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ABSTRACT

Research on cross-linguistic differences in morphological paradigms reveals a wide range of

variation on many dimensions, including the number of categories expressed, the number of

unique forms, and the number of inflectional classes. This typological variation is surprising

within the approach that languages evolve to maximise learnability (e.g., Christiansen and

Chater 2008; Deacon 1997; Kirby 2002). Ackerman and Malouf (2013) argue that there is

one dimension on which languages do not differ widely: in predictive structure. Predictive

structure in a paradigm describes the extent to which forms predict each other, sometimes

called i-complexity. Ackerman and Malouf (2013) show that although languages differ ac-

cording to surface paradigm complexity measures, called e-complexity, they tend to have low

i-complexity.

While it has been suggested that i-complexity affects the task of producing unknown forms

(the Paradigm Cell Filling Problem, Ackerman, James P. Blevins, et al. 2009; Ackerman and

Malouf 2015), its effect on the learnability of morphological paradigms has not been tested.

In a series of artificial language learning tasks both with human learners and LSTM neural

networks, I evaluate the hypothesis that learners are sensitive to i-complexity by testing how

well paradigms which differ on this dimension are learned.

In Part 1, I test whether learners are sensitive to i-complexity when learning inflected forms



in a miniature language. In Part 2, I compare the effect of i-complexity on learning with that

of e-complexity and assess the relationship between these two measures, using randomly con-

structed paradigms. In Part 3, I test the effect of i-complexity on learning and generalisation

tasks, manipulating the presence of extra-morphological cues for class membership.

Results show weak evidence for an effect of i-complexity on learning, with evidence for

greater effects of e-complexity in both human and neural network learners. A strong nega-

tive correlation was found between i-complexity and e-complexity, suggesting that paradigms

with higher surface paradigm complexity tend to have more predictive structure, as mea-

sured by i-complexity. There is no evidence for an interaction between i-complexity and

extra-morphological cues on learning and generalisation. This suggests that semantic or

phonological cues for class membership, which are common in natural languages, do not

enhance the effect of i-complexity on learning and generalisation. Finally, i-complexity was

found to affect generalisation in both human and neural network learners, suggesting that

i-complexity could, in principle, shape languages through the process of generalisation to

unknown forms.

I discuss the difference in the effects of i-complexity on learning and generalisation, the

similarities between the effect of i-complexity in human learners and neural networks, and

cases the two types of learner differed. Finally, I discuss the role that i-complexity is likely

to have in language change based on the results.
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GENERAL AUDIENCE ABSTRACT

Languages are thought to adapt to their learners’ cognitive abilities and to simplify over time.

Under this perspective, it is surprising that some languages seem very difficult to acquire.

For instance, nouns in many languages are modified to express additional information such

as the number of objects, the noun’s role in the reported action and its relationship to other

nouns in the sentence. Moreover, there could be several different ways to mark each type of

information, depending on the noun. In Greek, for example, nouns are modified for number

(singular or plural) but are also modified for whether the noun is the direct object of the

action (e.g., in the sentence “the girl eats the apple”, the apple is the direct object). A direct

object noun is modified with one of the endings -o, -on, -os or with no additional ending,

depending on the noun itself.

In this thesis I explore whether language learners benefit from cases where the way words

in the language are modified for marking specific information (for example a plural form of

a direct object noun) can be predicted based on how they are modified for marking other

types of information (the singular form of a direct object noun, for instance). Taking an

example from Greek, a direct object noun that is modified with the ending -on in singular,

is always modified with the ending -us as a direct object noun in plural, and not with any

other endings conveying the same information (-es, -is, -a or -i).



A language in which words can better predict how other words are modified to mark different

information is seen as less complex due to its predictive structure. Here, I test whether

languages featured with predictive structure are more easily learned than languages with

no such structure, all other things being equal. If language learners do use these predictive

relationships between words when acquiring a new language, even languages that seem very

complex at first can still be easily learned.

I explore this suggestion by training and testing learners on miniature artificial languages

that I designed. Half of the languages learners are trained on are featured with predictive

structure, and the other half do not. I then test if languages with the predictive structure were

indeed easier to learn. The learners in my experiments were human participants completing

the task on an online platform. In addition to these human learners, I also trained and tested

computational models of learning (neural networks) on the same languages.

My results show that the predictive structure of languages does not strongly affect the diffi-

culty of learning the language. In most of the tasks I used here, the computational learning

models and human learners displayed similar weak effects of the predictive structure on their

learning. I conclude that probably other features of the language affect its learnability more

than its predictive structure.
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Chapter 1

General Introduction

Languages differ widely in their morphological systems, including in their inflectional paradigms;

some languages do not use morphology to mark grammatical information at all (e.g., Man-

darin) whereas others make use of inflectional morphology to mark dozens of grammatical

functions (e.g., Arabic).

Linguistic variation and typological patterns are often explained in terms of the learnability

of the system. This link is almost intuitive; as put by Elsner et al. (2019): “all natural

languages must be learned, and ‘unlearnable’ linguistic systems cannot survive. Therefore,

the learning mechanism provides constraints on what sorts of languages can exist in the

world.” An evolutionary approach to language change redefines this link, through the gen-

eral hypothesis that languages evolve to maximize their learnability (e.g., Christiansen and

Chater 2008; Deacon 1997; Kirby 2002). As natural languages are passed from person to

person (a process referred to as cultural transmission, e.g., Kirby, Cornish, et al. (2008))

languages become more and more learnable. Under this approach, high linguistic variation

is surprising, especially the existence of large morphological systems such as in Arabic; we

would expect to see shared features across languages that make them more learnable. For

instance, dominant word orders in natural languages were shown to be more learnable (e.g.,

Culbertson, Smolensky, et al. 2012).

An inductive bias for simplicity is often proposed as shaping languages (Chater, Clark,

et al. 2015; Chater and Vitányi 2003; Culbertson and Kirby 2016; Feldman 2003; Kirby,

1



Tamariz, et al. 2015; Pothos and Chater 2002). According to this view, simplicity is a

general principal guiding learning across cognitive domains: learners are biased towards

inferring simpler hypotheses to explain observed data. In the linguistic domain, this principal

has been described as a preference for languages whose grammars can be expressed more

compactly (Culbertson and Kirby 2016). The notion of linguistic complexity is not easily

definable or measurable. Specifically, in morphology, there is no widely accepted measure

of morphological complexity (e.g., Baerman et al. 2015; Sampson et al. 2009). Different

definitions of complexity will make different predictions about what is complex and therefore

what should be hard to learn. Hence, we need to look at measures of complexity.

1.1 Measures of morphological complexity

In this section I review two groups of measures of morphological complexity suggested in the

literature. The aim of this overview is to explore the interaction between complexity and

the learnability of morphological systems.

1.1.1 General measures of morphological complexity

Systems with inflectional morphology are thought to be more complex than ones without in-

flectional morphology (McWhorter 2001), since inflection systems usually create phenomena

that add processing load, such as morphophonemics, supplition, declensions with arbitrary

allomorphy and agreements.

Counting the grammatical categories that a lexeme in the language can be marked with often

serves as a proxy for the complexity of the system (Bickel and Nichols 2013; Shosted 2006;

Xanthos and Gillis 2010); the more information is marked using inflection, the more complex
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the system is. Bickel and Nichols (2013) quantify the degree to which verbs can be marked

by inflectional categories (e.g., tense, voice and agreement). Their measure, categories per

word (cpw), is based on maximally inflected verb forms, and give the number of inflectional

categories to the verb.

Other, corpus-based measures, were suggested to compute a language’s morphological com-

plexity directly based on texts rather than relying on experts’ judgments. Type-token ratio

(TTR) (Kettunen 2014; Malvern et al. 2004), reflects the richness of the morphological

paradigm, by calculating the ratio of the number of distinct words (types) to the total num-

ber of words (tokens); the more information is marked morphologically in the language, the

more different types are expected to be in the text.1

Juola (1998) and Juola (2008), suggests a measure for morphological complexity that uses

the notion of Kolmogorov complexity (Chaitin 1988; Kolmogorov 1968), according to which

the complexity of an object is the length of its shortest description (i.e., a compression of

the language). To measure morphological complexity this method computes the ratio of

the length of a compressed language, to the length of a compressed deformed version of

the language; in the deformed version, all words are replaced with integers so that each

occurrence of a word is replaced with the same integer. This ratio, then, measures how

much information is stored within words in the language (via morphology), as in the original

text, versus the information that is conveyed using separate words in the lexicon (the only

information in the deformed version). Higher ratios would represent languages with richer

and more complex morphology.

Another method using the notion of Kolmogorov complexity was suggested by Goldsmith

(2001). Using minimum description length (MDL, Rissanen 1984) to approximate Kol-

1A moving-average type/toke ratio (MATTR) is used to control for corpus length (Covington and McFall
2010). MATTR is computed as the mean TTR’s of moving windows in the text (i.e., for a window size of
500 words, for instance, it calculates the TTR of words 1-500, 2-501, 3-502 etc.).
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mogorov complexity, Goldsmith (2001) proposes a method that morphologically analyses

text using automated techniques to form a compressed representation of the language. The

language representations in this case are lexica consisting of the stems in the language, and

the distribution of affixes each stem can take (called ”signatures”). A metric for morpholog-

ical complexity based on this method was proposed by Bane (2008) and can be measured as

in 1.1.
DL(Affixes) +DL(signatures)

DL(Affixes) +DL(signatures) +DL(stems)
(1.1)

Where DL(x) is the description length of x. If the total complexity of the lexicon is dis-

tributed between its stems, affixes and signatures, its morphological complexity would be

the complexity of its affixes and their distribution (signatures); for languages with fewer

inflections, most of the information (complexity) would be encoded in different stems rather

than in its affixes, leading to low values of this measure.

All of the measures presented above count or compute morphological complexity in the spirit

of McWhorter (2001) intuition, namely that a linguistic system is more morphologically

complex if it makes more extensive use of inflectional morphology. Indeed, these measures

were found to correlate with each other when applying them to number of different languages

and texts (Bane 2008; Bentz et al. 2016; Juola 2008; Kettunen 2014). Measures following this

notion of complexity display high variation in morphological systems in natural languages

(Ackerman and Malouf 2013). Therefore these measures offer little explanation, in terms of

learnability, for the observed typological variation.

Learnability, however, is not the only factor shaping linguistic systems: languages are used

for communication, and linguistic systems have been claimed to reflect a trade-off between

inductive biases (e.g., for simplicity) and pressure from communication (e.g., minimizing

ambiguity, Kemp and Regier 2012). This trade-off has been shown in a variety of linguistic
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domains, where natural languages show a near optimal balance between these two pressures

(e.g., Regier et al. 2015; Xu et al. 2016; Zaslavsky et al. 2020). Evidence for this trade-off

has also been found in experimental studies manipulating the relative importance of learning

and communication (e.g. Kirby, Tamariz, et al. 2015; Motamedi et al. 2019; Silvey et al.

2015).

While some of the variation in natural languages can be theoretically explained by the

simplicity-informativeness trade-off (number of inflectional categories as measured by Bickel

and Nichols (2013) for example, adds information to the verb), some factors that show high

variation in morphological systems are left unexplained. For instance, number of inflectional

classes vary significantly across languages (Greville G. Corbett 2005). The complexity that

originates from high number of inflection classes does not add to the informativity of the

system (Baerman et al. 2010).2.

Going back to the discussion on morphological complexity and its reflection in typological

variation, a second notion of complexity suggested in the literature concerns the predictive

structure of morphological paradigms.

1.1.2 Predictive structure as a measure of morphological complex-

ity

A separate approach for defining morphological complexity is the Word and Paradigm family

of theories. Under this approach, the word, rather than stems and affixes, is the basic unit

of morphological structure, and the focus of analysis is on the relationships between forms

of the lexeme (Ackerman, James P. Blevins, et al. 2009; James P. Blevins 2006; G. T. Stump

2However, a number of authors have suggested that gender systems and inflection classes facilitate com-
munication through assisting the hearer in comprehension of the noun that follow the gender-matched de-
terminer (e.g., Dye et al. 2017)
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2001). The notion of morphological complexity reflected in these measures is the difficulty

with which language users can predict an unobserved inflected form of a lexeme, based

on knowledge of another inflected form of the lexeme. This is the Paradigm Cell Filling

Problem (PCFP) (Ackerman, James P. Blevins, et al. 2009). To illustrate, take for example

the nominal plural paradigm in Modern Greek (Table 1.1), that expresses four cases, with a

series of different morphemes that depend on the inflectional class of the word. Morphological

complexity in the sense of solving the PCFP, can be exemplifies by the difficulty in guessing

how a lexeme is inflected for one grammatical category (a combination of number and case),

if the inflected form in another category is known. For instance, the uncertainty in guessing

the form of a lexeme in Plural.Accusative, if it is known that the lexeme takes the suffix -es

in Plural.Nominative is low (it should take -es), whereas the uncertainty based on knowledge

that the lexeme takes -on in Plural.Genitive is high.

Plural
class Nom Gen Acc Voc
1 -i -on -us -i
2 -es -on -es -es
3 -es -on -es -es
4 -is -on -is -is
5 -a -on -a -a
6 -a -on -a -a
7 -i -on -i -i
8 -a -on -a -a

Table 1.1: Modern Greek plural nominal inflectional classes (Ackerman and Malouf 2013
based on Ralli (2002)). Columns give the inflectional endings for nouns in different gram-
matical roles (nominative, genitive, accusative and vocative), for plural; rows show the 8
inflectional classes in Modern Greek.

Measures of morphological complexity reflecting this view, include set-theoretic (G. Stump

and R. A. Finkel 2013) and information-theoretic (Ackerman and Malouf 2013; Bonami and

Beniamine 2016; Cotterell, Kirov, Hulden, et al. 2019; Sims and Parker 2016; G. Stump

and R. A. Finkel 2013) measurements to examine the predictability of forms in inflectional
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paradigms.

G. Stump and R. A. Finkel (2013) define the term principal parts as the smallest set of

inflected forms that needs to be known in order to infer correctly all other inflected forms

for the same lexeme. In other words, principal parts are the smallest number of forms that

allow the language user to infer the lexeme’s inflection class; for languages with no inflection

classes, where all lexemes of the same part of speech inflect alike, there is no use of principal

parts as the entire paradigm can be deduced even without knowledge of any form of the

lexeme (only to deduce its stem or root).

Ackerman and Malouf (2013) proposed a measure with the same objective, reflecting the

difficulty of solving the PCFP, using the notion of entropy (Shannon 1963) from information

theory, and name it integrative complexity (i-complexity). In general, entropy reflects the

amount of uncertainty in predicting a value for an object X, based on the probabilities of x,

the values X can take . Defined as in 1.2.

H(X) = −
∑
x∈X

P (x)log2P (x) (1.2)

Take for instance X as the part of speech of a word in a text in English and x as the possible

values it can take (noun, pronoun, verb, adjective etc.). If noun is the most common part of

speech in the text with the rest of options appearing in low probability, the uncertainty or

entropy of X is low. However, if all possible parts of speech have the same probability (i.e.,

appearing in the text in similar proportions), the uncertainty and entropy of X is high.

Specifically, Ackerman and Malouf (2013) use the notion of conditional entropy of forms

in the paradigm for measuring morphological complexity. Conditional entropy reflects the

uncertainty in predicting the value of an object Y , given the value of another object X, and

can be defined as in 1.3.
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H(Y |X) = −
∑
x∈X

∑
y∈Y

P (y, x)log2P (y|x) = −
∑
x∈X

∑
y∈Y

P (y, x)log2
P (y, x)

p(x)
(1.3)

Where P(y,x) is the joint probability of both X and Y to be realized with the values x and y

respectively. As in the example with English parts of speech, H(Y|X) would be the entropy

of the part of speech of word Y given the part of speech of the preceding word, X. P(y,x)

would be the joint probability over all values of X and Y to follow each other in the text.

To measure morphological complexity of an inflectional paradigm, Ackerman and Mal-

ouf (2013) propose using average conditional entropy over all inflection categories in the

paradigm. Conditional entropy reflects the uncertainty in predicting how a lexeme is real-

ized in inflection category Y, given the realization of the lexeme in the inflection category X;

here P(y,x) indicates the joint probability of two inflection categories in the paradigm being

realized as forms y and x, respectively. For illustration, looking at the nominal inflection

paradigm in modern Greek (Table 1.1), the uncertainty in guessing the realization of a lex-

eme in plural.Accusative is high (it can take either one of the affixes -us, -es, -is, -a or -i),

however, if the realization of the lexeme in Plural.Nominative is known (e.g., it takes the

suffix -is), then the uncertainty is much lower (it takes -is in Plural.Accusative as well).

Average conditional entropy is the mean conditional entropy over all pairs of inflection cat-

egories in the paradigm, as in 1.4.

∑
Y ∈G

∑
Y ∈G,X∈G,X≠Y H(X|Y )

NG(NG − 1)
(1.4)

Where G is the set of inflectional categories in the paradigm and NG is their total number.

I-complexity has been proposed as a measure of morphological learnability within the Word-

and-Paradigm approach. However, some criticize the use of average conditional entropy as
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a formal model of i-complexity, as proposed by Ackerman and Malouf (2013). The criti-

cism concerns both averaging the conditional entropy of the paradigm and segmenting the

inflected forms into stems and affixes (or exponents) for applying analogy over affixes only

(as exemplified in Table 1.1). In this context, sequence-to-sequence computational models

were proposed to simulate the difficulty of predicting inflections of a lexeme (i.e., estimat-

ing i-complexity) as a more fine-grained approximation than average conditional entropy.

The task of morphological reinflection (i.e., the conversion of one inflected form to another)

is commonly used in these models as a computational formalization of morphological pre-

dictability (e.g., Cotterell, Kirov, Hulden, et al. 2019; Cotterell, Kirov, Sylak-Glassman, et

al. 2016; Malouf 2017, see Elsner et al. (2019) for discussion).

While acknowledging this criticism over the use of average conditional entropy as a measure

of i-complexity, the emphasis in this thesis is on testing whether inter-predictablility of forms

in an inflection paradigm, as a main aspect of i-complexity, affects the learnability of the

paradigm.

Ackerman and Malouf (2013) distinguish i-complexity from measures that reflect the amount

of information that is conveyed using morphology and the strategies employed to encode this

information, including allomorphy over inflection classes. They refer to the second type of

complexity as enumerative complexity (e-complexity). Over different languages it has been

shown that i-complexity is consistently low, while e-complexity varies widely (Ackerman and

Malouf 2013; Bonami and Beniamine 2016; Cotterell, Kirov, Hulden, et al. 2019; G. Stump

and R. A. Finkel 2013; Wilmoth and Mansfield 2021). Ackerman and Malouf (2013) calculate

i-complexity for inflectional paradigms in a set of 10 geographically and genetically varying

languages. The languages’ e-complexity varied widely, while their i- complexity values were

under 1 bit across the board. A simulation analysis performed on one of the languages

exhibiting high e-complexity (Chiquihuitlàn Mazatec) showed that the i- complexity of the
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actual paradigm was lower than the i-complexity values for random permutations of that

paradigm. Based on these findings, Ackerman and Malouf postulate the Low Conditional

Entropy Conjecture; they suggest that the inflectional paradigms of natural languages are

organized in such a way as to minimize their i-complexity. The Low Conditional Entropy

Conjecture helps reconcile the surprising variation found in languages with respect to their

e-complexity; inflectional systems of natural languages may be organized according to their

i-complexity rather than other parameters.

Does this typological pattern reflect an inductive bias, i.e., are there advantages in learn-

ing for low i-complexity languages? The central question in this thesis is whether low i-

complexity facilitate learning of inflectional paradigms.

1.2 Previous evidence for the effects of i-complexity on

learning

The high variation in inflectional paradigms of natural languages is intuitively in conflict with

the general hypothesis that languages evolve to maximize their learnability (e.g., Christiansen

and Chater 2008; Culbertson and Kirby 2016; Deacon 1997; Kirby 2002; Kirby, Cornish, et

al. 2008. However, the Low Conditional Entropy Conjecture (Ackerman and Malouf 2013)

might suggest that inflectional paradigms are organized according to their i-complexity in

order to accommodate for the users’ bias for simplicity.

A separate line of investigation has found that information-theoretic measurements of inflec-

tional paradigms predict speakers’ response times in lexical decision tasks (del Prado Martın

et al. 2004; Milin, Đurđević, et al. 2009), suggesting a link between measures of this notion

and language processing.
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Support for the hypothesis that low i-complexity facilitates learning can be inferred from

the role of analogy in language learning. Recall that i-complexity represents the extent

to which inflectional forms in a paradigm can predict one another. One way for this to

happen is through analogy; if a word behaves like another in one inflectional category, then

by analogy it will behave like that word in another inflectional category (Ackerman and

Malouf 2013; James P. Blevins 2006; James P Blevins et al. 2016; Malouf 2017; G. T. Stump

2001). Exemplar-based models of classification (e.g., Medin and Schaffer 1978; Nosofsky

1988; E. E. Smith and Medin 2013 and more recently Ambridge 2020) suggest that human

learners store exemplars in memory and categorization decisions are made by relying on

similarities between target and stored items. Indeed, a number of previous studies suggest

that adults and children will choose inflections for novel words based on their phonological

similarity to familiar words (e.g., Ambridge 2010; Milin, Keuleers, et al. 2011). Although

these accounts mostly look at similarities in stems rather than similarities in inflectional

behaviour, as represented by i-complexity, they are compatible with the idea that learners

build relations between forms in part by analogy.

Furthermore, there is evidence that i-complexity affects the generalization of the paradigm

to novel words. Seyfarth et al. (2014) tested Ackerman, James P. Blevins, et al. (2009)

hypothesis that i-complexity has an effect on the ability of human learners to solve the

Paradigm Cell Filling Problem. They compared the ability of human learners to predict

novel inflected forms in low vs. high i-complexity input. They trained participants on

an artificially constructed nominal inflectional paradigm in which nouns were marked for

three grammatical numbers (singular, dual and plural) according to one of two noun classes

(Table 3.2(a)). In the test phase, they asked participants to generate inflected forms for a

novel lexeme given that lexemes’ inflected form in another grammatical number. In some

trials, the required form could be predicted from the given form (predictive trials), while in
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others it could not be (non- predictive trials). In Table 3.2(a) for example, being prompted

with a novel singular form marked with -yez allows the learner to predict what form the

lexeme takes in the dual (-cav). However, knowing the form in plural is not predictive of

the form in dual. They found that participants’ performance differed across predictive and

non-predictive trials, showing that learners were indeed able to use the predictive structure

to generate a correct novel form. In a second experiment, Seyfarth et al. (2014) tested

whether predictive information facilitated generalization to novel stems in a larger paradigm

(Table 3.2(b)). They found that learners made less use of predictive information in this

larger paradigm: learners tended to inflect novel stems with the most frequent marker (e.g.,

they used the suffix -cav to mark dual regardless of class).

Table 1.2: Artificially constructed nominal inflection paradigms used in Seyfarth et al.
(2014).

Singular Dual Plural
noun class 1 -yez -cav -lem
noun class 2 -taf -guk -lem

(a) Paradigm with two noun classes (their Experiment 1).
Singular Dual Plural

noun class 1 -taf -guk -lem
noun class 2 -yez -cav -lem
noun class 3 -yez -cav -nup

(b) Paradigm with three noun classes (their Experiment 2).

Seyfarth et al. (2014) show that learners are able to generalize inflectional paradigm based

on predictive structure, suggesting that low i-complexity can be used for solving the PCFP.

I attempt to explore whether the typological patterns of i-complexity reviewed above reflect

an inductive bias through testing it with two types of learners, human learners and LSTM

neural networks, in learning inflectional paradigms and generalizing them to novel forms.

Furthermore, to evaluate the effect of i-complexity on learning inflectional paradigms, I

compare its effect with the effect of e-complexity, using a measure I propose here. In the
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next section I motivate each of these main exploratory themes.

1.3 Three main exploratory themes

1.3.1 The task of learning inflectional paradigms

The Paradigm Cell Filling Problem (Ackerman, James P. Blevins, et al. 2009) reflects the

task that the language user faces when having to produce a completely novel form based

on other forms they have encountered. However, generalizing to completely novel forms is

an extreme case of a much more general problem that language learners face. In addition

to generalizing to completely novel forms, learners must generate (or retrieve) forms which

may have been encountered but have not yet been robustly acquired. My focus in this thesis

is on the more general task of retrieving low frequency forms; testing whether knowledge of

other inflected forms of the same lexeme assists in this task, when the inflectional paradigm

has predictive structure.

The general task language users and learners face can be used to test whether i-complexity

has a role in language change through the learners’ inductive bias. Based on evidence that

low i-complexity facilitates solving the Paradigm Cell Filling Problem (Seyfarth et al. 2014),

i.e., using familiar forms to predict new forms, I hypothesize here that it should, in principle,

facilitate learning forms under low exposure as well; learners can use the same strategy they

use when generalizing to completely novel stems to help generate (or recall) low frequency

forms that are not fully memorized.

For testing i-complexity as reflecting users’ inductive bias, I focus on estimating how easily

the paradigm is learned, i.e., measuring the amount of trials or the overall accuracy in

retrieving trained forms. In addition, I replicate Seyfarth et al. (2014) results on the effect
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of i-complexity in generalization with human learners and show similar results with neural

networks.

1.3.2 Using neural networks as psycholinguistic subjects

Throughout the thesis, I use LSTM networks as a supplement to human learners as an

additional means of testing the relative impact of i-complexity on paradigm learning. This

method is part of an attempt to systematically investigate the role i-complexity might have

in facilitating morphological learning.

The motivation to use neural networks as computational models of language acquisition and

processing dates back to Rumelhart and McClelland (1986), who attempted to present a

learning model for the case of English past tense. They argued against the hypothesis that

learning has to be ruled-based, presenting a neural network model whose task is to capture

both regular and irregular verbs under no explicit rules of inflection. However, their model’s

results were heavily criticized by Pinker and Prince (1988) who pointed out theoretical and

empirical failures of the model, demonstrating why it cannot be a representative model of

human cognition. Following the high impact criticism on Rumelhart and McClelland (1986)

model, linguists were reluctant to use neural networks as models of language learning, despite

the significant improvements to neural networks’ processing abilities (Jeffrey L. Elman 1990;

Jordan 1997) and the growing popularity they gained in cognitive science more generally

(Bechtel and Abrahamsen 1991; Jeffrey L Elman et al. 1996; McCloskey 1991).

More recently, there has been renewed interest in testing whether neural networks can repre-

sent human processing and learning in psycholinguistic tasks, following the success of these

models in the field of natural language processing (NLP). Specifically, recurrent neural net-

works with Long Short Term Memory units (LSTM), were shown to be capable of achieving
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performance comparable to humans in psycholinguistics tasks (e.g., Futrell et al. 2019; Gu-

lordava et al. 2018; Kirov and Cotterell 2018; Linzen et al. 2016; McCurdy et al. 2020).

For the task of representing hierarchical information in sequence processing, Linzen et al.

(2016) show that LSTM networks can in some cases predict long-distance subject-verb num-

ber agreement, in the presence of other potential agreement triggers (often called attractors)

intervening between the subject and verb; Gulordava et al. (2018) show that LSTMs trained

on four different languages can often accurately predict subject-verb agreement even when

they are not trained specifically on that task; Futrell et al. (2019) show that surprisal scores

of LSTMs (a measure of processing cost) paralleled preferences of human participants on

grammatical judgments task differentiating word-order alternations.

Kirov and Cotterell (2018) used recurrent neural networks with LSTM units in an encoder-

decoder architecture to test their performance in English past tense task. Their model show

near-ceiling performance in generalizing the regular past-tense suffix /-(e)d/ to held-out test

data. The errors produced by the model were similar in pattern to those made by human

language learners; the model, like humans, tend to overuse the regular past tense form.

However, studies testing results produced with Kirov and Cotterell (2018) model more closely

(Corkery et al. 2019) and studies testing the model on German number inflection (where

there is no regular form) (McCurdy et al. 2020), suggest that the model produces different

error patterns compared to human data.

Previous studies using recurrent neural networks with LSTM units suggest that neural net-

works have progressed since Rumelhart and McClelland (1986) in their ability to capture

human-like behaviour in language processing. Although there are still differences in the be-

haviour of humans and networks in linguistic tasks, there could also be advantages to the

use of LSTMs as psycholinguistic subjects.

I chose LSTMs as a reasonable default model that shows good results in a variety of language-
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relevant learning problems and allows what I considered to be a natural presentation of the

training data (i.e. as a sequence-to-sequence learning model). The important aspect of the

use of neural networks in this thesis is using the same architecture throughout to enable

the systematic examination of the effect of i-complexity in neural networks alongside human

learners. In Chapter 3 I perform a sensitivity analysis to some of the default parameters and

throughout I test a range of network sizes in case it affects the results.

In the thesis, I use LSTM neural networks as a convenient ‘ideal learner’, to test whether

i-complexity can in principle influence paradigm learnability. LSTM networks have number

of benefits when using them as ‘subjects’ in a psycholinguistic task. First, unlike human

learners, neural networks display less variation across different runs of the same model.

This is a very useful quality for subjects that limits the noise in the data originating from

uncontrolled factors. Second, the LSTM models allow us to increase the reliability of our

task; any patterns seen in both learners regarding the effect of i-complexity are less likely

to be a result of uncontrolled biases, but a result of our manipulation. Finally, directly

comparing performance of LSTMs and humans on a matched task opens up the possibility

that, to the extent that they show similar patterns of performance, LSTMs could be used as

a convenient tool to quickly generate predictions to be tested in further human experiments

on paradigm learning.

1.3.3 Measuring e-complexity

Testing the effect of i-complexity on learning as well as on generalization both with human

learners and neural network was done to systematically explore the role i-complexity has in

shaping inflection paradigms in natural languages. Another means for doing so is by compar-

ing the effects of i-complexity with effects of another measure of morphological complexity I
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propose here. Essentially, this measure captures a notion of morphological complexity that

accounts for the number of inflectional classes in a paradigm and the use of allomorphy

and is measured using the notion of entropy. Crucially, this measure does not capture the

predictability of forms based on other forms in the paradigm, as captured by i-complexity. I

refer to this measure as e-complexity throughout, borrowing this term from Ackerman and

Malouf (2013).

Ackerman and Malouf (2013) refer to e-complexity as the amount of information that is

conveyed by the inflectional paradigm and the strategies employed to encode this informa-

tion, including allomorphy over inflection classes. Since they do not explicitly suggest a

measure for e-complexity, I propose here to adopt their average cell entropy as a measure

for e-complexity. The average cell entropy captures the number of inflection classes and the

number of different variants to mark each grammatical category (e.g., cases in the Modern

Greek plural nominal inflection paradigm in 1.1).

Cell entropy is defined in (1.5) below, and is computed as the entropy of realizations for each

grammatical category, X.

H(X) = −
∑
x∈X

P (x)log2P (x) (1.5)

It captures the difficulty with which the language user can produce the correct realization of

a lexeme in a grammatical category X. Intuitively, grammatical categories that are realized

with a large set of optional forms (allomorphs), or do not have a dominant/frequent variant,

have higher average cell entropy, increasing uncertainty for the learner.

E-complexity is measured as the averaged cell entropy over all grammatical functions in a

paradigm as in (1.6).
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∑
X∈G H(X)

NG

(1.6)

Where G is the set of grammatical functions in the paradigm and NG is their total number.

Note that the difference between i- and e-complexity rests on the extent to which they take

into account the inter-predictability of forms across the paradigm. I-complexity is specifically

defined to measure the degree to which one form can be guessed based on another form, in

any other cell of the paradigm. In other words, it critically involves predicting the form

of a lexeme in some grammatical function based on the form of that lexeme in a different

grammatical function. By contrast, average cell entropy is only defined in terms of a single

grammatical function, i.e., it is based on what one can predict from the form of other lexemes

for that grammatical function.

The measure of e-complexity proposed here reflects a notion of morphological complexity

that lies between the two approaches reviewed above (Section 1.1). On the one hand, it

does not follow McWhorter (2001) notion, namely that the amount of information conveyed

using morphology (e.g., the size of the inflectional paradigm or the maximal number of

inflections a word can be marked with) reflects the complexity of the system. However, it

targets the complexity that is added to the system from the existence of inflection classes

and allopmorhy; one of the phenomena on which McWhorter bases his notion of complexity.

Moreover, it captures an aspect of complexity that does not add to the informativity of

the system (Baerman et al. 2010), such that it cannot be explained using the account of

an informativity-simplicity trade-off. On the other hand, e-complexity is measured based

on the notion of entropy, as does i-complexity. Yet, as noted before, e-complexity does not

capture the relations between forms in the paradigm, a crucial aspect of measures in the

Word and Paradigm approach (Ackerman, James P. Blevins, et al. 2009; James P. Blevins
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2006; James P Blevins et al. 2016; Elsner et al. 2019; G. T. Stump 2001).

1.4 Roadmap

In Part 1, I test whether learners are sensitive to i-complexity when learning inflected forms

in a miniature language. First, I give a short introduction to neural networks and present

the specific architecture I am using throughout the thesis. Using this architecture, I repli-

cate previous results with human learners showing an effect of i-complexity on generalizing

inflectional paradigms to novel items. This experiment serves as a first justification for us-

ing neural networks and the specific architecture. Second, I test the effect of i-complexity

on learning trained forms with neural networks and human learners on a matched artificial

language learning task. To increase the likelihood of finding an effect of i-complexity, the

learning task is designed to highlight the predictive structure of the paradigms; learners were

trained on some of the forms in the paradigm before having to learn other forms. Finally,

in order to evaluate results on i-complexity, I test the effect of e-complexity on learning

inflectional paradigm and compare it to previous results with i-complexity.

To preview the main results, findings show weak evidence for an effect of i-complexity on

learning, with evidence for greater effects of e-complexity in both human and neural network

learners.

In Part 2, I compare the effect of i-complexity on learning with that of e-complexity and

assess the relationship between these two measures, using randomly constructed paradigms.

I test the effect of i- and e-complexity on learning inflection paradigms with neural networks

and human learners on a learning task in which forms in the paradigm are learned in a

random order. I assess the relationship between i- and e-complexity on randomly generated

paradigms, i.e., when no inductive biases are in place. Moreover, Neural networks were then
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trained and tested on the randomly generated paradigms to give a broader sense of how

different values of the two measures affect learning. Throughout this part, other measures

of morphological complexity were manipulated and their effects on learning morphological

paradigms were tested as well.

Findings from Part 2 show a strong negative correlation between i-complexity and e-complexity

and confirm that while neural networks are sensitive to both measures, learning is more sus-

ceptible to changes in e-complexity.

In the experiments described in Parts 1 and 2, I use artificial languages where noun class

membership was not determined by the phonology or semantics of nouns. However, in many

languages semantic and phonological features of nouns play a role in determining how nouns

are classified. Studies show that these cues for class membership facilitate paradigm learning

(reviewed in the introduction for Part 3). Therefore, in Part 3, I test the hypothesis that

the effect of i-complexity on learning and generalization of inflectional paradigms interacts

with the presence of phonological or semantic cues for class membership. This part extends

the assessment of i-complexity and its effect on morphological learning; I test the effect of

i-complexity on learning and generalisation tasks, with neural networks and human learners,

manipulating the presence of extra-morphological cues for class membership.

While there is no evidence from findings from part 3 for an interaction between i-complexity

and extra-morphological cues, results show that the two factors independently affect gener-

alizing morphological paradigms.

20



Part I

Assessing Integrative Complexity as a

predictor of morphological learning

using neural networks and artificial

language learning
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Chapter 2

Assessing Integrative Complexity as a

predictor of morphological learning

using neural networks and artificial

language learning

2.1 Abstract

Morphological paradigms differ widely across languages: some feature relatively few con-

trasts, and others, dozens. Under the view that languages are under pressure to be learnable

and that the distribution of languages in the world reflects biases in language learning, this

diversity is surprising – how could paradigms which apparently differ so markedly be simi-

larly learnable? Recent work on morphological complexity has argued that even very large

paradigms are designed such that they are easy to learn and use. Specifically, Ackerman and

Malouf (2013) propose an information-theoretic measure, i-complexity, which captures the

extent to which forms in one part of a paradigm predict forms elsewhere in the paradigm, and

contrast this measure with e-complexity, which captures the number of distinctions made

by the language and the different ways to mark each grammatical function. They show that

languages which differ widely in e-complexity exhibit similar i-complexity; in other words,

23



morphological paradigms with many contrasts reduce the learnability challenge for learn-

ers by having predictive relationships between forms. Here, we test whether i-complexity

predicts the learnability of inflectional paradigms using both recurrent neural networks and

human participants trained on an artificial language. Furthermore, we compare the effect

of i-complexity on learning with that of e-complexity. We find that in RNNs both i- and

e-complexity have an effect on learning: paradigms with lower i- and e-complexity are easier

to learn, although the effect of e-complexity is larger. However, for human learners, we find

only weak evidence (if any) that low i-complexity paradigms are easier to learn; in contrast,

low e-complexity is clearly beneficial for learning. This suggests that i-complexity might

have relatively little influence on the learnability of inflectional paradigms, with other fac-

tors, such as the e-complexity having a greater effect. These results suggest that appealing to

i-complexity does not fully resolve the paradox of cross-linguistic variation in morphological

systems.

Keywords: morphological complexity; inflection paradigms; neural networks; LSTM; arti-

ficial language learning; entropy

2.2 Introduction

There is substantial variation in inflectional paradigms cross-linguistically. Some languages

are largely devoid of inflectional morphology (e.g., Vietnamese), while others have rich in-

flectional systems, marking dozens of grammatical functions (e.g., Arabic). Determining the

dimensions of variation in inflectional systems has been an important goal for linguistics

(e.g., Bickel and Nichols 2007; Bybee 1995; Sapir 2012). However from the perspective of

language learning, the existence of highly complex inflectional paradigms poses a challenge.

In particular, it is often argued that languages are shaped by an inductive bias for simplicity
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(Chater, Clark, et al. 2015; Chater and Vitányi 2003; Feldman 2016; Kirby, Tamariz, et al.

2015; Pothos and Chater 2002). According to this view, simplicity is a general principal

guiding learning across cognitive domains: learners are biased towards inferring simpler hy-

potheses to explain observed data. In the linguistic domain, this principal has been described

as a preference for languages whose grammars can be expressed more compactly (Culbertson

and Kirby 2016). Effects of this simplicity bias on learning have been consistently reported

in laboratory experiments in which learners are trained on miniature artificial languages

(e.g., Canini et al. 2014; Culbertson, Smolensky, et al. 2012; Kirby, Tamariz, et al. 2015;

Saffran and Thiessen 2003, a.o.). These experiments show that individual learners are less

able to learn more complex linguistic patterns, infer simpler patterns whenever possible, and

drive languages to become simpler over simulated generations of learners. On learnability

grounds, the expectation is therefore that simple morphological paradigms should dominate

cross-linguistically.1 At first glance, this appears to be contradicted by the existence of many

languages with highly complex paradigms, which have been maintained over many genera-

tions. However, in recent work, Ackerman and Malouf (2013) argue that apparently complex

morphological paradigms are in fact relatively simple when complexity is measured not in

terms of number of forms, but how predictable forms are from each other.

1Apart from learnability, other factors are also thought to shape linguistic systems: languages are used for
communication, and linguistic systems have been claimed to reflect a trade-off between the bias for simplicity
(i.e., minimizing the system’s complexity) and pressure from communication favoring languages with higher
expressivity (i.e., minimizing ambiguity, Kemp and Regier 2012). Morphological paradigms which appear
highly complex could in principle reflect a balance between the communicative needs of speakers and the
inductive biases of learners. However, the existence of inflectional classes–groups of lexemes that share the
same set of inflectional realizations (Aronoff 1994; Greville G. Corbett 2009)–which add to the complexity
of paradigms without any countervailing benefit (Baerman et al. 2010) make an analysis along these lines
non-straightforward at best.
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2.2.1 I-complexity and e-complexity

Ackerman and Malouf (2013) discuss two measures of complexity: enumerative complexity

(e-complexity) and integrative complexity (i-complexity). The e-complexity of a language

reflects the number of grammatical functions and morphosyntactic categories words in the

language are marked for, the number of different forms to mark each category and their

type frequencies within the morphological paradigm (Meinhardt et al. 2019). This measure

of complexity is seen to express complexity according to the item and arrangement theories

of morphology (Hockett 1954) that take the morpheme as the fundamental unit of analysis.

Therefore, the learner’s task when learning the morphological system of a language is to

create an inventory of the affixes and their meanings. I-complexity is motivated by the idea

that paradigms in which new forms can be easily predicted by old forms are simpler. This

measure fits naturally within the word and paradigm theories of morphology in which the

relationship among forms in a paradigm, and not just the forms themselves, is a crucial

feature of how paradigms are represented and processed (e.g., James P. Blevins 2006; James

P Blevins et al. 2016; R. Finkel and G. Stump 2007; G. T. Stump 2001). Intuitively, since

exposure to lexical items is relatively sparse (i.e. a learner is unlikely to have experienced

all forms of a lexeme before producing them), learners must use the forms they have heard

to predict unknown forms (the Paradigm Cell Filling Problem, Ackerman, James P. Blevins,

et al. (2009)). Ackerman and Malouf (2013) suggest an information-theoretic measure for

I-complexity derived from Shannon entropy (Shannon 1963). It quantifies how difficult this

prediction will be, namely how well one inflectional form can predict the other. This is

calculated using the conditional entropy (or uncertainty) of one inflectional form Y given

another X in the paradigm, as in (2.1) below:
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H(Y |X) = −
∑
x∈X

∑
y∈Y

P (y, x)log2P (y|x) = −
∑
x∈X

∑
y∈Y

P (y, x)log2
P (y, x)

p(x)
(2.1)

Take for example the nominal plural paradigm in Modern Greek (Table 2.1), which expresses

four cases, with a series of different morphemes that depend on the inflectional class of the

word. If a word takes -i in the nominative plural, it must be in inflectional class 1 or 7.

Knowing this reduces the uncertainty of the accusative form: it must be -us or -i (not -

es, -is or -a). By contrast, knowing that a word takes -on in the genitive plural does not

provide any information about inflectional class, because the genitive is marked with -on

across classes, and so it does not reduce uncertainty about the accusative form. Therefore,

in Greek, H(acc.pl|nom.pl) is lower than H(acc.pl|gen.pl).

Plural
class Nom Gen Acc Voc
1 -i -on -us -i
2 -es -on -es -es
3 -es -on -es -es
4 -is -on -is -is
5 -a -on -a -a
6 -a -on -a -a
7 -i -on -i -i
8 -a -on -a -a

Table 2.1: Modern Greek plural nominal inflectional classes (Ackerman and Malouf 2013
based on Ralli (2002)). Columns give the inflectional endings for nouns in different gram-
matical roles (nominative, genitive, accusative and vocative), for plural; rows show the 8
inflectional classes in Modern Greek.

To calculate the overall i-complexity of a paradigm, one simply averages conditional entropy

over all pairs of inflections as in (2.2).

∑
Y ∈G

∑
Y ∈G,X∈G,X≠Y H(X|Y )

NG(NG − 1)
(2.2)
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Where G is the set of inflectional categories in the paradigm and NG is their total number.

Information theory can also be used to characterise e-complexity. Specifically, we use the

cell entropy (Ackerman and Malouf 2013), that captures the difficulty in choosing the cor-

rect inflection for a lexeme based only on the set of possible markers for that inflection in

the language. Being based on entropy, this measure is more subtle than merely counting

inflection classes or variants of realization in the paradigm. We therefore adopt this measure

as the e-complexity of a morphological paradigm. E-complexity will be higher for paradigms

with more different ways to mark each inflectional feature. It is calculated as in (2.3) below,

again summing over all inflections X in a paradigm, as in (2.4).

H(X) = −
∑
x∈X

P (x)log2P (x) (2.3)

∑
X∈G H(X)

NG

(2.4)

Where G is the set of grammatical functions in the paradigm and NG is their total number.

This measure captures the intuition that the Greek nominal inflection paradigm is complex

because it makes a large number of distinctions and uses a variety of endings to do so. In the

case of plural nouns in Modern Greek, e-complexity captures something very different from

i-complexity. While the nominative forms contribute less i-complexity to the paradigm than

genitives (because they are informative about other cells in the paradigm), nominative forms

have higher e-complexity than genitive forms (because there are several different nominative

markers but only one genitive; in fact H(gen.pl)=0).
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2.2.2 Evidence for i-complexity as a predictor of learnability

Ackerman and Malouf (2013) argue that i-complexity reflects the language learner and user’s

task of producing an unencountered inflected forms based on other known forms in the

paradigm. If solving the Paradigm Cell Filling Problem (PCFP, Ackerman, James P. Blevins,

et al. 2009) reflects the learnability of the paradigm, Ackerman and Malouf (2013)’s claim

regarding i-complexity generates two clear predictions. First, if two inflectional paradigms

differ only in i-complexity, the paradigm with lower i-complexity should be learned more

easily. Second, if paradigms with lower i-complexity are simpler to learn, they should be

more common cross-linguistically (i.e., cultural transmission should lead to decreases in i-

complexity which compound over generations, Kirby, Tamariz, et al. (2015)). Ackerman and

Malouf (2013) provide some evidence for the second prediction: they show that, across a

set of 10 geographically and genetically different languages, e-complexity varies quite widely

(from 0.78 to 4.9 bits) but i-complexity is consistently low (around 0.6 bits for all languages

in their sample). Moreover, they demonstrate, using a Monte-Carlo simulation on one of

the languages in their sample (Chiquihuitlàn Mazatec), that the i-complexity of the verbal

inflectional system of the language is minimized compared to all other permutations of the

markers in the paradigm; in other words, the configuration of the paradigm is such that

i-complexity is lower than we would expect if the paradigm forms were organized randomly.

Both of these pieces of evidence suggest that paradigms are implicitly designed to minimise

i-complexity.2

However, there is only limited evidence in support of the first prediction, namely, that

morphological paradigms with lower i-complexity are easier to learn. Recall that i-complexity

represents the extent to which one inflectional form in a paradigm can predict another. For

2It is worth noting that these findings have been criticized on the basis that calculating the i-complexity
of languages’ paradigms is highly dependent on linguists’ analysis of the language and their decisions on how
to describe its paradigms (e.g., Bonami and Beniamine 2016; Sims and Parker 2016).
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example, if a learner can infer the inflectional class membership of a word from its realization

in one inflectional category, then new inflectional forms of the word can be predicted even if

they have not been previously encountered. One way for this to happen is through analogy;

if a word behaves like another in one inflectional category, then by analogy it will behave like

that word in another inflectional category (Ackerman and Malouf 2013; James P. Blevins

2006; James P Blevins et al. 2016; Malouf 2017; G. T. Stump 2001). Setting aside for a

moment the role of i-complexity, we might ask first whether there is evidence that learners

will take that analogical step. A number of previous studies suggest that adults and children

will choose inflections for novel words based on their phonological similarity to familiar

words (e.g., Ambridge 2010; Milin, Keuleers, et al. 2011). In addition, there is evidence

from artificial language learning experiments that learners’ willingness to assume that a

word belongs to a particular category is influenced by perceived level of similarity among

forms (e.g., Culbertson, Gagliardi, et al. 2017; Frigo and McDonald 1998; L. A. Gerken

et al. 2009; Reeder et al. 2013). These results are all compatible with the idea that learners

build relations between forms in part by analogy. However, they do not test the idea that

predictive relationship among forms in the paradigm are critical for learning. Further, they

suggest that analogy may be dependent on features of the word stems (i.e. their phonological

or semantic similarity), not relations among the inflections themselves. Although Frigo and

McDonald (1998) show evidence for the ability of learners to use distributional cues for novel

nouns when phonological similarities are provided.

Seyfarth et al. (2014) directly test the effect of i-complexity on completing the Paradigm Cell

Filling Problem – in which learners must learn a subset of forms in a paradigm, and then

use those forms to predict new ones. In their Experiment 1, participants were exposed to

a miniature artificial language with word forms from the nominal paradigm shown in Table

2.2a, with two inflectional classes, and three numbers. Class membership was not cued
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by anything other than the pattern of inflectional endings. The paradigm’s key feature is

that the inflection in the dual is predicted by the word form in the singular (and vice versa),

whereas the form of the plural is not predictive of any other inflectional form (since it has the

same form for both inflectional classes). After learning the paradigm, participants were asked

to choose the correct forms for novel stems, either in predictive trials (i.e., providing the word

form in singular having been given the dual form) or in non-predictive trials (generating the

singular or dual given the plural). They found that participants were more likely to generate

the correct form on predictive trials than non-predictive trials. In their Experiment 2, they

tested whether predictive information facilitates generalization to novel stems in a larger

paradigm (Table 2.2b). Results from this experiment suggested that learners tended to

inflect novel stems with the most frequent marker (e.g., they used the suffix -cav to mark

dual regardless of class). However they did use predictive information to generalize to novel

stems when the predicted suffix was low-frequency.

Singular Dual Plural
noun class 1 -yez -cav -lem
noun class 2 -taf -guk -lem

(a) Paradigm with two noun classes (their Experiment 1).
Singular Dual Plural

noun class 1 -taf -guk -lem
noun class 2 -yez -cav -lem
noun class 3 -yez -cav -nup

(b) Paradigm with three noun classes (their Experiment 2).

Table 2.2: Artificially constructed nominal inflection paradigms used in Seyfarth et al.
(2014).

Further evidence comes from Malouf (2017), who trained recurrent neural networks on nat-

ural language corpora in order to test whether they could predict unobserved forms after

learning partial paradigms. The networks were trained to predict phonological forms based

only on a lexeme (an abstract representation of related forms without phonological informa-
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tion) and a set of inflectional features (e.g. tense or number). Networks were then tested on

their accuracy at producing phonological forms for lexemes with untrained inflectional fea-

tures. Across a number of languages, these networks outperformed baselines which learned

based on phonological information (lemmas rather than abstract lexemes) combined with

specialized rules for guessing affixes. Together, these findings suggest that learners can gen-

eralize to novel inflection forms based on analogy with known forms, and further that this

is facilitated by predictive links between forms in a paradigm.3

However, the task used in both cases serves as a relatively low bar for testing the facilitative

effect of low i-complexity. For example, Seyfarth et al. (2014) compare predictive cases, where

participants can generalize by analogy with learned forms, with cases where participants have

no basis for generalizing (and must therefore simply guess). Therefore, it is in a sense not

surprising that participants are better at determining the correct form in the former than

the latter. The results of their second experiment in fact suggest that when learners have

access to other cues for generalizing, e.g. marker frequency, it is less clear that learners use

the kind of predictive information captured by i-complexity. More generally, both Seyfarth

et al. (2014) and Malouf (2017) simulate cases in which language learners have to generalize

from the partial paradigm they have learned to express an entirely new form they have never

3Marzi et al. (2018) give support to the hypothesis that i-complexity, rather than e-complexity, affects the
learnability of the paradigm from a different angle, providing evidence that the e-complexity of the morpho-
logical system is not the main factor affecting its learnability. They propose a model for simulating learning
morphological systems using a recurrent neural network trained on inflected forms and show that changes in
the e-complexity of the input language does not strongly affect the learning of the morphological paradigm
by the model. They trained the neural network on six languages with varying levels of e-complexity (Greek,
Italian, Spanish, German, English and Arabic) and compared how successful the networks were at predict-
ing the inflected forms across these languages. They evaluated how accurately the networks could predict
incrementally presented words and found little variance in the model’s results for the different languages,
with a significant difference in the prediction accuracies of the model only between the most e-complex lan-
guage (Modern Greek) and the least e-complex language (English). However, Marzi et al. (2018) use word
prediction to test the model’s learning of the forms in the paradigm without any morphological information
on the inflected form given as input. Rather, the model predicts each consecutive character in the form
solely based on the string of characters already presented. Therefore, it is not clear whether the results from
this study provide clear evidence on the effects e-complexity has on learnability, or whether these results are
instead due to the use of a task which does not include a key type of information used by learners.
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been exposed to. This is an extreme form of a much more general problem that language

learners face; in some cases, learners must generalize to entirely novel forms, in many others,

they must generate (or retrieve) forms which may have been encountered but have not yet

been robustly acquired. In principle, prediction should facilitate learning in all these cases.

2.2.3 The present study

Here we build on Seyfarth et al. (2014) by testing whether i-complexity affects how hu-

mans and neural networks learn morphological paradigms. We use artificially constructed

paradigms which vary in i-complexity controlling for other factors, such as e-complexity,

number of markers, and phonological similarity among stems. In a series of simulation

experiments we test whether lower values of i-complexity can facilitate the learning of inflec-

tional paradigms for recurrent neural networks (RNNs): we train Long Short Term Memory

(LSTM) RNNs on two inflectional paradigms, differing only in their i-complexity values, and

show that RNNs generalize more successfully to new forms in low i-complexity paradigms

and that paradigms with lower i-complexity are learned faster. We then test whether low

i-complexity also facilitates learning for human learners: we use the same artificial languages

used for the RNNs, and train human participants on the same two inflectional paradigms,

differing only in their i-complexity. In addition, we compare the effect of i-complexity on

learning with that of e-complexity by training RNNs and human participants on an in-

flectional paradigm with high e-complexity. These experiments reveal only weak evidence

of an advantage for low i-complexity languages in paradigm learning; in contrast, low e-

complexity is clearly beneficial for learning. These findings suggest the possibility that

although i-complexity may affect learning, it is not the central measure of morphological

complexity as experienced by the language learner.
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2.3 Testing the impact of i-complexity on paradigm

learning in Recurrent Neural Networks

Neural network models of learning are inspired loosely by the structure of networks of neu-

rons in the brain. Artificial neural networks consist of interconnected nodes, each with an

activation value. Activation spreads from node to node via weighted connections – activation

at one node will spread to other nodes with which it has positively-weighted connections,

increasing their activation, and will drive down the activation of nodes with which it has

negatively-weighted connections. In the types of networks we use here, nodes are arranged

in layers. Nodes within one layer are connected via unidirectional weights to nodes in a

subsequent layer. The first layer of nodes in the network is called the input layer and the

last one is the output layer. The middle layer(s) are called hidden layers. The network

weights are learned via supervised training on pairs of data points, each pair consisting of

an input pattern of activation with a desired output pattern of activation. For example, the

input might be the singular form of a word, and the output the corresponding plural. During

training, the neural network connections are tuned with the objective of approximating the

function from input patterns presented at the input layer to output patterns in the output

layer. Specifically, connection weights are updated through a process called backpropagation

which optimizes the weights so that when the network encounters some input pattern of ac-

tivation, it produces the desired pattern of activation over the output layer. After training,

the weights are fixed and the network can be tested with completely new data points or with

data points similar to those presented during training (depending on the task).

Recurrent neural networks add ‘short term memory’ to the network, by looping back the

output or hidden layer activations previously produced for earlier inputs (Jeffrey L. Elman

1990; Jeffrey L. Elman 1991; Jordan 1997). This allows networks to make predictions based
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on sequences of inputs; for example, when predicting the next word in a sentence, the ability

to keep previous words in memory is critical. In RNNs, the extent to which previous inputs

affect the processing of the current input is also determined by weights, optimized through

backpropagation.

Long Short Term Memory (LSTM) networks are an extension of recurrent neural networks

introduced by Hochreiter and Schmidhuber (1997) in order to improve learning of longer

temporal dependencies. Practically, LSTMs add an element of ‘long term memory’ to net-

works by allowing the network to control the influence of current and previous inputs during

the process of activation propagation, using ‘gates’ in the networks. Like activation weights,

network gates are optimized during training to determine what information is stored or

passed along and therefore allowed to influence subsequent inputs. This allows LSTMs to

make better use of sequential information, including learning sequential dependencies with

long time lags.

A series of recent studies testing LSTM network on language tasks provide evidence that

LSTM networks are capable of learning complex linguistic structure, and in some cases

performance is similar to that of human participants. For example, Linzen et al. (2016)

show that LSTM networks can predict long-distance subject-verb number agreement, even

in the presence of other potential agreement triggers (often called attractors) intervening

between the subject and verb. Gulordava et al. (2018) show that LSTMs trained on four

different languages can accurately predict subject-verb agreement even when they are not

trained specifically on that task. Futrell et al. (2019) show that surprisal scores of LSTMs (a

measure of successful prediction) mirrored preferences of human participants on grammatical

judgments task differentiating word-order alternations.

LSTMs therefore offer a powerful but convenient general-purpose learning mechanism for

modelling human learning. Here we use LSTMs to process relatively short sequences: we

35



train models on artificially constructed inflectional paradigms which differ only in their i-

complexity. The networks are trained and tested on wordforms plus suffixes. We then test

them on (i) whether they are able to exploit the predictive information present in the lower

i-complexity paradigm in order to generalise to novel forms, and (ii) whether the inflectional

paradigm with lower i-complexity is learned faster.

2.3.1 Method

Target paradigms

We constructed two paradigms, which we used to test the effect of i-complexity in neural

network and human learners. The basic paradigms both consisted of nine CVC nouns (gob,

tug, sov, kut, pid, tal, dar, ler, mip), randomly paired with meanings for human participants

(see Section 2.3.5 below). An additional nine nouns were used to test network generalization

(bor, ges, kiv, mas, nek, nap, lan, wib, log) in Section 2.3.3 below. The small lexicon size

allows the system to be learned with reasonable accuracy by human participants in a short

experiment. The nouns were randomly allocated to three classes (for each run of the network,

or each human participant), and each class was inflected for three numbers: singular, dual

and plural. As in Seyfarth et al. (2014) noun class membership was not indicated by the

semantics or phonology of the noun stem, but was rather defined only by different patterns

of inflection. Inflectional markers were seven VC monosyllabic suffixes (-op, -oc, -um, -ib,

-el, -od, -at). These inflectional markers were randomly allocated to cells in each paradigm

(for each run of the network, or each human participant) such that both paradigms shared

the same e-complexity value (1.14 bits) but differed in i-complexity. In the low i-complexity

paradigm, the singular form of a word predicts the dual form, while in the high i-complexity

paradigm it does not. Table 2.3 shows two example paradigms. In the low i-complexity
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paradigm 2.3a, if a stem takes the marker -at in singular, then it takes -oc in dual; if a stem

takes -op in singular, then it takes -um in the dual. In contrast, in the higher i-complexity

paradigm 2.3b, there is not such regularity: nouns with -at in the singular take either -oc or

-um in the dual. The i-complexity value for the low i-complexity language is 0.222 bits vs.

0.444 bits for the high i-complexity language. Note that the distinct plural forms in each

paradigm serve to separate the three classes of nouns. Without distinct plural forms, the

low i-complexity paradigm would have fewer classes and then high i-complexity paradigm.

Singular Dual Plural
noun class 1 -at -oc -ib
noun class 2 -op -um -el
noun class 3 -at -oc -od

(a) low i-complexity paradigm
Singular Dual Plural

noun class 1 -at -oc -ib
noun class 2 -op -oc -el
noun class 3 -at -um -od

(b) high i-complexity paradigm

Table 2.3: Example paradigm for low i-complexity (a) and high i-complexity (b) languages.

Learning in both computational and behavioral studies was staged – neural networks and

human participants were first trained on the forms of the stems in singular and plural before

being exposed to the forms in dual. This should increase the likelihood of learners exploiting

the predictive relationships in the paradigm. The critical measure of learning was accuracy

on dual forms, although we also report accuracy for singular and plural forms.

2.3.2 LSTM model

We implemented LSTM networks using the Keras package in Python (Chollet et al. 2015).

Figure 2.1 presents a diagram of the network, which consists of an input layer, a hidden layer
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of LSTM units, and an output layer fully connected to the hidden layer. In this task, the

LSTM network takes as input a string (a sequence of characters) representing a noun stem

and a number indicating the grammatical number of the object (1 for singular, 2 for dual

and 3 for plural), e.g., the sequence sov3 indicates the stem sov in plural. The input string is

fed into the network incrementally. The network has seven output units, one for each of the

inflectional suffixes in the target paradigms. The model is trained to generate the correct

suffix for a stem, number sequence. Both input stem+number sequences and output suffixes

were encoded as one-hot vectors. i.e., every character (and number) used in the language is

represented as a vector of zeroes (with length equal to the total set of characters, 27, for the

input, and the total set of suffixes, 7, for the output) with ‘1’ in a different index uniquely

identifying it. The algorithm used Stochastic Gradient Descent (SGD) to update the weights

of the network during training.

...            ...

            ...

            ...

            ...

27

     ...   
   

     ...   
   

     ...   
   

     ...   
   

LSTM

h0

h1

h2

h3

-1

Figure 2.1: A diagram of the recurrent neural network: the input layer receives a string of
four characters (stem + grammatical number), each coded as a one-hot vector of the length
of the different characters used in the language (27). The input vectors are embedded and
the embeddings are transferred to a hidden layer with 5-45 LSTM units. Output from the
LSTM units (h3) is then transferred to an output layer with seven options, representing
the seven suffixes in the language. Using a softmax function, the output is converted to a
one-hot vector, representing the suffix the network selected for this input.
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2.3.3 Simulation Experiment 1 - generalizing to novel forms

We first tested whether low i-complexity facilitates solving the Cell Filling Problem (Acker-

man, James P. Blevins, et al. 2009) in RNNs. We trained RNNs on nine stems in the full

paradigm, and tested their accuracy at producing the correct dual suffix for nine additional

stems, for which the network was trained on the singular and plural form but never the dual

(i.e. for these 9 stems the network was required to generalise to the dual based on its repre-

sentation of the full paradigm and its exposure to the singular and plural forms for those 9

stems). Stems were assigned randomly to one of the three noun classes in the language, such

that each noun class included six stems (three fully trained, and three with dual held out).

For each paradigm, the model was trained and tested on input-output pairs in three blocks,

summarized in Table 2.4 below. In block 1, the network was trained and tested on singulars

for all stems; in block 2 the networks was trained and tested on singulars and plurals for

all stems; in block 3 the network was trained on singulars and plurals for all stems, plus

duals for nine of the 18 stems. Finally, it was tested on the entire paradigm for all stems

(i.e. including duals for the 9 stems where the dual form was held-out in training). Each

block consisted of 300 epochs, each consisting of a single pass through the specified training

set (randomized) with weights updated by backpropagation, followed by a pass through the

specified test set (randomized). During testing, the network was given an input and had

to generate an inflection. As noted above, weights in the network are tuned only during

training, while during testing the network is tested on the same input without updating

weights. Our results show performance in the testing phase.

Since we did not have a hypothesis regarding the appropriate network size for this task, we

varied the network size, from 5-cells networks (582 parameters) to 45 (12,382 parameters),

in increments of 5. For each network size, we conducted 100 runs of the model for each

paradigm. In each run of the model, the initial weights were randomly generated, according
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Block Epochs Training Testing
1 300 all stems, singular only

(18 items)
all stems, singular only
(18 items)

2 300 all stems, singular and plural
(36 items)

all stems, singular and plural
(36 items)

3 300
9 fully-trained stems;
9 dual-held-out stems
(45 items)

all stems, all numbers
(54 items)

Table 2.4: Summary of training and testing blocks for RNNs in Simulation Experiment 1.

to a ‘glorot_uniform’ function (sampling from a uniform distribution in the range of [−x,+x],

where x is a function of the size of the network).

Results

Figure 2.2 presents the mean accuracy (averaged over all runs) on dual forms for dual-

held-out stems by networks trained on the two paradigms. Networks trained on the low i-

complexity paradigm achieved higher accuracy than networks trained on the high i-complexity

paradigm across all sizes of the network; in other words, networks trained on the low i-

complexity paradigm were more accurate in generalizing the paradigm to forms they were

not trained on. Note that this is the case even though, in both the low i-complexity and

high i-complexity paradigms, it is possible to infer the dual form of these nouns (untrained)

from their plural forms (trained). For example, looking at the high i-complexity paradigm

in Table 2.3, if the plural form of the stem sov is sovib, then it must be in noun class 1,

and therefore its form in dual should be sovum. The predictive function of the plural thus

allows networks trained on both paradigms to reach high accuracy, but there is nonetheless a

clear advantage to the network trained on the low i-complexity language, where the singular

provides an additional cue. In the Appendix we show results for networks trained only on

the singular forms of the novel stems (rather than exposing them to both the singular and

plural forms): under that training regime, the networks trained on the high i-complexity
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paradigm show accuracy of around 66% on generating duals for novel stems (chance level

when guessing the more frequent dual suffix), while networks trained on the low i-complexity

paradigm still show accuracy of almost 100% when generalizing to the dual (see Appendix

Figure A.1).

These results show that for LSTM networks, low i-complexity facilitates solving the Paradigm

Cell Filling Problem. This is in line with results from Seyfarth et al. (2014). As discussed

above, learning a morphological system involves not only generalizing to completely novel

stems, but also learning and retrieving forms for stems which are not yet robustly learned

(e.g., due to low exposure frequency). We test this more general facilitative effect of low

i-complexity in the next set of simulations.

2.3.4 Simulation Experiment 2 - learning speed

The model

We tested LSTM networks with the same architecture, input and output representations,

and parameters as described for Simulation Experiment 1. In this simulation, the language

includes nine stems. The model was trained and tested in three blocks, summarized in Table

2.5. In the first block, the network was trained and tested on singulars for all stems; in

block 2 the network was trained and tested on singulars and plurals for all stems; in block

3 the network was trained and tested on the entire paradigm for all stems, including the

dual. Note that, unlike for Simulation Experiment 1, here the test set is always identical

to the training set, i.e. we are not testing on the capacity of the network to generalize, but

simply to learn the mapping from stem-number input to the appropriate affix. As before,

we tested networks of different sizes, from 5-cells networks (542 parameters) to 45 (12,022

parameters), in increments of 5; we conducted 100 runs for each paradigm for each network
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Figure 2.2: Average accuracy across all runs of the LSTM networks in generalizing to novel
dual forms for the low i-complexity paradigm (blue) and the high i-complexity paradigm
(red). (a) results for one network size (25 cells), with error bars indicating standard error
every 10 epochs. (b) results for all the network sizes tested (facet titles give network size in
number of cells). Note that the plots start at epoch 600, when the dual forms are introduced
to the network (at the beginning of Block 3). In all cases accuracy is higher for the low
i-complexity paradigm.

42



size, with initial weights of the network randomly generated for each run.

Block Epochs Training Testing
1 300 all stems, singular only

(9 items)
all stems, singular only
(9 items)

2 300 all stems, singular and plural
(18 items)

all stems, singular and plural
(18 items)

3 300 all stems, all numbers
(27 items)

all stems, all numbers
(27 items)

Table 2.5: Summary of training and testing blocks for RNNs in Simulation Experiment 2.

Results

Figure 2.3 presents the learning trajectories of the neural networks for the singular and

plural forms in the low and high i-complexity paradigms. Networks of all sizes show similar

learning trajectories and final accuracy levels across both paradigms, as expected since there

is no difference between the paradigms for these forms. In all sizes of networks, except for

size 5 (Figure 2.4a), the networks reach perfect learning of the singular and plural forms

(accuracy of 1), and the singular and plural forms are fully learned (or near perfect learning)

by the beginning of block 3 (epoch 600), when the dual forms are introduced to the network.

These results verify that the networks are able to learn the singular and plural forms. This

is necessary in order to exploit the predictive structure of the paradigms to better learn

the dual. Interestingly, the smaller networks show a small decrement in accuracy of plural

learning after epoch 600, the point at which the dual is introduced; networks of size 5 show

some differences between high and low i-complexity in learning the plural forms after that

point, with a more rapid recovery for networks trained on the low i-complexity paradigm.

Figure 2.4 presents the learning trajectories of the neural networks for the dual forms. Across

all network sizes, the dual forms are learned faster in the low i-complexity paradigm. This

difference in learning speed for low vs high i-complexity can also be seen in Figure 2.5,
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Figure 2.3: Network learning trajectories for singular and plural forms for high and low
i-complexity paradigms. (a) results for one network size (5 cells), with error bars indicating
standard error every 10 epochs, (b) results for all the network sizes tested (facet titles give
network size in number of cells). Note that dashed lines for plural suffixes start at epoch
300 (block 2). Networks exposed to the high i-complexity language and low i-complexity
language show similar performance.

showing for every network size the epoch in which the network reached perfect learning of

the full paradigm. These results show that the predictive relationships in low i-complexity
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paradigms facilitate learning in these networks beyond generalisation to entirely novel stems.
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Figure 2.4: Network learning trajectories for dual forms for high and low i-complexity
paradigms. (a) results for one network size (25 cells), with error bars indicating standard
error every 10 epochs, (b) results for all the network sizes tested (facet titles give network
size in number of cells). Note that the plots start at epoch 600, when the dual forms are
introduced to the network (block 3).

Together, results from Simulation Experiments 1 and 2 show that for LSTM neural net-
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Figure 2.5: Number of training epochs required to reach perfect learning of the paradigm
for each size of network.

works, the i-complexity measure is predictive of learning and generalisation when control-

ling for other factors, such as number of different markers, e-complexity, and inflection

frequency. When trained on inflectional paradigms with low i-complexity, LSTM networks

showed higher accuracy in generalizing to completely unseen dual forms, and more rapid

learning of dual forms which were trained at low frequency. In principle then, and for at

least one learning model, i-complexity influences generalization and learning of inflectional

paradigms. This is consistent with the hypothesis that i-complexity –a measure of the pre-

dictive structure of a paradigm- reflects the learnability of inflectional paradigms. However,

we are specifically interested in human learning, since it is biases in human learning that

will shape human languages. While RNNs may mimic some features of human learning

they cannot fully simulate human learning (e.g., Gulordava et al. 2018; Linzen et al. 2016).

Below, we present a series of artificial language learning experiments to test the effects of

i-complexity with human participants.
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2.3.5 Experiment 1

As discussed above, Seyfarth et al. (2014) provide some evidence that human learners use

the paradigmatic information captured by i-complexity to predict new forms. They found

that, in a 2x3 paradigm, learners used the similarity between novel forms and trained forms

to guess inflectional endings. In a slightly larger 3x3 paradigm, learners used this predictive

information to guess low frequency inflectional endings. In the following experiments, we

test whether i-complexity affects the speed with which a paradigm is learned, rather than

the ability to generalize to completely novel forms. Participants were asked to learn labels

for objects through trial and error, where these labels were drawn from one of the two

artificially constructed paradigms described above. As in the network simulations, the i-

complexity of the language was manipulated between subjects; the only difference between

paradigms was the predictability of the dual form, which in the low-complexity language

was predictable from the singular. Predictive relationship among forms in a paradigm can in

principle facilitate learning of new (initially low-frequency) forms, and indeed neural networks

showed precisely this benefit in our Simulation Experiment 2. If i-complexity also mediates

human learning in this context, then participants in the low i-complexity condition should

show faster learning and higher accuracy in inflecting nouns in the dual after learning the

singular and plural forms.

Materials

Participants were trained on one of the two paradigms in Table 2.3 above. While our net-

works simulations did not involve any referents, here the nine stems referred to a set of

simple objects (lemon, cow, tomato, bicycle, horse, clock, pigeon, mug and pear) depicted

by photographs. Singular nouns corresponded to a single object, dual corresponded to two
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of the objects, and plural ranged from 3-12 randomly (see Figure 2.6). Stems and suffixes

were randomly paired with meanings for each participant. As before, stems were randomly

allocated to classes. In addition, noun class membership was not conditioned on meanings;

every noun class had one animate object (cow/pigeon/horse), one edible object (tomato/le-

mon/pear) and one other (clock/bicycle/mug).

Participants

39 self-reported English speakers adult participants were recruited via Amazon’s Mechanical

Turk crowd-sourcing platform. They were paid $4.50 for their participation. Participants

were allocated randomly to one of the two conditions (20 in the high i-complexity condition,

19 in the low i-complexity condition).

Procedure

On each trial, a picture was presented on the screen together with a set of possible stem

+ suffix labels, as in Figure 2.6a. Participants were asked to choose the correct label, and

received feedback on their answer as in Figure 2.6b, 2.6b. The task was divided into 3 blocks

of trials. In block 1 (36 trials), participants were exposed to the singular forms of all stems.

In block 2 (72 trials) plural trials of all stems were introduced along with singulars. Finally,

in the critical block 3 (108 trials), participants were exposed to all stems in all cells of the

paradigm, including the dual. Each word form was presented four times in each block of

trials. The different forms were randomly interspersed within each block.
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(a) (b)

(c)

Figure 2.6: Example plural trials. (a) a picture is presented and participants are asked to
choose the correct label from a set of options. (b), (c) participants receive feedback on their
answer, including the correct label. (b) negative feedback following trial shown in (a), (c)
positive feedback following plural trial with a different number of objects.
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Results

Figure 2.7 shows the mean accuracy with which participants chose the appropriate word

form for singular, plural, and dual, as the experiment progressed trial by trial. Recall that

we are particularly interested in how well participants learned the dual forms in block 3,

after being trained on the singular and plural forms. Participants exposed to the high i-

complexity language had mean accuracy in dual trials of MH=0.58 (sd = 0.19) whereas in

the low i-complexity condition mean accuracy was ML=0.50 (sd=0.23).

To test the effect of i-complexity on production of dual forms, we ran a mixed effects logistic

regression model predicting dual accuracy rates by condition (high vs. low i-complexity),

accuracy on block 2, trial number, and their interactions as fixed effects.4 Trial number

was scaled and centered such that estimates for the effect of condition reflect the difference

between conditions mid-way through block 3. Condition was sum-coded (high i-complexity

= –1, low i-complexity = 1). We included participants’ accuracy in block 2 as a way of

controlling for general differences in learning ability. This is crucial, since participants in

the high i-complexity condition were actually more accurate in blocks 1 and 2, despite no

difference in the training participants had received at this point in the experiment.5 Accuracy

at block 2 was centered and scaled such that estimates for the effect of condition reflect the

difference between conditions for participants with average accuracy in block 2. The model

revealed a significant interaction between accuracy in block 2 and trial number (b=1.387,

z=2.856, p=0.004), indicating that participants who learned the singulars and plurals better

in block 2 learned the duals more rapidly in block 3. Results from the model also show

significant effect for trial number (b=2.05, z=4.44, p<0.001), showing that participants’

4All models reported here were run using the lme4 package in R (Bates et al. 2014). All models include
by-participant intercepts and random slopes for trial number.

5This was confirmed by a mixed-effects logistic regression model predicting accuracy in block 2 by con-
dition and trial number (high vs. low i-complexity: b=-0.268, z=-2.198, p=0.028).
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accuracy across conditions improved over trials. Crucially however, there was no significant

effect of condition (b=0.11, z=0.72, p=0.471) on dual accuracy rates, and no significant

interaction between condition and trial number (b=0.363, z=0.791, p=0.429).
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Figure 2.7: Mean accuracy by trial for singular, plural, and dual forms. Points indicates
participants’ mean accuracy scores in the low and high i-complexity conditions, with a re-
gression line predicting accuracy by trial number for each grammatical number. Participants
in the high i-complexity condition (unexpectedly) showed better accuracy in blocks 1 and
2. When controlling for accuracy in block 2, there was no significant effect of condition on
dual learning.

Our results suggest that there is no learnability advantage for the low i-complexity paradigm;

numerically our participants exposed to high i-complexity paradigms actually learned more

quickly, but our statistical analysis shows that any apparent difference in dual accuracy

across the two conditions in Figure 2.7 is in fact driven by individual differences in learning

ability/attentiveness, rather than the structure of the target paradigm. This experiment

therefore fails to confirm the predicted learning advantage for lower i-complexity paradigms.

There are at least three possible explanations for why we fail to find this predicted advantage
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in our task. One possibility is that, for human learners, lower i-complexity provides some

advantage in generalizing to completely novel words (Seyfarth et al. 2014), but does not

continue to facilitate learning of forms already encountered, even in low frequency. Here, it

is also possible to learn the forms through memorization, ignoring any predictive structure

in the paradigm that might be helpful. Another possibility is that we don’t see the effect

i-complexity for methodological reasons; either because we don’t have enough critical (dual)

trials to reveal differences between the two conditions, or, because the predictive relationship

from one form to another was not readily accessible to participants. In our task, the different

forms of the nouns were randomly interspersed within each block, while learners might need

a more explicit cue to the implicative structure of the paradigm. Studies in first language

acquisition suggest that variation sets in the input to children, pairs of utterances that

balance their overlap and change facilitate vocabulary growth (e.g., Brodsky and H. Waterfall

2007; Tal and Arnon 2018; H. R. Waterfall 2005). In a similar way, presenting the new forms

in the language after presenting a familiar form of the same noun could make the predictive

structure of the paradigm more apparent for learners. In Experiments 2-3, we therefore

added more critical trials (a 4th block) and structured trials to highlight the predictive

structure of the paradigms. In particular, we organized the trials in blocks 3-4 in pairs, so

that dual trials always followed either plural or singular trials, with the same object. This

design is parallel to the task Seyfarth et al. (2014) used to test generalization to novel forms,

but note that here we are always presenting and testing on familiar nouns.

2.3.6 Experiment 2

Materials

All materials were identical to Experiment 1.
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Participants

41 self-reported English speakers adult participants were recruited via Amazon’s Mechanical

Turk. They were paid $6 for their participation. Participants were allocated randomly to

one of the conditions (20 high i-complexity, 21 low i-complexity).

Procedure

The procedure was identical to Experiment 1 with two exceptions. First, the task included 4

blocks of trials, where block 4 was identical in its structure to block 3. Second, blocks 3 and 4

included all word forms in the paradigm, set up in pairs: singular or plural trial were always

immediately followed by a trial with the same object in a different number, as illustrated

in Figure 4.5. Critically, when the following trial was dual, the predictive information in

the low i-complexity paradigm could be particularly helpful to learners. This arrangement

resulted in three types of pairs: singular trial followed by a dual trial (‘predictive trials’),

plural followed by dual trial and singular followed by plural. The number of each type of

pair was balanced and different pairs of trials were randomly interleaved.

Results

Figure 2.9 shows the mean accuracy with which participants chose the appropriate word form

for singular, plural, and dual, as the experiment progressed trial by trial. Mean accuracy

on the critical dual trials is higher for the low i-complexity condition (ML=0.71, sd = 0.23)

than for the high i-complexity condition(MH=0.55, sd = 0.26). However, as in Experiment

1, differences between conditions already appeared in blocks 1 and 2, despite the fact that

53



(a) (b)

Figure 2.8: Example of two successive trials in blocks 3 and 4 in Experiment 2. (a) trial n,
in which participant is asked to choose the correct form describing a mug in singular, (b)
trial n + 1, in which participant is asked to choose the correct label for the same object in
dual.

the input languages are identical up to this point.6 We ran a mixed-effects logistic regression

model predicting dual accuracy rates by condition (high vs. low i-complexity), accuracy on

block 2, trial number and their interactions as fixed effects, with fixed effects coded as in

Experiment 1. Results again revealed a significant effect of trial number (b=1.45, z=7.81,

p<0.001) and a significant interaction between accuracy in block 2 and trial number (b=0.66,

z=3.441, p<0.001), but no significant effect of condition (b=0.141, z=0.806, p=0.42), and

no condition by trial number interaction (b=0.223, z=1.25, p=0.211). These results hold

when looking only at predictive trials (dual trials following singular trials): the interaction

of accuracy in block 2 with trial number is significant (b=0.652, z= 3.1, p=0.0019) and so

is the effect of trial number (b=1.09, z=5.7, p<0.001), but there is no main effect of con-

dition (b=0.142, z=0.87, p=0.383), and no interaction between condition and trial number

(b=0.191, z=1.03, p=0.301). To summarize, lower i-complexity did not lead to a learning

6This was confirmed by a mixed-effects logistic regression model predicting accuracy in block 2 by con-
dition and trial number (high vs. low i-complexity: b=0.314, z=2.395, p=0.016). In this case, participants
allocated to the low i-complexity condition were significantly better in block 2.
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advantage when controlling for participants’ earlier learning, not even in predictive trials,

where the singular form which predicts the dual is easily accessible.
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Figure 2.9: Mean accuracy by trial for singular, plural, and dual forms in Experiment 2
(with predictive trials). Points indicates participants’ mean accuracy scores in the low and
high i-complexity conditions, with a regression line predicting accuracy by trial number for
each grammatical number. Participants in the low i-complexity condition (unexpectedly)
showed better accuracy in blocks 1 and 2. When controlling for accuracy in block 2, there
was no significant effect of condition on dual learning.

2.3.7 Experiment 3

While Experiments 1 and 2 are consistent in showing no advantage for low i-complexity,

our confidence in this conclusion was reduced by the substantial inter-individual differences

in our sample; in both Experiments we found substantial differences between conditions

in learning accuracy in block 2, before the conditions had diverged. In Experiment 3 we

replicate Experiment 2 with more participants in order to reduce the likelihood of obtaining

samples with accidental differences between the two conditions; since Experiment 3 uses an
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identical method to Experiment 2, a combined analysis (total N=100) also becomes possible.

Participants

59 self-reported English speakers adult participants were recruited via Amazon’s Mechanical

Turk. They were paid $6 for their participation. Participants were allocated randomly to

one of the conditions (30 high i-complexity, 29 low i-complexity).

Materials and Procedure

This experiment was identical to Experiment 2.

Results

Figure 2.10 shows the mean accuracy with which participants chose the appropriate word

form for singular, plural, and dual, as the experiment progressed trial by trial. In this

case, learners in both conditions were more balanced with respect to their general ability

to learn in the task. Mean accuracy in dual trials was higher in the low i-complexity con-

dition (ML=0.69, sd=0.25) than in the high i-complexity condition (MH=0.55, sd=0.25).

We used a mixed-effects logistic regression model, as in Experiments 1-2, to predict dual

accuracy based on condition (high vs. low i-complexity), accuracy on block 2, and trial

number. The model revealed a significant effect of condition (b=0.328, z=2.208, p=0.027),

as well as a significant interaction between accuracy in block 2 and trial number (b=0.85,

z=5.29, p<0.001). The interaction between condition and trial number was not significant

(b=0.189, z=1.26, p=0.205). This pattern of results suggests that, as in Experiments 1 and

2, participants who showed better learning in block 2 also showed faster learning of the dual

forms. However, in addition, participants in the low i-complexity group were better at learn-
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ing the dual forms; in other words, there was a learning advantage for participants in the

low i-complexity condition, when controlling for individual differences in learning abilities.

These effects also hold when looking only at predictive trials: the main effect of condition

is significant (b=0.33, z=2.00, p=0.045), although the interaction of condition with trial

number is not (b=0.12, z=0.722, p=0.47).

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●
●

Singular Plural Dual

0 100 200 300 0 100 200 300 0 100 200 300

0.00

0.25

0.50

0.75

1.00

Trial

A
cc
ur
ac
y paradigm type:

●

●

High i−complexity
Low i−complexity

Figure 2.10: Mean accuracy by trial for singular, plural, and dual forms in Experiment 3
(replication with predictive trials). Points indicates participants’ mean accuracy scores in
the low and high i-complexity conditions, with a regression line predicting accuracy by trial
number for each grammatical number. Participants were well matched in blocks 1 and 2.
When controlling for accuracy in block 2, participants in the low i-complexity condition were
better in learning the dual forms.

Since Experiments 2 and 3 were identical, we also ran a combined analysis including both

data sets. We ran a mixed-effects logistic regression model, as before, predicting accuracy

on dual trials from condition, experiment, trial number, and accuracy in block 2. The model

revealed a significant effect of condition (b=0.236, z=2.012, p=0.044) as well as a significant

interaction between accuracy in block 2 and trial number (b=0.7625, z=5.924, p<0.001). The
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interaction of condition and trial number was not significant (b=0.214, z=1.81, p=0.070),

and there was no significant effect of experiment (b=0.04, z=0.342, p=0.732). The results

suggest that, after correcting for the random imbalance in learners across the two conditions,

we see some evidence of an advantage for the low i-complexity language, in higher overall

performance.

To test whether the effect of condition found in Experiments 2 and 3 was directly related to

the presence of predictive trials, we also ran an additional analysis comparing data across

all three experiments. Recall that in the predictive trials design used in Experiments 2-3,

participants were asked for the dual form immediately after getting the singular form in the

previous trial. If learners only make use of the predictive information when they have ready

access to a predictive form, these trials should facilitate learning of the dual forms, but only in

the low i-complexity conditions of Experiments 2 and 3, not Experiment 1. We ran a mixed-

effects logistic regression predicting accuracy on dual trials from experiment, condition,

accuracy in block 2, and trial number. Coding for condition and trial number was the same

as in previous analyses. Experiment was sum coded (Experiment 1 = –1, Experiments 2

and 3 = 1). Trials from block 4 in Experiments 2 and 3 were excluded from the analysis,

to match number of blocks and trials across the three Experiments. A benefit for predictive

trials should manifest as an interaction between experiment and condition in this model. The

model revealed a significant interaction between trial number and experiment (b=0.265, z=

2.63, p=0.008), but no significant interaction between experiment and condition (b=0.067,

z=0.716, p=0.474) and no significant effect of condition (b=0.143, z=1.527, p=0.12). This

suggests that the predictive trials design was actually beneficial for participants in both

conditions; being exposed to one form of a noun helped participants to subsequently retrieve

the dual, regardless of the i-complexity of the paradigm. This is in line with studies showing

that repetition of stems in different contexts (sometimes called overlap) facilitates word
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learning in first language acquisition (Brodsky and H. Waterfall 2007; Tal and Arnon 2018;

H. R. Waterfall 2005). However, there is no evidence that the predictive trials provided

any particular advantage for participants in the low i-complexity condition, for example by

making the predictive link between forms in the low i-complexity paradigm more apparent

to learners.

At this point, our results show only quite weak evidence for effects of i-complexity on learning

inflectional paradigms. On the one hand, we see a significant effect of i-complexity on

learning in one of our experiments (Experiment 3) and in the combined analysis of 100

participants across Experiments 2 and 3, in which we used the same method, namely the

predictive trials in blocks 3 and 4 of the experiments. However, Experiments 1 and 2 when

considered independently do not show a significant effect of i-complexity on learning, and a

combined analysis of all three experiments (combined N=139) does not show a significant

effect of i-complexity or that the predictive trials method interacts with i-complexity.

2.4 Testing the impact of e-complexity on paradigm

learning

Given the rather weak evidence of an effect of i-complexity for human learners, we attempted

to test whether another measure of paradigm complexity (e-complexity) had a more robust

effect; recall that natural language paradigms differ quite substantially on e-complexity. Us-

ing the simulation and experimental methods above, we manipulate e-complexity to test

its effect on paradigm learning in RNNs and human participants and to compare the effect

this measure has on learning with that of i-complexity. The paradigms used in Simula-

tion Experiments 1-2 and Experiments 1-3 varied in i-complexity but had low e-complexity.
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We constructed a third inflectional paradigm similar in size and design to the ones used

above, with high e-complexity and low i-complexity (Table 2.6) and tested how well RNNs

and human participants learned the forms in the paradigm. In Simulation Experiment 3

we compare results from RNNs learning the paradigm with results from Simulation Exper-

iment 2. In Experiment 4 we compare results from human participants learning the high

e-complexity paradigm with combined data from Experiments 2 and 3. This allows us to

compare the effect that the e-complexity of the paradigm has on its learnability with the

effect of i-complexity.

2.4.1 High e-complexity paradigm

In this Experiment, RNNs and participants are trained and tested on an inflectional paradigm

of an artificial language. Higher e-complexity is reflected by having more variants to mark

the dual forms. We use the same paradigm in the simulation experiment with RNNs and in

the experiment with human participants.

singular Dual Plural
noun class 1 -at -oc -at
noun class 2 -op -um -el
noun class 3 -at -ib -od

Table 2.6: Example paradigm for high e-complexity language. This paradigm is of the same
size as in previous experiments (3 noun classes, 3 grammatical numbers, 7 inflections), but
with higher e-complexity.

The high e-complexity paradigm (Table 2.6) has higher e-complexity than the paradigms

shown in Table 2.3, 1.36 vs. 1.14 bits, while its overall i-complexity is equal to that of the

low i-complexity paradigm in Table 2.3a, 0.222 bits. The higher e-complexity is due to an

additional variant to mark the dual; we keep the overall number of inflections constant by

re-using one marker from the singular in the plural (in this example, -at).
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2.4.2 Simulation Experiment 3

The model

We tested LSTM networks with the same architecture, input encoding and parameters as

described for Simulation Experiments 1 and 2. Training and testing the network on the

forms according to the paradigm in Table 2.6 followed the same procedure as in Simulation

Experiment 2, summarized in Table 2.5. As before, we tested networks of different sizes,

from 5-cells networks (542 parameters) to 45 (12,022 parameters), in increments of 5; we

conducted 100 runs for each paradigm for each network size, with initial weights of the

network randomly generated for each run.

Results

Figure 2.11 presents the learning trajectories of the neural networks for the dual forms,

comparing the results from networks trained on the paradigm with new high e-complexity

with results from Simulation Experiment 2. We designate the two paradigms from Table

4 as low i-complexity and high i-complexity; note that both these paradigms have lower e-

complexity compared to the new paradigm in Table 2.6; our high e-complexity paradigm has

the same i-complexity as the low i-complexity paradigm in Table 2.3a. Across all network

sizes, the dual forms in the high e-complexity paradigm are learned slower than both the low

i-complexity and high i-complexity paradigms. This difference in learning speed can also be

seen in Figure 2.12, showing for every network size the epoch in which the network reached

perfect learning of the full paradigm.
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Figure 2.11: Average accuracy across all runs of the LSTM networks in generalizing to novel
dual forms for the new high e-complexity paradigm (green) compared with results from the
low i-complexity paradigm (blue) and the high i-complexity paradigm (red) from Simulation
Experiment 2. (a) results for one network size (25 cells), with error bars indicating standard
error every 10 epochs. (b) results for all the network sizes tested (facet titles give network
size in number of cells). Note that the plots start at epoch 600, when the dual forms are
introduced to the network (at the beginning of Block 3). In all cases accuracy for the high
e-complexity paradigm is lower than for both other paradigms.
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Figure 2.12: Number of training epochs required to reach perfect learning of the paradigm
for each size of network.

2.4.3 Experiment 4

The results from Simulation Experiment 4 suggest that for LSTMs e-complexity has more of

an effect on learning than i-complexity, Next, we test the effect of e-complexity on learning

inflectional paradigms in human learners, and compare it with the effect of i-complexity. We

use the combined data from Experiments 2-3 to represent paradigms with low e-complexity

but varying i-complexity.

Participants

50 self-reported English speakers adult participants were recruited via Amazon’s Mechanical

Turk. They were paid $6 for their participation. All participants were allocated to the high

e-complexity condition.
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Materials and Procedure

This experiment was identical to Experiments 2 and 3, with the sole difference of training

participants on an inflectional paradigm with high e-complexity (Table 2.6).

Results

Figure 2.13 shows the mean accuracy with which participants chose the appropriate word

form for singular, plural, and dual, as the experiment progressed trial by trial. Results from

this experiment are compared with data from Experiments 2 and 3, where participants were

exposed to paradigms with low e-complexity and either low or high i-complexity. Participants

exposed to the high e-complexity language had mean accuracy in dual trials of Mhighe=0.45

(sd = 0.25) whereas in the low e-complexity paradigms participants mean accuracy was

Mlow=0.69 (sd=0.24) (in the low i-complexity condition) and Mhighi=0.56 (sd=0.26) (in the

high i-complexity condition).

There was no significant differences between conditions in blocks 1 and 2, in which the lin-

guistic input did not differ in terms of i- and e-complexity across conditions up until block

3, where the dual forms were introduced.7 To test the effect of e-complexity on production

of dual forms and to compare it with the effect of i-complexity, we ran a mixed-effects lo-

gistic regression model predicting dual accuracy rates by condition (low i-complexity [with

low e-complexity], high i-complexity [with low e-complexity], and high e-complexity [with

low i-complexity]), accuracy on block 2, trial number and their interactions as fixed effects.

Condition was dummy-coded with high e-complexity as the reference level, to compare the

other two conditions to it. Other fixed effects were coded as in Experiments 1 and 2. The

7This was confirmed by a mixed-effects logistic regression models predicting accuracy in block 2 by
condition and trial number (high vs. low e-complexity: b=0.167, z=0.97, p=0.33; high i-complexity vs. high
e-complexity: b=-0.29, z=-1.7, p=0.088).
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results of this experiment closely mirror the findings of Simulation Experiment 3. Results

revealed a significant effect of e-complexity, with higher accuracy for the low i-complexity

condition than the high e-complexity condition (b=1.502, z=7.3, p<0.001), and significant

interaction between e-complexity and trial number (b=0.67, z=3.21, p=0.0013), suggesting

that participants in the low i-complexity, low e-complexity condition improved faster in learn-

ing the dual forms than participants learning the new high e-complexity, low i-complexity

paradigm. Accuracy in the high e-complexity condition was also significantly lower than in

the high i-complexity, low e-complexity condition (b=0.99, z=4.9, p<0.001), but in this case

there was no significant interaction between condition and trial number (b=0.299, z=1.46,

p=0.14). As seen in earlier experiments there were also significant effects of trial number

(b=1.04, z=7.44, p<0.001), accuracy in block 2 (b=1.3, z=8.26, p<0.001), and a significant

interaction between accuracy in block 2 and trial number (b=0.52, z=3.21, p=0.0013).

To summarise, the results of experiments with both neural network and human participants

suggest that when comparing the effect of e-complexity with the effect of i-complexity on

learning, e-complexity has a stronger effect; a paradigm with high e-complexity but low

i-complexity is learned more slowly than paradigms with lower e-complexity, regardless of

whether those paradigms have the same or higher i-complexity.

2.5 Discussion

We used neural network simulations and behavioral experiments with humans to test whether

the learnability of artificially-constructed inflectional paradigms was predicted by i-complexity.

This information-theoretic measure of complexity, proposed by Ackerman and Malouf (2013),

captures the extent to which forms in a paradigm predict each other. We tested whether a

paradigm in which dual forms could be predicted from singular forms (lower i-complexity)
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Figure 2.13: Mean accuracy by trial for singular, plural, and dual forms of participants ex-
posed to the high e-complexity paradigm (in green) compared with results from Experiments
2 and 3 where participants were exposed to paradigms with low e-complexity and either low
or high i-complexity. When controlling for accuracy in block 2, participants in the high
e-complexity condition were worse in learning the dual forms than both low e-complexity
paradigms.

was learned faster than a paradigm in which the dual is less well predicted from the singular

(higher i-complexity), holding other measures of complexity (e.g., size of the paradigm and

number of overall markers) constant. In contrast with previous work, we tested not just the

ability to generalize to completely novel forms, but also the speed and overall accuracy with

which the paradigms were learned. Results from network simulations with LSTMs showed

that low i-complexity was advantageous both for generalizing the paradigm to novel forms

(i.e., solving the Cell Filling Problem, Ackerman, James P. Blevins, et al. (2009)) and early

learning of new forms that have not yet been robustly acquired (i.e., through memoriza-

tion). These findings show that for an ideal learner, such as an LSTM neural network, the

implicative structure of a morphological paradigm, captured by low values of i-complexity,
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facilitates learning. However, since we are interested here in whether i-complexity shapes

cross-linguistic variation in inflectional paradigms through its effect on learnability, it is

crucial to verify the effect of i-complexity on human learners.

In previous work, Seyfarth et al. (2014) found evidence that learners use predictive structure

to generalize to novel stems. In larger paradigms, with three inflectional classes each express-

ing three number features, predictive structure was at least partly over-ridden by the effect

of inflection frequency: learners only used predictive structure to generate low frequency

inflectional forms. Here, we tested whether lower i-complexity paradigms also led to better

or faster learning. In Experiment 1, we found no evidence of a learning advantage for our

lower i-complexity paradigm when controlling for general differences in learning ability. In

Experiment 2, we attempted to reveal an effect of i-complexity by adding more critical trials,

and by structuring trials such that a predictive form presented on one trial was followed the

cell it predicted on the subsequent trial. In our case, this meant dual trials immediately

followed singular trials for the same noun, a trial structure similar in spirit to that used by

Seyfarth et al. (2014); structuring the task in this way in principle makes the predictive link

between forms in the paradigm more apparent. As in Experiment 1 however, no difference

between conditions was found after controlling for general learning ability. In Experiment 3

we replicated this with a larger sample size, and here found some evidence that participants

were better-able to learn lower i-complexity paradigms. These results held in a combined

analysis of data from Experiments 2 and 3 together. An analysis across all experiments re-

vealed however that participants in both conditions benefited from our constrained ordering

of trials. This suggests that there is no critical difference between the experiments with

or without the predictive trials ordering in terms of the effect of i-complexity on learning.

Further, in this combined analysis there was no evidence that i-complexity modulated learn-

ing. Across all three experiments, our results therefore suggest that implicative structure in
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paradigms provides at best only a weak benefit for human learners.

That said, it is worth noting that the differences in i-complexity between our low- and high-

complexity paradigms were not very large – the difference is 0.222 bits. It could be that

larger differences in i-complexity values would reveal a larger effect on learning. However

even this difference corresponds to complete predictability of the dual given the singular in

the low complexity paradigm, vs at best 66% predictability in the high complexity paradigm.

Testing more extreme values of i-complexity is in principle possible, but would necessitate

training participants on much larger inflectional paradigms.

Alternatively, it may simply be that implicative structure is used for generalization to com-

pletely novel items, but not once learners have encountered items, even if with low frequency.

However, this seems an unlikely explanation as that would presume perfect memory of which

items have been encountered. Furthermore, as Seyfarth et al. (2014) show in their study,

even when generalizing to novel items the effect of the predictive structure is secondary to

inflection frequency (a feature better described with measures such as e-complexity). If so,

the role of i-complexity in shaping natural language paradigms might be relatively weak.

For example, measures of morphological complexity which take into account number of in-

flectional classes and frequency of inflectional forms, e.g., our measure for e-complexity, may

in fact play a larger role.

In Simulation Experiment 3 and Experiment 4, we test the effect of e-complexity on learning

inflectional paradigms to calibrate our understanding of the size of the i-complexity effect

by seeing how it compares to an effect of e-complexity. We trained and tested RNNs and

human participants on an inflectional paradigm with high e-complexity and low i-complexity.

Results from both the simulation with RNNs and the experiment with human participants

show a stronger effect on learning of e-complexity than i-complexity; our paradigm with

high e-complexity was learned more slowly than the other paradigms we tested, even though
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it had low i-complexity. These results show that e-complexity is a better predictor of the

learnability of an inflectional paradigm. Therefore, the e-complexity or a combination of

predictors of learning, rather than i-complexity alone, should be used to explain how learning

biases shape morphological paradigms in natural languages.

Our results show that the measure proposed here for e-complexity is a more robust predic-

tor of morphological learning than Ackerman and Malouf (2013)’s i-complexity. However,

previous studies suggest that there are differences between adult and children learning (e.g.,

Culbertson and Elissa L. Newport 2015; Carla L. Hudson Kam and Elissa L. Newport 2005;

Carla L Hudson Kam and Elissa L Newport 2009). Since we did not test children learning

in our study, it may be that either there is a difference between L1 and L2 learning with

respect to the effect of i-complexity, or that e-complexity is more dominant also in first learn-

ing acquisition. Future studies should look at the effect of i-complexity in children learning

of morphological paradigms.

Furthermore, we show only weak evidence that differences in the reliability of analogy based

on distributional cues affects the learning of morphological paradigms. It is however im-

portant to note that our results say nothing about using e.g. semantic or phonological

similarities to generalize the paradigm to novel words. In the artificial language used here,

class membership of lexical items was not conditioned on semantics or phonology; this was

crucial to directly test the effect of the predictive structure on learning the inflectional forms

independently from any reliance on other cues in predicting inflectional class membership

(e.g., Culbertson, Gagliardi, et al. 2017; Frigo and McDonald 1998; L. A. Gerken et al. 2009;

L. Gerken et al. 2005). Therefore, our results do not contradict evidence showing that learn-

ers use phonological similarities to generalize to new inflections (e.g., Ambridge 2010; Milin,

Keuleers, et al. 2011); indeed, one possible future avenue of research is to test whether seman-

tic or phonological cues interacting with distributional information might reveal advantages
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for low i-complexity paradigms.

2.6 Conclusions

This paper was set to test the hypothesis that i-complexity predicts the learnability of mor-

phological paradigms; an hypothesis arising from Ackerman and Malouf (2013)’s low condi-

tional entropy conjecture. Using artificial language methods, we tested whether paradigms

with low vs. high i-complexity are easier to learn, both with RNNs and with human partici-

pants. Results from this study show that while low i-complexity was shown to be beneficial

for LSTM neural networks, it is not a strong predictor of learning in human learners; manip-

ulating e-complexity shows a larger effect on learning both in LSTM networks and in human

participants, a result which we replicate elsewhere (Johnson, Gao, et al. 2021).

Together, these results challenge the hypothesis that i-complexity has a role in shaping

paradigms in natural languages. The mismatch between the effect of i-complexity on learn-

ing in LSTM networks and in human participants calls for future studies on the different

mechanisms of these two learners in learning morphological paradigms. This is of high

relevance since more and more studies are proposing ways of measuring morphological com-

plexity and modelling morphological learning using neural networks (e.g. Cotterell, Kirov,

Hulden, et al. 2019; Elsner et al. 2019; Malouf 2017; Marzi et al. 2018).
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Part II

I-complexity and e-complexity and

their effects on the learnability of

morphological systems
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Chapter 3

Investigating the effects of

i-complexity and e-complexity on the

learnability of morphological systems

3.1 Abstract

Research on cross-linguistic differences in morphological paradigms reveals a wide range of

variation on many dimensions, including the number of categories expressed, the number

of unique forms, and the number of inflectional classes. However, in an influential paper,

Ackerman and Malouf (2013) argue that there is one dimension on which languages do not

differ widely: in predictive structure. Predictive structure in a paradigm describes the ex-

tent to which forms predict each other, called i-complexity. Ackerman and Malouf (2013)

show that although languages differ according to measure of surface paradigm complexity,

called e-complexity, they tend to have low i-complexity. They conclude that morphologi-

cal paradigms have evolved under a pressure for low i-complexity. Here, we evaluate the

hypothesis that language learners are more sensitive to i-complexity than e-complexity by

testing how well paradigms which differ on only these dimensions are learned. This could

result in the typological findings Ackerman and Malouf (2013) report if even paradigms with

very high e-complexity are relatively easy to learn so long as they have low i-complexity.
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First, we summarize recent work by Johnson, Culbertson, et al. (2020) suggesting that both

neural networks and human learners may actually be more sensitive to e-complexity than

i-complexity. Then we build on this work, reporting a series of experiments which confirm

that indeed, across a range of paradigms that vary in either e- or i-complexity, neural net-

works (LSTMs) are sensitive to both, but show a larger effect of e-complexity (and other

measures associated with size and diversity of forms). In human learners, we fail to find any

effect of i-complexity on learning at all. Finally, we analyse a large number of randomly

generated paradigms and show that e- and i-complexity are negatively correlated: paradigms

with high e- complexity necessarily show low i-complexity. We discuss what these findings

might mean for Ackerman & Malouf’s hypothesis, as well as the role of ease of learning versus

generalization to novel forms in the evolution of paradigms.

Keywords: morphological complexity; learning; neural networks; typology

3.2 Introduction

Languages differ widely in their morphological systems, including substantial variation in

their inflectional paradigms; some languages do not use morphology to mark grammatical

information at all (e.g., Mandarin) whereas others make use of inflectional morphology to

mark dozens of grammatical functions (e.g., Arabic). Intuitively, this kind of variation

should have an effect on how easy or difficult it is to learn a morphological system—the

more inflected forms for each lexeme there are, the more difficult learning should be. Indeed,

using the size of an inflectional paradigm is a common method for measuring morphological

complexity, for example by counting the number of potential inflections a verb or a noun

can be marked with (e.g., Bickel and Nichols 2013; Shosted 2006). In addition to number of

inflectional categories, the size of a morphological system is also impacted by the number of
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inflection classes, i.e., different realizations for the same morphosyntactic or morphosemantic

distinction across groups of lexemes (Aronoff 1994; Greville G. Corbett 2009), which has

also been claimed to be a source of complexity in morphological systems (e.g., Ackerman

and Malouf 2013; Baerman et al. 2010). These aspects of morphological complexity, which

pertain to the size of a morphological system, are all referred to as enumerative complexity

or e-complexity (e.g., Ackerman and Malouf 2013; Meinhardt et al. 2019).

Recently, another measure of the complexity of morphological paradigms has been suggested,

referred to as integrative complexity, or i-complexity. I-complexity refers to the organization

of the inflected forms in the paradigm and the relations between the forms that such orga-

nization generates; in paradigms with low i-complexity, forms are predictive of one another

(e.g., Ackerman and Malouf 2013; James P. Blevins 2006). Proponents of this measure sug-

gest that i-complexity reflects the difficulty speakers face in generating forms they have not

previously encountered, based on known forms of the same lexeme (the Paradigm Cell Filling

Problem, Ackerman and Malouf 2013; Ackerman and Malouf 2015.Predictive structure in a

morphological system can be seen in 3.1 below, which shows the Russian nominal inflection

paradigm. This paradigm has four inflectional classes, and inflections for two number cate-

gories and six case categories. The nominative singular -o is predictive of all the other case

forms (i.e. if you know that a given noun takes -o in the nominative singular you can predict

its inflection in any other combination of case and number); in contrast the nominative plu-

ral -i is less predictive, since nouns which take that inflection show variation in inflectional

marking elsewhere.

Crucially, Ackerman and Malouf (2013) observe that across natural language paradigms,

while the size or e-complexity vary widely, i-complexity is consistently low. Further they

show that high e-complexity paradigms tend to have low i-complexity. They conclude that

i- complexity is therefore a primary measure of complexity which shapes the types of mor-
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phological paradigms attested cross-linguistically.

Ackerman and Malouf (2015) further suggest that the pressure for low i-complexity shapes

languages through the dynamics of language change. Specifically, during language use, low

i-complexity may assist language users in solving the Paradigm Cell Filling Problem, and fur-

ther, errors language users make when generalizing to unknown forms may be i-complexity-

reducing. This idea is also compatible with the general hypothesis that languages evolve

to maximise learnability (e.g., Christiansen and Chater 2008; Culbertson and Kirby 2016;

Deacon 1997; Kirby 2002; Kirby, Cornish, et al. 2008). In this case, a learning bias against

high i-complexity paradigms would drive i-complexity down over generations of learners. If

i-complexity affects learning and use more than other aspects of complexity, then the former

might end up being constrained across languages, while the latter may vary quite freely.

That said, from this perspective the substantial variation in languages’ e-complexity that

Ackerman and Malouf (2013) observe is on its face surprising. We might reasonably expect

that higher e-complexity also poses challenges for language learners; and the existence of lan-

guages with large morphological paradigms and numerous inflectional classes in particular

is puzzling.

SG PL
NOM ACC GEN DAT LOC INS NOM ACC GEN DAT LOC INS

noun class 1 -o -o -a -u -e -om -a -a ø -am -ax -am’i
noun class 2 ø ø -a -u -e -om -i -i -ov -am -ax -am’i
noun class 3 -a -u -i -e -e -oj -i -i ø -am -ax -am’i
noun class 4 ø ø -i -i -i -ju -i -i -ej -am -ax -am’i

Table 3.1: Russian nominal inflection paradigm (phonological transcription)1(Baerman et al.
2010). Nouns fall into one of 4 inflection classes (rows) which show different patterns of inflec-
tion; nouns are inflected for number (SG=singular, PL=plural) and case (NOM=nominative,
ACC=accusative, GEN=genitive, DA T=dative, LOC=locative, INS=instrumental).

1This transcription ignores the effects of an automatic rule that changes unstressed /e/ and /o/ to /i/
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Here we compare how different sources of morphological complexity affect learnability of

inflectional paradigms. We focus on the two types of measures described above: e-complexity

as reflected in the number of inflection classes in a paradigm and the distribution of their

forms, and i-complexity as reflected in the predictability of forms in a paradigm based

on other parts of the paradigm. We also investigate how these interact with the number

of different markers in the system, another aspect of the e-complexity of the paradigm,

and different types of syncretism. Syncretism is a phenomenon in which different cells

in an inflectional paradigm are realized by the same phonological form. Whether the same

phonological form marks semantically related meanings or is accidental homonymy, has been

suggested to affect the learning of the forms (e.g., Baerman et al. 2005; Maldonado and

Culbertson 2019; Pertsova 2012). For example, in Table 1 above, -o is used for semantically

related forms—class 1 nouns which differ in case. However, -a can be considered accidental

homophony as it is used across different classes for different cases.

The paper proceeds as follows. We first outline more precisely how e- and i-complexity

are calculated in this study. We then discuss previous work aimed at providing empirical

evidence for the link between i-complexity and learning of morphological paradigms. This

work has highlighted the role of predictive structure in producing novel inflections, i.e., gen-

eralization. In section 2 we then report a series of experiments using LSTM neural network

and human learners testing the related hypothesis that low i-complexity provides a more

general facilitatory effect on learning than e-complexity, including facilitating the retrieval

of already-encountered forms early in learning. While the biases of human learners are obvi-

ously of primary interest in understanding the pressures that shape human language, we use

neural networks as a convenient model of an ‘ideal learner’. Testing such a learner serves to

provides proof-in-principle for whether i-complexity can affect learnability and whether its

and /a/, respectively
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influence is greater than other types of morphological complexity. For both human and net-

work learners we see similar results, contrary to the hypothesis above; e-complexity generally

impacts learning more than i-complexity. Finally, in section 3 we explore the relationship

between the i- and e-complexity by generating a large number of random paradigms with

different values of these two measures. Here we find that i-complexity and e-complexity

are highly negatively correlated: as the number of distinct forms increases, the implicative

structure between forms also necessarily increases. Furthermore, the range of e-complexity

values is also necessarily higher than the range of i-complexity values for paradigms of the

same size. These findings suggest that the observations made by Ackerman and Malouf

(2013) concerning morphological paradigms may stem in part from the nature of the mea-

sures rather than pressures (e.g., inductive or usage biases) that are specially attuned to

i-complexity.

3.2.1 Measuring i-complexity and e-complexity

Here we adopt methods for calculating i-complexity outlined in Ackerman and Malouf (2013).

The i-complexity of inflectional paradigms is measured using the information-theoretic notion

of entropy (Shannon 1963), specifically the averaged conditional entropy of forms in the

paradigm. The conditional entropy of a pair of grammatical functions X,Y in the paradigm

is presented in (3.1) below. Here P(x,y) indicates the joint probability of the two grammatical

functions in the paradigm being realized as forms x and y, respectively; P(y|x) indicates the

conditional probability of Y being realized as y, given that X is realized as x. Conditional

entropy H(Y|X) quantifies the uncertainty associated with the value of Y given the value of

X. For example, looking at the Russian nominal inflection paradigm above, let Y be the set

of forms realizing SG.NOM, [-o, ø, -a, ø], and X be the set of forms realizing SG.DAT, [-u,

-u, -e, - i]. The conditional entropy of SG.NOM given the form in SG.DAT would represent
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the uncertainty associated with the form in SG.NOM, when the form realizing SG.DAT for

the same lexeme is known.

H(Y |X) = −
∑
x∈X

∑
y∈Y

P (x, y)log2P (y|x) (3.1)

A paradigm’s total i-complexity is the averaged conditional entropy over all pairs of gram-

matical functions in the paradigm, as in (3.2).2

∑
Y ∈G

∑
Y ∈G,X∈G H(X|Y )

NG(NG − 1)
(3.2)

Where G is the set of grammatical functions in the paradigm and NG is their total number.

Although Ackerman and Malouf (2013) do not explicitly suggest a measure for e-complexity,

we adopt here their average cell entropy as a measure for e-complexity. The cell entropy,

defined in (3.3) below, captures the number of inflection classes and the number of different

variants to mark each grammatical function (e.g., combinations of number and case in the

Russian nominal inflection paradigm above). Intuitively, grammatical functions that are

realized with a large set of optional forms, or do not have a dominant/frequent variant, have

higher cell entropy. The difference between these two measures rests in the extent to which

they take into account the inter-predictability of forms across the paradigm. I-complexity is

specifically defined to measure the degree to which one form can be guessed based on another

form, in any other cell of the paradigm. In other words, it critically involves predicting the

form of a lexeme in some grammatical function based on the form of that lexeme in a different

grammatical function. By contrast, average cell entropy is only defined in terms of a single

2Note that this is not the only way of calculating i-complexity. For alternative formulations, see Mal-
ouf (2017) as well as Bonami and Beniamine (2016) and Sims and Parker (2016) who propose alternative
formulations which are less dependent on linguist-constructed paradigms.
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grammatical function, i.e., it is based on what one can predict from the form of other lexemes

for that grammatical function. Average cell entropy is thus suitable for measuring what is

crucially different about e-complexity as compared to i-complexity.3 For example, Ackerman

and Malouf (2013) illustrate at their claim that paradigms tend to have low i-complexity but

vary in their e-complexity using the average conditional entropy and average cell entropy,

respectively.

H(X) = −
∑
x∈X

P (x)log2P (x) (3.3)

E-complexity is measured as the averaged cell entropy over all grammatical functions in a

paradigm as in (3.4).

∑
X∈G H(X)

NG

(3.4)

Where G is the set of grammatical functions in the paradigm and NG is their total number.

3We further discuss the relationship between average cell entropy and another common measures of e-
complexity, number of forms in the paradigm, in Section 3. In general, we prefer average cell entropy
over simply counting the number of forms in the paradigm, or number of forms for a given grammatical
function because the entropy-based measure also accounts for the frequency with which forms are used
across a grammatical function. For example, in the Russian paradigm above, SG.GEN and SG.LOC both
are expressed with two affixes, but the skewed distribution over those two affixes for SG.LOC reduces
uncertainty (the appropriate affix is more likely to be -e than -i), which the entropy-based measure captures.
However, it should be noted that Malouf has suggested (p.c.) that number of forms but not average cell
entropy should be considered a measure of e-complexity. They argue this based on the fact that average cell
entropy, like the measure of i- complexity we use, also reflects predictive relationships within the paradigm
(just not across grammatical forms for a given lexeme). We would argue against this interpretation, since
number of forms–an uncontroversial measure of e-complexity– can also be considered predictive in this way;
it affects how well a form can be predicted based on knowledge of all the forms in the paradigm. Put another
way, a paradigm with fewer forms makes any given form easier to guess.
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3.2.2 Previous work investigating the effects of complexity on

morphological learnability

As mentioned above, Ackerman and Malouf (2013) find evidence that while morphological

paradigms differ widely in their e-complexity, the range of i-complexity values appears to

be more constrained. They calculate both e- and i-complexity for inflectional paradigms in

a set of 10 geographically and genetically varying languages. The e-complexity values they

report (as measured by average cell entropy) ranged between 0.78 and 4.9 bits, while their

i- complexity values were under 1 bit across the board.4 A simulation analysis performed

on one of the languages exhibiting high e-complexity (Chiquihuitlàn Mazatec) showed that

the i- complexity of the actual paradigm was lower than the i-complexity values for random

permutations of that paradigm. This suggests that the inflectional paradigms of natural

languages may be organized in such a way as to minimize their i-complexity. How might this

come about? One possibility is that low i-complexity facilitates solving the Paradigm Cell

Filling Problem (Ackerman, James P. Blevins, et al. 2009; Ackerman and Malouf 2015), i.e.,

it makes it easier to determine the correct form for novel inflection. This generalization-based

mechanism could lead to lower i-complexity: assuming individuals are frequently required

to produce novel inflections (i.e. generate the inflectional form associated with grammatical

function Y for a lexeme which they have only seen inflected for grammatical function X), and

assuming they exploit predictive relationships between grammatical functions as captured by

i-complexity, paradigms with low i-complexity will be relatively stable whereas paradigms

with high i-complexity (i.e. where prediction from the form for function X to the form

for function Y is not possible) will tend to change. Specifically, they might be expected

4The relationship between e-complexity and i-complexity found by Ackerman and Malouf (2013) is also
reported in Cotterell, Kirov, Hulden, et al. (2019), using different measures of both e- and i-complexity
(the latter based on forms drawn from corpora rather than paradigms posited by linguists, cf. Bonami and
Beniamine 2016; Sims and Parker 2016)
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to change in ways which reduce i-complexity since learners might actually introduce errors

which reflect predictive relationships when attempting to generalise.

Seyfarth et al. (2014) tested Ackerman, James P. Blevins, et al. (2009) hypothesis that i-

complexity has an effect on the ability of human learners to solve the Paradigm Cell Filling

Problem. They compared the ability of human learners to predict novel inflected forms in

low vs. high i-complexity input. They trained participants on an artificially constructed

nominal inflectional paradigm in which nouns were marked for three grammatical numbers

(singular, dual and plural) according to one of two noun classes (Table 3.2(a). In the test

phase, they asked participants to generate inflected forms for a novel lexeme given that

lexemes’ inflected form in another grammatical number. In some trials, the required form

could be predicted from the given form (predictive trials), while in others it could not be

(non- predictive trials). In Table 3.2(a) for example, being prompted with a novel singular

form marked with -yez allows the learner to predict what form the lexeme takes in the dual

(-cav). However, knowing the form in plural is not predictive of the form in dual. They found

that participants’ performance differed across predictive and non-predictive trials, showing

that learners were indeed able to use the predictive structure to generate a correct novel

form when it was available. In a second experiment, Seyfarth et al. (2014) tested whether

predictive information facilitated generalization to novel stems in a larger paradigm (Table

3.2(b)). They found that, learners made less use of predictive information in this larger

paradigm: learners tended to inflect novel stems with the most frequent marker (e.g., they

used the suffix -cav to mark dual regardless of class). Notably, while predictive relations

between forms in the paradigm is captured by i-complexity, suffix frequency is captured by

our measure of e-complexity. Therefore, these results suggest that e-complexity may also

influence how learners generalize to novel forms.

The Seyfarth et al. (2014) study simulates a case in which language learners have to generalize
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Table 3.2: Artificially constructed nominal inflection paradigms used in Seyfarth et al.
(2014).

Singular Dual Plural
noun class 1 -yez -cav -lem
noun class 2 -taf -guk -lem

(a) Paradigm with two noun classes (their Experiment 1).
Singular Dual Plural

noun class 1 -taf -guk -lem
noun class 2 -yez -cav -lem
noun class 3 -yez -cav -nup

(b) Paradigm with three noun classes (their Experiment 2).

from the paradigm they have learned to inflect a novel stem for one grammatical feature based

on exposure to that stem inflected for a different grammatical feature. For example, they

might be required to inflect a stem for dual when they had only seen that stem inflected in the

singular. They show that, in this case, learners are indeed able to use this predictive structure

to predict the novel form. Johnson, Culbertson, et al. (2020) replicate these results with

LSTM networks, showing that the networks are able to use the predictive relations between

forms in the paradigm to generalize to novel wordforms. However, generalizing to completely

novel forms is an extreme case of a much more general problem that language learners face.

In addition to generalizing to completely novel forms, learners must generate (or retrieve)

forms which may have been encountered but have not yet been robustly acquired. Our

hypothesis is that if low i-complexity facilitates solving the Paradigm Cell Filling Problem,

i.e., using familiar forms to predict new forms, it should, in principle, facilitate learning forms

under low exposure as well; learners can use the same strategy they use when generalizing

to completely novel stems to help generate (or retrieve) low frequency forms that are not

fully memorized.

Here we test this hypothesis, comparing the effects of e- and i-complexity on the learnability

of morphological paradigms. We systematically manipulate i-complexity and e- complexity,
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holding other potential differences among paradigms (e.g., number of forms) constant. In

Section 2, we use an artificial language learning task to train and test LSTM neural networks

and human participants on four inflectional paradigms with varying values of i- and e-

complexity. To test the effect of i-complexity on speed and final attainment of learning,

we test how well LSTMs and human learners are able to generate forms they are trained

on over the course of learning. Data from these experiments, in combination with results

from Seyfarth et al. (2014), will provide evidence concerning the mechanism by which i-

complexity might shape paradigms over time. Specifically, whether the pressure for low i-

complexity suggested by Ackerman and Malouf (2013, 2015) comes solely from how it affects

generalization to novel forms, or from a more general facilitatory effect on learning, including

retrieval of encountered forms. Moreover, comparing the effects of e- and i-complexity on

learning will potentially provide corroborating evidence for the hypothesis that i-complexity

rather than e- complexity shapes morphological paradigms. To preview, we find that the

LSTM neural networks exhibit different learning rates for paradigms with different values

of i-complexity, however the effect of variations in e-complexity is larger. Results from the

task with human learners reveal an effect of e-complexity but not i-complexity on learning.

3.3 Testing the effects of e- and i-complexity in human

learners and LSTM neural networks

Johnson, Culbertson, et al. (2020) report a series of artificial language learning experiments

with human learners and Long Short Term Memory (LSTM, Hochreiter and Schmidhuber

1997) neural networks. Learners and networks were trained on one of two nominal inflectional

paradigms which were matched in e-complexity but differed in i- complexity: one with

low i-complexity and one with high(er) i-complexity. They found evidence that the low
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i-complexity paradigm was learned faster by LSTMs, but there was no clear effect of i-

complexity for human learners. In a second series of experiments manipulating both e- and

i-complexity, e-complexity was shown to better predict learnability for both LSTMs and

human learners. However, in Johnson, Culbertson, et al. (2020), learning was staged, i.e.,

learners were first exposed to all forms in one grammatical function (singular), then forms

in a second grammatical function were added (singular and plural), and finally forms in

the last grammatical function were added (singular, plural, and dual). This was done to

increase the chances of finding an effect of i-complexity; in low i-complexity paradigms, the

dual forms could be predicted from the singular. Here, we explore more realistic, unstaged

learning: presentation of forms is fully random, and learners are exposed to all forms in the

paradigm from the beginning. In contrast to Johnson, Culbertson, et al. (2020), we also

measure the overall accuracy of learning all inflected forms in the paradigm, rather than

focusing only on learning of forms in one grammatical number. Replicating these results

with unstaged learning is important, since our objective is to compare different types of

complexity and their effects on learning; the learning regime should therefore be neutral

in terms of enhancing or reducing the probability that learners would be affected by one

measure or another. Furthermore, we take this as a starting point to investigate a wider

range of differences in e- and i-complexity across paradigms, and therefore the privileged

role of one specific portion of the paradigm (e.g., the singular in the staged learning design)

will not hold across these more diverse paradigms.

Artificial language learning tasks allow us to create languages that differ only in the aspect

we are interested in testing, while controlling for all other aspects of the language. This

allows us to test the effects of i- and e-complexity on learning without confounds from other

aspects of the paradigm and language such as the size of the paradigm, number of unique

forms and number of words in each noun class. Another advantage of artificial languages
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paradigms is that since they are small compared to natural languages, they can generally

be learned to a reasonably high proficiency over the course of a single short session. While

they do not reflect the full complexity of natural languages learned in natural settings,

artificial language paradigms are widely used in research on language acquisition, including

to investigate learning biases (e.g., Fedzechkina et al. 2012; Carla L Hudson Kam and Elissa

L Newport 2009; Moreton and Pater 2012; Wonnacott and Elissa L. Newport 2005 and many

others); moreover, studies using artificial learning paradigms show correspondence between

lab-based learning biases and typology (e.g., see Culbertson and Elissa L. Newport 2015;

Culbertson, Smolensky, et al. 2012 for reviews).

We use LSTM networks as a supplement to human learners as an additional means of testing

the relative impact of i-complexity and e-complexity on paradigm learning. LSTM networks

are powerful learning devices, and various recent studies show that they can be capable of

extracting and using relevant linguistic information in sequence processing tasks. For exam-

ple, Linzen et al. (2016) show that LSTM networks can in some cases predict long-distance

subject-verb number agreement, in the presence of other potential agreement triggers (often

called attractors) intervening between the subject and verb; Gulordava et al. (2018) show

that LSTMs trained on four different languages can often accurately predict subject-verb

agreement even when they are not trained specifically on that task; Futrell et al. (2019)

show that surprisal scores of LSTMs (a measure of processing cost) paralleled preferences of

human participants on grammatical judgments task differentiating word-order alternations.

Here, we use LSTMs as a convenient ‘ideal learner’, to provide evidence that i-complexity

can in principle influence paradigm learnability for at least one learning model. This is

particularly useful in circumstances where (as turns out to be the case here) human data

provides little evidence of an effect of i-complexity. The LSTM models allow us to show that

this is not an intrinsic limitation to the way in which we set up our learning task–we find that
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i-complexity does influence learning in LSTMs trained on the same paradigms. Crucially,

we can then show that, even for a class of learners sensitive to i-complexity, those effects

are smaller than the effects of e-complexity. Finally, directly comparing performance of

LSTMs and humans on a matched task opens up the possibility that, to the extent that they

show similar patterns of performance, LSTMs could be used as a convenient tool to quickly

generate predictions to be tested in further human experiments on paradigm learning. In

other words, if these models reliably produce a similar pattern of results to human learners

then they could potentially also be used to extrapolate to paradigms that are hard to test

with human learners under controlled circumstances, e.g. learning of very large paradigms

or paradigms inflecting over very large lexicons.

3.3.1 Target paradigms

We use four artificially constructed inflectional paradigms, similar in size and design to

the ones used in Seyfarth et al. (2014) and Johnson, Culbertson, et al. (2020). The same

paradigms were used for both neural networks and human participants. The paradigms

consist of nine CVC nouns (gob, tug, sov, kut, pid, tal, dar, ler, mip), randomly paired

with meanings for human participants (see section 3.3.3 below). The nouns were randomly

allocated to three classes (for each run of the network, or each human participant), and

each class was inflected for three numbers: singular, dual and plural. Inflectional markers

were seven VC monosyllabic suffixes (-op, -oc, -um, -ib, -el, -ek, -at). These inflectional

markers were randomly allocated to cells in each paradigm, such that the four paradigms

were always structured as in Table 3.3 below but with a different mapping of affixes to cells

for each human participant.

As summarized in Table 3.3, the paradigms differ either in i-complexity or e-complexity,
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e-complexity
Low

(1.141 bits)
High

(1.363 bits)

i-complexity
Low

(0.222 bits) low-i/low-e low-i/high-ewithin

low-i/high-eacross
High

(0.444 bits) high-i/low-e

Table 3.3: Four target paradigms differing either in i-complexity or e-complexity val-
ues. The low i-complexity, low e-complexity (low-i/low-e) and high i-complexity, low e-
complexity (high-i/low-e) paradigms differ in i-complexity only. The two remaining low-
i/high-e paradigms have low i-complexity but have higher e-complexity; these paradigms
also differ in the type of syncretism pattern (within class or across class).

holding the other constant. We also hold constant all other aspects of the paradigms: the

paradigms are matched in terms of number of distinct affixes and number of inflectional

classes, and they feature the same three-way number distinction. The low i-complexity, low

e- complexity (low-i/low-e) and high i-complexity, low e-complexity (high-i/low-e) paradigms

differ in their i-complexity (0.222 vs. 0.444 bits) while their e-complexity is kept con-

stant (1.141 bits). The key difference between the two paradigms is that in the low-i/low-e

paradigm, knowing the singular affix of a word (e.g., -op in Table 3.4a), predicts the dual affix

(e.g., -um). This is not the case in the high-i/low-e paradigm (in Table 3.4b the singular -op

does not uniquely determine the form of the dual). The remaining two paradigms (Table 3.4c,

3.4d) both have low i- complexity (0.222 bits) but higher e-complexity (1.363 bits). In gen-

eral, higher e-complexity here means having distinct dual forms for each class, which results

in a higher uncertainty across forms relative to the low e-complexity paradigms. I-complexity

is kept constant and low in these two paradigms since both the plural and dual forms are

predictive of each other as well as the forms in singular. However, increasing e-complexity

while keeping the number of markers constant requires syncretism in the paradigm; a sin-

gle affix is used to mark different grammatical functions. In order to additionally explore
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Singular Dual Plural
noun class 1 -op -um -ib
noun class 2 -at -oc -el
noun class 3 -op -um -ek

(a) low-i/low-e

Singular Dual Plural
noun class 1 -op -um -ib
noun class 2 -at -um -el
noun class 3 -op -oc -ek

(b) high-i/low-e

Singular Dual Plural
noun class 1 -op -um -op
noun class 2 -at -ib -el
noun class 3 -op -oc -ek

(c) low-i/high-ewithin

Singular Dual Plural
noun class 1 -op -um -el
noun class 2 -at -ib -op
noun class 3 -op -oc -ek

(d) low-i/high-eacross

Table 3.4: Example paradigms for each type tested. See Table 3.3 for high-level descriptions
of each type. Colored cells highlight distinct paradigm structures: in low-i/low-e (a), singular
-op predicts dual -um; in high-i/low-e (b), singular does not predict dual; in both low-i/high-e
paradigms (c,d), the singular form which occurs most frequently is reused for plural elsewhere
in the paradigm (syncretism)—either in one of the classes with that form in the singular (c
low-i/high-ewithin), or in a different class (d low-i/high-eacross).

how syncretism affects learning, here we generated two different syncretism patterns: within

class syncretism (low-i/high-ewithin) and across class syncretism (low-i/high-eacross). In both

low-i/high-e paradigms, the singular form is the same for classes 1 and 3 (e.g., -op in the

example paradigm in Table 3.4c, 3.4d). In the low-i/high-ewithin the syncretic form is reused

as a plural in class 1 (Table 3.4c). In the low-i/high-eacross the syncretic form is reused as a

plural marker for class 2 (Table 3.4d)–crucially, not one of the classes which use this form in

the singular. Previous work on morphological paradigms suggests that this difference in syn-

cretism type could affect learning in human learners (e.g., Baerman et al. 2005; Maldonado

and Culbertson 2019; Pertsova 2012), therefore we test both paradigm types.

Note that we do not include a paradigm with high i-complexity and high e-complexity. This

is not actually possible: there is no way to distribute markers such that both measures of

complexity are high without changing the number of markers in the paradigm. We discuss

this further below.
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As mentioned above, in Johnson, Culbertson, et al. (2020), exposure to forms from a

paradigm was staged: input initially contained only singular forms, then singular and plural

forms, then singular, plural, and dual forms. This was designed to highlight the implicative

structure of low i-complexity paradigms. However, it is also rather unrealistic in that expo-

sure in natural language is unlikely to be staged in this way, or at least not so rigidly staged.

Here, we expose learners to forms drawn at random from the entire paradigm. Therefore,

we test whether having low vs. high values of i- or e-complexity is beneficial when learners

have not always learned predictive forms first. We compared speed and accuracy of learning

all forms in the language across all four conditions.

3.3.2 Experiment 1: LSTM neural networks

Neural networks are computational models which approximate a function linking the net-

work’s input with its desired output. The model consists of several layers of nodes intercon-

nected by associative weights. Given a dataset of input-output pairs the model tries to learn

the optimal setting of these weights to correctly transform an input into its corresponding

output. Updating the weights to better approximate the input-output function is done by

searching for weights that minimize the loss function of the network, which measures how

close the network’s output is to the true output. Different algorithms are used for this search.

A common algorithm is (stochastic) gradient descent. Intuitively, the network generates an

output through a forward pass from the input layer to the output layer, after which the loss

function calculates the difference between the predicted and the target values. Then in a

backward pass the loss function is used to compute an error gradient with respect to each

weight and the network’s weights are updated in the direction of the greatest descent so as

to reduce this error.
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Recurrent neural networks (RNNs) overcome a limitation of simple neural networks funda-

mental to language tasks; simple neural networks are not sensitive to the ‘context’ of the

current input or, in other words, how previous inputs affect the correct output for the cur-

rent input. RNNs overcome this limitation by having ‘short term memory’ through looping

back the output or hidden layer activations previously produced for earlier inputs (Jeffrey L.

Elman 1990; Jeffrey L. Elman 1991; Jordan 1997). This allows the network to adjust the

output for the current input according to previous inputs. The extent to which previous

states of the network affect the current state is also determined by weights updated through

the backpropagation process.

Long Short Term Memory (LSTM) networks are an extension of recurrent neural networks

introduced by Hochreiter and Schmidhuber (1997) in order to improve learning of longer

temporal dependencies. Practically, LSTMs add an element of ‘long term memory’ to net-

works by allowing the network to control the influence of current and previous inputs during

the process of activation propagation, using ‘weighted gates’ in the networks. Like activation

weights, these gates are optimized during training to determine what information is stored

or passed along and therefore allowed to influence subsequent inputs. This allows LSTMs

to make better use of sequential information, including learning non-adjacent dependencies.

LSTMs therefore offer a powerful but convenient general-purpose learning mechanism for

language based tasks. Here we use LSTMs to process relatively short sequences: networks

are presented with stems and grammatical features and produce an inflectional affix, and we

train models on the target paradigms which differ in either their i-complexity or e-complexity.
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Network structure

We trained and tested LSTM networks using the Keras package in Python (Chollet et al.

2015). In this task, the model gets as input a sequence containing the noun’s stem and an

extra character indicating the grammatical number of the object (1 for singular, 2 for dual

and 3 for plural). For example, the string mip3 indicates the noun with the stem mip in

plural. The model’s task is to output the correct affix for this wordform, according to the

paradigm it is trained on. The network has 7 output units, one for each of the 7 affixes in the

target paradigms. Input stem+number sequences are encoded as one-hot vectors. i.e., every

character used in the language is represented as a vector of zeroes (with length equal to the

total set of characters, 27) with ‘1’ in a different index uniquely identifying it. We trained

the model with a range of embedding vectors dimensionalities for the input layer and LSTM

hidden layer dimensionalities (from 5-dimensional embedding vectors and 5-unit layer (542

parameters) to 50 (14,657 parameters), with increases of 5 units). The state of the LSTM

at the end of the input string is fed into a ‘softmax’ function to produce a one-hot encoding

representing the output affix for this stem+number input (i.e. the network’s task it to

learn a 7-way categorical classification of the input sequences). The network was optimized

using Stochastic Gradient Descent (SGD) with learning rate of 0.1, batch size of 32, and no

dropout.5 Initial weights were randomly generated, according to a ‘glorot_uniform’ function

(sampling from a uniform distribution in the range of [−x,+x], where x is a function of the

size of the network).

For each paradigm and set of hyperparameters, 50 runs were produced. In each run, the

lexical items were randomly assigned to noun classes and the model was trained and tested

5In addition to the various network sizes reported in the main paper, we also ran variants of the model
with a range of learning rates, using both SGD and Adam (Kingma and Ba 2014) optimizers. Detailed
results are presented in the Appendix, note that the overall conclusions discussed in the main text remain
unchanged across these variants.
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on input-output pairs across 900 epochs . In each epoch, the network is trained and tested

on all 27 wordforms in the language (9 stems marked for singular, dual and plural). The

test set in this task is identical to the training set—we are not testing the capacity of the

network to generalize, but rather the overall accuracy and speed with which it learns the

mapping from stem+number input to the appropriate affix output.6

...            ...

            ...

            ...

            ...

27

     ...   
   

     ...   
   

     ...   
   

     ...   
   

LSTM

h0

h1

h2

h3

-1

Figure 3.1: A diagram of the recurrent neural network: the input layer receives a string of
four characters (stem + grammatical number), each coded as a one-hot vector of the length
of the different characters used in the language (27). The input vectors are embedded and
the embeddings are transferred to a hidden layer with 5-50 LSTM units. Output from the
LSTM units (h3) is then transferred to an output layer with seven options, representing
the seven suffixes in the language. Using a softmax function, the output is converted to a
one-hot vector, representing the suffix the network selected for this input.

Results

We measured the average accuracy of the networks in producing the correct affix for all

wordforms in the target paradigm over epochs (averaged over 50 runs for each combination

of target paradigm and network size). For simplicity, we first collapse the two low-i/high-e
6As discussed above, this task differs from that used in Seyfarth et al. (2014), who focus on generalizing

to unknown forms.
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paradigms in these graphs, and deal with the effect of syncretism separately below. Fig-

ure 3.2 presents network learning trajectories for these three paradigm types. The same

trend is seen across different network sizes. While 900 epochs is sufficient for all paradigms

to be learned perfectly, even for the smallest networks, the low-i/low-e paradigm type is

learned most rapidly. Networks trained on the high-i/low-e paradigm type show a similar

but slightly slower learning trajectory. Networks trained on the low-i/high-e paradigm types

show the slowest learning, with accuracy increasing markedly later in training than the other

paradigms.

Since we are interested in the effect of i- and e- complexity on the difficulty of learning

the paradigm, rather than whether the language is eventually learnable or not (all of our

paradigms were eventually learned with 100% accuracy given sufficient training), we compare

the summed accuracy (i.e. the sum of the epoch-by-epoch accuracies) of the networks trained

on the different languages. The summed accuracy reflects both the speed of learning the

language and the accuracy throughout learning. For example, in the results shown in Figure

3.2, where all networks eventually reach ceiling, networks which learn more rapidly will have

a higher summed accuracy reflecting the faster pick-up in accuracy over epochs. Other

measures of learning speed are possible, e.g. the mean number of epochs to reach 100%

accuracy; we prefer mean summed accuracy because it relates more obviously to the different

shapes of curve we see in Figure 3.2, and is still interpretable for network parameterisations

that do not result in convergence to 100% accuracy.

Figure 3.3 shows the summed accuracy of the networks trained on each paradigm type
7We looked at the errors made by the LSTMs at epochs 1-150 (when the neural networks show a plateau

in learning). At this stage in learning, the networks use only two out of the seven possible affixes as an
output. This likely reflects a local minimum in the loss function, meaning that the LSTM ‘found’ a partial
solution that maximizes its output accuracy. Each input string is classified with one of those two affixes
solely according to the number indicating the grammatical number at the end of the input string so that all
singulars take one affix (one of the affixes that mark singular), and all dual and plural inputs are marked
with another affix (one of the affixes that mark either dual or plural). After around 150 epochs, the networks
start using additional affixes, which is then reflected by a jump in performance.
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Figure 3.2: Network learning trajectories.7(a) results for one network size (35 cells), with
error bars indicating standard error every 10 epochs, (b) results for all network sizes tested
(facet titles give network size in number of cells). Networks trained on low-i/low-e and high-
i/low-e paradigm types show similar learning trajectories, while networks trained on low-
i/high-e paradigms show lower accuracy levels. Results from models with further learning
rates for both SGD and Adam optimizers show similar patterns for most cases, and we never
see the opposite trend of lower accuracies for the high-i/low-e condition (see Appendix for
detailed results).

across different network sizes. To determine whether these differences between network

learning trajectories are significant, we ran a linear mixed-effect regression model8 predicting

8All models reported here were run using the lme4 (Bates et al. 2014) and lmerTest (Kuznetsova et al.
2017) packages in R.
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the summed accuracy of the network across all epochs based on fixed effects of paradigm

type (low-i/low-e, high-i/low-e, low-i/high-e), size of the network, and their interaction. In

addition to these fixed effects, we also included random intercepts for each run of a network.

Network size was mean centred. Paradigm type was Helmert-coded to test our predictions

about the relative levels of accuracy across paradigms. Based on results from Johnson,

Culbertson, et al. (2020) we predict low-i/low-e to be easiest, therefore this was set as the

baseline. The model compares the baseline to the next level, high-i/low-e, then the mean

of these two levels is compared to the third level, low-i/high-e. The first contrast therefore

tests the effect of i-complexity and the second tests the effect of e-complexity. The model

revealed a significant effect of network size on summed accuracy (β = 1.63, sd = 0.049, t =

32.83, p < 0.001), suggesting that larger networks learn the languages faster. Critically,

the model also revealed a significant effect of both i-complexity (β = −4.48, sd = 0.9, t =

−4.68, p < 0.001) and e-complexity (β = −10.61, sd = 0.52, t = −20.23, p < 0.001) on

summed accuracy. These results suggest that measures of paradigm complexity based on

implicative structure (i-complexity) and on number and distribution of forms (e-complexity)

both impact ease of learning in LSTM neural networks. Note that while both effects are

significant, the estimated effect size for the effect of e-complexity is larger than the estimate

effect of i-complexity, suggesting the e-complexity manipulation had a larger effect than our

i-complexity manipulation; this difference in effect sizes can be seen in the timecourses in

Figure 3.2 and in Figure 3.3.

Type of Syncretism

Recall that we included two types of low-i/high-e paradigms: one in which syncretism was

within class, and one where it was across class (see Table 3.4). In general cross-class syn-

cretism can affect both i-complexity and e-complexity, but for our paradigms neither i-
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Figure 3.3: Summed accuracy over the 900 epochs of the networks trained on each of the
three paradigm types across different sizes of the network. Note that the two low-i/high-e
paradigms are collapsed here.

complexity nor e-complexity distinguish between syncretism types; the two paradigm types

have the same values for both measures. Figure 3.4 shows network learning trajectories with

these two paradigm types plotted separately. Across different network sizes, the paradigm

type with cross-class syncretism appears to be learned slower, in line with previous work

(e.g.,Maldonado and Culbertson 2019; Pertsova 2012).

Summed accuracies of networks trained on low-i/high-ewithin and low-i/high-eacross paradigms

(averaged over the 50 runs of the model) across different network sizes are presented in Figure

3.5. We ran a linear mixed-effect regression model predicting summed accuracy by paradigm

type (within-class syncretism vs. across-class syncretism), network size and their interaction.

In addition to these fixed effects, random intercepts for each run of a network. Paradigm type

was dummy coded, with within-class syncretism coded as the reference group. Network size

was mean centred. The model revealed a significant effect for the network size, increasing
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Figure 3.4: Network learning trajectories with low-i/high-ewithin and low-i/high-eacross
paradigms plotted separately. Trajectories for networks trained on low-i/low-e and high-
i/low-e paradigms presented in grey (dashed lines) for comparison. (a) results for one net-
work size (35 cells), with error bars indicating standard error every 10 epochs. (b) results for
all network sizes tested (facet titles give network size in number of cells). Networks trained
on paradigms with cross- class syncretism show slower learning.

the learning accuracy for larger neural networks (β = 1.45, sd = 0.09, t = 15.9, p < 0.001).

Critically, the model also revealed a significant effect of paradigm type (β = −34.37, sd =

1.84, t = −18.62, p < 0.001), suggesting that paradigms with across-class syncretism are

learned slower by the neural networks.
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Figure 3.5: Summed accuracy over the 900 epochs of networks trained on low-i/high-ewithin

and low-i/high-eacross paradigms across different network sizes. Across all network sizes the
paradigm type with across-class syncretism is learned slower.

Since the type of syncretism was found to affect learning, we conducted an additional analysis

to determine whether the effect of e-complexity was entirely driven by the low-i/high-eacross,

or whether this effect is found regardless of syncretism type. We ran a linear mixed-effect

regression model predicting summed accuracy by paradigm type and network size (mean

centred), with random effects as specified for previous models. Paradigm type was dummy

coded with low-i/low-e as the reference group. The model revealed a significant effect of

network size (β = 1.61, sd = 0.09, t = 17.25, p < 0.001). In addition, the model revealed a

significant difference between low-i/low-e and both low-i/high-e paradigm types (low-i/high-

ewithin: β = −31.3, sd = 1.89, t = −16.52, p < 0.001, low-i/high-eacross: β = −65.67, sd =

1.89, t = −34.67, p < 0.001). This confirms the generality of the effect of e-complexity

on learning; regardless of the type of syncretism, paradigms with high e-complexity are

learned more slowly than languages with low e-complexity, even when all other aspects of
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the paradigm (i-complexity, but also number of inflections, number of inflectional classes,

etc.) are held constant. As before, there was also a significant difference between low-i/low-e

and high-i/low-e (β = −8.96, sd = 1.89, t = −4.73, p < 0.001).

To summarize, here we trained LSTM neural networks on one of four nominal inflectional

paradigms which differed in either i-complexity or e-complexity. The results of our simula-

tion experiments showed that both measures of complexity affect learning in these networks,

with more complex paradigms being learned more slowly. We also found that type of syn-

cretism mattered: networks more readily learned syncretic forms which targeted cells within

a class rather than across class. These effects were not necessarily all of equal strength: ef-

fects of i-complexity were weaker than the effects of e-complexity and syncretism type. The

effect size of e-complexity on the network’s accuracy was four times larger than the effect of

i-complexity (estimated β values of −31.3 in the case of within-class syncretism and −65.67

in the case of across-class syncretism vs. −8.96 for the effect of increased i-complexity). In

sum, our neural network simulations show that, in principle, i-complexity can affect learning

morphological paradigms. This complement earlier results for human learners and LSTMs

(Johnson, Culbertson, et al. 2020; Seyfarth et al. 2014) showing that low i-complexity facil-

itates generalisation to novel forms. Importantly however, our results also provide evidence

that e- complexity has a stronger effect on learning. In the next section, we turn to human

learners. Johnson, Culbertson, et al. (2020) found that i-complexity only weakly affected

human learning, even in a staged paradigm intended to maximise the effects of i-complexity.

Here we will compare the effects of i- and e-complexity to see whether indeed e-complexity

plays a stronger role in determining ease of learning for humans when learning is not staged.
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3.3.3 Experiment 2: human learners

Materials

The same artificially constructed paradigms described in Table 3.4 were used to train and

test human participants. Participants were exposed to the word forms in the language

together with meanings. Stems referred to a set of simple objects: lemon, cow, tomato,

bicycle, horse, clock, pigeon, mug and pear. Visual stimuli were identical to those used in

Johnson, Culbertson, et al. (2020). Singular nouns corresponded to a single object, dual

corresponded to two objects, and plural ranged from 3-12 objects (selected randomly). See

Figure 3.6 for an example plural trial. Objects in the language were divided into the three

noun classes so that every noun class had one animate object (cow/pigeon/horse), one edible

object (tomato/lemon/pear) and one other (clock/bicycle/mug). This was done to ensure

that noun class membership could not be determined based solely on semantic features. All

stems and markers were randomly assigned to meanings for each participant.

Participants

144 self-reported native English speakers participants were recruited via Amazon’s Mechan-

ical Turk crowd-sourcing platform. They were compensated $6 for their participation and

the experiment lasted 53 minutes on average (min = 19, max = 166, mode = 41). We

recruited participants who possessed an Mturk qualification indicating that they were based

in the US. Participants were allocated randomly to each of the four paradigms. We excluded

from the final dataset 22 participants who did not complete the experiment9, thus the final

dataset consisted of 120 participants: low-i/low-e (29); high-i/low-e (31); low-i/high-ewithin

101



(a) (b)

(c)

Figure 3.6: Example plural trial. (a) a picture is presented and participants are asked to
choose the correct label from a set of options. (b), (c) participants receive feedback on their
answer, including the correct label. (b) negative feedback following trial shown in (a), (c)
positive feedback following plural trial with a different number of objects.
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(28); low- i/high-eacross (31).

Procedure

Participants learned the language via trial and error. On each trial, a picture (featuring 1-12

instances of a single object) was presented on the screen together with a set of possible labels,

as in Figure 3.6. Participants were asked to choose the correct label after which they received

feedback on their answer. If their answer was incorrect, they were presented with the correct

form. The set of possible labels consisted of all combinations of the correct stem with all the

suffixes in the paradigm. The task was divided into 3 identical blocks of 108 trials each: in

every block, participants were exposed to all stems inflected in each of the three grammatical

numbers (27 wordforms), 4 times each. The order of trials was randomized in each block.

Participants were allowed a self-paced break between blocks; they were presented with a

screen announcing the end of the block and were asked to click on ‘continue’ to complete

the next block of trials. Participants’ answers on each trial were recorded and their overall

accuracy was measured to test the effects of i-complexity and e-complexity on paradigm

learnability.

Results

Figure 3.7 shows learning trajectories for each paradigm type, here with low-i/high-e paradigm

types (which differed in syncretism type) collapsed. Participants’ learning trajectories are

non-linear but less complex than the learning curves of the LSTMs and can be described us-

ing quadratic polynomial curves (as in Figure 3.7). Therefore, we used logistic growth curve

analysis (Mirman 2017) to analyse the effect of i-complexity and e-complexity on learning
9Participants who did not complete the experiment and who contacted us were paid according to the

proportion of trials they completed.
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over trials. The model predicted accuracy by paradigm type and trial number. In addition

to these fixed effects, the model also included by-participant intercepts and random slopes

for trial number. Paradigm type was Helmert-coded as in Experiment 1. Learning curves

(accuracy over trials) were modelled with second-order orthogonal polynomials. The model

revealed no significant effect of i-complexity (β = 0.2, sd = 0.15, z = 1.29, p = 0.19), but a

significant effect of e-complexity (β = −0.16, sd = 0.07, z = −2.18, p = 0.028):participants

trained on one of two low e-complexity paradigms learned better than participants trained

on a high e-complexity paradigm. There was also a significant effect of trial in both the

linear (β = 9.9, sd = 0.87, z = 11.3, p < 0.001) and quadratic (β = −2.23, sd = 0.43, z =

−5.16, p < 0.001) terms, indicating that across trials, overall accuracy increased, but curves

became less steep over time. These results provide clear evidence of the effect of e-complexity

on human learning of inflectional paradigms. However, our results fail to show any effect of i-

complexity. The data are noisy, but the numerical trend is in fact in the wrong direction–the

high-i/low-e paradigm is learned numerically better than the low-i/low-e paradigm.

One plausible strategy, which would be consistent with the results showing an effect of

e-complexity and no evidence for an effect of i-complexity, is simply to choose the most

frequent form for each grammatical number, ignoring class membership for each stem. This

strategy would result in higher accuracy in the low e-complexity conditions (where there is

a frequent form for both the singular and the dual, see Table 3.4) but would yield lower

accuracy in the high e-complexity conditions (where there is a frequent form in singular

only). However, a closer look at our participants’ responses, and the rates with which they

chose the frequent form for each grammatical number, show that this is probably not the

case; participants (as a group) do not choose the frequent form for a specific number more

than its actual probability with which is appears (66% of the trials with this grammatical

number). Participants in the low-i/low-e condition on average chose the frequent form of
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Figure 3.7: Mean accuracy by trial for each of the three paradigm types (collapsing the
two low- i/high-e paradigms). Points indicate the average accuracy across participants for
each trial. Lines show quadratic polynomial curves predicting accuracy by trial number for
each paradigm type. Learning is worst for the low-i/high-e and best for the high-i/low-e
paradigms.

a grammatical number in 64.9% of the relevant trials, and participants in the high-i/low-e

condition chose the frequent form of a grammatical number in 66.5% of the relevant trials.

These results suggest that participants are probability matching (e.g., Carla L. Hudson Kam

and Elissa L. Newport 2005; Carla L Hudson Kam and Elissa L Newport 2009); participants

match the probability of the form in their responses to its actual probability in the language

rather than simply choosing the most frequent form for each grammatical number. Therefore,

there is an advantage to the skewed distribution of forms in low e-complexity paradigms that

facilitates learning the paradigm even if participants do not simply select the most frequent

form.
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Type of syncretism

As with the LSTMs, we further tested whether there was a difference in learning for the

two paradigms differing in syncretism type. We ran a separate logistic growth curve model

predicting accuracy by paradigm type (within-class syncretism vs. across-class syncretism,

sum coded) and trial number, with by-participant intercepts and random slopes for trial

number. Here as well, learning curves (accuracy over trials) were modelled with second-

order orthogonal polynomials. The model revealed no significant effect of syncretism type

(β = −0.019, sd = 0.15, z = −0.127, p = 0.89). As before, the model revealed a significant

effect of trial in both the linear (β = 8.06, sd = 1.19, z = 6.9, p < 0.001) and quadratic

(β = 8.06, sd = 1.19, z = 6.9, p < 0.001) terms, indicating that across trials, overall accuracy

increased, but curves became less steep over time. The results do not provide any evidence

for differences in learnability of morphological paradigms with across-class as compared to

within-class syncretism in human learners. There is therefore no reason to suspect that the

effect found above of e-complexity in human learners is driven by differences in learnability

across types of syncretism.

3.4 Exploring the relationship between i- and e-complexity

with random paradigms

Results from simulations with LSTM neural networks and behavioural experiments with

human learners both suggest that e-complexity has a robust effect on learning of inflectional

paradigms. By contrast, the effect of i-complexity was present but weaker in neural networks

and absent in human learners. This suggests that i-complexity is not the primary determinant

of learnability–e-complexity, at least how we have measured it here, has a much larger impact
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on how well learners are able to generate (or retrieve) forms they have been exposed to. It

may be that the beneficial effects of low i-complexity largely derive from its facilitating effect

on generalisation (as suggested by Ackerman and Malouf (2015)). Ackerman and Malouf

(2013)’s Low I-complexity Conjecture for natural languages is based on the observation

that, across a sample of natural languages, a relatively wide range of e-complexity values was

found, but the range of i-complexity values was much more narrow. From this Ackerman and

Malouf (2013) concluded that e-complexity in natural morphological paradigms is relatively

free to vary and can be high as long as i-complexity stays low. However, as we have already

mentioned, these two measures are not independent of one another: it was not possible

for us to construct a paradigm with both high e-complexity and high i-complexity (while

keeping the number of forms constant). In this section we explore the relationship between

i- and e-complexity by looking at their values across 1000 randomly generated paradigms.

To preview, we find an inverse correlation between i- and e-complexity which is in line with

the pattern Ackerman and Malouf (2013) observe. This suggests that the Low I- complexity

Conjecture is not necessarily a result of language change, i.e., it may not be driven purely

from usage errors or learnability pressure. We also test the learnability of this set of 1000

paradigms with LSTM neural networks to show how these two measures relate to learning

across a wider range of paradigms than we covered in Experiments 1-2.

3.4.1 Generating random paradigms

We generated 1000 random inflectional paradigms expressing the same three grammatical

numbers (singular, dual and plural) across three noun classes, as in the paradigms tested

above. The paradigms were generated by randomly assigning affixes to the nine cells with

replacement, i.e., allowing affixes to repeat. Therefore, paradigms also vary randomly in

number of unique affixes. Generated paradigms had between three and eight affixes, with
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most paradigms (42%) including six unique affixes. For each randomly generated paradigm,

we calculated i- and e-complexity. I-complexity varied between 0 and 0.667 bits with a mean

value of 0.201 bits. E-complexity varied between 0.528 and 1.585 bits with a mean value of

1.36 bits.

3.4.2 Quantifying the relationship between i- and e-complexity in

random paradigms

We first explored the relationship between these three dimensions of variation (i-complexity,

e-complexity, number of distinct affixes) in the 1000 randomly generated paradigms. Figure

3.8 shows the distribution of i-complexity and e-complexity values across paradigms, with

average number of markers indicated by color. As suggested by the figure, i-complexity is

strongly negatively correlated with e-complexity (r = −0.92, t(998) = −73.8, p < 0.001). In

other words, paradigms with high i-complexity tend to have low e-complexity, and vice versa.

To explore the relationship between these complexity measures and the number of the unique

affixes in the paradigm, we ran additional correlation tests. While e-complexity is positively

correlated with the number of markers in the paradigm, (r = 0.44, t(998) = 15.62, p < 0.001),

i-complexity is negatively correlated with it (r = −0.38, t(998) = −13.1, p < 0.001): as the

number of distinct forms increases, the implicative structure between forms increases. For

example, if every cell in the paradigm is expressed by a unique form, then each form will

perfectly predict every other form.

Since both i-complexity and e-complexity correlate with the number of markers in the

paradigm, we further analysed the subset of random paradigms with the most frequently

generated number of markers (six). We tested the relationship between i-complexity and

e-complexity for these paradigms (423 paradigms), again confirming the negative correla-
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Figure 3.8: Distribution of randomly generated paradigms in terms of i- and e-complexity.
Color represents the average number of markers for paradigms with specific i- and e-
complexity values. No paradigms have high i-complexity and high e-complexity. Paradigms
with high i-complexity and low e-complexity have on average fewer markers while paradigms
with low i- complexity and high e-complexity have more.

tion (r = −0.94, t(421) = −59.24, p < 0.001). Table 3.5 presents two randomly-generated

example paradigms with six markers which illustrates how the negative correlation between

i-complexity and e-complexity arises from the organization of markers in the paradigm, even

when the number of markers in the paradigm is held constant. Paradigms in which a gram-

matical function is marked with the same marker across inflection classes tend to have lower

e-complexity (there is a more frequent form marking this grammatical function) and higher

i-complexity (forms in this grammatical function are less likely to predict other forms in the

paradigm).

The strong negative correlation between i-complexity and e-complexity has clear implications

for how Ackerman and Malouf (2013) findings should be interpreted. They show that across

a sample of morphological paradigms in ten languages, e-complexity reaches relatively high
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Singular Dual Plural
noun class 1 6 5 6
noun class 2 8 1 3
noun class 3 5 7 7

(a)
Singular Dual Plural

noun class 1 2 6 8
noun class 2 4 0 8
noun class 3 1 6 8

(b)

Table 3.5: Two example paradigms (with affixes indicated by integers) with six unique mark-
ers illustrating the inverse correlation between i-complexity and e-complexity when number
of markers is constant: (a) has relatively high e-complexity (1.58 bits) and low i-complexity
(0 bits) , while (b) has relatively low e-complexity (0.83 bits) and relatively high i-complexity
(0.52 bits). In (a) there are three different ways to mark each grammatical function (hence
high e-complexity), and forms in all grammatical functions are predictive of all other forms
(hence low i-complexity). In (b), on the other hand, there is only one realization for marking
the plural number and two for marking dual (hence lower e-complexity), but in this orga-
nization the plural form is not predictive of forms in any other grammatical function and
forms in dual do not fully predict the singular (hence higher i-complexity).

values (a maximum of 4.9 bits for Mazatec), while i-complexity stays relatively constant

(between 0 and 1.1 bits). However, randomly generating paradigms of a fixed shape results

in a similar distribution: e-complexity varies more than i-complexity10, and when a paradigm

has high e-complexity, it will necessarily also have low i-complexity. Ackerman and Malouf

(2013) findings may therefore at least partly reflect the nature of the relationship between

these two measures rather than anything specific to the dynamics of language change.

10Note however, that the paradigms generated here were matched in size to the paradigms used in Section
3.3 (3 inflectional classes and 3 grammatical functions); it could be that for much larger paradigms, such
as found in natural languages, randomly generating the paradigms would result in higher i-complexity than
values that can actually be found in natural languages (as suggested by the simulation with Chiquihuitlàn
Mazatec done by Ackerman and Malouf (2013)).
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3.4.3 The effects of i- and e-complexity on LSTM neural networks

The learning results presented in section 3.3 already suggest that i-complexity has less impact

on learning than e-complexity in networks, and possibly no impact in humans. To strengthen

this conclusion, we also test how the 1000 randomly generated paradigms described above are

learned using LSTM neural networks with the same architecture and parameters described

in Section 3.3.2. Since the effects we found above held across networks of different sizes,

here we only used networks of size 25 (4,656 parameters). We generated 50 different runs for

each paradigm. In each run the initial weights of the network were randomly generated. As

before, stems were randomly assigned into one of the three noun classes. Below we analyse

accuracy in each epoch as well as the summed accuracy across epochs.

Results

Figure 3.9 shows the learning trajectories of the neural networks in choosing the correct affix

for lexemes, both by the i-complexity of the paradigm, and by its e-complexity.

To test how varying values of i-complexity and e-complexity affect learning, we ran a lin-

ear mixed-effects regression model predicting summed accuracy by paradigm i-complexity,

paradigm e-complexity, the number of different affixes in the paradigm, and their interac-

tions.

Summed accuracy was divided by 900 (number of epochs) to get the proportional summed

accuracy, ranging from 0 to 1. I-complexity and e-complexity were scaled and number of

markers was centred such that estimates for the effects of i-complexity or e-complexity reflect

their effect on learning when the number of affixes equals the mean value (six affixes). In

addition to these fixed effects, the model included random intercepts for different runs of

the network (recall that network size was held constant).
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Figure 3.9: Network learning trajectory for paradigms varying in i-complexity and e-
complexity values. (a) i-complexity varying by color (facet titles showing e-complexity in
bits). (b) e-complexity varying by color (facet titles showing i-complexity in bits). Note that,
as discussed above, for some values of i-complexity, the random paradigms do not vary in
e-complexity. In these cases, only one learning curve is shown (e.g., for e-complexity of 0.53
bits, there are only paradigms with i-complexity of 0.53 bits). Differences in e-complexity
produce higher variability in network learning trajectories (b) compared to differences in
i-complexity (a).

The model revealed a significant effect of both i-complexity (β = −0.0093, t(49992) =

−9.96, p < 0.001) and e-complexity (β = −0.04, t(49992) = −40.66, p < 0.001). These
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results replicate our initial findings with only four paradigms: increasing either the i-

complexity or e-complexity of the paradigm leads to slower learning. Note that this holds

even though, as discussed above, i-complexity and e- complexity have a strong inverse corre-

lation (r = −0.94). Importantly, as before the effect size of e-complexity is much higher than

the effect size of i-complexity (-0.04 vs. -0.009; approximately 4 times greater), suggesting

a stronger effect of e-complexity on learning.

The model also reveals a significant effect of number of affixes (β = 0.007, t(49992) =

18.51, p < 0.001). Surprisingly, this effect is positive: more unique affixes appears to facilitate

learning. However, a closer look at paradigms with the same i- and e-complexity and the same

number of markers reveals a potential confounding factor, namely syncretism type. Table

3.6 shows an example of two of the random paradigms (labelled (a) and (b)), both of which

have i-complexity of 0 bits, e-complexity of 1.58 bits, and 5 unique affixes (represented by

numbers). While the proportional summed accuracy for paradigm (a) is 0.538, for paradigm

(b) it is 0.87.

Singular Dual Plural
noun class 1 1 2 8
noun class 2 8 3 5
noun class 3 3 8 1

(a)
Singular Dual Plural

noun class 1 1 8 1
noun class 2 0 5 0
noun class 3 2 2 8

(b)

Table 3.6: Two example paradigms (with affixes indicated by integers) differing only in their
degree of cross-class syncretism: (a) shows only across-class syncretism, while (b) shows
mostly within-class syncretism. For both paradigms i-complexity (0 bits), e-complexity
(1.58 bits) and number of markers (5 markers) are matched. Paradigm (b) is learned more
accurately by our networks.
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In paradigm (a), markers are distributed such that there is syncretism targeting forms across

different noun classes. For example, the affix 1 marks singular for noun class 1, but plural

for noun class 3. On the other hand, syncretic affixes in paradigm (b) are largely within

noun classes. For example, the affix 1 marks singular and plural for noun class 1. There

is one case of across-class syncretism in paradigm (b) – the affix 8 marks dual for noun

class 1 but plural for noun class 3 – whereas in paradigm (a) there are 4 such cases. The

learnability disadvantage for across-class syncretism is expected based on the previous results

reported above. However, it turns out to lead to the unexpected apparent advantage for

paradigms with more unique affixes, since paradigms with fewer affixes will tend to have

more across-class syncretic forms in our design. We added number of across-class syncretic

forms (centred) as a predictor in our previous regression model, including its interaction

with the original predictors. This model again reveals a significant effect of i-complexity

(β = −0.0086, t(49992) = −9.12, p < 0.001) and e-complexity (β = −0.024, t(49992) =

−23.42, p < 0.001). The model also reveals a significant negative effect of number of affixes

(β = −0.034, t(49992) = −91.4, p < 0.001), and a significant effect of the number of across-

class syncretic forms (β = −0.039, t(49992) = −151.1, p < 0.001). Here, both of these

effects are in the expected direction: having more unique affixes or having more across-class

syncretic forms both lead to slower learning.

3.5 Discussion

In this study, we compared how different features of morphological paradigms affect learn-

ability of morphological systems. Specifically, we compared measures reflecting the number

of inflection classes in the paradigm and the number of different variants to mark each inflec-

tion (e-complexity), measures capturing the implicative structure of the paradigm and the

114



extent to which forms in the paradigm predict each other (i-complexity), number of affixes

used in the paradigm, and type of syncretism (within versus across class). We tested the

effects of these features on learning inflection paradigms with human participants and with

recurrent neural networks (LSTMs). In Section 3.3 we compared the learnability of four

artificially constructed nominal inflection paradigms differing either in e- or i-complexity.

We found that changing the i-complexity of the paradigm had an effect on learning only

in LSTMs but did not show an effect on learning in human participants. By contrast, e-

complexity was found to have a stronger effect on learning in LSTMs relative to i-complexity

and low e-complexity was beneficial for human learners. These results replicate the effects

reported in Johnson, Culbertson, et al. (2020) and extend them to a more realistic learning

scenario where input includes all forms at all staged (rather than restricting early input to

predictive forms).

It is worth noting that the differences in i-complexity between our low- and high- complexity

paradigms were not very large – the difference is 0.222 bits. It could be that larger differences

in i-complexity values would reveal a larger effect on learning. However even this difference

corresponds to complete predictability of the dual given the singular in the low complexity

paradigm, compare to at best 66% predictability in the high complexity paradigm. In other

words, while the difference as measured in bits is small, the difference in probability of correct

prediction in the paradigm is large. Furthermore, the same size difference in e- complexity

values did reveal a significant effect on learning. Testing more extreme values of i-complexity

and e-complexity is in principle possible, but would necessitate training participants on

much larger inflectional paradigms. This is challenging with human participants, since our

experiment was already at the upper end of what we believe participants will tolerate in a

single sitting; using the same methods for larger paradigms would probably necessitate a
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multi-day experiment.11

Type of syncretism was also found to be predictive of learning in LSTMs; a paradigm with

across-class syncretism in which the same affix is used to mark two different categories (e.g.,

singular and plural) for lexemes from separate inflection classes was learned slower than

a paradigm with within-class syncretism, where the same affix is used to mark different

numbers for lexemes within the same inflection class. This effect of syncretism on learning

in LSTMs was seen both in Section 3.3, with the two example paradigms differing by types of

syncretism, and in Section 3.4, when training the neural networks on paradigms with varying

number of across-class syncretic forms. These results are compatible with studies with human

learners showing that certain types of syncretism patterns are easier to learn than others

(e.g., Maldonado and Culbertson 2019; Pertsova 2012). However, in our experiment with

human learners, there was no effect of type of syncretism. Given the different results in the

LSTMs and human learners, these mixed results call for a more systematic investigation into

the effects of syncretism type on learning morphological paradigms.

Recall that Ackerman and Malouf (2015) suggested that morphological paradigms come to

have restricted values of i-complexity through the process by which language users solve

the Paradigm Cell Filling Problem for unknown forms. In other words, the mechanism by

which i-complexity is kept low in natural language is generalization, rather than learning

more generally. In Johnson, Culbertson, et al. (2020), we tested the effect of i-complexity on

generalization with LSTMs, and our results there match Ackerman & Malouf’s prediction:

we saw a clear generalization advantage for low i-complexity paradigms. Together with

our finding that i-complexity does not robustly affect paradigm learning in the absence of

11It is also worth noting that we only tested adult learners, and thus the scenario is most similar to adult
L2 acquisition. It is of course possible that child L2 learners might behave differently, or that the effect of
i-complexity is only relevant for first language acquisition. Although we have not specific reason to believe
this is the case, one could in principle investigate child learners using the kind of study we have reported
here.
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generalization to completely novel forms, these results suggest that i-complexity may indeed

influence how paradigms evolve, but primarily (or perhaps even solely) through its impact

on generalisation.

However, this interpretation is made somewhat less plausible by the results from Section 3 in-

vestigating randomly generated paradigms. These results suggest that the low i-complexity

that Ackerman and Malouf (2013) observed may to some extent reflect an intrinsic rela-

tionship between the two measures. Specifically, we found that for randomly-generated

paradigms, e-complexity and i-complexity are strongly negatively correlated; crucially, there

were no paradigms with both high e-complexity and high i-complexity (Figure 3.8). More-

over, the ranges of values the two measures exhibited were different, with lower and less

varied values of i-complexity (0 to 1.667 bits) than the values of e-complexity (0.528 to

1.585 bits). Following these results from Section 3.4, we would therefore expect to find sim-

ilar trends in natural languages, as indeed shown in Ackerman and Malouf (2013). Any

typological observation deviating from this trend would call for a theoretical explanation.

In addition to manipulating e- and i- complexity, the number of affixes used in the random

paradigms was not fixed and varied randomly from 3 to 8 affixes. This allowed us to test the

effect of the number of affixes on morphological learning by the networks and to explore the

relationship between this aspect of the paradigm and the two complexity measures. Number

of affixes was found to positively correlate with e-complexity and to negatively correlate with

i-complexity; an inflectional paradigm with low i-complexity is more likely to have a high

number of affixes and to be more e-complex. Note that this gives support to our decision to

use average cell entropy to measure e-complexity in this study; it is positively correlated with

number of affixes in the paradigm, a common measure for e-complexity in the literature, in

randomly generated paradigms.

The high inverse correlation between e-complexity and i-complexity was also found when
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looking at a subset of paradigms with the same number of unique affixes (six). Together

with the previous finding, showing that both e-complexity and i-complexity correlate with

number of affixes, these results suggest that the inverse correlation between i-complexity and

e-complexity derives from both the number of affixes in the paradigm, and from the way

the affixes are organized in the paradigm; intuitively, when there is a frequent form with

which a grammatical function is realized across noun classes, the entropy of this grammatical

function is reduced and thus the overall e-complexity is likely to be lower. However, forms in

this grammatical function are less likely to predict other forms in the paradigm and therefore

its overall i-complexity is likely to be high. This is more likely to occur with low number

of unique affixes in the paradigm, but the relationship between e- and i-complexity can be

seen even when controlling for number of affixes.

Finally, generating the random paradigms also enabled us to test the effect of e- and i-

complexity on learning with LSTM networks for larger range of values of the two measures,

as opposed to the specific values we tested in Section 3.3. Again, we found that both e-

complexity and number of affixes strongly predict learnability of the paradigm. I-complexity

was also found to predict the learnability of the paradigm, but with a much smaller effect

size (-0.0086 vs. -0.024 for e-complexity).

The strong effect of e-complexity (measured as average cell entropy) on the learnability of

morphological paradigms found here suggests that the frequency of forms play an important

role in the learnability of the paradigm. This is a further evidence for the pervasiveness of

the effects of frequency on language learning (e.g., Ambridge et al. 2015). In the context

of inflectional complexity, Sims and Parker (2016) suggest that in addition to implicative

structure (i-complexity), type frequency of inflection classes also plays a role in reducing the

complexity of the paradigm. In our experiments, type frequency of all noun classes was kept

constant (with three words per noun class), but our results support the general claim that
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the frequency of elements in the paradigm plays a role in inferring the correct inflected form

for a lexeme.

To summarize, our findings suggest that a number of factors affect the learnability of inflec-

tion paradigms. However, these factors do not all play equal roles in determining ease of

learning. The i-complexity of a paradigm does affect learning, at least in neural networks.

But it is a relatively weak predictor of learnability relative to e-complexity (and number

of unique affixes). Moreover, all paradigm features examined here were found to be inter-

dependent, most crucially e- and i-complexity. This suggests that conclusions about the

contribution of different types of complexity to natural language paradigms must take into

account how measures of complexity relate to one another; observing measures independently

can lead to potentially misleading conclusions about how different types of complexity might

shape language.

Lastly, it is worth returning to the observation that e-complexity varies widely in morpholog-

ical paradigms across languages. Since our findings show that e-complexity better predicts

the learnability of the paradigm, all other things being equal, paradigms with low e- com-

plexity should be preferred. Of course, learnability is not the only factor shaping linguistic

systems: languages are used for communication, and linguistic systems have been claimed

to reflect a trade-off between inductive biases (e.g., for simplicity) and pressure from com-

munication (e.g., minimizing ambiguity, Kemp and Regier (2012)). This trade-off has been

shown in a variety of linguistic domains, where natural languages show a near optimal bal-

ance between these two pressures (e.g., Regier et al. 2015; Xu et al. 2016; Zaslavsky et al.

2020). Evidence for this trade-off has also been found in experimental studies manipulating

the relative importance of learning and communication (e.g. Kirby, Tamariz, et al. 2015;

Motamedi et al. 2019; Silvey et al. 2015). Since we showed here that e-complexity correlates

positively with number of distinct forms in the paradigm (i.e., distinctions in the lexicon),
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morphological paradigms with high e-complexity could in principle reflect a balance between

the communicative needs of speakers and the inductive biases of learners. Relatedly, it may

be that e-complexity interacts with frequency effects coming from other aspects of the mor-

phological paradigm and the lexicon. E-complexity captures the distribution of forms for

each grammatical number, and thus reflects only the frequency of a specific aspect of the

morphological paradigm. It is possible however that paradigms with high e-complexity have

other means for reducing learning-relevant complexity, e.g. through skewed distribution of

other aspects of the paradigm (e.g., inflection classes type/token frequencies or frequencies

of forms of grammatical functions in the paradigm).

3.6 Conclusions

On the surface, natural languages exhibit a huge range of variation in terms of their inflec-

tional paradigms; some languages have relatively little morphology, and others have large

morphological paradigms with many inflectional classes, expressing many grammatical cat-

egories. How such large paradigms are acquired, and by extension how they persist across

generations of learners is thus something of a mystery. A recent influential conjecture is that

predictive structure is a shared feature of large paradigms one finds in natural languages

(Ackerman and Malouf 2013). One possibility is that this predictive structure influences

how languages change over time: inflectional paradigms have evolved under a pressure for

low i- complexity (a measure of predictive structure in paradigms), rather than a pressure

for low e- complexity (a measure of paradigm size). Here we presented results from a series

of experiments with neural networks and human learners which muddy this picture. First,

we find relatively small effects of i-complexity on learning, but robust effects of e-complexity.

Further, we find that in randomly generated paradigms, e-complexity and i-complexity are

120



negatively correlated; roughly speaking, as paradigms get bigger, they will necessarily have

more predictive structure. Although it may well be that learners use predictive structure

when it’s all they have to go on, our findings therefore suggest that pressure from learning

should tend to favour low e-complexity rather than low i-complexity.
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Part III

Investigating how i-complexity

interacts with phonological and

semantic cues for class membership
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Preface to Chapters 4 and 5

In the studies presented in Chapters 2 and 3, I tested the effect of i-complexity on learning in-

flectional paradigms both in neural networks and human participants, and how i-complexity

affects generalization of the paradigm to novel items in neural networks.

Results suggest some evidence for the effect of i-complexity on learning, although weaker

than effects of e-complexity, a second measure of morphological complexity, in both learners.

In neural networks, e-complexity and i-complexity were found to affect learning the forms

in the paradigm, with a greater effect of e-complexity. In human learners, while the effect of

e-complexity on learning was robust and was found in both of the behavioural experiments

testing its effect (chapters 2 and 3), results show weak evidence for the effect of i-complexity

on learning, in only one out of the four behavioural experiments.

Results also show that LSTM neural networks perform better in generalizing the paradigm

to novel items when trained on languages with low i-complexity (chapter 2). Together with

findings from Seyfarth et al. (2014), my findings support the hypothesis of Ackerman and

Malouf (2013) and Ackerman and Malouf (2015) that low i-complexity facilitates solving

the Paradigm Cell Filling Problem (Ackerman, James P. Blevins, et al. 2009), i.e., guessing

the correct inflected form for a lexeme based on another known inflected form of the same

lexeme.

In this part of the thesis, I extend my results regarding the role of i-complexity in learning and

generalizing inflectional paradigms in two aspects. First, I test the effect of i-complexity on

learning inflectional paradigms in languages in which a subset of the nouns are phonologically

or semantically marked for their class membership. Second, I previously tested the effect of

i-complexity on generalization only with neural networks. Here, I train both neural networks

and human participants on languages with low and high i-complexity and test its effect on
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their ability to generalize the paradigm to novel items.
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Chapter 4

Phonological Cues for Class

Membership

4.1 Introduction

In the experiments described in Chapters 2 and 3, we used artificial languages where noun

class membership was not determined by the phonology or semantics of nouns. This was

done intentionally, to control for an alternative learning mechanism; in the case where class

membership can be determined by the noun’s semantics or phonology, its inflected form

could be predicted based on these cues rather than based on knowledge of other forms in

the paradigm (as captured by i-complexity).

There are studies that suggest that categories can be acquired and generalized based on

distributional cues alone (i.e., in the absence of direct phonological or semantic cues). Mintz

(2002) show that adult learners use distributional information in the form of frequent frames

to form a category for the middle word in the frame. For instance, if the nonce words frame

sook-X-runk repeats in the input, then all words appearing in the position of X would form

one category. Crucially, these categories are learned in the absence of any phonological or

semantic cue for category on the middle word (i.e., words in the position of X did not share

phonological or semantic features except for their shared environment).1 Reeder et al. (2013)
1This process is also used as an explanation for how children form syntactic categories–in particular,
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show that adult learners can use co-occurrence statistics (distributional information) to form

categories. Participants were familiarized with (Q)AXB(R) sentences where Q,A,X,B and

R are all categories of words and Q and R words did not appear in all sentences. They

found that participants were able to determine the grammaticality of novel sentences when

being exposed to enough examples from the language, i.e., learners are able to form word

categories based on distributional information alone. Furthermore, specifically related to the

implicative structure of inflectional paradigms, Seyfarth et al. (2014) show generalization of

an inflectional class system based on predictive relations between forms in the paradigm

(discussed in detail in Chapter 3). Since their items were English nouns with nonce suffixes,

Seyfarth et al. (2014) suggest that the memory load in their task was low, therefore enabling

paradigm learning without redundancy in cues.

However, semantic or phonological cues for class membership are often present in natural

languages; in many languages, semantic and phonological features of nouns play a role in

determining how nouns are classified, as in gender systems, numeral classifiers systems and

so on (Dixon 1986; Lakoff 1987; Fraser and Greville G Corbett 2000; Senft 2000; Aĭkhenval�d

2000). For instance, in Zande, a language spoken in Zaire and Sudan, nouns are assigned

to one of four gender classes according to their social gender and animacy (see Table 4.1)

(Greville G. Corbett 1991). Semantic cues can be found in all systems of noun classification

(e.g., social gender), but in most systems they are not sufficient to account for all nouns

in the language. Phonological cues on the other hand, are not fully deterministic in most

systems, and thus less reliable, but can account for larger portion of nouns (Greville G.

Corbett 2013). In Hebrew for example, nouns ending with /a/ or /et/ tend to be feminine

nouns, while nouns ending with other consonants tend to be masculine nouns.

More importantly, semantic and phonological cues for class membership have been shown

nouns and verbs (e.g., Mintz 2003; Monaghan et al. 2005).
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Table 4.1: Noun assignment in Zande (from Greville G. Corbett 1991).

Criterion Gender Example Gloss
male
human masculine kumba man
female
human feminine dia wife
other
animate animal nya beast
residue neuter bambu house

to facilitate learning of subcategories. A number of studies show that learners are able to

form and generalize word classes with implicative structure (e.g., when inflected forms in the

systems are predictive of one another) only in the presence of phonological or semantic cues

indicating the class of the word (e.g., Braine 1987; Brooks et al. 1993; Frigo and McDonald

1998; Kempe and Brooks 2001; L. A. Gerken et al. 2009; Ouyang et al. 2012).

Frigo and McDonald (1998) show that when learning an artificial language where some

studied items are marked with phonological cues that indicate subclass membership, learners

can generalize to novel unmarked items, based on distributional information. They trained

participants on an artificial language containing two classes. Nouns in each class were used

with two indicators (similar to definite and indefinite articles). The indicators for each class

differed from one another (jai and quo were the indicators for items in class I, and fow

and mih were the indicators for class II items). In the systematically marked version of

the language, 60% of the items in each class were phonologically marked (i.e., class I nouns

ended with ash and class II nouns ended with gor). The remaining 40% of nouns in each

class did not not share phonological features (unmarked items). In another version of the

language, the unsystematically marked version, there was no systematic marking of class;

60% of the items were phonologically marked but their phonological marker was as likely to

appear in class I as in class II. The remaining 40% of the nouns were unmarked, as in the

previous version. A third version of the language served as a control condition, where none
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of the nouns were phonologically marked.

Participants were trained on items in the language, used together with their two indicators.

Their task was to learn the items they were exposed to, with their appropriate indicators, and

to generalize the correct indicators to novel items, phonologically marked and unmarked. For

unmarked novel items, they were introduced with the novel word together with one indicator

and had to predict the other indicator for that word. Frigo and McDonald (1998) ran three

experiments using this design, manipulating marker salience, frequency and position. They

found that systematic phonological cues improve learning the correct stem-indicator pairings

and enable generalization to novel stems; participants in the systematic marking condition

were able to choose the correct indicator for novel words at a rate better than chance, even

for unmarked items (with no accessible phonological cue for class membership).

The effect of systematic phonological cues on generalization was found only in their experi-

ments where the phonological markers on the stems were of high salience (e.g., full syllable)

and close in position to the indicator (e.g. marked as a prefix when the indicator precedes

the noun or marked as a suffix when the indicator follows the noun). This suggests that

salience and position of the phonological marker on the stem are important for facilitating

generalization of the class system to novel unmarked items.

Based on their results, Frigo and McDonald (1998) suggested a model according to which

learners first link the markers (i.e., the phonological or semantic cues) to individual indi-

cators and only then are able to link together the indicators used with a given class. In

their experiment, for example, participants first learn that items ending with gor take the

indicators jai and quo and items ending with ash take the indicators fow and mih. Only

after establishing this knowledge they were able to link the two indicators of each class to-

gether (e.g., items that take the indicator jai also take the indicator quo in other cases),

independently of the phonological marking on the stem. Put another way, they suggest
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a bootstrapping process where the phonological cues facilitate forming subcategories which

enable the use of distributional cues (e.g., paradigm’s implicative structure); using the distri-

butional cues in turn facilitates generalizing the system to novel items, even when these are

not phonologically marked. While Frigo and McDonald (1998) main findings are based on

generalization of the paradigm to novel items, the model they propose could also be applied

to the task of learning the forms in the language.

The considerations discussed above raise the possibility that i-complexity may have more

of an effect on learning of inflectional paradigms, if class membership is overtly marked

by semantic or phonological cues. Our method was based on that of Frigo and McDonald

(1998), who showed that learning the studied items was facilitated when a subset of items

in the language were systematically phonologically marked for class (systematically marked

condition). According to their model, the presence of phonological cues enables forming

categories as a preliminary step, which later facilitates linking inflected forms within each

category. This could therefore enhance the effect of i-complexity on learning the forms in the

paradigm. However, in their study they did not manipulate the implicative structure of the

paradigm (predictive relations from one indicator to another for each noun were available

to participants in all conditions). In this study, we manipulate both the i-complexity of

the paradigm and the presence of additional cues for class. Therefore, we are able to test

how these two factors affect learning. Our hypothesis is that i-complexity interacts with

systematic marking of class membership such that the effect of i-complexity on learning

would be found in languages where phonological or semantic cues for class membership are

present. We test this hypothesis on both neural networks and human participants.

In addition to the learning task used in the behavioural experiments in Chapters 2 and 3,

here we add a generalization task to test participants’ ability to generalize the class system

to novel stems. If learners are able to form class systems and generalize them only in the
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presence of referential or phonological cues for class membership, as suggested by Frigo

and McDonald (1998) and supported by other studies (e.g., L. A. Gerken et al. 2009), we

would expect an interaction effect between the paradigm’s i-complexity and the presence of

phonological or semantic cues for class membership. However, results from Seyfarth et al.

(2014) suggest that human learners are also able to generalize noun class to novel items in

the absence of such cues, based solely on the implicative structure of the paradigm (i.e., its

low i-complexity). If this is the case, we would see an main effect of i-complexity, regardless

of whether additional cues to class are present.

This part of the thesis proceeds as follows. In chapter 4 we train and test both neural net-

works and human participants on artificial languages manipulating both i-complexity and the

presence of phonological cues. Note that in previous chapters, our results from experiments

with neural networks show an effect of i-complexity on both learning and generalization in

the absence of phonological cues for items’ class membership. These results from the neural

networks therefore do not conform to Frigo and McDonald (1998) model; networks were able

to form classes based on distributional information alone. In testing neural networks (section

5.1) our objective is to explore whether the presence of phonological cues facilitates forming

classes and whether this in turn makes the low i-complexity more useful for the network in

learning and generalization.

In section 4.4 we test the interaction of i-complexity and phonological cues for class member-

ship on learning and generalization in human participants. To preview, our results suggest

that participants were not sensitive to the phonological cues for class membership that they

were trained on. Therefore, in chapter 5, we test the same hypothesis using semantic cues

for class membership on the assumption that they might be more salient. We first run a

pilot study to test whether human participants are indeed sensitive to the semantic cues

for class membership we use. After verifying that participants were able to pick up on the
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semantic cues in this task, we then run the full experiment with human participants testing

our hypothesis.

4.2 Target Paradigms

We constructed four paradigms, manipulating the i-complexity of the paradigm or the pres-

ence of phonological cues for class membership. We trained both neural networks and human

participants on these paradigms to test the effect of i-complexity in languages with phono-

logical cues to class membership.

The basic paradigms consisted of fifteen CVCV nouns2 randomly paired with meanings for

human participants (see Section 4.4 below). The small lexicon size allows the system to be

learned with reasonable accuracy by human participants in a short experiment. An additional

set of nouns (15 nouns for the neural networks and 24 nouns for the human participants)

was used to test generalization of the paradigm (see a detailed description in Sections 4.3.2

and 4.4 below).

Table 4.2 presents how the CVCV nouns in the language were generated and their allocation

to the three noun classes in the two phonological cues conditions. We follow Frigo and

McDonald (1998) and phonologically mark 60% of the nouns in each noun class (three out

of five nouns). In the systematic phonological cues conditions, marked nouns in each noun

class all share the same repeated vowel in the CVCV noun pattern (following Culbertson,

Jarvinen, et al. 2019). For example, in the language in Table 4.2(a) below, marked nouns in

noun class 1 all share the pattern C1iC2i, marked nouns in noun class 2 share the pattern

C1uC2u, and marked nouns in noun class 3 share the pattern C1eC2e, with the first and
2The lexicon in this experiment includes more stems than previous experiments (15 vs. 9 stems). We

used phonological marking on a subset of stems in each noun class and therefore needed more than three
items in each noun class.
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second C representing two different consonants. Unmarked nouns include the two vowels

that were not used to mark any of the noun classes in the marked items. The patterns

C1aC2o or C1oC2a are used for unmarked nouns in the example language in Table 4.2(a).

In the unsystematic phonological cues conditions, marked nouns included a repeated vowel,

but there was no one vowel cuing class membership. For example, in Table 4.2(b) below,

marked nouns of each noun class could equally be of the pattern C1iC2i, C1uC2u or C1eC2e.

Unmarked nouns were generated the same as in the systematic phonological cues condition.

Table 4.2: Example languages with systematic (a) and unsystematic (b) phonological cues
(C representing any consonant).

noun class 1 noun class 2 noun class 3

marked items
C1iC2i C1uC2u C1eC2e
C1iC2i C1uC2u C1eC2e
C1iC2i C1uC2u C1eC2e

unmarked items C1aC2o C1aC2o C1aC2o
C1oC2a C1oC2a C1oC2a

(a) systematic phonological cues
noun class 1 noun class 2 noun class 3

marked items
C1iC2i C1uC2u C1eC2e
C1eC2e C1iC2i C1uC2u
C1uC2u C1eC2e C1iC2i

unmarked items C1aC2o C1aC2o C1aC2o
C1oC2a C1oC2a C1oC2a

(b) unsystematic phonological cues

Paradigm structure was identical to the previous experiments. The nouns in each class were

inflected for three numbers: singular, dual and plural. Inflectional markers were seven CVC

monosyllabic suffixes (-fel, -fob, -fir, -fam, -fut, -fon, -fik), all starting with -f- to facilitate

stem-affix segmentation. These inflectional markers were randomly allocated to cells in

each paradigm (for each run of the network, or each human participant) such that both

paradigms shared the same e-complexity value (1.14 bits) but differed in i-complexity. In

the low i-complexity paradigm, the singular form of a word predicts the dual form, while

132



in the high i-complexity paradigm it does not. Table 4.3 shows two example paradigms.

In the low i-complexity paradigm (A), if a stem takes the marker -fir in singular, then

it takes -fut in dual; if a stem takes -fob in singular, then it takes -fam in the dual. In

contrast, in the higher i-complexity paradigm (B), there is not such regularity: nouns with

-fir in the singular take either -fam or -fut in the dual. The i-complexity value for the low

i-complexity language is 0.222 bits vs. 0.444 bits for the high i-complexity language. Note

that the distinct plural forms in each paradigm serve to distinguish the three classes of nouns.

Without distinct plural forms, the low i-complexity paradigm would have fewer classes than

the high i-complexity paradigm.

Table 4.3: Example paradigm for low i-complexity (a) and high i-complexity (b) languages.

Singular Dual Plural
noun class 1 -fir -fut -fon
noun class 2 -fir -fut -fel
noun class 3 -fob -fam -fik

(a) low i-complexity paradigm
Singular Dual Plural

noun class 1 -fir -fut -fon
noun class 2 -fir -fam -fel
noun class 3 -fob -fut -fik

(b) high i-complexity paradigm

These four language types were used in training and testing for both LSTM neural networks

and human participants. Training the two types of learners on these languages was done

using a staged learning design; learners were first trained on the singular forms of the nouns

in the language, after which they were exposed to both singular and plural forms, and

finally inflected dual forms were included. We used the staged learning design to increase

the chances of finding an effect of i-complexity; in low i-complexity paradigms, the dual

forms could be predicted from the singular. Therefore, the critical trials in our experiments

are the dual items. We first test how well learners learn the dual forms in the language. We
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additionally test how well learners generalize the dual suffixes to novel items, given exposure

to the form in either the singular or plural. We also present results for learning the singular

and plural forms in addition to learners’ performance on the critical dual trials.

4.3 Experiment 1: neural networks

4.3.1 Network Structure

We trained and tested LSTM networks of the same structure as in Chapters 2 and 3. We

trained the model with a range of embedding vectors dimensionalities for the input layer and

LSTM hidden layer dimensionalities (from 2-dimensional embedding vectors and 2-unit layer

(224 parameters) to 25 (5,100 parameters)). For each paradigm and set of hyperparameters,

50 runs were produced.

4.3.2 Procedure

We trained the model on input-output pairs for 15 stems in the full paradigm (stem-suffix

pairs for the three grammatical numbers). We then tested their accuracy at learning these

pairings and at producing the correct dual suffix for 15 additional stems, for which the

network was trained on the singular form but never the dual. For these stems the network

was required to generalise to the dual based on its representation of the full paradigm and

its exposure to the singular forms for those 15 stems.

In each run of the network, 30 lexical items were divided into two equal sets: 15 learning

stems and 15 stems used for the generalisation test (i.e. dual-novel items). The stems were

assigned to noun classes so that each noun class included 5 learning stems and 5 dual-novel
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stems. 60% of stems in each class (3 out of the 5 learning stems and 3 out of the dual-novel

stems) were phonologically marked according to the phonological cues condition (see Section

4.2 above) and the remaining 40% were unmarked.

In each run, the model was trained and tested on input-output pairs in three blocks, summa-

rized in Table 4.4 below. In block 1, the network was trained and tested on singulars for all

stems; in block 2 the networks was trained and tested on singulars for all stems, plus plurals

for the 15 learning stems; in block 3 the network was trained on singulars for all stems, plus

plurals and duals for the 15 learning stems. Finally, it was tested on the entire paradigm

for learning stems and on singular and dual for dual-novel stems. Each block consisted of

300 epochs, each consisting of a single pass through the specified training set (randomized),

followed by a pass through the specified test set (randomized). During testing, the network

was given an input and had to generate an inflection. Our results show performance in the

testing phase.

Table 4.4: Training and testing regime in the neural networks.

Block Epochs Training Testing

1 300
learning stems - singular
dual-novel stems - singular
(30 items)

learning stems - singular
dual-novel stems - singular
(30 items)

2 300
learning stems - singular, plural
dual-novel stems - singular
(45 items)

learning stems - singular, plural
dual-novel stems - singular
(45 items)

3 300
learning stems - singular, plural,
dual
dual-novel stems - singular
(60 items)

learning stems - singular, plural,
dual
dual-novel stems - singular, dual
(75 items)
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4.3.3 Results

Learning items

We measured the average accuracy of the networks in producing the correct affix for the

learning items in all three grammatical numbers over epochs (averaged over 50 runs for

each combination of target paradigm and network size). Fig. 4.1 presents the learning

trajectories of the neural networks trained on the four languages over epochs. Networks of

all sizes show higher accuracy levels for languages with systematic phonological cues (both

low and high i-complexity) in learning the inflected learning forms. In the last 300 epochs

(when networks are also trained and tested on forms in dual), networks trained on paradigms

with low i-complexity show better performance compared to networks that were trained on

high i-complexity paradigms and matching systematic cues condition. Networks of all sizes

trained on languages with unsystematic cues for class membership, do not fully learn the

forms in singular and plural prior to epoch 600 (where the dual forms are introduced),

whereas almost all networks trained on languages with systematic cues (except for the two

small sized ones) reach perfect or near perfect learning of the forms in singular and plural

prior to epoch 600. By the end of training and testing (epoch 900), most of the networks,

trained on both systematic and unsystematic cues languages, reach perfect or near perfect

learning of all forms of the learning items (with the exception of very small sized networks -

2 to 6-dimensional embedding vectors and layer units).

To compare the difficulty of learning the languages (rather than whether the language is

learnable or not), we compare the mean summed accuracy (i.e. the sum of the epoch-by-

epoch accuracy rates divided by number of epochs) of the networks trained on the different

languages. The mean summed accuracy reflects both the speed of learning and the accuracy

throughout learning the language; in the results shown in Fig. 4.2, networks that learn the
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language more rapidly have a higher mean summed accuracy.
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Figure 4.1: Network learning trajectories for learning items inflected for singular, plural
and dual. (a): results for one network size (10 cells), with line width indicating standard
error, (b): results for all network sizes tested (facet titles give network size in number of
cells). Vertical grey lines indicate the beginning of each block; at the beginning of Block 2
forms in plural are introduced to the networks and forms in dual are introduced in Block 3.
Networks performance plunges at the beginning of each block of epochs as a result of the new
forms they are introduced to. Networks trained on languages with systematic phonological
cues (teal and red) show higher performance throughout the simulation. Networks trained on
languages with low i-complexity and unsystematic phonological cues (light blue) show better
performance than networks trained on the high i-complexity, unsystematic cues languages
(pink) in Block 3, when duals are introduced.

we ran a linear regression model predicting the mean summed accuracy of the network in
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Figure 4.2: Mean summed accuracy on learning items over the 900 epochs of the networks
trained on each of the four paradigm types across different sizes of the network.

choosing the correct suffix for the learning items across all epochs, predicted by the language’s

i-complexity (high vs. low, sum coded), phonological cues (systematic vs. unsystematic, sum

coded), size of the network (centered) and their interaction.3 The model revealed a signifi-

cant effect of phonological cues (b=0.07, t=64.5, p<0.001), showing that networks trained

on languages with systematic phonological cues display faster learning with higher accuracy.

The model also revealed a significant effect of i-complexity (b=0.006, t=5.6, p<0.001), con-

firming the better performance of networks trained on low i-complexity paradigms compared

with their matched phonological cues condition, high i-complexity networks in the last 300

epochs, when the dual forms are introduced (see Fig. 4.1). Network size was also found

to have an effect on learning accuracy (b=0.006, t=42.37, p<0.001), with large networks

showing better performance throughout learning. The model also revealed a marginal inter-

3A linear mixed-effect regression model that included random intercepts for run number yielded a singular
fit error. We therefore removed the random effects from the model and ran the linear regression model
presented here.
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action between phonological cues and network size (b=0.0003, t=2.05, p=0.04), suggesting

that larger networks benefited more from systematic phonological cues for class membership

in learning. The model did not reveal an interaction between i-complexity and phonological

cues (b=0.001, t=0.9, p=0.37). Note however that the critical items for testing the interac-

tion between i-complexity and systematic phonological cues on learning are the studied dual

forms, since the high and low i-complexity paradigms differ in the predictability of the dual

form based on the form in singular. Within the dual forms, we are especially interested in

learning the forms that are phonologically unmarked. Testing differences in learning these

forms can reveal bootstrapping effects of i-complexity and systematic phonological cues, if it

exists, since the unmarked dual forms lack the phonological marking to enable choosing the

appropriate suffix for them directly based on this cue. In the low i-complexity paradigms

their correct form can be predicted from their form in singular.

Fig. 4.3 presents the learning trajectories of the neural networks trained on the four languages

in learning the studied unmarked dual forms over epochs (over epochs which include dual

forms). Across all sizes of the network, except for networks with 2-dimensional embedding

vectors and layer units, networks reach perfect learning of the dual forms by the end of

the training-testing session (epoch 900). Across all network sizes performance was highest

for networks trained on the low i-complexity, systematic language, and lowest for networks

trained on the high i-complexity, unsystematic language. Fig. 4.4 shows the mean summed

accuracy of all network sizes for the four languages in learning the forms in dual.

To test our hypothesis that systematic phonological cues interacts with i-complexity in learn-

ing the critical forms (unmarked studied items in dual), we ran a linear regression model

predicting the mean summed accuracy of the network in learning the studied unmarked

items in dual, from the language’s i-complexity (high vs. low, sum coded), phonological cues

(systematic vs. unsystematic, sum coded), size of the network (centered) and their interac-
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Figure 4.3: Network learning trajectories in learning the studied unmarked items in dual (a):
results for one network size (10 cells), with line width indicating standard error, (b): results
for all network sizes tested (facet titles give network size in number of cells). Vertical grey
lines indicate the beginning of Block 3, when the dual forms are introduced to the networks.
Both low i-complexity and systematic phonological cues are shown to facilitate learning the
unmarked dual forms, as the lowest performance is seen in networks trained on the high i,
unsystematic cues languages (pink), and networks trained on low i, systematic phonological
cues (teal) show highest performance across network sizes.

tion. This model showed the same effects of i-complexity, phonological cues and phonological

cues and network size interaction (i-complexity: b=0.04, t=19, p<0.001; phonological cues:

b=0.032, t=16, p<0.001; phonological cues and network size interaction: b=0.0008, t=2.99,
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Figure 4.4: Mean summed accuracy in learning the unmarked items in dual over the last 300
epochs of testing, for networks trained on each of the four paradigm types across different
sizes of the network.

p<0.01). In addition, i-complexity was found to negatively interact with size of the network

(b=-0.0007, t=-2.7, p<0.01) suggesting that low i-complexity was more advantageous for

small sized networks in learning the unmarked dual forms. Crucially, the interaction be-

tween i-complexity and phonological cues was non significant (-0.0006, t=-0.316, p=0.75).

The model revealed however an interaction between i-complexity, phonological cues and

size of the network (b=-0.0012, t=-4.41, p<0.001), suggesting that the interaction between

phonological cues and i-complexity is different across sizes of the networks; in small net-

works, the effect of i-complexity on learning is greater in networks trained on languages

with systematic cues, while in larger networks, the effect of i-complexity is greater in net-

works trained on languages with unsystematic cues. This interaction with network size was

unexpected, and so we return to it in the Discussion.

These results suggest that the presence of systematic phonological cues for class membership
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facilitates learning the forms in the language, even those that are not phonologically marked.

However, the result do not provide evidence for the hypothesis that the presence of phonolog-

ical cues further facilitates using the predictive relations between forms in low i-complexity

paradigms for learning the dual forms; there is no clear evidence for interaction between

i-complexity and phonological cues, as the interaction was found to differ across different

network sizes. As in previous results from LSTM neural networks, however, i-complexity

did affect learning.

Generalization

In the generalization task, we tested the networks’ accuracy on dual forms with known

singulars across the four language types. Fig. 4.5 shows the mean summed accuracy with

which the networks chose the correct dual suffix for the novel items, separately for marked

and unmarked items. Networks trained on languages with low i-complexity performed better

than chance, both on marked and unmarked novel items in almost all sizes of the network.

Performance was highest in networks trained on the low i, systematic cues language. For

the large networks (>5), networks trained on high i-complexity, systematic cues languages

performed better than chance on marked items, but lower than chance on unmarked items,

as the unmarked stems do not include the phonological cue for class membership.

We ran a linear regression model predicting the mean summed accuracy of the network in

generalizing the dual forms to novel items, from the language’s i-complexity (high vs. low,

sum coded), phonological cues (systematic vs. unsystematic, sum coded), size of the network

(centered), item marking (marked vs. unmarked items, sum coded) and their interaction. As

in previous models, the model confirmed a significant effect of i-complexity (b=0.08, t=51.7,

p<0.001), and systematic phonological cues (0.034, t=20.82, p<0.001). The model also re-

vealed an interaction between i-complexity and the size of the network (b=0.002, t=10.05,
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p<0.001), suggesting that the effect of i-complexity is greater for larger networks (as opposed

to the negative interaction found in learning the dual forms of unmarked studied items).

There was also an interaction between phonological cues and size of the network (b=0.001,

t=6.45, p<0.001), suggesting that larger networks benefited more from systematic phono-

logical cues in generalizing the paradigm to novel items. The model also revealed a main

effect of item marking (b=-0.013. t=-8.466, p<0.001), showing that accuracy was higher

on marked items, an interaction between item marking and i-complexity (b=0.017, t=10.82,

p<0.001), showing that effect of i-complexity on generalization was greater in unmarked

items, and a negative interaction between phonological cues and item marking (b=-0.013,

t=-8.47, p<0.001), showing that the effect of phonological cues was more pronounced for

marked items. Crucially for our hypothesis, the model also revealed an interaction between

i-complexity and phonological cues (b=0.01, t=6.27, p<0.001), confirming that in the case of

generalization, i-complexity has a greater effect on generalizing the paradigm to novel stems

when a subset of items in the language include phonological cues indicating class member-

ship. The interaction between i-complexity, phonological cues and item marking was also

found to be significant (b=0.017, t=10.74, p<0.0010), showing that the interaction between

i-complexity and phonological cues differs across item marking; there is a bigger effect of i-

complexity on generalization in languages with systematic phonological cues when looking at

unmarked items (see Fig. 4.5). The model also revealed an interaction between i-complexity,

phonological cues and size of the network (b=-0.001, t=-6.66, p<0.001), suggesting that the

interaction found between i-complexity and phonological cues also differs across network

sizes; the interaction between i-complexity and phonological cues is more evident in small

networks, where having systematic cues in high i-complexity paradigms does not assist net-

works to achieve performance better than networks trained on the high i, unsystematic cues

condition.
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Figure 4.5: Mean summed accuracy in generalizing to novel marked (a) and unmarked (b)
dual items in the last 300 epochs of testing, for networks trained on each of the four language
types across different sizes of the network.

These results suggest that low i-complexity benefits generalizing the paradigm to novel stems

more in languages where a subset of the items include an additional cue (phonological cue

in this case) for class membership. These results are more apparent when looking at the

specific items that are unmarked. This gives support to the hypothesis that phonological

cues indicating class membership on a subset of items facilitate forming noun classes, which

in turn makes the implicative structure in low i-complexity paradigms more advantageous

in generalizing the paradigm to novel items.

4.3.4 Discussion

Altogether, results from the neural networks suggest that systematic phonological cues for

class membership benefit learning the studied items. The effect of phonological cues on

learning is seen also in unmarked items in dual. Systematic phonological cues were also

advantageous in generalizing to novel forms in dual, and more so in marked novel items.
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As in previous experiments (Chapter 2), low i-complexity was found to affect both learning

and generalization in neural networks. The two factors, systematic phonological cues and

i-complexity, were found to interact only in generalizing to novel forms, and not in learning;

networks trained on languages with systematic phonological cues benefited more from low

i-complexity when generalizing to novel forms.

Note that also in the case of generalizing to novel forms, where i-complexity interacts with

phonological cues, low i-complexity benefits generalizing the paradigm independently of sys-

tematic phonological cues. These findings deviates from predictions drawn from Frigo and

McDonald (1998)’s model.

Interestingly, while phonological cues were found to positively interact with size of the net-

work, i-complexity was found to negatively interact with it. A three-way interaction (i-

complexity * phonological cues * network size) was also significant and unexpected; in large

networks the effect of i-complexity on learning was greater in languages with unsystematic

cues. It may be that the three-way interaction results from the inverse two-way interac-

tions of the size of the network with i-complexity and with systematic cues. The reason for

i-complexity and systematic cues to interact differently with network size (i.e., to be more

beneficial for learning and generalizing in different sizes of the network) is unclear. These

findings call for further research. If similar patterns are apparent in other architecture and

hyperparameters, it might reveal a principal difference between these two factors. Using the

predictive structure of the paradigm (low i-complexity) or systematic cues on items in mor-

phological learning are two independent strategies that are being used depending, in part,

on the learner’s processing power.

We next test the same hypothesis with human learners. As opposed to the neural networks,

in previous experiments with human learners we found only weak evidence for the effect

of i-complexity on learning. Here, we test whether i-complexity affects learning, when the
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language includes phonological cues for class membership. In addition, we test whether i-

complexity affects generalization of the paradigm to novel stems in dual, given the form in

singular or plural.

4.4 Experiment 2: human learners

4.4.1 Methods

Materials

The same artificially constructed paradigms described in Section 4.2 were used to train

and test human participants. Participants were exposed to the word forms in the language

together with meanings. A set of 39 simple objects (animates: horse, frog, fox, cow, cat,

monkey, hen, dog, shark, elephant, pigeon, giraffe; inanimates: ball, shirt, hammer, clock,

glasses, comb, hat, bag, hand, shoe, crayon, bottle, guitar, bicycle, book, plane, broom,

chair, spoon, lamp, mug, umbrella; botanical inanimates: lemon, orange, pear, tree, tomato)

was randomly divided for each participant into two sets - a learning set of 15 items, and a set

of 24 objects used for the generalization task.4 Objects from the learning set were assigned

to each of the three noun classes semi-randomly: each noun class consisted of two animate

objects and three inanimate object, one of which is botanical. An example set of nouns

assigned to the same noun class is [horse, frog, clock, ball, lemon]. This was done to ensure

that noun class membership could not be determined based on semantic features. Stem-

object pairing was done according to the phonological cues condition: for every participant,

4There are more generalization items in the experiment with human learners than with the neural networks
(24 vs. 15) since here we were also interested in whether human learners are able to generalize the dual
forms based on the form in plural. For the case of the neural networks, this was already seen in results from
experiment in Chapter 2 (see Section 2.3.3).
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3 objects in each noun class were randomly paired with marked stems, either providing a

systematic cue to the noun class or not, and the remaining two were paired with unmarked

items.

Objects from the generalization set were assigned to each of the three noun classes so that

animate, inanimate and botanic objects were balanced across each of the three noun classes:

an additional two animate and six inanimate objects, of which up to one is botanical, were

assigned to each noun class. Half of the generalization items in each noun class (four objects)

were randomly paired with phonologically marked stems, and half with unmarked stems.

Participants

203 self-reported native English speakers participants were recruited via Amazon’s Me-

chanical Turk crowd-sourcing platform. They were compensated $8.5 for their participa-

tion and the experiment lasted 55 minutes on average (min = 24, max = 105, mode =

40). We recruited participants who possessed an Mturk qualification indicating that they

were based in the US. Participants were allocated randomly to each of the four paradigms:

low-i/systematic-cues (53); high-i/systematic-cues (48); low-i/unsystematic-cues (49); high-

i/unsystematic-cues (53).

Procedure

The task consisted of two parts, learning the forms and generalization to novel stems. Learn-

ing the forms was done as in Chapter 2. Learning was staged over three blocks (singulars in

block 1, singulars + plurals in block 2 and forms in all numbers in block 3). Since the lexicon

in this experiment was larger than in Chapter 2, the current task included more trials (block

1: 60 trials; block 2: 120 trials; block 3: 180 trials). The order of trials was randomized in
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each block.

A fourth block of trials formed the generalization phase of the task; in this block, partici-

pants were asked to choose the correct dual label for novel items. Dual trials of the novel

items appeared after either a trial in singular or in plural of the same object. Participant

were therefore in principle able to generalize dual forms to novel items either based on the

phonological marking (for marked items in the systematically marked condition), or based

on the inflected form of the stem in singular or plural. Fig. 4.6 represents two example trials

in Block 4.

Block 4 consisted of 48 trials (two successive trials of each of the 24 novel items). Half of

the dual trials of the novel items followed a singular trial and half a plural trial. Any effect

of i-complexity on generalization would be predicted in dual trials which follow a singular

trial. It is here that the paradigmatic relations between singular and dual forms differ across

i-complexity conditions. However, we included trials in dual following a plural trial to test

whether participants predicted the dual form from the plural (which is equally possible for

both i-complexity conditions).

4.4.2 Results

Learning

Fig. 4.7 shows the mean accuracy with which participants chose the appropriate word form

for singular and plural, as the experiment progressed trial by trial. On average, partici-

pants’ accuracy was higher than chance in choosing the correct form in singular and plural

throughout the task, suggesting that they learned the inflected forms in the language. Note

that up to the end of Block 2, the task was identical for participants in the two i-complexity

conditions (the difference between the high and low i-complexity conditions is introduced
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(a)

(b)

Figure 4.6: Example pair of trials in the generalization block

with the dual forms in Block 3), varying only across phonological cue conditions. To ver-

ify that participants did not behave differently in the identical part of the task, we ran a

mixed-effect logistic regression model predicting the accuracy in block two by i-complexity
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Figure 4.7: Mean accuracy by trial for singular and plural forms. Regression lines predicting
accuracy by trial number for each of the conditions per grammatical number. Shaded points
indicate mean accuracy scores averaged over participants in the systematic cues condition
and shaded triangles indicate mean accuracy scores averaged over participants in the un-
systematic cues condition. Horizontal dotted lines indicate the chance level for each form
number (chance level is different for singular and plural forms according to the number of
suffixes used to mark each number). Vertical grey lines indicate the beginning of each block;
note that plural forms are introduced at the beginning of block 2. Participants in all condi-
tions learned the singular and plural forms with accuracy higher than chance.

condition (high-i vs. low-i, sum coded), cue type (systematic vs. unsystematic, sum coded)

and trial number (scaled).5 The model also included by-participant intercepts and random

slopes for trial number. The model revealed a significant effect of trial number (b=0.31,

z=8.9, p<0.001), showing that participants’ performance improved over time, but there was

no significant effect of i-complexity (b=-0.06, z=-0.98, p=0.33) on performance in block 2,

and no significant interaction between i-complexity and cue type (b=0.02, z=0.52, p=0.60)

nor between i-complexity, cue type and trial number (b=0.04, z=1.2, p=0.23). This suggest

that learners in all conditions were balanced with respect to their general ability to learn

5Model predictors were coded this way throughout unless otherwise noted.
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in the task. Unexpectedly, there was also no significant main effect of cue type (b=0.037,

z=0.62, p=0.53), suggesting that systematic phonological cues for class membership did not

facilitate learning the forms in singular and plural.

We further test whether there is a difference between the marked and unmarked items in

block 2. Fig. 4.8 shows mean accuracy of singular and plural trials in Block 2 for both marked

and unmarked items. we ran a mixed-effect logistic regression model predicting accuracy

in block two by item marking (marked vs. unmarked, sum coded), cue type, i-complexity

condition and trial number. The model also included by-participant intercepts and random

slopes for trial number. The model revealed a significant effect of trial number (b=0.31,

z=8.57, p<0.001), but there was no significant effect of item marking on performance in block

2 (b=-0.02, z=-1.5, p=0.13) or an effect of cue type (b=0.035, z=0.6, p=0.55). There was also

no significant interaction between item marking and cue type (b=-0.006, z=-0.44, p=0.66)

nor an interaction between item marking, cue type and trial number (b=0.008, z=0.33,

p=0.74). These results suggest that systematic phonological cues for class membership did

not lead to a learning advantage, not even for the phonologically marked items. The lack

of effect on learning can be due to participants not picking up on the phonological cues for

class membership.

Fig. 4.9 shows the mean accuracy for dual trials in block 3, trial by trial. To test the effect

of i-complexity and cue type and their interaction on learning, we ran a mixed-effect logistic

regression model predicting accuracy in the dual trials in block 3 by complexity, cue type, trial

number, participants’ accuracy in block 2 (scaled) and item marking (marked vs. unmarked,

sum coded). Item marking was included in the model to test whether any interaction between

cue type and i-complexity holds across item marking or instead applies only to marked items.

The model also included by-participant intercepts and random slopes for trial number. The

model revealed a significant effect of trial number (b=0.69, z= 11.47, p<0.001), a significant

151



systematic cues unsystematic cues

singular
plural

marked unmarked marked unmarked

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

Item Marking

M
ea

n 
A

cc
ur

ac
y

Item marking:
marked

unmarked

Figure 4.8: Mean accuracy for singular and plural trials by item marking. Points indicate
each participant’s mean accuracy scores in the systematic and unsystematic cues conditions
(columns) separately for forms in singular and plural (rows). Horizontal line indicates chance
level. Accuracy across conditions and across marked and unmarked forms is similar, sug-
gesting that systematic cues does not facilitate learning the forms.

effect of accuracy in block 2 (b= 0.94, z=14.2, p<0.001) and a significant interaction between

trial number and accuracy in block 2 (b=0.46, z=7.3, p<0.001) showing that participants’

performance improved over time and participants who did well in block 2 were more likely to

learn the dual forms in block 3 and to improve faster. The model also revealed a significant

effect of i-complexity (b=0.34, z=5.2, p<0.001) as well as a significant interaction of i-

complexity and trial number (b=0.12, z=2.1, p=0.036) showing that participants in the

low i-complexity condition achieved higher performance in learning the forms in dual and

their performance improved more over time than that of participants in the high i-complexity

condition. Crucially, the model failed to reveal a significant effect of cue type (b=0.03, z=0.5,

p=0.6) or an interaction between cue type and i-complexity (b=0.05, z=0.88, p=0.37) or

between these two variables and item marking (b=0.02, z=0.89, p=0.37). These results
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Figure 4.9: Mean accuracy by trial for dual forms. Shaded points indicate mean accuracy
scores averaged over participants in the systematic cues condition and shaded triangles in-
dicate mean accuracy scores averaged over participants in the unsystematic cues condition,
with a regression line predicting accuracy by trial number for each grammatical number.
Horizontal line indicates chance level. Vertical grey line indicates the beginning of block 3
when the dual forms were first introduced.

suggest again that learning the dual forms was not affected by systematical phonological

cues to class present in the stems. Fig. 4.10 shows accuracy on dual trials by item marking.

By comparison, in the simulation with LSTMs, the effect of phonological cues was already

present in learning. This suggest that the lack of bootstrapping effect may be due to the

fact that participants did not pick up on the phonological cues for class membership.

Generalizing to Novel Stems

Fig. 4.11 shows participants’ generalisation accuracy for novel lexemes in singular and plural

across cue type and item marking. Participants’ accuracy is compared with chance level; the

only way for participants to perform above chance in these trials is by using the phonological
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Figure 4.10: Mean accuracy by trial for dual marked and unmarked forms. Shaded points
indicate mean accuracy scores averaged over participants in the systematic cues condition
and shaded triangles indicate mean accuracy scores averaged over participants in the unsys-
tematic cues condition, with a regression line predicting accuracy by trial number for each
grammatical number. Horizontal line indicates chance level. Note that in conditions with no
systematical phonological cues there is no difference between marked and unmarked forms.

cues on the stems. However, regardless of cue type, participants’ performance is at chance,

with no visible difference between marked and unmarked items. To test this statistically, we

ran a mixed-effect logistic regression model predicting accuracy in singular and plural trials

in the generalization phase (block 4) by complexity condition, cues type, item marking,

participants’ accuracy in block 2 and their interaction. For the novel items, we are not

expecting learning over the small number of trial in block 4. Therefore we did not include

trial number in this model.

The model revealed a significant effect of accuracy in block 2 (b=0.29, z=7.9, p<0.001)

showing that participant who learned with higher accuracy the singular and plural forms

in block 2 showed higher accuracy in generalizing the plural and singular marking to novel
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Figure 4.11: Mean accuracy for singular and plural trials by item marking. Points indicate
each participant’s mean accuracy scores in the systematic and unsystematic cues conditions
(columns) separately for forms in singular and plural (rows). Horizontal lines indicate chance
level. Note that chance levels reflect the number of suffixes marking each grammatical num-
ber rather than the number of different inflected forms participants can choose from in each
trial; participants can perform lower than chance when choosing forms marked with suffixes
for other numbers. The lack of difference in accuracy across item marking in the systematic
phonological cues condition suggests that participants did not use the phonological cues for
generalization.

stems. The model also revealed an interaction between accuracy in block 2 and cue type

(b=0.084, z=2.28, p=0.023): better learners had an advantage in generalizing to novel stems

in the systematic phonological cues conditions. This suggests that better learners did in

fact pick up on the phonological cues for class membership. However, the model failed to

reveal a main effect of cue type (b=-0.04, z=-1.08, p=0.28) or of item marking (b=-0.04,

z=-1.35, p=0.17), confirming that among participants with average performance in block 2

(rather than only at the ones who learned better during block 2), systematic phonological

cues did not aid generalization to novel stems for phonologically marked items. The model

also failed to reveal an interaction between cue type and item marking (b=0.024, z=0.79,
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p=0.43). Finally, as expected, there was no significant effect of i-complexity (b=0.06, z=1.61,

p=0.1); at this point in the task, participants are not yet exposed to other forms of the novel

stems. Thus forms cannot be predicted based on implicative relations in the low i-complexity

paradigms yet.
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Figure 4.12: Mean accuracy for dual trials in the generalization phase for the four condi-
tions (two i-complexity conditions and 2 phonological cues conditions). Points indicate each
participant’s mean accuracy with which they chose the appropriate form in dual. Horizon-
tal line indicates chance level. Overall, participants in the two low i-complexity conditions
show higher performance in generalizing new dual forms than participants in the two high
i-complexity conditions. Cue type, however, does not affect participants’ performance in
generalizing to novel dual forms.

Fig. 4.12 shows each participant’s accuracy in choosing the correct form in dual for novel

lexemes, by condition. To test whether systematic phonological cues boosted the effect of

i-complexity on generalizing the dual forms to novel stems, we ran a mixed-effect logistic

regression model predicting accuracy in the dual trials in block 4 by complexity condition,

cue type, participant’s accuracy in block 2, item marking and the grammatical number of

previous trial (singular vs. plural). Note that the grammatical number of the previous trial
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was included as a fixed effect in the model since the difference in i-complexity between the

high and low conditions differs only in the implicative relations between singular and dual

forms. The model also included by-participant intercepts. Fig. 4.13 shows each participant’s

accuracy in generalizing the paradigm to novel forms in dual, split by item marking and the

grammatical number of the previous trial. The model revealed a significant effect of i-

complexity (b=0.35, z=5.04, p<0.001), as well as a significant effect of accuracy in block

2 (b=0.74, z=10.4, p<0.001) and a significant effect of the previous trial (b=0.1, z=3.1,

p<0.01), suggesting that participants were better at generalizing the forms in dual after

encountering the singular than after encountering the plural. The model also revealed a

significant interaction between i-complexity and accuracy in block 2 (b=0.22, z=3.1, p<0.01)

and a significant interaction between i-complexity and the previous trial (b=0.2, z=6.2,

p<0.001), suggesting that the effect of i-complexity is greater in dual trials following trials

in singular. The model failed to reveal an effect of cue type (b=-0.06, z=-0.8, p=0.4) or

an interaction between cue type and i-complexity (b=-0.05, z=-0.7, p=0.48). These results

suggest that contrary to our hypothesis and results from LSTMs, systematic phonological

cues for class membership did not lead to an advantage in generalizing the paradigm to

novel stems and did not enhance the effect of low i-complexity on generalization. The model

also failed to reveal a significant effect of item marking (b=0.034, z=1.03, p=0.3) or an

interaction between cue type and item marking (b=-0.007, z=-0.23, z=0.68), suggesting

that systematic phonological cues did not improve generalization even for novel marked

items. Taken together, these results are a strong indication that participants in this task

have simply not noticed the phonological cues for class membership.
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Figure 4.13: Mean accuracy for dual trials in the generalization phase split by item marking
(columns) and the previous trial (rows). Dual trials that followed singular trials (upper row)
show difference in performance across i-complexity conditions but not across cue type. This
trend is seen both for the marked and unmarked items, suggesting that participants did not
make use of the systematic phonological cues when generalizing to novel forms in dual.

4.4.3 Discussion

Results from learning and generalizing the forms in singular and plural suggest that partic-

ipants did not pick up on the phonological cues in the language; there was no difference in

participants’ performance on marked vs. unmarked items in the systematic cues condition

(Fig. 4.8, Fig. 4.11). Furthermore, in learning the dual forms and generalizing them to

novel stems, there was no evidence for an effect of phonological cues, i.e., participants were

not able to guess the correct dual form for a stem based on its phonological marker.

There are at least two possible reasons for the absence of an effect of phonological cues on

learning and generalization in our task with human participants. First, in our task, words

were presented orthographically rather than auditorily, with the expectation that learners
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would read the words and notice the phonological patterns. However, this may not have been

salient enough. Second, and not necessarily unrelated, Culbertson, Gagliardi, et al. (2017)

show that adult learners favour semantic over phonological cues in a classification task where

both are present. Therefore, adults may find such cues easier to learn. In Chapter 5 we

therefore conducted another experiment using semantic cues for class membership.

However, it is also worth noting that participants in this experiment did apparently benefit

from low i-complexity in learning and generalizing the dual. Our results therefore contribute

to the body of evidence suggesting that inflectional classes can be learned independent of

any extra-morphological cues for class membership, contrary to Frigo and McDonald (1998).

In previous studies, we saw weak evidence for the effect of i-complexity on learning. In only

one out of three experiments with a staged learning design was there a significant effect of

i-complexity. Here, the effect was found for both learning and generalization. Apart from

the presence of phonological cues in this experiment, which our participants were evidently

not sensitive to, the main difference in the design between this study and the experiments

presented in Chapter 1, is the size of the language (15 vs 9 stems). To test whether the size

of the language was driving the effect of i-complexity in learning, we conducted a combined

analysis of data from the three experiments presented in Chapter 1, and data from the learn-

ing phase of the unsystematic phonological cues conditions from the experiment presented

here. we ran a mixed-effect logistic regression model predicting accuracy in dual trials from

i-complexity (high-i vs. low-i, sum coded), language size (’small’ for the Chapter 1 experi-

ments and ’large’ for the experiment presented here, sum coded), participant’s accuracy in

block 2 (scaled) and trial number (scaled). The model also included by-participant intercepts

and random slopes for trial number. The model revealed a significant effect of i-complexity

(b=0.29, z=5.15, p<0.001), as well as an effect of trial number (b=0.99, z=16.6, p<0.001)

and an effect of block 2 accuracy (b=0.76, z=13.22, p<0.001). The model also revealed a
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significant effect of language size (b=-0.12, z=-21, p=0.036), suggesting that smaller lan-

guages are learned more easily. There was no significant interaction between i-complexity

and language size (b=0.05, z=0.83, p=0.4). This suggest that there is no evidence that the

larger size of the language is what led to the effect of i-complexity on learning. Rather, the

effect of i-complexity may simply be present but weak.
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Chapter 5

Semantic Cues for Class Membership

5.1 Experiment 1: pilot with human learners

In this chapter, we test the effect of semantic cues for class membership on learning and

generalization. We first ran a pilot to test whether participants pick up on these cues, as

opposed to the phonological cues we used in Chapter 4. The inflection paradigm used in

the pilot experiment included only one grammatical number (singular). After verifying that

participants can indeed use systematic semantic cues, Experiment 2 then tested the effect

of i-complexity on learning and generalization in the presence of semantic cues for class

membership (Section 5.2).

5.1.1 Methods

Materials

Participants were exposed to word forms in languages with semantic cues for class mem-

bership. As in Experiment 1, in Section 4.4, the language consisted of 39 CVCV nouns,

however, in this experiment, nouns did not share phonological features and were randomly

constructed. For each participants, nouns were randomly paired with 39 objects. Of the

objects, 18 were inanimate (umbrella, broom, shoe, plane, clock, guitar, hat, bag, mug,
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lamp, spoon, ball, chair, comb, shirt, bottle, glasses, book). These served as the seman-

tically unmarked items. The remaining 21 were animates, split into three sub-categories:

mammals (cow, giraffe, dog, cat, monkey, elephant, horse), birds (pigeon, parrot, seagull,

owl, crane, eagle, swan) and insects (fly, rhino-beetle, grasshopper, ant, butterfly, red beetle,

bee). These served as the semantically marked items. For each participant, the set of nouns

was randomly divided into two sets, one including 15 nouns and comprising the learning set,

and another of 24 nouns, comprising the set of novel items for the generalization task. Nouns

from the learning set were allocated evenly into three noun classes. In each class, three out of

five (60%) nouns referred to semantically marked objects from one of the three categories of

animates (mammals, birds or insects). The remaining two nouns (40%) referred to randomly

allocated unmarked inanimates. Table 5.1 shows an example allocation of nouns to the three

noun classes.

Nouns in the language were inflected for singular according to their noun class. No other

number inflection was used for this pilot. Inflectional markers were three CVC monosyllabic

suffixes randomly chosen from the set [-fel, -fob, -fir, -fam, -fut, -fon, -fik] and randomly

allocated, all starting with -f- to facilitate stem-affix segmentation.

Table 5.1: Example noun classification in a language with systematic semantic cues.

noun class 1 noun class 2 noun class 3

marked
items birds

pigeon
mammals

monkey
insects

bee
seagull elephant butterfly
parrot dog ant

unmarked
items

hat bottle lamp
shirt comb chair

Objects from the generalization set were evenly assigned to each of the three noun classes

(8 novel items in each noun class). Half of the novel items in each noun class were marked

(animate) and were assigned to the appropriate noun class according to their semantics. The

remaining novel items were unmarked items (inanimate) and were randomly assigned to the
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noun classes.

Participants

21 self-reported native English speakers participants were recruited via Amazon’s Mechanical

Turk crowd-sourcing platform. They were compensated $3.5 for their participation and the

experiment lasted 14 minutes on average (min = 11, max = 26, mode = 12). We recruited

participants who possessed an Mturk qualification indicating that they were based in the

US. Note that the manipulation (marked vs. unmarked items) was within participant, and

all participants were exposed to systematic semantic cues.

Procedure

As in Chapter 4, the task consisted of two parts: learning, and generalization to novel

stems. Recall that the language included forms in singular only, and so the generalization

task tested whether participants had learned which types of animates went in which noun

class. Learning was achieved via trial and error, as in previous experiments (see Chapter

2). The learning phase consisted of two identical blocks of trials (60 trials each), in which

participants were exposed to all items in the learning set, 4 times each. The order of trials

was randomized in each block and participants were allowed a self-paced break between

blocks; they were presented with a screen announcing the end of the block and were asked

to click on ‘continue’ to complete the next block of trials.

In the generalization task (block 3 with 24 trials), participants were asked to choose the

correct label in singular for novel items (24 items to which participants were not exposed

during learning, from the generalization set). To test whether participants picked up on

the semantic cues for class membership, we looked at the accuracy for semantically marked
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items compared with unmarked items, both in learning and in generalization to novel stems.

5.1.2 Results

Fig. 5.1 presents participant’s accuracy on marked and unmarked items in block 2. To

test whether participants were significantly better at learning marked items we ran a linear

mixed-effect regression model predicting accuracy in each trial in block 2 by item marking

(marked vs. unmarked, sum coded). The model also included a random intercept for each

participant and a by-participant random slope for item marking. The model revealed a

significant effect of item marking (b=0.44, z=3.4, p<0.001), showing that participants were

better at learning items whose meaning indicated their class.
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Figure 5.1: Mean accuracy for trials in block 2 by item marking. Points indicate each
participant’s mean accuracy over trials in the block. Horizontal lines indicate chance level.
Participants’ accuracy is higher on marked items (items whose meaning signals their class).

Fig. 5.2 shows participants’ generalization accuracy for marked and unmarked items. We ran
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a linear mixed-effect regression model predicting accuracy in generalization trials (block 3)

by item marking, with random intercepts for each participant.1 The model again revealed a

significant effect of item marking (b=0.79, z=7.8, p<0.001), showing that participants were

better at generalizing novel items whose meaning indicated their class. For the unmarked

items, performance was at chance.
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Figure 5.2: Mean generalization accuracy on novel items (block 3) by item marking. Points
indicate each participant’s mean accuracy over trials in the block. Horizontal lines indicate
chance level. Participants’ accuracy is higher for marked items.

Altogether, results from this pilot study show that semantic cues for class membership were

advantageous for participants both in learning the forms and in generalizing the inflections

to novel items. This confirms that participants pick up on the semantic cues for class

membership and make use of them in learning and generalization. We now move on to

test the effect of i-complexity on learning and generalization in the presence of this extra-

morphological cue in a full experiment.
1A model that included a by-participant random slope for item marking produced a singular fit. We

therefore ran the model without this random effect
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5.2 Experiment 2: full experiment

5.2.1 Methods

Materials

As in Experiment 4.4, we constructed four conditions, crossing the i-complexity of the

paradigm (high vs. low) and the presence of semantic cues for class membership in the

language. Systematic semantic cues for class membership were constructed as in the pilot

experiment (see Section 5.1.1). In this experiment we add a condition with unsystematic

semantic cues, where semantically marked items are shuffled between noun classes so that

noun class is not determined by animate object category. The learning set consisted of 15

nouns allocated to each of the three noun classes, see Table 5.2 for example noun allocation

in the two semantic cues conditions.

An additional set of 24 nouns was used to test generalization of the inflection paradigm to

novel items. Nouns from this set were evenly assigned to each of the three noun classes (8

novel items in each noun class). Half of the novel items in each noun class were marked

(animate) and were assigned to the appropriate noun class according to the semantic cues

condition (either assigned to the noun class matching their semantic category, in the sys-

tematic semantic cues condition, or randomly assigned to a noun class, in the unsystematic

semantic cues condition). The remaining novel items were unmarked (inanimate) and were

randomly assigned to the noun classes.

To test the effect of i-complexity on learning and generalization in the presence of semantic

cues for class membership, we also manipulate the paradigms’ i-complexity, as in Chapter

4. The nouns in each class were inflected for three numbers: singular, dual and plural.

Inflectional markers were seven CVC monosyllabic suffixes (-fel, -fob, -fir, -fam, -fut, -fon, -
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noun class 1 noun class 2 noun class 3

marked
items birds

pigeon
mammals

monkey
insects

bee
seagull elephant butterfly
parrot dog ant

unmarked
items

hat bottle lamp
shirt comb chair

(a) systematic semantic cues for class membership
noun class 1 noun class 2 noun class 3

marked
items

pigeon monkey bee
butterfly seagull elephant
dog ant parrot

unmarked
items

hat bottle lamp
shirt comb chair
(b) unsystematic semantic cues for class membership

Table 5.2: Example languages for the systematic semantic cues condition (a) and the unsys-
tematic semantic cues condition (b).

fik), all starting with -f- to facilitate stem-affix segmentation. These inflectional markers were

randomly allocated to cells in each paradigm for each participant such that both paradigms

shared the same e-complexity value (1.14 bits) but differed in i-complexity. In the low i-

complexity paradigm, the singular form of a word predicts the dual form, while in the high

i-complexity paradigm it does not. Tables 5.3 shows two example paradigms.

Table 5.3: Example paradigm for low i-complexity (a) and high i-complexity (b) languages.

Singular Dual Plural
noun class 1 -fir -fut -fon
noun class 2 -fir -fut -fel
noun class 3 -fob -fam -fik

(a) low i-complexity paradigm
Singular Dual Plural

noun class 1 -fir -fut -fon
noun class 2 -fir -fam -fel
noun class 3 -fob -fut -fik

(b) high i-complexity paradigm
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Participants

205 self-reported native English speakers participants were recruited via Amazon’s Mechan-

ical Turk crowd-sourcing platform. They were compensated $8.5 for their participation

and the experiment lasted 58.5 minutes on average (min = 21, max = 138, mode = 52).

We recruited participants who possessed an Mturk qualification indicating that they were

based in the US. Participants were allocated randomly to each of the four paradigms: low-

i/systematical-cues (51); high-i/systematic-cues (53); low-i/unsystematic-cues (51); high-

i/unsystematic-cues (50).

Procedure

The procedure was identical to the experiment with phonological cues, described in Section

4.4.1. We measured the accuracy with which participants chose the correct label for objects,

in learning and generalization. Critical trials were the dual trials in both phases of the task.

We also present participants’ accuracy in singular and plural trials, to verify that participants

picked up on the semantic cues for class membership and to test whether learning of these

forms was higher than chance.

5.2.2 Results

Learning

Fig. 5.3 shows the mean accuracy on singular and plural over trials. On average, participants’

accuracy was higher than chance throughout the task, suggesting that they learned the

inflected forms in the language. Note that up to the end of Block 2, the task was identical

for participants in the two i-complexity conditions (the difference between the high and
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Figure 5.3: Mean accuracy by trial for singular and plural forms. Shaded points indicate
mean accuracy scores averaged over participants in the systematic cues conditions and shaded
triangles indicate mean accuracy scores averaged over participants in the unsystematic cues
conditions, with learning trajectories averaged over participants. Horizontal lines indicate
chance level for each number (chance level is different for singular and plural forms according
to the number of suffixes used to mark each number). Vertical grey lines indicate the
beginning of each block; note that plural forms are introduced at the beginning of block
2. Participants in all conditions learned the singular and plural forms with accuracy higher
than chance. Participants across i-complexity conditions behave similarly in block 1 and 2,
suggesting that participants were matched in terms of their general learning abilities across
conditions.

low i-complexity conditions is introduced with the dual forms in Block 3), varying only

across semantic cues conditions. To verify that participants did not behave differently in the

part where the task was identical, we ran a mixed-effect logistic regression model predicting

accuracy in block 2 by i-complexity condition (high-i vs. low-i, sum coded), cue systematicity

(systematic vs. unsystematic, sum coded) and trial number (scaled).2 The model also

included by-participant intercepts and random slopes for trial number. 3 The model revealed

2Model predictors were coded this way throughout unless otherwise noted.
3All following models include these random effects unless noted otherwise.
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a significant effect of trial number (b=0.27, z=7.3, p<0.001), showing that participants’

performance improved over time, and a significant interaction between trial number and cue

systematicity (b=0.098, z=2.62, p<0.01), showing that performance of participants in the

systematic semantic cues condition improved faster. This effect is as expected, and suggests

that participants picked up on the semantic cues for class membership. Furthermore, there

was no significant effect of i-complexity (b=0.003, z=0.055, p=0.95) on performance in block

2, and no significant interaction between i-complexity and cue systematicity (b=-0.005, z=-

0.08, p=0.93). The model therefore does not reveal a difference in performance across i-

complexity conditions in block 2, suggesting that learners in both conditions were balanced

with respect to their general ability to learn in the task.

We further test whether the there is a difference in learning the marked and unmarked

items in the systematic cues conditions in block 2. Fig. 5.4 shows the mean accuracy

in Block 2 by item marking. We ran a mixed-effect logistic regression model predicting

accuracy in block 2 by item marking (marked vs. unmarked, sum coded), cue systematicity,

i-complexity condition and trial number. As usual, there was a significant effect of trial

number (b=0.27, z=7.04, p<0.001). Crucially, the model revealed a significant effect of item

marking (b=0.065, z=4.56, p<0.001), and a significant interaction between item marking and

cue systematicity (b=0.085, z=5.99, p<0.001). This shows that marked items were learned

with higher accuracy, and the advantage of marked items was greater for participants in

the systematic semantic cues condition. There was also a significant interaction between

cue systematicity and trial number (b=0.08, z=2.1, p=0.036) and a significant interaction

between item marking, cue systematicity and trial number (b=0.084, z=3.357, p<0.001),

showing that performance of participants in the systematic semantic cues condition improved

faster, and more so in trials with semantically marked items. As in the previous model, there

was no significant effect of i-complexity on accuracy in block 2 (b=0.0026, z=0.042, p=0.966).
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These results suggest that, as opposed the experiment with phonological cues, systematic

semantic cues for class membership lead to a learning advantage in learning the forms in the

language, especially the semantically marked items.
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Figure 5.4: Participant’s mean accuracy for singular and plural trials by item marking. Points
indicate each participant’s mean accuracy scores in the systematic and unsystematic marking
conditions (columns) separately for forms in singular and plural (rows). Horizontal line
indicates chance level. Accuracy in marked items (red) is higher in the systematic semantic
cues conditions, suggesting that semantic cues for class membership facilitate learning the
marked forms.

Fig. 5.5 shows accuracy on dual trials in block 3 by trial and item marking. To test the

effect of i-complexity and semantic cues and their interaction on learning the dual forms,

we ran a mixed-effect logistic regression model predicting accuracy on dual trials in block 3

by complexity condition, cue systematicity, trial number, participant’s accuracy in block 2

(scaled) and item marking.

The model revealed a significant effect of trial number (b=0.54, z= 8.7, p<0.001), a signif-

icant effect of accuracy in block 2 (b=0.94, z=14.1, p<0.001) and a significant interaction
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between trial number and accuracy in block 2 (b=0.302, z=4.53, p<0.001) showing that par-

ticipants’ performance improved over time and participants who did well in block 2 were more

likely to learn better the dual forms in block 3 and to improve faster. The model revealed a

marginally significant negative effect of cue systematicity (b=-0.12, z=-1.9, p=0.057). This

unexpected negative effect suggests that participants in the systematic semantic cues condi-

tions were worse at learning the dual forms. However, the model revealed a significant pos-

itive interaction between cue systematicity and item marking (b=0.046, z=2.12, p=0.034),

and a significant interaction between cue systematicity, item marking and accuracy in block

2 (b=0.064, z=2.66, p<0.01). This suggest that participants in the systematic semantic cues

conditions were better at learning the dual forms of semantically marked objects, especially

for participants who showed higher performance in block 2.

The model also revealed a marginally significant effect of i-complexity (b=0.12, z=1.91,

p=0.055) and a significant interaction between i-complexity and accuracy in block 2 (b=0.14,

z=2.15, p=0.03), suggesting that participants in the low i-complexity conditions who showed

higher accuracy in block 2, had higher accuracy in learning the dual forms.

Crucially for our hypothesis however, the model did not reveal a significant interaction

between i-complexity and cue systematicity (b=-0.01, z=-0.15, p=0.88) or an interaction

between i-complexity, cue systematicity and item marking (b=-0.002, z=-0.77, p=0.44).

These results suggest that systematic semantic cues are generally advantageous for learning

the dual forms of marked items, and similarly there is a general effect of i-complexity at

least for better learners. However, the results do not provide evidence that these two factors

interact; learning a language with semantic cues for class membership does not bootstrap

use of predictive features in low i-complexity paradigms. Note that this same pattern was

found for trained items in the RNNs with phonological cues (Section 5.1).
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Figure 5.5: Mean accuracy by trial for dual marked and unmarked forms. Shaded points
indicate mean accuracy scores averaged over participants in the systematic cues conditions
and shaded triangles indicate mean accuracy scores averaged over participants in the un-
systematic cues conditions, with learning trajectories averaged over participants. Horizontal
line indicates chance level. Splitting the dual trials into marked and unmarked items reveals
a moderate improvement in accuracy for participants trained on languages with systematic
semantic cues in the marked items.

Generalizing to Novel Stems

Fig. 5.6 shows accuracy in choosing the correct form for novel lexemes in singular and in plu-

ral by cue systematicity and item marking. Participants’ accuracy is compared with chance

level as the only way for participants to choose the correct form for the novel lexemes in

singular and plural is by using the semantic cues. On average, participants in the systematic

semantic cues conditions are above chance at choosing the correct form in singular for novel

semantically marked items. Along with the evidence above (Fig. 5.4) this suggests that

participants picked up on the semantic cues for class membership. To test this statistically,

we ran a mixed-effect logistic regression model predicting accuracy on singular and plural
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Figure 5.6: Mean accuracy for singular and plural trials by item marking. Points indicate
each participant’s mean accuracy scores in the systematic and unsystematic cues conditions
(columns) separately for forms in singular and plural (rows). Horizontal lines indicate chance
level. In the systematic cues conditions (left), accuracy in marked items (red) is higher
than unmarked items (teal), both for singular and plural trials, suggesting that systematic
semantic cues for class membership have a facilitative effect in generalizing to novel stems.

trials in the generalization phase (block 4) by complexity condition, cue systematicity, item

marking and participant’s accuracy in block 2 and their interaction. We did not include trial

number in this model; given the short number of trials in block 4 we do not expect to see

learning.

The model revealed a significant effect of cue systematicity (b=0.13, z=2.98, p<0.01), a

significant effect of item marking (b=0.12, z=3.58, p<0.001) and a significant interaction

between cue systematicity and item marking (b=0.17, z=5.16, p<0.001). This shows that

participants trained on systematic semantic cues were more likely to generalize to novel

stems in the singular and plural, and more so for semantically marked items. The model

also revealed a significant effect of accuracy in block 2 (b=0.4, z=8.87, p<0.001), an inter-
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action between accuracy in block 2 and cue systematicity (b=0.13, z=3.02, p<0.01), and

an interaction between accuracy in block 2, cue systematicity and item marking (b=0.15,

z=4.55, p<0.001). This suggests that the facilitating effect of systematic cues on generaliza-

tion to novel stems was more accessible to participants who showed better learning in the

learning phase. There was no significant effect of i-complexity (b=-0.06, z=-1.32, p=0.18).
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Figure 5.7: Mean accuracy for dual trials in the generalization phase for the four conditions
(two i-complexity conditions and two semantic cues conditions). Points indicate each par-
ticipant’s mean accuracy with which they chose the appropriate form in dual. Horizontal
line indicates chance level. Participants in the two low i-complexity conditions show higher
accuracy at generalizing the dual forms to novel stems, although this difference is small.
There is no clear difference between the two semantic cues conditions.

Fig. 5.7 shows accuracy on dual trials for novel lexemes by condition. To test whether

systematic semantic cues boosted the effect of i-complexity on generalizing the dual forms

to novel stems, we ran a mixed-effect logistic regression model predicting accuracy in the

dual trials in block 4 by complexity condition, cue systematicity, participant’s accuracy in

block 2, item marking and the grammatical number of previous trial (singular vs. plural).
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Note that the grammatical number of the previous trial was included as a fixed effect in

the model since the difference in i-complexity between the high and low conditions differs

only in the implicative relations between singular and dual forms. The model also included

by-participant intercepts.4

The model revealed a significant effect of i-complexity (b=0.198, z=2.6, p<0.01), as well as

a significant effect of accuracy in block 2 (b=0.83, z=10.5, p<0.001) and a significant effect

of the previous trial (b=0.15, z=4.4, p<0.001), suggesting that participants were better at

generalizing the dual when they had previously encountered the singular compared to the

plural. The model also revealed a significant interaction between i-complexity and the previ-

ous trial (b=0.24, z=7.25, p<0.001), suggesting that the effect of i-complexity was larger for

dual trials following the singular. The model did not reveal a main effect of cue systematic-

ity (b=-0.02, z=-0.22, p=0.82) but revealed an interaction between cue systematicity and

item marking (b=0.1, z=2.99, p<0.01), showing that participants in the systematic semantic

cues conditions were better at generalizing the dual forms to novel stems for semantically

marked items. Crucially, the model failed to reveal an interaction between i-complexity and

cue systematicity (b=-0.03, z=-0.37, p=0.71) or an interaction between i-complexity, cue

systematicity and item marking (b=-0.017, z=-0.5, p=0.62). Fig. 5.8 shows participants’

generalization accuracy on duals by item marking and the grammatical number of the pre-

vious trial. These results suggest that systematic semantic cues for class membership did

not enhance the effect of low i-complexity on generalization, although semantic cues did

facilitate generalization to novel marked items.

Results from this experiment suggest that participants did notice the semantic cues when

trained on languages in which these cues were systematically linked to class membership.

Semantic cues, as opposed to phonological cues for class membership (chapter 4), showed a
4A model that included a by-participant random slope for item marking produced a singular fit warning.

We therefore ran the model without this random effect
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Figure 5.8: Mean accuracy for dual trials in the generalization phase split by item marking
(columns) and the previous trial (rows). Dual trials that followed singular trials (upper row)
show difference in performance across i-complexity conditions. Accuracy on semantically
marked items (right facets) was higher than on unmarked items (left) for participants in
the systematic cues conditions, suggesting for an interaction between item marking and cue
systematicity in their effect on generalization to novel forms in dual.

facilitating effect both in learning the forms in the language and in generalizing the paradigm

to novel stems in this task. The results also suggest that low i-complexity facilitates general-

izing the paradigm to novel stems. This supports Ackerman and Malouf 2015, and provides

some evidence for the advantage of low i-complexity in learning forms encountered in low

frequency (though note this was seen only for better learners). These two effects, how-

ever, did not interact with each other as we hypothesised. While we found this interaction

(using phonological cues) with the neural network model, learning a language with system-

atic semantic cues for class membership does not lead to a greater facilitative effect of low

i-complexity compared to learning a language where class membership is arbitrary.
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5.3 Discussion

In Chapters 4 and 5, we tested the effect of i-complexity on learning and generalizing in-

flectional paradigms in the presence of extra-morphological cues for class membership, both

with neural networks and human participants. Previous findings with human participants

suggest that generalization of morphological paradigms is enabled only in the presence of

additional cues for class membership (e.g., Braine 1987; Brooks et al. 1993; Frigo and Mc-

Donald 1998; Kempe and Brooks 2001; L. A. Gerken et al. 2009), with a few exceptions

showing evidence for generalization when such cues are absent (Mintz 2002; Reeder et al.

2013; Seyfarth et al. 2014). Based on these findings we hypothesised here that the effect of

i-complexity (capturing distribution information) on learning and generalization would be

augmented in the presence of phonological or semantic cues for class membership.

Our findings suggest that extra-morphological cues (at least when they are salient enough)

facilitate both learning and generalization. Further, low i-complexity was found to facilitate

generalization, and in some instances, learning - while LSTM neural networks benefited from

low i-complexity, we did not see a robust effect of i-complexity on learning in human learners.

Lastly, contra to our hypothesis, the addition of systematic cues to class membership did

not result in stronger effects of i-complexity. A number of points can be drawn based on

these findings.

First, the facilitative effect of systematic additional cues on learning and generalization was

as expected, based on previous findings (e.g., Frigo and McDonald (1998), L. Gerken et al.

(2005), and Ouyang et al. (2012)). Frigo and McDonald (1998) claim that the cues must

be salient in order to facilitate learning and generalization. In our task, semantic cues were

found to be more salient than phonological cues (i.e., facilitating learning and generalizing

marked items), but we believe that this has to do with the specific task and cues we used,
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rather than establishing a more general claim on the effect of systematic phonological versus

semantic cues on learning and generalization.

Second, in these two chapters, we tested the effect of i-complexity on generalization in

human learners in addition to its effect on learning. Low i-complexity was found to facilitate

generalization to novel stems in both chapters 4 and 5. These findings are consisted with

previous findings (Seyfarth et al. 2014). However, here and in Chapter 2 the effect of i-

complexity on learning was found in only some of the experiments. A combined analysis of

the data from the learning task in Chapter 2 and Chapter 4 suggest that the inconsistent

effect is not dependent on differences in the tasks’ design itself (e.g., size of the language). We

concluded that the effect of i-complexity on learning in human learners is present but weak

and is therefore sparsely found (e.g., in experiments with higher numbers of participants).

This difference in the effect of i-complexity across tasks (learning encountered items vs.

generalizing to novel items) in human learners could imply that there is a difference in

the mechanisms active in these two tasks. Another interpretation of the results is that

generalization serves as a ‘low bar’ for finding effects of predictive structure than learning

encountered forms. I further discuss this difference in the General discussion.

Furthermore, the fact that i-complexity facilitates generalization in humans, regardless of the

presence of additional cues, is surprising in light of previous results showing generalization

only in the presence of systematic cues. It is possible that an additional distributional cue is

sufficient for learners for generalizing the paradigm, even without extra-morphological cues.

In our target paradigms, both the singular and the plural forms in the low i-complexity

condition are predictive of the form in dual. Put another way, since the plural form is also

informative of the form in dual, it can serve as an additional distributional cue on top of the

form of the lexeme in singular. This suggestion is compatible with Bonami and Beniamine

(2016) conjecture that language users rely on multiple known forms of a lexeme to infer a
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target inflected form; they propose that guessing an unencountered inflected form can be

facilitated based on knowledge of more than one other inflected form of the same lexeme.

In order to assess this interpretation of the results, testing directly whether rich distribution

information serves as an additional cue for paradigm generalization is required.

Third, we hypothesized that i-complexity interacts with systematic cues in their effects

on learning and generalization; Frigo and McDonald (1998) show that participants in the

systematic cue condition were able to produce the correct form for novel items, even when the

specific novel item was not phonologically marked. Therefore, in the presence of systematic

cues learners were better able to use the predictive structure of the paradigm. However,

our results do not show satisfactory evidence for this interaction between systematic cues

and i-complexity. In fact, we found such interaction only in generalization in LSTM neural

networks. This could suggest a difference between the two types of learners, a subject we

discuss in depth in the General Discussion (Chapter 6).
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Chapter 6

General Discussion

In this thesis, I systematically explored the role i-complexity has in shaping natural languages

through learners’ inductive biases. Over the three parts of the thesis I tested the effects of i-

complexity on learning and generalizing inflectional paradigms in human and neural network

learners. To assess the magnitude of effects of i-complexity on morphological learning I

compared these effects against effects of e-complexity. A summary of the results is presented

in Table 6.1 below.

In Part 1, I tested whether learners are sensitive to i-complexity when learning inflected

forms in a miniature language. First, with neural networks I replicated previous results with

human learners showing an effect of i-complexity on generalizing inflectional paradigms to

novel items. Second, testing the effect of i-complexity on learning trained forms with neural

networks and human learners showed weak effects of i-complexity on learning; in neural

networks, i-complexity was found to facilitate learning, while in human learners an effect of

i-complexity was found in only one out of three experiments. Third, comparing the effect

of i-complexity to the effect of e-complexity on learning, findings show evidence for greater

effects of e-complexity, in both human learners and neural networks. Note that the task

used in this part was designed to increase the likelihood of finding an effect of i-complexity;

learners received staged training, encountering predictive forms before encountering other

forms.

In Part 2, I compared the effect of i-complexity on learning with that of e-complexity and as-

181



sessed the relationship between these two measures, using randomly constructed paradigms.

As opposed to experiments in Part 1, learners in this part were trained on forms in the

paradigm in a random order; this was done to compare the effects of i- and e-complexity in a

learning regime that is neutral in terms of enhancing or reducing the probability that learn-

ers would be affected by one measure or another. Again, effects of e-complexity were greater

than effects of i-complexity in both learners; in neural networks, both i- and e-complexity

were found to affect learning the paradigms, with low e-complexity being more advantageous.

In human learners, only e-complexity was found to affect learning.

In Section 3.4, 1000 inflection paradigms were randomly generated and a strong negative cor-

relation was revealed between i- and e-complexity. Furthermore, patterns of low i-complexity

similar to the typological observations by Ackerman and Malouf (2013) were found in the

random paradigms, where no inductive biases are in place. These results suggest that the

typological observations may, in part, reflect an intrinsic relationship between the two mea-

sures. Finally, neural networks were trained and tested on the randomly generated paradigms

and replicated previous results for varying values of i- and e-complexity.

While experiments in Part 1 and 2 were designed to eliminate extra-morphological cues

for class membership, in Part 3 I tested whether the presence of phonological or semantic

cues amplifies the effect of i-complexity in learning and generalizing inflectional paradigms.

Results from these studies do not provide evidence for an interaction between i-complexity

and extra-morphological cues on learning and generalisation. However, extra-morphological

cues, when salient enough, were found to facilitate learning and generalization in both hu-

man learners and neural networks. Furthermore, low i-complexity was found to facilitate

generalizing the paradigm to novel stems in both learners, replicating previous results.

Overall, my findings suggest that i-complexity only weakly affects learning and generalizing

inflectional paradigms. Here I discuss the role i-complexity may have in shaping morpholog-
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ical paradigms of natural languages, following the three exploratory themes throughout the

thesis.

i-complexity e-complexity

LSTM
neural
networks

Staged
learning
regime
Unstaged
learning
regime

Human
learners

Staged
learning
regime
Unstaged
learning
regime

Table 6.1: Summary table of the results. Effects of i- and e-complexity on learnability of
inflection paradigms. represents an experiment with no effect found while represents an
experiment where an effect was found.

Learning and generalization

Generalizing to completely novel forms is an extreme case of a much more general problem

that language learners face of producing forms which may have been encountered but have

not yet been robustly acquired. I hypothesised that learners can use the same strategy they

use when generalizing to completely novel stems to help generate (or recall) low frequency

forms that are not fully memorized; in other words, if i-complexity facilitates generalization

to novel forms, it should, in principle, facilitate learning forms under low exposure as well.

However, while results from the generalization task with human learners replicated previous

findings showing effects of i-complexity on generalizing the paradigm to novel words (Seyfarth

et al. 2014), results from the task of producing encountered forms (i.e., learning task) showed

only weak evidence for effects of i-complexity on learning low frequency forms.

These results can be interpreted as suggesting that contra my hypothesis, the mechanisms
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used in the two tasks, generalization to completely novel items and learning forms in low fre-

quency, are different in essence; i-complexity affects the former but not the latter. However,

this seems an unlikely explanation as that would presume perfect memory of which items

have been encountered.

A more plausible explanation for these findings, in my eyes, is that generalization puts a

low bar for finding an effect of i-complexity, since it compares a case where generalization

is possible through using the predictive structure (in low i-complexity paradigms) to a case

where generalization to novel forms is simply not possible (in high i-complexity paradigms).

In a task of learning encountered words, however, performance higher than chance is possible

in both low and high i-complexity paradigms, through memorization. Therefore, if low i-

complexity facilitates the learning process, we expected to see better performance in learning

word forms of low i-complexity paradigms. The inconsistency in finding an effect of i-

complexity on learning encountered forms suggests that an effect of i-complexity on learning

morphological paradigms may simply be present, but weak.1

Recall that i-complexity represents the extent to which inflectional forms in a paradigm can

predict one another by analogy over the suffixes; if a word is marked with the same suffix as

another word in one inflectional category, then by analogy it will be marked with the same

suffix as that other word in another inflectional category (e.g., Ackerman and Malouf 2013;

James P. Blevins 2006; G. T. Stump 2001). The weak effects of i-complexity on learning

encountered forms may suggest that there is a difference between learners’ ability to make

analogies based on similarities in the stem and analogies over the suffixes. While there is

evidence that phonological similarities of stems assist in learning the classification of forms

(e.g., Frigo and McDonald 1998), results from this thesis suggest that analogies based on the

1Note as well that in the combined analyses I performed in Chapter 2 and Chapter 4, results did not show
that differences in the design of the tasks (e.g., predictive trials or larger lexicons) is what led to revealing
an effect of i-complexity in some of the experiments.
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suffixes is more difficult for (human) learners.

Human and neural network learners

I used LSTM neural networks as a supplement to human learners in testing the relative im-

pact of i-complexity on paradigm learning. I trained LSTM neural networks as a convenient

‘ideal learner’, to test whether i-complexity can in principle influence paradigm learnability,

using the networks as ‘subjects’ in a psycholinguistic task. In Chapter 3, LSTM neural

networks were used as the sole subjects in learning a large number of randomly-generated

inflection paradigms with varying values of i- and e-complexity, which is less feasible with

human participants.

The LSTM neural networks used here displayed learning behaviour as would be expected

from an ‘ideal learner’. The neural networks were sensitive to every manipulation that was

set in the experiments and showed little variance across different runs of the model per task.

Also when training the models with different sets of hyperparameters (hidden and embedding

dimensions, learning rates and optimizers), the same patterns of results were observed for

the majority of hyperparameters and no cases where the reversed patterns were exhibited

(see Appendix B).

Throughout the experiments and the different tasks, results from the LSTM networks mir-

rored the human behaviour, to a large extent. First, in generalizing the paradigm to novel

items, results from the neural networks replicated previous findings showing effects of i-

complexity with human participants (Seyfarth et al. 2014) and were similar to results with

human learners in Chapter 5. Second, in learning encountered forms, results from the neural

networks displayed similar overall patterns to data from human learners tested on a matched

task; greater effects of e-complexity were found with both learners.

Yet, there were also differences between the human and neural network learners. First, while
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extra-morphological cues were not found to interact with i-complexity in human learners,

not in learning nor generalizing the paradigm, in neural networks an interaction was found in

generalization to novel items. Second, i-complexity was found to robustly affect learning in

neural networks while only sparsely in human learners. These differences could possibly result

from the fact that human learners display more differences between participants leading to

‘noisier’ data than data from the neural networks. However, it is also likely that neural

networks employ strategies that are to some extent different than those used by human

learners.

Future work is planned to tackle this last point and looking ‘under the hood’ of the neu-

ral networks to better understand what strategies are used during morphological systems

learning and comparing them to those employed by human learners. To do so, I intend to

train and test simpler feed-forward neural networks and examine the embeddings created

for forms in the paradigms, for low versus high i-complexity languages. In addition to this

line of work, the LSTM neural networks can be trained and tested on inflection paradigms

of varying sizes, which is less feasible with human learners due to long training times; larger

inflection paradigms could produce larger differences in i-complexity and can more reliably

reflect paradigms of natural languages.

The role of i-complexity in language change

Ackerman and Malouf (2015) hypothesised that i-complexity shapes languages through cases

of generalization to novel words; since speakers are not exposed to the full set of inflections

for each lexeme in the language, they sometime have to produce inflected forms they have

not yet encountered. In these cases, speakers are more likely to produce word forms which

reflect predictive relationships when attempting to generalise, thus introducing errors that

reduce the i-complexity of the paradigm. In this way, paradigms with low i-complexity will

be relatively stable whereas paradigms with high i-complexity will tend to change. This
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hypothesis is supported by results from Seyfarth et al. (2014) and from Chapters 4 and 5,

showing an effect of i-complexity on generalization to novel items.

However, as discussed throughout the thesis, the case of generalizing to completely novel

items is an extreme case of producing low frequency forms, for which the effect of i-complexity

was less robust. Furthermore, I have pointed out that the task of generalization sets a low

bar for testing the effect of i-complexity on the learnability of inflectional paradigms.

To assess the magnitude of effects of i-complexity on learnability of inflection paradigms,

I compared the effects of i-complexity with those of a different measure of morphological

complexity, that I refer to as e-complexity, following Ackerman and Malouf 2013. Two

main aspects of this measure are (a) it accounts for complexity that originates from the

number of inflection classes in the paradigm and the use of allomorphy, and (b) contrary to

measures of i-complexity, this measure does not reflect the difficulty of solving the PCFP

based on knowledge of other inflected forms of the same lexeme. E-complexity (measured as

average cell entropy) was found to have a stronger and robust effect on learning compared

to i-complexity, both in human and LSTM neural network learners.

Overall, the results from the thesis suggest that i-complexity has a weak effect on the learn-

ability of morphological paradigms. Weak learning biases can still have a role in shaping

natural languages. Bayesian models simulating cultural transmission (i.e., the process by

which language is passed from person to person over generations) show that with time, lan-

guages mirror or even magnify agents’ biases, even weak ones (Griffiths and Kalish 2007;

Kalish et al. 2007; Kirby, Dowman, et al. 2007)2.

Results from a set of randomly-generated paradigms (Chapter 3) suggest that e-complexity

and i-complexity are strongly negatively correlated. This might suggest that inflectional
2Although other simulations with Bayesian learners suggest that it depends also on the communication

structure; when a learner receives different inputs from more than one other language users, language may
not reflect the inductive bias (K. Smith 2009)

187



paradigms are organized to minimize either i- or e-complexity. However, these findings were

found in paradigms of a fixed size, and therefore should be further tested with paradigms of

varying sizes.

The strong effect of e-complexity on the learnability of morphological paradigms found

here suggests that the frequency of forms play an important role in the learnability of the

paradigm. This is a further evidence for the pervasiveness of the effects of frequency on lan-

guage learning (e.g., Ambridge et al. 2015). In the context of inflectional complexity, Sims

and Parker (2016) suggest that in addition to implicative structure (i-complexity), type fre-

quency of inflection classes also plays a role in reducing the complexity of the paradigm.

Although type frequency of all noun classes was kept constant throughout the thesis, find-

ings support the general claim that the frequency of elements in the paradigm plays a role

in inferring the correct inflected form for a lexeme.

Since e-complexity was found to be a main predictor of the learnability of inflection paradigms,

paradigms with low e-complexity should be more dominant cross-linguistically, all other

things being equal. However, typological observations suggest that e-complexity in natu-

ral languages vary significantly (Ackerman and Malouf 2013). Other frequency effects may

also influence the learnability of inflection paradigms (e.g., inflection classes type/token fre-

quencies or frequencies of forms of grammatical functions in the paradigm). Potentially, in

high e-complexity paradigms these additional frequency effects might play a role in reduc-

ing learning-relevant complexity. Future research should explore the relationship between

different frequency effects both typologically and with respect to learnability.

To summarize, findings from the thesis suggest that a number of factors affect the learnability

of inflection paradigms, to a different degree. Moreover, as previous studies show interde-

pendence between measures of morphological complexity (e.g., Bane 2008; Bentz et al. 2016;

Shosted 2006), results from this thesis show that i-complexity correlates as well with other
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features of the paradigm examined here (specifically e-complexity and number of unique

affixes). Overall, these findings suggest that in order to study learnability of morphological

systems, different types of complexity should be explored jointly.

Conclusions

Ackerman and Malouf (2013) postulated the Low Conditional Entropy Conjecture based on

their typological observations; they suggest that predictive structure is a shared feature of

large inflection paradigms of natural languages. In a series of artificial language learning

tasks both with human learners and LSTM neural networks, I tested the hypothesis that

predictive structure (measured using i-complexity) influences the learnability of inflection

paradigms.

Results show weak evidence for an effect of i-complexity on learning, with evidence for

greater effects of e-complexity in both human and neural network learners. A strong nega-

tive correlation was found between i-complexity and e-complexity, suggesting that paradigms

with higher surface complexity tend to have more predictive structure, as measured by

i-complexity. There is no evidence for an interaction between i-complexity and extra-

morphological cues on learning and generalisation. This suggests that semantic or phonolog-

ical cues for class membership, which are common in natural languages, do not enhance the

effect of i-complexity on learning and generalisation. Finally, i-complexity was found to af-

fect generalisation in both human and neural network learners, suggesting that i-complexity

could, in principle, shape languages through the process of generalisation to unknown forms.

Although it may well be that learners use predictive structure when generalizing to com-

pletely novel forms, findings from comparing effects of i-complexity on learning encountered

forms suggest that pressure from learning should tend to favour low e-complexity rather than

189



low i-complexity.
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Appendix A

Appendix for Part I
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Figure A.1: Accuracy of the LSTM networks in generalizing to dual forms of novel stems,
after trained on their forms in singular only, for the low i-complexity paradigm (blue) and
the high i-complexity paradigm (red). for one network of size 25, with error bars indicating
standard error every 10 epochs. Note that the plots start at epoch 600, when the dual forms
are introduced to the network (at the beginning of Block 3). Networks trained on the high
i-complexity paradigm reach accuracy of around 66% which is the expected chance accuracy
when guessing according to the frequent suffix for dual, while networks trained on the low
i-complexity paradigm still show accuracy of almost 100%.
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Appendix B

Appendix for Part II

Exploring hyperparameters space

For the LSTM model presented in Section 3.3.2 we explored further hyperparameters in

addition to the parameter settings specified in the main text. We explored two optimizers,

SGD and Adam (Kingma and Ba 2014). We used these two optimizers with networks of

of two hidden and embedding dimensions (5 and 25), trained with four different learning

rates. Since we were interested in the cases were the networks fully learned the forms in the

language by the end of 900 epochs, the explored learning rates differed across optimizers;

for models optimized with SGD, we explored learning rates of 0.05, 0.1, 0.15 and 0.2. For

models optimized with Adam, where learning was more rapid, we explored learning rates of

0.0005, 0.001, 0.0015 and 0.002.

Results are presented in Figures B.1-B.4, and a summary of the mean summed accuracy for

all combinations of hyperparameters is presented in Tables B.1, B.2 below. Results from

all models optimized with SGD show small effects of i-complexity compared to effects of

e-complexity, regardless of the learning rate of the network. Models optimized with Adam

show a similar trend for the very low learning rates, but for the rest of the models there is

no difference between the conditions. Crucially, none of the hyperparameters combinations

we explored showed the opposite picture where i-complexity has a stronger effect on learning

than e-complexity.
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These results show that for this space of hyperparameters, all models replicate the results

presented in Section 3.3.2, namely that in cases where i-complexity has an effect on learning

the paradigm, the effect is smaller than the effect of e-complexity.
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Figure B.1: Learning trajectories of networks with two embedding and hidden layer di-
mensionalities; (a) networks with 5-dimensional embedding vectors and hidden layer, (b)
networks with 25-dimentional embedding vectors and hidden layer, trained with different
learning rates (columns), and optimized with SGD. X axis shows number of epochs up to
perfect learning of the forms in the language (differs across learning rates and network di-
mensions).
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Figure B.2: Summed accuracy over the 900 epochs of the networks trained on each of the
three paradigm types for models with different learning rates (x axis) and for models with
different dimensions (columns) optimized with SGD.

5 25
0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

SGD

low-i
/low-e

439.6
(48.7)

637.0
(47.0)

724.4
(32.2)

761.7
(22.9)

560.6
(35.1)

722.2
(20.0)

784.4
(15.6)

811.1
(10.82)

low-i
/low-e

440.5
(50.3)

629.0
(49.2)

724.3
(30.8)

765.6
(21.6)

538.5
(27.1)

722.3
(16.9)

782.9
(12.7)

808.0
(11.4)

low-i
/low-e

367.9
(41.4)

594.5
(51.0)

690.8
(33.5)

743.1
(21.4)

466.8
(41.4)

674.9
(26.5)

750.9
(18.1)

787.7
(13.4)

Table B.1: Summary of mean of summed accuracy of the model runs optimized with SGD
with combinations of hidden and embedding dimensions (5, 25) and learning rates (0.05, 0.1,
0.15, 0.2). Standard deviations are presented in brackets.
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Figure B.3: Learning trajectories of networks with two embedding and hidden layer di-
mensionalities; (A) networks with 5-dimensional embedding vectors and hidden layer, (b)
networks with 25-dimentional embedding vectors and hidden layer, trained with different
learning rates (columns), and optimized with Adam (Kingma and Ba 2014). X axis shows
number of epochs up to perfect learning of the forms in the language (differs across learning
rates and networks dimensions).
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Figure B.4: Summed accuracy over the 900 epochs of the networks trained on each of the
three paradigm types for models with different learning rates (x axis) and for models with
different dimensions (columns) optimized with Adam.

5 25
0.0005 0.001 0.0015 0.002 0.0005 0.001 0.0015 0.002

Adam

low-i
/low-e

483.5
(58.7)

678.7
(35.2)

747.9
(24.2)

786.9
(18.3)

786.7
(13.8)

827.9
(8.5)

849.7
(7.1)

860.8
(5.2)

low-i
/low-e

512.1
(44.8)

680.3
(28.8)

751.4
(21.7)

787.7
(13.5)

762.2
(14.6)

827.3
(7.5)

847.3
(5.9)

858.2
(4.9)

low-i
/low-e

469.3
(40.9)

670.2
(32.0)

742.9
(20.11)

782.3
(13.0)

746.6
(11.4)

814.6
(5.9)

840.1
(3.8)

852.5
(3.3)

Table B.2: Summary of mean of summed accuracy of the model runs optimized with Adam
with combinations of hidden and embedding dimensions (5, 25) and learning rates (0.0005,
0.001, 0.0015, 0.002). Standard deviations are presented in brackets.
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