. (3.97)

For condition (ii) to hold, we would generically require

v(x+ sû) = v(x), D(x+ sû) = D(x), for all s ∈ R. (3.98)
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Since û = τ̂ , the above simply states translation invariance which was already

assumed.

With this trial solution, we have

∇Φu(x) = −H(x)v(x), H(x) = D−1(x)− D−1(x)û⊗ û>D−1(x)

û>D−1(x)û
. (3.99)

The matrix H(x) is symmetric and H(x)û = 0. We have implicitly assumed that

this potential exists, which may be difficult to satisfy but for v,D chosen constant

or with a rather artificial x-dependence.

If the system is not quasi-one-dimensional, then we must also satisfy (3.87). For

instance, with constant model parameters, we will find ρ∗(x) ∝ exp[v>Hx]. The

condition is then that

v>Hτ (i) = 0, (3.100)

for every particle i that is able to overtake every other particle. Generically, these

constraints cannot be accommodated because they overdetermine the components

of the irreversible drift. Logically, assumptions (i) or (ii) on u will be violated.

Then, we cannot solve (3.89) by algebraic means. A trivial case where (3.100) can

in fact be solved, is when the particles have the same drift v = vû which is then

only in the axial direction. Then we have a flat steady state. As seen directly

from (3.89), a flat density ρ∗ = 1/|Γ| with current v(x)/|Γ| occurs whenever

v(x) · n̂(x) = 0 and ∇ · v(x) = 0, i.e. when u(x) = v(x).

3.3.3 The generalized diffusion ratchet effect

We now seek the expression for the net velocity v̄i of particle i in the axial

direction of the tube. Consider first the net number n̄i(r) of crossings per unit

time of particle i at a cross-section of the tube at axial distance r. We define the

hypersurface S
(i)
r in Γ given by q(i) · r̂ = r and whose normal is n̂ = ∇(q(i) · r̂) =

τ̂ (i). It corresponds to all configurations where the ith particle is a distance r

down the tube. Then n̄i(r) is given by integrating the probability flow across S
(i)
r ,

i.e. by integrating J∗(x) · n̂ over all x ∈ S(i)
r :

n̄i(r) =

∫

S
(i)
r

dx τ̂ (i) · J∗(x) (3.101a)
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=

∫

Γ

dx δ(q(i) · r̂ − r)τ̂ (i) · J∗(x). (3.101b)

The net velocity is given by the ring circumference times the net number of

circulations per unit time, hence

v̄i = L× 1

L

∫ L

0

dr n̄i(r) (3.102a)

=

∫

Γ

dx τ̂ (i) · J∗(x) (3.102b)

=
〈
τ̂ (i) · u(x)

〉
. (3.102c)

When, as we found before, u = uτ̂ , all v̄i = v̄ are identical, with the final result

v̄ =
τ>D−1v

τ>D−1τ
. (3.103)

This case has a special interpretation because it represents the situation where a

change of variables X(t)→ X′(t) = X(t)− ut into a moving frame brings about

detailed balance relative to it.

In the simple case where all particles diffuse (i) independently, (ii) identically,

and (iii) isotropically, the common net velocity is simply

v̄ = r̂ · 1

N

∑

i

v(i), (3.104)

as for unconfined, non-interacting particles. Whenever any of these three

conditions is violated, there is a non-trivial dependence of the common net

velocity on the diffusion matrix. It is difficult to think of a scenario in which

the diffusion of the particles is correlated, so let us therefore focus on conditions

(ii) or (iii).

Particle disorder

As we did for the one-dimensional sfd, let us consider N particles with constant,

individual drift vectors v(i) and diffusion matrices D(i). Then

v :=
N∑

i=1

êi ⊗ v(i) (3.105)
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and

D :=
N∑

i=1

êiê
>
i ⊗ D(i). (3.106)

The common net velocity evaluates via (3.103) to

v̄ =

∑N
i=1 r̂

>(D(i))−1v(i)

∑N
i=1 r̂

>(D(i))−1r̂
. (3.107)

Assuming no spatial noise correlation or anisotropy, the individual diffusion

matrices further reduce to

D(i) = Di1d, (3.108)

where 1d is the d × d identity matrix. One can then see that the component of

v(i) that is orthogonal to the axial direction r̂ will not matter, so let us assume

v(i) = vir̂. Then

v̄ =
∑

i

αivi, αi =
1/Di∑
j 1/Dj

, (3.109)

which is identical to the one dimensional result (3.48).

Spatial anisotropy and correlations

To isolate the effect of spatial anisotropy and correlation, we consider for

simplicity just a single particle in a two-dimensional tube. We let the axial

direction be x from 0 to L (periodic) and the vertical direction y from −H to H.

Assuming nothing but axial translation invariance we write

v(y) =

(
v1(y)

v2(y)

)
, D(y) =

(
D1(y) C(y)

C(y) D2(y)

)
. (3.110)

We suppose that the direction of the irreversible drift is τ̂ = (1, 0)>, which turns

out to be exactly true. Then H in (3.99) is

H(y) =

(
0 0

0 1/D2(y)

)
, (3.111)
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and

∇Φ(x, y) = −
(

0

v2(y)/D2(y)

)
. (3.112)

Clearly this potential always exists, because the problem has been reduced to one

bounded dimension. From (3.97)

u(y) = v1(y)− C(y)

D2(y)
v2(y). (3.113)

Putting this into (3.102)

v̄ = 〈v1〉 −
∫ L

0

dx

∫ H

−H
dy C(y)

v2(y)

D2(y)

e−Φ(y)

Z
(3.114a)

= 〈v1〉 −
∫ L

0

dx

∫ H

−H
dy C(y)

d

dy

e−Φ(y)

Z
(3.114b)

= 〈v1〉 −
∫ H

−H
dy r(y)

d

dy
ρ2(y). (3.114c)

Here ρ2(y) is the probability that the particle is at a height y. After integration

by parts,

v̄ = 〈v1〉 − [C(H)ρ2(H)− C(−H)ρ2(−H)] + 〈C ′〉 . (3.115)

There are thus three distinct components to the axial current. The first comes

from the axial drift, but depends implicitly on the vertical drift and diffusion via

ρ2(y). It is independent of C, however; the strength of the noise component which

drives the particles in both directions. The remaining components only exist for

C 6= 0. Furthermore, they depend on a broken symmetry about the tube midline

y = 0: in the presence of the symmetries

v2(y) = v2(−y), D2(y) = D2(−y), C(y) = C(−y), (3.116)

we find simply v̄ = 〈v1〉. The term in square brackets in (3.115) relates directly

to what transpires at the boundaries. The last term depends on how C varies in

the bulk and not at all on reflection at the boundary: we could have a process

with zero probability of reaching the boundary and still observe this term.
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3.4 Summary and discussion

We began by studying the heterogeneous sfd, a disordered one-dimensional

model. To understand something deeper about what makes the steady state of

this model solvable we generalized it to higher dimensions. The key property was

quasi-one-dimensionality, which constrains particles to have the same net velocity

in the long-time limit. Associated with this is an irreversible drift that coincides

with a unique direction in phase space that encounters no boundaries. We derived

the conditions on the model parameters (drift and diffusivity) for which the

solution follows this form. In the case of spatially independent parameters, on

which we have mostly focussed, we saw that relative to a frame of reference

that moves at the common net velocity of particles, the system satisfies detailed

balance. This explains the simple form of the solution. It is more than an

‘equilibrium system on wheels’, however, as the velocity of the metaphorical cart

arises non-trivially from microscopic interactions between the particles.

The main practical result of this chapter is the description of the diffusion ratchet

effect. Many ratchet effects in nonequilibrium physics have been previously

revealed. Iconic studies of a single particle ratcheted by an asymmetric potential

[121, 122] have been complemented by descriptions of inherently many-body

ratchet phenomena, e.g. collectively induced asymmetric ratchet potentials in

magnetic vortices in superconducting films [123], density-dependent current

reversals [124, 125], and active matter motion rectified by asymmetric obstacles

[126]. What makes the present inter-particle ratchet effect an interesting addition

to this list is that it can arise in a static, structureless environment, only due

to heterogeneity in particle properties and the simplest of particle interaction,

hardcore exclusion.

3.5 Epilogue: run-and-tumble particles revisited

To close off this chapter, and part of the thesis, let us reconnect with the rtps

of the previous chapter. Consider the heterogeneous sfd where v = vσ, σi ∈
{+1,−1}, and D = D1. This describes the spatial behaviour of a thermal N -rtp

while in the ‘orientation sector’ σ. Can its stationary distribution can be found

by an ansatz inspired by the sfd solution? We now know that an approximate
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solution in the limit of low tumbling rate is

ρ∗σ(x) ≈ 1

2N
ρ∗sfd(x)|v=vσ, (3.117)

as the relaxation time within each orientation sector is much faster than the

typical jump times between sectors. For arbitrary tumbling rates, we cannot

expect to construct the solution directly from ρ∗sfd, however. Below we sketch

an approach to a solution based on generalizing the exponential ansatz for the

sfd steady state in a way suggested by the 2-particle solution method in [102].

Unfortunately, in the end we shall see that determining whether this ansatz

produces the right functional form is in itself very difficult.

The forward generator of the full thermal N -rtp process, i.e. including tumbling,

is the ‘matrix-differential operator’ W with elements

Wσ′,σ(∇) = δσ′,σL†σ(∇) + Tσ′,σ, (3.118)

where

L†σ(∇) = −vσ · ∇+∇ · D∇ (3.119)

is the fp generator of the sfd corresponding to orientation sector σ, and T is the

‘tumble matrix’ with elements,

Tσ′,σ = ω
N∑

i=1

(δσ′,θiσ − δσ′,σ), (3.120)

where θi is the orientation-flip operator on particle i. Writing ∇ as a vector

argument of W and L will soon prove its utility. Within each orientation sector

we impose the no-crossing boundary conditions of the sfd, namely

v(σi − σj)ρ∗σ(x)|xi=xj = D(∂xi − ∂xj)ρ∗σ(x)|xi=xj . (3.121)

Using Dirac notation for the orientation space, we write the steady state density

as |ρ∗(x)〉. The stationary condition is

W(∇)|ρ∗(x)〉 = 0, (3.122)

for all x. Furthermore we have the periodicity constraint, which we can extend
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to a general translation invariance for the steady state as

|ρ∗(x+ r1)〉 = |ρ∗(x)〉, r ∈ R. (3.123)

Generalizing the exponential ansatz used for the sfd steady state, consider

functions of the form

|φk(x)〉 := ek·x|A(k)〉 (3.124)

for which

W(∇)|φk(x)〉 = ek·xW(k)|A(k)〉. (3.125)

If we choose |A(k)〉 = |Ai(k)〉, one of a number of vector in the nullspace ofW(k)

indexed by i, i.e.

W(k)|Ai(k)〉 = 0, (3.126)

then |φk(x)〉 satisfies stationarity. We then build an ansatz

|ρ∗(x)〉 =
∑

k∈K

∑

i

ci(k)|φk,i(x)〉 =
∑

k∈K

ek·x
∑

i

ci(k)|Ai(k)〉, (3.127)

where K is some set of k’s that we must choose appropriately—this is the critical

aspect of the approach. If the set K is diverse enough, there is some hope that

the ansatz contains enough coefficients ci(k) that they can be consistently chosen

so as to satisfy the no-crossing conditions (3.121).

Possible values of k are constrained in several other ways. For (3.125) to have a

non-trivial solution, we must require

detW(k) = 0. (3.128)

Symmetries of W(k) can also be exploited, e.g. Wσ′,σ(k) = W−σ′,−σ(−k), so

that

detW(−k) = 0. (3.129)

Thus if k ∈ K, then −k ∈ K. To satisfy the translation invariance we must also
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have

1 · k = 0. (3.130)

To make progress, a further ansatz that limits the set K is required. We may

suppose a particular structural form of k’s, e.g. k = k(êi − êj), or k = kσ for

some spin vector σ, and then apply all symmetries of the generator repeatedly

to this basic form until the set closes.

For the 2-rtp problem we can without loss of generality put k = k(+1,−1),

and a small number of possible k follow from (3.128). These are indeed enough

to produce the legitimate stationary distribution [102]. I have attempted the

three-body problem, with one ansatz that’s analytically tractable, k = k(êi −
êj). There is no option but to painstakingly enumerate the set K based on this

ansatz, and to find explicitly all the corresponding |Aφk,i〉, and then attempt

solving for the ci(k)’s via the no-crossing conditions. Going through with this,

I find no consistent solution. A more complicated structure for k that mixes all

three particle coordinates would be next to try, but probably also unmanageable,

algebraically.

An exact N -rtp steady state remains elusive, whether on the lattice or

continuum.
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Part II

Dynamical large deviations
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Chapter 4

Background on dynamical large

deviations

4.1 Introduction

4.1.1 From the statistics of states to the statistics of

trajectories

Equilibrium statistical mechanics centres on the interplay between statistical

ensembles, i.e. between different probability distributions over microstates of an

N -particle dynamical system. Let us recall some key features:

� There is a microcanonical ensemble, where every microstate x has the

identical energy per particle E(x)/N = ε:

Pmicro(x) ∝ P prior(x)δ(E(x)/N − ε) (4.1)

In particular, Boltzmann’s postulate of equal a priori probabilities states

that the prior distribution is uniform if there are no additional conservation

laws beside particle number and energy.

� Einstein’s theory of microcanonical fluctuations [9] holds that for a macro-

scopic observable M , the likelihood of observing at a given time a value m,
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different from the typical m∗, is

Pmicro(M = m) ≈ eN [sB(m)−sB(m∗)], (4.2)

where SB(m) = NsB(m) = ln Ω(m) is the extensive macroscopic Boltz-

mann entropy associated with counting the number Ω(m) of microstates

compatible with M = m.

� There is a canonical ensemble of fixed mean energy per particle ε̄ controlled

by an inverse temperature β = 1/kBT :

P cano(x) =
1

Z
e−βNε(x). (4.3)

The partition function

Z =
∑

x

e−βNε (4.4)

defines the free energy density via

f = −(Nβ)−1 lnZ. (4.5)

for which we can systematically derive the cumulants of the energy in the

canonical ensemble, through

〈ε〉 = ∂β(βf), (4.6a)

〈N(ε− ε̄)〉 = −∂2
β(βf), (4.6b)

and so on for higher cumulants.

� The canonical distribution can be derived by Jaynes’ MaxEnt principle of

maximizing the Gibbs entropy SG(E) = −kB
∑

x P (x) lnP (x) under the

constraint 〈ε〉 = ε̄. The temperature enters as a Lagrange multiplier that

is tuned to 1/T = (dSG/ dE)(Nε̄) to furnish ε̄.

� The variance of fluctuations in the canonical ensemble typically scales

as N−1/2. Unless close to a thermodynamic phase transition, in the

thermodynamic limit N � 1, the microcanonical and canonical ensembles

are equivalent. In particular, one can derive the equivalence by showing

that the Boltzmann and Gibbs entropies converge in this limit. The basis
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Figure 4.1 Sketch of the conceptual leap from the statistics of microstates
x, with time-dependent distributions P (x, t), to the statistics of
trajectories ωT of a given duration T , with a path-distribution P[ωT ].

for the deviation is Stirling’s formula

N ! ≈ NNe−N (4.7)

applied to to combinatorial expression Ω.

� Equilibrium phase transitions are associated with non-convexity of entropy

vs. energy, and of non-analyticity of free energy density vs. temperature.

These properties are all unified by the mathematical theory of large devi-

ations: the study of small probabilities that are exponentially rare with some

large parameter [9, 30] (cf. (4.1) and (4.3) vs. N). While physicists have implicitly

been using large deviation methods since the days of Boltzmann, its development

as a rigorous mathematical discipline began in the 1930s in the study of extensions

of the central limit theorem by Cramér, with major contributions in the 70s by

Donsker and Varadhan to the modern formulation of the subject, and in the

context of Markov processes [127–129], and by Fredlin and Wentzell for noise-

perturbed dynamical systems [130] (see [9, 30] for further historical references).

In equilibrium statistical physics, the large deviation framework was developed

and popularized by Ellis [131] and others. It seems, however, that the biggest

impact of large deviation theory on the mainstream of statistical physics has been

in recent decades in relation to nonequilibrium Markov processes. By applying

these mathematical tools in that context, one rediscovers rather wholesale the

mathematical structure of equilibrium statistical mechanics, but with some novel

features.

The conceptual leap required to apply large deviation theory to nonequilibrium
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processes, is to go from the statistics of microstates to the statistics of microscopic

trajectories in phase space (Figure 4.1). A trajectory view of (stochastic)

dynamics has been pursued from a variety of perspectives: by Feynman and

Kac in their development of path integrals for quantum mechanics and Brownian

motion [132, 133]; in the ‘thermodynamic formalism’ of Ruelle for chaotic

dynamical systems [134–136]; by Jaynes in an extension of his MaxEnt principle

to MaxCal (‘maximum caliber’), where a path-wise entropy is maximized with

constraints [137–139]; in stochastic thermodynamics where heat and work are

defined at the trajectory level [34, 35, 140].

To apply large deviation theory to trajectory ensembles, one must identify a large

parameter. This can be the reciprocal of a small noise amplitude ε (e.g. inverse

carrying capacity in a biological population process, or ~ in the semi-classical

limit), the number N of independent copies of a process; or the observation time

T of a single process. In particular, the large deviations from typical behaviour in

Markov processes in the limit of long observation times is what we shall refer to

as dynamical large deviation theory (dldt). By ‘long’ we mean observation

times longer than any relevant relaxation time scale of the process. For quantities

such as the occupation time of a state, the current across a reference point, or the

total entropy production, or a particle-density profile, sustained deviations from

their typical values for long times should therefore be thought of as steady-state

fluctuations.

The interest in microscopic, kinetic approaches to nesss growing from the late

80s, has incentivized the development of dynamical large deviation theory to

deal with steady-state fluctuations, because classical fluctuation results, such

as the Onsager reciprocity relations and fluctuation-dissipation theorems, are

based on a symmetry between the response to a small external perturbation

from equilibrium and the statistics of spontanesouly generated equilibrium

fluctuations, and do not extend to strongly nonequilibrium processes [141]. A

seminal result on nonequilibrium fluctuations coming from dldt is the Gallavotti-

Cohen symmetry [142–144] that underlies the asymptotic fluctuation theorem,

relating the probability of observing over long time an entropy production rate

σ to observing −σ. Soon after, this result could be refined and generalized to a

host of finite-time fluctuation relations [33–35, 140, 145]. These do not necessarily

use large deviation theory, but follow from the trajectory-view also underlying

dldt of comparing a dynamical event, e.g. the generation of an amount Tσ

of entropy, between the original process, and some auxiliary process. In dldt,
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the latter is a process that makes Tσ typical in the long-time limit, whereas

in stochastic thermodynamics is it the time-reversed process. More recently,

much attention has been given to ‘thermodynamic uncertainty relations’ derived

by large deviation techniques [36, 146, 147]. These relations bound the long-

time fluctuations of currents, and give universal trade-offs between accuracy and

dissipation for nanoscale processes.

Dldt has thus been pivotal in uncovering universal results for nonequilibrium

Markov processes, but it is just as much a practical tool for understanding

sustained steady-state fluctuations in specific models. Firstly, it provides methods

to calculate rates of exponential decay in likelihood of sustained fluctuations with

long observation times, in particular via the spectral approach of Donsker and

Varadhan. Secondly, it provides the construction of an effective process that

adds ‘control forces’ to the original dynamics, such that a chosen fluctuation is

made typical. The trajectories responsible for a fluctuation can in this way be

probed. The effective process construction is relatively recent, although it has

precedents in the study of Brownian bridges, absorbing processes conditioned

on non-extinction, and quasi-potentials in Freidlin-Wentzell theory [28]. It has

been applied to currents in the asep [52, 148] and zero-range process [149, 150],

activity in models of kinetically constrained glasses [66, 151], Ising model [27],

and birth-death processes [152–154], and occupation times in simple diffusion

processes [29, 49, 50]. The techniques underlying the effective process are central

to reweighting methods for sampling rare events [155–157]. The effective process

is also the result of a long-time MaxCal principle, used to infer nonequilibrium

microscopic dynamics from macroscopic dynamical constraints, as brought to the

fore by R.M.L Evans in application to sheared fluids [158–160].

The purpose of this chapter is to derive in some detail the dldt that will be put

to use in specific models in subsequent chapters. We first look at a simple example

to fix ideas, and then develop the formalism based on the modern literature.

4.1.2 A motivating example

Consider the simplest of diffusion processes:

dX(t) =
√

2DdW (t). (4.8)
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(v ± dv)T

Xt

t
T

0

Figure 4.2 Trajectories of duration T for a symmetric random walker in one
dimension. Trajectories that satisfy VT ∈ v ± dv are highlighted in
blue, and constitute (a few realizations of) the constrained trajectory
sub-ensemble.

Let us ask for the probability that we observe a non-typical value v of the net

drift defined as

VT =
XT −X0

T
(4.9)

over a long observation time T . In this simple case we know the exact answer

PT (v) := P[VT = v] for any v:

PT (v) =

(
T

4πD

)1/2

e−
v2T
4D = exp[−TI(v) + o(T )]. (4.10)

This probability exhibits an exponential scaling form with T . The quadratic

function I(v) = v2/4D reflects the fact that VT is a sum of independent

increments drawn from a Gaussian distribution. In countless other examples,

the same exponential scaling form is found for some observable like VT , but the

corresponding I may be only be locally quadratic around its minimum, with its

tails then quantifying the large deviations from the the predictions of the central

limit theorem. The so-called rate function I is thus a quantity of central concern

in describing rare fluctuations.

We may furthermore want to know what the trajectories ωT of duration T look

like that realize any particular value v for VT . Their likelihoods are given by

the conditioned path probability distribution P[{X(t)}Tt=0 = ωT | VT = v].

Conceptually, this corresponds to the subset of possible trajectories that satisfy

the constraint (Figure 4.2). Consider applying a drift field of strength v to the
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original process to obtain a new process

dX̂(t) = v dt+
√

2D dW (t). (4.11)

The typical trajectories of X̂(t) achieve a net velocity v, and we may suspect that

in the limit of long times, these are precisely the trajectories of the constrained

path ensemble.

After presenting in this chapter the tools that formalize and prove this intuition,

we shall return to the velocity fluctuations of the biased diffusion in Section 5.1.1

as a simple example of the application of the theory. In the following, we give

first a general introduction to large deviation theory, and then take the approach

of Chapter 1 of deriving fundamental theory for jump processes (Section 4.2),

and subsequently transposing the results to diffusion processes (Section 4.3).

4.1.3 Large deviation basics

Suppose we have a random variable AT depending on a ‘large’ parameter T . In

subsequent sections we will have observation time of a process in mind for T ,

but T could alternatively be a physical system size, or the reciprocal of a small

model parameter. For simplicity we will think of AT as taking scalar values, but

the ideas introduced below are easily extended to more complicated objects, like

vector- or function-valued random variables. In many relevant cases, AT satisfies

a large deviation principle defined by the scaling form

PT (a) := P[AT = a] = e−TI(a)+o(T ). (4.12)

The rate function1 I(a) quantifies how rapidly a fluctuation a becomes

improbable as the parameter T increases. I(a) is necessarily a semi-positive

function, and its zeroes correspond to those values of a which are typical as

T →∞, in the sense that PT (a) concentrates on these values in the limit.

The rate function is intimately related to the scaled cumulant generating

function, or scgf, defined by

Λ(s) := lim
T→∞

1

T
ln
〈
esTAT

〉
. (4.13)

1As often done in physics, we bypass the rigorous mathematical treatment of defining upper
and lower rate functions and proving convergence to a shared limit [30].
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It generates the long-time cumulants of AT through

Λ′(0) = lim
T→∞

〈AT 〉 , (4.14a)

Λ′′(0) = lim
T→∞

T [
〈
A2
T

〉
− 〈AT 〉2], (4.14b)

and so on. To relate the scgf and rate function, we insert the large deviation

principle (4.12) into the expectation in (4.13),

Λ(s) = lim
T→∞

1

T
ln

∫
da e[sa−I(a)]T+o(T ). (4.15a)

In the limit of large T the integral is sharply peaked around the maximum value

of its integrand and can be evaluated by the saddle-point method,

∫
da e[sa−I(a)]T+o(T ) = exp

[
max
a
{sa− I(a)}T + o(T )

]
. (4.16)

Hence we find that

Λ(s) = max
a
{sa− I(a)}. (4.17)

This is the form of a Legendre-Fenchel (lf) transform from I to Λ [9, 161] (see

Figure 4.3). Such a transform always produces a convex function. If I is known

to be convex, the transform is its own self-inverse, so that

I(a) = max
s
{sa− Λ(s)} = s∗(a)a− Λ(s∗(a)), (4.18)

where s∗(a) = I ′(a) is the maximizer. If we have no a priori guarantee that I

will exist and be convex, we may consult the Gärtner-Ellis theorem, which in

its simplified form states that if Λ(s) exists and is continuously differentiable in

s, then the large deviation principle for AT exists and the rate function is given

by (4.18) [9]. In the event the rate function is not convex, (4.18) gives the convex

envelope of the rate function.

Suppose that AT = A(BT ), a function of a different random variable BT that

satisfies a large deviation principle with known rate function J(b). Then the door

is open to deriving the large deviation elements, viz. scgf and rate function, for

AT from J(b). Using the large deviation principle for BT in the definition of the

125



slope = a(s)

s

Λ(s)

slope = s(a)

a

I(a)

(a) If I(a) has slope s(a) at a, its lf transform Λ(s) has
slope a at s(a). For convex function the transform is
self-inverse.

I

a

Λ

s

conv(I)

a

(b) If I(a) is not locally convex in some range a ∈ [a0, a1], then the
lf transform has a singularity with slopes a0 and a1 from each
side. The lf transform is then not self-inverse but yields the
convex envelope.

Figure 4.3 The Legendre-Fenchel transform between scgf and rate function.
Adapted from [9].

scgf Λ(s) of AT ,

Λ(s) = lim
T→∞

1

T
ln

∫
db e[sA(b)−J(b)]T+o(T ), (4.19)

which upon saddle-point evaluation of the integral gives the Laplace principle

Λ(s) = max
b
{sA(b)− J(b)} = sA(b†(s))− J(b†(s)), (4.20)

where b†(s) is the maximizer. The rate function I(a) can also be given a

variational form with respect to J(b). Consider

P[AT = a] =

∫

{b:A(b)=a}
dbP[BT = b]. (4.21)

Inserting the respective large deviation principles and evaluating the integrals

using the saddle-point method we obtain the contraction principle

I(a) = min
b
{J(b) : A(b) = a} = J(b∗(a)), (4.22)

where b∗(a) is the minimizer. We can perform the constrained minimization

(4.22) using a Lagrange multiplier that with foresight we call s. Then we first
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find the b that minimizes J(b) − sA(b), which must be b†(s) that according to

(4.20) maximizes sA(b)− J(b). Then we must tune the Lagrange parameter s to

satisfy the constraint A(b†(s)) = a. Assume a unique value s†(a) accomplishes

this. Then

I(a) = J(b†(s†(a))) (4.23a)

= s†(a)a− Λ(s†(a)). (4.23b)

Comparing with (4.18) and (4.22) we conclude that the optimizers are related by

s†(a) = s∗(a), b†(s†(a)) = b∗(a). (4.24)

If the function A is not bijective, we can consider AT to be a variable at a lower

‘level’ than BT . That is, the large deviations of lower-level random variables can

be obtained from a higher-level random variable through contraction.

4.2 Dynamical large deviations from the Level 2.5

perspective

4.2.1 Path probabilities for jump processes

We let X(t) be an ergodic jump process on some countable state space X 3
x, y, z, . . ., as in Chapter 1. Consider for this process a particular realization,

path, or trajectory, from time t = 0 to T that we shall denote ωT = {x(t)Tt=0}. The

trajectory is sufficiently described by the jump times ti and the states xi = x(ti)

jumped to at those times, for i = 1, . . . , N , where the number of jumps N may

differ between trajectories. We use the convection that t0 := 0, x0 is the initial

state, and tN+1 := T (i.e. T − tN represents the final time interval in which no

jump occurs, at least with probability one).

As a basis for developing dynamical large deviation theory, we construct a

path-probability measure, which, with some abuse of notation, we will write

as P[ωT ]D[ωT ] := P[{X(t)}Tt=0 ∈ C(ωT )] where C(ωT ) is a small ‘cylinder set’ of
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trajectories surrounding ωT in the space of trajectories. In this notation

∫
D[ωT ]P[ωT ] = 1, (4.25)

i.e. we formally represent summing over all possible trajectories by
∫
D[ωT ] and

will handle P[ωT ] like a probability density.

Jump processes are composites of a Poisson clock for jump times, and a discrete-

time Markov chain for the state transitions. Separating these aspects, we first

recall the waiting time distribution (1.39), that gives waiting a time ∆ti = ti+1−ti
for the next jump after xi was entered the density

ρclock(∆ti | xi) = ξ(xi)e
−∆tiξ(xi). (4.26)

For the last interval, ∆tN = T − tN , we instead require the probability of not

leaving xN which is

Pno-jump(∆tN | xN) = e−∆tN ξ(xN ). (4.27)

Next, given that a jump from xi occurs at time ti+1, the probability that the

target state will be xi+1 comes from normalizing the corresponding transition

rate,

Pchain(xi+1 | xi) =
W (xi+1, xi)∑
yW (y, xi)

=
W (xi+1, xi)

ξ(xi)
. (4.28)

Combining the probabilities (or densities) of the these elementary events, and

letting the initial distribution be µ,

P[ωT ] = Pno-jump(∆tN | xN)

(
N−1∏

i=0

ρclock(∆ti)Pchain(xi+1 | xi)
)
µ(x0) (4.29a)

= µ(x0)e−
∫ T
0 dt ξ(ωT (τ))

∏

0<t<T
ωT (t−)6=ωT (t+)

W (ωT (t+), ωT (t−)). (4.29b)

This expression allows an alternative derivation of detailed balance to the

generator approach we gave in Section 1.2.3. We let ωT be a realization of

the stationary process, i.e. the initial distribution µ = P ∗. Then reversibility

is equivalent to requiring that for any trajectory ωT , and reversed trajectory

ω̂T := {X(T − t)}Tt=0, their weights are identical: P[ωT ] = P[ω̂T ]. Using (4.29b)
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this amounts to

P ∗(x0)

P ∗(xN)
=
W (xN , xN−1) · · ·W (x1, x0)

W (x0, x1) . . .W (xN−1, xN)
, (4.30)

which, since true for any set of xi’s, is equivalent to detailed balance (1.52).

4.2.2 The Level 2.5 rate function and its meaning

Donsker and Varadhan in their seminal works identified three levels of observables

for dynamical large deviations of Markov processes, related by contraction [127–

129, 162]. The highest, level 3, consists of the long-time statistics of trajectories;

level 2, the time fraction spent in each state; level 1, time-averaged observables of

the process. It was later realized, e.g. [46], that to study fluctuations of currents

and entropy productions—of particular interest in nonequilibrium processes—a

level in between 2 and 3 was necessary, hence named 2.5 (see [48] for historical

references). The objects of study for the level 2.5 theory are the empirical

density P e
T and the empirical flow Ce

T , defined

P e
T (x) = P e

T (x;X) :=
1

T

∫ T

0

δX(t),x, (4.31)

Ce
T (y, x) = Ce

T (y, x;X) :=
1

T

∑

0<t<T
X(t−) 6=X(t+)

δX(t+),y δX(t−),x. (4.32)

The empirical density counts the fraction of time spent in a given state and the

empirical flow counts the number of transitions per unit time across a bond. Due

to ergodicity of the process, in the long-time limit

P e
T (x)→ P ∗(x), (4.33)

Ce
T (y, x)→ W (y, x)P ∗(x). (4.34)

The level 2.5 large deviation principle then expresses the exponential decay of

likelihood in observing an empirical density and flow, P̂ , Ĉ, different than the

typical ones, P ∗, C∗:

P 2.5
T [P̂ , Ĉ] := P[P e

T = P̂ , Ce
T = Ĉ] � e−TI[P̂ ,Ĉ]. (4.35)

Remarkably, an explicit expression for the rate function I[P̂ , Ĉ] is known, which
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makes contraction not only possible in principle but also in practice. For example,

one can derive variational representations for the rate of the empirical current JeT
and traffic T eT [46],

JeT (y, x) := Ce
T (y, x)− Ce

T (x, y), T eT = Ce
T (y, x) + Ce

T (x, y). (4.36)

As we will see below, the functions P̂ , Ĉ must be consistent with being the

stationary density and flow of some process with path-measure P̂, so that

∑

x

P̂ (x) = 1, (4.37a)

∑

y

[Ĉ(y, x)− Ĉ(x, y)] = 0. (4.37b)

This also follows directly from considering that

∑

x

P e
T (x) = 1, (4.38)

and that

∑

y

JeT (y, x) =
1

T

∑

y

∑

0<t<T
X(t−) 6=X(t+)

[
δX(t+),y δX(t−),x − δX(t+),x δX(t−),y

]
(4.39a)

=
1

T

N∑

i=1

[
δX(ti−1),x − δX(ti),x

]
(4.39b)

=
1

T
(δX(0),x − δX(T ),x) (4.39c)

T→∞→ 0, (4.39d)

where ti are the jump times with t0 = 0 and tN = T .

We now derive the level 2.5 rate function and interpret it, following [46, 47]. In

the next section, we explicitly perform the contraction to level 1 observables, in

order to motivate the formalism that will be put to practical use in Chapters 5

and 6. As before, we let P be the path-distribution of the process X, and we

also let Q be the path-probability of some different process Y (t), such that P and

Q are absolutely continuous with respect to each other, i.e. that they have the

same set of zero-probability trajectories. Then we can perform the exponential
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change of measure [30] from the P to Q2,

P[ωT ]D[ωT ] = exp

{
− ln

Q[ωT ]

P[ωT ]

}
Q[ωT ]D[ωT ], (4.40)

Let us further say that Y (t) is also a jump process with the initial distribution

µ, but with transition rates K and escape rates η. Then using first (4.29b), and

thereafter the definitions (4.31) and (4.32), we find

ln
Q[ωT ]

P[ωT ]
=

∫ T

0

ds[ξ(xs)− η(xs)] +
∑

0<s<t
xs− 6=xs+

ln
K(xs+ , xs−)

W (xs+ , xs−)
(4.41a)

= T

{∑

x

P e
T (x;ωT )[ξ(x)− η(x)] +

∑

x,y

Ce
T (y, x;ωT ) ln

K(y, x)

W (y, x)

}

(4.41b)

=: T IW,K [P e
T ( · ;ωT ), Ce

T ( · , · ;ωT )]. (4.41c)

(We will henceforth let context imply when P e
T and Ce

T are functions of ωT rather

than of X.) Importantly, IW,K only depends on the trajectory ωT via the level

2.5 empirical observables.

We now seek P 2.5
T [P̂ , Ĉ] defined in (4.35) by marginalizing (4.40). In the following

δ[P e
T − P̂ ] =

∏

x

δ(P e
T (x)− P̂ (x)), (4.42)

δ[Ce
T − Ĉ] =

∏

x 6=y

δ(Ce
T (y, x)− Ĉ(y, x)). (4.43)

Then

P 2.5
T [P̂ , Ĉ] =

〈
δ[Ce − Ĉ]δ[P e

T − P̂ ]
〉
P

(4.44a)

=

∫
D[ωT ]δ[Ce

T − Ĉ]δ[P e
T − P̂ ]e−TIK [P eT ,C

e
T ]Q[ωT ] (4.44b)

= e−TIW,K [P̂ ,Ĉ]Q2.5
T [P̂ , Ĉ]. (4.44c)

Now, if we choose the rates K according to

K(y, x) = Ŵ (y, x) :=
Ĉ(y, x)

P̂ (x)
. (4.45)

2In the simplified, non-rigorous style we use, this relation is transparently tautologous, but
in strict definition, the ratio of the two measures is a Radon-Nikodym derivative defined by
measure-theoretic concepts.
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then the the long-time averages of P e(x;Y ) and Ce(y, x;Y ) will be P̂ and Ĉ. For

this choice of K, let us denote Q|K=Ŵ =: P̂. Then IW,Ŵ =: I is simply

I[P̂ , Ĉ] =
∑

x,y

{
W (y, x)P̂ (x)− Ĉ(y, x) + Ĉ(y, x) ln

Ĉ(y, x)

W (y, x)P̂ (x)

}
, (4.46)

where we have just expanded out the escape rates. We then arrive at the exact

relation

P[P̂ , Ĉ] = e−TI[P̂ ,Ĉ]P̂[P̂ , Ĉ]. (4.47)

To establish the large deviation principle (4.35), all we need to note is that, as T

becomes large, T−1 ln P̂[P̂ , Ĉ]→ 0, since the probability concentrates around the

long-time values P̂ , Ĉ.

Let us introduce the information-theoretic relative entropy between two distribu-

tions as

ST [Q | P] :=

∫
D[ωT ]Q[ωT ] ln

Q[ωT ]

P[ωT ]
(4.48a)

= TIW,K [〈P e〉Q , 〈Ce〉Q]. (4.48b)

The relative entropy is non-negative, and zero if and only if the two distributions

are identical on all positive-measure sets [163]. It is often viewed as a pseudo-

distance between distributions, but is neither symmetric nor satisfies the triangle

inequality as required of a true distance metric. In the long-time limit 〈P e〉Q,

converges to the stationary density of Y , etc. Thus, in particular, we have for

Q = P̂,

lim
T→∞

1

T
ST [P̂ | P] = I[P̂ , Ĉ]. (4.49)

One then realizes that applying the contraction principle to this level 2.5 rate

function, i.e. to optimize it with constraints, amounts in an information-theoretic

sense to finding the Markov process ‘closest’ to the original process given those

constraints.
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4.2.3 Contraction to time-additive dynamical observables

The rate function I(a) of any variable AT = A[P e
T , C

e
T ] can now be obtained

according to the contraction principle (4.22) by minimizing the level 2.5 rate

function I[P̂ , Ĉ] under constraints. Of particular interest are level 1 dynamical

observables, which are weighted averages of the empirical density and/or flow.

The most general form for this kind of observable is AT = Aocc
T +Aflow

T consisting

of an ‘occupation-like’ and a ‘flow-like’ component given by

Aocc
T =

∑

x

f(x)P e
T (x) =

1

T

∫ T

0

dt f(X(t)), (4.50a)

Aflow
T =

∑

x,y

g(y, x)Ce
T (y, x) =

1

T

∑

0<t<T
X(t−) 6=X(t+)

g(X(t+), X(t−)). (4.50b)

In practice, however, we are usually concerned with AT having only one of these

components and not the other. We give some examples of commonly studied

dynamical observables:

� Occupation time. The fraction of time spent in a given subset R ⊂ X is

given by Aocc
T with f(x) = IR(x) (the indicator function for R). Occupation

time statistics, whether in a large deviation limit or not, feature heavily

in physical and mathematical applications. Some recent large-deviation

studies include time spent at a given location or interval for simple 1D

processes such as biased diffusions and Ornstein-Uhlenbeck processes [29,

49, 50, 164], and special configurations related to clustering in interacting

many-body system [165, 166].

� Total activity. By taking Aflow
T with g ≡ 1 we are counting the total

number of state transitions (per time), or, equivalently, the integrated

traffic. This observable has, for example, been studied in kinetically

constrained models of glassy systems to show that they generically exhibit

a dynamical phase coexistence of active and inactive trajectories [66, 151].

� Entropy production. Consider a process that can be interpreted as

interacting with a thermal environment. Then Aflow
T with g(y, x) =

ln[W (y, x)/W (x, y)] = q(y, x) gives us an observable φeT that, from the

definitions relating to thermal physics in Section 1.2.6, we interpret as the
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change in environmental entropy per unit time,

φeT =
Senv(T )− Senv(0)

T
. (4.51)

For long times, we expect the system entropy to be sub-extensive in time

(but see for a discussion of caveats [35, Sect. 1.8.1]), so that we can equate φeT
with the the empirical entropy production rate σTe . This quantity satisfies

the Gallavotti-Cohen symmetry of the rate function (first discovered for

deterministic chaotic systems [142] and later proved for stochastic dynamics

[143, 144]),

Λ(s) = Λ(−s− 1). (4.52)

(We will derive this later on.) By lf transform follows the asymptotic

fluctuation relation

I(σ) = I(−σ)− σ. (4.53)

A recent direction of research has been to consider entropy production

in many-body active systems, where atypically high entropy production

rates (due to the ‘active work’) correspond to phases of spontaneously

coordinated motion [3, 167–170].

Applying the Laplace and contraction principles, (4.20) and (4.22), in the level

2.5 context,

Λ(s) = max
P̂ ,Ĉ
{sA[P̂ , Ĉ]− I[P̂ , Ĉ]} (4.54a)

= sA[P̂ ∗s , Ĉ
∗
s ]− I[P̂ ∗s , Ĉ

∗
s ] (4.54b)

where P̂ ∗s , Ĉ
∗
s are the maximizers, and

I(a) = min
P̂ ,Ĉ
{I[P̂ , Ĉ] : A[P̂ , Ĉ] = a} (4.55a)

= I[P̂ ∗s∗(a), Ĉ
∗
s∗(a)], (4.55b)

where s∗(a) is such that A[P̂ ∗s∗(a), Ĉ
∗
s∗(a)] = a. We recall that I is given by (4.46)
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and A via (4.50) as

A[P̂ , Ĉ] =
∑

x

f(x)P̂ (x) +
∑

x,y

g(y, x)Ĉ(y, x). (4.56)

Let us start by finding P̂ ∗s , Ĉ
∗
s through the maximization in (4.54), or equivalently,

the constrained minimization in (4.55) with undetermined Lagrange multiplier s.

There are the additional consistency constraints (4.37) that we also implement

with Lagrange multipliers. We then set out to minimize

I[P̂ , Ĉ] := I[P̂ , Ĉ]− sA[P̂ , Ĉ] + Λs

∑

x

P̂ (x)

−
∑

x

Vs(x)
∑

y

[
Ĉ(y, x)− Ĉ(x, y)

]
,

(4.57)

where we have introduced the parameters −Λs and {Vs(x)}x∈X . The symbol

for the first parameter has been chosen with the foreknowledge that we shall

eventually find Λ(s) = Λs, which is not assumed a priori, however. Setting the

variations of I to zero:

0 ≡ δI
δP̂ (x)

=
∑

y

[
W (y, x)− Ĉ(y, x)

P̂ (x)

]
+ Λs − sf(x), (4.58a)

0 ≡ δI
δĈ(y, x)

= ln
Ĉ(y, x)

W (y, x)P̂ (x)
− Vs(x) + Vs(y)− sg(y, x). (4.58b)

From (4.58b) we find

Ĉ(y, x)

P̂ (x)
= Ŵs(y, x) := W (y, x)esg(y,x)e−[Vs(y)−Vs(x)]. (4.59)

Define

Rs(x) := e−Vs(x). (4.60)

Then by substituting (4.59) into (4.58a) and rearranging, we have

ΛsRs(x) =
∑

y

W (y, x)[esg(y,x)Rs(y)−Rs(x)] + sf(x)Rs(x). (4.61)

This relation is compactly expressed

ΛsRs = L̃sRs, (4.62)
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where the matrix

L̃s(y, x) := L(y, x)esg(x,y) + sf(x)δx,y (4.63)

is referred to as the tilted (backward) generator with respect to the observable

AT . (Recall from Section 1.2.1 that L = W> is the (backward) generator of the

process.) We adorn it with a tilde as a mnemonic aid. In contrast to L, for

s 6= 0, L̃s is generally not row-stochastic. It is therefore not the generator of a

probability-conserving Markov process. It is instead an example of a Metzler

matrix: it is real with non-negative off-diagonal elements, and arbitrary diagonal

entries. The Perron-Frobenius (pf) theorem (Section 1.2.2) can be applied to

Metzler matrices, because adding to them some constant times the identity matrix

makes them non-negative. In particular, since L has been assumed to satisfy the

conditions of the pf theorem, so too will L̃s. Then, because Rs through its

definition (4.60) is strictly positive:

Λs and Rs must be the Perron-Frobenius (i.e. dominant) spectral

elements.

They are thus uniquely determined by (4.62) as there is no question over which

eigenvalue and eigenvector the equation solves for.

Remark: for the entropy flux observable g(y, x) = ln[W (y, x)/W (x, y)], when all

such rate ratios exist, one finds L̃s = L̃−1−s from which follows the Gallavotti-

Cohen symmetry Λs = Λ−1−s.

There is also a dominant left eigenvalue equation to pair with (4.62), namely

ΛsL
>
s = L>s L̃s, (4.64)

or equivalently

ΛsLs = W̃sLs, (4.65)

where

W̃s(y, x) = L̃>s (y, x) = W (y, x)esg(y,x) − [ξ(x)− sf(x)]δx,y (4.66)

is the tilted (forward) generator. By the pf theorem, Ls is also a strictly
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positive vector. We will impose the normalization

∑

x

Ls(x) = 1, (4.67a)

∑

x

L(x)sRs(x) = 1. (4.67b)

Next, we check that this solution for the Lagrange multipliers is consistent with

the constraints (4.37) they were introduced to satisfy. We let Ŵs be the rate

matrix corresponding to the rates Ŵs of (4.59). We then require

0 =
∑

x

[Ĉ(y, x)− Ĉ(x, y)] =
∑

x

Ŵs(y, x)P̂ (x). (4.68)

Thus P̂ = P̂ ∗s , the stationary distribution of the process with rate matrix Ŵs, and

Ĉ(y, x) = Ŵs(y, x)P ∗s (x). From previous definitions we can check the veracity of

the relation

Ŵs(y, x) = Rs(y)W̃s(y, x)R−1
s (x)− δx,yΛs. (4.69)

This form is known as a generalized Doob transform [28], which turns a

Metzler matrix into a stochastic matrix. The stationary distribution of Ŵs is by

substitution verified to be

P̂ ∗s (x) = Ls(x)Rs(x), (4.70)

given the choice of normalization (4.67b).

Substituting P̂ ∗s and Ĉ∗s back into the level 2.5 rate function, and using (4.58)

I[P̂ ∗s , Ĉ
∗
s ] =

∑

x

[sf(x)− Λs]P
∗
s (x) +

∑

x,y

Ĉ∗s (y, x) [Vs(x)− Vs(y) + sg(y, x)]

(4.71a)

= s

[∑

x

f(x)P̂ ∗s (x) +
∑

x,y

g(y, x)Ĉ∗s (y, x)

]
− Λs

∑

x

P̂ ∗s (x)

+
∑

x

V (x)
∑

y

[
Ĉ∗s (y, x)− Ĉ∗s (x, y)

]

(4.71b)

= sA[P̂ ∗s , Ĉ
∗
s ]− Λs. (4.71c)
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We then have from (4.54), as advertised,

Λ(s) = Λs. (4.72)

From (4.55),

I(a) = as∗(a)− Λs∗(a), (4.73)

supposing a unique s∗(a) exists, which is to say that the scgf is smooth and

strictly convex.

Motivated by (4.49), (4.55) tells us that Ŵs∗(a) is the forward generator of the

Markov process closest to the original processes constrained on achieving AT = a

in the long-time limit. We shall refer to it as the effective process, in the

literature also called the ‘auxiliary’ or ‘driven’ process. As we have noted, we

shall interpret its typical behaviour as representing how the fluctuation a arises

in the original process. Looking at the the effective rates (4.59), we see that there

are two effects in play: there is an added effective potential Vs to the dynamics,

and, if the observable has a flow-like component, an additional nonequilibrium

force sg that is in general not a potential difference. If the original process is a

many-body lattice process, for instance, then Vs represent effective interactions

between particles that a priori may be arbitrarily complex.

But how can we be sure that the constrained trajectory ensemble is (in some

relevant approximate sense) described by this closest Markov process, rather than

some very different non-Markovian process? This requires an analysis of ensemble

equivalence that we review in the following, based on [28, 171, 172].

4.2.4 The view from ensemble theory

Two path ensembles P,Q, whether Markovian or not, are said to be asymptot-

ically equivalent [28, 172], written

P � Q, (4.74)

if for ‘almost all’ paths ωT ,

lim
T→∞

1

T
ln

P[ωT ]

Q[ωT ]
= 0. (4.75)
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Asymptotic equivalence means that the typical properties of both processes are

the same. Once can check that the relation � is transitive, symmetric, and

reflexive.

A series of different dynamical ensembles are introduced, with the intention of

showing that (under certain conditions) they are asymptotically equivalent.

� Microcanonical ensemble. This is the original process under the hard

constraint AT = a,

Pmicro
a [ωT ] :=

P[ωT ]δ(A(ωT )− a)

PT (a)
. (4.76)

It gives the exact answer to the question of which trajectories cause a certain

fluctuation. It is not Markovian, because each trajectory has to anticipate

a precise value of AT .

� Tilted ensemble. Sometimes called the s-ensemble, or penalized ensem-

ble, this is the path measure of the non-conservative process with forward

generator W̃s (4.63),

P̃s[ωT ] := esTAT (ωT )P[ωT ]. (4.77)

� Canonical ensemble. This normalized ensemble replaces the hard

constraint on AT with a soft constraint,

Pcano
s [ωT ] :=

esAT (ωT )TP[ωT ]

〈esTAT 〉P
. (4.78)

For finite T it is not necessarily Markovian. Our expectation from the

equilibrium statistical mechanics context, is that in the T → ∞ limit

the canonical and microcanonical ensembles are interchangeable, once the

‘temperature’ −s−1 is appropriately tuned.

Note that that we can define a dynamical partition function,

ZT (s) :=
〈
esTAT

〉
P , (4.79)

so that the scgf is akin to a ‘dynamical free-energy density´,

Λ(s) = lim
T→∞

1

T
lnZT (s). (4.80)
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� Effective process ensemble. This is the Markovian path ensemble for

the process with forward generator Ŵs (4.69),

P̂s[ωT ] = eTI[P
∗
s (ωT ),C∗s (ωT )]P[ωT ]. (4.81)

It can then been proven based on asymptotic spectral representations of the

process generators involved that [28]

Pcano
s � eΛ(s)T P̃s � P̂s. (4.82)

Finally, the microcanonical and canonical ensembles are asymptotically equiva-

lent,

Pmicro
a � Pcano

s , (4.83)

given that s = I ′(a), for points a where I(a) is locally smooth and convex, or any

s ∈ [I ′(a−), I ′(a+)] when I(a) is convex but has a kink at a. In the latter cases

the effective process is not unique. For a where the rate function is not locally

convex, the microcanonical–canonical ensemble equivalence breaks down. Non-

convexity of I, we recall, arises when Λ(s) has a non-analyticity. At such point

we experience a dynamical phase transition (dpt), which is formally (but not

physically) equivalent to an equilibrium phase transition, given the interpretation

of the scgf as a (dynamical) free energy density. On either side of a dpt the

dynamical trajectories of the system are qualitatively different, and at the phase

transition point there is dynamical phase coexistence.

Finally, there is a subtlety in that the asymptotic equivalence relation is only

sensitive to the behaviour of the processes in the ‘interior time’ [0, T ) as T is

pushed to infinity. Thus, if the fluctuations in AT arise from a ‘jump’ at the

end of the observation time interval, this will not be captured by the effective

process construction. An example given in [28] is the Ornstein-Uhlenbeck process

conditioned on its net drift velocity: it stays localized around its potential

minimum, until it makes a sudden excursion that furnishes the chosen net drift

at time T .
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4.3 The case of diffusions

Dynamical large deviation theory applies equally well to diffusion processes as

to jump processes [28, 29, 173]. In principle, we could derive the formalism by

a continuum limit applied to the conditioned jump processes of the previous

section. Indeed, we will use this approach to derive new results for diffusions

with boundaries in Chapter 6. Here, we briefly review the theory for diffusions

in unbounded domains without reference to the diffusive limit. Thus we consider

a d-dimensional diffusion X(t) evolving in Rd according to the sde (1.90)

dX(t) = F (X(t)) + B dW(t), (4.84)

with a constant diffusion matrix D = (1/2)BB>. For simplicity of moving between

stochastic calculus conventions we consider no state dependence of the diffusion

matrix, but this is not a necessary limitation of the theory.

A level 2.5 large deviation principle exists, to which contraction can be usefully

applied [173, 174]. On the continuum, the empirical flow must be replaced by

the empirical current as a partner to the empirical density, because the lattice

current, but not the flow or traffic, has a sensible continuum limit. For diffusions,

the empirical density is

ρeT (x) =
1

T

∫ T

0

dt δ(X(t)− x), (4.85)

and the empirical current is

JeT (x) =
1

T

∫ T

0

δ(X(t)− x) ◦ dX(t) (4.86a)

=
1

T
lim

∆t→0

∑

i

δ

(
X(ti + ∆t) + X(ti)

2
− x

)
(X(ti + ∆t)−X(ti)),

(4.86b)

where the circle product in the integral indicates the use of the Stratonovich

convention. The Stratonvich convention is necessary to make the current properly

anti-symmetric under time reversal, and is (as we prove in Chapter 6) what results

from the continuum limit of the lattice current.
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The level 2.5 large deviation principle is then

P[ρeT = ρ,JeT = j] � e−TI[ρ,j], (4.87)

with the rate function

I[ρ, j] =





1
4

∫
dx (j − Jρ,F )>(ρD)−1(j − Jρ,F ), ∇ · j = 0,

∞, ∇ · j 6= 0,
(4.88)

where

Jρ,F (x) = F (x)ρ(x)− D(x)∇ρ(x). (4.89)

(The subscripts on the current J will be notationally convenient in the following.)

Time-additive dynamical observables AT = Aocc
T + Acurr

T are now defined by

Aocc
T =

∫
dx f(x)ρeT (x) =

1

T

∫ T

0

dt f(X(t)), (4.90a)

Acurr
T =

∫
dxg(x) · JeT (x) =

1

T

∫ T

0

g(X(t)) ◦ dX(t). (4.90b)

To express the associated rate function and effective process, we consider an

alternative to the level 2.5 contraction, based on a direct application of the

Feynman-Kac formula (see [29, 175] for a pedagogical derivation and historical

references). Consider the function

uk(x, t) =
〈
ekTAT | X(0) = x

〉
. (4.91)

It gives the scgf λ(k) (which we write in different symbols than Λ(s) to

distinguish diffusions from jump processes) by integration, logarithm, and scaling,

λ(k) = lim
T→∞

1

T
ln

∫
dxu(x, T ), (4.92)

from which the rate function (if convex) follows from lf transform. The Feynman-

Kac formula states that the evolution of uk follows

∂tuk(x, t) = L̃kuk(x, t), (4.93)
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where

L̃k := F · (∇+ kg) + (∇+ kg) · D(∇+ kg) + kf (4.94)

is the continuum analogue of the tilted (backward generator) L̃>s . We can

spectrally decompose uk as

uk(x, t) =
∑

i

cie
λ

(i)
k tr

(i)
k (x), (4.95)

where λ
(i)
k and r

(i)
k are the eigenvalues and eigenvectors of L̃k. From (4.92) it

follows again that λ(k) = λk, the dominant eigenvalue of L̃k, whose corresponding

eigenvector we denote rk.

The generator of the effective process is again related to a generalized Doob-

transform of the titled generator,

L̂k := r−1
k L̃krk − λk. (4.96)

Explicitly, this gives an effective process

dX̂(t) = F̂ k(X̂(t)) + B dW(t), (4.97)

which differs from the original process by the effective force

F̂ k := F + 2D(kg +∇ ln rk). (4.98)

The bias parameter k is, as with s in the jump process case, tuned according to

k = I ′(a), with I the rate function for AT = a. Again in analogy to the jump

process case, the steady-state density of the effective process is

ρ̂∗k = `krk, (4.99)

where `k is the dominant eigenvector of

L̃†k := −(∇− kg) · F + (∇− kg) · D(∇− kg) + kf, (4.100)

the dual of L̃k. We impose the normalization

∫
dx `k(x) = 1,

∫
dx `krk(x) = 1. (4.101)
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In the next chapter, we return to the simple diffusion conditioned on its net drift,

and demonstrate how the use of the spectral large deviation methods described in

this chapter allows us to obtain the rate function and effective process advertised

in Section 4.1.2.

4.4 Summary of main concepts

Dynamical large deviation theory deals with the exponentially small probabilities

of fluctuations in (nonequilibrium) steady states sustained over long observation

times T . This is quantified by a large deviation principle (4.12), where a rate

function I describes the rate of decay. The scaled cumulant generating function

Λ (4.13) is the Legendre-Fenchel (lf) transform of I, and, under appropriate

conditions, vice versa (Figure 4.3). The relationship between I and Λ is formally

similar to that between entropy and free energy density in equilibrium statistical

mechanics.

The level 2.5 large deviation principle concerns sustained fluctuations in the

empirical probability density P e
T (4.31) and empirical probability flow Ce

T (4.32).

To derive it, one can take a trajectory-statistics view of Markov processes, and

compare the path-probability P of the original process to that of an effective

process P̂ under which a given long-time probability density P T
e = P̂ and flow

Ce
T = Ĉ become typical. By applying the contraction principle (4.22) to the

level 2.5 large deviation principle, one can derive rate functions for level 1 time-

integrated observables AT (4.50) that are weighted averages of the empirical

density and/or flow. This class encompasses important examples such as activity

and entropy production. The effective process that makes a chosen value AT = a

of the observable typical in the long-time limit, can be shown to describe in an

asymptotically exact sense the trajectories of the original process that generate

the fluctuation a.

Concretely, for jump processes we obtain the scgf of AT as the dominant

eigenvalue of a ‘tilted generator’ L̃s for jump processes (4.63), that is constructed

from the original generator, the details of the observable, and a bias parameter s.

The corresponding right eigenvector is used in constructing the effective process

whose rates Ŵs are given by (4.59), and s can be tuned to select a given fluctuation

a via s = I ′(a). For diffusions, an analogous formalism holds.
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Chapter 5

Rare trajectories in multi-state

random walks

5.1 Background

In Chapter 4 we introduced the basic elements of dynamical large deviation

theory, and described the relationship of the rate function I that quantifies rare

events at an exponential time scale, and the scaled cumulant generating function

(scgf) Λ that is its Legendre-Fenchel (lf) dual. In the ideal case, I is a smooth,

strictly convex function, and so is Λ. For a multitude of reasons, a model may

depart from this ideal case. It is then interesting to understand why, both from

the point of view of uncovering special dynamical behaviour of the model, and to

gain a formal understanding of what conditions allow a large-deviation singularity

(of I or Λ) to form.

Large-deviation singularities have been encountered in models of varying com-

plexity, from simple random walks [176–182] to large systems of interacting active

particles [167–170]. The large deviation elements of the former class are often

exactly solvable, which is useful to assess if the singularity is appearing in some

limit, e.g. large system size, or has a different origin. For more complex systems,

whose large deviation elements must be computed numerically or by advanced

simulation techniques, these questions can be more difficult to answer. In this

chapter, we focus on non-interacting random walkers and the peculiar dynamical

large deviations they can exhibit.
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The simplest toy model for probing dynamical large deviations is the asymmetric

random walk (arw), or biased diffusion on the continuum. The exact large

deviation elements for the entropy production (1.79) in the arw were calculated

in [144], and followed up in [176, 177], where it was found that an apparent kink

emerges in the rate function with diverging asymmetry of the walk. On closer

inspection, however, the rate function remains smooth for any finite degree of

asymmetry. There are many other examples where a limit in addition to the

long-time one produces a singularity: in the small-noise limit, which has been

also been studied for the arw and its continuum counterpart [177], including

for periodic potentials [183–185]; when a system-size diverges [179–182]; or a

model parameter diverges or vanishes to create time-scale separation, and, in

particular, a partitioning of the state space [178–180]. It is generally believed

that the scgf of dynamical observables in compact, irreducible Markov processes

must be analytic [183]. But breaking either of these conditions, whether through

the use of an additional limit or not, does not mean a singularity will necessarily

appear. A particularly simple yet rich example of a singularity in the scgf, shown

to correspond to a dynamical phase transition (dpt) where the character of the

associated trajectories changes for different values of the observable [49, 50, 186],

was found in the biased diffusion on the infinite line, conditioned on the time

spent in a finite interval.

As a continuation of the works on large deviations in the prototypical arw or

biased diffusion, we consider in this chapter the large deviations of either the

velocity or the time spent at the origin, of a multi-state random walker. Such

a particle moves on a linear and homogeneous lattice but with hopping rates

depending on an internal state undergoing some independent Markov process. A

special case that we will focus on is the run-and-tumble particle from Chapter 2

(or an asymmetric version thereof), for which the tumbling rate ω is anticipated

to influence the fluctuation behaviour in possibly peculiar ways. We shall attempt

to give an exact solution for the large deviation elements, and to probe the result

for unusual large-deviation characteristics, including, in particular, singularities.

We will also systematically employ the effective process construction (when valid)

to understand the structure of trajectories that generate fluctuations in regimes

that we deem interesting in the models we examine.

First, as a warm-up exercise in the use of the spectral method of calculating

large deviations that was derived in Chapter 4, we review the calculations of

the velocity fluctuations in the arw and the occupation time dpt in the biased
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Figure 5.1 Large deviations of velocity for the ARW. (a) Rate function plotted
for γ = 1, 0.5, 0.1 and 0. (b) Effective forward and backward hopping
rates.

diffusion. Then we introduce the class of multi-state random walkers for which

we shall develop methods of obtaining their large deviations for either of these

observables.

5.1.1 Large deviations in the asymmetric random walk

We consider long-time velocity fluctuation of the arw which hops on sites n =

1, 2, . . . , L (periodic) with rate 1 to the right and γ (≤ 1, say) to the left, giving

the master equation

∂tP (n, t) = P (n− 1, t) + γP (n+ 1, t)− (1 + γ)P (n, t), (5.1)

with P (n + L, t) = P (n, t). The observable VT is the empirical velocity given

by (4.50b) with the weight g(n± 1, n) = ±1. The dominant eigenvalue problem

(4.62) that gives the scgf Λ(s) reads in this instance

Λ(s)Rs(n) = esRs(n+ 1) + γe−sRs(n− 1)− (1 + γ)Rs(n), (5.2)

with Rs(n + L) = Rs(n). Because the velocity observable is independent of the

ring size L, we can without loss of generality put L = 1 and conclude

Λ(s) = es + γe−s − (1 + γ). (5.3)
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The rate function then follows from the lf transform (4.18) as

Iγ(v) = 1 + γ − 2
√
γ + (v/2)2 − v ln

[
1

γ

(√
γ + (v/2)2 − v/2

)]
. (5.4)

It satisfies

Iγ(v) = Iγ(−v)− v ln γ. (5.5)

which is the Galavotti-Cohen symmetry (4.53) but expressed for velocity rather

than entropy production. As shown in Figure 5.1a, as the asymmetry is made

total, i.e. γ → 0, the steepness of the left tail of the rate function diverges, as

one intuits from the fact that no negative current can be seen if left hops are

impossible. The effective forward and backward hopping rates are γ̂+ = es
∗

and

γ̂− = γe−s
∗
, where

s∗ = ln

[
1

γ

(√
γ + (v/2)2 + v/2

)]
(5.6)

is the saddle-point value in (4.18). This gives

γ̂± =
√
γ + (v/2)2 ± v/2. (5.7)

Note that the activity parameters (as defined in (1.73)) are not altered between

the original and effective process: γ̂+γ̂− = 1 · γ. This is a necessary feature

when the weight of the flow-like dynamical observable is antisymmetric, g(x, y) =

−g(y, x).

Alternatively, we can consider the continuous-space biased diffusion

dX(t) = F dt+
√

2D dW (t) (5.8)

on a ring of circumference L, for which the net drift VT is a current observable

of the form (4.90b) with g = 1. Concluding from translational symmetry that

the dominant eigenvalue problem for the k-tilted generator (4.94) is solved by

rk = 1/L, we find the scgf to be

λk = k(F +Dk). (5.9)
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This gives a Gaussian rate function

IF (v) = (v − F )2/(2D) (5.10)

and effective drift

F̂ = v. (5.11)

This is the result that was promised in the example Section 4.1.2 used to motivate

the main ideas of dynamical large deviation theory.

Consider also the biased diffusion (5.8) but with the occupation-time observable

AT (x) of the form (4.90a) with the weight f(x) = 1I(x), the indicator function

for the interval I = [−a,+a] [49, 50, 186]. In contrast to the problem of velocity

fluctuations, the ring (a compact space) and infinite line (non-compact) are not

interchangeable, as far as large deviations are concerned, because the observable

itself is not translation invariant, although the original process is. This opens

the possibility of a dpt if we let L = ∞. Alternatively, we could consider e.g.

periodic boundary conditions and expect the same dpt to emerge as L→∞. In

principle, however, we cannot a priori exclude the possibility that the long-time

limit and large system-size limit do not commute or depends on the boundary

conditions of the finite-space model. We consider in any case the infinite line

from the start. The tilted generator for the conditioning problem is then

L̃k = F∂x +D∂2
x + k1[−a,+a](x). (5.12)

In [50] the dominant eigenvalue problem for this operator could be mapped to

the problem of finding the ground state of a certain quantum particle in a square

well. The ground state solution can be represented exactly, but requires the

solution of a transcendental equation. The phenomenology is the following. A

critical occupation fraction νc (conjugate to a critical bias kc) separates a linear

branch of the rate function for occupation fractions 0 < ν < νc, and a convex

branch for ν > νc. This constitutes a first-order transition because the scgf,

being the free-energy analogue, has a discontinuous first derivative at kc. In the

isomorphic quantum particle problem, the critical well depth kc separates a bound

and non-bound ground state. Similarly, for the classical particle undergoing

biased diffusion, if it is conditioned to stay in the interval for a time fraction

ν > νc, it localizes around I for the whole conditioning period T (→ ∞). For

ν < νc in contrast, numerical simulation showed that the particle spends a given
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fraction of the total time T localized around I, and thereafter follows its natural

tendency of drifting off towards infinity. This behaviour is not Markovian, and

there is no effective process in the sense of (4.97). (Recall from Section 4.2.3

that the effective process construction at bias k requires strict convexity of the

rate function at that point, which does not hold at linear branch of the rate

function.) The authors conjectured that one should expect the presence of this

dpt for random walks possessing two main qualities. The original process must

be transient rather than recurrent, i.e. with probability one the particle revisits

its starting point only finitely often; or at least it allows transience to emerge

upon conditioning on the large deviations if originally it was recurrent. In 1D,

recurrence amounts to zero asymptotic velocity. Furthermore, the tilted process

generator must allow eigenvalue crossings in the bias parameter s. This cannot be

the case for an original equilibrium process, whose tilted generator is necessarily

symmetrizable and hence avoids crossings [27].

We introduce now the extension of the arw to a multi-state random walker on a

homogeneous one-dimensional lattice, for which we shall in subsequent sections

repeat the above calculations and explore the differences and similarities to the

arw/biased diffusion as a reference case.

5.1.2 Multi-state random walks

A multi-state random walker is simply a random walk on a lattice where the

waiting-time distribution between jumps, and the direction and length of jumps,

depends on an internal state of the walker, a state which undergoes its own

evolution, typically by a Markov jump process [77, 187]. This class of random

walkers encompasses the continuous-time random walk and persistent random

walks, made famous by Montroll and Weiss, and discussed briefly in Section 2.1.1.

We specialize to Markovian multi-state random walks on an infinite linear lattice.

When in internal state i, the particle makes a step of ∆n sites (which may be

a positive or negative number) with rate γi(∆n). The particle switches internal

state from i to j with a rate ωji (with ωii = 0). Importantly, we take all rates

to be independent of the spatial coordinate n (i.e., the process is translationally

invariant). The master equation for this class of models reads

∂tPi(n) =
∑

k

γi(k)[Pi(n− k)− Pi(n)] +
∑

j

[ωijPj(n)− ωjiPi(n)] . (5.13)
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Figure 5.2 Examples from the class of models described by the master equation
(5.13).

Some examples are illustrated in Figure 5.2.

As in Chapter 2, we consider the generating functions

gi(z, t) :=
∞∑

n=−∞

znPi(n, t). (5.14)

The generating functions can be inverted by the formula

Pi(n) =
1

2πi

∮

∂D

dz

zn+1
gi(z), (5.15)

where D is the complex unit disk. The evolution of g := (g1, . . . , gN)> follows

from (5.13) as

∂tg(z, t) = W(z)g(z, t). (5.16)

Here, the N ×N matrix W(z) has elements

Wii(z) =
∑

k

γi(k)(zk − 1)−
∑

j

ωji , (5.17a)
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Wij(z) = ωij (i 6= j) . (5.17b)

In particular, one simple two-state system we will be interested in is the

asymmetric run-and-tumble particle (artp) that generalizes the rtp master

equation (2.9) to

∂tP+(n) = P+(n− 1) + ω−P−(n)− (1 + ω+)P+(n), (5.18a)

∂tP−(n) = γP−(n+ 1) + ω+P+(n)− (γ + ω−)P−(n), (5.18b)

that is

W(z) =

(
z − 1− ω+ ω−

ω+ γ(z−1 − 1)− ω−

)
. (5.19)

In the degenerate limit ω− = ω+ → ∞, the artp becomes identical to an arw

with left and right rates γ/2 and 1/2. If instead ω+ → 0 and ω− →∞ the artp

becomes the above arw with γ = 0.

5.2 Velocity fluctuations in a multi-state random

walk

Building on the simple example of velocity fluctuations in the arw, we first

demonstrate how, in principle, one would calculate the large deviation elements

for the velocity observable of a multi-state random walk described by (5.13).

We then focus on the asymmetric rtp, as it is the simplest extension from the

arw and hence the first place to look for new fluctuation phenomena afforded by

internal states.

5.2.1 Method of finding the SCGF

The velocity observable VT is given by (4.50b) with weight function (here called

α rather than g)

α ((i, n+ k), (i, n)) = k (5.20)
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for each pair of configurations with a nonzero transition rate, γi(k) > 0. Since the

observable maintains translation invariance for the problem, the tilted generating

function satisfies

∂tg̃(z, t; s) = W̃s(z)g̃(z, t; s), (5.21)

where

W̃ij(z; s) =





∑

k

γi(k)(zkesk − 1)−
∑

k 6=i

ωki if i = j

ωij otherwise

. (5.22)

Because velocity fluctuations are identical on the ring and on the infinite line,

let us suppose L-periodic boundary conditions, for which in the definition of the

generating function we replace zn with e2πin/L, and sum over n = 0, 1, . . . , L− 1.

By the same logic used in Section 2.3, the spectrum of W̃s (dimension NL×NL
) is composed of the collection of eigenvalues of W̃(z) (dimension N ×N) for z =

1, e2πi/L, . . . , e2(L−1)πi/L. This is because, in the Fourier basis, W̃s is block-diagonal

with these matrices as the blocks. In particular, the dominant eigenvalue, which

coincides with the scgf Λs, is contained within the block z = 1, which follows

from the argument that this eigenvalue must be independent of L. (In fact, we

may without loss of generality suppose L = 1.) We must then find the dominant

eigenvalue of the matrix

W̃(1; s) = W(es). (5.23)

It follows from the Perron-Frobenius theorem for finite matrices that, assuming

the internal state dynamics is irreducible, Λ(s) is simple, and hence does not cross

with other eigenvalues as s is varied. Since the matrix elements are differentiable

in s and there are no crossings, Λ(s) is differentiable, and the Gärtner-Ellis

theorem is applicable. There can be no dynamical phase transition.

The asymptotic average velocity v̄, for which we will find I(v̄) = 0, can be

computed from

v̄ =
∑

i

P ∗i v̄i , (5.24)

where P ∗i is the steady-state distribution over the internal states i, and v̄i is the
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Figure 5.3 Velocity rate function for the asymmetric RTP. (a) Combinations
of symmetric/asymmetric hopping and tumbling. (b) Rates (5.38)
giving zero limiting velocity; γ = 0.1, and δ = 10n, n =
2, 1, 0,−1,−2 from dark to light.

average velocity of the particle conditioned on being in state i,

v̄i =
∑

k

γi(k)k . (5.25)

In particular, for the asymmetric rtp, the steady-state condition of the internal

dynamics is

P ∗+ω+ = P ∗−ω− , (5.26)

which yields

P ∗+ =
ω−

ω+ + ω−
, P ∗− =

ω+

ω+ + ω−
. (5.27)

The average velocity is therefore

v̄RTP = P ∗+ − γP ∗− =
ω− − γω+

ω+ + ω−
. (5.28)

In the following we leave the full generality of the class of walkers we have set

out and focus on the tractable case of the asymmetric rtp.
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Figure 5.4 Rates of the effective process normalized by the original rates, plotted
on a log-scale versus v. Orange (blue) for left (right), unbroken
(dashed) line for hopping (tumbling). Parameter values correspond
to the rate function Figure 5.3b, i.e. tumbling rates according to
(5.38). See main text for interpretation.

5.2.2 Velocity fluctuations of the asymmetric RTP

Following the method described above, we find the velocity scgf Λ(s) for the

asymmetric rtp as the dominant eigenvalue of the matrix (5.19) with z = es:

Λ(s) = coshγ(s)−coshγ(0)−ω+
√
ω2 − δω2 + (sinhγ(s)− sinhγ(0)− δω)2, (5.29)

where we have defined

coshγ(x) :=
ex + γe−x

2
, sinhγ(x) :=

ex − γe−x
2

. (5.30)

and

ω :=
ω+ + ω−

2
, δω :=

ω+ − ω−
2

. (5.31)

The saddle-point value s∗ = I ′(v) used in the lf transform satisfies

v = x+
(x− x0 − δω)

√
γ + x2

√
ω2 − δω2 + (x− x0 − δω)2

, (5.32)

where

x = sinhγ(s
∗) and x0 = sinhγ(0) . (5.33)

Solving (5.32) for x (and therewith s∗) amounts to factorizing a cubic polynomial,

which we can always do, but the result is unwieldy. But supposing we have
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obtained the solution x = x(v), for example by numerical evaluation of the cubic

formula, we then have

s∗ = ln

[
1

γ

(√
γ + x(v)2 − x(v)

)]
, (5.34)

and I(v) = s∗(v)v − Λ(s∗(v)) is easily written down in terms of x(v).

Next, we solve for the effective process rates. To obtain the dominant right

eigenvector Rs of L̃s = W̃>s (i.e. the dominant left eigenvector of W̃s), we

note again that this matrix is block-diagonal in the Fourier basis, and with the

dominant eigenvalue lying in the z = 1 block,

W>(es) =

(
es − 1− ω+ ω+

ω− γ(e−s − 1)− ω−

)
, (5.35)

corresponding to the spatially uniform mode. The elements of the right

eigenvector are therefore R±(n) = r±, where r = (r+, r−)> is the dominant

right eigenvector in the first Fourier block: W>(es)r = Λ(s)r. We find that

(
r+

r−

)
∝
(
x(v)− x0 − δω +

√
ω2 − δω2 + (x(v)− x0 − δω)2

ω − δω

)
. (5.36)

The effective rates then follow as

γ̂± := γ±e
±s∗ =

√
γ + x(v)2 ± x(v) (5.37a)

ω̂± := ω±
`∓
`±

=
√
ω2 − δω2 + (x(v)− x0 − δω)2 ∓ (x(v)− x0 − δω).

(5.37b)

We observe again that the activity parameters are not changed by the effective

process.

Some special choices of rates warrant a closer investigation.

Zero velocity and time-scale separation

One interesting scenario is where we let the hopping bias and tumbling bias

compensate each other such that we have a typical null velocity. For any given γ
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this is achieved by

ω+ = δ, ω− = γδ, (5.38)

where δ is a parameter we are free to vary independently. The particle spends

more time in the − state, but there it also hops at a slower rate than in the +

state.

As seen in Figure 5.3b where γ = 0.1, for δ ∼ 100, the rate function is nearly

symmetric around zero. The effective process Figure 5.4a reveals that, within

the range of fluctuations plotted, it is deviations in hopping rates, and not in

tumbling rates, that realize atypical velocities.

At the other end with δ ∼ 0.01, a qualitative difference between the large

deviation tails is apparent. There is an approximate velocity range −γ < v < 1,

where the rate function is almost flat, indicating that all fluctuations in this

range are relatively likely to be attained. The presence of a widely fluctuating

velocity for random walks with large time-scale separations has been reported

on previously [178, 179, 188]. The effective process allows a window onto the

mechanism behind this phenomenon. In particular we see from Figure 5.4b that

atypical tumbling is responsible for fluctuations in the −γ < v < 1 range. This

is because, with tumbling rates much slower than hopping rates, a large number

of hops occurs between tumbles, so that any deviation from typicality in the

tumbling rates has a large impact on velocity.

We can check that as δ → 0 the rate function approaches zero in −γ < v < 1 with

a jump in derivative at the end points. Therefore, the scgf (5.29) approaches

Λ(s) =




es − 1, s > 0,

γ(e−s − 1), s < 0,
(5.39)

with a non-analyticity at s = 0, so that the rate function approaches

I(v) =





v ln v − v + 1, v > 1,

0, −γ ≤ v ≤ 1,

−v ln(−v/γ) + v + γ, v < −γ.
(5.40)

We can interpret this as a dynamical phase transition, where v < −γ corresponds

to the left-moving phase, v > 1 to the right-moving phase, and [−γ, 1] to a
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phase-coexistence regime. We remark that outside the coexistence phase, the

rate function is identical to that of either a left-moving random walker with rate

γ or a right-moving one with rate 1.

The degenerate RTP

As illustrated in Figure 5.5, if we tune the tumbling rates to

ω+ = γ, ω− = 1, (5.41)

the generator spectrum exhibits the macroscopic eigenvalue degeneracy that we

observed for the symmetric (γ = 1) rtp in Figure 2.5b. Half (i.e. L) eigenvalues

coalesce at −ξ = −(1 + γ), the escape rate found in any configuration, and the

other half lie on an oval in the complex plane and exactly correspond to the

spectrum of the arw of Section 5.1.1. For this reason we refer to the artp with

rates (5.41) as the degenerate run-and-tumble particle, or drtp.

For this choice of rates we can trivially solve (5.32) for the saddle point, using

x0 + δω = 0 to find x(v) = v/2. One verifies then that the rate function is

identical to that of the arw, i.e. to (5.4). For the drtp the effective rates (5.37)

simplify to

γ̂± =
√
γ + (v/2)2 ± v/2, (5.42a)

ω̂± =
√
γ + (v/2)2 ∓ v/2, (5.42b)

which shows identical modification of the initial rates 1 and γ as in the effective

rates (5.7) of the arw.

What do we make of this perfect agreement of rate functions, or large deviation

equivalence, of the arw and drtp? It is expected that the large deviation

principle itself, and qualitative features of the rate function like convexity, or the

presence of dpts, will show universality, i.e. be insensitive to most model details.

In contrast, the rate function is expected to be quantitatively different between

models. In the next section we explain the large deviation equivalence by the fact

that the drtp, and further multi-state generalizations of it that we shall define,

can be thought of as superpositions of multiple arws.

158



-3 -2 -1

-1.

-0.5

0.5

1.

Re

Im

(a) γ = 0.4

-3 -2 -1

-1.

-0.5

0.5

L-fold degeneracy

L overlapping eigenvalue pairs

(b) γ = 0.5

-3 -2 -1

-1.

-0.5

0.5

(c) γ = 0.6

Figure 5.5 The spectrum in the complex plane for the ARW (orange) and RTP
(blue) with ω+ = 0.5, ω− = 1, L = 150, for three values of γ. In (a)
and (c) the spectra are distinct; in (c), where the RTP rates satisfy
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Figure 5.6 A generalization of the fine-tuned ARW and RTP to multiple
‘resting’ states. We call this the N -ARW, so that the ARW and
RTP corresponding to N = 0 and N = 1.

5.2.3 A probabilistic quasi-particle

Generalizing from the drtp, consider the multi-state random walk defined by

the the transition graph Figure 5.6. There are N + 1 internal states, or levels,

connected into ‘ladders’ between two horizontal lanes. Right (left) hops can only

be made in level 0, which we also denote by + (level N , also denoted −). Up

and right transitions occur with rate 1 and down or left transitions with rate γ,

which constitutes a special tuning of rates such that the escape rate is ξ = 1 + γ.

We will call this model the N -arw and note that for N = 0 it corresponds to the

arw and for N = 1 to the drtp.
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The master equation for the N -arw is





∂tP0(n) = P0(n− 1) + P1(n)− (1 + γ)P0(n), (5.43a)

∂tPi(n) = γPi−1(n) + Pi+1(n)− (1 + γ)Pi(n), 0 < i < N, (5.43b)

∂tPN(n) = γPN(n+ 1) + γPN−1(n)− (1 + γ)PN(n). (5.43c)

It is easy to verify that the stationary distribution for the level dynamics is

P ∗i =
γi

1 + γ + γ2 + . . .+ γN
. (5.44)

The average velocity is therefore

v̄ = 1 · P ∗0 − γ · P ∗N =
1− γN+1

1 + γ + γ2 + . . .+ γN
= 1− γ, (5.45)

independently of the number N of levels. As N becomes larger, the walker spends

more time transitioning between resting states (levels 1, . . . , N − 1) rather than

making lateral jumps, but it also becomes more biased towards hopping right

when a hop does occur. This is seen from the persistence probabilities P (+ | +)

and P (− | −) that the next hop is in the same direction as the previous (calculated

in Appendix 5.A):

P (+ | +) =
1

1 + γP ∗N
, P (− | −) =

γ

γ + P ∗0
. (5.46)

In particular, as N → ∞, P (+ | +) → 1 and P (− | −) → γ/(1 + γ). For any

large but finite N the increase in persistence and in time spent in the resting

states with N balance to keep v̄ constant. The N →∞ carries subtleties that we

return to at the end of the section.

Consider now the following ansatz for a solution to (5.43),

Pi(n, t) = P ∗i p(n+ i, t), (5.47)

where p(n, t) evolves by the arw master equation (5.1). This ansatz requires us to

posit a rather particular initial condition, namely Pi(n, 0) = P ∗i p(n+ i, 0), where

p(n, 0) is any initial distribution for a one-dimensional random walker. This,

however, is not a concern because we are ultimately interested in the long-time

velocity statistics, which are independent of the initial condition due to ergodicity.
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Figure 5.7 Sketch of the degenerate RTP represented as a pair of offset arws.

We consider first the ansatz for 0 < i < N . Note that

P ∗i+1 = γP ∗i . (5.48)

Then

∂t[P
∗
i p(n+ i, t)] = P ∗i [p(n+ i− 1, t) + γp(n+ i+ 1, t)

− (1 + γ)p(n, t)]

(5.49a)

= γ [P ∗i−1p(n+ i− 1, t)]︸ ︷︷ ︸
Pi−1(n,t)

+ [P ∗i+1p(n+ i+ 1, t)]︸ ︷︷ ︸
Pi+1(n,t)

− (1 + γ) [P ∗i p(n, t)]︸ ︷︷ ︸
Pi(n,t)

.

(5.49b)

This is precisely the master equation (5.43b) once we make the identification

(5.47). Now for i = 0 we have

∂t[P
∗
0 p(n, t)] = P ∗0 [p(n− 1, t) + γp(n+ 1, t)− (1 + γ)p(n, t)] (5.50a)

= [P ∗0 p(n− 1, t)]︸ ︷︷ ︸
P0(n−1,t)

+ [P ∗1 p(n+ 1, t)]︸ ︷︷ ︸
P1(n,t)

−(1 + γ) [P ∗0 p(n, t)]︸ ︷︷ ︸
P0(n,t)

, (5.50b)

which coincides with (5.43a). A similar derivation holds for i = N . Thus (5.47)

solves the N -arw for any initial condition consistent with this form. We can

interpret this solution as a probabilistic quasi-particle made up of a superposition

of arws, such that the quasi-particle itself behaves like an arw. This idea is

sketched in Figure 5.7 for N = 1, corresponding to the drtp.
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Figure 5.8 Effective rates for the N -arw at γ = 0.5 conditioned on the velocity
v.

For the velocity large deviations of the N -arw, all we need to note is that

p(vt, t) � e−Iγ(v)t as derived in Section 5.1.1, and that p(n, t) � p(n + i, t). It

then follows that

P (vt, t) =
∑

i

Pi(vt, t) � e−Iγ(v)t, (5.51)

and we thus have large deviation equivalence for all (finite) values of N of the

N -arw.

To summarize, the quasi-particle explanation shows that the large deviation

equivalence between the N -arws is explained by a mapping to the arw that

holds for all time given special initial conditions. For an arbitrary initial condition

and finite observation times, the velocity statistics will differ to some degree from

the arw, but limiting our view to the long-time limit allows us to generalize to

any initial condition. What makes the N -arw interesting from a large deviation

point of view, is that for different values of N , the trajectories that generate

a velocity fluctuation v are qualitatively different even after marginalizing over

the internal states, while occurring with identical probability on the exponential

scale. We prove this via the effective process.

Following the argument in Section 5.2.2, we conclude that in order to find the

effective rates of the velocity-conditioned N -arw we must find the dominant right
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eigenvector of the (N + 1)× (N + 1) matrix

W>(es) =




es − ξ γ 0 · · · 0

1 −ξ γ

0 1 −ξ γ
...

...
. . . 0

1 −ξ γ

0 · · · 0 1 γe−s − ξ




. (5.52)

One checks that the dominant eigenvalue is indeed (5.3) with right eigenvector r

with elements

ri = (es)i. (5.53)

The modification of the original rates to effective rates is then

1→ es
∗

=
√
γ + (v/2)2 + v/2, (5.54a)

γ → γe−s
∗

=
√
γ + (v/2)2 − v/2, (5.54b)

following the colour coding of Figure 5.6. We can rescale the persistence

probabilities (5.46) by (5.54) to obtain the effective persistence probabilities

plotted in Figure 5.8. These clearly depend on N , telling us that the trajectory

ensemble obtaining the fluctuation differs with N .

Finally, we return to the question of N → ∞. The typical relaxation time is

expected to be τrel ∼ γ−N . The large deviation results we have calculated are

only asymptotically correct for observation times T � τrel, so that we cannot

take N → ∞ and meaningfully interpret our derived result. It is clear that in

this limit, we separate the upper and lower lanes by an infinite distance, so that

we essentially get two distinct processes depending on which lane the walker has

a finite distance to in the initial condition, each of which has its own velocity rate

function.

In conclusion, the N -arw serves as an example that internal state structure may

not be discernable at the level of the long-time velocity fluctuations, as studied

through the rate function, but that the quality of trajectories may still be affected,

as studied through the effective process.
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5.3 A dynamical phase transition in occupation

time

We now consider the multi-state random walk described by (5.13) and provide a

novel method of finding the large deviation elements associated with conditioning

on the time spent at the origin. We then apply this formula to study the

occupation time dpt in the arw and the asymmetric rtp.

5.3.1 Method of finding the SCGF

Recall that the scgf is given by

Λ(s) = lim
t→∞

1

t
lnZ(t; s) (5.55)

with

Z(t; s) =
〈
etsAt

〉
=
∑

n,i

P̃i(n, t; s), (5.56)

where P̃i(n, t; s) is the tilted probability evolving by the tilted generator W̃s. If

we define the vector Z(t; s) = (Z1, . . . , ZN) with elements

Zi(t; s) :=
∑

n

P̃i(n, t; s), (5.57)

we find a relationship with the tilted generating function g̃ as

Z(t; s) = g̃(1, t; s), (5.58)

and with Z as

Z(t; s) = 1 ·Z(t; s). (5.59)

We know the time evolution of g̃, namely

∂tg̃(z, t; s) = W(z)g̃(z, t; s) + sp̃(0, t; s) (5.60)
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where p̃i := P̃i. Furthermore, by the inversion (5.15) of the generating function

p̃(0, t; s) =
1

2πi

∮

∂D

dz′

z′
g̃(z′, t; s). (5.61)

Given (5.55), (5.58) and (5.59), if we can find the long-time asymptotic form of

g̃ from (5.60), then we have have the scgf in a few easy steps. In fact, what we

shall do in the following is to turn (5.60) into an equation for Z̃ in the Laplace-

domain. Then we get the scgf as the dominant singularity in the complex plane

of Laplace-transformed Z̃.

Taking the Laplace transform on the time variable t → u in (5.60), indicating

transformed functions by g̃ → ḡ, etc., we get

uḡ(z, u; s)− g̃(z, 0; s) = W(z)ḡ(z, u; s) + sp̄(0, u; s), (5.62)

Now let us put z = 1 and recognize ḡ(1, u; s) = Z(u; s)

uZ(u; s)− g̃(1, 0; s) = W(1)Z(u; s) + sp̄(0, u; s). (5.63)

Further, let us note that g̃i(1, 0; s) =
∑

n P̄i(n, 0; s). There is no reason the initial

condition should depend on s, so we let g̃(1, 0; s) =: g̃0. Thus

[u1−W(1)]Z(u; s) = g̃0 + sp̄(0, u, s). (5.64)

We now substitute (5.64) into (5.62) and rearrange to obtain

[u1−W(z)]ḡ(z, u; s) = [u1−W(1)]Z(u; s). (5.65)

We invert the matrix in square brackets on the left and apply (s/2πi)
∮

dz/z to

both sides of the equation:

s

2πi

∮

∂D

dz

z
ḡ(z, u; s) =

[
s

2πi

∮

∂D

dz

z
(u1−W(z))−1

]
[u1−W(1)]Z(u; s) (5.66)

Let us define the matrix

I(u) =
1

2πi

∮

∂D

dz

z
(u1−W(z))−1 . (5.67)
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Figure 5.9 The rate function for origin occupation time in the ARW. The whole
lines show exact analytical results, with the vertical dashed lines
indicating the phase transition points. Dots show simulation results
of about 5× 109 trajectories with duration T = 20. The values for γ
used are 0.2, 0.4, 0.6 (blue, yellow, green)

Using (5.61) and (5.66) we write (5.66) as

sp̄(0, u, s) = sI(u) [u1−W(1)]Z(u; s). (5.68)

This expression we can now substitute into (5.64) to eliminate sp̄(0, u, s) and

obtain an explicit expression for Z(u; s). After a few algebraic manipulations:

Z(u; s) = [u1−W(1)]−1 [1− sI(u)]−1 g̃0. (5.69)

From this expression, we finally get

Z(z; s) = 1 · [u1−W(1)]−1 [1− sI(u)]−1 g̃0. (5.70)

From (5.17) we see that W(1) is the forward generator of the internal state process.

Thus its largest eigenvalue is 0, giving Z(z; s) a pole at u = 0 (and more for

negative u) coming from det(u1−W(1)). A dpt can arise if there is an additional

pole for u∗(s) > 0 that crosses u = 0 at some finite value of s. We expect this

u to be a solution to det(1 − sI(u)) = 0. It appears difficult to evaluate the

(non)existence of such a pole for an arbitrary multi-state random walk of the

form (5.17). Instead, we look at two analytically tractable examples: the arw

and the artp.
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5.3.2 Dynamical phase transition in the ARW

We expect the result of conditioning the arw on the time spent at the origin to

be qualitatively similar to the problem of drifted diffusion conditioned on time

spent in an interval, as reviewed in Section 5.1.1. Furthermore, the arw is the

simplest prototype for applying the novel method formula (5.70).

For the arw, the integral (5.67) is

I =
1

2πi

∮

∂D

dz

z

1

u− (z + γz−1 − (1 + γ))
= − 1

2πi

∮

∂D

dz

z2 − az + γ
, (5.71)

with a = u+ 1 + γ. The poles of the integrand are

z± = a/2±
√

(a/2)2 − γ. (5.72)

One verifies that z+(u = 0) = 1 and ∂uz+ > 0, hence this pole lies outside D (the

unit disk) for u > 0; z−(u = 0) = γ, z−(u→∞) = 0 whilst ∂uz− < 0, hence this

pole lies inside D for u > 0 and γ < 1. Using the residue theorem,

I =
1

z+ − z−
=

1√
a2 − 4γ

=
1√

u(u+ 2(1 + γ)) + (1− γ)2
. (5.73)

Therefore,

Z(u; s) =
1

u
·
[

1− s√
u(u+ 2(1 + γ)) + (1− γ)2

]−1

. (5.74)

Only if s > s∗ = 1− γ does there exist a positive pole, namely

u∗ = −(1 + γ) +
√
s2 + 4γ . (5.75)

We therefore conclude

Λ(s) =




−(1 + γ) +

√
s2 + 4γ, s > s∗,

0, s ≤ s∗.
(5.76)

Note that in contrast to the version of this problem in continuous space [50], we

are able here to obtain an explicit expression for Λ(s).

We can see directly that Λ(s) is not analytic in s, which means that the Gärtner-

Ellis theorem does not apply. Operating on the assumption (to be justified)
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Figure 5.10 In the ARW occupation-time effective process for ρ > ρc, jumps
toward the origin occur with rates γ0(ρ) and away from the origin
with rates γ∞(ρ).

that the rate function is convex, we nonetheless obtain the rate function via lf

transform. In the restricted range s ≤ s∗, the maximizer of s − Λ(s) is s∗. For

s ≥ s∗, the maximizer is instead

s† =
2ρ
√
γ√

1− ρ2
, (5.77)

provided that s† > s∗. This condition is equivalent to

ρ > ρc =
1− γ
1 + γ

. (5.78)

The rate function is therefore

Iγ(ρ) =





(1− γ)ρ, ρ ≤ ρc,

1 + γ − 2
√
γ(1− ρ2), ρ > ρc,

(5.79)

which is plotted in Figure 5.9. The salient feature is the change from linear

to convex shape at ρc, which reveals a first-order dynamical phase transition.

The correctness of the linear branch of the rate function, and hence convexity,

is verified by empirical calculation of the rate function from naive sampling of a

large number of simulated trajectories.

We remark that in the case where γ = 0 the rate function is entirely linear,

which follows immediately from the Poisson distribution of leaving the origin,

after which a return is impossible. This observation already suggests that the

linear part for non-zero γ is due to trajectories that stay close to the origin for

the chosen time-fraction before venturing off to infinity.

We next calculate the effective process for in the range of fluctuations where this

construction is legitimate, namely s > s∗. The dominant left (right) eigenvector

R(n) of the tilted forward (backward) generator satisfies

Λ(s)R(n) = R(n+ 1) + γR(n− 1)− (1 + γ)R(n) + sR(0)δn,0. (5.80)
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Substituting the value of the scgf and rearranging,

R(n+ 1) + γR(n− 1)−
√
s2 + 4γ R(n) = sδn,0. (5.81)

The solution by generating function techniques is

R(n) =




r−n, n ≥ 0

(γr)−|n|, n < 0,
(5.82)

where

r =
1

2γ
[
√
s2 + 4γ − s] . (5.83)

This leads to the effective rates Ŵ that are no longer translationally invariant,

Ŵ (n+ 1, n) =





1
2
(
√
s2 + 4γ + s), n ≥ 0

1
2
(
√
s2 + 4γ − s), n < 0 ,

(5.84a)

Ŵ (n, n+ 1) = γ/Ŵ (n+ 1, n). (5.84b)

Once we substitute the saddle-point value s† (5.77) the resulting effective process

is described by Figure 5.10 with

γ0(ρ) =

√
γ

1 + ρ

1− ρ , γ∞(ρ) =

√
γ

1− ρ
1 + ρ

. (5.85a)

Since γ0/γ∞ > 1, the particle is biased towards the origin: it lives in a linear

confining potential that becomes steeper as ρ is increased. Exactly at the

transition point ρc, γ0 = 1 and γ∞ = γ. The original dynamics has then

been modified by mirroring the dynamics for the negative half-lattice to achieve

symmetry about the origin.

For ρ < ρc, since the rate function is not strictly convex, the asymptotic

equivalence of the effective process and the conditioned process breaks down, as

we can plainly see: attempting to substitute s = −I ′(ρ), we find s = s∗ = −(1−γ)

for all ρ < ρc. This, however, would produce effective rates γ0(ρ) = 1 and

γ∞(ρ) = γ which always gives a typical occupation ρc, and not the chosen ρ < ρc!

Turning instead to direct simulation, we find, in expected agreement with [50],

the trajectory structure shown in Figure 5.11. For long simulation times T , the

graphs show how the accumulated occupation time at site 0 increases with time
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Figure 5.11 The increase in fraction of time At/T spent at origin as a function
of t, 0 ≤ t ≤ T , from simulation of ∼ 107 ARW trajectories with
γ = 0.6. In (a) a subset of 500 trajectories satisfying ρ = 0.4 ±
0.05 > ρc = 0.25 at final time T = 50 have been selected; in (b)
ρ = 0.15 ± 0.005 < ρc and T = 100. The white line indicates the
average over trajectories. For ρ > ρc the approximate linearity of
the average shows that the contribution to At is evenly distributed
throughout; the particle is localized around the origin. For ρ < ρc,
there is a localized period, followed by escape.

for a large sample of trajectories satisfying the final occupation ρ within some

tolerance. Up to a finite time effect, for ρ > ρc the contribution is evenly spread

through the time interval, resulting in the average occupation increasing linearly

(white line). In contrast, for ρ < ρc the average increases linearly for about half

the simulation time, at which point most of the trajectories have achieved the

final occupation. Thus, these trajectories stay localized around the origin for an

initial portion of time before escaping off to infinity.

5.3.3 Dynamical phase transition in the ARTP

We consider next the artp. With asymmetry in both tumbling and hopping,

there is a continuum of parameter values that all lead to zero net velocity, as we

found in Section 5.2.2. Our hypothesis is that the occupation dpt will be found

if and only if the net velocity is non-zero, whether the asymmetry is created by

biased tumbling or hopping.

The matrix W(z) for the artp was given by (5.19) which, for convenience, we

will write as

W(z) =

(
µ(z) ω+

ω− ν(z)/z

)
(5.86)
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Figure 5.12 SCGF (left panels) and rate function (right panels) for the
RTP occupation problem. The SCGF is non-singular if
and only if the limiting velocity is zero. (a) Parameters
demonstrate the possible combinations of (a)symmetry (γ, ω, δω =
1, 1, 0; 1, 1, 0.5; 0.3, 1, 0; 0.3, 0.65,−0.45). Dots show simulation
results of about 3 × 109 trajectories with duration T = 25. (b)
The zero limiting velocity rate rates (5.38) with γ = 0.1, and
δ = 10, .5, .1, .01 from dark to light line colour.

with

µ(z) = z − 1− ω+, (5.87a)

ν(z) = −z(γ + ω−) + γ. (5.87b)

The matrix inverse in the integrand of I(u) (5.67) is then

[uI−W(z)]−1 =
1

(u− µ(z))(uz − ν(z))− ω+ω−z

(
uz − ν(z) ω−z

ω+z z(u− µ(z))

)
.

(5.88)

Every element of this matrix has two poles in z given by the zeroes of the quadratic
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(u− µ(z))(uz − ν(z))− ω+ω−z = −a−(z − z+)(z − z−) , (5.89)

where

z± =
1

2a−

[
a+a− + γ − ω+ω− ±

√
(a+a− + γ − ω+ω−)2 − 4γa+a−

]
,

(5.90a)

a+ = u+ 1 + ω+, (5.90b)

a− = u+ γ + ω−. (5.90c)

One can verify that z− ∈ D \ ∂D (open complex unit disk) and z+ /∈ D for the

relevant parameter ranges and u > 0 (in fact, both roots are real, z+ > 1, and

1 > z− > 0). Then by means of the residue theorem and after some algebraic

simplifications we find

I =
1

a−(z+ − z−)

(
a− − γ

z+
ω−

ω+ a+ − z−

)
. (5.91)

Taking into account that z± > 0 for u > 0, one can conclude that the positive

poles of Z(u, s) are given by det(1− sI) = 0, i.e.

det

(
a−(z+ − z−)− s(a− − γ

z+
) −sω−

−sω+ a−(z+ − z−)− s(a+ − z−)

)
= 0. (5.92)

This equation can be solved numerically for the rightmost pole u∗(s) = Λ(s).

Figure 5.12 shows that the resulting scgf becomes zero for s larger than some

s∗ < 0 in a non-differentiable fashion when the velocity is non-zero. Assuming

the validity of obtaining the rate function through lf transform of the scgf, the

rate function develops a linear-convex transition corresponding to the singularity

of the scgf.

We note that the large deviation equivalence for velocity at the parameter values

ω+ = γ and ω− = 1 does not extend to the occupation observable. By putting

u = 0 in (5.92) and solving for s, we get s∗ = (1 + γ)(1 − √γ), different from

the arw. Since the scgfs do not have the same singularity they surely do not

coincide.

When we choose rates according to (5.38), producing zero limiting velocity, we
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Figure 5.13 Effective rates corresponding to Figure 5.12b as a function of ρ,
normalized by the original rates. (a) shows hopping rates and (b)
shows tumbling rates. Whole lines indicate the + state, dashed
lines the − state. Note that the tumbling rates are plotted on a
vertical log-scale. For interpretation of the graphs, see main text.

obtain Figure 5.12b. As δ becomes small, the scgf approaches a singularity at

−γ. Meanwhile, the rate function evolves continuously from convex to linear. As

tumble events become rare, the time spent at the origin is dominated by the time

the particle sits there before its first exit.

To find the effective process we again seek the dominant right eigenvector R±(n)

of L̃s satisfying

Λ(s)R+(n) = R+(n+ 1) + ω+R−(n)− (1 + ω+ − sδn,0)R+(n) (5.93a)

Λ(s)R−(n) = γR−(n− 1) + ω−R+(n)− (γ + ω− − sδn,0)R−(n). (5.93b)

It was found numerically that Λ(s) > 0 for s larger than some s∗, and zero

below it. We consider the former case, corresponding to the convex branch of

the rate function. We reuse the parameters a±, z± of (5.90c), but with u∗ = Λ(s)

substituted for u in their definitions. The generating function form of (5.93) is

(
z−1 − a+ ω+

ω− γz − a−

)
r(z) = sr(0) . (5.94)
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Inverting the matrix,

r(z) = − sz

a+γ(z − z̃−)(z − z̃+)

(
a− − γz ω+

ω− a+ − z−1

)
r(0) , (5.95)

with

z̃± := (a−/γa+)z± = 1/z∓ (5.96)

following from z+z− = γa+/a−. Applying the inverse transform,

r(n) = sQ(n)r(0) , (5.97a)

Q(n) := − 1

2πi

∮

∂D

dz

zn
1

γa+(z − z̃+)(z − z̃−)

(
a− − γz ω+

ω− a+ − z−1

)
. (5.97b)

Since Λ(s) > 0, we have z̃− ∈ D \ ∂D, while z̃+ /∈ D. For n = 0 we get the

eigenvalue equation

[I − sQ(0)]r(0) = 0, (5.98)

with Q(0)> = I|u=Λ(s) of (5.91). We require a non-trivial solution, which implies

that I − sI, whose inverse appears in the dynamical partition function (5.70), is

singular at u = Λ(s). This indeed follows from the fact this value of u is a pole

of Z (see (5.92)). We may choose

r(0) =

(
a−(z+ − z−)− s(a+ − z−)

−sω−

)
. (5.99)

For n ≥ 1 we find instead

Q(±n) =
(z∓)±n

a−(z+ − z−)

(
a− − γ

z∓
ω+

ω− a+ − z∓

)
. (5.100)

It is then a matter of simple algebra to find the relevant ratios of eigenvector

components, which subsequently produce the effective rates

Ŵ ((+, n+ 1), (+, n)) =





z− n > 0

z−
a−
a−−s

a+−z+
a+−z− n = 0

z+ n < 0

(5.101a)

174



Ŵ ((−, n− 1), (−, n)) =





γ/z+ n > 0

(γ/z+)a−−s
a−

n = 0

γ/z− n < 0

(5.101b)

Ŵ ((−, n), (+, n)) =





ω+ω−
a+

a−(a+−z+)
n > 0

ω+ω−
a+

(a−−s)(a+−z−)
n = 0

ω+ω−
a+

a−(a+−z−)
n < 0

(5.101c)

Ŵ ((+, n), (−, n)) = ω+ω−/Ŵ ((−, n), (+, n)). (5.101d)

Interestingly, the particle has a special set of rates at the origin. If v̄ = 0, then

the above solution is fully sufficient as the maximizer s(ρ) ≤ s∗ = 0. Figure 5.13

shows the effective rates corresponding to the rates function Figure 5.12b. In the

original process the particle hops faster to the right, but spends more time in the

left-oriented state. For n < 0, the effective process increases both hopping rates,

while increasing tumbling frequency into the right-moving state, and decreasing

the tumbling frequency out of it. For n > 0, all hopping rates are decreased,

while tumbles into the left-moving state becomes relatively more favoured. A

more remarkable result is that at the origin, the left hopping rates are decreased

dramatically, even for small ρ, and the tumbles into the left-moving states are

simultaneously increased. Overall, away from the origin the effective process

generates a bias towards it, and at the origin the likelihood of being in the left

state is increased by an order of magnitude, and its hopping rate decreased by

and order of magnitude, effectively trapping it in an inactive state at the origin.

Finally, we investigate by simulation the structure of trajectories in the linear

regime of the rate function. The contribution to the occupancy as a function of

time is qualitatively the same as for the arw, Figure 5.11 (and hence the graph

is not here reproduced).

In conclusion, our study of the occupation fluctuations in the artp supports the

hypothesis that transience is necessary for the dpt in occupation times following

[50]. In contrast to the arw, in the artp transience is not equivalent to breaking

detailed balance, which allows us to disentangle the role of these two properties

in the presence of the dpt. Indeed, while the artp trivially breaks detailed

balance, the dpt was only present when the typical net velocity was non-zero,

i.e. the process was transient. Further study of the partition function (5.70) may

allow this conclusion to be extended to the whole class of multi-state random

walks outlined in this Chapter.
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5.4 Summary of results

We set out a class of multi-state random walkers on a linear lattice in order to

find illustrative examples of distinct large deviation regimes occurring within a

single model, and in particular to gain insight into when and how singularities can

arise. As dynamical observables we considered the velocity and the time spent

at the origin, and gave in both cases a method for finding the dominant spectral

elements of the titled generator associated with the large deviation elements.

For velocity, we must solve the dominant eigenproblem of a matrix of dimension

equal to the number of internal states; for the occupation time, we must find the

dominant singularity in the complex plane of a Laplace-transformed dynamical

partition function. Both problems were solved exactly in the reference case of the

arw, and we then focussed on the asymmetric rtp (artp) which is interesting

because of the interplay between hopping asymmetry and tumbling asymmetry.

For velocity fluctuations in the artp, we gave an example of a parameter value

where the typical velocity is zero, thanks to a balancing of asymmetries in hopping

an tumbling, but where the overall time-scale of tumbles can be independently

varied. When this time-scale diverges, a flat branch of the rate function emerges,

indicating that there is a range of velocity fluctuations that are all of comparable

probability at a given time scale (Figure 5.3b). From the effective process rate

Figure 5.4 we see that trajectories differ qualitatively between regimes, although

the transitions only become sharp as the tumbling time-scale diverges.

We encountered another interesting tuning of parameters in the artp that

corresponds to the macroscopic eigenvalue crossing of the process’ generator,

encountered first in Section 2.3 in case of symmetric rates. We were able

to understand the origin of this phenomenon, by extending the model to

the N -arw, an (N + 1)-internal-state walker. It could be described as a

‘probabilistic quasiparticle’ whose velocity statistics coincides with that of N + 1

non-interacting, slightly offset arws. It transpired that the velocity rate function

was independent of N , i.e. identical to the arw. However, N controls the degree

of persistence in the walk, so that across all values of N , the trajectories that

generate the same velocity with the same probability at the exponential scale,

are different. This admittedly contrived, but intriguing, example shows that

there may be interesting large deviation phenomena that are invisible in the rate

function, but appear in the effective process.
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We also investigated for the artp the existence of the dynamical phase transition

in occupation time reported previously for biased diffusion. Here, across the range

of parameters examined we found the dpt to emerge precisely when the typical

velocity was non-zero. As in the case of biased diffusion (or the arw that we

solved exactly), there is a linear branch of the rate function, corresponding to

non-Markovian behaviour where trajectories stay localized around the origin for

a period of time, and then follow their intrinsic bias of escaping to infinity. In the

convex branch, the particle remains localized around the origin, but the artp has

a peculiarity, in comparison to the arw, that it can make an effective modification

to the rates, to make one internal state close to inactive at the origin, in order to

keep the particle there for long periods of time.
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Appendices for Chapter 5

5.A Marginalization of the N-ARW

In the N -arw with rates according to Figure 5.6, let us calculate conditional

probabilities such as P (+ | +), that the next step of the walker is to the right,

given that the previous was, and that we start from level 0.

Let πτ (+ | +) (resp. πτ (+ | −)) be the probability that starting from level 0 (level

N), after τ level transitions without translations the walker ends again in level

0 (level N). Furthermore denote by P↑ (P↓) the probability that the next state

transition (whether level or site) is up (down), and by P→ (P←) the probability

that the next transition is a right (left) hop if such a hop is possible:

P↑ =
1

1 + γ
, P↓ =

γ

1 + γ
, (5.102a)

P→ =
1

1 + γ
, P← =

γ

1 + γ
. (5.102b)

Then we can write

P (+ | +) =
P→
∑∞

τ=0 πτ (+ | +)

P→
∑∞

τ=0 πτ (+ | +) + P←
∑∞

τ=0 πτ (− | +)
(5.103)

=
1

1 + γQ
. (5.104)

Here we define

Q :=

∑∞
τ=0 πτ (− | +)∑∞
τ=0 πτ (+ | +)

. (5.105)

We also have

P (− | +) = 1− P (+ | +) =
1

1 + (γQ)−1
. (5.106)
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Similar to (5.103) we have

P (+ | −) =
P→
∑∞

τ=0 πτ (+ | −)

P→
∑∞

τ=0 πτ (+ | −) + P←
∑∞

τ=0 πτ (− | −)
, (5.107)

which we now seek to express using Q.

Let cτ (+ | +) etc. be the number of possible paths starting and ending at level 0

in τ steps without making lateral transitions. Then

πτ (+ | +) = cτ (+ | +)P
τ/2
↓ P

τ/2
↑ = cτ (+ | +)(z∗)τ , (5.108)

with

z∗ :=
√
P↓P↑ =

√
γ

1 + γ
. (5.109)

In (5.108) we have used the fact that in order to start at level 0 and return to it,

an equal number of up and down transitions must be made. Next we have

πτ (− | +) = cτ (− | +)PN
↓ P

τ−N
2

↑ P
τ−N

2
↓ (5.110)

=

(
P↓
P↑

)N/2
cτ (− | +)(z∗)τ , (5.111)

from the fact that there must be N more down transitions than up transitions

on the whole. Similarly,

πτ (+ | −) = cτ (+ | −)PN
↑ P

τ−N
2

↓ P
τ−N

2
↑ (5.112a)

=

(
P↑
P↓

)N/2
cτ (+ | −)(z∗)τ (5.112b)

=

(
P↑
P↓

)N
πτ (− | +), (5.112c)

where we used the obvious symmetry cτ (+ | −) = cτ (− | +). The other symmetry

cτ (− | −) = cτ (+ | +) gives us

πτ (− | −) = πτ (+ | +). (5.113)
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Using (5.113) and (5.112) we can express (5.107) as

P (+ | −) =
1

1 + P→
P←

(
P↓
P↑

)N ∑∞
τ=0 πτ (+|+)∑∞
τ=0 πτ (−|+)

(5.114)

=
1

1 + γN+1Q−1
. (5.115)

Then

P (− | −) =
1

1 + γ−(N+1)Q
. (5.116)

We now calculate Q explicitly. Let cτ (n) be the number of paths on the levels of

one lateral site that start at level 0, c0(n) = δn,0, and end in level n.





cτ+1(n) = cτ (n+ 1) + cτ (n− 1), 0 < n < N , (5.117a)

cτ+1(0) = cτ (1), (5.117b)

cτ+1(N) = cτ (N − 1). (5.117c)

We introduce the discrete Laplace transform

G(z, n) :=
∞∑

τ=0

cτ (n)zτ , (5.118)

which then satisfies





z−1G(z, n) = G(z, n+ 1) +G(z, n− 1), 0 < n < N , (5.119a)

z−1G(z, 0)− 1 = G(z, 1), (5.119b)

z−1G(z,N) = G(z,N − 1). (5.119c)

The equations are solved by the ansatz

G(z, n) = A(z)µ(z)n +B(z)µ(z)−n (5.120)

which yields

G(z, n) =
µ−(N+1−n) − µN+1−n

µ−(N+2) − µN+2
(5.121)

with

µ(z) =
1

2z
[1−
√

1− 4z2]. (5.122)
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From (5.108) and (5.110) it follows that

∞∑

τ=0

πτ (+ | +) = G(z∗, 0), (5.123)

∞∑

τ=0

πτ (− | +) = γN/2G(z∗, N). (5.124)

Using µ(z∗) =
√
γ we have

Q = γN
G(z∗, N)

G(z∗, 0)
=

1− γ
γ−N − γ . (5.125)

This can suggestively be written as

Q =
γN

1 + γ + γ2 + . . .+ γN
= P ∗N , (5.126)

the stationary probability of the Nth level.
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Chapter 6

Dynamical large deviations in the

presence of boundaries

6.1 Background

Diffusion processes with boundaries are used in many application in biophysics

[38], e.g. the reflective boundary conditions in single-file diffusion describing

transport in narrow channels (Section 3.1.1), or partially reflecting or absorbing

boundaries for nutrients diffusing within cells, or chemical signalling molecules

between bacteria [189]. It is therefore of interest to adapt the dynamical

large deviation formalism for diffusions with boundaries, so that fluctuations in

observables such as time spent in the vicinity of a boundary, or the particle

current in constrained geometries, can be studied. It is also of theoretical interest

to understand if the presence of a certain boundary type comes with any general

implications for the fluctuation characteristics of a given class of observable.

In this chapter we will be primarily concerned with the large deviations of

current-like observables for diffusions with reflective boundaries. Large deviation

problems for reflected diffusions have been studied before either in the low-noise

limit [190–193] or in the long-time limit but for occupation-type observables

[51, 194–201]. We shall derive the boundary conditions that must be imposed

on the Donsker-Varadhan spectral problem associated with the large deviation

elements of a current-like observable. As we shall see, these are different from

the boundary conditions recently found for occupation-like observables [51], and
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must be derived in a new way.

With the novel result of how to calculate current large deviations in reflected

diffusions, we will be able to study the particle-current fluctuations in the

heterogeneous sfd of Chapter 3, which turns out to be exactly solvable. First,

however, we review in some detail the mathematics and physical meaning of

reflective boundaries.

6.1.1 Introducing boundaries

We consider a diffusion X(t) in a domain Ω ⊂ Rd which has a boundary ∂Ω that

is smooth, or is a countable union of smooth boundary pieces. In the interior of

the domain, the process behaves just like an unbounded diffusion, and is there

described by the usual sde (1.90),

dX(t) = F (X(t)) dt+ B dW(t). (6.1)

Here and in the following, we let the noise matrix be constant, in order to simplify

the exposition, but this is not a fundamental limitation of the methods used or

results obtained. The backward and forward generators L and L† are as given

for unbounded diffusions in Section 1.3.3, namely

L = F · ∇+∇ · D∇, L† = −F · ∇+∇ · D∇, (6.2)

but must now be supplemented with boundary conditions on the domain of

functions φ and ρ on which they act, in order to account for the boundary

behaviour of the process. We recall from Section 1.3.3 that ρ should be interpreted

as a possible probability density of the process, and φ as some scalar function

of the process. In particular, because L generates the backward Fokker-Planck

equation, φ(x) may be a density value (for some state at some time) but with x

referring to the initial state of the distribution.

In the presence of a boundary, the duality relation (1.97) is now defined with an

inner product integrating over Ω rather than over all of Rd:

〈
L†ρ, φ

〉
= 〈ρ,Lφ〉 , 〈ρ, φ〉 =

∫

Ω

dx ρ(x)φ(x). (6.3)

As we apply integration by parts to transition from
〈
L†ρ, φ

〉
to 〈ρ,Lφ〉, we
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produce boundary terms that must vanish for the duality to hold, i.e. for the

generators to be consistently defined in the entire domain Ω: such a prescription

constitutes a boundary condition.

Let us perform the calculation explicitly. In higher dimensions, the integration-

by-parts scheme follows from a rewriting of the divergence theorem, that for u a

scalar field and v a vector field

∫

Ω

dxu(x)∇ · v(x) = −
∫

∂Ω

dxu(x)v(x) · n̂(x)−
∫

Ω

dxv(x) · ∇u(x), (6.4)

where n̂(x) is the inward normal vector at point x ∈ ∂Ω. We recall the notation

(4.89) for the probability current,

Jρ,F (x) = F (x)ρ(x)− D(x)∇ρ(x), (6.5)

and that

L†ρ = −∇ · JF ,ρ. (6.6)

The left-hand side of the duality is then

〈
L†ρ, φ

〉
=

∫

Ω

dx (−∇ · JF ,ρ(x))φ(x) (6.7a)

=

∫

Ω

dxJF ,ρ(x) · ∇φ(x) +

∫

∂Ω

dx {JF ,ρ(x) · n̂(x)}φ(x). (6.7b)

We continue with the volume integral:

∫

Ω

dxJF ,ρ(x) · ∇φ(x) =

∫

Ω

dx {F (x)ρ(x) · ∇φ(x)− D∇ρ(x) · ∇φ(x)}

(6.8a)

=

∫

Ω

dx {F (x)ρ(x) · ∇φ(x)−∇ρ(x) · D∇φ(x)} (6.8b)

= 〈ρ,Lφ〉+

∫

∂Ω

dx ρ(x)(n̂(x) · D∇φ(x)), (6.8c)

where we have used the fact that D is a symmetric matrix to write D∇ρ · ∇φ =

∇ρ · D∇ρ, and we can recognize the definition of L after applying again (6.4) to
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the second term in (6.8b). Putting the pieces together then,

〈
L†ρ, φ

〉
= 〈ρ,Lφ〉+

∫

∂Ω

dxφ(x) {JF ,ρ(x) · n̂(x)}

+

∫

∂Ω

dx ρ(x) {D∇φ(x) · n̂(x)}

(6.9a)

= 〈ρ,Lφ〉+

∫

∂Ω

dxJF ,ρφ(x) · n̂(x). (6.9b)

Here, the boundary terms must vanish for any φ and ρ in the domain of the

respective operators: this translates to separate boundary conditions on ρ and φ

that restrict the domain of the operators L† and L compared to the case without

a boundary.

Consider first the special case of φ ≡ 1. The vanishing of the boundary term in

(6.9b) then expresses the conservation of total probability:

∫

∂Ω

dxJF ,ρ · n̂ =

∫

Ω

dx∇ · JF ,ρ = ∂t

∫

Ω

dx ρ = 0. (6.10)

We will in this chapter primarily be concerned with reflective boundary condi-

tions, in which probability conservation, and indeed the vanishing of the first

boundary term in (6.9a) for any φ, is guaranteed via

JF ,ρ(x) · n̂(x) = 0 for all x ∈ ∂Ω. (6.11)

For the second boundary term, reflective boundary conditions amount to

D∇φ(x) · n̂(x) = 0 for all x ∈ ∂Ω. (6.12)

Unlike the current, ∇φ does not vanish in the direction normal to the surface, but

in the so-called co-normal direction Dn̂ [38, 202], as we can see by using D = D>

to write (6.12) as ∇φ · Dn̂ = 0.

As another example of boundary conditions inferred from duality, consider

absorption. By definition, densities should vanish on the boundary, ρ = 0 on

∂Ω, which then kills the second boundary term in (6.9a). This forces the choice

φ = 0 on ∂Ω to kill the first, which reflects the fact that the actual process

density ρ(x′, t′ | x, t) = 0 if we start from x ∈ ∂Ω. For partial absorption–partial

reflection we have on the boundary ∇ρ · n̂ = αρ, which implies D∇φ · n̂ = −αφ.

Note that the two boundary integrals do not vanish separately in this case.
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X1

X2
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x′

x′
1 −x′

1

x′′

γ̂

︸ ︷︷ ︸
O(

√
∆t)

n̂

Figure 6.1 Reflection rule at the boundary to complement the Euler scheme
in the bulk. The normal component is mirrored and the particle
emerges from the wall in the deterministic direction γ̂. The wall
can with non-negligible probability be reached in one step in one step

from a boundary layer of width O
(√

∆t
)

.

We will in this chapter primarily be concerned with reflective boundary condi-

tions. Let us therefore think about the subtle issue of what reflected trajectories

look like.

6.1.2 Reflected trajectories

How are reflected Brownian trajectories constructed? Since for Brownian

trajectories there is no spatial scale on which their variation is sufficiently smooth

that an instantaneous velocity is well defined, neither can one define an angle of

incidence for the boundary intersection. ‘Reflection’ for a diffusive particle must

therefore mean something different than for a ballistic particle. It is instructive

to think about how one would simulate a reflected diffusion based on the Euler

scheme (1.89),

X(t+ ∆t) = X(t) + F (X(t), t)∆t+ B∆W(t). (6.13)

There will be layer of width O
(√

∆t
)

close to the boundary in which the next

increment of the process is likely to put it through the boundary, and outside of

its intended domain. We must then devise a boundary rule to put the process

back into its domain. Such a prescription is illustrated in Figure 6.1 for a two-

dimensional process [38]. If the naive increment takes us from x ∈ Ω to x′ /∈ Ω,
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we reflect the component normal to the boundary about the boundary, from x′1

to −x′1 in the figure. We must decide what happens to the components parallel to

the boundary surface. In general, we can let the wall push the intruding particle

out in a direction γ̂, placing it at x′′ with x′′1 = −x′1. The direction γ̂ should be

a property of the wall—i.e. part of the model definition—rather than dependent

on the transgressing increment itself, as otherwise the reflection depends on an

incidence angle that is undefined in the limit infinite steps per time. γ̂ may vary

along with the boundary, though, as long as it can be considered constant within

the reach of a single process increment. It is proved by Schuss [38, Thm 2.6.1,

p. 61] that as ∆t → 0, the Euler scheme with the described reflection rule is

equivalent to the fpe with reflective boundary condition (6.11) if and only if

γ̂ =
Dn̂

|Dn̂| , (6.14)

which is referred to as the co-normal direction, in contrast to the normal

direction γ̂ = n̂. When diffusion is isotropic, the normal and co-normal directions

coincide, but when there is spatial bias in diffusion, the co-normal reflection rule

is the necessary choice to ensure the bias carries over to the infinitesimally small

boundary layer close to ∂Ω.

The limit of this Euler scheme can then be interpreted as a Skorokhod sde,

written

dX(t) = F (X(t))dt+ B dW(t) + γ̂(X(t)) dL(t), (6.15)

where the local time L(t) is defined as the time spent in the small boundary

layer, scaled by its size [203]:

L(t) = lim
ε→0

1

ε

∫ t

0

dt′ 1[|X(t′)− ∂Ω| < ε].

The local time term can be thought of as a deterministic O
(√

dt
)

push in the

direction γ̂ effected whenever the particle touches the boundary, compensating

the Wiener increment which may otherwise push the process across the boundary.
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6.2 Dynamical large deviation theory for reflected

diffusions

Let us now consider for reflected diffusions, the large deviation elements

associated with a dynamic observable AT as given by (4.90) with weights f and

g. Just as in the case without boundaries, we must solve the dominant eigenvalue

problems for the k-tilted generators L̃k, and L̃†k, which we recall were given by

L̃k = F · (∇+ kg) + (∇+ kg) · D(∇+ kg) + kf, (6.16)

L̃†k = −(∇− kg) · F + (∇− kg) · D(∇− kg) + kf, (6.17)

but now with boundary conditions for the eigenfunctions rk and `k on ∂Ω in some

way determined by the reflective boundary of the original process. Clearly, these

boundary conditions must be consistent with (6.11) and (6.12) for k = 0. In

addition to this constraint, the duality relation should also hold for all k.

Is the satisfaction of duality for the tilted generators enough to infer their

boundary conditions, by making sure that the boundary terms resulting from

integration by parts vanish? In the next section we see that while this strategy

works for occupation-like observables, as shown in [51], it does not work for

current-like observables [5]. For the latter type we then derive the appropriate

tilted boundary condition by applying the diffusive limit to a tilted jump process.

6.2.1 Tilted boundary conditions: argument from duality

We repeat the integration-by-parts protocol of Section 6.1.1 for the tilted

generators, a calculation which differs only by the need to keep track of a few

extra k-dependent terms. The final result is analogous to (6.9):

〈
L̃†kρ̃k, φ̃k

〉
=
〈
ρ̃k, L̃kφ̃k

〉
+

∫

∂Ω

dxJ F̃ k,φ̃kρ̃k(x) · n̂(x), (6.18)

where ρ̃k and φ̃k are any functions in the respective domains of L̃†k and L̃k, and

where we have defined

F̃ k := F + 2D(kg +∇ ln ρ̃k). (6.19)
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If we substitute for ρ̃k and φ̃k the dominant eigenvectors `k and rk, then identifying

the effective density from (4.99) as ρ̂∗k = `krk, and the effective force (4.98)

as F̂ k = F̃ k|ρ̃k=rk , the vanishing of the boundary term in (6.18) expresses the

conservation of probability of the effective process:

∫

∂Ω

dxJ F̂ k,ρ̂∗k
(x) · n̂(x) = 0. (6.20)

It is reasonable to suppose that if the original process has reflective boundaries,

then so does the effective process. After all, all possible trajectories of the original

process are reflected by the same rule, which can be thought of as a deterministic

push, as explained in Section 6.1.2. Since every possible trajectory of the effective

process is a possible trajectory of the original process, they too must follow

the same reflection rule on trajectories, which implies the reflective boundary

condition

JF k,`krk(x) · n̂(x) = 0 for all x ∈ ∂Ω (6.21)

for the dominant eigenvectors in particular, but which also extends to all functions

in the respective domains of the tilted generators.

We now attempt to infer from (6.21) separate boundary conditions for `k and rk.

We can write, for arbitrary constant c,

JF k,`krk = (F + 2kDg)`krk + D`k∇rk − Drk∇`k (6.22a)

= [F + 2(1− c)kDg]`k − D∇`k] rk + `k [2ckDgrk + D∇rk] .
(6.22b)

This identity can be separated into the boundary conditions

{[F (x) + 2(1− c)kDg(x)]`k(x)− D∇`k(x)} · n̂(x) = 0, (6.23a)

{2ckDgrk + D∇rk} · n̂(x) = 0, (6.23b)

for x ∈ ∂Ω and any c. The ambiguity of the undetermined constant c in these

conditions arises from the fact that any boundary term in the duality relation

that is proportional to `krk, and that vanishes as k → 0, can be split arbitrarily

between the `k and rk conditions. We see that if the observable on which we

condition the process is only of the occupation-like form, i.e. g ≡ 0, then there

is no ambiguity in the boundary conditions. For general or purely current-like

dynamical observables, an argument beyond duality is necessary to establish the
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Figure 6.2 Bulk (a) and boundary (b) configurations of the planar random walk.
(c) Illustration of a smooth boundary appearing in the diffusive limit.

correct tilted boundary conditions.

In the next section we use the diffusive limit applied to a conditioned lattice

random walk to derive that the correct value of c is 1/2. The limit operates

similarly to how we derived the reflective boundary conditions for sfds in

Section 3.1.2. In the article [5] an alternative derivation of the tilted boundary

conditions due to Johan du Buisson is also given based on the local-time formalism

(6.15) and the Feynman-Kac approach (seen in Section 4.3).

6.2.2 Tilted boundary conditions: derivation from the

diffusive limit

A strategy to derive the correct boundary conditions on `k and rk when

conditioning a reflected diffusion on a current-like observable VT is to consider a

jump process N(t), whose diffusive limit is X(t), conditioned on a lattice-current-

like observable AT , whose diffusive limit is VT . Then we can apply the diffusive

limit to the spectral elements associated with the conditioning problem on the

lattice to find bulk and boundary equations for `k and rk.

As in Section 1.3.1, we consider a planar random walk, but with a boundary

that tends to some (piecewise) smooth shape ∂Ω in the diffusive limit. It will be

sufficient to consider the boundary only at a position where locally it is planar

with, say, N1 = 0; see Figure 6.2. In this setup the non-zero transitions rates are

given by

W (n+ êi,n) = pi(n), n+ êi ∈ L , (6.24a)

W (n− êi,n) = qi(n), n− êi ∈ L , (6.24b)
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where L is the set of lattices sites and êi is the single-site translation vector for

axis i. If we scale the hopping rates with vanishing lattice constant a as,

pi(n) =
B2
i

2a2
+
Fi(x)

2a
+O (1) , (6.25a)

qi(n) =
B2
i

2a2
− Fi(x)

2a
+O (1) , (6.25b)

we obtain the reflection diffusion with drift F and noise matrix B = diag{B1, . . . , Bd}.

Given this diffusive limit setup for the process itself, we next consider how to

map the current-like observable from lattice to continuum.

Diffusive limit of the observable

As per (4.50b) a flow-like observable for a jump process is constructed as

AT =
∑

n,n′∈L

α(n′,n)CT (n′,n), (6.26)

with CT the empirical flow. We choose an antisymmetric α,

α(n′,n) = −α(n,n′) (6.27)

and can then write (6.26) as

AT =
∑

n

∑

i

α(n+ êi,n)JT (n+ êi,n) (6.28)

with JT (n′,n) the empirical lattice current,

JT (n′,n) = CT (n′,n)− CT (n,n′). (6.29)

We must show how, in the diffusive limit, the lattice empirical current maps to

the continuum counterpart (4.86), and how to relate α to the weight function g

in (4.90b).

The lattice empirical current over the n→ n+ êi bond is

JT (n+ êi,n) =
1

T

∑

t

[
δN(t−),nδN(t+),n+êi − δN(t−),n+êiδN(t+),n

]
(6.30a)
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=
1

T

∑

t

[
δN(t−),nδN(t+),n+êi + δN(t−),n+êiδN(t+),n

]

× (Ni(t
+)−Ni(t

−)),

(6.30b)

where the second line follows because Ni(t
+) and Ni(t

−) differ by precisely one

step. We now discretize time into points tj narrowly separated by intervals ∆t(a),

such that the jump process makes at most one jump in each interval for any value

of the site separation a. For any such trajectory, the following is an exact identity:

δN(tj),nδN(tj+∆t),n+êi + δN(tj),n+êiδN(tj+∆t),n = δN(tj)+N(tj+∆t)

2
,n+ 1

2
êi
. (6.31)

In the diffusive limit we replace N(t) = X(t)/a, δn,n′ = δ(x/a−x′/a), and thus

JT (n+ êi,n) =
1

T

∑

j

δN(tj)+N(tj+∆t)

2
,n+ 1

2
êi

(Ni(tj + ∆t)−Ni(tj)) (6.32a)

=
1

T

∑

j

δ

(
X(tj + ∆t) + X(tj)

2
− x
)

(Xi(tj + ∆t)−Xi(tj))

(6.32b)

a→0
= êi · JT (x), (6.32c)

where JT (x) was defined in (4.86).

Next, using the fact that α is antisymmetric, we can express it as

α(n± êi,n)/ad = G(x± aêi)−G(x) (6.33a)

= ±agi(x) +
a2

2
∂xigi(x) +O

(
a3
)
, (6.33b)

where G is a smooth function independent of a chosen such that ∂xiG = gi, with

g being the weight in the target continuum observable. (If g cannot be integrated

we instead postulate the expansion (6.33b).)

Putting the results together,

AT/a =
∑

n

∑

i

α(n+ êi,n)J(n+ êi,n)/a (6.34a)

=

∫
dx

ad

∑

i

ad+1gi(x)êi · JT (x)/a+O (a) (6.34b)

a→0
= VT . (6.34c)
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We now condition N(t) on AT and apply the diffusive limit to the associated

spectral elements of the tilted generators.

Diffusive limit of the spectral elements

Following (4.66), the (backward) s-tilted generator L̃s = W̃>s with respect to AT
is given by

L̃s(n′,n) = W (n | n′)esα(n|n′) − δn,n′
∑

n′′

W (n′′ | n), (6.35)

with the non-zero transitions rates (6.24).

Motivated by dimensional consideration, we posit that the diffusive scaling of the

spectral elements is

s = adk, (6.36a)

Λs = λk +O(a), (6.36b)

Ls(n) = ad`k(x) +O
(
ad+1

)
, (6.36c)

Rs(n) = adrk(x) +O
(
ad+1

)
. (6.36d)

To begin, we consider the limit of the right eigenvalue equation,

ΛsRs(n) =
∑

n′

L̃s(n,n′)Rs(n
′). (6.37)

For n away from the boundary sites,

ΛsRs(n) =
∑

i

[
pi(n)es α(n+êi|n)Rs(n+ êi) + qi(n)es α(n−êi|n)Rs(n− êi)

− (pi + qi)(n)Rs(n)
]
.

(6.38)
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Up to relevant orders in a, and suppressing the function arguments x and n,

λkrk =
∑

i

[
pi

(
1 + kagi +

1

2
ka2∂xigi + k2a2g2

i

)(
rk + a∂xirk +

1

2
∂2
xi
rk

)

+ qi

(
1− kagi +

1

2
k2a2∂xigi + k2a2g2

i

)(
rk − a∂xirk +

1

2
∂2
xi
rk

)

− (pi + qi)rk

]

(6.39a)

=
∑

i=

[
a(pi − qi) (∂xirk + kgirk) +

a2

2
(pi + qi)×

(
∂2
xi
rk + rk∂xigi + 2kgi∂xirk + k2g2

i rk
) ]

(6.39b)

=
∑

i

{
Fi(∂xi + kgi)rk + (∂xi + kgi)

σ2
i

2
(∂xi + kgi)rk

}
(6.39c)

= L̃krk, (6.39d)

with L̃k as in (4.94). This recovers the spectral equation for rk in the bulk.

Now let us take n to be a boundary site as in Figure 6.2b. Then

ΛsRs(n) = q1(n)es α(n−ê1|n)Rs(n− ê1)− q1(n)Rs(n)

+
∑

i>1

[
pi(n)es α(n+êi|n)Rs(n+ êi) + qi(n)es α(n−êi|n)Rs(n− êi)

− (pi + qi)(n)Rs(n)
]
.

(6.40)

Thus, including all relevant orders,

λ(k)rk = q1 (1− kag1) (rk − a∂x1rk)− q1rk +O (1) , (6.41)

where we have used (6.39) to neglect the sum on the i > 1 terms. In fact, the

right-hand side of (6.41) is O (1/a). Substituting qi with (6.25b), multiplying

both sides by a, and taking a→ 0, we then arrive at

0 =
1

2
B2

1 (∂x1rk + g1rk) , (6.42)

which generalizes, including all other components, to

D(∇+ kg)rk · n̂ = 0. (6.43)
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Thus we have shown that in (6.23) we must put c = 1/2.

Now that the boundary condition on rk has been established, the boundary

condition for `k follows uniquely from duality. One may also verify that this

boundary condition follows from the diffusive limit of the left eigenvalue equation,

in a calculation analogous to that of rk. Furthermore, the duality relation (6.18)

is the result of applying the diffusive limit to the trivial identity

∑

n,n′

Ls(n)Ls(n,n′)Rs(n
′) =

∑

n,n′

Rs(n)L>s (n,n′)Ls(n
′). (6.44)

6.2.3 General consequences of the tilted boundary conditions

By the preceding proof, the tilted boundary conditions are

{F (x)`k(x)− D(∇− kg)`k(x)} · n̂(x) = 0, (6.45a)

D(∇+ kg(x))rk(x) · n̂(x) = 0. (6.45b)

Since these boundary conditions correspond to (6.23) with c = 1/2, we can follow

the steps leading to (6.23) in reverse order to conclude that the effective process

indeed possesses a reflective boundary. It is striking that the boundary conditions

are ‘tilted’ in the same manner as the tilted generator itself by letting∇ → ∇+kg

for rk and −∇ → −∇ + kg for `k. Furthermore (6.45b) implies that, on the

boundary, the normal component of the effective drift coincides with the original

drift:

F̂ k(x) · n̂(x) = F (x) · n̂(x) for all x ∈ ∂Ω. (6.46)

This situation has been shown for density-like observables [51], and we have

now shown that it extends to any dynamical observable for a reflected diffusion.

This is not a result with an obvious physical explanation. One proposal for its

explanation is that because the effective drift arises due to conspiring diffusive

noise, and that infinitesimally close to the boundary in its normal direction the

diffusion is dominated by the deterministic reflection rule, this precludes the noise

from biasing the drift there.

Finally, we remark that in the special case of an observable satisfying

Dg(x) · n̂(x) = 0 for all x ∈ ∂Ω, (6.47)
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the tilted boundary conditions (6.45) take the same form as the original ones, i.e.,

(6.11) and (6.12), and are independent of c. The condition (6.47) is a necessary

condition for the tilted generators to be symmetrizable, as was discussed in [51].

6.3 Collective current fluctuations in the

heterogeneous single-file diffusion

With the results of the previous section, we are now equipped to study the current

fluctuations in the heterogeneous single-file diffusion model of Section 3.2. We

first consider some related studies of current fluctuations.

6.3.1 Current fluctuations in the ASEP

A large number of studies over two decades have investigated current fluctuations

in the asep/ssep/tasep, for both the open and periodic boundary cases, as

comprehensively reviewed by Lazarescu [204]. Typically, one seeks an exact

representation of the cumulant generating function at long times (or of the scgf).

This can be obtained exactly using coordinate Bethe-ansatz in the periodic case,

or extensions of matrix product methods for open boundaries. Complementing

exact results (which may be non-transparent) are limit results such as coarse-

graining to a fluctuating hydrodynamic description [205–207], or the restriction

to asymptotically large or small currents in finite-size systems [52, 208].

A study by Popkov et al [52] is of particular interest to us as it employed

the effective process construction to study current fluctuations in the L-site, N -

particle asep. In the limit of conditioning of asymptotically large currents, the

effective potential (4.60) could be derived as

V (n1, . . . , nN) = −
∑

i 6=j

log |sin(π(ni − nj)/L)| , (6.48)

which represents a pairwise repulsion. Intuitively, this repulsive effect decreases

the probability that particles get trapped in clusters, and thus contributes to

increasing the current. It should be noted that this effect is in addition to the

large boost in the base hopping rate by the factor es, which may in practice be

the dominant effect of conditioning [3]. We are interested to see if the effective
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repulsion also appears in the continuum model, and how particle heterogeneity

affects the outcome.

6.3.2 Exact current large deviations for the heterogeneous

SFD

Recall from Chapter 3 that the heterogeneous single-file diffusion, whose proba-

bility density evolves by the set of equations (3.27), could be conceived of as an

N -dimensional diffusion X(t) in a domain Ω ⊂ Rd such that its boundary, which is

reflective, is the union of no-crossing hyperplanes: ∂Ω = ∪i 6=j{x ∈ Rd : xi = xj}.

We consider the empirical velocity of particle i, i.e. the current in direction i, given

by the ith component of the empirical current JT integrated over Ω. However,

since all particles must have the same net velocity for long averaging periods, all

observables of the form (4.90b) with g a constant vector whose components sum

to one (1 · g = 1) should have the same large deviations. To validate this claim,

we keep g arbitrary apart from these constraints, and thus consider the current

observable

VT = g ·
∫

Ω

dxJT (x) . (6.49)

To find the dominant eigenvalue λk and eigenvector rk related to this observable,

we consider as an ansatz

rk(x) ∝ exp[a · x], (6.50)

with a to be determined. This ansatz is motivated by the fact that the dominant

eigenvalue 0 for L† and L corresponds to eigenfunctions with an exponential form:

the steady-state density (3.28) for the former, and trivially e0 for the latter.

The normal to each no-crossing hypersurface is n̂ = (1/
√

2)(êi− êj), which gives

us 1 · n̂(x) = 0 for all x ∈ ∂Ω, with 1 the only vector with this property (related

to the discussion on the inverse fpe method of Section 3.3.2). From the boundary

condition (6.45b), we therefore find

D(a+ kg) = α1 (6.51)
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for some constant α. Hence

a = αD−11− kg. (6.52)

The periodicity (3.27c) requires a · 1 = 0, so that

α =
k1 · g

1>D−11
= kD, (6.53)

where we have used the property 1 · g = 1 and (3.34) for D. Applying Lk to rk,

one then finds that rk is an eigenfunction with eigenvalue

λ(k) = D
−1
α(α + v̄) = kv̄ + k2D. (6.54)

By lf transform, we then obtain the rate function

I(v) =
(v − v̄)2

4D
, (6.55)

which shows that the fluctuations of the current are Gaussian around the

stationary velocity v̄.

The same eigenvalue (6.54) is obtained by assuming for the left eigenfunction

`k ∝ exp[b · x], (6.56)

for which we find, in a calculation analogous to the one for rk,

b = D−1(v + β1) + kg, (6.57)

with

β = −1>D−1v + k1 · g
1>D−11

= −v̄ − kD. (6.58)

Noting that a+ b = k we then find that the density of the effective process is

ρ̂∗k(x) = `k(x)rk(x) ∝ ek·x, (6.59)

that is, it is identical to density of original process for any bias k,

ρ̂∗k(x) = ρ∗(x). (6.60)
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The effective drift (4.98) works out to

F̂ k = v + kD1. (6.61)

Thus when we substitute the saddle-point value k(v) = I ′(v) = (v − v̄)/(2D),

F̂ k(v) = v + (v − v̄)1. (6.62)

For the particle system to generate an atypical fluctuation of the collective

current, each particle generates a fluctuation of equal absolute increase in intrinsic

velocity, equal to ∆v = v − v̄ as depicted in Figure 6.3.

In contrast to the current fluctuations in the asep [3, 52], there is no effective

repulsion between the particles. We would conclude then that this repulsion is

a lattice effect that does not survive the diffusive limit. To understand why,

we note that jammed configurations form a finite fraction of all possible system

configuration in the asep, whereas on the continuum, jammed configurations

constitute a boundary layer of measure zero relative to the bulk. Therefore, a

bias against clustering may not be relevant on the continuum.

It is interesting that the current large deviations of this heterogeneous many-

body system are identical to that of a single particle on the ring with parameters

v̄ and D̄. We are reminded of Section 5.2.3, where we also found an example of

non-trivially different processes sharing the identical current (i.e. velocity) rate

function, which we referred to as large deviation equivalence. This single particle

is expected to represent the ‘centre of mass’ of the many-body system, which has

to be interpreted with some care given that the particles live on a periodic ring.

Finally, we note that the probability current in the effective process is

J F̂ k,ρ̂∗k
(x) =

v

v̄
JF ,ρ∗(x). (6.63)

These results are consistent with the fact that the rate function saturates a

universal quadratic bound on current fluctuations (an ‘uncertainty relation’) [36],

and are also expected given that the heterogeneous single-file diffusion on a ring,

while not satisfying detailed balance directly, does so with respect to a reference

frame moving with the collective velocity v̄. As a result, the stationary density of

the effective process must be equal to the original invariant density, ρ̂∗k(x) = ρ∗(x)

[147]. Strictly speaking, however, these general results have not been established

for reflected diffusions yet.
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Figure 6.3 The effective processes representing heterogeneous sfd conditioned
on an atypical current v, modifies each particles drift by ∆v = v− v̄,
where v̄ is the typical current around the ring.
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(a) Semi-permeable barrier on continuous
ring
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q
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(b) Semi-permeable barrier
on lattice ring

Figure 6.4 (a) Diffusion on a continuous ring with a semi-permeable barrier,
which partially reflects from the left (at x−B, dashed) and totally
reflects from the right (x+

B). The ring is treated as a line segment
with two boundaries. (b) A lattice model that yields the diffusion on
the ring with semi-permeable barrier in the diffusive limit.

In conclusion, the current fluctuations of the heterogeneous sfd are curiously

simple, and equivalent to those of a certain single ‘effective’ particle. To obtain

this result, we used for the time the formalism for current large deviations in

reflected diffusions derived in the previous section.

6.4 Beyond reflection

As we realized earlier, for reflected diffusions conditioned on a current-like

observable, the boundary conditions of the tilted operators L̃k and L̃†k are

obtained by replacing ∇ → ∇ + kg in the boundary conditions for L to obtain

those of L̃k, and ∇ → ∇− kg for L̃†k. We conjecture that this scheme will also

prove correct for conditioned diffusions with other types of boundaries. Let us

check this for partial reflection, for instance.

To keep the presentation simple, we consider a particle on a one-dimensional ring

of circumference C. At the coordinate xB there is a semi-permeable barrier: it
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is partially reflecting from x−B and totally reflecting from x+
B (see Figure 6.4a).

Effectively, the problem can be thought of as a one-dimensional line segment

[x+
B, x

−
B], x+

B = 0, x−B = C, with two boundaries connected such that the particle

exiting on the right is put back on the left; alternatively, we can think of an infinite

series of such connected segments. The reason for studying a semi-permeable

barrier is that we can consider partial reflection while maintaining probability

conservation, so we do not need to worry about the large deviations becoming

trivial in the long-time limit (i.e. no probability remaining in the domain of

interest).

We let the rate of passing through the barrier from the left be α. The boundary

conditions on the density are then

J(x−B) · (−n̂(x−B)) = αρ(x−B), (6.64a)

J(x+
B) · n̂(x+

B) = αρ(x−B), (6.64b)

where the boundary normals are n̂(x−B) = −1, n̂(x+
B) = +1. The first condition

tells us that the current J(x−B) · (−n̂(x−B)) through the barrier, x−B → x+
B, must be

equal to the rate of transmission times the probability accumulated on the left of

the barrier, αρ(x−B). Similarly, the second condition tells us that the current just

past the barrier must also equal αρ(x−B). To derive the boundary conditions on

the functions φ in the domain of L, we recall that they must make the boundary

terms in the duality relation (6.9) vanish:

0 = φ(x+
B){J(x+

B)n̂(x+
B)}+ φ(x−B){J(x−B)n̂(x−B)}

+ ρ(x+
B){D∂xφ(x+

B)n̂(x+
B)}+ ρ(x−B){D∂xφ(x−B)n̂(x−B)}

(6.65a)

= ρ(x+
B){D∂xφ(x+

B)n̂(x+
B)}

+ ρ(x−B){D∂xφ(x−B)n̂(x−B) + α(φ(x+
B)− φ(x−B))}.

(6.65b)

For this to hold independently of ρ (given (6.64)) we require

D∂xφ(x−B)n̂(x−B) = α(φ(x−B)− φ(x+
B)), (6.66a)

D∂xφ(x+
B)n̂(x+

B) = 0. (6.66b)

We therefore conjecture that the boundary conditions for the dominant eigenvec-

tors of the tilted generators are

(F`k −D(∂x`k − kg`k))(x−B) · n̂(x−B) = −α`k(x−B), (6.67a)
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(F`k −D(∂x`k − kg`k))(x+
B) · n̂(x+

B) = α`k(x
−
B). (6.67b)

and

D∂xrk(x
−
B)n̂(x−B) = α(rk(x

−
B)− rk(x+

B)), (6.68a)

D∂xrk(x
+
B)n̂(x+

B) = 0. (6.68b)

To prove that this is indeed the case, we employ the diffusive limit approach, just

as in Section 6.2.2. We start from the lattice process illustrated in Figure 6.4b.

In the notation of Section 6.2.2, we have, for example, that the equations for Rs

on either side of the barrier is

ΛsRs(n
−
B) =

[
Rs(n

−
B − 1)esα(n−B−1,n−B) −Rs(n

−
B)
]
q(n−B)

+
[
Rs(n

+
B)esα(nB+,n−B) −Rs(n

−
B)
]
h,

(6.69a)

ΛsRs(n
+
B) =

[
Rs(n

+
B + 1)esα(n+

B+1,n+
B) −Rs(n

+
B)
]
p(n+

B). (6.69b)

Performing the diffusive limit using the scaling relations (6.33b), (6.36), and

h = α/a+O (1), we do obtain precisely (6.68).

To give the simplest example of the above conditioning problem, let F ≡ 0 and

g ≡ 1, so that we are looking at the velocity fluctuations of an unbiased Brownian

particle across a semi-permeable barrier. To obtain the large deviation elements,

we must solve the boundary-value problem





λkrk(x) = D(∂x + k)2rk(x), 0 < x < C, (6.70a)

D(r′k(C) + krk(C)) = α(rk(0)− rk(C)), (6.70b)

D(r′k(0) + krk(0)) = 0. (6.70c)

The general solution to (6.70a) and (6.70c) for given λk is

rk(x) ∝ e−kx cosh

(
x

√
λk
D

)
. (6.71)

λk is then determined by substitution of this solution into (6.70b) to yield

C

√
λk
D

sinh

(
C

√
λk
D

)
+
Cα

D
cosh

(
C

√
λk
D

)
=
Cα

D
eCk. (6.72)

Let µk := C
√
|λk|/D. For k ≥ 0 we have λk ≥ 0. Consider then that the function
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f+(µ) := µ sinh(µ) + (Cα/D) cosh(µ) for µ ≥ 0 is monotonically increasing from

its minimum at µ = 0. It can only intersect g(k) := (Cα/D)eCk for k such that

f+(0) ≤ g(k), i.e. for k ≥ 0. It follows that for k < 0, λk must be negative. The

function f−(µ) := f+(iµ) = −µ sin(µ)+(Cα/D) cos(µ) for µ ≥ 0 is monotonically

decreasing from its maximum at f±(0) until it crosses the µ-axis for the first time

somewhere in the interval (0, π/2). It therefore intersects g(k) for k 6= 0. We

thus see that there is real solution λk from (6.72).

The effective drift is

F̂k(x) = 2
√
λkD tanh

(
x

√
λk
D

)
. (6.73)

At the left boundary in the line-segment description of the geometry (which we

emphasize is totally reflecting from the right), F̂ (0) = 0, consistent with our

general result that the effective drift is not modified at such a boundary. In

contrast, at the permeable right boundary, F̂k(C) 6= 0 for k 6= 0. For k > 0, i.e.

enhanced velocity, the effective drift is non-negative and increases from x = 0 to

C. This is physically plausible: once the particle comes close to the boundary it

should prefer to stay close to it to have a chance of passing through. For k < 0

and lower than typical velocity,(6.73) becomes

F̂k(x) = −2
√
|λk|D tan

(
x

√
|λk|
D

)
. (6.74)

The drift is pointing towards the left boundary, and increases in strength the

closer to the right boundary the particle moves. The effective process thus has

the qualitative behaviour one might guess from the physics of the problem.

Finally, we mention a completely different approach to modelling impenetrable

boundaries. Instead of imposing e.g. reflecting boundary conditions, one can

condition a process to stay forever within a specified region. The influence of the

boundary is then not abrupt, but it is expected to grow stronger the closer to it

the process reaches. Such processes have been studied by mathematicians under

the name of taboo processes, and are commonly used in financial fields but rarely

in statistical physics [209]. Dynamical large deviations in taboo processes could

potentially be studied from the level 2.5 perspective: we take a process in an

unbounded space, and contract the level 2.5 rate function down to the observable

of interest, with the additional constraint the density ρ should vanish outside the

bounded region.
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Indeed, even for reflective boundaries, contraction from level 2.5 to level 1 should

constitute another way to derive the tilted boundary conditions that are the

main result of this chapter. We hypothesise that it would be sufficient to restrict

the integration domain of the level 2.5 rate function (4.88) to Ω, and add the

additional hard constraint that the current satisfies j · n̂ = 0 on the boundary

∂Ω. We are then supposing rather than deriving that the effective process is also

reflecting, but since we now know this is true, this level 2.5 approach should yield

correct results. This is left for future investigation.

6.5 Summary of results

The main result of this chapter is the tilted boundary conditions (6.45) that

must be imposed on the spectral problem associated with the large deviations

of general dynamical observables (4.90), and in particular currents, of reflected

diffusions. We obtained this result by applying the diffusive limit to a spatial

discretization of the reflected diffusion as a jump process. A general consequence

of the tilted boundary conditions is that the effective process describing how the

large deviations arise is also a reflected diffusion, and at the boundary must have

the same drift normal to it as in the original process.

As an application of these novel results, we considered the large deviations of

the particle current in the heterogenous single-file diffusion. We found that the

long-time fluctuations of the net velocity around the ring for this many-body

system are identical to those of a single particle with the averaged drift (3.33)

and diffusivity (3.34) that featured in the steady state solution of the model.

In contrast to the homogeneous lattice version of the problem, i.e. the asep,

there are no effective repulsive forces between the particles as they achieve the

fluctuation; each particle modifies its drift to a different constant value to furnish

the specified common net velocity. This example is a rare instance of exactly

solvable large deviations in an interacting N -body system, and to my knowledge

the first solved case of current fluctuations of a reflected diffusion in the literature.

Based on the pattern of how the tilted boundary conditions and generators

relate to the original ones, we conjectured a scheme for inferring tilted boundary

conditions for other boundary types. This pattern was verified for partially

reflected diffusions, with the example of a one-dimensional unbiased diffusion

across a semi-permeable membrane. Here, we saw that the effective drift can be
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modified normal to the boundary, in contrast to at a totally reflecting boundary.

The formalism here developed is expected to be usefully applied to a variety

of physically relevant models. Of particular interest would to find an example

of a dynamical phase transition whose existence depends in an essential way

on the presence of the boundary. We also expect that the methods used to

derive (6.45)—the diffusive limit, and the local-time + Feynman-Kac approach

also presented in [5]—can be usefully employed in the future, and can be

complemented by a level 2.5 contraction approach, that we have left for future

investigation.
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Conclusions

In the beginning of this thesis I set out two themes relating to the long-time

statistics of nonequilibrium Markov process: the first, regarding the description

of a nonequilibrium steady state and the process of relaxation by which it

is attained; the second, the rare fluctuations in steady states observed over

long times, as quantified by dynamical large deviation theory. I have explored

these themes by seeking exact results mainly for two concrete models, both of

which can be seen as extensions of the paradigmatic and exactly solvable asep,

which comprises particles hopping on a one-dimensional lattice under volume-

exclusion. The first extension was the ring-lattice run-and-tumble model, where

particles stochastically alter their persistent direction of hopping, and the second

was the heterogeneous single-file diffusion, where particles have distinct but

spatially constant drift and diffusion parameters on the continuous ring. Several

connections appeared between the two models and themes that I will highlight

below in this final discussion of the main results.

First, I solved exactly the rtp model for one and for two particles in Chapter 2,

in the sense of diagonalizing the process generator. For one particle, this was an

easy exercise in linear algebra and Fourier analysis; for two particles, it was found

to be a laborious and subtle undertaking, resulting in polynomial equations (2.72)

for two complex numbers z1, z2 whose solutions implicitly determine the spectrum

and eigenvectors. In both cases, the spectrum depended in an interesting way on

the model parameter ω, the tumbling rate, and transitioned from real to complex

via eigenvalue crossings (Figure 2.5 and Figure 2.7). In particular, at ω = 1

a macroscopic eigenvalue crossing involving an O (1) fraction of all eigenvalues

appeared, and at an ‘exceptional’ value ω∗ ∼ 1/L (inverse ring size) there was a

crossing of the spectral gap.

The consequence of the spectral gap eigenvalue crossing (occurring once for one

particle, and twice for two) was a non-analytic minimum in the relaxation time.
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For one particle, we could explain why a minimum should exist, reasoning that

when the particle typically runs O (1) times round the ring per tumble, the

uncertainty of its whereabouts should grow the fastest. It would be interesting

to understand how ubiquitous relaxation singularities are across the breadth of

physically relevant nonequilibrium Markov processes. The logical place to look

would be jump processes with a continuous parameter that interpolates between

equilibrium and nonequilibrium conditions, as the spectrum will generically

transition from real to complex with such a parameter.

The meaning of the macroscopic eigenvalue crossing only became clear in

Chapter 5, when I studied the large deviations in velocity of a single asymmetric

rtp. The half of the eigenvalues not participating in the crossing became identical

to an asymmetric random walker (arw), and I could show that the artp, at

least at long times, behaves like a certain superposition of arws—a ‘probabilistic

quasiparticle’ (Figure 5.7). This could even be generalized to an ‘N -arw’. While

the latter is admittedly a contrived example, it serves to make the interesting

point, that the presence of internal states can be invisible to the rate function

describing the rarity of fluctuations, yet leave a clear mark on the effective

process describing the character of trajectories that produce a given fluctuation.

Furthermore, the way I stumbled upon this example suggests that a fruitful way

of exploring simple Markov processes is to look at the entire spectrum in the

complex plane (e.g. numerically) versus a continuous parameter, in the search

of patterns. Indeed, recent general bounds on the spectra of stochastic matrices

seems to have been discovered in this way [210].

In Chapter 5 I also used the arw and artp conditioned on time spent at the

origin to demonstrate that the dynamical phase transition in occupation time

for the biased diffusion on the infinite line [50] is robust to modelling details,

and seems to appear under the condition that the typical net velocity is non-

zero. The method I introduced to calculate the large deviation elements was to

obtain the dynamical partition function Z from the ‘tilted’ generating function

of the conditioning problem, and then to seek the scaled cumulant generating

function (scgf) as the dominant pole of the Laplace transform in time of Z. In

particular, this yielded the compact expression (5.70) in the case of multi-state

random walkers conditioned on time at the origin. This approach has since proven

useful in other models [211].

Turning our attention to the heterogeneous sfd of Chapter 3, I used an

exponential ansatz to solve the stationary Fokker-Planck equations of the
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model exactly, yielding (3.42). Importantly, the normalization constant of the

probability density of the N -particle positions could be calculated in closed

form for arbitrary particle disorder, and even explicitly marginalized over any

subset of particles. From the probability current, one obtains the net particle

current v̄ around the ring, which has the simple form (3.33) of a weighted sum

of the individual particle drifts, where the weights depend on the whole set of

diffusivities. From this expression, one can conclude that the current is biased

towards the drift of the least diffusive particles; this was explained as an inter-

particle ratchet effect.

Noting the similarity to the above solution of a many-filament ratchet model [44],

I set out to understand what special property makes these models solvable—

after all, they are disordered, interacting, N -particle nesss! By considering

a rather abstract model of a d-dimensional ‘tube’ containing overdamped,

spherical particles interacting via volume-exclusion, it appeared that ‘quasi-one-

dimensionality’ was key—i.e. that no particle is able to overtake all others—

because this situation forces a common net velocity in the long-time limit. I

reached this conclusion by analysing the irreversible drift that is the part of the

drift without which a process would satisfy detailed balance. In this context,

I proposed an ‘inverse’ approach to solving high-dimensional Fokker-Planck

equations: solve (3.90) for the irreversible drift u as a function of the drift and

diffusion matrix, e.g. by an ansatz, then find which drifts and diffusion matrices

are compatible with the solution, as demanded by the potential condition (3.91).

In particular for the tube model with constant drift and diffusion, the ansatz

that irreversible drift is a constant vector in (periodic) phase space is correct,

which implies the existence of a constantly moving frame of reference with respect

to which the model respects detailed balance. Looking for completely different

diffusions that have this property, using the inverse approach, could potentially

open up a new class of exactly solvable nonequilibrium processes.

At the end of Chapter 3, I made a connection with Chapter 2 based on the

continuous-space, thermal rtps considered in [102] for N = 2 following my work

on the lattice problem. On the lattice, it was difficult to extract from the two-

particle solution in the relative coordinate, an ansatz for an N -particle solution.

Generalizing from [102], I could in the continuum setting generate a plausible

N -particle ansatz for the stationary distribution, which is based on merging the

exponential ansatz that solves the heterogeneous sfd, with a vector accounting

for the discrete orientation states of particles, (3.127). The plausibility of this
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ansatz is based on the observation that at any point in time, the thermal sfd

looks like a heterogeneous sfd with a disorder set by the particle orientation. As

explained in that section, the difficulty is finding the appropriate ansatz for the

structure of the ‘wave vectors’ k. This leaves an exact N -particle elusive, for now.

A suggestion for how to proceed, would be to simulate the distribution of a few,

e.g. 3, rtps on the continuum without thermal noise, i.e. with ballistic motion

and stochastic tumbling. If one can understand the structure of ‘delta-spikes’ in

the distribution, i.e. if they contain δ(xi−xj), δ(xi− 2xj +xk) or other patterns,

that may guide the ansatz in the more analytically favourable thermal setting, as

we expect each delta spike to be replaced with an exponential exp(k · x).

In the last chapter, Chapter 6, in order to analyse the large deviations in the

heterogeneous sfd, I had to derive the correct boundary conditions for the tilted

operators L̃k and L̃k
†

associated with a current-like observable in a reflected

diffusion. I pursued a general answer to this question, not limited to single-

file diffusion. The approach I adopted was based on the diffusive limit of a

corresponding lattice problem which furnished the result (6.45). From these tilted

boundary conditions followed the fact that the corresponding effective process is

also a reflected diffusion, and that the effective drift is not modified normal to

the boundary. I gave a physical explanation of these facts based on analysis of

the mechanics of reflection for Brownian trajectories.

The rate function and effective process for the current fluctuations in the

heterogeneous sfd could then be calculated exactly. It transpired that the large

deviations were identical to those of a single diffusive particle with intrinsic drift

v̄ and D, being the parameters that featured in the steady-state current. Each of

the N particles modified its drift by the same amount ∆v = v − v̄ to achieve

the fluctuation v. This is in interesting contrast to the lattice asep, where

there emerges also effective repulsive forces between the particles in the effective

process.

An alternative derivation of the tilted boundary conditions (6.45) was presented

in the paper [5] based on the local-time formalism and Feynman-Kac formula.

Another approach, which would also be an important theoretical advancement,

is to find how the level 2.5 large deviation principle should be expressed for a

reflected diffusion. Then (6.45) should emerge in some way from the contraction

principle.

In general, extending the dynamical large deviation theory to processes with
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every kind of boundary condition should be a worthwhile endeavour, both from

the perspective of completeness of the theory but also to enable new interesting

examples. Eq. (6.45) already suggests a pattern of tilted boundary conditions

that I confirmed for partially reflected diffusion. A radically different case is

absorption, where ergodicity of the process is broken, leading to triviality of

the large deviation principle unless the absorption is controlled. Very recently,

Monthus showed how to use the level 2.5 large deviation rate function to study

fluctuations in absorbing jump processes conditioned on staying alive over the

observation time window [212]. In a forthcoming work, I will show a completely

different result, on how to use the level 2.5 large deviation principle to study the

trajectories that lead to absorption in some chosen time, or through some chosen

state. The trick is to first extend the absorbing process into an ergodic process,

apply conditioning to it, and then map the effective process back to an ‘effective

absorption process’.

In conclusion, seeking exact results to minimal models within the mathematical

framework of nonequilibrium Markov processes is conducive to discovering novel

nonequilibrium phenomena, ascertaining their logical connection to the way

reversibility is broken, and to guide the further development of mathematical

structure also valid for nonequilibrium systems of greater complexity.
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