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Abstract

Quantum field theory (QFT) forms the fundamental basis of many areas in

physics and is indispensable for our understanding of the universe. However,

there are many different quantum field theories, and the equations associated

with each of these are difficult to solve and understand analytically. In

recent years, quantum computing has come to the forefront of developments

in physics and there is much excitement about potential applications for this

new technology. This work seeks to ascertain if it is possible to simulate

quantum field theories on this current generation of quantum computers.

Specifically, using quantum walks as an algorithmic implementation,

simulated on superconducting quantum computers provided by IBM, using

the qiskit software package.
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Outline

This thesis is structured as follows, beginning with an introduction to quantum computing

and what it means to simulate a quantum field theory, the fundamental concepts for this work

are introduced and motivated. This is followed by the introduction of the Dirac equation and

Dirac field, as well as classical and quantum random walks. The connection between random

walks and the Dirac equation is then established with Feynman’s Checkerboard, and the

theoretical connection between quantum field theories and quantum walks is concluded in

Chapter 6. A brief detour in discourse is then taken in order to introduce the transmon,

a type of qubit used in superconducting quantum computers, as well as some technical

details related to qiskit and the IBM hardware used. Following this, a series of discrete-

time quantum walks are run on multiple IBM devices in order to ascertain the performance

of current hardware. This is followed by the exploration of custom-made noise models, and

the amount of noise reduction required to perform an effective simulation is determined.

Finally, a comparison is made between the noise found in the simulation of quantum walks

in IBM quantum computers, and two experimental implementations of quantum walks. The

thesis ends with some concluding remarks.
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Chapter 1

Introduction to Quantum

Computing

The notion of a quantum computer is relatively new to the field of physics and began with

Feynman in 1982 [1], who conceptualised the idea of directly using the rules of quantum

mechanics to build a computer. However, nobody at the time knew what such a device

would look like. In 1985, Deutsch proposed the idea of a quantum Turing machine [2], the

first realisation of a quantum computer in a robust theoretical model. Then in 1992, he and

Josza gave the first theoretical example of a quantum computer outperforming a classical

computer [3]. This was followed by an explosion of work on quantum algorithms in the

rest of the 1990s. Bernstein and Vazirani (1993) showed that a quantum computer can be

significantly faster than a classical computer, even if the classical computer is allowed a small

probability of error [4]. In 1994, Simon showed quantum computers can be exponentially

faster [5] and then in 1995 Shor showed that quantum computers can factorise large, prime

integers efficiently, i.e. a polynomial scaling with input size [6]. A task that cannot be

achieved efficiently by any known classical algorithm. Grover (1996) then developed a

quantum algorithm to solve the unstructured search problem, famously known as Grover’s

algorithm [7]. In the same year, Lloyd proposed a quantum algorithm that is capable of

efficiently (polynomial scaling) simulating quantum-mechanical systems [8]. This effectively

resolved the suspected final conjecture that Feynman began with, that a quantum system is

most effectively simulated by another quantum system.

The late 1990s also saw the start of a period of significant experimental progress in the

development of quantum computers. Quantum teleportation was first demonstrated in 1997

by an international collaboration based in Innsbruck [9]. Quantum error-correction was

demonstrated at MIT in 1998 [10]. In 2001, IBM used Shor’s algorithm to factorise 15 = 3×5

using NMR [11]. In 2004, 8 qubits were controlled in an ion trap at Innsbruck [12]. In 2012,

IBM achieved 100 µs of coherence time for superconducting qubits [13].
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Chapter 1 Introduction to Quantum Computing

Theoretical and experimental development in quantum computation continues at an

increasing rate to this day, in part due to the increasing number of research centres,

start-ups and large corporations all contributing to the field. This current period of quantum

computing is known as the NISQ-era (Noisy Intermediate-Scale Quantum) a term coined by

John Preskill [14], and used widely throughout the field to describe the current hardware

available as well as its present capabilities. Noisy refers to the resilience of each qubit against

decohering effects and Intermediate-Scale to the size of the quantum register.
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Chapter 2

Introduction to QFT Simulation

and Motivation

The topic of quantum field theory (QFT) simulation requires us to first define what a quantum

field theory is. Surprisingly, this is not such an easy task and depends on what a quantum

field theory means to the person in question. Nevertheless, here is one definition: a quantum

field theory is a mathematical framework that generalises quantum mechanics to a continuous

space and time setting. In very simplistic terms, it is a combination of quantum mechanics

and special relativity. However, this is where we encounter the nuances of this topic. For a

particle physicist, this definition fits quite well, as quantum field theory is often used as a

tool to study the Standard Model as well as other particle physics phenomenology. In other

words, a scenario where the particles (usually) have high-energy and (usually) move close to

the speed of light. However, quantum field theory also plays an important role in condensed

matter physics, for example in the study of both metals and superconductors. Here we have a

situation where the objects to study are both low-energy and non-relativistic. Nevertheless,

quantum field theory is required to describe the behaviour of, as an example, low energy

fluctuations of electrons in metals, i.e. Fermi liquid theory. Quantum field theory can even

extend to the classical realm, as the critical point of water (at 647.14K) is described by a 3-d

Ising model, which is a quantum field theory [15].

With these nuances in mind, let us define what a quantum field theory means to us, and

specifically what it means to simulate one. Wilson was the first to consider quantum field

theory simulation [16, 17]. His great insight was to consider a quantum field theory existing

on discrete points, like a lattice, and taking the long-distance limit of that lattice, so that

the spacing of the points effectively goes to zero, in order to recover the full physics of that

system, i.e. the field theory. This perspective on quantum field theory lends itself well to

simulation, as digital computers are discretised (binary, 0 or 1) and therefore any simulation

must also be discretised. Naturally, this also extends to digital quantum computers. So in

this sense, a quantum field theory can be thought of as a series of space and time slices

that when put together give the full theory. This is the fundamental approach to simulating

quantum field theory on digital quantum computers.
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Chapter 2 Introduction to QFT Simulation and Motivation

2.1 Motivation

From a theoretical perspective, quantum field theory forms the fundamental basis of many

areas of study in physics. The aforementioned particle physics and condensed matter physics

being two prominent examples but also other areas such as atomic physics, all requiring

some kind of quantum field theory to explain fundamental interactions. These underlying

interactions give rise to more complicated, larger systems, ultimately tying the microscopic

and macroscopic worlds together. Therefore in order to build an understanding of the

universe, at any scale, we must first begin on the most fundamental level.

However, due to this very reason, the nature of many quantum field theories leads them

to be very complicated, and in general, difficult to solve. It is therefore natural to see if

computers can aid in this process. Indeed, using classical computation to solve quantum

field theories is a well established method in areas such as lattice QCD, and is very much

a field of active research [18–20]. However, it is believed that there are problems that

cannot be computed efficiently using classical computers, and quantum computing offers

a possible, efficient solution to these. Recently, there has been growing interest in ways of

simulating quantum field theories on both analogue and digital quantum computers [21–25].

The standard approach is to use Trotterisation, in order to split the Hamiltonian into time

slices and simulate the evolution. However, due to the limitations of NISQ-era digital

hardware, the required overheads are currently suspected to be too great to perform an

efficient computation. Hence, this work shall explore a novel technique of using quantum

walks to simulate quantum field theories, as an alternative to this more general method.
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Chapter 3

The Dirac Equation

Perhaps the simplest example of a quantum field theory comes from the Dirac equation,

which in turn gives rise to Dirac fields. The Dirac equation is a description of massive

spin-1/2 particles, such as electrons and quarks, that is consistent with quantum mechanics

and special relativity.

In non-relativistic quantum mechanics, wavefunctions are described by the time-dependent

Schrödinger equation

− 1

2m
∇2ψ + V ψ = i

∂ψ

∂t
, (3.1)

where the units have been set ~ = c = 1, ψ is the wavefunction, m is the mass of the particle

and V is the potential energy. Equation (3.1) can be expressed as kinetic energy plus potential

energy equals total energy. From quantum mechanics, as a consequence of the Schrödinger

equation, there is also an equivalency between terms and operators

p→ −i∇ and E → i
∂

∂t
, (3.2)

where p is the momentum and E is the total energy.

Energy-momentum conservation, from special relativity, is given by

E2 − p2 = m2. (3.3)

Substituting the operators from equation (3.2) into (3.3) gives the Klein-Gordon equation

−∂
2ψ

∂t2
+∇2ψ −m2 = 0. (3.4)

In covariant notation, using the (+ - - -) signature, this becomes

−∂µ∂µψ −m2ψ = 0. (3.5)

6



Chapter 3 The Dirac Equation

Assuming that ψ is a solution of the Klein-Gordon equation and multiplying (3.4) by −iψ∗,

iψ∗
∂2ψ

∂t2
− iψ∗∇2ψ + iψ∗m2 = 0. (3.6)

Taking the complex conjugate of the Klein-Gordon equation and multiplying by −iψ∗

iψ∗
∂2ψ∗

∂t2
− iψ∇2ψ∗ + iψm2 = 0. (3.7)

Subtracting (3.7) from (3.6)

∂

∂t

[
i

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)]
+∇ · [−i(ψ∗∇ψ − ψ∇ψ∗)] = 0. (3.8)

This has the form of a continuity equation

∂ρ

∂t
+∇ · −→j = 0, (3.9)

with a probability density defined by

ρ = i

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
, (3.10)

and a probability density current of

−→
j = i(ψ∗∇ψ − ψ∇ψ∗). (3.11)

Suppose a solution to the Klein-Gordon equation is a free particle with energy E and

momentum −→p
ψ = Ne−ipµx

µ
. (3.12)

Substituting this solution into (3.10) gives

ρ = 2E|N |2 (3.13)

i.e. probability density is proportional to the energy of the particle.

Substituting the free particle solution into the Klein-Gordon equation gives back

E2 − p2 = m2.

Therefore

E = ±
√
p2 +m2. (3.14)

This gives negative energy solutions. Moreover, the fact probability density is proportional

to E implies negative probability densities - which don’t exist.

This problem is what motivated Dirac to develop his equation.
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The Dirac Equation Chapter 3

Let us begin by factorising the energy-momentum relation. In covariant form this is

pµpµ −m2, (3.15)

pµ is the 4-momentum (E, px, py, pz). Factorising gives

(βκpκ +m)(γλpλ −m) (3.16)

where κ, λ = 0, 1, 2, 3. Writing this out explicitly, (3.15) is

p20 −−→p · −→p = p20 − p21 − p22 − p23 −m2. (3.17)

Equation (3.16) is

(β0p0 − β1p1 − β2p2 − β3p3 +m)(γ0p0 − γ1p1 − γ2p2 − γ3p3 −m). (3.18)

Expanding this gives

βκγλpκpλ −m2 +mγλpλ −mβκpκ. (3.19)

Choosing βκ = γκ, removes terms linear in p, giving

pµpµ −m2 = γκγλpκpλ −m2. (3.20)

Since κ, λ = 0, 1, 2, 3

γκγλpκpλ −m2 = (γ0)2p20 + (γ1)2p21 + (γ2)2p22 + (γ3)2p23

+ (γ0γ1 + γ1γ0)p0p1 + (γ0γ2 + γ2γ0)p0p2

+ (γ0γ3 + γ3γ0)p0p3 + (γ1γ2 + γ2γ1)p1p2

+ (γ1γ3 + γ3γ1)p1p3 + (γ2γ3 + γ3γ2)p2p3

−m2

(3.21)

which must be equal to (3.17).

This leads us to the notion of the γ matrices. Dirac’s realisation was that in order for the

above relation to be true, the γ factors must be 4 × 4 matrices that also satisfy the anti-

commutation relation,

{γµ, γν} = 2gµν (3.22)

where gµν is the metric,

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (3.23)
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Chapter 3 The Dirac Equation

The γ matrices are given by

γ0 =

(
1 0

0 −1

)
, γµ =

(
0 σµ

−σµ 0

)
, (3.24)

1 is the 2 × 2 identity matrix, 0 is a 2 × 2 null matrix and σµ are the 2 × 2 Pauli matrices,

where µ = 1, 2, 3 corresponds to the Pauli x, y, z matrices respectively.

An additional γ matrix is also introduced, γ5 = iγ0γ1γ2γ3, and has the property

(γ5)2 = 1, {γ5, γµ} = 0. (3.25)

In other words

γ5 =

(
0 1

1 0

)
. (3.26)

The Hermitian conjugate of each of these matrices is

γ0† = γ0, γ5† = γ5, γµ† = γ0γµγ0 = −γ for µ 6= 0. (3.27)

Given that the γ matrices satisfy this algebra, the energy-momentum equation can be factored

as

pµp
µ −m2 = (γκpκ +m)(γλpλ −m) = 0. (3.28)

Note that the γ matrices need not be exactly the ones specified above, this is just a common

physics convention, so long as they satisfy the same conditions the matrices are valid.

The Dirac equation is one of the factors of (3.28) and is conventionally taken to be

γλpλ −m = 0. (3.29)

Substituting pµ → i∂µ gives the covariant form of the Dirac equation.

(iγµ∂µ −m)ψ = 0 (3.30)

where ∂µ = ( ∂∂t ,
∂
∂x ,

∂
∂y ,

∂
∂z ), m is the particles mass and ψ is a 4-component column matrix

known as a bi-spinor or Dirac spinor (see APPENDIX A.0).

The probability density for the Dirac equation is given by

ρ = ψ†ψ. (3.31)

Therefore, probability densities are always positive for the Dirac equation, resolving the issue

that motivated its discovery in the first place.
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The Dirac Equation Chapter 3

It is the Dirac spinor that leads to the Dirac field. By treating the Dirac equation as a field

equation, ψ is promoted to a field. The Dirac spinor is given by

ψ =


ψ1

ψ2

ψ3

ψ4

 (3.32)

where the ψ s are the components of this field. It is natural to write this four-component

field as a pair of two-component fields

ψL =

(
ψ1

ψ2

)
, ψR =

(
ψ3

ψ4

)
. (3.33)

The subscript L and R stand for left and right. The significance of this notation shall not be

expanded upon here but it is related to the notion of helicity.

⇒ ψ =

(
ψL

ψR

)
=

(
ψL

0

)
+

(
0

ψR

)
(3.34)

here, 0 is a 2-row zero column vector.

The Dirac equation can now be expressed as

i

(
1 0

0 1

)(
∂0ψL

∂0ψR

)
+ i

(
−σµ 0

0 σµ

)(
∂µψL

∂µψR

)
−m

(
0 1

1 0

)(
ψL

ψR

)
= 0. (3.35)

Block multiplying out (3.35) gives two coupled equations

i1∂0ψL − iσµ∂µψL −mψR ,

i1∂0ψR + iσµ∂µψR −mψL .
(3.36)

It is convenient to slightly re-define σµ:

σµ = (1, σ1, σ2, σ3) and σ̃µ = (1,−σ1,−σ2,−σ3) (3.37)

where as before the indices 1,2,3 correspond to Pauli-x, y, z and the index 0 corresponds to

the identity matrix.

Equations (3.36) can now be written as

iσ̃µ∂µψL −mψR = 0 ,

iσµ∂µψR −mψL = 0 .
(3.38)

These are the Dirac field equations.

10



Chapter 3 The Dirac Equation

In order to get the Lagrangian density in terms of ψL and ψR, multiply out the left-hand side

of (3.35) by the row matrix (ψ†L, ψ
†
R), where ψ†L = (ψ∗1, ψ

∗
2) and ψ†R = (ψ∗3, ψ

∗
4).

Block multiplying out gives

L = iψ†Lσ̃
µ∂µψL + iψ†Rσ

µ∂µψR −m(ψ†LψR + ψ†RψL). (3.39)

Variations δψ∗L and δψ∗R in the action give the field equations (3.38).

The Dirac fields may also be further promoted to space and time-dependent operators in a

process known as second quantisation [26].

11



Chapter 4

Introduction to Quantum Walks

This chapter concerns the topic of quantum walks on a line and their theoretical background.

Quantum walks are analogous to classical random walks but exhibit certain properties that

their classical counterparts do not, these shall be discussed later in this section. Recently,

quantum walks have experienced a surge interest with the discovery of their potential applications

in areas such as quantum algorithms [27–29] and as a model for universal quantum computation

[30, 31]. Random walks both quantum and classical, come in two basic kinds, discrete-time

and continuous time. For the purposes of this work, only the discrete-time case shall be

discussed in detail.

4.1 Discrete-time Random Walk

Firstly, let us consider the case of a classical discrete-time random walk on a line. The setup

is as follows: a walker is positioned at the origin on a number line that extends from -N to

+N, there exists an unbiased, two-sided coin that is flipped, if the coin lands in the state

heads the walker moves one position to the right (+1), if the coin is tails the walker moves one

position to the left (-1). This process is repeated for a desired number of steps, at any time

t, the average position of the walker is the origin. If the walk is run for a sufficient number of

iterations, with each time-step being t, and the final position of the walker is plotted - then a

binomial distribution is obtained. Figure 4.1 shows the probability distribution for a walker

starting at point 0 on a number line that extends from -100 to +100, using the paradigm

described above.
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Figure 4.1: Probability distribution for a classical discrete-time random walk of 100 steps.

4.2 Continuous-time Random Walk

A brief mention of classical continuous-time walks, first introduced by Montroll and Weiss in

1965 [32]. The key distinction of a continuous-time walk is that there is a specified probability

of the walker moving within a certain time interval. This is known as the hopping rate γ.

Consequently, the resulting probability distribution is determined by a probability matrix

that contains all the probabilities for each step of the walker. The resulting probability

distribution is given by

p(t) = exp[−Mt] p(0) (4.1)

where p(t) is the probability distribution (over all sites) at time t, M is the probability matrix

and p(0) is the initial probability distribution.

4.3 Discrete-time Quantum Walk

The discrete-time quantum walk (DTQW) is the quantum analogue of the discrete-time

random walk and is the version that shall be used to form the basis of this body of work.

In order to quantise the discrete-time walk, the coin is promoted to an operator and a step

operator is introduced as well. As a corollary, there now also exists a coin state and a

position state for the walker. The state of the coin can now be |0〉 (heads) or |1〉 (tails), or a

superposition of the two. Using these states it is possible to construct the coin operator,

Ĉ =
1√
2

(|0〉 〈0|+ |0〉 〈1|+ |1〉 〈0| − |1〉 〈1|) . (4.2)
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This is simply another way of representing a Hadamard gate

H =
1√
2

(
1 1

1 −1

)
. (4.3)

Hence this coin is known as a Hadamard coin and is a common choice for the coin operator.

However, other coin operators can be chosen and the general case for any coin operator is

described by the following matrix,

Ĉgeneral =

( √
ρ eiθ

√
1− ρ

eiθ
√

1− ρ −ei(θ+φ)√ρ

)
(4.4)

where ρ is the probability that the walker moves right i.e. 0 ≤ ρ ≤ 1, θ and φ are arbitrary

angles. Taking θ = 0, φ = 0 and ρ = 1
2 also yields the Hadamard coin.

The step operator acts on the walker (position state) to move it right (+1) if the coin is in

the state |0〉 or left (-1) if it is in the state |1〉. If the coin is in a superposition then the walker

moves both left and right, this operator is also sometimes referred to as the shift operator:

Ŝ = |0〉 〈0| ⊗
∑
m

|m+ 1〉 〈m|+ |1〉 〈1| ⊗
∑
m

〈m− 1| |m〉 , (4.5)

where m is the position of the walker on the line.

The action of the step operator can be summarised as

Ŝ |m, j = 0〉 = |m+ 1, j = 0〉 , (4.6)

Ŝ |m, j = 1〉 = |m− 1, j = 1〉 , (4.7)

where the second index in the ket is the spin state of the coin (heads or tails) and is given

the label j.

It is the action of the coin operator followed by the step operator that creates the DTQW.

The combination of these two is sometimes considered as an operator in its own right and

is referred to as the walk operator Û . The walk operator satisfies the condition that it is

unitary,

Û = Ŝ
(
Ĉ ⊗ I

)
(4.8)

I is the identity matrix corresponding to the number of position states.

The Hilbert space for the discrete-time quantum walk is therefore given by H = Hp ⊗ HC .

In other words, the tensor product of the position space and the coin space.

Let us consider, as an example, the application of the walk operator 3 times (Û3 = (ŜĈ)3),

on a walker placed at the point 0 on an infinite number line, with the coin initialised in the

state |0〉. The coin operator selected for this particular example is
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Ĉ2 =
1√
2

(
−1 1

1 1

)
, (4.9)

and its action on the coin state can be summarised as

Ĉ2 |j = 0〉 =
1√
2

(|1〉 − |0〉) , (4.10)

Ĉ2 |j = 1〉 =
1√
2

(|0〉+ |1〉) . (4.11)

The initial state of the walker is

|ψ〉walker = |m = 0, j = 0〉 . (4.12)

The first 3 steps are (
ŜĈ2

)3
|0, 0〉 =

(
ŜĈ2

)2
ŜĈ2 |0, 0〉 (4.13)

=
(
ŜĈ2

)2
Ŝ

1√
2

(− |0, 0〉+ |0, 1〉)

=
(
ŜĈ2

)2 1√
2

(− |−1, 0〉+ |1, 1〉) (1st step). (4.14)

=
(
ŜĈ2

)
ŜĈ2

1√
2

(− |−1, 0〉+ |1, 1〉)

=
(
ŜĈ2

)
Ŝ

1

2
(− |−1, 0〉 − |−1, 1〉+ |1, 0〉+ |1, 1〉)

=
(
ŜĈ2

) 1

2
(|−2, 0〉 − |0, 1〉+ |0, 0〉+ |2, 1〉) (2nd step). (4.15)

=
(
Ŝ
)
Ĉ2

1

2
(|−2, 0〉 − |0, 1〉+ |0, 0〉+ |2, 1〉)

=
(
Ŝ
) 1

2
√

2
(− |−2, 0〉+ |−2, 1〉 − |0, 0〉 − |0, 1〉 − |0, 0〉+ |0, 1〉+ |2, 0〉+ |2, 1〉)

=
1√
8

(− |−3, 0〉+ |−1, 1〉 − |−1, 0〉 − |1, 1〉 − |−1, 0〉+ |1, 1〉+ |1, 0〉+ |3, 1〉)

|ψ〉walker =
1√
8

(− |−3, 0〉+ |−1, 1〉 − 2 |−1, 0〉+ |1, 0〉+ |3, 1〉) (3rd step). (4.16)

Figure 4.2 shows the position of the walker on a portion of the infinite number line for this

quantum walk.

15



Introduction to Quantum Walks Chapter 4

-3 -2 -1 0 1 2 3

Figure 4.2: Position of the walker on a portion of the number line after 3 steps. Red arrows
indicate the state of the coin, up arrow means |0〉, down arrow means |1〉. Size of the arrow

corresponds to the amplitude in the wave function.

Figure 4.2 displays some key and interesting properties of discrete-time quantum walks. First,

and most obvious, is the superposition of the walker at multiple sites on the line. After 3

steps, the walker is in 4 positions. The second interesting property to note is the superpostion

of the coin at one site. At site -1, the coin is in a superpostion of both |0〉 and |1〉, something

that is not achievable classically. Also note that this superposition is not equal in probability,

in fact it is twice as likely that the coin will be in the state |0〉 than |1〉. The final state of the

walker can be determined by performing a measurement, in line with the rules of quantum

mechanics, causing the wavefunction to collapse and giving the site and coin state of the

walker. However, it is interesting to note that it is only when this measurement is performed

that the walk ends, and in the limit that a measurement is taken after each step of the walk,

then a classical discrete-time walk is obtained that follows the same probability statistics

as Figure 4.1. It is these properties that make discrete-time quantum walks potential good

candidates for use in quantum algorithms and quantum computing in general.

The DTQW analogue of Figure 4.1 is shown in Figure 4.3 , which shows the probability

distribution for a DTQW for N in the range -100 to 100. The walker begins at point 0 on

the line and the coin is a Hadamard coin that is initiated in a superposition of |0〉 and |1〉.
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Figure 4.3: Probability distribution for a DTQW of 100 steps. Initial state of the coin is
1√
2

(|0〉+ |1〉).

As can be seen in Figure 4.3, the probability statistics for the DTQW are vastly different to

the classical discrete-time case of Figure 4.1. The shape of this distribution is a result of the

aforementioned properties of discrete-time quantum walks. The oscillation of the probabilities

between sites occurs as a result of the wavefunction of the walker destructively interfering

with itself (see Eqns. 4.13-4.16). Furthermore, in the classical walk the highest probability of

the walker being found is at the origin whereas in the quantum walk it is almost the opposite,

the walker has the greatest probability of being found at the edges of the number line.

The initial conditions of the quantum walk also greatly affect the evolution and resulting

probability distributions. Figure 4.4 shows the effect of varying the initial state of the coin.

Figure 4.4 also demonstrates the reason for preparing the coin in a superposition of states -

so as to avoid biasing the walk.
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Figure 4.4: Probability distribution for a DTQW of 100 steps. Coin initialised as |1〉 (blue)
and coin initialised as |0〉 (red).

4.4 Continuous-time Quantum Walk

A brief mention of continuous-time quantum walks (CTQW), which are the quantum analogues

of the classical continuous-time walks. Similarly to their classical counterparts, CTQWs

evolve as a result of a time-varying unitary matrix that comes from the Hamiltonian of the

system. It is believed the earliest consideration of CTQWs was by Farhi and Gutmann in

1998 [33].

4.5 Discrete-time Quantum Walk on a Cycle Graph

Finally, to conclude this chapter, we consider a simple variation of the DTQW on a line, that

is a DTQW on a cycle graph. Simply put, this involves taking the ends of the number line

and attaching them to each other so the line now forms a cycle. This way once the walker

reaches (what was formerly) the end of the line, the walk loops over to what was formerly

the other end of the line.
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Chapter 5

Feynman’s Checkerboard and the

Dirac Equation

Feynman was the first to establish a connection between random walks and the Dirac equation,

via path integrals, in his 1965 collation with Hibbs titled: “Quantum Mechanics and Path

Integrals”. This subtle connection appears as a problem (2-6) on page 34-36 of the text [34].

In this chapter, we explore this connection and present a solution, based-on the work of

Jacobson and Schulman [35], which has come to be known as Feynman’s Checkerboard or

Feynman’s Chessboard.

A path integral is a sum over all possible paths of a particle from (xa, ta) to (xb, tb). From a

path integral it is possible to derive a propagator for the particle (see APPENDIX A.1). For

example, for a non-relativistic, free particle in one dimension, the propagator is [34]

K(NR) (xb, tb;xa, ta) = lim
N→∞

(−im
2π~ε

) 1
2
(N−1) ∫

dx1...dxN exp

[
im
∑

(xj+1 − xj)2
2ε

]
. (5.1)

Explicitly, this evaluates to

K(NR) (xb, tb;xa, ta) =

√
m

2πi~(tb − ta)
exp

[
im(xb − xa)2
2~(tb − ta)

]
. (5.2)

In more dimensions,

K (−→xb, tb;−→xa, ta) = 〈−→xb| e
−iH(tb−ta)

~ |−→xa〉 (5.3)

where H is the Hamiltonian, and

ψ(−→xb, tb) =

∫
d3xa K (−→xb, tb;−→xa, ta)ψ (−→xa, ta) . (5.4)
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5.1 Checkerboard Path Integral

a

b

x

t

Figure 5.1: Illustration of the path of a relativistic particle in (1+1)-d, where x is the space
dimension and t is the time dimension.

Figure 5.1 shows a relativistic random walk for a particle in 1+1 dimensions. The gradient

of the segments is constant in magnitude and differs only in sign (direction). Firstly, units

are set to ~ = c = 1. The propagator for this particle is

Kβα (xb, tb;xa, ta) = lim
N→∞

∑
R≥0

φβα(R)(iεm)R. (5.5)

N is the number of steps.

ε = tb−ta
N , i.e. the length of each step.

m is the mass of the particle.

α, β take values of ‘left’ or ‘right’.

φβα(R) is the number of paths with exactly N steps that start at xa and in direction α, and

end at xb in the direction β, that switch direction R times.

An important point, the relativistic particle in this problem is both massive and moves at

speed c. This is required for the particle to switch directions and for the space and time

steps to scale the same with N . While seeming to be in violation of special relativity, the

propagator is only evaluated for net subluminal motion i.e.

|xb − xa| < c(tb − ta). (5.6)

Consider a path of a particle with R bends, which leaves moving right and arrives moving left

and contributes to the sum of the associated propagator, K−+. The particle makes 1 + (R−1)
2

turns to the left and (R−1)
2 turns to the right, where the last turn is to the left and R is odd

for K−+. P is defined as the number of steps to the right and Q is defined as the number of

steps to the left. It follows that P +Q = N .
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For K−+, the total number of paths from xa to xb is

φ−+(R) =

(
P − 1

1
2(R− 1)

)(
Q− 1

1
2(R− 1)

)
. (5.7)

In the limit N →∞,

lim
N→∞

φ−+(R) =
(PQ)

(R−1)
2

[(12(R− 1))!]2
. (5.8)

This means

K−+(xb, tb;xa, ta) =
∑

R≥0, R odd

(PQ)
(R−1)

2

[(12(R− 1))!]2
(iεm)R. (5.9)

Defining M = (P −Q),

PQ =
1

4
(N +M)(N −M) =

(
N

2γ

)2

(5.10)

where γ = (1 − v2)− 1
2 , v2 = M2

N2 = (xb − xa)2/(tb − ta)2 and using the definition of ε from

(5.5), equation (5.9) becomes

K−+(xb, tb;xa, ta) =
2γ

N

∑
R≥0, R odd

(
im(tb−ta)

2γ

)R
[(12(R− 1))!]2

. (5.11)

Let z = m( tb−taγ ) and replace N with (tb−ta)
ε and let R = 2k + 1. Equation (5.11) becomes

K−+(xb, tb;xa, ta) = iεm

∞∑
k=0

(−1)k
(z/2)2k

(k!)2
= iεmJ0(z) (5.12)

where J0 is the zeroth Bessel function of the first kind [36]. Following [35], the next step is to

divide by 2ε to get the continuum limit as ε → 0, since K−+ vanishes at every other lattice

point. Noting that

z = m(
tb − ta
γ

) = m(tb − ta)
√

1− v2 = m
√

(tb − ta)2 − (xb − xa)2 ≡ mτ. (5.13)

Finally, this gives the exact continuum propagator as

K−+(xb, tb;xa, ta) = i
m

2
J0(mτ). (5.14)

[35] evaluates the other components, φ++ and φ−− as

φ++(R) =

(
P − 2
1
2R

)(
Q− 1

1
2(R− 1)

)
(5.15)

and

φ−−(R) =

(
P − 1

1
2(R− 1)

)(
Q− 2
1
2R

)
(5.16)
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with the two related by

φ−− = φ++(P ↔ Q). (5.17)

Jacobson [37] obtains all four components of the continuum propagator, by letting xb = x,

xa = 0, tb = t and ta = 0

K(x, t; 0, 0) =
im

2

(
i(t+x)
τ J1(mτ) J0(mτ)

J0(mτ) i(t−x)
τ J1(mτ)

)
(5.18)

where τ becomes τ =
√
t2 − x2 with |x| < t.

5.2 Connection to the Dirac Equation

The connection between these results and the one-dimensional Dirac equation, which is

i∂tΨ = −iσz∂xΨ−mσxΨ, (5.19)

is not immediately obvious. Here σz and σx are the 2 × 2 Pauli-z and Pauli-x matrices

respectively, Ψ is a two-component Dirac spinor. Following the work of Jacobson and

Schulman, Kull and Treumann [38] presented a more direct interpretation of (5.18) that

shall be discussed first.

Choosing two Dirac spinors given by

Ψ1 =

(
K++

K+−

)
, Ψ2 =

(
K−+

K−−

)
(5.20)

where by using (5.17), K+− = K−+ and using (5.18), Ψ1 and Ψ2 are two independent, exact

solutions of (5.19). Thus [38] establishes that Feynman’s Checkerboard yields solutions to the

one-dimensional Dirac equation and by extension, relates random walks to the Dirac equation.

Jacobson and Schulman [35] provide a more convoluted way of relating the two, connecting

the continuum propagator with the partition function of the one-dimensional Ising model.

Then establishing a connection between that, and the Hamiltonian of the one-dimensional

Dirac equation. The details shall not be discussed here but it is asserted that the continuum

propagator for the one-dimensional Ising model is

Kβα(x, t; 0, 0) =
ε

2π

∫
dp eipx

(
eit(mσx−pσz)

)
βα

(5.21)

which is the Fourier transform of

eiHt (5.22)

where H is the Hamiltonian of (5.19). Thus [35] establishes the link between Feynman’s

Checkerboard, the one-dimensional Ising model and the one-dimensional Dirac equation.
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Quantum Walks and Quantum

Field Theory

Following the establishment of the connection between random walks and the Dirac equation,

Konno, using a similar method to Jacobson and Schulman, analytically solved the quantum

walk on a line [39,40]. This is followed by a series of papers, by various authors, dealing with

the continuous limit of quantum walks [41–43].

This chapter focuses on the work of DiMolfetta, who shows that in the continuous limit,

a discrete quantum walk yields a Klein-Gordon-like or Dirac-like equation [44–48]. In all

cases, the general procedure to retrieve the Dirac-(or Klein-Gordon)-like equation is similar.

Starting with a discrete-time quantum walk written as a pair of difference equations, a discrete

space and discrete time step is introduced. The continuous limit of these steps is then found

by taking them to zero, and imposing certain conditions on the walk, from which the relevant

equation can be found. For our purposes, let us consider the simplest case that DiMolfetta

examines [49], the relevant parts of which are presented here.

Consider a quantum walk defined over discrete-time and discrete one-dimensional space,

using time and space dependent coins, acting on a two-dimensional Hilbert space. The walk

is defined by the following finite difference equations, valid for all (j,m) ∈ N× Z.[
ψ−j+1,m

ψ+
j+1,m

]
= B(θj,m, ξj,m, ζj,m)

[
ψ−j,m+1

ψ+
j,m−1

]
(6.1)

where the j index represents the time dimension and the m index represents space.

B(θj,m, ξj,m, ζj,m) =

[
eiξ cos θ eiζ sin θ

−e−iζ sin θ e−iξ cos θ

]
, (6.2)

is an SU(2) operator and (θ, ξ, ζ) are the three Euler angles.

ψ−, ψ+ are two components of the wavefunction Ψ and are the probability amplitudes of the

particle moving in the decreasing m or increasing m directions, respectively.
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The set of Euler angles define the walk and are, at this stage, arbitrary.

The total probability is defined by

πj =
∑
m

(
|ψ−j,m|2 + |ψ+

j,m|2
)
. (6.3)

To take the continuous limit of this walk, let us introduce time ∆t and space ∆x steps.

Let us also define, for any quantity a appearing in (6.1), a function ã, such that the number

aj,m is the value taken by ã at the space-time point (tj = j∆t, xm = m∆x).

Equation (6.1) then becomes

[
ψ−(tj + ∆t, xm)

ψ+(tj + ∆t, xm)

]
= B(θ(tj , xm), ξ(tj , xm), ζ(tj , xm))

[
ψ−(tj , xm + ∆x)

ψ+(tj , xm −∆x)

]
(6.4)

where the tildes have been dropped on all functions to simplify the notation.

Suppose that all functions can be chosen at least C2 in both space and time variables for all

sufficiently small values of ∆t and ∆x. The formal continuous limit is defined as the couple

of differential equations obtained from (6.4), by letting both ∆t and ∆x tend to zero.

Introducing a time-scale τ , a length-scale λ and an infinitesimal ε,

∆t = τε,

∆x = λεδ
(6.5)

where δ > 0 allows for ∆t and ∆x to tend to zero differently.

For the continuous limit to exist, the operator B(θ, ξ, ζ) must also tend to unity as ε tends

to zero. This is because the two column vectors on the left-hand side and right-hand side

of (6.4) both tend to Ψ(tj , xm) when ∆t and ∆x tend to zero. This implies that the two

functions θ and ξ must depend on ε and tend to zero or π as ε tends to zero.

Therefore, it generally does not make sense to consider the continuous limit of a given walk,

defined by ε-independent angles, but rather the limit of a family of walks indexed by ε, whose

defining angles depend on ε and tend to zero with this infinitesimal. This family of quantum

walks is known as a jet, and in this particular case a 1-jet. We therefore write,

θ(t, x) = pπ + θ̄(t, x)εα

ξ(t, x) = pπ + ξ̄(t, x)εβ,
(6.6)

where p = 0 or 1 and α, β > 0.

The continuous limit can be investigated by Taylor expanding ψ±(t, x∓∆x), ψ±(t±∆t, x),

cos θ, sin θ and eiξ in powers of ε. The possible scaling obeyed by the continuous limit are

found by examining the lowest order contributions.
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ψ±(t±∆t, x) = ψ±(t, x) +O(ε), (6.7)

ψ±(t, x∓∆x) = ψ±(t, x) +O(εδ), (6.8)

eiξ cos θ = 1 +O(εβ) +O(ε2α), (6.9)

and

eiζ sin θ = O(εα). (6.10)

Equation (6.4) then becomes[
ψ−(tj , xm)

ψ+(tj , xm)

]
+O(ε) =

[
ψ−(tj , xm)

ψ+(tj , xm)

]
+O(εα) +O(εβ) +O(εδ). (6.11)

The most interesting scaling corresponds to when α = β = δ = 1, because all contributions

to (6.11) are of equal importance. This is the scaling that shall be explored next.

We shall now find the equations of motion for ψ− and ψ+. Defining the null coordinates, u−

and u+ in terms of t and x:

u− =
1

2

(
t

τ
− x

λ

)
u+ =

1

2

(
t

τ
+
x

λ

)
.

(6.12)

Partial derivatives with respect to these null coordinates are

∂− = ∂u− = τ∂t − λ∂x
∂+ = ∂u+ = τ∂t + λ∂x,

(6.13)

and

∂−∂+ = τ2∂tt − λ2∂xx = λ2�, (6.14)

where � is the d’Alembertian,

� =
1

c2
∂tt − ∂xx, (6.15)

with c = λ/τ . The expansion of the discrete equations around ε = 0 then leads to the

following equations of motion for ψ− and ψ+,

∂−ψ
− =

(
iξ̄ψ− − (−1)p+1θ̄e+iζψ+

)
, (6.16)

∂+ψ
+ =

(
iξ̄ψ+ − (−1)p+1θ̄e−iζψ−

)
. (6.17)

These two equations are sometimes known as the Dirac form of the continuous quantum walk

dynamics.
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These coupled first-order equations are best transcribed in operator form, i.e. D̂Ψ = 0, with

the operator D̂ acting on the two-component wave function Ψ given by

D̂ = Γ−∂− + Γ+∂+ − iσ3ξ̄ + iσ2(−1)p+1θ̄ cos ζ + iσ1(−1)p+1θ̄ sin ζ, (6.18)

where σ1,2,3 are the Pauli-x, y, z matrices respectively, and

Γ∓ =
1

2
(1± σ3). (6.19)

The operator D̂ defines the formal continuous limit of the quantum walk. These first-order

equations imply that each component of Ψ obeys, at points where θ does not vanish, an

uncoupled Klein-Gordon equation. For example, the equation obeyed by ψ− can be obtained

using (6.16) to express ψ+ in terms of ψ− and ∂−ψ
−, and by then replacing ψ+ by this

expression in (6.17). This leads to

λ2�ψ− = [∂+(ln θ̄+ iζ)− iξ]∂−ψ−+ iξ̄∂+ψ
−− [θ̄2 + ξ̄2 + iξ̄∂+(ln θ̄+ iζ)− i∂+ξ]ψ−), (6.20)

λ2�ψ+ = −iξ̄∂−ψ++[∂−(ln θ̄−iζ)+iξ]∂+ψ
+−[θ̄2+ ξ̄2+iξ̄∂−(− ln θ̄+iζ)+i∂−ξ]ψ

+). (6.21)

These equations resemble Klein-Gordon equations but contain terms that violate time-reversibility.

Let us now examine the connection with the Dirac field. The Lagrangian density is defined

by

L[Ψ,Ψ†] = Ψ†D̂ Ψ, (6.22)

and leads to the first-order equations of motion (6.16) and (6.17).

Another form of the Lagrangian density is

L[Ψ,Ψ†] = Ψ∗Γµ∇µΨ (6.23)

where µ ∈ {+,−} and

∇∓ = ∂∓ − iσ3ξ̄ + iσ2(−1)p+1θ̄ cos ζ + iσ1(−1)p+1θ̄ sin ζ. (6.24)

This can be derived from (6.22), noting that Γ− + Γ+ = 1.

Defining

γµ = −σ3Γµ, (6.25)

and

Dµ = ∂µ + iσ1(−1)p+1θ̄ sin ζ + iσ2(−1)p+1θ̄ cos ζ. (6.26)

The Lagrangian density can then be written as

L[Ψ,Ψ†] = Ψ†(iγµDµ − ξ̄)Ψ. (6.27)
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This looks like the Lagrangian density for a Dirac field. However, in this case, Ψ belongs to

a two-dimensional Hilbert space and is not a Dirac spinor.

Thus, the connection between discrete-time quantum walks and the Dirac equation/Dirac

field, has been established. So, as a first step to simulating a quantum field theory on a

quantum computer, this single particle Dirac equation shall be considered, and a discrete-

time quantum walk shall be simulated.
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Chapter 7

The Transmon

Before we consider the execution of quantum walks on a digital quantum computer, it is worth

taking a brief detour to discuss the basic construction of its most fundamental building block

- the qubit. Over the years a variety of different methods for implementing qubits have been

developed [50]. For the case of a superconducting quantum computer, the most well-known

is the transmon. This section shall explore the basic construction of a transmon as well as

its associated mode of operation.

The transmon, Transmission-line Shunted Plasma Oscillation qubit, is a type of superconducting

qubit used in IBM quantum computers. At the simplest level, a transmon can be deconstructed

into four components - two islands connected to each other via a Josephson junction and

some form of capacitance. A Josephson junction is a non-linear circuit element made of two

superconducting layers separated by a non/weakly superconducting layer. The two islands

represent the two levels (|0〉 and |1〉) of the qubit, as well as other physical components [51].

Figure 7.1 depicts this basic construction.

Capacitance Josephson
Junction

Island 1

Island 2

Figure 7.1: Basic construction of the transmon.
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The original design of the transmon was similar to the Cooper pair box. In essence, a

superconducting qubit may be categorised into three basic kinds: charge, phase and flux [52].

The contemporary transmon is any combination of these. At a fundamental level, the

transmon functions as follows: Cooper pairs tunnel between islands (states) by excitation

from microwave pulses - typically of the order 4-8 GHz and roughly 20ns long. Therefore, it

is possible to prepare states and execute single qubit gates using only these pulses. In order to

execute two or multiple-qubit gates the transmons must be connected via a transmission-line

resonator. Specifically, there are two kinds of transmission-line resonators, a bus resonator is

used to connect multiple transmons to each other in order to implement multiple-qubit gates

via a current flowing between them. A read-out resonator is used to perform measurements.

This is achieved by inputting a very weak light pulse into the read-out resonator, of the order

of femto watts. Depending on what state the transmon is in, |0〉 or |1〉, there is a shift in the

resonant frequency of the read-out resonator. This shift can then be detected as the light

pulse is reflected back out of the resonator and thus measurement of the state is possible.

The subject of circuit Quantum Electrodynamics (circuit QED) deals with the construction

of quantum processors and ways in which superconducting qubits may be connected. The

interested reader may wish to consult [53], as this shall not be discussed further.

Notice the basic design of a transmon is similar to a quantised LC oscillator, shown in Figure

7.2.

Electrode 1

Electrode 2

C L

Figure 7.2: Diagram of a quantised LC circuit. L is the inductor and C is the capacitor.
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The Hamiltonian of this system is given by

ĤLC =
Q̂2

2C
+
φ̂2

2L
, (7.1)

where Q̂ is the charge on the capacitor and φ̂ is the flux through the inductor.

Note that these quantities do not commute

[φ̂, Q̂] = i~. (7.2)

The quantised LC oscillator itself corresponds directly to the quantum simple harmonic

oscillator (SHO):

ĤSHO =
P̂ 2

2m
+
kX̂2

2
(7.3)

with k being the spring constant, m being the mass and P̂ , X̂ being the momentum and

position operators respectively. Note that

[X̂, P̂ ] = i~. (7.4)

The exact correspondence is

φ̂←→ X̂

Q̂←→ P̂

L←→ 1

k

C ←→ m.

This system may be solved using ladder operators:

â =

(
Q̂

Qzpf
− i φ̂

φzpf

)
(7.5)

â† =

(
Q̂

Qzpf
+ i

φ̂

φzpf

)
(7.6)

with φzpf =
√

2~Z, Qzpf =
√

2~
Z and Z = ωL = 1

ωC =
√

L
C .

This gives the Hamiltonian as

ĤLC = ~ω
(
â†â+

1

2

)
(7.7)

with

[â, â†] = 1. (7.8)
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|0⟩

|1⟩

|2⟩

|3⟩

Figure 7.3: Energy diagram of a quantum simple harmonic oscillator. Blue lines indicate
energy levels with separation ~ω.

However, this does not make a very good qubit, since the energy levels are equally spaced

this allows for leakage out of the qubit-subspace. Figure 7.3 shows the energy diagram for

this system. This brings us to the role of the Josephson junction, to introduce anharmonicity

into the system and therefore create unequal spacing between energy levels. Thus reducing

the chances accessing of other energy levels (states). Since we are designing a quantum bit

we only require two energy levels, typically chosen to be the ground and first excited state.

The current through a Josephson junction is given by

I = Ic sin

(
2π

φ

φ0

)
, (7.9)

where

Ic =
π

2e

∆

R
, (7.10)

and φ0 is the quantum flux h
2e .

The energy stored in the junction is

Estored = EJ

(
1− cos

(
2π

φ

φ0

))
, (7.11)

EJ is the Josephson energy,

EJ =
Icφ0
2π

. (7.12)

Figure 7.4 shows the energy level diagram for the Josephson potential as well as the quantum

simple harmonic oscillator.
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ϕ0

2EJ

Figure 7.4: Energy diagram of the Josephson potential (solid blue) compared to the
harmonic oscillator (dashed orange). Wavelength of the potential is given by the quantum

flux and the amplitude by twice the Josephson energy.

For small flux:

EJ ≈
φ2

2LJ
+ const.

LJ =
φ0

2πIc
.

Thus the transmon energy spectrum becomes anharmonic as desired, shown in Figure 7.5.
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|0⟩

|1⟩

|2⟩

|3⟩

Figure 7.5: Energy spectrum of the transmon. Energy levels are no longer equally spaced
apart.

Due to this unequal spacing, microwave pulses can be tuned to exact transitions. Therefore,

in principle, confining the transmon to two energy levels.

To conclude, let us consider the characteristic parameters associated with each individual

transmon. There are many such terms, however the two that shall be discussed here are

the T1 and T2 coherence times [54]. Terms that are borrowed from NMR physics. Due to

the fabrication process of each superconducting qubit, no two are identical, so it can be

said that each transmon exhibits a sort-of personality. The coherence times therefore form a

fundamental part of this personality and can vary depending on environmental factors.

Firstly, the T1 time also known as the spin-lattice time, longitudinal coherence time, amplitude

damping time (among others) is a measure of the energy lost from the system. Specifically,

it is time taken (more accurately the decay constant) for a state to decay from |1〉 to |0〉, i.e.

excited state to ground state. T1 times are measured using inversion recovery [55], which is

a magnetisation preparation technique followed by an imaging sequence.

The T2 time, known as the spin-spin relaxation time, transverse coherence time or phase

coherence time, is the time (decay constant) for a state to decay from say, |+〉 to an equal

probabilistic outcome of |+〉 and |−〉. Note that the difference between the two states being

the phase, hence this is known as phase decoherence. T2 times are measured using Hahn

echoes [56]. A Hahn echo is a refocusing of spins via a pulse of electromagnetic radiation.
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Backends and Methods

This chapter shall briefly describe the IBM hardware used to execute programmes as well as

the methods used in doing so. A quick caveat, IBM hardware and the qiskit software package

are constantly being updated and so the information provided here is correct as of the time

of publication. The following are some key definitions and components.

Qiskit - Simply put, qiskit is an open-source software package developed by IBM, using

Python, to design and execute quantum circuits on backends.

Backend - A backend is a term used by IBM to describe the various devices qiskit programmes

are run on. They include the real quantum computers as well as various simulators. For this

body of work, only three backends shall ever be used.

qasm_simulator - This is a simulator that runs locally on the user’s machine and emulates

a quantum computer. The maximum size of the quantum register is 32 qubits1, and all

the qubits have full connectivity, i.e. every qubit can connect with every other qubit. The

standard output for the qasm_simulator is counts - how many times a certain output state

occurs, from counts qiskit is able to produce a probability distribution for that output.

This is the standard mode of operation for real quantum devices as well. However, the

qasm_simulator is also capable of outputting statevectors and density matrices etc., in

various representations such as the Bloch sphere, something that is not possible in real devices.

The output from the qasm_simulator can be thought of as the “correct” or “ideal” answer

for a computation, as it contains no errors due to noise or any other effects and simulates

what an ideal quantum computer would output. In this document, qasm_simulator will

sometimes be referred to as simply, the simulator.

1There are ways of increasing this limit but this involves different methods of simulation that are beyond
the scope of this explanation.
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ibmq_santiago - This is a quantum computer (device) consisting of a total quantum register

of 5 qubits. Figure A.4 in APPENDIX A.2 shows the topology, i.e. the connectivity of

qubits in the device. Here, the definition of connectivity is two qubits that may be connected

together in order to implement two qubit gates, for example a CNOT-gate. This devices

only outputs counts, meaning as it is a physical device, it can only output a finite number

of samples as opposed to exact probabilities. The architecture of this device is Falcon_r4L,

“Falcon” is the generation, “r4” means revision-4 and “L” is the topology, in this case the

letter “L” stands for the word line. This will be the most commonly used real device and is

referred to in the text as Santiago.

ibmq_quito - This a quantum computer (device) with a quantum register of 5 qubits, and

the architecture is Falcon_r4T, similar to Santiago but the qubits are connected in a “T”

shape. Figure A.5 in APPENDIX A.2 shows this topology. The output of this device is

counts. This is sometimes referred to as Quito in the text.

For a more in-depth explanation of the various backends and features of qiskit, the interested

reader should consult the online qiskit documentation [57].

8.1 Methods

Design and execution of programmes is done using qiskit_v0.24.0 running on Python 3.8.5.

Spyder 4.1.5 is used as the IDE to write code along with IPython 7.19.0. Table 8.1 shows

the version for each qiskit module.

Module Version

qiskit-terra 0.16.4

qiskit-aer 0.7.6

qiskit-ignis 0.5.2

qiskit-ibmq-provider 0.12.1

qiskit-aqua 0.8.2

Table 8.1: Qiskit module versions.

The method for execution is as follows, the quantum circuit is coded in Spyder and then

run on the qasm_simulator. This is to check that the programme performs as expected

and for the initial phase of debugging, as the simulator gives the ideal results. Once the

programme performs as expected on the simulator, the programme is then executed on one

of the real quantum devices. The results of this execution are compared to results from the

simulator to identify any anomalies that may have occurred and this is followed by any more

potential debugging and re-running on backends. Once the programme runs to a satisfactory

level on both the simulator and real device(s) then the whole process of execution is complete.

The choice of which device to run on, Santiago or Quito, is a result of which backends
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are available at the time of execution. This is because backends are often taken down for

maintenance or decommissioning. Frequently for long periods of time (days, weeks, months).
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Chapter 9

Characterisation of Current

Hardware

This chapter explores the limits of current hardware that is available from IBM, namely it

examines the fidelity of the device(s) by running a discrete-time quantum walk programme.

The base component for simulating a quantum field theory in this work.

Using the work of Kemp, Nishio, Satoh, Vogt-Lee and Bassan [58], who in turn build on

the work of Douglas and Wang [59], it is possible to build a quantum circuit that is able to

perform a quantum walk on a cycle graph. For our purposes, we shall consider the example

presented in [58], namely, that of a 4-qubit circuit that corresponds to an 8-node cyclic graph,

this is depicted in Figure 9.1. The vertices of the graph denote the possible positions of the

walker.

|010⟩

|000⟩

|001⟩

|011⟩

|100⟩

|101⟩

|110⟩

|111⟩

0.

1.

2.

3.

4.

5.

6.

7.

Figure 9.1: 8-node QW graph. Binary string (i.e. the state of the quantum register)
corresponds to the site number in denary (bold).
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The quantum register consists of 4 qubits, 3 of which are used to determine the position of

the walker, the final qubit is used as the coin operator and is not measured. Essentially the

circuit is built of two large sets of gates, an increment step gate and a decrement step

gate used to move the walker, which themselves consist of CNOT and X gates. These

increment and decrement gates are repeated depending on the number of steps required.

One step involves one increment and one decrement, two steps involve increment, decrement,

increment, decrement and so forth. The coin to be used is the standard Hadamard coin

(implemented with a H gate). The circuit for this walk is shown in APPENDIX A.3. The

results of the execution are given in Figure 9.2. The programme is incremented up to 8 steps

and executed on ibmq_quito.

Figure 9.2 j) shows the Hellinger fidelity [60] between the real device and the simulator. For

the purpose of this work, the Hellinger fidelity is a means of comparing how similar two

classical probability distributions are, i.e. the results of the execution.
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a) b)

c) d)

e) f)

g) h)

i) j)

Figure 9.2: Discrete-time quantum walk for an 8-node graph. Panels a) to i) show steps 0
to 8 of the walk respectively (text size on histograms is fixed by the qiskit software). Bars
represent the probability of finding the walker at a site denoted by a bit string. The blue

bars represent the result of the simulator i.e. the expected result and red bars the real
device. Panel j) shows the Hellinger fidelity [60] between the real device and the simulator

for each step of the walk. Dotted red-line is to guide the eye. A value of 1.0 indicates
perfect agreement between the simulator and the real device.
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As can be seen the IBM device performs poorly. The minimum expectation would be that the

real device follows the first few steps of the walk with a reasonable level of fidelity. However,

panel j) of Figure 9.2 shows that the performance of the hardware is very poor, with an

average fidelity of 0.45. In other words, the results just look like noise from the real device.

To examine this result let us consider a simpler example, that of a 4-node cyclic graph, as

depicted in Figure 9.3.

|00⟩

|01⟩

|10⟩

|11⟩

0.

1.

2.

3.

Figure 9.3: 4-node QW graph. As in Figure 9.1 vertices represent the possible positions of
the walker and binary string corresponds to the site number in denary (bold).

The circuit now reduces to 3 qubits in total, 2 used to describe position and 1 as the coin.

This is shown in Figure 9.4. Specifically the pattern the circuit follows is STEP, STEP,

H acting on coin, STEP, H on coin, STEP etc. However, notice now that the circuit only

consists of one large gate, a STEP gate that incorporates the functionality of the increment

and decrement gates of [58].

step step

. . .

. . .

. . .

Position

qubit |0〉
Position

qubit |0〉

Coin |0〉 H X H X H

1
Figure 9.4: Circuit for 4-node quantum walk. Decomposition of STEP gates are enclosed by

the dashed lines. Coin operation is given by single Hadamard gates acting on the coin
register. These gates are repeated for the desired number of steps.

This programme was executed on ibmq_quito for 4 iterations,with the position of the walker

being measured at the end of the desired number of steps. The results are presented below.
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a) b)

c) d)

e) f)

Figure 9.5: Discrete-time quantum walk for an 4-node graph. Panels a) to e) show steps 0
to 4 of the walk respectively. Bars represent the probability of finding the walker at a

certain site denoted by a bit string. The blue bars represent the result of the simulator and
red bars the result of the real device. Panel f) shows the fidelity, comparing the two

probability distributions, of the walk for each step between the real device and simulator.
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As can be seen in Figure 9.5, this particular IBM device performs the 4-node quantum walk

far better than the 8-node. Although, in general, the fidelity of the results do degrade slightly

as the walk progresses from the initial steps. However not as much as in Figure 9.2, it is still

clear to see what the accurate value would be, so this variation can be attributed most likely

to noise and not major errors occurring in the execution of the circuit. In other words, errors

are considered to be improbable in a circuit with so few gates.

Let us now examine why the 4-node quantum walk performs similarly to the simulator whilst

the 8-node counterpart does not. On inspection of their respective quantum circuits (shown

in Figure A.6 APPENDIX A.3 and Figure 9.4 respectively), both appear to be relatively

simple. However, at this point it is worth discussing the way in which IBM processes circuits

and how they are implemented. This process is known as transpiling. Currently, all IBM

backends utilise the same basis gates: {CNOT, ID, RZ, SX, X} which form a universal set

of gates. In other words, all other gates must be implemented using only these. Focusing on

the increment and decrement gates of the 8-node circuit, they contain Toffoli and C4-NOT

(C4-X) gates. Implementation of these gates using the basis gates proves to be a non-trivial

task. The qiskit software has a method of implementing Toffoli gates by reducing them into

a set of basis gates. In total, this decomposition consists of 18 gates - 6 CNOT gates, 10 RZ

gates and 2 SX gates for each Toffoli. This is already a large increase in the number of gates

required to perform a single Toffoli operation. However, this is not the case for the C4-NOT

or generally any Cn-NOT gate (where n > 4). There currently exists no optimised way of

implementing these gates in qiskit. For the case of the C4-NOT, qiskit transpiles this into

a 34 gate circuit: 14 C-NOT gates, 18 RZ and 2 SX. A single C4-NOT gate thus needs a

large number of gates that in and of itself forms a fairly large circuit and [58] contains two

Toffolis and two C4-NOT gates for a single step of the quantum walk. This coupled with

the other gates (i.e. X and H) being transpiled explains why the quantum walk appears as

just noise. The number of gates being implemented, even for a single step, has enough noise

associated with each gate to degrade the results to the point where it is unrecognisable. In

comparison, the 4-node circuit does not contain any Toffoli or C4-NOT gates, so the only

gates to transpile are H and X, which demonstrates why these results are more accurate.

This circuit, when transpiled is much closer to the original design and contains a modest

number of gates so noise degradation does not ruin the result. However, some degradation

due to noise is present and this can explain why, in general, the results appear to decrease in

fidelity as the number of steps increase - there is more noise from more gates.
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It is worth mentioning that the transpilation process is automatic and occurs when the circuit

is sent to the device (transpilation is obviously not necessary when run on the simulator).

Furthermore, it does not solely consist of transforming the circuit into basis gates but also

deciding which qubits to use in the device (determined by the hardware’s topology) among

other tasks [61] . However, as discussed above, this process is not always a hundred-percent

optimal and can lead to the end result being inefficient. It is possible to manually bypass

at least some part of this transpilation process, namely the part of converting the original

circuit into one consisting of solely basis gates. This is done simply by designing the initial

circuit in terms of the IBM basis gates ({CNOT, ID, RZ, SX, X}) in the first place.

We will now consider what happens when the 4-node quantum walk is designed using only

the basis gates. This is a very straightforward task as the original circuit itself is simple. The

advantage of this is the user can decide exactly how the gates will be implemented and pick

the best circuit decompositions for their needs. The figure below shows the optimised version

of the 4-node quantum walk to be used.

STEP

. . .

. . .

. . .

|0〉

|0〉

|0〉 Rz
√
X Rz X

1
Figure 9.6: Optimised circuit consisting of basis gates. One step is depicted. First three

gates implement the Hadamard coin operator.

This optimised version (shown in Figure 9.6) can now be compared to the original one that

relies on the automatic transpilation process.
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a) b)

c) d)

e) f)

Figure 9.7: Comparison of discrete time quantum walk for a 4-node graph. Panels a) to e)
simulator (light blue bars) vs. standard transpiled (red bars) vs. optimised (purple bars) for
steps 0 to 4 respectively. Panel f) shows the fidelity, comparing probability distributions, of
the standard transpiled (red) and optimised (magenta) for each step of the walk. Error bars

represent standard error.
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Figure 9.7 shows the similarity in performance of the manually optimised and automatically

transpiled circuits. The optimised walk performs slightly better for some steps, with an

improvement of approximately 1% overall, over the automatically transpiled version

(comparing average fidelities). It is interesting to note that this implies that the qiskit

transpiler does not choose the most optimum configuration for this case, which is trivial to

do when computed manually. In this specific case the performance increase may not appear

to change the overall result drastically, but by extrapolation, it is speculated this optimisation

will have a greater effect, e.g. more steps in a quantum walk with higher fidelity. For the

case of a more complicated circuit, it is speculated that it would be worth the effort, if not

practically mandatory, to perform this optimisation in order to achieve the best results.

To conclude this section it is worth remarking on the current state of IBM hardware as well

as software. It has been shown that by using careful programming it is possible to achieve

effective quantum simulations on NISQ-era hardware to the level that one would intuitively

expect. The qiskit software package has been designed to, and indeed does, operate on a

high-level, capable of performing complicated tasks such as transpiling as well as offering a

range of tools for the programmer. However, it has been shown that this can sometimes be

detrimental to execution and that current progress regarding the actual quantum hardware is

not on the same level as the software. In other words, although qiskit is able to do tasks such

as conversion of circuits into basis gates, it is not necessarily the best course of action. The

end user should ideally perform some of these tasks by operating on a low-level programming

regime. This is to enable a more direct level of communication between the hardware and

the user to better optimise their programme for their needs.
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Custom Noise Models

A feature of the qiskit software package is the ability to create and use noise models. IBM

offers a noise model of each available backend that, in principle, models the noise levels of

that device, on that day, as accurately as the software will allow. However, it is also possible

for the user to create their own custom noise models by varying, and including/not including,

parameters associated with noise in superconducting quantum computers. Noise models are

created using the qasm_simulator as a base template, from this the noise parameters are

introduced on top of this template. The goal of this chapter is to ascertain how much current

noise levels in an IBM backend would need to be reduced in order to achieve a consistent,

high-fidelity result for a discrete-time quantum walk.

To investigate this, consider the DTQW on a cycle graph, using the same paradigm as the

walks in the previous chapter. However, now the quantum register is extended to a total of 5

qubits, this being the maximum number available in IBM’s current hardware. 4 qubits give

the binary encoding of the position of the walker and the 5th qubit acts as the coin operator.

Accordingly, the number of sites on the graph for this quantum walk now increases from the

walks in the previous section to a total of 16, as shown in Figure 10.1.
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Figure 10.1: Diagram of the 16-node cycle graph used in the DTQW.

The corresponding quantum circuit for this walk can be seen in APPENDIX A.4.
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Chapter 10 Custom Noise Models

Before we consider the execution of the quantum walk let us discuss what a custom noise

model consists of. The parameters that make-up a noise model are: single-qubit gate errors,

two-qubit gate errors, three-qubit gate errors and multiple (i.e. four and five) qubit gate

errors. The single qubit gate errors correspond to the single-qubit unitary operators in the

circuit, in the case of the 16-node DTQW that shall be used, this equates to Hadamard

gates and X gates. The two, three and multiple qubit errors correspond to C-NOT, Toffoli

and C4-X/C5-X gates respectively. In practice these errors represent depolarising error rates

associated with each of the gates and are numbers arbitrarily chosen by the user. The method

for choosing the errors involves trial and error by gradually tweaking the numbers until the

results of simulating a DTQW on a noise model match the results on a real device, as closely

as possible. The chosen values for each of the errors, which represent the probability per

gate, are shown below.

Type of gate Error

single-qubit 0.005

two-qubit 0.02

three-qubit 0.04

multiple-qubit 0.6

Table 10.1: Errors used in custom noise model to emulate ibmq santiago.

The values shown in Table 10.1 are referred to in this text as full noise strength, as they

refer to the maximum amount of noise modelled, i.e. the amount of noise that most closely

resembles the real device.

As mentioned previously, IBM also provide a noise model for each of their backends. This

noise model has the error rates pre-determined by automated analysis of each of the devices

every so often, e.g. every 24 hours. Due to the susceptibility of transmons to environmental

noise, these error rates vary over time and hence this method of modelling noise is a means

of keeping track of that variation and providing the most accurate error values. The other

advantage of this, of course, is the user does not need to define each individual error rate, this

is done automatically. In addition to depolarising errors the IBM noise model also contains:

readout errors, errors associated with the measurement of qubits, and a thermal relaxation

error that essentially consists of the T1 and T2 relaxation time constants [62]. It is important

to note however, that the depolarising and thermal relaxation errors only apply to single and

two-qubit gates, so these errors do not apply to three-qubit and higher gates. In this text,

the noise model provided by IBM will be referred to as the IBM noise model.

In order to investigate noise on IBM quantum computers, the DTQW for 16 nodes is executed,

first on the base qasm_simulator, and then the custom noise model for 16 steps of the walk,

in single step increments. The noise level is then reduced in gradual decrements until there

are eventually no depolarising errors in the custom noise model and the walk is run for

each of these decrements. The same DTQW is then executed on the IBM noise model of
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ibmq_santiago and the real ibmq_santiago. The fidelity for each step of the quantum walk

is recorded up to a maximum of 16 steps. The fidelity for each backend: custom noise model,

IBM noise model and Santiago, is found by comparing the probability distributions of each

step of the walk with the corresponding step from the qasm_simulator, which can be thought

of as the “perfect” or expected result, as it contains no noise.
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Figure 10.2: Fidelity at each step of a 16-node, 16 step DTQW, for varying noise strengths
of the custom noise model. Error bars represent standard error.

Figure 10.2 shows the fidelity for each step of the quantum walk and for decreasing noise

levels. 100% refers to 100% of the full noise strength, i.e. the values in Table 10.1. 90% refers

to 90% of each error in Table 10.1 etc. At 0% of full noise strength the errors all take a value

of 0. However, it is important to note that this is not exactly the same (although extremely

close) as the base qasm_simulator. The distinction being that at 0% noise strength the noise

model still takes into account the small errors introduced by the transpilation process.

The Hellinger fidelity is a measure of how similar two probability distributions are, it takes

values between 0 and 1. A value of 1 indicates perfect agreement between the distributions, a

value of 0 indicates a perfect anti-correlation between distributions. A value of 0.5 indicates

no correlation between distributions. As a general rule, a fidelity of 0.8 or higher is considered

a very good result that shows a clear correlation between the two distributions.
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As can be seen from Figure 10.2, For all noise strengths except 0%, the performance is poor.

Noise strengths 60-100% all begin with a fidelity below 0.5, in other words they cannot even

produce an accurate result for 1 step of the quantum walk. Similarly, for noise strengths 30-

50%, which show some improvement but still not enough to be considered accurate. Serious

improvements in the fidelity only begin to be seen when at 10% and 20% of full noise strength.

However, the fidelity soon declines in the case of 20% noise strength and after just 2 steps

the results of the walk are indiscernible from noise. In the case of 10% of full noise strength

the performance is markedly better, with the fidelity being consistently higher than all other

noise strengths for every step of the walk. Here, approximately 13 steps of the walk are

achieved at a reasonable standard with a final fidelity around 0.6 . This is roughly the limit

before the results of the walk start to become indistinguishable from the noise. 0% noise

strength achieves a constant fidelity of almost exactly 1.0, with minor fluctuations occurring

due to the transpilation errors (see Chapter 9 page 42). This confirms that indeed, 0% noise

strength and the qasm_simulator are very similar. In all other cases for the custom noise

model it can be seen that the fidelity tends to an equilibrium value of approximately 0.5 as

the number of steps tends to 16. Thus showing the effect of noise overcoming the results of

the walk, as noise corresponds to no correlation, in other words it is random.

Figure 10.3 shows the fidelity for the same DTQW for selected noise strengths and includes

the noise model of ibmq_santiago as well as ibmq_santiago itself.
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Figure 10.3: Fidelity at each step of a 16-node, 16 step DTQW, for varying noise strengths
of the custom noise model as well as the IBM noise model and Santiago.
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From Figure 10.3 a direct comparison between the noise models and ibmq_santiago can

be made. Overall, the worst performing is the real device, starting with a low fidelity that

gradually increases but never exceeds 0.5. This indicates a slight anti-correlation with the

expected results, particularly for the first few steps, but beyond roughly 6 steps, this is just

noise. Interesting to note is the similar performance of the IBM noise model, 100% strength

and Santiago. For the IBM noise model and Santiago this would be expected but the custom

noise model also follows the real device very closely, at points overlapping, e.g. 4 steps, 9

steps and 10 steps. Although overall, the performance of the IBM noise model is slightly

closer to the real device, it is interesting to see this overlap or lack there-of at certain points.

This also demonstrates that depolarising errors are the dominant contribution to noise, since

it is possible to so closely model (as shown in Figures 10.2 and 10.3) the real device without

the addition of other errors, for instance Pauli errors, Kraus errors etc. The addition of 2%

and 6% noise strength also shows the non-linear improvement in performance once the level

of noise is below 10% of the initial parameters. For 6% noise strength the entire walk of

16 steps is achievable with a reasonable fidelity, only dropping to slightly sub-optimal levels

towards 16 steps, even at this point the results of the walk are distinguishable from any noise.

2% noise strength performs excellently and by far has the highest overall fidelity (aside from

0% of course), never dropping below 0.8 . All steps of the walk are clearly distinguishable

from noise and extrapolation of Figure 10.3 would seem to suggest that many more additional

(probably around 8) steps could be achieved with high or good fidelity results for 2% noise

strength. We therefore conclude that in order for a DTQW on a 16-node cycle graph to be

executed with consistent, high fidelity results, for each step, the current noise levels within

the Santiago device would need to be reduced by approximately, at least, 94%.

Table 10.2 & Figure 10.4 show the corresponding fidelities and histograms for the 16th step

of the DTQW, for each of the noise strengths/devices in Figure 10.3. This shows how fidelity

relates to human-readable results.

Noise strength/device Fidelity Error

0% 0.99 0.000

2% 0.84 0.027

6% 0.63 0.020

10% 0.53 0.017

20% 0.47 0.015

50% 0.41 0.013

100% 0.45 0.015

IBM noise model 0.42 0.013

Santiago 0.39 0.013

Table 10.2: Fidelities of varying noise strengths/devices for 16th step of 16-node DTQW.
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a) b)

c) d)

e) f)

g) h)

i)

Figure 10.4: Probability distributions for the 16th step of the 16-node DTQW: a) 0% noise
strength, b) 2%, c) 6%, d) 10%, e) 20%, f) 50%, g) 100%, h) IBM noise model (magenta),

i) Santiago (red).
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Considering how much current noise levels in the backend have to be reduced before clearly-

readable results are produced, the natural question to pose is why are the results so poor for

both the real device and (most) of the noise models? The answer is related to the discussion

in the previous chapter regarding the transpilation process. It has been established that

qiskit does not currently have a way to efficiently, meaning economical in terms of gates

used, implement anything more than a Toffoli gate, that is to say a C4-X or C5-X gate.

The very gates that are required for this encoding of a DTQW. The transpilation process

resulting in a large increase in the number of gates used to execute the programme and

therefore a large increase in the noise. The noise ultimately coming from each gate in the

circuit, and it has now been established particularly from the depolarising errors associated

with each gate. Therefore the more gates that are added due to transpilation, the more noisy

the circuit becomes. This effect is exacerbated for larger quantum registers, requiring larger

(more qubit) Cn-X gates. Again, as similarly discussed in the preceding chapter. Therefore,

the only way to mitigate this effect is either, develop an efficient way of implementing Cn-X

gates1, which also may not be possible within the restrictions of IBM’s transpiling process or

reduce the noise levels associated with the transmons through better engineering, development

of circuit QED etc. In practice, improvement of superconducting quantum computers will

probably consist of a combination of these two.

1Assuming of course a more efficient way exists.
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Chapter 11

Simulated Quantum Walks vs.

Experimental Quantum Walks

This chapter explores the differences between quantum walks executed on IBM hardware, as

demonstrated in this work, and quantum walks executed experimentally by others prior to this

work. Specifically, exploring if noise from experimental implementations of quantum walks

can be used to simulate noise found in this current generation of IBM quantum computers.

The chapter is structured as follows, we begin with the examination of an 8 step DTQW,

run using IBM hardware, and re-iterate the conclusions of the previous chapter but for this

specific walk. This is then compared to the first experimental implementation. Following

this, the second experimental implementation is introduced and a comparison to a 3 step,

IBM, DTQW is made.

Firstly, let us consider the DTQW using 5 qubits and consisting of 16 nodes. Figure 11.1

shows 8 steps (as that is the minimum number required to cover the whole graph) of the

walk executed on the qasm_simulator as well as using IBM’s noise model of the Santiago

backend.
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Figure 11.1: Probability distribution for 8 steps of the 16-node DTQW run on
qasm simulator a) and using the IBM noise model b).

Figure 11.2 shows the DTQW for varying noise strengths, using the custom noise model, as

well as results from execution on the real device ibmq_santiago.
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a) b)

c) d)

e) f)

g) h)

Figure 11.2: Probability distributions for 8 steps of the 16-node DTQW. From top left,
a) 0%, b) 2%, c) 6%, d) 10%, e) 20%, f) 50%, g) 100% of the full noise strength and

h) Santiago (red).
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As can be seen in Figure 11.1 & 11.2 the effect of noise becomes drastic even at low levels. At

approximately 10% of the full noise strength (Figure 11.2 d) ), the walk becomes indiscernible

from random noise. Beyond this point the probability distributions fail to resemble anything

close to what would be expected for an asymmetric DTQW. In other words, the results are

just noise. Conversely, for the case of the qasm_simulator and up to 6% noise strength

(Figure 11.2 c) ) a DTQW is visible. In summary, there would have to be a 94% reduction

in current noise levels, in the Santiago device, to accurately execute a DTQW, for 8 steps,

using 5 qubits, on a 16-node graph.

11.1 Silicon Photonic Quantum Walk

The work of Xiao-Chun et al. [63], that in turn builds-on the work of [64], showed that it is

possible to implement quantum walks on a silicon photonic chip.

The experimental procedure involves a 775 nm Ti:Sapphire laser collected into a single-

mode fibre. The light from this laser is then vertically polarised. The horizontally polarised

component is not required for this experiment. The vertically polarised light is incident on

a periodically poled potassium titanyl phosphate (PPKTP) crystal, which in turn produces

1550 nm photon pairs. Half of these pairs are then vertically polarised and are used in the

chip. The silicon chip consists of a series of ports for the photons to enter, and then a

honeycomb-like structure that is essentially a waveguide (where the quantum walk occurs),

on the other side of this structure are a further set of ports for the photons to exit. So, the

vertically polarised photons are coupled into the chip by a grating, enter via the ports, move

through the structure that implements the quantum walk, and finally exit from the ports on

the other side where they are detected by a superconducting nanowire single photon detector.

Figure 2 of [63] shows the structure of the silicon chip as well as the experimental setup.
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Figure 11.3: Figure 3 b) of [63]. Red bars represent the experimental probability of finding
a photon at that port. Blue bars represent the simulated probability.

Figure 11.3 shows the results for a quantum walk on a 14-port silicon chip, with the photons

entering into port 7 of 14, i.e. the middle.

Comparing Figure 11.3 and Figures 11.1 & 11.2, it is interesting to note some discrepancies.

The silicon chip quantum walk exhibits some clustering of probabilities that are not seen in

an ideal DTQW, for example the high probabilities for finding a photon at adjacent sites 9

and 10. This is not the case for the qasm_simulator walk or generally for the noise models,

up to 10% noise strength Figure 11.2 d). Clustering of some states does appear at 20 - 100%

noise strength and in ibmq_santiago. However this has been attributed to noise and is not

present to the same extent as Figure 11.3. Furthermore, it is interesting to note that the

authors of [63], at least qualitatively, are able to predict this behaviour of their quantum

walk to a high degree of accuracy, as indicated by the blue bars in Figure 11.3. However,

in any case, the implementation of this quantum walk on a silicon photonic chip does not

appear to behave in the same way as a simulated quantum walk (with a binary encoding)

on the qasm_simulator, let alone ibmq_santiago and hence is an unsuitable candidate for

modelling noise. In other words, the implementation of this experimental quantum walk does

not model the noise levels currently found in the Santiago device well.
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11.2 Comparison to Trapped ions

In 2012 Matjeschk et al. [65] showed that it is possible to experimentally implement a DTQW

using trapped ions. The experiment involves using the hyperfine energy-levels of a single
25Mg+ ion in order to implement a DTQW on a line.

The 25Mg+ ion is confined in a linear Paul trap. The two coin states labelled |H〉 and |T 〉,
for heads and tails respectively, are chosen to be the

|H〉 ≡ |2S1/2, F = 2,mF = 2〉 ,

|T 〉 ≡ |2S1/2, F = 3,mF = 3〉

electronic states. In addition,

|A〉 ≡ |2S1/2, F = 2,mF = −2〉

where |A〉 is the motional state.

Coin and shift operators are implemented via means of laser and radiofrequency pulses

between electronic states of the ion. Figure 4 of [65] shows in detail how these states are

related and their role within the walk. The coin is initialised in the |T 〉 state by optical

pumping. Read-out of the final state is done by photon scattering and hence position states

of the walker correspond to coherent states of the emitted photons.

|αk〉 = e−|αk|
2/2

∞∑
n=0

αnk√
n!
|n〉 (11.1)

where |αk〉 denotes the position of the walker, αk are motional states and |n〉 are the Fock

states (see APPENDIX A.5).

Figure 11.4 shows the experimental results for a DTQW of 3 steps on a line.

Figure 11.5 shows the DTQW on a 16-node cycle graph for 3 steps, run on qasm_simulator

and using IBM’s noise model of Santiago. In the cyclic walk the walker moves to positions 15,

14, 13 whereas in the experimental walk, the walker moves to position -1, -2, -3 due to being on

a line. Considering the walk is only for 3 steps, any interference effects from being on a cyclic

graph are not an issue and the walk may be treated as if it was on a line. In addition the coin

qubit (in our circuit) is now initialised in the |1〉 state, whereas in previous runs it has been in

the state |0〉. This is in order to match the initialisation of the coin in the trapped ion setting.
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Figure 11.4: Figure 15 of [65] showing the probability distribution (in Fock space) for a
DTQW of 3 steps on a line, αs denote the position on the line e.g. α0 is position 0 etc.

Negative probabilities occur as a result of the authors subtracting overlapping probabilities.
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Figure 11.5: Probability distribution for a 3 step DTQW on a 16-node cycle graph run on
qasm simulator a) and using the IBM noise model b).
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a) b)

c) d)

e) f)

g) h)

Figure 11.6: Probability distribution for a 3 step DTQW on a 16-node graph. From top left,
a) 0%, b) 2%, c) 6%, d) 10%, e) 20% , f) 50%, g) 100% of the full noise strength and

h) Santiago (red).
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Table 11.1 shows the fidelities of the different noise strengths/devices against the experimental

data Figure 11.4.

Noise strength/Device Fidelity

Simulator 0.96

0% 0.96

2% 0.99

6% 0.92

10% 0.97

20% 0.91

50% 0.73

100% 0.67

IBM Noise Model 0.68

Santiago 0.62

Table 11.1: Fidelities for varying noise strengths including the qasm simulator and
ibmq santiago.

As a reminder, the (Hellinger) fidelity is bounded from 0 to 1. A value of 1 indicates perfect

agreement between the two distributions. A value of 0 indicates perfect anti-correlation

between the two distributions. Therefore, a value of 0.5 indicates no correlation at all.

From Table 11.1 it is clear to see that the 2% custom noise model most closely resembles the

experimental quantum walk, to a very high degree. This is followed by 0% noise strength

and the simulator, then 10% noise strength. The fact that 10% noise strength is closer to

the experimental data than 6% implies a possible anomalous result for 6%. This can be seen

in Figure 11.6 c) the probability for site 3 is lower than would be expected. The general

trend would suggest, the more you decrease the noise the more the distribution resembles

experimental data, up to 2% noise strength, clearly the experiment contains noise and the

simulator and 0% do not. In a similar fashion, 100% noise strength has a fidelity closer to the

real device than the IBM Noise Model, which suggests the IBM noise model is a less accurate

model of the noise on Santiago than the custom noise model. The IBM noise model has a

fidelity of 0.92 compared with Santiago, and the custom noise model at 100% strength has a

fidelity of 0.94, compared with Santiago. This result is discussed further in the conclusion. By

far the worse performing is the real device, Santiago, with a fidelity of 0.62. Below a fidelity of

approximately 0.7, the results of the execution become indistinguishable from noise. Again,

this can be verified by examining Figure 11.6. This further reinforces the conclusion that the

result of this execution, on ibmq_santiago, is just noise.
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Naturally the question to pose, the one that motivated this section is: can noise from

experimental quantum walks be used to model noise in simulated quantum walks (on a real

quantum computer)? Analysis of [65] suggests, that in the cases examined, noise simulation

of real devices does not work well. Somewhat ironically, noise levels on current devices are

much greater than were observed in trapped ions in [65] so this does not give an accurate

representation of the noise experienced on this current generation of IBM transmons, and

possibly will not for quite some time. However if there is a reduction in current noise levels,

e.g. a reduction of 98%, then this experimental paradigm would model superconducting noise

very accurately. So, an encoding of an experimental quantum walk in Fock space, that at

first glance appears to be far different from that of the encoding of a circuit model, simulated

quantum walk, could potentially be used as a noise model between the two systems further

in time.
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Chapter 12

Conclusions and Further Work

In summary, this work has presented the theoretical connection between discrete-time quantum

walks and quantum field theory in the form of the Dirac equation/field. From there, a series of

discrete-time quantum walks have been executed on quantum computers as well as simulations

of quantum computers, to ascertain the feasibility of simulating quantum field theories, at

this moment in time. In addition, the noise levels in these devices has also been examined,

and an estimate for the required amount of reduction in these noise levels, for adequately

simulating a discrete-time quantum walk, has been made. Finally, a comparison between the

noise in quantum computers and experimental implementations of quantum walks has been

made to see if the experiments exhibit a similar level/type of noise as the superconducting

quantum computers provided by IBM.

In conclusion, it is not currently possible to simulate a quantum field theory, on an IBM

digital quantum computer, using quantum walks. Even for a very simplistic model, this is not

possible let alone for a full quantum field theory such as an SU(2)×U(1). More specifically,

it is not possible to simulate large, as in containing many sites and steps, quantum walks,

that form the basis for this work. Currently, the only simulations that can be run effectively

are for simple quantum walks that do not contain many sites and/or steps. Therefore, it

is concluded that this current generation of superconducting NISQ computers, provided by

IBM, are unsuitable for simulation of quantum field theories using discrete-time quantum

walks. Due to current levels of noise associated with each device. However, in general, this

method of using quantum walks still has merit. As it avoids known computationally intensive

methods such as Trotterisation, that similarly all suffer from noise in quantum devices. So if

current noise levels are reduced in the IBM quantum computers, admittedly by a significant

amount, then this method would be effective in simulating quantum field theories.

In this work, a particular encoding of a quantum walk has been used. Namely, a binary

encoding used to create a DTQW on a cycle graph. It is worth mentioning that this method

has a potential major drawback that occurs in the presence of bit-flip errors, and one that

can easily ruin a set of results. Consider the 8-node DTQW and the position |010〉 i.e. site

number 2. Imagine a bit-flip error occurs on qubit 1, resulting in the state |110〉, i.e. site
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number 6. This is clearly many sites away from the expected position, practically on the

opposite site of the graph. Whilst this error may be easy to spot for a small number of steps,

for a large number of steps this task may prove difficult, especially when trying to ascertain an

accurate probability amplitude. This effect would be further compounded by multiple bit-flip

errors occurring over many steps. Fortunately, the results presented in the previous chapters

do not indicate the presence of bit-flip errors (discussed next), although the DTQWs have

not been implemented for a very large number of steps. Therefore, this is a potential source

of error that should be taken into account when extending these binary-encoded walks further.

This leads us to the second point of discussion, that is the variations in fidelity depending

on time of execution, or in other words, anomalous results. This is discussed in detail

APPENDIX A.6.

In this work, careful consideration has been taken to present results that do contain such

obvious anomalous results, where possible. In practice this has meant repeated execution of

quantum circuits on both the real devices and simulator. The simulator also being susceptible

to possible anomalous results, as suggested in Chapter 11, Figure 11.6 c). This variation in

fidelity and introduction of anomalous results presents a major obstacle for implementing

high-fidelity quantum computation, not just for quantum field theory simulation but in

general, and needs to be addressed by providers of these services going forward.

Let us now consider the performance of the full-noise strength custom model versus the

IBM noise model, and how the two are comparable, with the custom noise model slightly

outperforming the latter as in Chapter 11 Section 11.2. This is surprising considering the

simplicity of the custom noise model, one possible explanation for the outperformance of the

IBM noise model is that the custom noise model was designed specifically for these DTQWs.

In other words, the tuning of the numbers that correspond to the gate errors are optimised

for this particular set of circuits. Furthermore, the inclusion of 4 and 5-qubit gate errors, in

the custom noise model, will also contribute to the increased accuracy in fidelity. However,

this is not to say the custom noise model always outperforms the IBM noise model, as this

was not the case in Chapter 10 (Custom Noise Models). Perhaps the most interesting point

to note regarding this, is the relative simplicity of the IBM noise model, only consisting of

depolarising errors and thermal relaxation errors. Furthermore, it lacks multiple (3,4,5 etc.)

qubit gate errors as well as other possible error channels. It is possible that IBM intends

the user to build on their noise model, and add additional gate errors, error channels, etc.

However, this is would be a somewhat unusual approach for modelling their own devices.

Nevertheless, it can be said that the IBM noise model performs adequately.
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Conclusions and Further Work Chapter 12

Throughout this work, the Hellinger fidelity, using the definition given by IBM, has been used

as a benchmark for how accurate a quantum computation is. The qualitative meaning of the

fidelity has also been repeated multiple times. Currently, there is no standard definition for

fidelity as a measure of accuracy, in other words the exact definition varies from author to

author and therefore the qualitative meaning changes. This presents an inherent difficulty

when making comparisons between different systems that are using different definitions.

Furthermore, by changing the definition of fidelity, a computation can be made to look

more or less accurate than it would otherwise be. Say, for example, a relatively high-fidelity

(with a specific definition) result, may not necessarily equate to easily human-readable (as

in discernable by eye) results. As has been the convention in this work, high-fidelity has

implied strong correlation to the ideal result, and in the case of quantum walks this has

meant histograms (probability distributions) that appear as would be expected of an accurate

depiction of walker position probabilities, in a quantum walk. The issue of fidelity definitions

is one with the field of study at large, and in time a suitable standard shall have to be

established. However, the results of this work are self-consistent, meaning they are compared

to each other, and this has not been an issue, but this is a point that should be noted in

general when considering fidelity.

Despite the previous issues regarding fidelity and variations in it, it is clear that the fundamental

issues lie with the hardware itself. That is to say, there shall have to be an improvement in

this current generation of transmons before further attempts at larger, more sophisticated

quantum field theory simulations are made. The topic of superconducting quantum computation

is one that is very active, and improvements on current hardware are constantly being made

[66,67]. One possible solution involves changing the material transmons are constructed from

in order to achieve better coherence times. [68]. Another area of improvement is the read-out

of states, and possibly even utilising higher energy levels within the transmon potential [69].

Another proposal is improvement regarding the implementation of quantum circuits [70], this

is a particularly pragmatic approach and one that could yield the most immediate results.

The rapid development of the qiskit software has already been discussed in Chapter 9, but as

has been seen, the hardware has a lot to catch-up on and hence solutions such as alternative

circuit implementations and low-level programming offer the most immediate solutions to

poor performing quantum computations.

In order for effective quantum field theory simulation to be done, using digital quantum

computers, multiple targets will need to be met. Firstly, a reduction in current noise levels

of at least, approximately 94%, is needed to efficiently simulate a sufficiently large DTQW.

Secondly, a much greater number of qubits within the quantum register of the device will

be required, of the order of thousands or even millions, in order to simulate more advanced

quantum field theories. As in this paradigm at least, more qubits equates to more sites in the

walk and more space-time positions. Finally, with greater qubit numbers, better connectivity

shall be required. Currently this is not an issue, however for larger circuits especially with

multiple-qubit gates this presents a scaling challenge.
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Chapter 12 Conclusions and Further Work

12.1 Further Work

There are many further areas to explore regarding this particular method of quantum field

theory simulation. Firstly, is the further development of the theory regarding discrete-time

quantum walks to simulate quantum field theories. This work has examined the simplest

case in the form of a Dirac field. In order to develop this into a simulation that is more

representative of quantum field theory in general, multiple additional factors shall have to be

considered. Firstly, is the addition of multiple particles, i.e. walkers in a quantum walk, that is

a fundamental ingredient of QFT. As well as the incorporation of fermionic anti-commutation

relations and interacting (above quadratic term) theories. Furthermore, a possible next step

would be to introduce a simple potential into this system, similar to [44, 71] and find a way

of encoding that into a quantum walk.

This leads directly into another area of further research. The encoding of the quantum walk

into the quantum computer. Finding another encoding could further expand the geometry

of the simulation. Currently, only one space (and time) dimension has been considered, and

the difference between a cycle graph and a line can be trivial at times. However, for greater

dimensions this geometry (encoding) can become non-trivial and even lead to quantum walks

in exotic systems, such as triangular or honeycomb lattices [47,48], which may have potential

applications in subjects such as quantum field theory for condensed matter physics.

Furthermore, the variation in fidelity in time is a topic that requires further study, as there

are many factors that remain unknown in the creation of anomalous results. For example, is

there a pattern to fluctuations in fidelity, if so, over what time period? In this work it has

been implicitly assumed that these fluctuations occur at random. However there is currently

not enough data to decisively draw this conclusion. Moreover, do all IBM quantum computers

exhibit this fluctuation in fidelity, and by the same amount? IBM has many more backends

available that have not been used in this work. This would be a relatively straightforward

line of further work that could be implemented in the near future, as the same DTQWs can

be used to obtain more data. In addition, there is also the behaviour of the simulator to

consider and anomalous results that arise in that system, and crucially why they may occur.
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Appendix

A.0 Spinors

A spinor is a 4-component column matrix. Crucially, it is not a vector and does not behave

like one.

Consider the following analogy in order to develop some intuition about (2-d) spinors. A

vector represents the magnitude and direction of some quantity. It can be represented on

the Cartesian plane by an arrow pointing in some direction. By extension, a spinor can be

thought of as a flag pole and the orientation of the flag on the pole is equivalent to the

direction component of a vector.

Figure A.1: Illustration of a flag in a 2-d plane, used as a loose analogy for a spinor. The
flag itself can rotate about the pole (indicated by the dark blue arrow) and the pole itself

can change direction.

This orientation of the flag is the key property of a spinor that makes it such a useful construct.

Naturally, this means it lends itself well to describe spin-1/2 particles.

Spinors have some unusual properties, one of which being that in order for it to return to it’s

original position, a spinor must undergo a rotation of 720◦ (as opposed to 360◦).

Technically speaking, there is a slight distinction between Dirac spinors and bi-spinors.

However, for the purposes of this text the terms are used interchangeably. The strict definition

is: a Dirac spinor is a bi-spinor in the Dirac convention for the γ matrices.
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A.1 Feynman Path Integral and Propagator

Here, the conection between the propagator and Feynman path integral shall be motivated.

Consider the expectation value of some operator Â in quantum mechanics

〈ψ| Â |ψ〉 . (A.1)

This can be generalised to include time-dependence in the form of a transition amplitude

〈qf | Û(tf , ti) |qi〉 with tf > ti, (A.2)

where Û(tf , ti) is the time evolution operator, qf and qi are the final and initial position

states respectively. It is this transition amplitude that is also known as the propagator or

Feynman’s kernel.

The modulus squared of the propagator gives the probability of finding the particle in question

at position qf , at a final time tf , given that it started at a position qi at time ti. So it is a

useful quantity to know - it contains the dynamics of the system.

Consider calculating the transition amplitude for a state |ψi〉 at time ti that evolves to some

state 〈ψf | at time tf . Re-iterating that tf > ti.

〈ψf | Û(tf , ti) |ψi〉 =

∫
dqidqf 〈ψf |qf 〉 〈qf | Û(tf , ti) |qi〉 〈qi|ψi〉 . (A.3)

Identifying that 〈ψf |qf 〉 = ψ∗(qf ) and 〈qi|ψi〉 = ψ(qi).

Feynman’s path integral method shall now be used to compute this quantity.

In quantum mechanics, to find the amplitude of a given outcome, we sum over all ways a

process can take place. As a qualitative description of the path integral method, consider the

famous double-slit experiment.
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Source

P

Figure A.2: Double-slit experiment set-up. A source produces identical particles that travel
through a screen with two slits, the particles can travel through either of the slits and arrive

at some point P on the final screen which is a detector.

Figure A.2 shows a basic version of the double-slit experiment. When the particles encounter

the slits their path changes until they arrive at some final position on the detector. As a

thought experiment, an additional screen with slits could be added, and another one, and

another. There could be many, or even an infinite number of screens added with many or an

infinite number of slits, between the source and the detector. Figure A.3 illustrates this.

Source

P

Figure A.3: Double-slit experiment with additional screens and slits (red).

As can be seen the path for the particles now changes as there are more slits to encounter.

This addition of screens/slits is in essence the principle of a Feynman path integral. By

adding more of them, this acts as a form of discretisation for the particle’s path, where you

are summing over all paths the particle can take. The more you add, the more the sum

represents an integral and thus the more you refine your approximation of the possible paths

of the particle.
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For our purposes, a time-independent Hamiltonian shall be used to compute the propagator,

i.e.

Û(t1, t2) = e−i
Ĥ
~ (t1−t2) . (A.4)

The first step is to slice time into infinitesimal intervals:

Û(t2, t3)Û(t3, t4) = Û(t2, t4) (A.5)

from causality.

Equation (A.2) becomes

〈qf | Û(tf , ti) |qi〉 = 〈qf | Û(tf , tN )...Û(t2, t1)Û(t1, t2) |qi〉 . (A.6)

The time intervals are taken to be ε:

tn − tn−1 = ε =
tf − ti
N − 1

> 0. (A.7)

Inserting a complete set of states∫ +∞

−∞
dqn |qn〉 〈qn| = 1 n = 1, ..., N (A.8)

between each pair of Ûs.

〈qf | Û(tf , ti) |qi〉 =

[
N∏
n=1

∫ +∞

−∞
dqn

]
〈qf | Û(tf , tN ) |qN 〉 〈qN | ... |q2〉 〈q2| Û(t2, t1) |q1〉

〈q1| Û(t1, ti) |qi〉 .
(A.9)

The aim is to compute the infinitesimal amplitude,

〈qn+1| Û(tn+1 = tn + ε, tn) |qn〉 = 〈qn+1| e−
iĤ
~ ε |qn〉 . (A.10)

Let us assume the Hamiltonian takes a standard form with the kinetic term K(p̂) dependent

only on the momentum and the potential term V (q̂) dependent only on the position,

Ĥ = K(p̂) + V (q̂). (A.11)

The exponentials can be split using the Campbell-Baker-Hausdorf formula, such that

e−
i(K( ˆ(p)+V ˆ(q)))

~ ε = e−
iK(p̂)

~ εe−
iV (q̂)

~ εe
ε2[K(p̂,V (q̂))]

2~2 +... (A.12)

taking ε to 0, sub-leading terms are ignored.

There are now two exponentials that act on the states, since the kinetic terms depend on p̂,
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a complete set of momentum eigenstates are introduced.

〈qn+1| Û(tn+1 = tn + ε, tn) |qn〉 =

∫ +∞

−∞
dpn+1 〈qn+1| |pn+1〉 〈pn+1| e−

iK(p̂)
~ εe−

iV (q̂)
~ ε |qn〉

=

∫ +∞

−∞
dpn+1 〈qn+1|pn+1〉 〈qn+1|pn+1〉 e−

iK(pn+1)

~ εe−
iV (qn)

~ ε (A.13)

∫ +∞

−∞

dpn+1

2π~
exp

(
− iε
~

(K(pn+1) + V (qn)) +
iε

~
pn+1

qn+1 − qn
ε

)
(A.14)

where the term in the middle, (K(pn+1) + V (qn)) is identified with H(qn, pn+1).

Defining q0 = qi and qN+1 = qf and plugging into (A.9)

〈qf | Û(tf , ti) |qi〉 =

∫ [ N∏
n=1

dqn

][
N+1∏
n=1

dpn
2π~

]
exp

(
N∑
n=0

iH(qn, pn+1)

~
ε+

iε

~
qn+1 − qn

ε
pn+1

)
.

(A.15)

Taking N →∞ and therefore ε→ 0 gives the Feynman path integral in phase space

〈qf | Û(tf , ti) |qi〉 =

∫
q(ti)=qi,q(tf )=qf

D′qDpe−
i
~
∫ tf
ti

(H(q,p)−pq̇)dt (A.16)

where D′qDp is the measure, [
N∏
n=1

dqn

][
N+1∏
n=1

dpn
2π~

]
with the prime meaning there is one less q integral than p.

In order to get the path integral in position space, assume a standard kinetic term

K (p̂) =
p̂2

2m
. (A.17)

Then the p integral in equation (A.14) is Gaussian

∫ +∞

−∞

dpn+1

2π~
e
−iε
~

(
p2n+1
2m

+V (qn)−pn+1
qn+1−qn

ε

)
(A.18)

=

∫ +∞

−∞

dp′n+1

2π~
e
−iε
~

(
(p′n+1)

2

2m
+V (qn)−m

(qn+1−qn)2

2ε2

)
(A.19)

=

√
m

2πi~ε
e
−iε
~

(
V (q)−m (qn+1−qn)2

2ε2

)
. (A.20)
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This gives,

〈qf | Û(tf , ti) |qi〉 =

[
N∏
n=1

dqn

√
m

2πi~ε

]√
m

2πi~ε
exp

(
N∑
n=0

iε

~

(
m

2

(
qn+1 − qn

ε

)2

− V (q)

))
(A.21)

where the exponent is the action S(q) as N →∞ (ε = 0).

S(q) =

∫ tf

ti

dtL(q, q̇) =

∫ tf

ti

dt
(m

2
q̇2 − V (q)

)
, (A.22)

L is the Lagrangian.

This gives the Feynman path integral in configuration space1

〈qf | Û(tf , ti) |qi〉 =

∫
q(ti)=qi,q(tf )=q(f)

Dqe i~S(q) (A.23)

where again, Dq is the measure

Dq =

[
N∏
n=1

dqn

√
m

2πi~ε

]√
m

2πi~ε
. (A.24)

Thus the propagator (transition amplitude) is obtained as a Feynman path integral.

1A configuration space is the vector space of the generalised coordinates of a system.
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A.2 Device Topologies

Figure A.4: Topology (connectivity) of qubits in ibmq santiago. This has the same
topology as a straight line.

Figure A.5: Topology (connectivity) of qubits in ibmq quito. This has the same topology
as a “T” shape.

77



A.3 8-node Quantum Walk Circuit

Increment Decrement

. . .

. . .

. . .

. . .

|0〉

|0〉 X X

|0〉 X X

|0〉 H X X

1
Figure A.6: Quantum circuit of [58]. Figure depicts one step of the walk. Increment and

Decrement gate sets are repeated for the desired number of steps and qubits 1-3 are used to
determine the position by evaluating the value of the register.
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A.4 16-node Quantum Walk Circuit

Increment Decrement

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

Position

Position X X

Position X X

Position X X

Coin H X X

1Figure A.7: Quantum circuit for the 16-node DTQW using 5 qubits. Figure depicts one
step of the walk. Qubits 1-4 are used to evaluate the position of the walker and qubit 5 acts

as the coin.
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A.5 Fock states and Coherent states

A Fock state is a representation for a state with a well-defined but variable number of particles.

Fock states inhabit a Fock space.

In layman’s terms, a Fock state can be motivated by the following. Ordinarily, when

considering a system in Hilbert space, the state of each particle is considered individually,

i.e. what state is this particle in? Whereas in Fock space, the suitable question to ask is

how many particles are in a particular state? This becomes a useful rephrasing when dealing

with many and a varying number of particles within a given system.

For a more rigorous description, let us consider a quantised Hamiltonian describing an

electromagnetic field in the mode l.

Ĥl = ~ωl
(
âlâ
†
l +

1

2

)
(A.25)

with

[âl, â
†
l ] = 1 (A.26)

where âl and â†l are the annihilation and creation operators respectively.

The Schrödinger equation for this system is

Ĥl |φnl〉 = Enl |φnl〉 . (A.27)

The index nl characterises each eigensolution.

This system is simply a quantum harmonic oscillator (QHO) and so the solutions (eigenvalues,

eigenvectors etc.) are well-known.

The eigenvalues of Ĥ are

Enl = ~ωl
(
nl +

1

2

)
with nl = 0, 1, 2... (A.28)

The eigenstates are related by

âl |φnl〉 =
√
nl |φnl−1〉 , (A.29)

â†l |φnl〉 =
√
nl + 1 |φnl+1〉 . (A.30)

The lowest energy state, i.e. the ground state must satisfy

âl |φnl=0〉 = 0. (A.31)

With this information it is possible to generate all other states. Using the above relation and

the action of the annihilation operator on the eigenstate of nl = 0, as well as normalising

gives
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|φnl〉 =

(
â†l

)nl
√
nl!
|φnl=0〉 . (A.32)

In other words, we have obtained a complete basis for the state-space.

Note that eigenstates of the Hamiltonian are also eigenstates of the number operator N̂ ,

where

N̂l
.
= â†l âl (A.33)

and

N̂l |φnl〉 = nl |φnl〉 . (A.34)

The states |φnl〉 are often denoted as |nl〉 and are known as Fock states or number states.

The Fock state |nl〉 has a well-defined energy which is given by

Enl = ~ωl
(
nl +

1

2

)
, (A.35)

E0 =
~ωl
2
, (A.36)

Enl − E0 = nl~ωl. (A.37)

A coherent state is the quantum mechanical equivalent of a classical monochromatic electromagnetic

wave. In the number state representation, coherent states are given by

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (A.38)

where |n〉 are the Fock states and α is a dimensionless complex number that specifies the

complex field amplitude in photon number units. Coherent states are not orthogonal to each

other nor are they eigenstates of the Hamiltonian.
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A.6 Fidelity over 8 days in August 2021

Due to the previously mentioned sensitivity of transmons to environmental factors (see

Chapter 7), this can lead to variations in the amount of noise and even errors occurring

during certain executions. Figure A.8 in shows the fidelity for an 8 step, 16-node DTQW,

run on ibmq_santiago (against the qasm_simulator) for 8 days in August 2021. As can be

seen, the fidelity is relatively constant for most days, with the error bars overlapping with the

average fidelity (0.35) for 5 out of the 8 days, with the final day (Tuesday 10/08/21) being

slightly above this average. However, there are two notable exceptions, Wednesday 04/08/21,

where the fidelity has a large decrease in magnitude to a value of 0.19, and Thursday 05/08/21

where the fidelity is considerably higher than other days, with a value of 0.43. However, recall

the meaning of the fidelity for this work, a value of 0.5 shows no correlation and a value of

0 indicates anti-correlation. So, whilst it has been established that the backend performs

poorly, the interesting case is for the fidelity on Wednesday 04/08/21. Figure A.9 in shows

the results for each day presented as histograms, panel b) shows the result for Wednesday

04/08/21. It is clear to see this drop in fidelity when compared with the other panes. The

interesting effect to note is the clustering of states on this day. This is the cause of the slightly

anti-correlated fidelity and the underlying physical cause is assumed to be (multiple) bit-flip

errors, as mentioned in the conclusion. However, this is not to say there could not be other

sources of errors that have yet to be explored and lie beyond the scope of this current work.

For example, the effect of variations in temperature inside the dilution refrigerators (that

house the quantum computers), on results such as these. Furthermore, this effect may have

occurred on other days, such as Sunday 08/08/21 and Monday 09/08/21, but it is hard to

conclusively discern this clustering from the random noise, particularly for the latter day.
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Figure A.8: Fidelity for 8 step, 16-node DTQW (red) run over 8 days in August 2021.
Magenta dashed-line indicates the average fidelity over those 8 days. Error bars represent

standard error. Dates are formatted dd/mm/yy.
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b)a)

c) d)

e) f)

g) h)

Figure A.9: Corresponding probability distributions for the 8 step, 16-node DTQW run
over 8 days in August 2021, run on Santiago. Panels a) to h) correspond to dates 3 to 10 of

August 2021 respectively.
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