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Abstract

In educational settings, the increasingly sophisticated use of digital technology has provided stu-

dents with greater agency over their learning. This has focused educational research on the metacog-

nitive and cognitive activities with which students engage to manage their learning and the achieve-

ment of their learning goals. This field of research is articulated as self-regulated learning (SRL) and

has seen the development of several key theoretical models. Despite key differences, these models

are broadly defined by thematic variations of the same fundamental phases: i) a preparatory phase;

ii) a performance phase, and; iii) an appraisal phase. Given the phasic nature of these models,

the conceptualisation of SRL as a phenomenon that unfolds in temporal space has gained much

traction. In acknowledging this dimension of SRL, researchers are bound to address the method-

ological demands of process, sequence, and temporality. Learning Analytics research, however, is

largely characterised by the use of statistical models for data interrogation and analysis. Despite

their value, several researchers posit that the use of statistical methods imposes ontological limi-

tations with respect to the temporal and sequential nature of SRL. Another challenge is that while

learner data are mostly collected at the micro level, (e.g., page access, video view, quiz attempt),

SRL theory is defined at a macro level (e.g., planning, monitoring, evaluation), highlighting a need

to bridge this gap in order to provide meaningful results. This thesis aims to explore the method-

ological opportunities and address the theoretical challenges presented in the area of temporally

focused SRL learning analytics.

First, the thesis explores the corpus of research in the area. As such, we present a systematic

review of literature that analyses the findings of studies that explore SRL through the lenses of order

and sequence, to provide insights into the temporal dynamics of SRL. Second, the thesis demon-

strates the use of a novel process mining method to analyse how certain temporal activity traits relate

to academic performance. We determined that more strategically minded activity, embodying as-

pects self-regulation, generally demonstrated to be more successful than less disciplined reactive

behaviours. Third, the thesis presents a methodological framework designed to embed our analyses

in a model of SRL. It comprises the use of: i) micro-level processing to transform raw trace data

into SRL processes; and ii) first order Markov models to explore the temporal associations between

SRL processes. We call this the “Trace-SRL” framework. Fourth, using the Trace-SRL framework,
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the thesis explores the deployment of multiple analytic methods and posits that richer insights can

be gained through a combined methodological perspective. Fifth, building on this theme, the thesis

presents a systematic analysis of four process mining algorithms, as deployed in the exploration of

common SRL event data, concluding that the choice of algorithm and metric is of key importance in

temporally-focused SRL research, and that combined metrics can provide deeper insights than those

presented individually. Finally, the thesis concludes with a discussion of practical implications, the

significance of the results, and future research directions.
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Lay summary

This thesis presents novel approaches for analysis of patterns of self-regulated learning (SRL) as ex-

tracted from data generated from authentic learning management systems. Embedding our analyses

in a recognised theoretical framework, we investigated how the temporal and sequential dynamics

of SRL can be explored through the use of several process-based analytic methods. We also present

a systematic review of the corpus of research in the area of temporally focused SRL. This study con-

tributes to the understanding of how certain analytic methods can provide insights into the dynamics

of self-regulation; specifically how they provide insights not possible with conventional statistical

methods. In summary, this thesis provides the promise of theoretically-grounded insights based on

a large scale analysis of digital trace data.
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1 Introduction

John, that is the least of your worries...

— Dragan Gašević, General Wisdom

D IGITAL technology in now integral to the design and delivery of education at all levels. Whether

these digital resources exist to support face-to-face teaching, blended environments, or com-

plete online platforms, their impact is manifold. The affordances of technology provide learning

designers with the tools to create innovative content, and means of engaging the needs of learners

who seek a more dynamic form of education. Critically, it is shaping the ways in which students

engage with their learning, and how they manage the learning resources available to them. A key

outcome of this is the digital imprint students leave as they navigate the various learning man-

agement systems (LMSs) that underpin modern education. The data generated from such systems

have provided educational researchers with a wealth of opportunities to examine the way in which

students navigate their learning resources, and has driven the rise of learning analytics (LA) as a

developing field of research (Knight & Buckingham Shum, 2017). This rise has seen the exploration

of new ways to research learning and teaching (Viberg et al., 2018), and the re-positioning of ed-

ucational theories in data-driven contexts (e.g., Winne et al. (2010), Winne and Hadwin (2013),

Järvelä et al. (2013)). One theoretical perspective that has enjoyed a particular increase in focus is

self-regulated learning (SRL) (Roll & Winne, 2015).

SRL is predicated on the notion that students have agency over their own learning; they have the

capacity to use their own meta-cognitive and cognitive skills to reach their learning goals, making

use of educational resources, inherent feedback mechanisms, and internal judgement throughout

the process (Winne & Perry, 2000; Zimmerman, 2000). Learning resources have grown in sophis-

tication and, with a nod to the constructivist learning theories (Piaget, 1972), this has resulted in

recognition of the shift of the shared responsibility of learning from the teacher to the student. For

example, consider a student engaging in goal setting and planning at the beginning of an assign-

ment, undertaking and monitoring the status of a key task, then evaluating the outcome before

revisiting and re-planning; we view this as a cycle of SRL. Theoreticians of SRL agree that self-
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1. INTRODUCTION

regulated learners tend to be more effective than their passive peers (Pintrich & de Groot, 1990;

Zimmerman, 1989) and it is incumbent on the LA community to explore ways of analysing and

measuring SRL with a view to supporting learners as they navigate it. SRL theorists—Winne and

Hadwin (1998), Zimmerman (2000), Pintrich (2000), and Boekaerts (1996)— have all developed

their models through iterations of empirical testing and literature synthesis; the use of such models

answers the call, articulated by Gašević et al. (2015), that LA research should always have a strong

basis in recognised theories of learning. Conceptually, SRL can be viewed from two perspectives: i)

as a set of learner characteristics or traits, as emphasised in the Efklides (2011) model, and; ii) as

a strategy-driven cyclical process, as emphasised by Winne and Perry (2000).

The latter view positions SRL as an ongoing process which unfolds and develops over time. In

this temporal context, Panadero (2017) highlights a key factor; all of the major models are defined

by thematic variations of the same fundamental cycle of SRL: i) a preparatory phase, ii) a perfor-

mance phase, and iii) an appraisal phase. This conceptualisation directs a focus onto the dynamics

of SRL in terms of order, sequence and temporality. In acknowledging the temporal dimension of

SRL, researchers are bound to accept a change in methodological viewpoint. A large section of

quantitative LA research is underpinned by statistical modelling for data analysis and discovery. In-

deed, many of these studies, (e.g., Paans et al. (2019), and Greene et al. (2019)) provide critical

insights into SRL. This notwithstanding, an opinion suggests that this variable-centered view, as typ-

ified by statistical analysis, imposes ontological limitations in temporally focused studies (Reimann,

2009). In short, how do we talk about the way in which learners move between and interact with

the various elements and artefacts in a modern educational environment? How do we measure it?

This, in itself, requires a fundamental shift in perspective. For example, statistical analysis could

indicate levels of relative engagement in learning activities, such as planning, engagement and re-

flection in groups of learners. This would not, however, provide insights into the likely sequences

in which these activities were tackled, or how closely these activities happened together in time.

These types of temporal and sequential dimensions have synergy with the notion of learning as a

fluid and semi-cyclical process. Molenaar (2014) recognised the paradigmatic shift implicit in this

notion and highlights the need for common understanding of how temporal dimensions can inform

a research narrative and an understanding of the appropriate methods to analyse these dimensions.

Despite the increasing conceptual importance of the temporal dimensions of SRL, there is no

systematic treatment of the research in this area. SRL as a trait and as a process is a key concept

in learning and teaching theory that has gained enormous traction, and the number of SRL studies

is testament to its importance. More telling is the number of SRL systematic reviews of literature;

Devolder et al. (2012), Wong et al. (2019), and Cerón et al., 2021, are just three examples of four-

teen reviews undertaken in recent years (see Chapter two). Given that researchers are recognising

the increasing importance of the notion that learning is a process that unfolds in sequences over

time (Molenaar, 2014; Reimann, 2009), the work by Knight et al. (2017) and Chen et al. (2018)

2



1. INTRODUCTION

represents a significant step in furthering the cause of temporally focused LA. The Knight and Chen

journal collections provide compelling reasons to consider the temporal dimension, and this dimen-

sion synergises strongly with SRL (Butler & Winne, 1995; Winne, 2014). Despite this, there are

no published systematic reviews of literature in temporally focused LA, and, more specifically, SRL

in the context of time, sequence, and order. This is a significant research gap, and one which this

thesis aims to address in order to provide a comprehensive empirical context for researchers hoping

to further this important stream of research.

Process analytic methods have been deployed in many studies to measure the dynamics of

learner behaviours, but the results have been variable, and subject to the nuances of data collec-

tion and curation methods. If we accept Reimann’s view that variable-centric, statistical measures

have ontological limitations in this context (2009); then it follows that the temporal and sequential

dimensions of SRL demand explicit consideration of methods to measure them. With this in mind,

we argue that viewing this dimension through the lens of frequency, time, and probability, has great

promise. Although frequency of learner engagement with a particular action (or action sequence)

is dimensionally limited, an additional measure of transition frequency between actions can pro-

vide a clearer view of the sequential nature of the inherent relationship. In this context, time (in

its manifestation as a measure of duration) can also be seen to articulate a view of sequentiality

(Ahmad Uzir et al., 2019). Winne (2010), in his conceptualisation of SRL as a sequence of events,

provides compelling reasons for the use of probability to articulate likely sequences. We argue that

all such associative measures provide the promise of articulating the dynamics of SRL that cannot be

achieved by using aggregated frequency measures. This richness can be further augmented when

sample groups are delineated by characterisations, derived from supervised or unsupervised meth-

ods (Jovanović et al., 2017). We argue that although process analytic methods have been explored

with some success in LA research, their interpretation has been rarely systematic. This is not an overt

criticism, but an acknowledgement that many of these studies represented valuable explorations of

novel methods, and exhaustive metric interpretation was not always a priority (e.g., Bannert et al.,

2014; Sonnenberg and Bannert, 2015). We further argue that, in context of the study of SRL and its

related dimensions, process analytic research is not as mature as statistical analytic research. Up to

this point, LA is dominated by statistical analytics which do not provide the dimensional insights to

reflect the true dynamics of learning. This represents a methodological gap which this thesis seeks

to address, as, we argue, the insights derived from temporally focused process analytics can more

authentically inform learning design and learning interventions.

In terms of study data collection, the choice of self-report or digital trace data collection is key.

Process analytic methods have been used in SRL research, based on self-report data collection, with

some success (e.g., Heirweg et al. (2020), Engelmann and Bannert (2021)). Whilst these provided

rich insights, the veracity of self-report capture, for example, has been called into question by Winne

and Jamieson-Noel (2002), who uncovered disparities between students’ reporting of their own

3



1. INTRODUCTION

study tactics and their actual behaviours; students tended to demonstrate a positive bias in their self-

perception of achievements. Bjork et al. (2013) also detected evidence of faulty models of learning

and recall. Critically, Zhou and Winne (2012) reported on a study in which self-reported perceptions

of goal orientation correlated more weakly than trace measures. In the context of this thesis, these

are key motivations for exploring the promise of analysing SRL processes through the capture of

learner trace data, as extracted from authentic digital learning platforms. More importantly, the

promise of producing analytical systems that have relevance in authentic settings is something that

cannot come directly from experimental studies.

It is critically important to embed LA process analytics in recognised models of learning to make

them meaningful and valid. Gašević et al. (2015) emphasised this point in relation to broader LA

research, but it takes on a critical aspect in relation to SRL, where a number of theoretical models

have been developed and extensively tested (Pintrich, 2000; Winne & Hadwin, 1998; Zimmerman,

2000). Trace data are normally captured at micro level, which relates to the atomic actions that are

initiated when a learner interacts with any aspect of the LMS; clicking on course materials, watch-

ing videos, or accessing a dashboard, could be examples of this. SRL models are articulated at the

macro level (Molenaar, 2014); planning or preparing, monitoring, or reflection, could be examples

of this. This necessitates the use of some method to code micro-level action sequences to recog-

nised macro constructs of SRL. This is challenging and, whilst the framing of such analyses in SRL

coding frameworks has been well researched using self-report instruments and discourse-based col-

lection methods (e.g., Greene and Azevedo (2009), Bannert et al. (2014)), very little such work has

been undertaken using trace data. Building on our argument in the previous paragraph, trace data

collection promises an unobtrusive and authentic capture of learner behaviour, and the dearth of

SRL-framed trace data studies represents a gap which this thesis aims to address. The SRL trace

data studies by, for example, Malmberg et al. (2014) and Siadaty et al. (2016), are valuable but

cannot be truly construed as authentic or unobtrusive. We argue that the capture of SRL behaviours

in such settings is an important step in the pursuit of impactful SRL research. Building on our ear-

lier process analytic work, we perceive the need for a cohesive framework of methods to facilitate

the transformation of authentic trace data, using a coding system based on a recognised model of

SRL, and a way of analysing the temporal and sequential dynamics of the captured SRL processes.

We argue that without embedding a theoretical model or framework, analysis of SRL is contextual

and subjective. No technique currently exists to align authentic trace data to equivalent SRL pro-

cesses, which is what must happen to push SRL research forward. One key outcome is the potential

generation of a set of SRL frameworks that facilitate a transfer of analytic methods across different

LMSs.

The systematic comparison and combination of analytic methods is one which brings value, but

there are limited examples that deployed such combinations in the analysis of SRL trace data. To

properly assess the available analytic methods, a systematic comparison is key. We know that com-
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1. INTRODUCTION

bining analytic methods can provide richer outcomes than relying on a single method (e.g., Ahmad

Uzir et al. (2020)). A key weakness around single-metric interpretation is the notion of scale. Using

an absolute measure of frequency or duration as a metric, may mean that researchers may lose its

value in a relative sense. Conversely, when relative scales, such as probability, are employed, the

loss of absolute scale may be deceptive. To alleviate this, we argue that the combination of analytic

methods, and the metrics they generate, has the promise of providing dimensional insights into

SRL. As yet, no such assessment of this, and other issues, has been systematically addressed. In

addressing this gap, we hope to facilitate a more informed use of process analytic metrics (in com-

bination or otherwise) than currently exists. The consolidation of analytic methods has implications

for the quantitative interpretation of SRL processes, and the broader qualitative interpretation of

SRL behaviours. We suggest that the use of process analytic methods should be subject to explicit

and considered assessment, but the means to do this is currently unsupported by any systematic

overviews of the methods, the metrics they provide, and their importance in context of SRL. This

is a gap this thesis seeks to address. Building on this theme, we believe that rich insights can be

derived from the combination of certain process analytic metrics.

Different process analytic methods have strengths and weaknesses that are not routinely dis-

cussed when deployed in studies. Here we focus on the systematic assessment of these methods

and their metrics. We want researchers to more explicitly consider which methods/algorithms they

use, and be creative in combining them, or even designing new ones. This, we argue, will benefit

temporally focused SRL research, going forward.

A key methodological decision is the choice of analytic method to model and visualise the results.

In the four applied studies undertaken to support this thesis, two methods are utilised. Firstly,

process mining (PM) is an event-based method that derives sequential and temporal analyses from

log data files. Taking event log files as its input, process mining utilises discovery algorithms which

allow the identification of common logical arrangements of logged event classes in a temporal and

sequential space (van der Aalst, 2016). Although it was conceived in commercial and industrial

settings, it is steadily gaining traction in LA research circles. Secondly, epistemic network analysis

(ENA) is an analytic technique that positions events in a network space and emphasises temporal

co-occurrence, as opposed to the sequential association emphasised in process mining. Connections

are established through relative weighting, and statistical techniques are employed to compare the

salient properties of networks generated (Shaffer et al., 2016). In the broader area of temporally

focused SRL, other methods, for example, transition graphs, lag sequential analysis, and hidden

Markov models, are employed. All of these methods promise a view of SRL dynamics that cannot

truly be realised using conventional frequency measures and statistics, and combining them provides

the prospect of richer insights into SRL. We use these analytical methods to aid the discovery of

SRL processes from trace data origins, and explore the promise of comparing and combining their

outcomes.

5



1. INTRODUCTION

In summary, this thesis explores a corpus of research in the area of temporally focused SRL as

context for subsequent applied studies. First, we present a systematic review of literature that anal-

yses the findings of studies that explore SRL through the lenses of order and sequence, to provide

insights into the temporal dynamics of SRL. Second, the thesis demonstrates the use of a novel

process mining algorithm to analyse how certain temporal activity traits relate to academic perfor-

mance. Third, the thesis presents a methodological framework designed to embed our analyses in

a model of SRL. It comprises the use of: i) micro-level processing to transform raw trace data into

SRL processes; and ii) first order Markov models to explore the temporal associations between SRL

processes. Fourth, the thesis explores the deployment of multiple analytic methods to explore the

insights gained through a combined methodological perspective. Fifth, building on this theme, the

thesis presents a systematic analysis of four process mining algorithms, as deployed in the explo-

ration of common SRL event data.
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1. INTRODUCTION

1.1 Research goals and questions

The work presented in this thesis was conducted with four main research goals. The first was to

examine the empirical landscape of data-driven SRL in the context of sequence and temporality, and

articulate the collective outcomes of a body of research which focused on learner event dynamics,

as opposed to variable-centric correlative measures. SRL is a well-researched discipline, and it has

inspired a sizable number of reviews of literature; a testament to its importance in the area of

educational research. Despite this, and the increasing focus on temporal dimensions in LA and SRL

(Molenaar, 2014; Reimann, 2009), there has been no review of SRL in the context of a process

that unfolds over time. To address this gap, the thesis presents a systematic review of studies which

analyses SRL in this temporal and sequential context, the methods used, and the insights uncovered.

As such, the first research question is:

RESEARCH QUESTION 1:

To what extent has learning analytics research addressed the notion of self-regulated learn-

ing as a process that unfolds over time?

It is important to note that research question 1, although principally addressed by our system-

atic review of literature, has a key influence over the exploration of the remaining research ques-

tions. The second goal was to outline a way of providing novel, temporally focused insights into the

ways in which learners navigate various study modes, as extracted from trace data. We were moti-

vated to explore ways in which we could articulate the behaviours of contrasting groups of learners,

and, critically, the behavioural differences and commonalities between these groups, using event

or process-based (as opposed to variable-centric) analytic methods. As such, our second research

question is:

RESEARCH QUESTION 2:

How effectively can we measure the temporal dynamics of learning strategies in delineated

student groupings, using process analytic techniques?

Having established one novel method of analysing learner behaviours, the third goal was to

explore ways in which we could embed these temporally focused analyses in a theoretical model of

SRL. Inspired by the micro-level analytic process method developed by Greene and Azevedo (2009),

and deployed in an experimental trace data setting by Siadaty et al., 2016, we wanted to develop

an approach and a tool to automate the codification and transformation of raw log data into SRL

processes. Furthermore, we wanted to assess the efficacy of our process analytic techniques (used

to address research question 2) in uncovering insights from the newly generated SRL process data.

As such, our third research question is:

RESEARCH QUESTION 3:

7



1. INTRODUCTION

Table 1. Overview of the research questions by individual chapters.

Research questions

Chapter Title RQ 1 RQ 2 RQ 3 RQ 4

Chapter 2 Temporally focused Self-regulated Learning !

Chapter 3 Exploration of Temporality and Probability from
Trace Data

!

Chapter 4 Embedding Trace data in SRL ! !

Chapter 5 Comparing Discovery Algorithms ! ! !

Chapter 6 Comparing and Combining Process Mining Metrics ! ! !

To what extent can we develop a framework to ground temporally focused analysis of learn-

ing in a theoretical model of self-regulated learning?

In SRL research, the use of multiple analytic methods is less common, but can be seen to provide

effective results (e.g., Matcha, Gašević, Ahmad Uzir, Jovanović, Pardo, et al. (2019), Ahmad Uzir

et al. (2020)). Therefore, the fourth goal was to assess the relative efficacy of a number of process

analytic methods, using a common set of SRL process data, and to explore the potential of combining

these methods and ascertain if the combination provides a richer, more dimensional view of SRL.

As such, our fourth and final research question is:

RESEARCH QUESTION 4:

To what extent can we combine analytic methods to further explore self-regulated learning

from a perspective of temporality and sequence?

1.2 Methodology

The research presented in this thesis is underpinned by a systematic review of literature and four

trace data-driven studies. The studies made use of three datasets taken from two LMSs. Two of

the datasets come from what we term as a ’bespoke’ LMS, meaning that it was not commercially

available at the time of the study. It should be stressed that we view this LMS as entirely authentic

in the sense that it operated with the full functionality of a commercial LMS, and generated genuine

learner engagement data. The third dataset was generated from a Moodle LMS (see Table 2).

These data were processed, quantitatively analysed, qualitatively interpreted, using a variety

of analytic methods. In this section, we outline the learning analytics methods used in this thesis

mapped to research questions 2 to 4 (see Table 3).

To address research question one (RQ1), we explored the state of the art of data-driven SRL

research that emphasises the methodological importance of temporality and sequence, as opposed to

conventional statistical analysis. To capture the relevant literature for this study, we targeted seven

journal databases using various keyword searches based around self-regulated learning, process and

sequence analyses, and temporality. The final pass provided a corpus of 53 papers.

8
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Table 2. Summary of the datasets used in the thesis

Dataset Course Learning
Modalities

Year Course
Duration

Total
Students

Chapters

Dataset
1

Computer
Engineering

Flipped
Classroom
(Bespoke

LMS)

2014 13 Weeks 290 Chapter three
Chapter four

Dataset
2

Computer
Engineering

Flipped
Classroom
(Bespoke

LMS)

2014 — 2016 13 Weeks 239 Chapter five

Dataset
3

Engineering
Mobile Apps

Flipped
Classroom
(Moodle)

2019 13 Weeks 726 Chapter six

Table 3. Analytical methods mapped to chapters and research questions

Chapter RQ

Delineation SRL transformation Analytic discovery method

3 2 Unsupervised n/a PM (FOMM)
4 2, 3 Unsupervised Micro-level Processing PM (FOMM)
5 2, 3, 4 Performance Micro-level Processing PM (FOMM, BupaR Time, BupaR

Frequency), ENA
6 2, 3, 4 Content Access Micro-level Processing PM (FOMM, Fuzzy Miner, Induc-

tive Miner, Heuristics Miner)

To address research question two (RQ2), we used a variety of process mining algorithms across

four studies, and in one study, epistemic network analysis (see Table 3). We used a process mining

algorithm based on first order Markov models in all of our studies, that is, pMineR (Gatta, Lenkow-

icz, et al., 2017). In the studies reported on in Chapter three and Chapter four, we used pMineR

solely as our process discovery method. This provided us with a transition probabilistic view of

learner engagement in the context of order of temporality. In studies reported on in Chapter five

and Chapter six, we employed a number of process mining algorithms, as well as epistemic network

analysis, to provide a comparative methodological view. In two of the studies (Chapter three and

Chapter four), we analysed and compared groups of learners that had been previously clustered in a

study undertaken by Jovanović et al. (2017). In one study (Chapter five), we extracted the top and

bottom deciles of learners, based on assessment performance. In three of the studies, we included

basic statistical analyses to explore its limitations, but also to assess it value in complementing our

process analyses.

To address research question three (RQ3), we deployed micro-level process analysis as means

of framing our research in a theoretical model of SRL, forcing the articulation of raw trace data

into SRL sequences. This pre-processing method was designed by Greene and Azevedo (2009)

and used mainly in think-aloud studies until Siadaty et al. (2016) deployed it using the trace data

generated from the experimental Learn-B knowledge system (as opposed to an authentic LMS). We

developed an approach that can transform raw learner data from authentic LMS settings into SRL

micro-processes, using a combination of regular expressions and an SRL pattern library. We termed

9



1. INTRODUCTION

the process, “Trace-SRL”, and deployed it in the studies reported on in Chapter four, Chapter five,

and Chapter six.

To address research question four (RQ4), we deployed two types of methodological comparisons.

In the study reported on in Chapter five, we deployed the Trace-SRL framework on a common

dataset, and then analysed the resultant data using: i) simple frequency measures; ii) epistemic

network analysis (Shaffer et al., 2016); iii) frequency and time-based process mining, using the

BupaR tool (Janssenswillen et al., 2019); and iv) stochastic process mining, using the first order

Markov models generated from the pMineR tool (Gatta, Lenkowicz, et al., 2017). This allowed us to

articulate outcomes individually from each method, but, more importantly, combine the outcomes

in a qualitative exercise, which provided a richer set of outcomes. In the study reported on in

Chapter six, using another common trace-dataset, we compared the outcomes from four process

mining algorithms: i) Inductive Miner; ii) Heuristics Miner; iii) Fuzzy Miner; and iv) pMineR.

We also conceptualised a combination of the metrics from two of these algorithms to provide an

improved interpretation of temporal and sequential relations of SRL processes.

1.3 Thesis structure and overview

To address the four research questions, we organized the thesis into five individual chapters, as

shown in Table 1. Each chapter focuses on one or more research questions and includes one peer-

reviewed publication that constitutes the core of the chapter. We also provided a short overview and

summary to each included publication to describe how the publication fits into the overall structure

and the topic of the thesis, and contributes to its research goals.

1.3.1 Overview of chapter two: “Temporally focused Self-regulated Learning” (RQ1)

The study of SRL is now firmly established within the learning analytics community. This is mo-

tivated, in part, by the notion that students who display a mastery of SRL tend to perform better

than their passive counterparts. The articulation and measurement of the temporal and sequential

dimensions of SRL has gained traction in recent years, yet, despite this increased focus, there has

been limited attempts to provide a cohesive analysis of this critical research area.

Research contributions:

• We presented a systematic literature review of studies that report on data-driven, temporally

focused SRL analyses.

• We highlighted the key challenges that face researchers that seek to explore temporally fo-

cused SRL.

• We categorised these challenges to form a cohesive framework of considerations for future

and ongoing research in this area.

Research output:
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1. Saint, J., Fan, Y., Gašević, D., & Pardo, A. (2021). Temporally focused Self-regulated Learning:

A Systematic Review of Literature: A journal article, submitted to the Educational Psychology

Review, and currently under review. This is a systematic review of literature of studies that

explore temporally focused SRL.

1.3.2 Overview of chapter three: “Exploration of Temporality and Probability from Trace

Data” (RQ2)

In order to capture the temporal and sequential dynamics of learning strategy, researchers need

to seek methods beyond the paradigm of count-based, variable-centric statistical analyses. The

LA community has started to explore the insights provided by learner event logs from online and

blended settings. The use of process mining is increasing in popularity, although its deployment

and interpretation is subject to much variation depending on the algorithm and metrics used, as

articulated in the systematic review of literature incorporated in Chapter two. In this chapter, we

demonstrated the benefits of using stochastic process mining as a means of unlocking insights into

optimal and less optimal learner behaviours.

Research contributions:

• We presented a novel combination of unsupervised and process mining methods to unlock

insights into learning strategies in blended learning settings.

• We demonstrated that rich insights into learner engagement can be derived from a probability-

focused process mining method, using first order Markov models.

• We demonstrated that this richness can be increased by the direct comparison of the transition

metrics derived using this method (i.e., transition probabilities), and brings a more dimen-

sional view than is possible with statistical measures alone.

• We demonstrated interpretable differences between higher and lower performing student

groups.

Research output:

1. Saint, J., Gašević, D., & Pardo, A. (2018). Detecting Learning Strategies Through Process

Mining. In V. Pammer-Schindler, M. Pérez-Sanagustín, H. Drachsler, R. Elferink, & M. Scheffel

(Eds.), Lifelong Technology-Enhanced Learning (pp. 385–398). Springer International Publish-

ing. https://doi.org/10.1007/978-3-319-98572-5_29: A full conference paper that was

presented at the 2018 ECTEL conference. The supplementary material for this paper can be

found in Appendix A.

1.3.3 Overview of chapter four: “Embedding Trace data in SRL” (RQ2, RQ3)

Researchers who deal with learner trace data are faced with a number of challenges in providing a

coherent and consistent view of what the trace data say about the learner engagement. The framing

of this engagement in the context of recognised theories of learning, in particular self-regulated

11
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learning, add another dimension to the challenge. In this chapter, we outlined and deployed a

framework of methods that comprises: 1) the strategic clustering of learner types; 2) the use of

micro-level processing to transform raw trace data into SRL processes; and 3) the use of a novel

process mining algorithm to explore the generated SRL processes. The aim of this framework is to

facilitate the analysis and articulation of SRL through the lenses of sequence and temporality.

Research contributions:

• We presented a novel framework for transforming authentic trace data into SRL processes,

that is, Trace-SRL.

• We demonstrated that the temporal and sequential dynamics of SRL can be successfully inter-

preted from probabilistic process analytics.

• Our results showed that more successful students regularly engage in a higher number of

optimal SRL behaviors than their less successful counterparts.

Research output:

1. Saint, J., Whitelock-Wainwright, A., Gašević, D., & Pardo, A. (2020). Trace-SRL: A Framework

for Analysis of Microlevel Processes of Self-Regulated Learning From Trace Data [Conference

Name: IEEE Transactions on Learning Technologies]. IEEE Transactions on Learning Technolo-

gies, 13(4), 861–877. https://doi.org/10.1109/TLT.2020.3027496: A journal article that

was published in IEEE Transactions on Learning Technologies in 2020. The supplementary

material for this paper can be found in Appendix B.

1.3.4 Overview of chapter five: “Comparing Discovery Algorithms” (RQ2, RQ3, RQ4)

This chapter begins our exploration into the use of multiple analytic methods to explore SRL. Build-

ing on the methodological and theoretical work undertaken in the previous studies, we employed

the Trace-SRL micro-level process method to provide the SRL process data that we subsequently ex-

plored using: i) simple frequency measures; ii) epistemic network analysis; iii) time-focused process

mining; and iv) stochastic process mining. Moreover, we explored the possibility of consolidating

the outcomes from these methods.

Research contributions:

• We further tested the Trace-SRL framework conceived in the previous chapter.

• We demonstrated, through the use of a common dataset, how the ontological limitations of

frequency-based methods can be overcome by the use of temporally focused methods.

• Building on the previous point, we demonstrated how the use of multiple, temporally focused

analytic methods can provide rich insights into the dynamics of SRL.

• We found that high performing learners employed more optimal SRL behaviours than their

low performing counterparts, in context of the dynamic relations between SRL processes.

Research output:

1. Saint, J., Gašević, D., Matcha, W., Ahmad Uzir, N., & Pardo, A. (2020). Combining analytic
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methods to unlock sequential and temporal patterns of self-regulated learning. Proceedings of

the Tenth International Conference on Learning Analytics & Knowledge, 402–411. https://doi.o

rg/10.1145/3375462.3375487: A full conference paper that was presented at the 2020 LAK

conference.

1.3.5 Overview of chapter six: “Comparing and Combining Process Mining Metrics” (RQ2,

RQ3, RQ4)

This chapter completes our exploration into the use of multiple analytic methods to explore SRL.

More specifically, we explored the insights derived from the use of four process mining algorithms in

the analysis of a common dataset derived from the Trace-SRL framework conceived in Chapter four.

We explored the data using: i) Heuristics Miner, ii) Inductive Miner, iii) Fuzzy Miner, and iv) pMineR.

Research contributions:

• We provided evidence of the utility of the Trace-SRL framework on data from a new LMS

source.

• We systematically demonstrated that Fuzzy Miner and pMineR offered better insights into SRL

than the other two algorithms.

• We determined that a combination of metrics produced by several algorithms improved inter-

pretation of temporal and sequential relations between SRL processes.

Research output:

1. Saint, J., Fan, Y., Singh, S., Gasevic, D., & Pardo, A. (2021). Using process mining to analyse

self-regulated learning: A systematic analysis of four algorithms. LAK21: 11th International

Learning Analytics and Knowledge Conference, 333–343. https://doi.org/10.1145/34481

39.3448171: A full conference paper that was presented at the 2021 LAK conference. The

supplementary material for this paper can be found in Appendix C.

1.3.6 Overview of chapter seven: “Conclusions and Future Directions”

In the final chapter, we examine the impact of the present work
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2 Temporally focused Self-regulated Learning

The events in our lives happen in a sequence in time, but in their

significance to ourselves they find their own order...it is the continuous

thread of revelation.
— Eudora Welty, One Writer’s Beginnings

2.1 Introduction

T HERE is a sense that traditional, monologic learning provisions, such as large face-to-face lec-

tures, have a lesser place in modern education, and that more authentic learning experiences

are found in mobilising students to more actively manage their own knowledge-building (Paris &

Paris, 2001; Zimmerman, 1986). As such, the study of SRL is now firmly established and has a

prominent place within the learning analytics community (Winne, 2017). This is motivated by the

notion that students who seek to take active control of their learning tend to perform better than

their passive counterparts (Pintrich & de Groot, 1990; Zimmerman, 1989). As such, the exploration

of how students engage with self-regulatory activities is of key importance to researchers who seek

to inform and improve the design and deployment of learning resources. Within this empirical con-

text, two broad conceptions exist: i) SRL as a characteristic or a trait of a learner; and ii) SRL as an

ongoing cyclical process in which learners engage over time (Winne & Perry, 2000). It is the latter

conception that drives this chapter and, indeed, the entire thesis.

The concept of learning as a sequence of events unfolding over time is one which has inspired

researchers, such as Reimann (2009) and Molenaar (2014), to explore the conceptual and method-

ological challenges around its measurement in temporal contexts. Reimann (2009), in particular,

highlighted the ontological limitations of commonly used, variable-centric analyses. Knight et al.

(2017) and Chen et al. (2018) contemplated these challenges, but also the opportunities for the

development of temporally focused LA, in their collective curation of ten empirical studies. It is

in the thematic overlap between SRL and temporality that this chapter is conceived. The ongoing

interest in SRL is demonstrated clearly by the number of studies to which it is dedicated and also
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by the number of literature reviews it has generated. We are unaware of any significant temporally

focused reviews of literature and certainly none that focus on SRL as it manifests through the di-

mensions of sequence and time. As such, we present a systematic literature review to investigate

research question one (RQ1), that is, To what extent has Learning Analytics research addressed the

notion of self-regulated learning as a process that unfolds over time?

2.1.1 Chapter overview

The main objective of this chapter is to review the corpus of research into data-driven, temporally-

aligned SRL, focusing on methodological aspects, such as data collection, data transformation, an-

alytics platforms, as well as conceptual aspects, such as the extent to which theoretical models of

(self-regulated) learning is deployed. Ultimately, we seek to summarise the key study findings and

identify a clear path to furthering research in this area.

This review is underpinned by a semi-iterative process of keyword searching of seven journal

databases, which resulted in the inclusion of 53 papers, after further filtering based on manuscript

type, temporal focus, and SRL linkage. Based largely on a codification framework (outlined in the

paper), we explored the following research questions:

1. What types of data sources/instruments are used in temporal data analysis of SRL and related

dimensions?

2. What theoretical models of SRL do researchers use to inform interpretive decisions?

3. What types of temporal analysis/discovery methods are used?

4. What type of phenomena or processes are modelled and what type of insights do they provide?

5. To what extent does temporal analysis inform current models of SRL?

This allowed us to provide a comprehensive overview of research into data-driven temporally

focused SRL. It should be noted that although the studies reported on in the remaining chapters of

this thesis (3 to 6) make sole use of trace-data collection, we did not seek to impose this method-

ological restriction on our review of literature. This would have unnecessarily narrowed the scope

of our systematic research, and eliminated a sizable number of critically important studies from the

resultant corpus.

The outcomes of our analysis can be broadly categorised into the following:

• Methodological Considerations, pertaining to decisions around the method of data collection,

data pre-processing/transformation, and the analytic method(s) used to explore and visualise

the key learner behaviours. Also pertinent are decisions around combining these methods, be

they data collection, data exploration and visualisation, or both.

• Theoretical Considerations, pertaining to the extent to which models of SRL are deployed to

underpin the research presented, and how robustly (if at all) they inform the methodological
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decisions discussed above. As above, key decisions around using a single model, a consolida-

tion of elements of a model, or related dimensions thereof, are relevant here.

• Validity Considerations, following on from the previous point, to what extent does the combi-

nation of methodological and theoretical decisions highlighted above lead to a sense of validity

in the findings, and to what extent can some sort of triangulation mechanism be deployed to

support validity.

• Temporal Considerations, pertaining to the conceptualisation and analysis of the temporal and

sequential dimensions of SRL and how the outcomes of these analyses can be of benefit to

researchers of SRL.

2.2 Publication: Temporally focused Self-regulated Learning: a Systematic

Review of Literature

The following section includes the verbatim copy of the following publication:

Saint, J., Fan, Y., Gašević, D., & Pardo, A. (2021). Temporally focused Self-regulated

Learning: A Systematic Review of Literature
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ABSTRACT
We present a systematic literature review of into data-driven self-regulated learning (SRL) that
emphasises the methodological importance of temporality and sequence, as opposed to conven-
tional statistical analysis. Researchers seem unanimous in the view of the importance of SRL
in modern online and blended educational settings; this is borne out by number of reviews of
literature on the subject. There has, as yet been no systematic treatment of SRL in the context
of its conceptualisation as a phenomenon that unfolds in sequences over time. To address this
limitation, this review explores the corpus of work (n=53) in which SRL and its related dimen-
sions are analysed through the lenses of temporality, sequence and order. The results show that,
in the pursuit of validity and impact, key decisions need to be addressed in regard to theoreti-
cal grounding, data collection, and analytic methods. Based on these outcomes, we propose a
framework of directives and questions to aid researchers who want to push forward the field.

1. Introduction
The evolution of digital technology has benefited the education sector in many ways, providing its stakeholders—

students, teachers, academic managers and others—with a rich set of tools to aid the capture, delivery, and construction
of knowledge. Online and blended environments provide learners with sophisticated educational resources. In this
context, the shared responsibility of learning has seen a shift from teacher to student. In truth, the focus on student-
driven, constructivist learning predates digitally facilitated mass education (Schunk and Greene, 2018). Nonetheless,
the affordances of technology have focused educational research on the meta-cognitive, cognitive and motivational
attributes of students who take more active control of their own learning. The modelling of these attributes, and
the learning behaviours they inform, is articulated in the area of self-regulated learning (SRL) and its derivations:
co-regulated learning (CoRL) and socially-shared regulation of learning (SSRL) (Hadwin et al., 2017). Educational
researchers have long been convinced of the value of self-regulation (Zimmerman, 1986; Winne and Hadwin, 1998;
Pintrich, 2000), which has given rise to the generation and development of several models of SRL (Panadero, 2017).

In applying the models of SRL, researchers are faced with methodological decisions around data collection, pro-
cessing, and analysis. These decisions are increasingly informed by the notion that SRL, and learning in general, is
a dynamic and recursive process that unfolds in steps over time (Butler and Winne, 1995). This notion is gaining
increased traction as researchers seek to articulate learning in the context of sequence and time. Given this context,
Reimann (2009) argues that temporality should not only encompass time-on-task, frequency and duration, but also
the order of learning events. Molenaar (2014) builds on this theme and, citing Bannert et al. (2014), establishes a link
between successful SRL and the cyclical ordering of strategies as they are played out over time. Arguably, this mode of
sequential dynamics could not be articulated using traditional count-based statistical methods. Nonetheless, as Mole-
naar (2014) additionally states, although this temporal view of learning is conceptually innate, its operationalisation
in empirical settings entails a shift beyond the traditional quantitative research paradigm.
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In an effort to explore this shift beyond variable-centric statistical constructs, a body of research has grown which
encompasses event and discourse-based analytical methods, such as process mining (PM), Markov modelling, epis-
temic network analysis (ENA), lag sequential analysis (LSA), and other temporally focused discovery techniques. To
that end, this systematic review of literature seeks to provide an overview and analysis of the corpus of research that
addresses SRL in the context of temporality and sequence.

2. Background
2.1. Self-Regulated Learning and Related Dimensions

Since Zimmerman first posited the potential of SRL (Zimmerman, 1986), the development of models of learning
within this context has gathered at pace and evolved to form a comprehensive ecosystem of research. The concept
of SRL is predicated on that notion that learners with a specific learning goal, have agency over their path to that
goal, given a set of external and internal conditions. Such goals may be micro or macro in scale—the completion of a
multiple choice test, or the authoring of a dissertation—and, as such, the ultimate completion of the taskmay be a single
SRL cycle, or an ongoing sequence of cycles and sub-cycles. In this sense, SRL is viewed as an ongoing process which
unfolds and develops over time (Winne and Perry, 2000; Azevedo et al., 2010). The major SRL theorists—Zimmerman
(2000), Pintrich (2000), Winne and Hadwin (1998), and Boekaerts (1996)—have all developed multiple versions of
their models through iterations of empirical testing. As Panadero (2017) highlighted, these models are defined by
thematic variations of the same fundamental cyclic framework of SRL: i) a preparatory phase; ii) a performance
phase; and iii) an appraisal phase. The latest iteration of Zimmerman’s model (2000) is a clear manifestation of the
basic three-part cycle, comprising phases: i) forethought; ii) performance; and iii) self-reflection. Whilst cognitive
and strategic elements are implicit in the model, the phase sub-processes focus on aspects of motivation, judgement
and reflection. Pintrich (2000) posited a similar cycle but in four phases: i) forethought, planning and activation; ii)
monitoring; iii) control; and iv) reaction and reflection. Panadero’s alignment of these phases with the fundamental
SRL cycle (Panadero, 2017) is, perhaps, a little simplistic, but it serves to underpin the common topology of all the
models. Boekaerts (2011) articulated a similar three-part phasic cycle, but in the context of two strands, termed “dual
processing”: i) (meta)cognitive elements which inform learning intention and growth; and ii) affective and emotional
elements which inform the learner’s sense of self and well-being. There is a clear emphasis on the importance of
both processes as defined elements, but also as interlinked drivers (Boekaerts, 2011). The Winne and Hadwin (1998)
model provided a sophisticated take on the cycle, with a strong focus on meta-cognition in learning tactics. As opposed
to Zimmerman (2000), Winne’s phases are less rigidly aligned to a mono-directional cycle, being positioned in a
more fluid recursive structure, known as COPES: i) Conditions; ii) Operations; iii) Products; iv) Evaluations; and
v) Standards. These facets are linked through internal and external pathways of feedback. The choice of model is
determined by the trajectory of the study in which the model is embedded—or more possibly, the trajectory of the
study is determined by the choice of model.

In truth, the extent to which these models are applied tends to vary, due to an assortment of drivers and constraints.
The relative novelty of the methods that fall inside the scope of this review mean that strict adherence to theoretical
models of learning is not always the primary focus. It would, therefore, be remiss to eliminate studies which at least
acknowledge the measure of certain dimensions of learning that could fall under the umbrella of SRL. Hence, this
review encapsulates studies that recognise the importance of SRL or its related dimensions, such as learning tactics
and strategies.
2.2. Analysing Process, Sequence and Temporality

The definition of SRL as a cyclical process that unfolds over time is well-established (Butler and Winne, 1995;
Molenaar, 2014). In acknowledging this dimension of SRL, researchers are bound to address the methodological
demands of process, sequence, and temporality. Quantitative learning analytics (LA) research is largely characterised
by the use of statistical models for data interrogation and discovery. Descriptive, inferential, and predictive analytic
methods occupy an empirical space supported by years of applied experimentation. As such, it is an obvious choice
for educational researchers who seek to position their outcomes on a bedrock of validity. Many studies use statistical
analysis to significant effect, and have genuinely enriched the LA community. Studies by, for example, Taub and
Azevedo (2016), Siadaty et al. (2016a), Paans et al. (2019), and Greene et al. (2019) all provided critical insights
into SRL—and temporality in some cases—using empirically solid statistical methods. Despite their value, a body of
opinion suggests use of statistical methods can impose ontological limitations on temporally focused studies (Reimann,
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2009; Knight et al., 2017; Chen et al., 2018a). Constructs formerly measured in terms of relative frequency are now
conceptualized as sequences of events that unfold in temporal space (Molenaar, 2014). In this context, the assertion
by Reimann (2009) that a variable-centered view, as typified by statistical analysis, is not as dimensionally rich as an
event-based view, is particularly apposite. As such, for those who do position learning in the context of sequence and
temporality, the choice of method requires a shift beyond the empirical safety of frequency-based statistical analysis.

Indeed, Molenaar (2014) recognised the importance of this paradigmatic shift, identifying these key aspects of
temporal analysis: i) a common understanding of different temporal dimensions and how this can inform the research
narrative; ii) an understanding of appropriate temporally focused methods; iii) an articulation of guidelines for the
segmentation of time; and iv) the design of a bridge between engagement data—typically micro in grain—and learning
model constructs, which tend to be defined at macro level. Building on this manifesto, Knight et al. (2017) and
Chen et al. (2018a) curated two groups of studies which sought to further the cause of temporal analysis. Chen et al.
(2018a) identify temporal analysis as: i) the frequency and lengths of engagement events; and ii) the sequential order of
engagement events. This shift in perspective has prompted the exploration of analytic techniques such as, for example,
process mining (PM), sequence mining (SM), graph theory, and epistemic network analysis (ENA). Such methods have
the promise to unlock temporally dynamic insights undetectable in frequency measures. This review seeks to capture
the scope of temporally and sequentially focused analyses of SRL and its related dimensions of learning.
2.3. Related Reviews of Literature

In data-driven educational research, the empirical corpus of SRL dwarfs that of temporal analysis, notwithstanding
the thematic overlap previously discussed. This is reflected in the number of published systematic literature reviews.
Devolder et al. (2012) explored the use of scaffolding in computer-based learning environments (CBLEs), deploying
an integrated model of SRL to assess its utilisation. Whilst not a meta-analysis in the strictest sense, it did provide a
qualitative summation of the efficacy of scaffolding in SRL. Broadbent and Poon (2015) produced a correlative meta-
analysis, based on nine SRL strategies, to assess the relationship of these strategies with academic outcomes; they noted
a positive correlation in all but three of the defined strategies. Brydges et al. (2015) explored the use of SRL in medical
simulation-based training, in the context of controlled interventions. They found that assisted SRL was not prevalent
in many of the studies in this area. Roth et al. (2016) focused on studies employing self-report measures, touching
on an important methodological choice for SRL researchers. Van Laer and Elen (2017) focused on SRL in blended
learning environments, identifying seven key attributes that were seen as significant in the context of effective SRL.
Garcia et al. (2018) and Araka et al. (2020) both explored SRL with a specific focus on e-learning tools and platforms.
Garcia et al. assessed the emerging use of these tools in relation to the taxonomy of SRL strategies first presented by
Zimmerman and Pons (1986), defining a granular comparison in context of the specific software used. Araka et al.
provided a more categorised view of e-learning tools and also the methods used. Lee et al. (2019) provided a specific
treatment of SRL in massive open online courses (MOOCs), positing that effective SRL arguably plays a greater role
in enhancing learning in pure online settings (as opposed to face-to-face or blended). Wong et al. (2019) assessed
SRL in MOOCs in context of support and scaffolding mechanisms, such as prompts, feedback, and other integrated
support systems. They concluded that factors—such as prior knowledge, gender, culture, and cognitive ability—play a
key role in the conceptualisation of SRL support systems. Pérez-Álvarez et al. (2018) provided a more specific review
of tool use in MOOCs, concluding that interactive visualisations and social comparison mechanisms positively effect
learner engagement. They also posited a lack of tools that recognise SRL strategy deployment. Cerón et al. (2021),
however, systematically analysed SRL strategy in their review of SRL in MOOCs, concluding that goal setting, help
seeking, time management, self-evaluation, and strategic planning, were the most prominent SRL strategies. Matcha
et al. (2020) analysed the consideration, or otherwise, of SRL in the design of learning analytics dashboards (LADs).
They established that SRL is poorly supported in many LADs and therefore meta-cognitive gains are severely limited.
Viberg et al. (2020) explored the importance of specific phases of Zimmerman’s model (2002), as realised in SRL
studies. Cuyvers et al. (2020) focused on SRL in professional settings, which they termed self-regulation of professional
learning (SRpL). They recognised the value of using SRL models from educational settings as a theoretical bases, but
that simple transference of such models ignores key facets of workplace learning. Most of these reviews focused on
improving our understanding of the theoretical perspective of SRL, such as how learners use tools, and how to provide
scaffolding, but focused less on the measurement and interpretation SRL in its temporal context.

The articles cited in the previous section on temporal analysis—Reimann (2009), Reimann et al. (2014), Molenaar
(2014), Knight et al. (2017), and Chen et al. (2018a)—combine to elicit a rallying call to the educational research
communities to explore the empirical landscape beyond the conventions of variable-centric statistical analysis. There
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are, nonetheless, no systematic reviews of literature which discreetly cover temporal analysis of SRL (at the time of
writing). Our systematic review of literature seeks to respond to the increasing interest in SRL in digital settings and to
answer the rallying call of Reimann (2009), Molenaar (2014), Knight et al. (2017), and Chen et al. (2018a). As such,
we present a systematic review of literature that analyses the findings of studies that explore SRL through the lenses
of temporality and sequence to provide insights into the dynamics of SRL.

More specifically, this review sought to answer the following research questions:
1. What types of data sources/instruments are used in temporal data analysis of SRL and related dimensions?
2. What theoretical models of SRL do researchers use to inform interpretive decisions based on temporal analysis

of learner data?
3. What types of temporal analysis/discovery methods are used in the research of SRL?
4. What type of phenomena or processes are modelled and what type of insights do they provide?
5. To what extent does temporal analysis inform the modelling of SRL?

3. Methodology
3.1. Search Strategy and Criteria

We used the guiding principles of the PRISMA framework (Moher et al., 2009) to inform the structure of this 
review. To capture the relevant literature for this study, we targeted seven journal databases using variations of the
following keyword string: (self-regulate* learning) AND (process OR sequence* OR sequential OR temporal*) AND 
(Analytic* OR Mining). The flow of the search over time can be seen in Figure 1 . We conducted four searches over 
three years in order to keep the the corpus refreshed. The first passes of each search produced 1105, 248, 205, and 118 
papers, going from the earliest search on the 31st May 2019 to latest on the 25th May 2021. After each of these search 
events, we imposed exclusion criteria on the resultant papers to remove short papers, studies which relied heavily or 
solely on traditional statistical methods, studies with weak connections to SRL, and those that did not actually report 
on an empirical study. The 72 remaining papers were further reduced in a final exclusion process; in this final pass, 
we removed duplicates and borderline studies, giving the final total of 53 papers.
3.2. Coding System

To answer the research questions 1 to 4, we mapped them to a set of coding categories, as can be seen in table 1. In 
conceiving the coding categories, we considered how the various dimensions aligned to the broad process of analysis 
for the types of studies in our target sample. RQ1 relates to the capture and curation of the study data. RQ2 relates to 
the theoretical underpinning of the analyses. RQ3 relates to the discovery and visualisation methods. RQ4 relates to
the nature and the outcomes of the captured phenomena. The mechanics of RQ5, which relates to the temporal nature 
of the analyses, could not be coded in any meaningful, without merely reflecting the methodological characteristics
represented.

To support RQ1, seven codes were employed: Participant make-up relates to the educational setting in which 
the learners operated. Only one study operated exclusively in professional settings (Siadaty et al., 2016b) but it should 
be noted that a number of studies —MOOCs in particular— could be undertaken by professionals as well as students.
Setting authenticity indicates whether the study setting was authentic, such as a conventional HE environment, or 
experimental, such as the learning lab utilised by Malmberg et al. (2021). System relates the central (generally 
digital) system used to support the delivery of the teaching and, in many cases, the collection of the study data. Whilst 
it is often both the delivery mechanism and a source for the study data collection, this is not always the case. Some 
papers, for example Bannert et al. (2014), employed an LMS but did not extract learner data from it, instead choosing 
a think-aloud method. In this context, the categorisation of System authenticity requires a nuanced view. The Data
collection method category can be broadly viewed in terms of digital trace data or self-report data (or combinations 
thereof). Multi-modal/multi-channel methods are also considered. The Data transformation category describes any
method used to configure or re-characterise the raw data into a  form appropriate for the needs of study, such as the 
micro-level processing method developed by Greene and Azevedo (2009) to translate learner utterances (captured using 
think-aloud) into recognised of SRL processes. The Sample size category is self-explanatory.

To support RQ2, two codes were employed: SRL designation indicates whether the study positions SRL as a 
key theoretical element, or focuses on certain dimensions (such as tactics or strategies). Leading on from this is the
Underpinning Model of SRL category, that indicates which of the major SRL models, discussed in section 2.1, were 
used in the study (if at all). This category also requires a nuanced view. Some studies aligned to a single model of
John Saint et al.: Preprint Page 4 of 30

2. TEMPORALLY FOCUSED SELF-REGULATED LEARNING

20



Temporal SRL Review of Literature

Figure 1: Systematic Literature Review Methodology

SRL, some utilised certain dimensions of SRL, and some combined dimensions from multiple models. In addition,
some studies used SRL frameworks to transform data and visualise SRL constructs, whilst others use it to categorise
learner group mastery of SRL (normally through questionnaire data). For others, SRL is more of a theoretical context
than a framework.

We employed a single code for RQ3, namely Discovery/Representation/Visualisation. This a key category as it
relates to the method deployed in analysing and visualising the analytical outcomes, and has key implications for the
nature and temporality of the phenomena that are modelled in the studies. It should be noted that a section of the
studies presented multiple methods for discovery and visualisation. In this review, we report on the methods that are
relevant to our scope. To clarify, a study may use Markov models and t-tests to measure some phenomena; in this case,
we focus on the Markov models as they relate more specifically to sequence, process, and temporality. This, however,
should be viewed as a general approach and not a strict rule.

To support RQ4, three codes were employed to characterise these phenomena. Event type relates to the core
learning event(s) which drive the studies. It is important to note that whilst this may relate to the specific learner
actions, such as page access or quiz attempt, more often this relates to the transformed view of these phenomena, such
as learner action sequences. This is key in studies where SRL models are used as theoretical frameworks to inform the
design of these transformations and therefore the event descriptions. The Comparison Criteria category indicates the
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Table 1
Codification by Research Question (1 to 4)

RQ1: What types of data sources/instruments are used in temporal data analysis of SRL?
Coding Categories

Participant make-up K-12, Undergraduate, Postgraduate, MOOC, Professional.
Setting authenticity Authentic, Experimental, Hybrid
System LMS, MOOC, OELE, Multi-channel.
System authenticity Authentic, Experimental, Hybrid
Data collection method Trace data, Questionnaire, Think-aloud, Digital self-report, Multi-

modal.
Data transformation Micro-level process analysis, Verbal protocol, Trace protocol, Tactic

extraction
Sample Size 5 to 7887 (maybe some supporting stats here)

RQ2: What theoretical models of SRL are used?
Coding Categories

SRL designation SRL, Dimensions of SRL
Underpinning Model of SRL Winne & Hadwin, Zimmerman, Pintrich, Combined.

RQ3: What types of temporal analysis/discovery methods are used.
Coding Categories

Discovery / Representation / Visualisation Process Mining, Epistemic Network Analysis, Transition Diagrams.

RQ4: What type of phenomena or processes are modelled; what type of insights do they provide?
Coding Categories

Event Type SRL phase, SRL process, Learner action, Conversation turn, Video
action.

Comparison Criteria High/Low performance, Unsupervised clusters, Control/Experiment
Learning Outcomes / Assessment measures Quizzes, Tests, Exams, Projects

way the sample is grouped for comparative analysis, for example, high vs low assessment performers. The Learning
Outcomes/Assessment measures category indicates what types learning outcomes were assessed. In some cases, this
category directly informs the Comparison criteria category, and in others it is less relevant.

RQ5 is not subject to codification in this context.
3.3. Presentation of Outcomes

The outcomes of the review are presented in the Results section (4) aligned to the five research questions. These
outcomes are further discussed in section 5 through four perspectives: i) methodological, informed by the findings 
of RQ1 and RQ3; ii) theoretical, informed by the findings of RQ2; iii) validity-focused, informed by the findings of 
RQ1 and RQ4; and iv) temporal, informed by the findings of RQ5. In order to leverage impactful outcomes from this 
research, the insights from the four perspectives are used to frame a set of questions that we believe researchers 
should consider and explicitly document in their ongoing study in this area (see section 6). We hope that this inspires a 
greater clarity of study design and narrative for such studies.

4. Results
We present the results of the review according to the five research questions. Figure 2 shows the general increasing

trend in the number of studies in this area. Appendix A provides a summary of the studies included in this review, and
some of their key characteristics.
4.1. RQ1: Data Sources and Instruments
4.1.1. Participant Settings

In our sample (see Table 2), the most common educational setting was higher education (HE), with K-12 studies
making up the second largest group. One study pooled data from professional settings (Siadaty et al., 2016b) and was
John Saint et al.: Preprint Page 6 of 30
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Figure 2: Study counts by publication year

included as it represents a singular and significant contribution to the scope of this review. The majority of studies
took place in authentic settings (e.g., in a classroom or online). In the cases of laboratory settings, there were three
types of study: i) think-aloud; ii) observed/video-captured studies undertaken in classroom-like laboratories; and iii)
multi-modal studies also undertaken in classroom-like laboratories.

The dominance of HE in our study sample is to be expected; educational researchers are generally affiliated to HE
institutions and, as such, have ready access to many potential sources of learner data. Within this context, the decision
to use undergraduate or postgraduate learners may be driven by considerations of sample size or course design. It
also raises the question of the relative mastery of SRL we can expect to measure in context of educational level, and
how this can inform learning design in general, as highlighted by Pardo and Mirriahi (2017). The work undertaken in
the K-12 studies is no less critical in this context. The studies built on the work undertaken by Biswas et al. (2010)
—based on ’Betty’s Brain’—highlight the importance of early development of the cognitive and meta-cognitive skills
necessary for effective SRL. In addressing the challenges of training K-12 students in SRL, Molenaar et al. (2013)
explore the importance of scaffolding at this level. It is clear that a section of students arrive in HE ill-equipped to
manage SRL strategies, as evinced in studies by, for example, Bannert et al. (2014) and Saint et al. (2020b). In these
studies, groups of students were characterised by optimal and sub-optimal patterns of SRL in relation to performance.
The lesson from this may be that sub-optimal self-regulated learners in HE are just ill-equipped, but under-trained, as
highlighted in the research on learning regulation and meta-cognitive judgement undertaken by McCabe (2011), Bjork
et al. (2013), and Bjork and Bjork (2020).

Sample sizes in MOOC-based studies ranged from 368 to 8,788, notwithstanding the nuances of retention and
completion. Institutional studies, which accounted for the majority, have a sample range of 4 to 1,135, a mean of
158, and a median of 71. The methods generally employed in these contexts do not rely on conventional statistical
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Table 2
Participant Settings

Coding Categories F RF Examples

Participant
make-up

Undergraduate 38 72% Cerezo et al. (2020); Bannert et al. (2014)

K-12 11 21% Biswas et al. (2010); Molenaar et al. (2013)
Postgraduate 3 6% Malmberg et al. (2017); Cheng and Zhang (2020)
Professional 1 2% Siadaty et al. (2016b)

Authenticity Authentic 45 85% Saint et al. (2018); Maldonado-Mahauad et al. (2018a)
Experimental 8 15% Engelmann and Bannert (2021); Sobocinski et al. (2017)

Sample Size 0-100 26 49%
100-1000 18 34%
1000-10000 7 13%
Not stated 2 4%

Table 3
Systems Utilised

Coding Categories F RF Examples

System LMS 28 53% Järvelä et al. (2016); Bogarín et al. (2018); Ahmad Uzir et al.
(2020a)

MOOC 7 13% Kizilcec et al. (2017); Fan et al. (2021b)
OELE 4 8% Kinnebrew et al. (2014); Paquette et al. (2021)
Simulation
/Modelling

3 6% Li et al. (2020); Sedrakyan et al. (2016)

Multimodal 3 6% Järvelä et al. (2016); Sobocinski et al. (2020)
Various 8 14% Davis and Hadwin (2021); Rodríguez et al. (2018)

Authenticity Authentic 37 70% Mirriahi et al. (2016); Saint et al. (2020a)
Experimental 10 19% Nguyen et al. (2021); Heirweg et al. (2020)
Hybrid 6 11% Malmberg et al. (2014); Järvelä et al. (2016)

assumptions such as sample size or normality. This frees temporally focused researchers to explore the dynamics of
sample groups of all sizes. The largest non-MOOC study (Matcha et al., 2019a) provided critical insights into learners’
strategies and tactics across three years of data, providing insight into the effect of increased feedback provision over
the time period. In contrast, Siebert-Evenstone et al. (2017) focused on fine-grained discourse analysis with a sample
of 5 students. It highlights the promise of a more nuanced approach to the study of SRL which is afforded by small
sample sizes, but forces a discussion on inferential weight.
4.1.2. Systems

In most cases, the systems discussed in the studies are both learning platforms and the sources for data collection.
As can be seen in Table 3, most studies use LMSs, MOOC platforms, open-ended learning environments (OELEs) and
related systems in this context. There are studies where the LMS has the sole purpose of delivering learning; in the
Bannert et al. (2014) study, although a digital platform was deployed to stimulate and support the students’ learning,
no data were actually collected from it, the data collection method being synchronous think-aloud sessions. In some
cases, there is no central digital system for learning, as the study data were collected through observation, for example,
Malmberg et al. (2017). It is interesting to note that despite the general prevalence of MOOC studies in the broader
field of LA, our sample showed a relatively small number; many of the MOOC studies initially searched, tended to use
statistical rather than event-based temporal/sequential methods.

Of the systems used, the majority can be termed authentic. This group is dominated by LMSs. It is prudent to
highlight the specialised nature of some LMSs. For example, the nStudy web application (Beaudoin andWinne, 2009),
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used in the Järvelä et al. (2016) study, was designed to satisfy the demands of SRL research and authentic deployment, 
as was the web tool (Learn-B) used in the Siadaty et al. (2016b) study. These systems succeed through comprehensive 
engineering of mechanisms that stimulate learner engagement with cognitive and meta-cognitive activities. As such, 
the studies that used these systems provided rich results. Siadaty’s Learn-B system, however, exists only in the research 
scope of her studies, so cannot be viewed as anything other than experimental. nStudy still enjoys a presence in SRL 
circles, but is specially engineered to elicit SRL trace-data and is categorised as hybrid rather than authentic. Clear 
challenges exist in recreating similar outcomes in more authentic systems.

That MOOCs have some prominence in our sample is understandable, as researchers contemplate the promise of 
capturing learning patterns that are overtly positioned in online settings, as opposed to the partial or diluted picture 
that may come from a conventional LMS. This positioning has afforded researchers the opportunities to explore, for 
example, the linkage between learning design and SRL (Fan et al., 2021a). Several studies made use of OELEs, in 
particular the ‘Betty’s Brain’ system for K-12 learners (Biswas et al., 2010), which provided a unique means of coaching 
and supporting its learners in active engagement with SRL.

Some systems are not subject to simple platform categorisation, as they extract data from specific and specialised 
areas of LMSs, or do not utilise a recognised LMS of any kind. The Sedrakyan et al. (2016) study, for example, used 
an enterprise modelling tool (JMermaid) to capture specialised problem solving behaviours, which were then analysed 
in the context of self-regulation. Such systems provide singular insights into self-regulation and planning, due to the 
applied, problem-based nature of their design.
4.1.3. Data collection methods

The choice of system informs, or is informed by the data collection method. The most common data collection 
methods in our sample were (digital) trace data and self-report data in its various forms (see Table 4). In this context, 
trace data are digital logs of learner actions undertaken in a LMS/MOOC/OELE type setting. Self-report data collection 
encompasses think-aloud, questionnaire, interview, or any scenario where the learner is asked to reflect on an aspect of 
their learning. This reflection maybe synchronous, that is, collected at the same time (or very shortly before or after) 
the learning event happens, or asynchronous, such as questionnaires captured before or after the event. Think-aloud 
data capture (e.g., Bannert et al. (2014)) is a common example of synchronous capture, although digital self-report 
mechanisms, such as the S-REG tool used in the Sobocinski et al. (2017) study, are also used. Asynchronous capture 
is exemplified in the Kizilcec et al. (2017) study, where pre-questionnaires were administered to learners in order to 
determine groupings of SRL mastery.

The decision to use trace data, self-report data, or a combination of the two, is important. Ericsson and Simon 
(1980), Ericsson and Simon (1984), and Greene et al. (2011) provide compelling arguments in favour of self-report 
as a method of capture. Self-report measures provide researchers with the means of capturing nuances of SRL that 
cannot be extracted from trace data alone. This is demonstrated by the studies in our sample (e.g., (Bannert et al., 2014; 
Sonnenberg and Bannert, 2016)). Self-report data collection allows researchers to extract truly rich articulations of 
SRL. In some cases, where learning behaviours were recorded (e.g., Nguyen et al. (2021)) or think-aloud data capture 
was employed (e.g., Heirweg et al. (2020)), no central digital system was actually used. The veracity of self-report 
has been called into question; Winne and Jamieson-Noel (2002), for example, explored the disparity between students’ 
reporting of their own study tactics and their actual behaviours and found that students tended to demonstrate a positive 
bias in their perception of their achievements and of their use of study tactics.

The use of authentic LMS/MOOC trace data is attractive to researchers as it mitigates many of the concerns high-
lighted above; data are collected unobtrusively from digital learning platforms, without any extra cognitive demands 
on the learners. The downside is that, outside of specialised SRL platforms, like nStudy (Beaudoin and Winne, 2009) 
or Learn-B (Siadaty et al., 2012), the data captured require significant t ransformation and interpretation to provide 
meaningful insights. As such, the use of this method (or more accurately, the data transformation methods discussed 
in section 4.1.4) raises validity issues that some see as insurmountable without observational or self-report mechanisms 
to provide corroboration Rovers et al. (2019).

Of particular importance to the exploration of SRL are the studies which pool data from multiple sources to anal-
yse the same phenomena, categorised here as multi-channel. For example, in the Järvelä et al. (2016) study, tempo-
ral/sequential analyses of chat discussions and trace data were matched to identify evidence of socially shared regula-
tion in postgraduate students. This triangulation has important implications for the cross-validation of SRL analyses
of trace data. The Järvelä et al. (2021) study is one of three studies that attempt to triangulate multi-modal data (e.g.,
heart-rate, electrodermal, facial expressions) as a means of understanding SRL. These studies are large in ambition and
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Table 4
Data Collection and Transformation Methods

Coding Categories F RF Examples

Data collec-
tion method

Trace data 35 66% Bogarín et al. (2018); Boroujeni and Dillenbourg
(2019)

Questionnaire 11 21% Kizilcec et al. (2017); Mahzoon et al. (2018)
Think-aloud 5 9% Bannert et al. (2014); Sonnenberg and Bannert (2016)
Digital self-report 3 6% Davis and Hadwin (2021)
Observation / Record-
ings

6 11% Malmberg et al. (2017); Munshi et al. (2018)

*Multi-Channel 7 13% Sobocinski et al. (2020); Malmberg et al. (2021)
**Combined 27 51% Malmberg et al. (2014); Dorodchi et al. (2018)

Data transfor-
mation

Verbal protocol 20 38% Molenaar et al. (2013); Siebert-Evenstone et al. (2017)

Trace protocol 15 28% Cerezo et al. (2020); Lim et al. (2021)
**Combined Trace
Verbal

5 9% Li et al. (2020); Cheng and Zhang (2020)

Micro-level process
analysis

8 15% Siadaty et al. (2016b); Saint et al. (2020b)

Tactic extraction 2 4% Matcha et al. (2019a); Fan et al. (2021b)
None 3 6%

*These studies combine multiple data sources/channels about the same observed phenomenon.
**These studies combine multiple data sources/channels about observed phenomenon.

their results provide key insights into understanding regulatory behaviours that are not detectable from standard LMS
or MOOC data. There is an obvious trade-off with regard to the level of resources and skills required to orchestrate
the experiments and triangulate the data.
4.1.4. Data Transformation

In most studies, the data were transformed or categorised prior to the main discovery and analysis process. In many
cases, some form of pre-defined or data-informed qualitative coding took place (see Table 4). For trace data transfor-
mation, a section of the studies, including Siadaty et al. (2016b) and Saint et al. (2020b), employed a formalised method
of SRL transformation called micro-level process analysis (Cleary, 2011), using regular expression (REGEX) scripts.
For self-report transformation, such as those based on the Bannert framework (Bannert, 2007), researchers employed
specific verbal protocols Chi (1997) to transform the raw data—respondent utterances—into learning/SRL events. This
type of coding is also necessary for asynchronous verbal capture instruments which analyse discourse, typically from
discussion boards, such as the study by Huang and Lajoie (2021). This phase, often termed pre-processing, is critical,
particularly when considering the empirical demands of conceptualising models of SRL (discussed in section 4.2)
4.2. RQ2: Models of SRL

In regard to embedding analyses inmodels of learning, our sample breaks down broadly into thesemodel categories:
i) Recognised models of SRL, which are dominated by Zimmerman (2000) and Winne and Hadwin (1998); ii) SRL in
conjunction with, or as part of a model of socially shared regulation of learning (SSRL) and/or co-regulated learning
(CoRL); and iii) related dimensions of SRL, referring to studies which do not present SRL as a key element but touch
on related elements, such as cognition, meta-cognition, and strategy. Within the first two model categories, we added
two subcategories to the model descriptions (see Table 5). The termConsolidated refers to instances where dimensions
of multiple SRL models were employed in unified frameworks. The term Dimensions refers to instances where SRL
was presented as a key element of the study, but does not draw on all elements of a single or consolidated model.
4.2.1. Recognised SRL Models

Of the studies underpinned by Zimmerman (2000), most used trace data as a primary data source. In this context,
it may be seen that Zimmerman’s model is more easily adapted to trace-data interrogations. In all cases, the major con-
structs of the model were adapted in the form of a coding framework of learner actions sequences into SRL processes.
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Table 5
SRL Model Categories

Model Category Model Description F RF Examples

SRL 36 68%

Zimmerman 9 17% Molenaar et al. (2013); Saint et al. (2020b)
Winne and Hadwin 4 8% Bakhtiar and Hadwin (2020); Malmberg et al.

(2021)
Bannert 4 8% Bannert et al. (2014); Engelmann and Bannert

(2021)
Pintrich 1 2% Biswas et al. (2010)
Consolidated 10 19% Kizilcec et al. (2017); Paquette et al. (2021)
Dimensions 7 13% Munshi et al. (2018); Fan et al. (2021a)

SRL, CoRL, SSRL 8 15%

Winne and Hadwin 3 6% Malmberg et al. (2017); Bakhtiar and Hadwin
(2020)

Consolidated 5 9% Su et al. (2018); Sobocinski et al. (2020)

Related Dimensions 9 17% Mahzoon et al. (2018); Boroujeni and Dillen-
bourg (2019)

As such, the codings can be viewed as a model-informed framework, where the major constructs of the model align to
the three fundamental SRL phases, named here: i) planning; ii) enactment; and iii) reflection. The study by Siadaty
et al. (2016b) was the first to use the micro-level process technique to a transform trace data (albeit semi-experimental)
into SRL patterns and this technique was built on in the Saint et al. (2020b) study, using authentic LMS trace data.
The Winne and Hadwin (1998) model of SRL informs a number of studies in our sample. The Bakhtiar and Hadwin
(2020) study, for example, explored a broader set of elements of the Winne and Hadwin model, such as external and
cognitive conditions, as well as affective and behavioural elements. As already stated, it is more viable to articulate a
nuanced view of SRL when using self-report or discourse-based data as a source, as also demonstrated by Malmberg
et al. (2021). With regard to the studies that use the Bannert (2007) coding, it is defined as a theoretical framework
of self-regulated hypermedia. It is a coding scheme based on a distillation of SRL elements. Indeed, Bannert et al.
do not present this framework as an SRL model, but more as a means of demonstrating how PM can be used to test
theoretical models: “This analysis is rather illustrative than informative for SRL research because theoretical assump-
tions on the micro-level would be needed for a proper analysis which are not provided by SRL models at the moment”
(2014, p. 181). Despite this caveat, the framework has many structural elements of recognised models of SRL, and is
thus categorised as such in this review.
4.2.2. Consolidated Models

The MOOC study by Kizilcec et al. (2017) is significant in that it highlights a key methodological choice with re-
gard to analysing SRL; whether to use a single SRLmodel in its entirety, and risk polling data to measure inappropriate
constructs, or to construct a contextually relevant framework from disparate, though empirically robust, SRL sources.
Kizilcec et al. chose the latter and from this derived a set of six strategies/measures—goal-setting, strategic plan-
ning, self-evaluation, task strategy, elaboration, and help-seeking—from various SRL authorities, such as Zimmerman
(2000), Pintrich (2000), Schunk (2005), Effeney et al. (2013), and Niemi et al. (2003), amongst others. Kizilcec’s
framework, it should be noted, was not used to transform trace data, but to inform the design of pre-study question-
naires used to segment learner groups. The trace data analysed were atomic learner actions, not SRL processes. This
method was employed by several studies in our sample (e.g., Cheng and Zhang (2020)).
4.2.3. SRL, CoRL, SSRL

A section of studies recognised that key models of SRL may not fully represent the machinations of learning in
group-based collaborative settings. The Malmberg et al. (2015) study focused on socially shared regulation of learning
(SSRL) and presented a coding scheme based on empirical conceptions of SSRL explored by Hadwin et al. (2011)
and Järvelä et al. (2015). Using a consolidated framework of SSRL, the authors were able to more clearly recognise
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Table 6
Summary and Comparison of the Main Analytic Discovery Methods

Process Mining ENA Transition and Other methods
Sequence Analysis

Proportions 53% 13% 26% 25%
Methods Fuzzy Miner Classic ENA Sequential diagrams Sankey diagrams

Fuzzy Miner Modern Transition graphs CORDTRA diagrams
FOMM Dotted Chart
Heuristics Miner HMM
Inductive Miner Temporal Heatmaps
ProDiGen Bespoke

Package ProM, BupaR rENA Various Various
/Toolkit Disco, Celonis Web-based ENA tool

pMineR
Key features Frequency, time Frequency Frequency Time series

Correlation Co-occurrence Co-occurrence Hidden States
Transition probability Node positions Transition metrics

Examples Bannert et al. (2014) Matcha et al. (2019b) Molenaar et al. (2013) Chen et al. (2018b)
Saint et al. (2020b) Fan et al. (2021a) Mirriahi et al. (2016) Lim et al. (2021)
Bogarín et al. (2018) Saint et al. (2020a) Siadaty et al. (2016b) Dorodchi et al. (2018)

Advantages Multiple metrics,
Configurable, Multiple
platforms, Inter-
pretable, Copes with
messy data

Static nodal positions,
Difference plots,
dENA

Aspects of PM and
ENA

Customised, Novel,
State-of-the-art

Limitations Metrics can be decep-
tive

No directional associ-
ation, demotion of less
frequent activities

Usurped by PM and
ENA

Not familiar, hard to
recreate analyses

how students addressed technological and time-management issues in the context of shared regulation, for example,
(Malmberg et al., 2015).
4.2.4. Dimensions of SRL

In some studies, SRL informs the analyses in explicit or implicit ways, but does not impose specific SRL model
demands. The Chen et al. (2018b) study demonstrated a variety of novel visualisations relating to frequency, sequence,
and temporality, and although SRL is not front and centre, its potential to facilitate SRL is highlighted. The Sedrakyan
et al. (2016) study proposed that self-regulative learning patterns could be found in activities such as testing and
validation in relation to domain modelling tasks. It does not, however, go as far as identifying a model, or even a
generic SRL framework. The Siebert-Evenstone et al. (2017) study does not attempt to present SRL in any form, but
nonetheless presents findings that could inform SSRL research. The co-temporality and categorisation of discussions
on collaboration, technical constraints, and reasoning, have definite synergies with SRL theory. The Dorodchi et al.
(2018) study explicitly adapted the seminal model of experiential learning developed by Kolb (2015) as a course model
in their study; the adaptation has echoes of the SRL cycle, with components such as pre, post, and in-class activities,
punctuated by periods of reflection.
4.3. RQ3: Discovery Methods

Half of the studies in our sample used PM in some form (see Table 6), which reflects the growing popularity of
this group of methods outside of the business sector in which it was first conceived and operationalised. A quarter of
the studies used variations on transition graphs and sequence-oriented models. ENA (Shaffer et al., 2016) is gaining
popularity and was used in the more recent studies in our sample. A small number of studies used hidden Markov
models. Around a tenth of the studies employed uncommon or novel methods, not found in other studies. Several
studies used multiple discovery methods to explore a potentially richer view of SRL and its related dimensions.
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4.3.1. Processing Mining
PM seeks to provide insights into the sequential nature of activities within a given process space. This is achieved

through PM discovery algorithms, which allow for the identification of arrangements of activities in a given operational
space (Günther and Rozinat, 2012). This is visualised in the form of process maps. In our sample, the Fuzzy Miner
PM algorithm (Günther and van der Aalst, 2007) was used more than any other. In its original form, Fuzzy Miner
provided two fundamental metrics named significance and correlation. These measures should not be confused with
the recognised statistical measures with which they share names. Significance is described as a measure of importance
of an event class in a log, or of the importance of a relationship between pairs of event classes in terms of precedence.
Importance is generally measured in terms of frequency, and so we can interpret this quite intuitively. The correlation
metric, which measures the closeness in relation between two events, is more abstract and complex in its conception,
taking into account factors such as overlap of data attributes, and the similarity of event names (Günther and van der
Aalst, 2007). The Bannert et al. (2014) study and the Sonnenberg and Bannert (2016) both used classic Fuzzy Miner
(Günther and van der Aalst, 2007), to examine SRL patterns from think-aloud data. In using PM, these studies promised
a novel way of viewing patterns of SRL not seen before at the time, and provided useful visual insights into contrasting
levels of SRL across performance groups. FuzzyMiner gained greater popularity in its later incarnation in commercial
tools such as Fluxicon Disco and Celonis, where, crucially, the classic metrics were dropped in favour of more intuitive
measures, such a frequency and time. The majority of Fuzzy Miner-based studies in our sample use the modern
platforms. A number of studies used the BupaR processing mining tool to produce almost identical outcomes to the
modern Fuzzy platforms; we have categorised them as part of the modern Fuzzy Miner Modern algorithms in Table
6. The Maldonado-Mahauad et al. (2018a) study employed frequency metrics to analyse how students’ interactions
with video content reflected SRL mastery, while the Saint et al. (2020a) study used time (median time-on-task and
between-activity lag in minutes) to explore SRL behaviours in high and low performance groups. In the studies that
used PM based on first-order Markov models (FOMMs) (Gatta et al., 2017), probability is the primary metric used
to articulate transition behavior between learner activities. Matcha et al. (2019a), for example, used this method to
explore the dynamics of learning tactics in and the likelihood of transition between them in a given learning session.
The Kinnebrew et al. (2013) and Cheng and Zhang (2020) studies both used hidden Markov models to explore SRL
process transitions in contrasting groups of students. Several studies used the Heuristics Miner (Weijters et al., 2006)
as their primary discovery method. Two of the studies (Bogarín et al., 2018; Cerezo et al., 2020) used Inductive Miner,
which employs frequency and time metrics, but places an emphasis on sequential, rather than temporal association.
In these studies, LMS learning paths, termed sub units, were modelled. The specific design of these sub units aligned
well with sequential demands of Inductive Miner to provide useful insights into learner actions categorised as SRL
processes.
4.3.2. Epistemic Network Analysis

ENA is an analytical technique which utilises epistemic frames theory to analyse log/trace data in individual and
collaborative settings to provide insights into co-existence of learning behaviours in time (Shaffer, 2004). ENA cate-
gorises features of individual and group learning (e.g., action, communication, and cognition), which it then uses to
create nodes in an epistemic network. This method was explored by Siebert-Evenstone et al. (2017), who used ENA
to explore cotemporality in the context of discourse analysis. In truth, ENA was originally designed to capture learn-
ing as it is expressed in conversation turns, and in collaborative scenarios, but has been extensively used to analyse
activity-based learning. It was used to analyse co-temporality in SRL and related strategies in the studies by Matcha
et al. (2019b), Ahmad Uzir et al. (2020a), and Saint et al. (2020a).
4.3.3. Transition and Sequence Analysis

The discovery methods in this section reflect certain elements of more recognised methods (e.g., PM or ENA), and
in some cases can be seen as prototypical. The study reported by Molenaar et al. (2013) used sequential diagrams to
explore sub-metacognitve events in K-12 students. This technique has echoes with the probabilistic process mining
techniques in that it provides a likelihood of movement from one process to the next, in terms of relative percentage
frequencies; effectively transition probabilities. The Mirriahi et al. (2016) study used transition graphs, which reflect
elements of ENA and PM, albeit in a cruder form. The Siadaty et al. (2016b) also used a similar, if more sophisticated,
method to articulate, in a network space, the associations between intervention events and SRL activities.
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4.3.4. Novel methods
The Järvelä et al. (2016) study is largely frequency-based but provided some interesting temporal insights in the

form of micro-level sequence diagrams, which provide the reader with contrasting SRL sequences of higher and lower
performers. The Mahzoon et al. (2018) and Dorodchi et al. (2018) studies both used a sequence-based analysis method
that generated term-long "signatures" that exemplified succeeding and failing students. The Chen et al. (2018b) study
employed a set of novel visualisations not found elsewhere, to mine sequential patterns and non-linear learner events,
linked to academic performance. The Lim et al. (2021) study used Sankey diagrams (Kennedy and Sankey, 1898) to
articulate key associations between tactics and temporal study modes.
4.4. RQ4: Phenomena Insights

The largest portion of learner events modelled in our sample can be categorised as SRL processes (see Table 7). In
most cases, some form of SRL-informed data transformation or coding was enacted to derive these processes (see sec-
tion 4.1.4). This allowed for a direct interpretation pattern or sequences of SRL events in whatever discovery method
was used. For the cases categorised as learner actions, whilst some data cleansing/transformation may have been ap-
plied, the modelled event was generally a context-specific learner action, such as read or watch video. In these cases,
insights were extracted through an SRL-informed interpretation of the learner actions, or an SRL-informed question-
naire was used to identify learner clusters. Learning tactics were modelled to derive learning strategies in one particular
study group. The comparison criteria deployed are varied but the most commonly used is assessment performance.
The next most common method is by tactic or strategy clusters; a number of studies combined performance and clus-
tering. Several studies used the classic control-treatment method, mostly in connection to metacogntive support (e.g.,
with prompts or without). The assessment outcomes were dominated by assignments and task or project-based work.
A smaller section of the studies employed pre and post knowledge transfer tests, although the lines were blurred in
regard to whether these tests link to learning outcomes, experimental outcomes, or both.

We have identified five groups of studies that are typified by recurring authors, data sources, and methods. The
importance of such research groups is that they make use of common instruments, data, or methods, yet provide
differing perspectives and insights.
4.4.1. Bannert and Sonnenberg

The studies by Bannert et al. (2014), Sonnenberg and Bannert (2015), Sonnenberg and Bannert (2016), and En-
gelmann and Bannert (2021) all made use of the same self-report data source and the same SRL coding framework.
Their collective strength is that they avoided unnecessary inquiry duplication and provided a multi-dimensional view
of common sets of learning behaviours. These views are derived from the use of differing modes of discovery in
combination with differing comparative criteria. The original Bannert et al. (2014) study employed a novel—as it
was at the time—use of the Fuzzy Miner PM algorithm to explore SRL engagement in higher and lower performing
students in differing levels of granular coarseness. In this way, the researchers were able to attach meaning to the
contrasting ways in which the learner groups manifested SRL. The PM visualisations provided a means of observ-
ing the occurrences of SRL elements and how strongly or weakly they connected in a sequential and temporal space.
The three subsequent Sonnenberg and Bannert studies shifted the focus from high and low-performers to the effect of
meta-cognitive prompting, utilising the control/experiment method to isolate their effect. Fuzzy Miner and Heuristics
Miner were variously used, as well as dotted chart analyses. These visualisations, in combination with non-temporal
statistical metrics, were used effectively to identify the impact of the prompts on behaviour sequences in the context
of SRL, for example, “In contrast to the model of the students in the experimental group, ANALYZE is only weakly
connected with SEARCH, and therefore, it is quite isolated” (Sonnenberg and Bannert, 2015, p. 92). This typifies
the narrative affordances provided by event-based process analyses that are not accessible through statistical measures
alone. It should be noted that, in all these studies, statistical measures do have an important place as a complementary
set of metrics.
4.4.2. Järvelä, Malmberg and Molenaar

The studies by Molenaar et al. (2013), Malmberg et al. (2014), Malmberg et al. (2015), Järvelä et al. (2016),
Sobocinski et al. (2017), and Malmberg et al. (2017), provided a focus on group learning, collaboration, and social
self-regulated learning. The data collection methods used were various—self-report, video-capture, trace-data, assess-
ment codification—but all of these studies demonstrated a genuine attempt to embed analyses in constructs of SRL
through codified translation of data into SRL processes or phases. This strong alignment to SRL (and its collaborative

John Saint et al.: Preprint Page 14 of 30

2. TEMPORALLY FOCUSED SELF-REGULATED LEARNING

30



Temporal SRL Review of Literature

Table 7
Modeled Phenomena

Coding Categories F RF Examples

Event Type SRL processes 22 42% Malmberg et al. (2015); Saint et al. (2020a)
Learner actions 16 30% Biswas et al. (2010); Maldonado-Mahauad et al.

(2018a)
Learning tactics 6 11% Matcha et al. (2019a); Fan et al. (2021b)
SRL pro-
cesses/phases, Physi-
ological

3 6% Sobocinski et al. (2020); Järvelä et al. (2021)

Various 8 15% Mahzoon et al. (2018); Boroujeni and Dillenbourg
(2019)

Comparison Criteria Performance
High/(Medium)/Low

17 32% Bannert et al. (2014); Cheng and Zhang (2020)

Tactic/Strategy Clus-
ters

11 21% Mirriahi et al. (2016); Ahmad Uzir et al. (2020a)

Control/Experiment 6 11% Kinnebrew et al. (2014); Lim et al. (2021)
SRL self-perception 5 9% Kizilcec et al. (2017); Li et al. (2020)
By student 2 4% Siebert-Evenstone et al. (2017); Järvelä et al. (2021)
At-risk/Not at-risk 2 4% Mahzoon et al. (2018); Dorodchi et al. (2018)
Various 8 15% Sonnenberg and Bannert (2016); Nguyen et al. (2021)
None 2 4% Siadaty et al. (2016b); Chen et al. (2018b)

Learning Outcomes Assignments 21 40% Saint et al. (2018); Cerezo et al. (2020)
Task/project-based 12 23% Sedrakyan et al. (2016); Huang and Lajoie (2021)
Pre-post/transfer test 9 17% Biswas et al. (2010); Munshi et al. (2018)
n/a 6 11% Hadwin et al. (2007); Malmberg et al. (2017)
Various 5 9% Malmberg et al. (2015); Heirweg et al. (2020)

variations) is a constant across the group but there are novel variations in comparison criteria; in fact, almost all the
identified criteria—Performance, Clustering, Control/Experiment, amongst others—are represented. The Molenaar
et al. (2013) study provided insights, gleaned from discourse analysis, into the effects of meta-cognitive prompts in
online settings. The prompts devised were overtly designed using SRL constructs and so helped articulate the analyses
in a strong theoretical context. The Malmberg et al. (2015) study relies on codified self-report data drawn from SSRL
prompt mechanisms within the LMS. The resultant SSRL constructs were aligned into pairs to represent focus and
function in a transitional sense. High and low performing groups were compared using PM. As with other compara-
tive PM SRL studies, the findings reflected a more cohesive sense of learning management in the higher performers.
The later studies undertaken in this group, Sobocinski et al. (2020), Järvelä et al. (2021), Malmberg et al. (2021),
demonstrate even greater levels of innovation by triangulating observational data with multi-modal physiological data
to provide rich insights into collaborative SRL.
4.4.3. Gašević and Pardo

The group of studies by Saint et al. (2018), Matcha et al. (2019a), Ahmad Uzir et al. (2019), Saint et al. (2020b),
Saint et al. (2020a), Ahmad Uzir et al. (2020a), Ahmad Uzir et al. (2020b), Fan et al. (2021b), Fan et al. (2021a), and
Saint et al. (2021), is underpinned by a commitment to the analysis of trace-data. A section of the studies pooled data
from the same LMS source, albeit from differing cohorts/time periods; the remainder were pooled from MOOC and
Moodle data sources. The Saint et al. (2018) study explored the use of a novel FOMM PM algorithm to articulate
and compare patterns of learning across a set of student tactic clusters. The contrasting patterns of learning tactics
and time management were explored though the lens of process and probabilistic sequence, using first order Markov
models. The Matcha et al. (2019a) study presented a sophisticated clustering method to identify tactic patterns across
different learner strategy groups, further overlaid with analyses of feedback provision and assessment performance.
The Ahmad Uzir et al. (2020b) study used a similar clustering technique but provided a more specific focus on time
management strategies. In these studies, SRL-informed insights were provided without binding to a specific model of
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SRL. The Saint et al. (2020b) and Fan et al. (2021b) studies, for example, did employ a specific SRL coding framework,
first explored by Siadaty et al. (2016b), in order to embed the analyses in a model of SRL. In summary, three event
types were explored by this group, time-management actions, tactics, and SRL processes, using tactic/strategy clusters
and (associated assessment metrics) as comparison criteria. The Fan et al. (2021b) study uniquely combined tactic
extraction and SRL processing to explore the intersection between the two concepts.
4.4.4. Kizilcec and Maldonado-Mahauad

The studies by Kizilcec et al. (2017), Maldonado-Mahauad et al. (2018a), and Maldonado-Mahauad et al. (2018b)
all employed a consolidated SRL framework to measure learner behaviours. In these studies, questionnaires were used
to poll strategies based on instrument constructs such as goal-setting, help-seeking, self-evaluation, and other elements
well-known to SRL researchers (Kizilcec et al., 2017). The survey scores were then used to categorise and triangulate
subsequent MOOC trace-data findings. In these cases, the final visualisations related directly to trace-data interaction
events, for example, ‘video-lecture play’, ‘assessment pass’, and ‘assessment review’, which were not direct manifes-
tations of SRL in and of themselves. However, the sequential-temporal visualisations of these interactions provided a
means of clustering learners and, critically, assigning different interaction sequences to specific SRL constructs. Cheng
and Zhang (2020) made use of the Kizilcec et al. method in the studies they documented in relation to writing and
reading comprehension. They, however, made use of hidden Markov models to visualise sequence and temporality, as
opposed to the various PM methods used by Kizilcec and colleagues.
4.4.5. Biswas and Kinnebrew

Four studies, Biswas et al. (2010), Kinnebrew et al. (2014) Munshi et al. (2018) Paquette et al. (2021), explored
SRL and temporality in K-12 students by harnessing data from a common open-ended computer-based learning en-
vironment, ‘Betty’s Brain’ (Biswas et al., 2005). As such the comparison criteria and learning outcomes are closely
linked via the control/experiment pre/post test experimental design, and the event types are also equivalent. Much
variety is found in methodological choices around data analysis and visualisation. In the Biswas et al. (2010) study,
groups were delineated by feedback provision. The LBT (learning by teaching) group were provided corrective feed-
back and the SRL group were provided with more strategic guidance, on request. The control group (ICS) did not have
Betty. In this case, delineation is by experimental control, as opposed to performance or unsupervised clustering. The
Paquette et al. (2021) study used ENA to explore the coherence (or otherwise) in the problem solving actions of low
and high performers, in the context of SRL. In this group, a common platform has inspired a varied and novel set of
studies that have significant implications on the introduction of SRL in early learners.
4.5. Research Group Mobilisation

Most researchers are, in some way, part of one or more research groups (see section 4.4), and these groupings
provide an interesting lens through which to view the phenomena modelled in temporally focused research of SRL. The
Bannert and Sonnenberg group all pooled from the same data source(s) and modelled the same types of SRL events and
the learning outcomes and comparison criteria were geared towards the experimental. Beyond these constants, there
is a diversity of discovery methods and differing emphases on meta-cognitive support, providing very useful insights
which can be used to inform LMS support systems. The Järvelä, Molenaar and Malmberg group are characterised
by a strong adherence to SRL theory, which see them consistently model SRL process events. This constant allowed
for a rich diversity of comparative criteria and innovative analyses of assessment work. The group is also typified by
a broad selection of discovery methods which provide key SRL insights. The Gašević and Pardo group, typified by
LMS and MOOC trace data collection, was able to analyse SRL and tactic-oriented event data, and provided strong
methodological emphases on process mining and ENA, and combinations thereof. The Kizilcec and Maldonado-
Mahauad group provided unique insights with the combination of trace data and SRL questionnaires (which they then
used to categorise learners). The Biswas and Kinnebrew group modelled exactly the same ‘Betty’s Brain’ events but
employed novel and varied discovery algorithms and powerful experimental comparative methods across the group
to provide varied insights from similar data. Beyond the categories outlined in Table 7, the studies in our sample are
typified by a number of moving parts, as outlined in Table 1. In building on current studies, thought should be given
to which parts to fix and which to change in order to push forward the collective aims of the research group.
4.6. RQ5 Temporal Analysis and SRL

The studies in our sample bear witness to the increasing focus on temporal dynamics in SRL. The conception of
SRL as a process that unfolds over time (as opposed to a learner characteristic) reveals a synergy between the research
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disciplines of SRL and temporal analysis. There is therefore an increase in the number of studies that recognise
that conventional statistical measures are obviously valuable but are part of a paradigm that suffers from ontological
shortcomings in the light of temporally informed models of SRL. Molenaar (2014) issued a manifesto for the research
of temporally focused learning analytics, to which Chen et al. (2018a) provided a response. These two rallying calls
inform the treatment of results in this section.
4.6.1. Learning constructs of SRL in relation to time

As discussed in section 4.2, the way SRL constructs are modelled is subject to a certain amount of nuance, and the
same could be said of their temporal dynamics. Chen et al. (2018a) conceptualised two broad temporal features: i) The
passage of time relates to duration or frequency, for example, time spent on a learning task or frequency/mean/median of
engagement with learning tasks over a defined period, demonstrated at a weekly level in the study by Ahmad Uzir et al.
(2020b); and ii) Temporality as a representation of how events or states are ordered and the nature of their relationship
in terms of sequence. SRL temporal engagement can be defined in absolute terms of frequency of engagement but the
order and sequence of engagement is lost in this conception (Reimann, 2009). In the studies included in this review,
temporal currency is not only duration, as in time-on-task or time-between-task, but frequency of transition between
learning events (e.g., Maldonado-Mahauad et al. (2018a)), and the probability of transition between SRL events (e.g.,
Saint et al. (2020b)), or non-directional temporal co-occurrence (e.g., Paquette et al. (2021)). The usage of one or more
of these temporal dimensions in SRL studies demands a justification as a way of demonstrating an awareness of what
they can and cannot bring to the analysis of SRL. Capturing events in a temporal context can be challenging if we
accept that learners may gain access to an artifact, but may not engage with it. They may, for example, have opened a
page and then moved onto something else. Are periods of inactivity really inactive? As such, the management of (or
the acceptance of) temporal nuances such as this require thought.
4.6.2. Bridging the gap between micro data and macro theory

The coding schemes used by, for example, Bannert et al. (2014), Siadaty et al. (2016b), Saint et al. (2020b), and
Fan et al. (2021b), are clear examples of an attempt to bridge the gap between the micro-level source data and the
theoretical macro-level constructs of SRL. As such they represent positive moves to strengthen the theoretical basis
for such studies. These transformations (see section 4.1.4), which essentially coarsen the grain of the raw data, seek
to embed analyses in theoretical models of SRL (see section 4.2). If deployed optimally, the coding frameworks serve
the purpose of bridging the gap between theoretical models of learning and raw learner actions. With regard to the
broader issue of validity, these efforts are not always sufficient. From a temporal perspective, in bridging this gap, the
question of event and time segmentation is raised.
4.6.3. Segmenting time units

In our studies, there are examples of broad and narrow temporal segmentation. The studies by Mahzoon et al.
(2018) and Dorodchi et al. (2018) employ segmentation at both semester level to inform between semester sequence
modelling, and at weekly level to inform within semester modelling. Weekly segmentation is used in several studies
on the understandable premise of weekly learning cycles, as commonly built into syllabus design. The Matcha et al.
(2019a) study, for example, plotted tactic engagement frequency and how it changed from week to week over the
course of a single semester. The Sobocinski et al. (2020) study employs finer segmentation, plotting sequences of
group regulation across various segments ranging from around 10 to 30 minutes. In the studies which employed
macro/micro transformations (e.g., Saint et al. (2020b), Fan et al. (2021b), see section 4.6.2), segmentation is key for
researchers who seek to analyse learning patterns within designated learning sessions, which are variable in length
but delineated by periods of inactivity. The Fan et al. (2021b) study, for example, employed a two-step segmentation
process to segment days and then learning sessions; a gap of 45 minutes or more between activities triggered the start
of a new learning session.
4.6.4. Analysing theorised learning constructs in a temporal sense

In a sense, this question is a methodological extension of section 4.6.1 and brings to bear much of the discussions
in section 4.3. The Bannert et al. (2014) study is seminal in many ways, and represents one of the earliest attempts
to capture SRL using PM as a means to capture temporal order of individual regulation activities. This emphasises a
position that temporality in the context of order and sequence. Order matters because learning is a cumulative sequence
of experiences Reimann (2009). In the Saint et al. (2020b) study, for example, PM was used to analyse probabilistic
temporal dimensions from SRL-coded trace data, that is, looking at the likelihood of transition between SRL processes.
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In this study, the limitations of frequencymeasures were explored, as was their value as complementary analyses for the
more temporally focused insights. While PM methods emphasise sequence and order, the epistemic network analysis
method does not, focusing more on temporal co-existence. The Nguyen et al. (2021) study, for example, explored
how shared regulation events (such as Reflection, Collaboration, and Monitoring) occurred together. The authors
were able to detect that instances of closer cotemporality of certain conversational events indicated strong regulatory
behavior. The Sobocinski et al. (2020) study produced a fascinating set of timeline-style graphs that show temporal
transitions between SRL processes and instances of on-track, adaptive and maladaptive learning therein. In theMunshi
et al. (2018) study (Betty’s Brain) posited that affect has some impact on SRL deployment. The temporal orderings
of cognitive activities and transitions (e.g., Hint →Read) were extracted and observed against affective states (e.g.,
boredom, delight). In this context, the cognitive activities were viewed as "temporal antecedents" for affective states.
In summary, the ontological intersection between SRL and temporality provides a rich source of insights, if care is
given to model usage and methodological selection.

5. Discussion
5.1. Methodological Considerations

Clearly, there is a movement in the SRL community to use temporal and sequence-based discovery methods to
analyse and articulate SRL. Most of the studies in our sample make effective use of such methods in an effort to
move beyond the ontological limitations of conventional statistical analysis, or to complement its strengths. To build
effectively on this work, researchers should not only be aware of the methods available, but also of the strengths and
limitations of these methods in the context of SRL. For example, the PM platforms encompass a variety of discovery
algorithms which provide metrics in recognised scales, such as frequency, time and probability, as well as proprietary
scales. As such, the choice of metric is key. For example, absolute measures, such as frequency of transition between
SRL activities, could provide key insights, but may prove prohibitive for researchers to interpret while retaining a sense
of relative scale. Conversely, using relative scales, such as probability, removes the absolute view and may produce
deceptive results (Saint et al., 2021). The use of time as a metric is attractive to researchers exploring temporal aspects
of SRL but should be approached with care. Time-on-task metrics, for example, could be skewed by idle time recorded
as task engagement; a learner could open a page of content in an LMS, then switch focus to something else, undetected
by the system, thus providing a false picture of engagement in the data (Kovanovic et al., 2016). ENA provides
insights that PM cannot, such as a sense of how learning activities exist thematically in relation to each other, and
their co-existence in temporal terms. In its original form, however, ENA was unable to articulate a sense of directional
sequence between learning activities. This limitation, however, has been recognised, and a new version of the ENA,
dENA (Fogel et al., 2021), has been developed in which transition sequence is represented in a measurable and visual
way. This has very promising implications for future research on SRL and the modelling of its temporal and sequential
aspects. Factors such as these should be considered as part of an explicit assessment of methods in the context of the
study aims. This assessment should provide an informed view of the chosen method and its capabilities, hopefully
leading to a more authentic analytic narrative.

In order to inform such decisions, the Matcha et al. (2019b) study provided a systematic comparison of the efficacy
of PM, ENA, and sequence analysis in specific context. Whilst such competitive comparisons are useful, we argue that
more value can be gained in combining methods, thus avoiding methodological compromise. A section of researchers
in our sample agree, and have employed multiple discovery methods in their studies. For example, Saint et al. (2020a)
combined ENA and PM to examine the sequential and temporal nature of SRL behaviours and identified behaviours that
differentiate between learners across performance levels. Ahmad Uzir et al. (2020b) and Fan et al. (2021a) also used
ENA and PM to provide rich insights into learner tactic usage. In both these studies, a combined interpretation from the
methods provided readers with a view of tactics commonly associated in time (from ENA), and also their association in
terms of temporal sequence (from process mining). As suggested by these studies, when applied jointly, ENA together
with other methods can provide a richer description of SRL activities than using a single method. Methodological
combinations, such as these ones, can provide a more profound understanding of the learning phenomena at play.
They also provide the promise of analytic triangulation or cross-validation. The decision to use multiple methods
is not without its challenges, not least in terms of the skills and resources needed to deploy the methods, but also to
provide a coherent interpretation of the results. An informed assessment of the costs and benefits of a combined project
should be considered. If researchers are armed with an informed view of the discovery method landscape, they will
be able to make a better choice as to: i) the choice of single or multiple methods, and; ii) the choice of the tool(s)
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to deploy. This should mitigate the temptation to bend the study outcomes to fit the chosen method, as opposed to 
aligning the correct method(s) with the study aims.
5.2. Theoretical Considerations

The usage of SRL models is subject to nuance. In some cases, a clear model was chosen and applied in a way 
which directly affected how the study data were transformed and presented, using a clearly articulated framework. 
The Siadaty et al. (2016b) study is an example of this but this type of SRL-informed, codification was also 
demonstrated by Bannert et al. (2014) and Saint et al. (2020b). We argue that this type of applied coding, deployed as 
micro-level process analysis in many cases, represents an explicit attempt to embed analyses in theoretical models of 
SRL. It does not necessarily guarantee empirically robust SRL insights as there are dependencies on the quality of the 
model used and of the veracity of the data transformation and interpretation, but its structure is clear and explicit. The 
Kizilcec et al.(2017) study used an SRL framework to identify different groups of learners, as captured in an SRL self-
perception survey, as opposed to the actual transformation of data. Some studies more accurately use SRL as a 
theoretical context, as opposed to an embedded framework. This is demonstrated in the study by Matcha et al. 
(2019a), for example, where certain dimension of SRL (tactics and strategies) were analysed.

The Kizilcec et al. (2017) study is also worthy of note for the way SRL is theorised, that is, as a consolidation 
of strategies from around six different sources. Other studies used less models in the consolidation process (e.g., 
Kinnebrew et al. (2014)), and the Heirweg et al. (2020) study does not even explicitly state the source models, con-
solidating as it does, from general SRL theory. The promise of consolidating SRL constructs, or mapping them onto 
other pedagogic models (e.g., Mirriahi et al. (2016)) is an intriguing one. We should, however, sound a note of cau-
tion; the appropriation of SRL strategies from different models to measure specific constructs is a choice that raises 
questions of construct validity. The dilemma faced in these types of research settings is whether to bend your data 
capture and analyses to fit an established model, retaining some form of construct validity, or formulate a framework 
that is a better fit for your data and/or study c ontext. It also forces a conversation on the extent to which the repeated 
use of a framework (preferably by different authors) induces a sense of validity in and of itself. In some studies, the 
use of one complete model may invalidate elements of the study, as the data will not fit without unreasonable leaps 
of logic and assumption. In authentic trace data studies, for example, while lower-level activities, such as reading or 
video viewing, may be easy to capture, challenges exist around measuring higher level metacognitive SRL constructs 
such as reflection or evaluation. In these cases, questions may be asked about the appropriateness of the model and its 
deployment in the context of the aims of the research.

There is an argument that while the major SRL models provide differing focuses, they all share commonalities 
at a fundamental level. Heirweg et al. (2020) note that there is a general agreement that SRL consists of metacogni-
tive, cognitive, and motivational dimensions. In regard to the cyclical and temporal nature of SRL, Panadero (2017) 
highlights the three common fundamental phases of SRL—preparatory, performance, and appraisal—and explicitly 
maps the major model elements into these phases, in tabular form. This is important, as it hints at a way in which 
common SRL model elements can be viewed. With these commonalities established, researchers can more clearly 
focus on the unique nuances that each model brings, and more readily align them to study scope. It is clear, however, 
that the measurement of higher constructs of SRL is challenging in authentic trace data studies, and easier to capture 
in self-report studies, so the choice of model should reflect t hat. It would be fruitless, for example, to choose a model 
which emphasises motivation or affective states in a scenario where only event-based trace data is a available.

Given the fact that model choice and usage is subject to nuance, it is incumbent on researchers to provide as much 
conceptual and methodological clarity as possible. It is common for studies to compromise clarity in favour of breadth 
of context. The Sobocinski et al. (2017) study, for example, used the Zimmerman SRL model and, whilst the model 
is discussed, this discussion is intermingled with discussion on conceptual aspects of other models. In itself, this is a 
useful treatment of SRL, but the reader has to work hard to determine the Zimmerman model is the primary model 
of choice. This contrasts with the later Sobocinski et al. (2020) study in which the model choice is made explicit 
early on the theoretical framework section, providing clear signposting for the reader. The Rodríguez et al. (2018) 
study is clear in its theoretical focus on the SRL and provides a comprehensive theoretical treatment on the subject, 
signalling the Zimmerman (2000) and Pintrich (2000) models for particular focus. The method and results section, 
however, abandon any explicit linkage with SRL, in favour of a more atomic interpretation of video interactions. This 
disconnect weakens the impact of the paper, somewhat. The desire to provide a rich context is admirable, but should 
be tempered to ensure clarity and narrative cohesion.
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5.3. Validity
Validity is fundamentally dependent on the empirical evidence (Messick, 1987; Winne, 2020). An important ap-

proach to gauging reliability and validity is to triangulate the measurement between different data channels, which uses
several different processes or instruments to record data about the same event or pattern (Winne, 2020). Although trian-
gulation across measurement protocols is infrequent, there are some notable examples in our sample. The Sobocinski
et al. (2020) study derived a set timeline-style graphs that show how physiological state changes occurred temporally
in terms of changes in learning regulation. Järvelä and Bannert (2021) also presented a similarly impressive set of
multidimensional timeline diagrams based on a triangulated multimodal study. In these cases, SRL phenomena were
measured from concurrent sources, providing a more robust analysis.

In many of the studies in our sample, the central LMS/MOOC/OELE system is a learning platform and a source for
study data. In this context, the decision to use an authentic, experimental, or hybrid LMS has fundamental implications
formeasurement of SRL.Authentic LMSs generate authentic LMS data, providing researchers with some small weapon
in the battle for validity. The use of such data, however, necessitates a level of pre-processing or transformation into
more recognisable SRL (or related) processes, which introduces its own questions around validity. Additionally, whilst
model-driven transformations of this kind are valuable for observational studies, they pose challenges for researchers
who seek to provide educators with timely, in situ classroom insights. The Boroujeni and Dillenbourg (2019) study
was important in this respect as it presented an unsupervised discovery method that required no theoretical framing,
and only the collection of action sequences as input. The authors suggest that it could be used to analyse interaction
patterns in various online learning environments. Semi-experimental systems, such as nStudy (used in the study by
Järvelä et al. (2016)) and Learn-B (used in the study by Siadaty et al. (2016b)), potentially provide researchers with
richer, SRL-aligned data, despite questions around the authenticity of such systems. The challenge here is to exploit
the outcomes from these findings in authentic settings, which demands that researchers explore better instrumentation
tools for SRL; ones that that can used across different educational contexts (van der Graaf et al., 2021).

A key aspect of our studies is the focus on comparison and comparative methods. Some studies enhance the validity
of research by focusing on patterns that can reflect a certain degree of discrimination. For example, Munshi et al. (2018)
focused on the contrasting affective states of high and low performing students; theywere able to enrich the comparative
dimension of their research by observing differences in response from receiving feedback from the virtual agents, or
not. A similar type of multi-level comparison was employed by Lim et al. (2021), who extracted strategy patterns from
two different undergraduate courses, mediated also by the provision, or otherwise, of online feedback. These examples
demonstrate how the robustness of validity can be increased through sophisticated comparative criteria. The scope
of our review, by its very definition, encompasses studies that did not rely on variable-centric statistical measures.
As such, interpretation of the observed phenomena cannot be validated in isolation in the same way as such studies.
Therefore, there is much value in comparing sample groups, for example, high vs low performing learners or student
clusters who used different learning tactics. It is in these comparisons that real insights can be found. Conversely, a
critical validity question is, did the delineations genuinely reflect differing behaviours or did the researchers (knowingly
or unknowingly) implant meaning based on those delineations? For example, if we group learners by assessment marks
(high vs low) and observe different learning patterns, are we observing patterns which genuinely reflect better or worse
learning, or are we projecting desired outcomes into these patterns of learning. In other words, whilst comparison
is of key importance, researchers must retain analytical objectivity, and resist the urge to project meaning into group
behaviour that is not really there.

In a push toward confirmatory research in SRL and temporal analysis, we must be wary of dampening innovation
and novelty in pursuit of inferential solidity. Key studies in our group did not rely on large sample sizes (e.g., Siebert-
Evenstone et al. (2017); Bakhtiar and Hadwin (2020)) but nonetheless extracted nuanced insights not detectable in
larger samples. This is not to dissuade using large samples, but to entertain a narrative where sample size is not
inherently critical. Large sample sizes, such as those found in MOOC-based studies, provide insight on a broader
scale. This scale, in combination with the promise of data free of the context of offline interactions, makes MOOC
analysis a compelling option for SRL researchers. It also brings its own set of challenges; MOOC learners’ motivations
and goals can be subject to significant diversification; it would be wrong to assume that all engage from start to finish,
or that they align their learning goals with the design of the course. As such, the broader scale of analysis dilutes
nuance, with important implications for research validity. One suggestion to improve the interpretation of SRL related
dimensions, is to focus on specific sub-groups of MOOC learners (Chen et al., 2020).

Finally, we argue that although multi-method analysis can provide rich insights, even greater empirical gains can be
made in employing multi-channel analysis in which the same SRL phenomena are analysed, based on data collection
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from different data sources, providing the opportunity for validation through triangulation; the Järvelä et al. (2016)
study, for example, triangulated chat discussions and trace data to identify evidence of socially shared regulation.
Notwithstanding the demands on resources and skills that such experimental projects demand, the potential of true
ontological triangulation and a movement towards some sort of grounding of truth, or the generation of a set of credible
proxies, is a compelling one.
5.4. Temporal SRL

This question builds on the previous ones but invites a discussion on the specific implications of temporal analysis
for SRL research, and its ongoing impact. The analytical outcomes of the studies included in the review are determined
not just by the endpoint discovery algorithms, but by the broader design of the study. The use of think-aloud protocols
(e.g., Bannert et al. (2014)) provided the affordance of clearly articulated SRL processes at both meta-cognitive and
cognitive levels, as well as motivational and affective phenomena. The obvious advantage here is that a complete
picture of SRL can be gleaned, providing nuance which is also timestamped. Whist the experimental nature of the
method hinders its immediate impact, its strength lies in its exploratory richness. Similar richness of insights can
be gleaned from observed/recorded discourse analysis (e.g., Nguyen et al. (2021)), which removes the responsibility
of articulation from the learner but shifts it to the researcher. Trace data studies provide insights from authentic
learning platforms and whilst the nuance of self-report cannot be matched, robust SRL coding can unearth key insights.
The Saint et al. (2020b) study, for example, identified optimal and sub-optimal patterns of SRL in terms of temporal
likelihood (i.e., the relative likelihood of moving from one SRL process to another), identifying cohesive and less-
cohesive patterns of SRL, in the context temporal order.

It is clear that the studies that employ PM seek to articulate a sense of temporal movement between SRL processes,
or between learner actions and tactics that indicate a sense of self-regulation. The studies that employ ENA provide a
different perspective, which seemingly goes against notions of SRL as sequential and cyclical process. Nonetheless,
positioning SRL processes in network space allows for the identification of SRL behaviours that are likely to happen in
close temporal proximity, as well as providing a qualitative view of SRL constructs in a network space. The Paquette
et al. study, for example, was able to articulate intricate behaviours, for example, “When assessing their solution, they
showed stronger connections between quiz taking, quiz result views, and coherent responses to those results (readings
and adding or revising a link)” (2021, p. 197). Several studies (e.g., Saint et al. (2020a)) used multiple methods (ENA
and process mining) to elicit a more multi-dimensional view of SRL. A key lesson can be learnt from this; certain
analytic methods (e.g., ENA) relegate less-frequent processes in visual terms, and some cases (Fuzzy Miner) remove
them entirely from analysis or merge them with other less frequent processes. This is problematic for SRL research
where meta-cognitive activities, such as planning or reflection, happen less frequently by definition, but are critically
important in the analysis of SRL. In studies that use first order Markov models, where likelihood, not frequency, is not
measured, such meta-cognitive activities retain prominence. Conversely, their presence may distort the absolute view
of SRL engagement. In this context, researchers must be aware of the nuances of temporal analysis and how it can be
impacted by the distortions in metrics and associated visualisations.

Most studies make assumptions that learners can only engage in one activity at a time. While this may be true at an
atomic level (e.g., a learner cannot read two books at the same time; read and write at the same time), it becomes more
complex when we aggregate learner actions to a learning construct, such as an SRL process. For example, the activity
of reading, a lower cognition activity, may simultaneously be part of a higher cognition activity, such as planning
or reflection (Kim et al., 2020). We face the possibility of simultaneous engagement in lower and higher cognition
processes, and overarching meta-cognition. In this context, the segmentation and categorisation of units of learning in
temporal space is critical future research on possible simultaneous engagement into different SRL processes.

6. Future Work and Recommendations
The studies in this review were realised in an exploratory period of temporally focused SRL research, and some can

be seen as genuine state-of-the-art demonstrations of what can be achieved when combining novel methods with strong
theoretical underpinnings of SRL. It is, however, telling that many of the analytic methods originated in more general
business settings, specifically the process mining algorithms that dominate our sample. Great steps could be made
in the development of analytic methods designed in data-driven educational research. There are a number of novel
methods in our review which seek to achieve this, but only epistemic network analysis has evolved as a recognised
technique to be used in educational settings. It is very encouraging that this technique is being developed further to
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encompass temporal sequence as well as association (Fogel et al., 2021), and we argue that this should inspire other
researchers to develop algorithms with educational research as a main focus, in addition to using platforms born of
commerce and business.

Whilst temporally focused SRL still needs more exploratory studies, the move towards more impactful research
relies on building on the lessons learnt thus far, and providing a clear articulation, in such studies, of the empirical
scope and trajectory. In conducting our review, we perceived that many of the studies would benefit from an increase
in conceptual and methodological clarity. We argue that this clarity should be viewed through the lenses of: i) method,
ii) theory, iii) validity, and iv) temporality. To that end, we present a framework of questions for researchers to address
before embarking on temporally focused research into SRL:

Methodological Considerations
1. Are we aiming for exploration or experimentation, or impact and confirmation?
2. Are we using trace data or self-report?
3. Are we using a combination of data collection methods to analyse related phenomena?
4. Are we using combination of data collection methods to analyse and triangulate the same phenomena, i.e., multi-

channel?
5. Have we fully assessed the strengths of the proposed analytic discovery algorithm?
6. Can we easily make use of combining the insights of multiple data analysis algorithms or metrics?
7. Does the discovery algorithm lend itself to ready comparison of multiple models?
Theoretical Considerations
8. Are we using an SRL model more as context rather than an actual method framework?
9. Are we using a single SRL model or framework explicitly in our method?
10. Are we using a combination or consolidation of models?
11. Are we using a model/framework to categorise actual learner actions/verbal utterances, or just to categorise

learners into groups?
Validity Considerations

12. How robust is our theoretical model of SRL?
13. Are we using an SRL coding framework to interpret/transform raw data?
14. How robust is the coding framework in context of our chosen model of SRL?
15. To what extent can we triangulate our analyses?
16. To what extent can we transfer our findings to new settings?

Temporal Considerations
17. Are we conceptualising temporality as frequency/duration or in terms of order and sequence, or both?
18. How do we clearly articulate our conceptualisation of temporality to the reader?
19. How do we clearly articulate this conceptualisation in its underpinning of SRL?
20. How are we segmenting units of time in our study?
21. Can we justify our choice of discovery method in the temporal context of our study?
We would further advise that once the parameters of the chosen model of SRL have been established, to avoid

lengthy treatises on multiple models of SRL that are not going to be used in the study. If researchers collectively
clarify their position in papers on SRL, the community can more readily join up its research and push it forward.
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2.3 Summary

The systematic literature review presented here provides insights into the landscape of temporally

focused SRL, in answer to research question one (RQ1). Apart from providing a comprehensive

articulation of the research landscape, it also provides the reader with a set of broad considerations

for potential researchers to accommodate when embarking on projects in this area.

From a methodological viewpoint, it is clear that researchers are answering the call, initiated

by Reimann (2009), to challenge ontological limitations of conventional statistical analysis. We are

not suggesting that conventional statistical analysis should be abandoned, but that its positioning at

the go-to analytical option should be questioned in scenarios where sequence and temporality are

key. In fact we would suggest that its presence, alongside more temporally oriented methods, has

unarguable analytic potency. This notwithstanding, we argue that the choice of analytic method

should be approached with greater consideration than is generally articulated in the studies. This

is not a criticism; many of the studies explored novel methods in the pursuit of richer insights, and

future researchers can benefit from this exploration. In short, we encourage an explicit assessment

of methods in the context of the study aims. We also argue that value can be gained in combining

methods, thus avoiding methodological compromises inherent in choosing a single method. We

explore this theme in an applied sense in the studies reported on in Chapter five and Chapter six.

From a theoretical viewpoint, we see that the usage of SRL models is subject to nuance. In

some cases, a clear model is chosen and applied in a way which directly effects how the study data

are transformed and presented and a framework is clearly articulated. The studies underpinned

by the Greene and Azevedo (2009) micro-level process method (e.g., Siadaty et al. (2016)) are

testament to its clarity. Other studies (e.g., Kizilcec et al. (2017)) employ SRL models to inform

survey design as a means of assessing different groups of learners in context of their SRL mastery

(or perception thereof). In many cases, SRL is presented more in a theoretical context as opposed to

an applied framework. Key decisions arise around the use of a complete model of SRL, or some sort

of consolidated SRL framework. There is an argument that while the major SRL models provide

differing focuses, they all share temporal and cyclical commonalities as highlighted by Panadero

(2017). As with methodological choices, there is much to consider, but an explicit appraisal of the

choice and deployment of an SRL model should be undertaken and justified in the work. Our hope

is that this will go some way to address the call, issued by Gašević et al. (2015), that all LA research

should have a strong basis in theory.

Leading on from this, the subject of validity is arguably more difficult to tackle in this context as

it is in settings where researchers can rely on conventional statistical constructs. Nonetheless, the

way researchers approach validity can be informed by decisions over data collection and transfor-

mation methods, as well as that of comparative analyses. Indeed, the comparison of learner groups

is central to many of our studies; the scope of our review encompasses studies that do not rely

on variable-centric measures, so the interpretation of the observed phenomena cannot be easily
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2. TEMPORALLY FOCUSED SELF-REGULATED LEARNING

validated in isolation. In undertaking a comparison, do the delineations genuinely reflect differ-

ing behaviours or did the researchers (knowingly or unknowingly) implant a biased meaning? We

argue that researchers should retain analytical objectivity, and resist the urge to project meaning

into group behaviour that is not really there. We argue that great empirical gains can be made in

employing multi-channel analysis in which the same SRL phenomena are analysed, based on data

collection from different data sources. The potential of true ontological triangulation, and a move-

ment towards some sort of grounding of truth, is a compelling one.

From a temporal viewpoint, in our studies, there are examples of broad and narrow temporal

segmentation; from semester-long periods to event sequences that can be counted in minutes, or

even seconds. It is, however, important to maintain a broader perspective. Chen et al. (2018) con-

ceptualised two broad temporal features: i) The passage of time relating to duration or frequency;

and ii) a representation of how events are ordered and their relationship in terms of ongoing se-

quence. The latter emphasises temporality as order and sequence and, as Reimann (2009) states,

order matters because learning is a cumulative sequence of experiences. This brings us back to

the methodological considerations of our analytic discovery method; do we focus on directional

association, as emphasised in process mining algorithms, or do we focus on temporal proximity, as

emphasised in epistemic network analysis? The recent development of the dENa algorithm (Fogel

et al., 2021), may prove to bridge the gap between these temporal perspectives. This notwithstand-

ing, researchers must be aware of the nuances of temporal analysis, and how it can be impacted by

the method-specific distortions inherent in each method.

In addressing these key elements, this chapter forces a conversation and provides a more cohe-

sive framework for future research in this area. Critically, this chapter provides a context for the

rest of the thesis, which proposes a novel combination of analytic methods to explore SRL through

the lenses of temporality and sequence. This context is shaped by these factors:

• Temporally focused analysis. The studies in our systematic review of literature demonstrated

the methodological importance of decisions made around discovery and analytic algorithms.

In certain studies, entirely new techniques were developed to address specific dimensions of

temporality and sequence (e.g., the sequence models developed by Mahzoon et al. (2018)); in

others, techniques were appropriated from industrial and commercial analytic tools. Consid-

erations of replicability led us to explore the use of various existent process analytic platforms,

with a focus on probabilistic (or stochastic) process mining. At this stage, nobody had made

extensive use of stochastic process mining to explore learner behaviour. We suggest that the

use of such probabilistic metrics synergises with the Winne (2010) conceptualisation of SRL

as a sequence of events, in which likely sequences be articulated across contrasting learner

groups. We argue that use of a relative scale is helpful in the study of SRL, where high-level,

meta-cognitive processes, such as planning or reflection, may not happen often, but are of

key importance. The studies presented in the following chapters represent the only studies
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2. TEMPORALLY FOCUSED SELF-REGULATED LEARNING

which combine this particular form of processing mining with a formal method of SRL data

transformation. The process mining algorithm is first explored in the study in Chapter three,

but in truth, this exploration, and a broader process analytic exploration underpins all studies

reported on in the remaining chapters.

• Employing systematic interpretations of algorithm metrics. Leading on from the first

point, we noted that the interpretation of process mining metrics was subject to some vari-

ation, with only the studies by Ahmad Uzhir and Matcha (e.g., Ahmad Uzir et al. (2020),

Ahmad Uzir et al. (2019), and Matcha, Gašević, Ahmad Uzir, Jovanović, and Pardo (2019),

Matcha, Gašević, Ahmad Uzir, Jovanović, Pardo, et al. (2019)) demonstrating a relative con-

sistency of interpretation, albeit without embedding a model of SRL. Our own studies not

only demonstrate robust analytical interpretations, but (in Chapter six) we issue a rallying

call, echoed in our systematic review of literature, for a more considered choice and deploy-

ment of methods and metrics, going forward, which could apply to both SRL and SRL-based

studies.

• Embedding a recognised model of SRL. We noted that this area was subject to the greatest

variation and nuance of deployment. Whilst a reasonable number of self-report studies made

use of SRL-informed frameworks to transform utterances into recognised SRL processes, only

the Siadaty et al. (2016) study employed a similarly robust method, (micro-level processing

(Greene & Azevedo, 2009)), in trace data settings, albeit in experimental settings. In the

study reported on in Chapter four, we deploy a semi-automated method to frame authentic

trace data in recognised SRL constructs; something which, as far as we are aware, had not

been done before.

• Consolidation of methods and metrics. A number of studies proposed the use of multi-

ple analytics methods to enrich analysis (Ahmad Uzir et al., 2020; Fan et al., 2021; Matcha,

Gašević, Ahmad Uzir, Jovanović, Pardo, et al., 2019; Swiecki et al., 2019); none of them em-

bed their analyses in true models of SRL or offer the promise of consolidating interpretations

through algorithm metrics. In Chapter five and Chapter six, not only do we compare the rel-

ative strengths and limitations of multiple analytic methods through the analysis of common

datasets, but demonstrate how outcomes from these methods, and the metrics they provide,

can be consolidated to provide a multi-dimensional view of SRL.
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3 Exploration of Temporality and Probability

from Trace Data

It is the concept of likelihood that a real understanding of probability

resides, and we must learn how to measure it.

— Anthony Stafford Beer, Management Science

3.1 Introduction

W E established in Chapter two that the temporal aspect of learning has emerged as a key

interest in the field of learning analytics. Although we can view the temporal nature of

learning as it relates to the passage of time (i.e., duration of engagement with a learning event),

we can also view it in the context of sequence and order (Chen et al., 2018). The conceptual and

ontological challenges that exist around the measurement and analysis of the temporal associations,

as highlighted by Reimann (2009), impose key methodological decisions for researchers in this field.

A number of valuable studies, such as Kinnebrew and Biswas (2012), Lust et al. (2013), Jo-

vanović et al. (2017), and Fincham et al. (2019), used analytic techniques to capture various di-

mensions of learner actions and tactics from trace data but these techniques did not represent (nor

did they seek to represent) the dynamics of temporal analysis that Reimann (2009) and Chen et al.

(2018) articulate. In this context, process mining has a strong methodological presence. The stud-

ies by, for example, Bannert et al. (2014), Sonnenberg and Bannert (2015), and Malmberg et al.

(2015), provided the promise of temporal analyses using process mining, but derived these analy-

ses from self-report data collection methods. One major tenet of our thesis is use of authentic trace

data as a collection source, in response to various concerns around the veracity of self-report data

collection, as reported by Winne and Jamieson-Noel (2002), Zhou and Winne (2012), and Bjork

et al. (2013). The study reported on in this chapter was a response to the rarity of trace data-based

analyses that emphasised sequence and temporality. In addition, the promise of exploring this tem-

poral dynamic through analyses of sequential likelihood, as afforded by the use of first order Markov

models derived from stochastic process mining, was entirely unexplored.

To that end, this chapter investigates the utility of stochastic process mining in articulating the
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3. EXPLORATION OF TEMPORALITY AND PROBABILITY FROM TRACE DATA

comparative temporal and sequential characteristics of different learner strategy groups, and as-

sesses the outcomes in contrast to basic statistical measures. The study presented in this chapter

serves to investigate research question two (RQ2), that is, How effectively can we measure the tempo-

ral dynamics of learning strategies in delineated student groupings, using process analytic techniques?

3.1.1 Chapter overview

This chapter reports on the findings of a study undertaken to explore the extent to which process

mining algorithms can provide insights into learning strategies and tactic deployment, as derived

from LMS log data. These techniques, which allow the identification of unique arrangements of

activities in a temporal space, do not rely on conventional statistical measures; the phenomena

captured are event based, and the relationships between them are articulated in associative metrics,

such as time-lag or frequency of transition. The study makes use of a novel process mining algorithm,

pMineR (Gatta, Lenkowicz, et al., 2017), in which the associative metric is probabilistic, using

first-order Markov chains to generate the process models. In this context, temporal and sequential

association are articulated in terms of likelihood of transition between activities. It is this “transition

probability” that is central to the interpretation of the process models in this study.

The LMS activities captured were categorised in two ways: firstly by a combination sequence

analysis and clustering which uncovered a set of five action types, specifically, reading course materi-

als, formative assessment, video viewing with associated formative assessment, reading course materials,

and summative assessment; secondly, time management attributes where added, based on the point,

relative to the week of study, when the activity was undertaken, specifically, ahead, preparing, re-

visiting, and catch-up. The work undertaken by Jovanović et al. (2017) is important as it provided

a set of student groups characterised by engagement strategy that we were able to further charac-

terise using our process mining analyses, that is, Active Agile, Efficient, Summative Gamblers, Active

Cohesive, and Extreme Minimalists.

The process mining algorithm used in this study—first order Markov modelling via the pMineR

package—had not been used in LA research at the time of publication; it was created to explore

process modelling in the medical sector. We recognised its potential as way of modelling learning

engagement through probabilistic association and of characterising learner groups through a sense

of likely movement, or transition, between action sequences. In Chapter two, we posited that group

comparison is a powerful means of articulating learner behaviours. In this chapter, we characterised

groups individually, but additionally were able to include pairwise comparisons of a selection of the

student groups. This was facilitated by the affordances of the pMineR platform, which allowed the

direct mapping of one process model onto another, highlighting key differences in behaviours as

seen in transition probabilities. The resulting “compare” plots provided key insights for our study.

As far as we are aware, no other process mining platforms provide this comparative mechanism

although a similarly useful visual comparison is available using epistemic network analysis (see
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Chapter five).

3.2 Publication: Detecting Learning Strategies Through Process Mining

The following section includes the verbatim copy of the following publication:

Saint, J., Gašević, D., & Pardo, A. (2018). Detecting Learning Strategies Through Pro-

cess Mining. In V. Pammer-Schindler, M. Pérez-Sanagustín, H. Drachsler, R. Elferink,

& M. Scheffel (Eds.), Lifelong Technology-Enhanced Learning (pp. 385–398). Springer

International Publishing. https://doi.org/10.1007/978-3-319-98572-5_29
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2 Regents University London, London, UK
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Abstract. The recent focus on learning analytics to analyse temporal dimensions
of learning holds a strong promise to provide insights into latent constructs such
as learning strategy, self-regulated learning, and metacognition. There is,
however, a limited amount of research in temporally-focused process mining in
educational settings. Building on a growing body of research around event-based
data analysis, we explore the use of process mining techniques to identify strategic
and tactical learner behaviours. We analyse trace data collected in online activities
of a sample of nearly 300 computer engineering undergraduate students enrolled
in a course that followed a flipped classroom pedagogy. Using a process mining
approach based on first order Markov models in combination with unsupervised
machine learning methods, we performed intra- and inter-strategy analysis. We
found that certain temporal activity traits relate to performance in the summative
assessments attached to the course, mediated by strategy type. Results show that
more strategically minded activity, embodying learner self-regulation, generally
proves to be more successful than less disciplined reactive behaviours.
Keywords: Learning analytics · Process mining · First order Markov models
Temporal dynamics · Self-regulated learning

1 Introduction

Enhancing learning experience is one of the primary goals for many higher education
institutions. Approaches such as flipped classrooms offer some promise of advancing
student academic performance and satisfaction [1]. However, the emphasis on the self-
directed use of technology to complete learning activities increases a need for students
to have high skills for self-regulated learning. Poor choices of study tactics and strategies
are often reported in the literature, through the collection of student self-reports.
Although such approaches can offer some insights to the ways students study, they offer
little information that can be used by educators to offer guidance to students in real-time.

The development of the field of learning analytics promises to provide insights into
learning strategies by analysis of trace data about students’ use of and interaction with
online resources provided in learning management systems (LMS). Machine learning
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techniques have been used to explore trace data sequences to reveal distinct strategies
and approaches to learning e.g., [2–4]. Nonetheless, a section of these studies uses stat‐
istical methods and focus more on engagement frequency/categorisation where the
dimension of time (critical to this study) is not considered e.g., [5, 4]. Others recognise
time as a dimension, but this is restricted to measurement of time on task, and not a
reflection of true inter-process temporal dynamics e.g., [6]. Another section of studies
provides key insights into learner engagement over time, as opposed to comparative,
stochastic inter-strategy analyses e.g., [7].

This paper reports on the findings of a study that was set out to explore the extent to
which process mining techniques can provide insights into learning strategies provided
by current approaches based on machine learning methods. Specifically, the study used
first-order Markov chains to complement the findings of an existing method, based on
machine learning, to examine internal dynamics of learning strategies and perform inter-
strategy comparison in terms of the temporal sequencing of individual activities can be
performed. The results showed that proposed approach provides a genuine insight into
inter and intra-tactic dynamics, providing a different dimension to the narrative around
learning strategy presently reported in the literature. The study also provides a view of
learning malformation as typified by movement through and between study actions.

We use first order Markov models (FOMMs) as an initial exploratory process-mining
algorithm with a view to testing their viability as an interpretive tool for learning
sciences. FOMMs are based on transition probabilities between sets of processes. It is
proposed that this type of stochastic insight combines effectively with the process
activity formulation described in the methodology section.

2 Background and Related Work

2.1 Learning Strategy
The utilisation of effective study strategies is an important factor of effective self-regulated
learning (SRL), as is the awareness of the relationship between these strategies and the
aspired outcomes [8]. As stated by Boekaerts, self-regulated learners are “…aware of what
they know and feel about the domain of study, including which general cognitive and moti‐
vation strategies are (less) effective to attain the learning goals….” [9]. Accordingly, they
are aware of the attributes of their own knowledge, motivations, beliefs, expectations, and
cognitive behaviours, and seek to reapply ongoing task-oriented mediation, in keeping with
their defined goals and standards [10]. However, the standards learners use for evaluation
of the choices of their learning strategies and products of their learning can be suboptimal.
Winne and Noel-Jamieson showed that learners generally overestimate their use of indi‐
vidual study tactics [11]. Bjork et al. [12] suggest that learners mostly use ineffective study
strategies – e.g., reading and re-reading text instead of practising memory recall through
self-testing. The challenge, therefore, is to determine an effective analytical method of
capturing and measuring the choices of study strategies and tactics to enhance the effective‐
ness of learners’ self-regulation. Study tactics and strategies are closely related concepts.
Winne [13] characterises a set of tactics and strategies, as well as an overarching sense of
metacognition employed in the learning process. In doing so, he identifies three key aspects
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of SRL. A tactic can be viewed as an if-then construct, e.g., if I read an article which
confirms an aspect of my theory then I will add to my corpus. We could extrapolate this to
include else e.g., else I will seek to refine my theory. A strategy is structured arrangement
of cognitive tactics. Finally, metacognition is a learner’s management of their own cogni‐
tive strategies, and the development of an overarching knowledge management strategy,
encompassing self-awareness.

2.2 Analytics of Learning Tactics and Strategies
The use of trace data to study learning strategies has been galvanised through the foun‐
dation of the field of learning analytics. Several authors proposed the use of unsupervised
methods for the study of learning strategy. Lust et al. [5] used clustering to identify user-
profiles through learner behaviours, identifying profiles through frequency of activity
engagement of content management system supported course. In an attempt to add a
temporal dimension, Lust et al. [14] augmented their research with an analysis to identify
changes in learner strategies between the first and second half of the course. Similarly,
Kovanović et al. [6] use a hierarchical cluster analysis to extract learning strategies of
learners and to understand the extent to which those strategies were associated with the
learners’ level of cognitive presence in online discussions. Although the results of these
studies are relevant for understanding the connection between learning strategy,
academic performance, and cognitive presence, these studies offer little insight into how
learners sequence their activities with each of the strategies identified. Thus, learning
strategies are looked at as summaries of the quantities of activities rather than temporally
sequenced activities based on some strategic choices.

Analysis of temporal links between actions learners take has also been used in the liter‐
ature on learning strategy. Kinnebrew et al. utilised a computer-based learning environ‐
ment to measure students’ cognitive and meta-cognitive development using sequence
mining techniques [15, 16]. Jovanović and her colleagues [3] utilise a combination of an
unsupervised machine learning technique with a sequence mining algorithm to explore the
extent to which meaningful learning strategies can be extracted from trace data. Their
follow-up study showed that learning strategies extracted from trace data are associated
with deep and surface approaches to learning [2]. Fincham et al. [7] extract study tactics
by using hidden Markov models and then apply a clustering exercise, which partially
mirrors Jovanović et al. [3], to extract study strategies. Both Jovanović et al. and Fincham
et al. studies found that such the use of learning strategies extracted this way was associ‐
ated with academic performance. While these studies provide key insights into learner
engagement over time, they fall short of providing comparative inter-strategy analyses.

Process mining techniques provide viable tools for comparative inter-strategy anal‐
yses, though these methods are typically used on think aloud data. Bannert and her collea‐
gues [17] use process mining techniques to analyse think-aloud data logged from a
student-group’s navigation through an LMS. The think aloud data were coded for pres‐
ence of micro-level processes of SRL (e.g., goal-setting) and analysed with the Fuzzy
Miner process mining algorithm to compare differences in SRL between high and low
performing students. In Sonnenberg and Bannert’s follow-up study [18], the same methods
are used to measure the impact of metacognitive prompts in similar LM environments.
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These studies are significant in that they present a novel way of capturing and measuring
SRL on the level of SRL micro-level processes. The studies, however, do not provide
insights into learning strategies followed by learners while using an LMS to study.

3 Methodology

3.1 Data Collection
The data for this study were collected from an LMS attached to a computing course at
a university in [anonymised]. The course was based on a flipped classroom pedagogy
and the data used in this study were about students’ engagement with the online activ‐
ities, which served the purpose of preparation for the face-to-face activities. Each time
a student engaged with an element of the LMS, a learning event record was generated
containing a student ID number, a timestamp, and the completed study action. The study
actions were: watching video; reading textual content; response to summative problem-
solving exercise along with information about correct and incorrect responses; response
to a question from formative quizzes with information about correct and incorrect
responses and whether the students asked to see the correct response; dashboard view,
and view of lesson objectives. The student cohort consisted of 290 students who collec‐
tively generated 184,211 learning events. The course lasted 13 weeks, comprising two
main bouts of activity: Weeks 2 to 5 and 7 to 12. In week 6, the students completed a
summative mid-term assessment, and in week 13 a final exam. It is crucial to note that
successful completion of summative assessment tasks contributed to 10% to the overall
module mark. Scores from mid-term and final exam are also used for analysis.

To understand how students managed individual study actions, we added, for each
study action, the following four attributes about time management: preparing –
completing an action on a topic in the designated week; revisiting – completing an action
on a topic introduced a previous week, having completed the action in the previous week;
catching up – completing an action on a topic after the week in which that topic was
introduced for the first time; and ahead – completing an action on a topic ahead of the
designated week. This provides an insight into the access timing of the study actions
and therefore time management of student tasks.

3.2 Data Analysis
Extraction of Learning Tactics and Strategies. The work carried out in [3] is of
primary importance to this study. It provides a method for automated extraction of
learning tactics and strategies from trace data about students’ interaction with online
resources. The method was composed of two levels of analytics based on unsupervised
machine learning methods – i.e. clustering. Firstly, learning tactics were extracted by
analysing study sessions. These sessions were delineated by temporal gaps; a simple
example would be a group of study actions beginning and ending in a twenty-minute
period. If we observe a gap of more than one-hour between the last action of this period
and the start of another action sequence, then we can define it as a session. These sessions
were clustered based on similarity of the actions performed by the students. Exploratory
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sequence analysis was implemented using TraMinerR R library [19] and followed up
with a hierarchical cluster analysis with Levenshtein distance and Ward’s method, as
proposed in [3]. This generated four strategy types, based on the predominant study
action type: reading course materials, formative assessment, video viewing with asso‐
ciated formative assessment, reading course materials, and summative assessment.
Secondly, learning strategies were extracted through an agglomerative hierarchical
clustering with Euclidian distance and Ward’s method, based on the frequency of the
use of the four study tactics by each individual student in the sample. This analysis
identified five learning strategies (also referred as strategy groups) which provided
insight into how students sequenced individual study actions within each of the strategy
groups. These strategy groups, integral to the study in [3], had a significant part to play
in the current study. The strategy groups in this study differ slightly from those in the
study [3] as we removed single-event sessions from the dataset. This affected sequence
clusters and propagated to strategy groups.
Process Mining. PM seeks to capture event or process-based data. The starting point
of PM is a dataset in the form of an event log. The required elements to run a PM
algorithm are:
• Case: a process instance. This could represent a human actor, or a more abstract

construct, such as a learning cycle. In our study, student ID was the case role.
• Activity: a well-defined step in a broader process. In our study, concatenation of

strategy types and time management attributes was used, e.g., Formative Assessment
& Catch-up, or Summative Assessment & Preparation

• Timestamp: ideally one for the beginning and the end of the activity, but more usually
just one stamp is available. Timestamps of activities in our trace data were used.
In this sense, trace data supply raw material for examining learning processes. Tradi‐

tional frequency-based analytic methods do not adequately reflect these learning
processes as they flow and change over time. The selection of model discovery algorithm
is key. Out of the traditional algorithms: we rejected Heuristic Miner because it is more
suited to processes with fewer event types than we have; we rejected Multi-phase miner
as it is more suitable for cleanly structured, simple log data (unlike ours); Fuzzy Miner
produces interesting overviews of learning processes but does not provide the crucial
stochastic metrics we seek to use [20]. We chose FOMMs to explore the novel possibility
of combining stochastic analysis and temporal event data [21]. We employ the R package
pMineR [21, 22] to train and generate FOMMs based on the learner strategy groups
extracted in the procedure as previously explained. The pMineR package provides
FOMM visualisations and probability transition matrices which allow analysis and
comparison of temporal patterns of process engagement. Examining these patterns
provides some insight in the tactical differences between the identified strategy groups
in relation to SRL traits.
Strategy Group Characterisation – Intra-Strategy Group Analysis. FOMMs were
trained and generated for each strategy group. Characterisation is informed by Winne’s
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construction of learner strategy and study tactics, as articulated by Fincham [7]. We
provide an interpretive narrative for each group, and then characterise them accordingly.
Strategy Group Comparison – Inter-Strategy Group Analysis. We first identified
significantly distinct strategy groups by assessment performance. We undertook pair-
wise comparisons based on mid-term scores and by final assessment (see Table 2). As
ANOVA assumptions were not satisfied, we undertook a Kruskal Wallis test, followed
by pairwise Mann Whitney U tests, using False Discovery Rate (FDR) to accommodate
alpha inflation. From our pairwise analysis, we elected to compare two pairs of strategy
groups. Firstly, we chose only pairs that demonstrate statistical difference in assessment
means. From these pairs, we made a valued assessment on the most potentially insightful
comparisons, based on high versus low mid-term/final exam performances. To provide
comparative insights, we interpreted the comparison diagrams of two pairs of strategy
group FOMM models. In each case one strategy group is mapped onto another group
(see Fig. 2). The arcs in black represent similar transition probabilities (TPs). Red arcs
represent a comparatively lower TP of the mapped model; green arcs represent a higher
TP. In cases of disparate TPs, both probabilities are shown. To simplify presentation, a
TP threshold of 0.05 is has been set.

4 Findings

The findings present the intra-and inter-strategy group analysis performed by using the
FOMM. Due to the size of the diagrams representing the final FOMMs, this section
includes only excerpts of the main FOMM diagrams. Complete results of the FOMM
analysis can be found here:
https://www.dropbox.com/s/yqtw20uwiwbnmob/FOMM%20Results.pdf?dl=0.

4.1 Strategy Group Characterisation: Intra-Strategy Analysis
The strategy extraction method proposed in [3] identified five strategies, also referred
to as strategy groups i.e. they represent groupings of the students based on similarities
of their learning strategies. By way of context, Table 1 shows the mean and median
sample scores for each strategy group, and a measure of group activity i.e. number of
events divided by the group sample size.

Table 1. Strategy group assessment scores
Strategy
group

n Mean mid-term
score

Median mid-term
score

Mean final
assessment
score

Median final
assessment
score

Events per
student

1 19 15.3 15 24.7 24 1634
2 70 14.9 16 22.5 20 1295
3 117 12.9 13 17.4 15 986
4 25 15.5 16 23.7 25 1737
5 59 10.7 11 14.6 14 576
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Strategy Group 1. This is a relatively well-performing and active group. Figure 1
shows a section of this group’s FOMM, relating to content access. It demonstrates a
temporally cohesive approach to the reading tasks. The students, when they are engaged
in reading tasks, tend not to get distracted by other activities. There is clear interplay
between the four temporal instances of reading activity. Reasonably enough, in some
cases reading preparation leads to formative preparation. This is a manifestation of well-
formed study patterns. There is a demonstration of movement from video formative
assessment and formative assessment in terms of temporal groupings. For example, there
is 0.09 chance that students will, on completion of video catch-up session, move to a
non-video formative catch-up session. Summative tasks present a neater temporal
grouping. Students are likely to stick within this activity group e.g., students are more
likely, once they decide on a summative activity, to stick with, or move between time-
contextual iterations of the summative task e.g., between summative assessment catch-
ups to revisits, or between summative ahead to preparation. In summary, this group show
elements of cohesive learning but also a tendency to embrace multiple activity types. In
this sense, the students represent an Active Agile strategy group.

Fig. 1. Partial first order Markov model of strategy group 1 (Active Agile)

Strategy Group 2. This group is less active than group 1, and assessment scores
suggest an engagement drop-off in the second half of the course. Nonetheless, this group
displays a similarly cohesive approach to reading tasks. Formative video tasks are parti‐
ally associated with certain reading activities; there is a tendency to touch on these video
tasks before reading catch-up and preparation. This could represent an attempted
strategy to streamline knowledge acquisition through video, before falling back on
traditional content access. It demonstrates a regulation of cognitive learning tactics and
a broader self-regulatory learning strategy. Formative assessment activities are grouped
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temporally, so students do not tend to move out of formative cycles once started. They
do not tend to move freely within the summative groupings, aside from a movement
between catch-up and preparation. Aside from this, once a summative task is attempted,
it is pursued almost without distraction. This group can be typified as Efficient.
Strategy Group 3. This group shows less engagement with all activities. There is a
greater likelihood to attempt the main summative activity without adequate preceding
formative preparation. This group’s approach points to a minimalist strategy, with
inherent gambles on summative success. This group’s FOMM diagram highlights a
movement to summative and reading revisits after several reading activities. This could
indicate a less proactive approach to advanced reading preparation, hinting at a reaction
to poor performance in the summative tests. This still indicates regulation of tactics but
potentially a less effective learning strategy. This group can be typified as Summative
Gamblers.
Strategy Group 4. This is a strong and active group. It presents a healthy and cohesive
approach to preparatory work. In fact, it presents the tightest adherence to activity focus
in the sense of the activity self-loops. The students in this group do not tend to move
freely from one activity type to another, or even from one activity to another. There is
a real sense of disciplined engagement. Interestingly, this group favours video formative
assessments more than others, and shows tendencies to engage in focussed video prep‐
aration and catch-up tasks. This could indicate a desire to streamline learning using more
varied media, in combination with traditional knowledge acquisition tactics. In formu‐
lating the best combination, learners are assessing their own comprehension of knowl‐
edge, and adjusting to fit. This group is typified as Active Cohesive.
Strategy Group 5. This is the least active group, and the weakest performer. Apart
from the overemphasis on summative assessment without preparation, there is a distinct
lack of strategic cohesion. We see a tendency to bounce from activity (type) to activity
(type). The exception to this is the formative activity grouping, where there is a
semblance of temporal coherence. It is difficult to determine whether this group repre‐
sents strategic incoherence, or that the collective paucity of engagement data provides
inconsistent results. This group exhibits non-ideal navigation through its learning envi‐
ronment. The group is typified as Extreme Minimalists.

4.2 Strategy Group Comparison: Inter-Strategy Analysis
A pairwise comparison of the five strategy groups on mid-term and final examination
scores is reported in Table 2. We use this to inform choices of pairs in our comparative
analysis.
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Table 2. Pairwise comparison of assessment scores
Mid-term Scores Final exam scores
G1 G2 Z P r G1 G2 Z p r
2 5 4.3526 0.00001* 0.3832 2 5 4.3792 0.00001* 0.3856
4 5 3.5534 0.00019* 0.3877 1 5 3.9427 0.00004* 0.4464
1 5 3.3147 0.00046* 0.3753 2 3 3.6004 0.00016* 0.2633
2 3 3.3147 0.00046* 0.2424 1 3 3.4207 0.00031* 0.2933
4 3 2.9387 0.00165* 0.2466 4 5 3.4207 0.00031* 0.3732
1 3 2.4740 0.00668* 0.2121 4 3 2.4227 0.00770* 0.2033
3 5 2.2516 0.01217* 0.1697 3 5 1.8368 0.03312* 0.1385
4 2 0.2475 0.40227 0.0254 1 2 0.4706 0.31897 0.0499
4 1 0.3806 0.64826 0.0574 1 4 0.5112 0.69538 0.0771
1 2 0.5730 0.71669 0.0607 4 2 0.5112 0.69538 0.0524

Comparative Analysis: Efficient (2) and Summative Gamblers (3). In this compar‐
ison, the efficient group are significantly better performers than the summative
gamblers, based on both midterm and final exam scores. Figure 2 presents a partial
example of the comparison diagram for this case.

Fig. 2. Partial FOMM comparison diagram: Efficient vs Summative gamblers (Color figure 
online)

Reading Activities. The efficient group demonstrate a greater emphasis on initial 
reading tasks. The initial TP of 0.78 for reading-catch-up sessions (versus 0.53 for the 
summative gamblers) points to a greater awareness of the value of preparatory content-
based activity. Both groups display a similar self-loop TP of around 0.9 reading catch-
ups. The gamblers are more likely to break out of a reading-ahead session to attempt a 
reading catch-up session (0.12). They are, however, less likely to break out of reading 
revisit sessions (0.24/0.17). This points to a slightly more considered approach to reading
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strategy by the efficient group. In the reading preparation task, the efficient group show 
a higher self-loop TP than the gamblers (0.85/0.77), whereas the gamblers show a more 
likely propensity to attempt a summative revisit whilst doing this task. This shows that 
the efficient group are more focussed on the reading task in hand.
Formative Assessment. The efficient group demonstrate higher self-loop TPs for 
formative ahead (0.83/0.63) and catch-ups (0.9/0.83). The gamblers are more likely to 
break out of these task loops to try formative preparation and revisits. Again, this points 
to a slightly more considered approach to task management by the efficient group. The 
gamblers demonstrate a slightly more scattergun approach in this case. Both groups 
exhibit a strong self-loop focus on formative preparation and revisiting.
Video Formative Assessment. Interestingly, the efficient group demonstrate a similar 
video ahead self-loop. They are, however, more likely to break out of this loop to do 
video preparation (0.22/0.07) and/or reading preparation (0.11/0). The gamblers are 
more likely to break out to revisit video assessment (0.2/0) and/or attempt a summative 
assessment ahead of schedule (0.07/0). Again, we can infer that the efficient group are 
slightly more mindful of preparatory strategies, as befits a self-regulated learner.
Summative Assessment. This is, by far, the most popular activity, as it relates to 
achievable marks on the course. The key point of interest is that gamblers are more likely 
to attempt this initially, without any other preparation, than efficient members (0.07/0). 
Regarding catch-up, efficient members are more likely to break out from this loop (0.1/0) 
to do the main summative preparation activity. This indicates that the efficient group are 
more likely to move between weekly summative assessments and to tie up loose ends, 
assessment-wise. This demonstrates a strong sense of self-regulation, as they recognise 
potential gaps in their understanding that require extra work.
Comparative Analysis: Active Cohesive (4) and Extreme Minimalist (5). In this 
comparison, the active cohesive group are significantly better performers than the 
extreme minimalists, based on both mid-term and final exam scores.
Reading Activities. The cohesive group display a healthy regard for reading activities, 
as can be seen by the initial activity TPs. This group is nearly half as likely to embark 
on an initial reading activity as any other, with a combined TP of 0.48 for preparation 
and catch-up. The minimalist group’s likelihood of starting with a reading activity is 
0.28 (specifically catching-up). The weekly-current preparation task is approached 
differently by the two groups. The minimalist group tends to approach it in isolation, 
whereas for the cohesive group it provides a valid option from various states: Begin 
0.09, video catch-up 0.15, reading catch-up 0.14, reading ahead 0.15. This differs from 
the normal behaviour of this group but indicates an ongoing focus on this task. In terms 
of the preparation, the cohesive group maintains a tighter self-loop (0.91), whereas the 
minimalist group is more likely to move off to other tasks (0.77).
Formative Assessment. The cohesive group displays a more considered temporal 
focus. There is a greater tendency to engage consistently with the formative task in hand,
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as highlighted by the higher self-loop TPs around the four formative activities (between
0.9 to 1). We see the minimalist group moving more freely between catch-ups, revisits,
and preparation, indicating a less disciplined approach to formative learning. For
example, the minimalist group has TP of 0.11 in moving from catch-up to revisiting. It
also has a TP of 0.07 in moving from preparation to revisiting. The cohesive group has
a TP of 0 in both cases. Temporally, the cohesive group sticks to its formative task groups
more closely with less jumping between the week-specific material. This could indicate
a different emphasis on controlled, strategy-driven learning.
Video Formative Assessment. The cohesive group places more stock in the use of video
assessments, particularly preparation and revisits. They are more likely to transition to
these activities from other activities, than the minimalist group. Once engaged with these
tasks, the cohesive group does not tend to divert, with self-loop TPs of 1 for the two
most popular video tasks. The minimalist group approaches these tasks more in isolation.
That being the case, they do retain strong self-loops.
Summative Assessment. As in the previous comparison, there are differences in the
lead-up to this key activity. The minimalist group is much more likely to attempt this as
an initial task (0.25/0.09 for prep, 0.23/0 for catch-up), whereas the cohesive group
explores content access and preparatory formative activity first. Regarding the mini‐
malists, it is interesting to note that the main summative preparation task could be a
destination from several other activities: reading ahead (0.06); reading preparation
(0.07), and summative revisits (0.05). For the cohesive group, this task is done more in
isolation, apart from as a destination from one task. The cohesive group treat the
summative task as a more significant event in and of itself. Both groups, once engaged
in the task, retain a tight self-loop.

5 Discussion and Conclusion

Self-Regulation and Summative Tasks. As previously reported in [3], summative
tasks dominate the main activity cycles (as successful completion contributes to the final
overall module mark). Using FOMMs, we can gain insights into strategic navigation
around the other activity types in the context of these summative main tasks. The two
strongest groups, Active Agile and Active Cohesive both demonstrate a healthy regard
for pre-summative preparation and engage in more content access and formative assess‐
ment before engaging in the summative tasks. Interplay between such states indicates a
healthy self-regulatory strategy. In context of the other notable studies that analyse this
data [3, 7], this study provides a genuine insight into inter and intra-tactic dynamics,
providing a different dimension to the narrative around learning strategy.
Summative Gambling. Conversely, the weaker groups exhibit a greater tendency to
attempt the summative work without commensurate preparation. There seems to be an
underlying attempt to by-pass traditional patterns of self-regulation and gamble on
success in the summative tasks. This is a gamble which does not appear to pay off. We
also see reactive outcomes in the groups’ relationship with catch-up and revisits to past
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material. This indicates a more passive, yet performance avoidance, goal-oriented regu‐
lation strategy. Whereas previous studies have provided a characterisation of weaker
performing groups [3–5, 7, 14], our study provides a view of learning malformation as
typified by movement through and between study actions. We therefore have a temporal
context.
Transition Probability Self-loops. Activity self-loops provide insight into temporal
adherence to tasks. It is too simplistic to say that higher self-loop TPs indicate academic
discipline. Movement between tasks and task groups can indicate assured self-regulation
in learning tactics. Nonetheless, we see that disparate task engagement does seem to
indicate a lack of academic focus. This is more apparent in the weaker student groups.
Again, through analysing activity engagement patterns, we can pick up on measures of
learner focus or lack thereof. This dimension is unseen in previous studies.
Performance-based Analysis. There are interpretable differences between higher and
lower performing strategy groups. In this sense, we can say that the method can highlight
effective versus less-effective learning strategies. Discernible patterns, such as those
found in the clustered groups, do appear to exist. This reinforces the need to use effective
non-supervised machine learning techniques in studies of this nature. In this sense we
are not advancing insight on the fact that we can detect performance differences.
Previous studies have linked strategy to performance [3, 7], so in a sense this corrobo‐
ration provides partial validation of the method.
Implications for Practice. This is the first use of a process mining method in combi‐
nation with unsupervised and sequence mining methods to understand learning strategy.
In exploring temporal inter-process dynamics, we have the potential to identify positive
and negative instances of learning strategy management. In instances of malformed
student learning, interventions and remedial actions are a possibility. We also have the
possibility to measure idealised models of student learning against recorded models to
inform course design; if we detect weak engagement points in the model, it may indicate
weaknesses in course design.
Limitations and Future Direction. The study does not provide a set of benchmark
metrics for analysis, so its generalisability and replication value cannot be ascertained
until more similar studies are undertaken. The option to compare high vs low performers
regardless of strategy group, or first half of term vs second half of term, was not explored.
This may have provided more crucial strategic insights than the comparison of strategy
groups alone. These options will be explored in the next cycle of analysis. FOMMs, by
their very definition, provide transition probabilities based on the current event, and
therefore lack event “memory”. We are keen to build on this research and explore higher
order Markov models, hidden Markov models, and other related techniques, such as
conditional random fields.
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3.3 Summary

This study addressed the research question two (RQ2) by utilising the strategy groups captured by

Jovanović et al. (2017) and providing temporally focused insights through the use of first order

Markov models. In doing this, we were able to characterise groups of learners according their en-

gagement with types of learning sequences. In addition, we also associated the groups with course

performance by calculating the group mean and median scores for the required course assessments.

It was interesting to note that although student groups who engaged more actively with the LMS

tended to perform better, a richer set of insights could be gained from our process maps. In gen-

eral, we detected a more cohesive set of learning patterns in groups who performed better in the

assessments.

One of the more interesting insights related to the design of the learning. Aside from the two

main assessment points (mid-term and end-of-term), ten percent of the final mark could be attained

by attempting randomised online summative multiple-choice quizzes. This assessment hook was

designed to encourage learners to engage with a broader set of learning materials before engaging

with it. We noted that the less engaged students tended to focus more heavily on the summative

work but prepared less well for it; in fact, we characterised one of the groups as summative gamblers.

This type of learner was clearly attempting to shortcut the broader learning design in order to

maximise the mark. We were able to make use of the comparative transition probabilities provided

by the process maps, and argue that these types of behaviours, and others described in the study,

would not be detectable using statistics alone. This, we feel, is the major contribution of this study.

Although this work presents a novel and insightful set of methods for exploring learning strategy

and time management, the interpretations are not embedded in a recognised theoretical model

of learning. Although SRL is discussed in the study, it represents a broad theoretical context, as

opposed to a defined set of embedded constructs. To truly embed SRL, we need to design and

implement a codification framework based on an accepted model of learning. To achieve this, whilst

building on the methods discussed in the current chapter, we explored the use of an automated

codification process to transform raw trace data into SRL processes. The study designed to achieve

this goal is discussed in Chapter four.
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4 Embedding Trace data in SRL

Tell me and I forget, teach me and I may remember, involve me and I learn.

— Xun Kuang, Ruxiao (“The Teachings of the Ru”).

4.1 Introduction

I N the previous chapter, we presented a novel process analytic method to analyse the temporal

dimensions of learner tactics and strategies. In this chapter, we aim to build on this work by

transforming the same type of raw data into SRL processes. The transformation or categorisation

of raw data can be motivated by a number of factors. In many cases, raw data are messy or noisy

and this makes meaningful analyses very challenging. In some cases, there is a need to reduce the

dimensionality of a set of data, that is, to reduce the amount of variables collected into a smaller,

still representative, set of variables which can be more readily analysed; techniques such as fac-

tor analysis (Brown, 2015) or principal components analysis (Jolliffe, 2002) are very common in

variable-centric research domains. In studies which pool qualitative data, such as think-aloud ut-

terances (e.g., Bannert et al. (2014)), it is critical that these data are coded into meaningful and

consistent constructs before they are subject to formal analysis. These are all very important reasons,

but we argue that a major driver for data transformation should primarily be to embed analyses in

recognised models of learning, and in doing so, answer the rallying call of Gašević et al. (2015) to

connect LA research more explicitly to existing research into learning and teaching. In this thesis,

the theoretical basis is SRL, and the study reported on in this chapter explores the articulation of

SRL processes from trace data.

The empirical landscape of SRL process analysis, in which raw data are directly transformed or

coded, has been dominated by studies that rely on self-report collection methods or some form of

verbal/observational data capture from video or message forums (e.g., Sonnenberg and Bannert

(2015), Munshi et al. (2018), and Heirweg et al. (2020)), and with some justification; Greene et al.

(2011), amongst others, provide convincing arguments for think-aloud methods in the capture of
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SRL. The arguments against such methods, as stated in the previous chapter, still have weight in this

context. Nonetheless, the study by Siadaty et al. (2016) was, at the time of its publication, the only

study to employ the Greene and Azevedo (2009) micro-level process method to transform raw trace

data into recognised SRL (micro-)processes. These data were, however, generated from essentially

experimental settings, and in the context of professional knowledge workers, not authentic learn-

ers in educational settings. No studies employ micro-level process analysis with authentic learner

trace data. Our study seeks to explore this empirical gap and demonstrate a formal method for the

curation and transformation of authentic LMS trace data into temporally focused SRL insights.

As such, this chapter reports on a study which outlines a conceptual and methodological frame-

work to address some of the challenges set out by Gašević et al. (2015), and serves to investigate

these research questions:

(RQ2) How effectively can we measure the temporal dynamics of learning strategies in delineated stu-

dent groupings, using process analytic techniques?

(RQ3) To what extent can we develop a framework to embed temporally focused analysis of learning in

a theoretical model of self-regulated learning?

4.1.1 Chapter overview

In this chapter, we build on the process analytic exploration of Chapter three by proposing a method-

ological framework which we call “Trace-SRL”. The purpose of the framework is to uniquely join

together a number of existent techniques to provide a temporal and probabilistic view of the learn-

ing process as underpinned by a recognised model of SRL. As stated variously throughout this thesis,

several models of SRL have been conceptualised, tested and developed over the years (e.g., Pintrich

(2000), Winne and Perry (2000), and Zimmerman (2000)), which presents researchers with impor-

tant decisions on which model(s) to deploy, as well as questions over the nature of the deployment.

As discussed in Chapter two, SRL model deployment is subject to nuance and variation. One of the

key questions in making this choice is how well does a model fit our study scope (and vice versa).

The Boekaerts (2011) model, for example, places emphases on affective state, motivational beliefs,

and well-being. In order to fully explore this model, a researcher would have to think carefully

about the type of data capture that would allow the articulation of SRL in these terms; one would

imagine that self-report or observational methods would be key here. For trace data alone, this

model may not be the correct choice.

We nominated the Zimmerman (2000) model as a theoretical basis for our “Trace-SRL” frame-

work but in truth, it is more realistically a reflection of common cyclical elements of a number of

SRL models (see Panadero (2017)) in the context of the sequence and temporality. To restate, the

SRL phases which we termed: planning, engagement, and evaluation/reflection, are reflected in the

majority of major SRL models. One of the key contributions of this study is the demonstration of

how to reconcile the model constructs described above, which are macro in conception, with the raw
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data generated from the chosen LMS. The challenge of this reconciliation was outlined by Molenaar

(2014), and provided the impetus for our method. The work undertaken by Siadaty et al. (2016)

is also a key inspiration, as it was the first demonstration of the use of the Greene and Azevedo

(2009) micro-level process analysis method with trace data. Our study pushed this method forward

by using authentic educational trace data settings, as opposed to the experimental settings in the

Siadaty et al. (2016) study. We were able to use the resultant SRL output data to supply to the novel

first order Markov process mining algorithm to unlock new temporally focused SRL insights.

4.2 Publication: Trace-SRL

The following section includes the verbatim copy of the following publication:

Saint, J., Whitelock-Wainwright, A., Gašević, D., & Pardo, A. (2020). Trace-SRL: A

Framework for Analysis of Microlevel Processes of Self-Regulated Learning From Trace

Data [Conference Name: IEEE Transactions on Learning Technologies]. IEEE Transac-

tions on Learning Technologies, 13(4), 861–877. https://doi.org/10.1109/TLT.2020.3

027496
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Trace-SRL: A Framework for Analysis of Microlevel
Processes of Self-Regulated Learning

From Trace Data

John Saint , Alexander Whitelock-Wainwright, Dragan Ga�sevi�c , and Abelardo Pardo

Abstract—The recent focus on learning analytics (LA) to analyze
temporal dimensions of learning holds the promise of providing
insights into latent constructs, such as learning strategy, self-
regulated learning (SRL), and metacognition. These methods seek
to provide an enriched view of learner behaviors beyond the scope
of commonly used correlational or cross-sectional methods. In this
article, we present a methodological sequence of techniques that
comprises: 1) the strategic clustering of learner types; 2) the use of
microlevel processing to transform raw trace data into SRL
processes; and 3) the use of a novel process mining algorithm to
explore the generated SRL processes.We call this the “Trace-SRL”
framework. Through this framework, we explored the use of
microlevel process analysis and process mining (PM) techniques to
identify optimal and suboptimal traits of SRL. We analyzed trace
data collected from online activities of a sample of nearly 300
computer engineering undergraduate students enrolled on a course
that followed a flipped class-room pedagogy. We found that using a
theory-driven approach to PM, a detailed account of SRL processes
emerged, which could not be obtained from frequency measures
alone. PM, as a means of learner pattern discovery, promises a
more temporally nuanced analysis of SRL. Moreover, the results
showed that more successful students regularly engage in a higher
number of SRL behaviors than their less successful counterparts.
This suggests that not all students are sufficiently able to regulate
their learning, which is an important finding for both theory and
LA, and future technologies that support SRL.

Index Terms—First-order Markov models (FOMMs), learning
analytics (LA), microlevel process analysis, process mining (PM),
self-regulated learning (SRL).

I. INTRODUCTION

ONE OF THE KEY aspirations of learning analytics (LA)

research is the data-driven identification of learner behav-

iors from engagement with learning environments [1], [2]. True

blended learning environments rely heavily on technology

mediation but, more crucially, on the effective mobilization of

proactive learning in their member students. Such environ-

ments invite participation outside of traditional face-to-face

monologues/dialogues and rely on learner traits, such as aca-

demic motivation and self-reliance. The measurement of such

constructs has an empirical bedrock in the domain of self-regu-

lated learning (SRL) [3].

Theoreticians seem unanimous that self-regulated learners

tend to be more effective and attract higher scores than their

passive peers [4], [5]. These students exercise control over

their own learning by positioning task engagement within a

cyclical framework of, for example, goal setting, planning,

and evaluation of feedback. In employing such cognitive tac-

tics and metacognitive strategies, learners of this type benefit

from an effective learning experience. As such, learning ana-

lysts are increasingly motivated to measure the dynamics and

impact of SRL engagement. Winne and Perry [6] outlined

numerous ways in which SRL can be measured, each of which

entails its own challenges. Self-reports, which conceptualize

SRL as an aptitude, have dominated the field, whilst trace

methods have increased in favorability as they capture the

dynamic nature of SRL in a noninvasive way.

Microlevel process analysis is one of the responses to the

challenges of capturing and identifying SRL. Significant work

in this area was pioneered by Greene and Azevedo [7] and fur-

ther explored by Cleary and Zimmerman [8], and Siadaty et al.

[9]. It provides a means of contextualizing sequences of

engagement activities into recognized categorizations of SRL.

These categorizations are themselves subcategories of macro-

level processes, which form the main constructs of the chosen

SRL model. For example, we could record a series of “task

engagement” clicks and then a series of “dashboard” clicks

(microlevel processes). We could make separate inferences

about each of these sequences, but this may blind us from a

broader context. A more optimal inference lies in categorizing

a coupling of both sequences as a state of “reflection” or

“evaluation,” which are macrolevel processes representing

identified phases of theoretical models of SRL [10]. Building

on this idea, the goal of microlevel process analysis is to artic-

ulate a set of event categorizations which fit into a model of

SRL. This measurement process is, therefore, designed as a

way of embedding trace data analysis in a recognized theoreti-

cal framework of SRL.
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SRL event categorizations, or microlevel processes, can

then be viewed as learner events and passed to the final-

phase analysis. There is certainly value in identifying indi-

vidual microlevel processes and counting them to compare

“average count” differences across groups of learners, but

this view only offers a limited insight into how SRL

works; there is an innate inability to capture patterns of

SRL using conventional frequency-based statistical meth-

ods. As Reimann et al. state [11], such analyses are dimen-

sionally limited and, as such, suffer from an ontological

flatness. This has motivated researchers to study temporal

and sequential dimensions of SRL. Citing Reimann [12],

Knight et al. [13] posit that optimal problem resolution

involves temporal phasic shifts (which could, e.g., be mod-

eled as Markov processes), articulating state transitions as

probabilities. Chen et al. [14] further build on this argu-

ment by stating that temporally focused analyses tend to

ignore interprocess dynamics of association and duration.

Key questions also exist around the sources of data used to

study SRL in contemporary research. Think-aloud studies—for

example, [7], [15], and [16]—are typically used to identify spe-

cific SRL processes, as they afford the sophistication of verbal

articulation of cognitive and metacognitive tactics. Despite

this, the validity of think-aloud data has been called into ques-

tion [17]. These studies are typically done in the laboratory set-

ting as the use of think-aloud protocols in ecologically valid

settings is rather limited. To address this, pure trace data analy-

ses have been undertaken with some success, for example, [18]

and [19]. These successes are tempered by limitations borne

out of two main flaws: 1) the learning environments are so spe-

cialized as to prevent generalizability of any kind; and 2) learn-

ing strategies are effectively detected but provide little specific

insight into the temporal unfolding of SRL processes.

In order to address these limitations, this article reports on

an exploratory methodological study that does the following.

1) It proposes an approach for the measurement of SRL

microlevel processes from digital traces collected in a

common learning environment.

2) It proposes a stochastic process mining (PM) approach

that analyses sequences of extracted SRL microlevel

processes to provide insights into the ways in which stu-

dents self-regulate their learning in common learning

environments.

3) In a temporal and sequential context, it identifies differen-

ces in SRL between high- and low-performing students.

4) It outlines an approach that allows for the qualitative

comparison of the SRL processes engaged by learners

who followed different learning strategies.

We apply the term “Trace-SRL” framework to the method-

ological sequence of techniques and tools used to transform

raw trace data into SRL-informed learner events.

II. BACKGROUND

A. Measuring SRL

Measuring SRL processes can either be approached subjec-

tively or objectively. With the former referring to self-reports

such as questionnaires and think-aloud procedures; whereas,

the latter relates to event traces. An important caveat of

measuring SRL through questionnaires employed at a sin-

gle instance in time is that it fails to consider the temporal

nature of SRL processes. Thus, the results obtained

through the measurement of SRL using a frequency-based

approach (e.g., the averages across all learners) will not

provide an accurate account of an individual’s learning

processes [12]. Additionally, when questionnaires are used

to measure the self-reported use of study tactics, students

are generally found to be biased [17]. A limitation of this

work is that self-reported study tactics were recorded after

completing a series of study activities, resulting in a biased

recount of memories [20], whilst objective traces were

recorded throughout; thus, alignment of the two measures

would be unlikely. Nevertheless, Winne and Jamieson-

Noel’s work demonstrates the advantages of an objective

approach to measuring SRL as an event, particularly as it

is unobtrusive and less susceptible to bias.

Measuring SRL using traces of data captured within learn-

ing environments present its own challenges, particularly with

regards to granularity, time, and generalizability [21]. Despite

the importance of each individual learning activity, the focus

here is upon exploring the granular events that make up the

SRL processes that students engage over the course of a mod-

ule. As discussed by Winne [22], the level of granularity taken

when analyzing trace data will affect the understanding of the

SRL processes that are obtained. In any case, the trace data

alone, without grounding in a theoretical framework, are

unlikely to convey any meaning beyond what action it repre-

sents [1]. Put in a different way, traces need to be mapped

onto constructs that can help us better understand SRL pro-

cesses and can lead to actionable feedback.

B. Macrolevel and Microlevel of SRL

A framework to add meaning to traces is offered by

Siadaty et al. [9] and, critically, it is grounded in the model of

SRL theorized by Zimmerman [5]. More importantly, this

framework addresses the challenges of granularity by decon-

structing SRL into macrolevel and microlevel processes. An

example of a macrolevel process would be planning, which

encompasses the microlevel processes of task analysis, goal

setting, and making personal plans [23]. Thus, whilst the mac-

rolevel processes provide a general depiction of students

engaging in SRL, the microlevel process breakdown provides a

way to conceptually define traces of learning. Given the utility

of Siadaty et al. [9] framework in grounding event traces in

SRL, the current work applies the conceptualization of micro-

processes to understand learning behavior within a higher edu-

cation setting.

Alternative frameworks to inform the categorization of

trace data into microlevel processes can also be considered.

For example, the work of Greene and Azevedo [7] represented

a significant milestone in SRL microprocess analysis. Like

Siadaty et al., Greene and Azevedo defined a valid model of

SRL that categorizes raw learner behaviors into microlevel

processes. This model, however, was not based on the use of
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the learning management system (LMS) trace data, but think-

aloud data. In this instance, learners are asked to verbally

articulate learning tactics and strategies, which are then cate-

gorized into appropriate microprocesses. This protocol, as

reported in [24] and [25], was also used in SRL studies by

Bannert et al. [26] and Sonnenberg and Bannert [15]. These

studies were significant in that they paved the way for a poten-

tially robust way of measuring SRL, by codifying learner

behaviors from think-aloud data and employing PM techni-

ques to examine it.

Greene et al. [27] (amongst others) provide convincing

arguments in favor of think-aloud as a method; it facilitates

the capture of conceptually rich verbal narratives of strategy

and metacognition that are critical to the measurement of

SRL. Methodologically, however, this comes at a price. One

identified phenomenon is that of reactivity, which pertains to

three impactful elements [28]: 1) the ability of a participant to

think and attend to a task at the same time; 2) talking aloud in

activities that are normally undertaken in silence; and 3) the

effect of drawing the attention of the experiment participant to

the cognitive process. These factors can lead to a loss of integ-

rity and, therefore, validity of the collected data. Again, this

informs the debate on the use of self-report data in general as

a means to measure SRL processes, specifically with regard to

the accuracy of the reports themselves [25]. Nevertheless, it is

important to recognize that, despite limitations, when utilized

in a suitable and thoughtful manner, think aloud, and other

self-report measures, can provide insights into SRL behaviors

that cannot be determined from objective measures (e.g.,

trace data) alone. Potential lies in combining self-report

and trace data, as demonstrated by, for example, [29],

[30], and [31]. Azevedo et al. [32] posit the possibility of

eliciting richer sources of trace data from multimodal

methods, such as facial recognition and eye-tracking.

Whilst discussions on the use of multimodal analytics are

beyond the scope of this article, the LA/SRL community

cannot ignore its potential.

The decision to use trace data brings with it the complex

challenges of construct/internal validity that some see as insur-

mountable without the use of some sort of corroborated self or

observatory report mechanism [33]. Multimodal studies, such

as those reported in [34] and [35] can provide insights other-

wise undetected in single-mode settings. Nonetheless, we

should not lose sight of the benefits of trace data capture, espe-

cially in the light of the push to provide more immediately

impactful and scalable LA research. We aim to prescribe a

methodological framework than can be deployed in authentic

settings, where scaling up specialized multimodal detection

equipment may pose a challenge.

As such, this article seeks to extract meaningful insights from

pure trace data. Its theoretical approach adopts the framework of

Siadaty et al. [9], [23] as it represents the most complete encap-

sulation of (trace) data-driven SRL research utilizing microlevel

process analysis. Even though the current work applies the same

framework as a means of understanding SRL processes, there

are four points that can be used to differentiate the two research

streams. Siadaty et al.’s studies [9], [23]:

1) leverage data from a system specifically designed to

support SRL, with specially tailored mechanisms for

collection of trace data about SRL;

2) are not concerned specifically with blended learners, but

with knowledge workers;

3) are focused on user behaviors in social and organiza-

tional contexts, as opposed to personal learner self-

regulation;

4) have access to a comparatively small sample of user

data, compared to the current study;

5) do not consider data about learning performance but only

data about learning processes.

We, therefore, employ an SRL-contextualized study which

captures data from an authentic data-rich-blended learning

environment.

C. Analysis of SRL Temporal Sequences

1) Conceptual Considerations: A pattern of events alone

does little to provide an explanation of the underlying pro-

cesses being carried during SRL, particularly within the con-

texts of open systems [11]. To move beyond such

ontologically flat accounts of learning, it is necessary for any

work that analyzes trace data to be theoretically grounded

[36]. Thus, captured events become tied to theoretical con-

structs that can provide an understanding to mechanisms in

action, in contrast to a descriptive narrative of event sequences

[11]. More importantly for LA, adopting atheoretical practices

to inform interventions is concerning as it assumes that all stu-

dents follow the same processes to reach an end state. To allay

such concerns, members of the LA community have called for

research to inform and build upon theory [1].

This article follows the recommendations put forward by

Ga�sevi�c et al. [1] through the adoption of a framework that theo-

retically grounds event traces into a model of SRL [5]. Even

with this framework in mind, there are further considerations

that need to be made with regards to the processing of the data

itself. SRL is not a static process, it involves multiple sequences

of events unfolding over a period of time [37]. Through this tem-

poral perspective of SRL processes, the following questions,

originally posed byWinne [22], can be asked.

1) Can we identify a temporally discrete sequence of

events, that is, does the sequence have a beginning and

end?

2) Are the events patterned to such a degree that they can

be mined or parsed?

3) What are the parameters of the pattern?

4) Can we detect a performance-based effect of specific

pattern adoption?

By answering these questions, it can provide a more informed

insight into the complexities of temporal SRL processes.

2) Sequential and Temporal Analysis of SRL: Recent

research has recognized the limitations of conventional statis-

tical methods for the analysis of SRL. Sequential and temporal

dimensions are emphasized [37], [38] in order to model SRL

as a developmental and dynamic process with several external

and internal feedback loops [10]. This has prompted explora-

tion of many different analytic techniques, such as graph
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theory, PM, sequence mining, and statistical discourse analy-

sis. This trend in SRL research is well-aligned with recent

developments in LA to study the temporal nature of learning.

A growing number of researchers are providing increasingly

compelling reasons to explore this area with the hope of

enhancing explanatory power and increasing levels of validity

[11], [13], [14]. SRL constructs formerly viewed as traits are

now perceived in the context of sequence and temporality

[37]. This raises new questions about the temporal characteris-

tics of these constructs and their dynamic interplay with

learner and context. This article focuses on this trend to ana-

lyze temporal and sequential characteristics of constructs

important to learning and instruction.

Even though the value of analyzing temporal characteristics

is becoming evident, Molenaar and J€arvel€a [37] identifies sev-
eral challenges to be addressed in order to make progress in

the field of learning and instruction.

1) We need to be aware of the paradigm shift that temporal

analysis entails.

2) Facilitation of a time-related research dialogue demands

a common understanding of different dimensions of

time and temporal characteristics.

3) A better understanding of how to answer time-related

questions with appropriate methodological approaches

needs to emerge.

4) Researching temporal characteristics requires proce-

dures and guidelines for segmenting time units.

5) Temporal data are mostly collected at the microlevel,

whereas most theory is defined at a macrolevel; conse-

quently, we need to bridge these differences in the gran-

ularity used between collecting, coding, and theorizing

to enhance meaning and validity.

3) Process Mining: This article examines the use of PM.

PM as an analytical discipline, straddles data mining, machine

learning, and business process modeling. As such it is seen as

one of the answers to the question: How do we effectively

articulate temporal process dynamics? This is achieved

through PM discovery algorithms, which allow the identifica-

tion of unique arrangements of processes in a temporal space

[39]. PM does not rely on conventional statistical measures,

such as correlation and means comparison. The phenomena

that it seeks to measure are event or process-based, as is the

data on which it relies. Thus, the starting point of PM is a data-

set in the form of an event log. The key elements are an activ-

ity—a well-defined step in a broader process; a case—a

process instance; and a timestamp.

PM is historically grounded in the field of business and

industrial analytics. It seeks to provide insights into the

sequential and procedural nature of business processes, with

a view to optimizing their flow and connectivity [40]. As

well as a process model discovery, PM employs techniques

such as performance analysis and conformance checking to

compare process models against a predefined exemplar

(which may itself be derivation of a previous discovery

cycle) [41]. Whilst these benchmarking techniques are per-

fectly at home in procedurally defined business environ-

ments, it is more challenging to deploy them in educational

settings that focus on the sequential nuances of learner

engagement. Nonetheless, PM discovery algorithms do pro-

vide the promise of articulating the unfolding temporality of

learner behaviors.

Various PM algorithms are available and have been used in

key studies. Bannert et al. [26] demonstrated a variation on

SRL microlevel analysis of think-aloud data in conjunction

with Fuzzy Miner. This is a seminal study in many ways, but

the heuristics used have not been truly subjected to empirical

validation. Cerezo et al. [42] utilized Inductive Miner to

ground Moodle data analysis in Zimmerman’s model of SRL

[43]. Romero et al. [44] also used Moodle data, but in con-

junction with Heuristics Miner, to visualize SRL patterns of

learning. These studies, however, did not employ a strict

framework of SRL microanalyses.

The use of the first-order Markov models (FOMMs) as a

PM discovery algorithm is relatively novel in the literature.

FOMMs describe process dynamics in terms of probabilistic

association of previous events, that is, stochastic PM [45].

Saint et al. [46] proposed the use of this PM algorithm as a

means of capturing the stochastic dynamics of learner

engagement. Matcha et al. [47] also used FOMMs to

describe strategic and tactical groupings of blended learners.

Both studies provided an interesting insight into learner

engagement in the context of PM but did not strictly embed

the analysis in recognized models of SRL. Saint et al. [48]

succeeded in grounding the FOMM PM method in a model

of SRL, but provided only a partial focus on FOMM PM.

This article seeks to capture the narrative of probabilistic

transition—stochastic analysis—in order to explore SRL

behaviors in the context of sequence and temporality.

Our choice of PM algorithm is influenced by Winne and

Hadwin’s [10] early work on SRL in its emphasis on condi-

tional probabilities to study relevant SRL processes. This

model is inherently based on the recursive transitions from

one phase to another. Therefore, we posit that the use of

FOMMs is consistent with Winne’s theoretical perspective

of modeling SRL. It is also reflected in his emphasis on the

use of graphs for modeling of SRL [49] and conditional

probabilities [50]. The choice of PM discovery algorithm is

important, but the systematic assessment of available algo-

rithms is beyond the scope of this study and lends itself to a

separate inquiry. This study can be more accurately charac-

terized as an exploration of a novel trace data SRL analysis

framework.

As such, our framework has certain demands.

1) SRL events are not excluded or merged so that a complete

SRL model is encompassed, as per the theory we fol-

lowed. Fuzzy Miner, for example, excludes and merges

certain processes.

2) The desire to calculate conditional probabilities for

transitions from one SRL microprocess to another one,

as theorized to explain SRL in the use of trace data

about SRL [9], [22].

3) That differing strategic learner groups can be readily

compared. Our chosen PM algorithm, pMineR, satisfied

all three criteria.
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D. Strategy Extraction From Trace Data

The use of trace data to study learning strategies has been

galvanized through the foundation of the field of LA. Several

authors proposed the use of unsupervised methods for the

study of learning strategy. Lust et al. [51] used clustering to

identify user profiles through learner behaviors, identifying

profiles through frequency of activity engagement of a content

management system supported course. Jovanovi�c et al. [52]

used a hierarchical cluster analysis to extract learning strate-

gies of learners and to understand the extent to which those

strategies were associated with the learners’ level of cognitive

presence in online discussions. Although the results of these

studies are relevant for understanding the connection between

learning strategy and learning outcomes, they offer little

insight into how learners sequence their activities with each of

the strategies identified in terms of their SRL microlevel

processes.

Analysis of temporal links between learner actions has also

been used in the literature on learning strategy. Jovanovi�c et al.
[52] utilized a combination of an unsupervised machine learn-

ing technique with a sequence mining algorithm to explore the

extent to which meaningful learning strategies can be extracted

from trace data. Fincham et al. [18] extracted study tactics by

using hidden Markov models, which they then used as an

input to a clustering process. Both the Jovanovi�c et al. and

Fincham et al. studies found associations between extracted

learning strategies and academic performance. These studies

also identified common strategy typologies, based on levels

and characteristics of engagement. This triangulation does go

some way to informing a more generalizable method of strat-

egy detection in a temporal context. Ahmad Uzir et al. [53]

report on a promising study exploring the use of the bupaR

PM method to articulate strategy and tactics in the context of

surface and deep learning. It does, however, deal in dimensions

of SRL, as opposed to embedding it in a cohesive model.

Though these studies provide key insights into learners’ strate-

gic and tactical deployment of learning, they fall short of

providing comparative interstrategy analyses in terms of SRL

processes.

E. Study Context and Justification

This article presents a methodological framework for the

analysis and interpretation of learner behaviors, embedded in

a recognized model of learning. Its focus is not one tool or

technique, but an empirically supported construction of vari-

ous tools and techniques.

The study of SRL has gained traction with the increased digi-

talization of education, although its basic tenets traverse digital

and analogue forms of teaching. The concept of taking control

of one’s own learning, and its posited benefits, is one which can

be applied in many educational settings. The affordances of

digital technology, however, naturally shift a portion of the

responsibility of learning from the educator to the learner.

SRL, therefore, holds a significant position within the field of

LA. In this context, the decision to use or not use self-report

data, wholly or partially, is important. Self-report measures

have a vital role in SRL research as they provide the means of

articulating the nuances of meta-cognitive and cognitive

behaviors not afforded by pure trace data [16], [26], [27]. This,

however, positions both the educational and the inquiry space

as experimental. There must be room for authentic noninvasive

SRL trace data research, as, ultimately, we need to see an

increase in projects which can be systematically deployed in

authentic, nonexperimental environments. In attempting to har-

ness the advantages of trace and self-report, bespoke systems,

such as Winne and Hadwin’s nStudy [54] and Siadaty et al.’s

Learn-B environment [23], promise noninvasive SRL insights

from trace data. These platforms certainly have a place, but

they cannot be described as systems commonly used in educa-

tion. The current study uses trace data from authentic settings,

in an educational and systemic sense.

The studies undertaken by Fincham et al. [18], Matcha et al.

[47], Ahmad Uzir et al. [53], and Boroujeni and Dillenbourg

[55] represent significant milestones in pure trace data analy-

sis. They provide critical insights into study tactics and strate-

gies and mark out strong methodological cases in this context.

They all demonstrate very effective unsupervised machine

learning methods, which unlock genuine insights into tactic

and strategy. They do not, however, seek to embed their analy-

ses in models of SRL with the aim to extract information about

relevant SRL processes and use such information to analyze

SRL processes as a whole and compare different groups of

students. The current study presents a formalization of a pro-

cess of SRL-informed analysis, utilizing microlevel analysis

as a data transformation process.

Microlevel analysis provides a practical means of framing

SRL analyses in a theoretical model of SRL, and in doing so,

forcing the articulation of raw trace data into SRL sequences.

Key studies by Greene and Azevedo [7], Bannert et al. [26],

and Siadaty et al. [9] show the potential of the microlevel

analysis as means of capturing and articulating learner behav-

ior in the context of SRL. Only the Siadaty study used trace

data as a source; however, all the others relied solely on self-

report data (i.e., think alouds). As stated previously, the Sia-

daty et al. study derived data from a specially designed sys-

tem—Learn-B—as opposed to a commonly used LMS. As a

move toward authenticity, the current study uses the same

robust model of learning, but harnesses authentic LMS trace

data. We are unaware of any other studies that use authentic

educational trace data as feed to the SRL microlevel analysis

procedure. The use of PM in this context is also novel.

We use PM to explore learner SRL processes through the

lens of sequence and temporality. There are several studies

that employ PM to articulate patterns of SRL in data-rich envi-

ronments. Maldonado-Mahauad et al. [31] extracted interac-

tion sequences from the raw learner behavioral traces of three

Massive Open Online Courses (MOOCs). They codified inter-

action sequences and embedded them into empirical SRL

strategies, using the Disco PM method [56], itself derived

from the Fuzzy Miner algorithm [39]. The Maldonado-

Mahauad et al. study provides an empirical grounding of

MOOC interaction patterns in dimensions of SRL, but it falls

short of embedding these patterns in a unified model of SRL.

SAINT et al.: TRACE-SRL: A FRAMEWORK FOR ANALYSIS OF MICROLEVEL PROCESSES OF SELF-REGULATED LEARNING FROM TRACE... 865

Authorized licensed use limited to: University of Edinburgh. Downloaded on December 18,2020 at 09:55:13 UTC from IEEE Xplore.  Restrictions apply. 

4. EMBEDDING TRACE DATA IN SRL

74



Maldonado-Mahauad et al. [57] built on this work by employ-

ing PM-informed predictive analytics to indicate probable

likelihoods of course completion across SRL-informed strategic

learner groups. Intriguingly, this article presented a potentially

impactful method of identifying course success from learner

articulations of SRL. Both studies demand a challenging concep-

tual leap between trace-data sequence and SRL construct. The

study by van den Beemt et al. [58] provides another example of

learner group clustering based on a similar PM algorithm.

Although useful, its connection to SRL is nominal, rather than

integral. Nonetheless, the value of these studies lies in the catego-

rization of types of learners in this context. This categorization

further crystalized in the current study, where our groups fall into

broadly similar categories. Our specific articulation of these cate-

gorizations can be found in Section III-D.1.

We are unaware of any studies that combine this unique set

of techniques in a consolidated methodological framework.

We call it the “Trace-SRL” framework.

F. Trace-SRL Framework

This article is underpinned by the Trace-SRL framework

outlined in Fig. 1.

1) Clustering of the Learner Data: The question around

the choice of delineation is important. Unsupervised machine

learning methods can uncover illuminating clusters of tactic

and strategy groups, otherwise undetectable [18], [47], [52].

Directed segmentation—such as extracting high and low per-

forming learners based on assessment scores—can provide

insight into the link between performance and SRL behaviors.

In this study, the data were supplied in preclustered groups.

2) Eventization Sequence: We use the term “eventization”

to describe the sequence of techniques involved in transform-

ing raw trace data into SRL (micro) processes. The outcome

of this sequence is the “eventized” log. There are three parts

to this sequence.

1) Defining the SRL microprocesses: In order to strengthen

the empirical base of the study, a recognized model of

learning is deployed—we used the model deployed by

Siadaty et al. [9]—as a theoretical study foundation.

Having established this model, the generation of subca-

tegorized microprocesses lays the foundation for the

practical implementation of the framework.

2) Building the microprocess pattern library: Having defined

the microprocess event set, LMS trace data can then be

analyzed to identify appropriate SRL sequence patterns as

subcategories of the defined microprocesses (see Table II).

This is a significant phase, as it raises questions over

sequence exclusivity and priority, not to mention validity.

In this study, we used a single channel (trace data), but the

use of other channels, such as self-report or multimodal,

can also be harnessed and processed in combination.

2) Generation of the eventized log: The raw trace data are

parsed and the final eventized logs are generated. REGEX

routines were used in this article but there is potential for

the development of better-suited bespoke solution, or a

combination thereof.

3) Process Analysis: This article uses a stochastic PM

algorithm to derive the final outputs. These outputs provide an

articulation of the temporal and sequential associations

between groups SRL microlevel activities in the context of

transition probabilities. The choice around tools for this task is

driven by the ontological thrust of the study. In this case, this

thrust is temporal and sequential in nature. This algorithm also

affords the interpretation of comparison between groups; an

important part of this article.

G. Research Questions

Using our Trace-SRL framework, this article aims to use

LMS-generated trace data as its source, eliminating the empiri-

cal shortcomings of self-report data and retaining the vital char-

acteristics of SRL. We propose the use of microlevel analytics

as a means of preprocessing/transforming raw data into SRL

sequences. These sequences form the input to pMineR, a sto-

chastic PM discovery algorithm. The output of this—

FOMMs—affords us a means of articulating the temporal and

transitional characteristics of learner groups in terms of these

SRL sequences. We are unaware of anyone deploying this

Fig. 1. Trace-SRL framework.
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method in this specific context that is applying microlevel anal-

ysis to authentic LMS source and utilizing a novel stochastic

PM algorithm to articulate and compare learner SRL behaviors.

Through this method, we aim to answer these questions.

1) What can we interpret from the key statistical measures of

SRLmicrolevel processes, as extracted from trace data?

2) Towhat extent can we qualitatively characterize students’

differing learning strategies, through analysis of tempo-

rally ordered event sequences of SRL microlevel pro-

cesses, as extracted from trace data?

3) To what extent do contrasting learner strategy groups dif-

fer in patterns of temporally ordered event sequences of

SRLmicrolevel processes, as extracted from trace data?

III. METHODOLOGY

A. Trace Data Collection

The data for this study were collected from an LMS

attached to a computing course at a university in Australia.

Table I provides a list of learning action codes with descrip-

tions. The course was based on a flipped classroom pedagogy

and the data used in this study were about students’ engage-

ment with the online activities, which served the purpose of

preparation for the face-to-face activities. Each time a student

engaged with an element of the LMS, a learning event record

was generated containing a student ID number, a timestamp,

and the completed learning action.

The student cohort (N ¼ 290) collectively generated 184 211

learning events. The course lasted 13 weeks, comprising two

main bouts of activity: Weeks 2–5 and 7–12. In week 6, the stu-

dents completed a summative mid-term assessment, and in week

13 the final exam. The students were provided with a dashboard

as a real-time feedback that allowed for engagement and perfor-

mance monitoring and comparison with their peers (average

number actions completed and score). Successful completion of

summative assessment tasks contributed 10% to the overall mod-

ule mark. The details of this course design can be found in [59].

B. Translation of Trace Data to SRL Microprocesses

1) Microlevel Processing: Building on the work under-

taken by Siadaty et al. [9], we elected to employ regular

expression (REGEX) parsing in order to extract defined

learning sequence patterns. This proved successful in the Sia-

daty study, as it provides a controlled technique for encoding

text patterns. It affords this study the same benefits.

Table II represents a macrolevel to microlevel mapping,

based on the same theoretical model of SRL as used by Sia-

daty et al. Raw trace datasets were input to the REGEX parser

developed for this study, utilizing a REGEX pattern library.

The first pass produced a set of categorized logs, which, effec-

tively, represent an SRL-informed coarsening of the original

trace data. For example, an uninterrupted sequence of content

access events was mapped to the microlevel process Work_-

on_Task.Knowledge_build; a transition from a series of exer-

cise attempts to content access was mapped to Reflect. A full

set of mapped sequences is outlined in the microlevel action

mapping column in Table II, as subcategories of microlevel

processes (such as Working on a Task and Reflection). These,

in turn, are subcategories of the main macrolevel processes

(see Section III-C.1). In this way, we effectively characterize

learner behaviors in the context of our SRL model. The parser,

thus, consolidates event sequences into microlevel processes.

2) SRL Eventization: As part of the eventization sequence,

all relevant raw log data were passed through our REGEX

engine. The eventization sequences comprise two passes, as

this first pass produced event sequences that overlapped. A

second pass was designed to eliminate this overlap though the

use of prioritization rules, ensuring mutual temporal exclusiv-

ity of SRL processes in the final eventized logs.

C. Theoretical Model

1) Model Deployment: As stated, this study uses a version

of the SRLmodel employed by Siadaty et al. [23]. Table II fully

outlines the constructs of the model and how it maps to trace

data sequences derived for this article. Trace data sequences are

mapped to microlevel processes, which are themselves already

categorized under macrolevel processes. The macrolevel pro-

cesses represent the three cyclical phases of our SRL model of

Planning, Engagement, and Evaluation/Reflection. In order to

distinguish variations of microlevel processes, the term micro-

level action (or microaction) is employed. In Table II, the micro-

level action is identified and accompanied by a description of

the trace data sequence from which it was derived. For example,

the Work on a task microlevel process comprises three subcate-

gorized microactions: 1) Work_on_Task.Summative; 2) Work_-

on_Task.Formative; and 3) Work_on_Task.Knowledge_build.

At the same time, it is also a subprocess of the macroprocess,

Engagement; one of the three main constructs of the SRLmodel.

In embedding our analysis in a model of learning, we go some

way to providing a stronger sense of empirical validity. It does

not, however, go far enough. In the absence of conventional sta-

tistical measures of validity, other mechanisms are necessary.

2) Model Validity: We utilize Winne’s framework of

questions informed by the mapping of his own SRL heuristic

[22]. Although we are not directly utilizing the Winne SRL

model, his validity framework nonetheless provides a usable

set of directives for interrogating categorized trace data infer-

ences. The key to its deployment is the emphasis on SRL’s

inherent structures of temporal and sequential patterns.

TABLE I
LMS LEARNING ACTION CODES
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a) Can we identify a temporally discrete sequence of

events? On two levels: Raw learner actions were presented

in temporally ordered groups or sessions (each being

assigned a session ID). The parsing engine performs its proc-

essing bound by these session events. The REGEX coding

then provides discrete event delineations based on sequence

patterns. This applies to both elemental sequences (i.e., com-

prising one learning action, e.g., MC_ORIENT) and more

complex patterns.

b) Are the events patterned to such a degree that they can be

mined or parsed? For elemental and semielemental sequences

(i.e., learning actions with dichotomous outcomes, e.g.,

EXE_CO and EXE_IN) allocation of meaning was logical. In

the example of learning action MC_ORIENT, each action rep-

resented access to course instruction materials (as opposed to

content access); thus, we the inferred goal setting (Goal_Set).

The microprocess Work_on_Task.Knowledge_build was an

informed consolidation of two learning actions: 1) Content_

Access; and/or 2) Video_Play. Composite processes, such as

typified by the strategy change (Strat_Change) groupings and

the Reflect process, were derived from an informed judgement

on the manifestation of SRL. For example, the Reflect micro-

process represented a change in sequential engagement bet-

ween summative attempts and content access.

c) What are the parameters of the pattern? This can be

articulated in terms of sequence lengths, durations, and nesting

(i.e., whether patterns exist within larger pattern sequences).

We recorded sequence lengths and durations but have not

included them into this article due to the space limitations.

Pattern/subpattern exclusivity was coded into the parsing

engine. The implementation of pattern priorities is a key area

and requires greater examination for the future work.

d) Can we detect a performance-based effect of specific pat-

tern adoption? The extracted microlevel SRL processes were

further analyzed to compare across four different performance

(or strategy) groups (see Table III).

D. Data Analysis

1) Extraction of Learning Tactics and Strategies: The

work carried out in [52] was of primary importance to this

study, in identifying study strategies of high- and low-per-

forming students. It provided a method for automated extrac-

tion of learning tactics and strategies from trace data about

students’ interaction with online resources. The method was

composed of two levels of analytics based on unsupervised

machine learning methods, that is, clustering. First, learning

tactics were extracted by analyzing study sessions and cluster-

ing these sessions based on similarity of actions within the

TABLE II
SRL MACROLEVEL TO MICROLEVEL MAPPING

TABLE III
ASSESSMENT SCORE BY STRATEGY GROUP
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sessions. The sequence analysis was done using the explor-

atory sequence analysis implemented in the TraMinerR R

library [60] and followed up with a hierarchical cluster analy-

sis with Levenshtein distance and Ward’s method, as proposed

in [61]. This generated four strategy types, based on the pre-

dominant study action type. Second, five learner strategy

groups were extracted through an agglomerative hierarchical

clustering with Euclidian distance and Ward’s method, based

on the frequency of the use of the four study tactics by each

individual student in the sample

For this study, we selected four of the five learner strategy

groups that we characterize, respectively, as “Active Agile”

(N¼ 19), “Summative Gamblers” (N¼ 59), “Active Cohesive”

(N ¼ 25), and “Semiengaged” (N ¼ 117). We chose these

groups as they present contrasting learner strategies, allowing

for a more distinct comparative analysis. The “active” groups

outperformed the summative gamblers and the semiengaged

group in summative assessments, and are, therefore, presented

as the more successful groups or “high” groups. The median,

25th, 75th percentile values for mid-term and final exam groups

scores are described in Table III. The clustering techniques

used here underpin all three research questions, as they provide

us with the requisite group characterizations, which are articu-

lated in terms of learning strategies.

2) Statistical Analysis: Following the identification of stu-

dent strategy groupings using cluster analysis and SRL eventi-

zation, we characterized these groups using basic and relative

statistical frequency measures. We further explored intergroup

SRL differences through the use of path analysis, which was

carried out using Mplus 8.1 [62]. A negative-binomial model

was used to analyze the data, which was based on the data

being in the form of counts and the variance exceeding the

sample mean. The analysis involved the regression of the nine

SRL events onto three grouping variables representing Active

Agile, Active Cohesive, and Semiengaged learning strategies;

in all cases, the Summative Gamblers group was used as the

baseline (i.e., Active Agile ¼ 1, Summative Gamblers ¼ 0).

These techniques were used primarily to address research

question 1, but also in partial answer to research question 3.

3) Process Mining: FOMMs were used to explore the novel

possibility of combining stochastic and temporal analysis of

eventized data about SRL microlevel processes. We employed

the R package pMineR [45], [63] to train and generate FOMM

probability transition matrices for the four strategy groups. This

allowed analysis and comparison of temporal patterns of micro-

level process engagement. The three mandatory PM roles are

populated; thus, Microlevel Action ! Activity; Start Time

stamp ! Timestamp; Student_ID ! Case. The choice of the

case role is a significant one. In choosing the student ID, we

committed to positioning the analysis strategically, as opposed

to tactically. Process paths are articulated for each student

across the entire 12-week course duration. In using the alterna-

tive, Session ID, we would have analyzed the same 12-week

period but as a sequence of learning sessions. This would neces-

sarily present a more tactically oriented view of process dynam-

ics. This is no less valid and could be the subject of future

research, but does not fit the more strategic focus of this article.

4) FOMM Diagram Interpretation: The diagrams are

schematic representations of the transition matrices produced

for each FOMM. The arc between one node (microlevel event)

and the next shows a stochastic measure of the likelihood of

transition between one node and another; the transition proba-

bility (TP). We conduct high-level visual interpretations from

the thickness of the lines, which reflects the magnitude of the

TPs. We provide more forensic analyses by interpreting the

actual TP values. Thus, we can identify probabilistically

informed learning paths and relationships between the SRL

constructs identified in our theoretical model.

To provide comparative insights, we interpreted the com-

parison diagrams of the FOMM models. In each case, one

strategy group is mapped onto another group. The arcs in

black represent similar TPs. Red arcs represent a compara-

tively lower TP of the mapped model; green arcs represent a

higher TP. In cases of disparate TPs, both probabilities are

shown. To simplify presentation, a TP threshold of 0.05 has

been set. Fig. 2 shows a partial example of a FOMM compari-

son plot. For each of the comparisons, we mapped the low per-

former onto the high performer: Summative gamblers mapped

to active agile; semiengaged mapped to active cohesive. Cru-

cially, it allows not just to articulate contrasting modes of

SRL but to measure against an assessment benchmark.

FOMM interpretation represents the methodological heart

of this article and fundamentally underpins research questions

2 and 3.

IV. RESULTS AND DISCUSSION

A. Engagement Statistics

In this section, we aim to answer research question 1 (see

Section II-G): What can we interpret from the key statistical

measures of SRL microlevel processes, as extracted from trace

data?

1) Descriptive Statistics: The statistics in Tables IV and V

provide a descriptive insight into the SRL for each strategy

group, in context of the Mean (M) and Standard Deviation

(SD) of engagement frequency in each activity for the whole

term. From this, we can infer the respective foci of the groups

in terms of SRL engagement.

The starkest contrast lies in engagement with knowledge

building activity, with the two stronger groups exhibiting a

Fig. 2. Snapshot example of a FOMM comparison model.
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much greater overall engagement with means of 63 (active

agile) and 57 (active cohesive), as opposed to the weaker groups

with seven (summative gamblers) and 19 (semiengaged). The

stronger groups are seen to engage more with goal setting, dash-

board evaluation, and reflection, although this does not tell the

full story.

2) Path Analysis: The initial path model with all nine vari-

ables (Work_on_Task.Summative, Strat_Change.Summative_-

Shift, Goal_Setting, Reflect, Work_on_Task.Knowledge_Build,

Eval_Dash, Work_on_Task.Formative, Make_Plans, and

Strat_Change.Staged_Assessment) could not be identified,

which was attributed to the Make_Plans and Strat_Change.

Staged_Assessment variables for the Active group. An inspec-

tion of the counts for the Make_Plans variable showed that no

students engaged in this behavior within the Active Agile nor

the Summative Group. As for the Active Cohesive and Semi-

engaged groups, the maximum counts for the Make_Plans

variable were three and two, respectively. Similarly, the

Strat_Change.Staged_Assessment had a maximum count of

zero for the Active Agile, Active Cohesive, and the Summa-

tive Gambler groups; whereas, the Semiengaged had a maxi-

mum count of two.

Based on these outcomes, the path analysis was rerun with the

Make_Plans and Strat_Change.Staged_Assessment variables

dropped. The results are presented in Table VI. As can be seen

across all variables for the Active and Active Cohesive groups,

they demonstrated an increased rate of engagement in these

behaviors (Work_on_Task.Summative, Strat_Change.Summati-

ve_Shift, Goal_Setting, Reflect, Work_on_Task.Knowledge_-

Build, Eval_Dash, and Work_on_Task.Formative) than the

Summative Gambler group. Likewise, the Semiengaged group

engaged in six of the measured variables (Work_on_Task.Sum-

mative, Strat_Change.Summative_Shift, Goal_Setting, Reflect,

Work_on_Task.Knowledge_Build, and Eval_Dash) at a higher

rate than the Summative Gambler group, but not for theWork_-

on_Task.Formative behavior (p¼ 0.297).

We can infer that the more optimal learners engagemore fully

in many of the SRL events, and that less optimal learner focus

slightly more on the credit-bearing summative task. This is a

useful insight but suffers from the ontological flatness referred

to byReimann et al. [11].We cannot gain a sense of the interpro-

cess relationships in terms of sequence or time.We can use these

measures as useful context, rather than critical insight.

B. Strategy Group Characterization

In this section, we aim to answer research question 2 (see

Section II-G): To what extent can we qualitatively characterize

students’ differing learning strategies, through analysis of tem-

porally ordered event sequences of SRLmicrolevel processes?

Note: Larger scale versions of the FOMM visualizations

presented below are accessible as supplementary material.

TABLE V
SRL STATISTICS BY GROUP: ACTIVE COHESIVE (AC) AND SEMIENGAGED (SE)

TABLE IV
SRL STATISTICS BY GROUP: ACTIVE AGILE (AA)

AND SUMMATIVE GAMBLERS (SG)

TABLE VI
INTERGROUP PATH ANALYSIS
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1) SRL Analysis: Active Agile Group: This group is one of

the successful groups, in terms of assessment scores. Telling

insights can be articulated from the preferred initial activities

of our learner groups. Looking at Fig. 3, we can see that build-

ing knowledge (by accessing course content and/or video) car-

ried a TP of 0.58. This makes it the most likely opening move

in a learning session. Aside from this, we see a definite empha-

sis toward goal setting (with a TP of 0.21) and plan-making

(0.11). As such, this group exhibits a logical approach to its

learning sessions and a leaning toward functional SRL behav-

iors. If we consider the constructs of Winne and Hadwin’s

model, planning and goal-setting are behaviors that we expect

to see in the earlier stages of a learning cycle [10].

The preference to move toward knowledge building tasks

after dashboard evaluation is interesting (0.84); this represents

a definite metacognitive trigger between two SRL events.

Again, Winne and Hadwin’s model [10] provides empirical

parallels, specifically in relation to the relationship between

external feedback and SRL behaviors. Also in support of this,

the Winne and Butler model [64] points to narrative of optimal

feedback digestion after access to artefacts such as dash-

boards. The active agile students use this feedback to orches-

trate an improved learning scenario. In our case that was

through engaging in knowledge building. Similarly, periods of

reflective behavior were followed by knowledge building

(0.35) or knowledge building followed by summative activity

(summative shifting, 0.36).

The preference to move toward knowledge building tasks

after dashboard evaluation is interesting (0.84); this represents a

definite metacognitive trigger between two SRL events. Again,

Winne and Hadwin’s model [10] provides empirical parallels,

specifically in relation to the relationship between external feed-

back and SRL behaviors. Also in support of this, the Winne and

Butler model [64] points to narrative of optimal feedback diges-

tion after access to artefacts such as dashboards. The active agile

students use this feedback to orchestrate an improved learning

scenario. In our case, that was through engaging in knowledge

building. Similarly, periods of reflective behavior were followed

by knowledge building (0.35) or knowledge building followed

by summative activity (summative shifting, 0.36).

Working on summative tasks (which counted to toward the

overall final summative mark) was, in raw event terms, one of

most frequently engaged tasks. We see that our successful

group was more likely to move from a cycle of summative

engagement to knowledge building (0.58) than to any other

activity. This points to a sense of self-motivation, which can

be identified as the use of more than one strategy to keep the

learner on track for the final goal [65]. As such, it indicates a

sense of self-autonomy [8]. In our case, the students evaluated

the finite reward of summative attempts before changing to

knowledge building to seek a longer-term learning benefit.

In this group, although we do see free transition between the

SRL behaviors, there was a general sense of cohesion. It should

be noted thatmicrolevel processes, such as Strat_Change.Summa-

tive, Strat_Change.Staged_Assessment, Reflect, and Make Plans,

are composites of lower level learning actions (see Table II) and

as such we would expect to see a degree of linkage between them.

Yet, we still see a pattern of recognizable learner self-regulation.

2) SRL Analysis: Summative Gamblers Group: This was

one of the least successful groups of the four (see Fig. 4). On

first analysis, it seems difficult to distinguish traits of less

functional learner behavior. We can, however, elicit indica-

tions through inspecting behaviors in initial sessions. Like the

previous group, there was an understandable (and admirable)

initial focus on knowledge building. There was, however, an

added tendency for some learners to jump straight to an

uncontextualized summative task sequence (nearly 20%). In

general, we see a slightly less controlled approach to initial

strategizing, which is reflected in general behaviors around

the whole FOMM diagram. It contains more disparate arcs of

transition than that of the better performers. This indicates a

less considered approach to learning strategy and SRL.

That aside, there were intergroup behavioral parallels

(explored more in Section IV-C) in the learning patterns, such

as engagement with plan-making, goal-setting, and evaluative

activities before moving to task engagement of some kind. We

see that after a goal setting, there is a 0.51 TP to knowledge

building, but also a 0.33 TP to the main summative task. This

could indicate suboptimal learning behaviors and possibly an

internal renegotiation of outcome aspirations in this task; a

Fig. 4. FOMM diagram for summative gamblers (lower performers).
Fig. 3. FOMM diagram for active agile (higher performers).

SAINT et al.: TRACE-SRL: A FRAMEWORK FOR ANALYSIS OF MICROLEVEL PROCESSES OF SELF-REGULATED LEARNING FROM TRACE... 871

Authorized licensed use limited to: University of Edinburgh. Downloaded on December 18,2020 at 09:55:13 UTC from IEEE Xplore.  Restrictions apply. 

4. EMBEDDING TRACE DATA IN SRL

80



phenomenon noted by Hattie and Timperley [66]. In a process

of planning and goal setting, one would assume the next step

would be knowledge building, not summative fast-tracking.

After dashboard evaluation, the most likely shift was toward

knowledge building (0.46), which is admirable. It is less easy

to account for the other TPs, which indicate the unstructured

nature of this group.

3) SRL Analysis: Active Cohesive Group: This group is

identified as a strong group, attracting similar assessments

scores to that of the active agile group. Viewing initial session

behaviors (see Fig. 5), we see that the overriding tendency

was to build knowledge (0.71). The next most likely move

was toward goal setting (0.21). There was an 0.8 likelihood

that plan-making is embarked upon at this stage. As with the

other higher performers group, this strategy group exhibited a

seemingly well-planned approach to learning. Knowledge

building was generally important to this group; we can see

that it was the most likely destination, learning-wise, after a

good number of other activities.

After goal setting, we see an inclination to knowledge

building (0.59), as was the case with formative work (0.51),

summative work (0.5), and especially dashboard evaluation

(0.7). In this behavior, we see a sense of contextualized knowl-

edge acquisition, that is, some learners move toward it via a

set of preparatory tasks. Interaction with the summative task

was typified by regular connections with knowledge building

(0.5) and, to a lesser extent, dashboard evaluation (0.25).

Overall, through their learning patterns, this strategy group

demonstrates what some would theorize as optimal SRL.

4) SRL Analysis: Semiengaged Group: This group, like

the summative gamblers, tended to gravitate more toward the

main summative task, albeit not to the same degree. Taking a

relatively simplistic view of the diagram (see Fig. 6), we see

that paths between the major activities were not as sharply

defined probabilistically, and there were more of them (within

the designated probability thresholds).

Although there were some cases where a prevalent next step

is evident, it is not a behavioral norm. This indicates a lack of

cohesion in movement between tasks. We could infer that

there was a less strategic aspect to this group, indicating a

looser deployment of SRL. Picking up on a few examples of

this, if we look at the summative task activity, aside from the

self-loop TP (0.36), there was no one dominant probable next

step, such as displayed by the higher groups. Looking at the

knowledge building task, we can see a comparatively weak

self-loop TP (0.38), and a more disparate spread of TPs to

other activities. Again, we could interpret this as a slight lack

of focus and possibly a more speculative tactical move.

This group did not display suboptimal learning in all areas;

there is, indeed, evidence of occasional optimal behaviors.

Specifically, after evaluating the dashboard, there is a healthy

0.53 TP toward knowledge building tasks as the next step.

There is still a 0.19 TP to the summative task, demonstrating

come tendency to attempted short-cutting of learning. We can-

not say that this group was typified completely by dysfunc-

tional learning behaviors, but there was evidence of a lack of

coherence in certain areas.

C. Strategy Group Comparison

In this section, we aim to answer research question 3 (see

Section II-G): To what extent do contrasting learner strategies

groups differ in patterns of temporally ordered event sequen-

ces of SRL microlevel processes?

1) Frequency Statistics: Although the main thrust of our

analysis was PM, we can glean some of the narrative from

simple relative frequency statistics. Table VII describes rela-

tive engagement in terms of frequency.

Counter-intuitively, the lower performers seem to place

slightly greater emphasis on reflection. This, however, is quite

consistent with the literature [67]. In certain cases, students

who are less self-regulated (i.e., lower prior knowledge and/or

knowledge of relevant learning strategies) are more inclined

to engage into metacognitive monitoring in the need to

uncover the right strategy to help them with their learning.

This constant metacognitive monitoring, in turn, increases

Fig. 5. FOMM diagram for active cohesive (higher performers). Fig. 6. FOMM diagram for semiengaged (lower performers).
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cognitive load and reduces opportunities for successful learn-

ing [68], [69]. The telling difference is in the distributions of

knowledge building and summative assessment. We see a

more balanced engagement in that of the higher performers

than that of the lower. This provides an initial clue as to the

differing behaviors.

2) FOMM Comparison: Active Agile (High) and Summa-

tive Gamblers (Low): The FOMM comparison diagram (see

Fig. 7) provides a view of contrasting behaviors in the context

of probabilistic differences. At the start of learning sessions,

the lower performers were more than three times likely to

engage (unprepared) with the summative task than the higher

performers (with respective TPs of 0.05 and 0.18). This indi-

cates a less disciplined approach to self-regulation; these learn-

ers were attempting to fast-track the learning process to

cheaply achieve the summative outcome. We also see that the

low group showed no inclination to make plans from the outset,

as compared to the high group (0.11).Note: From this point for-

ward, comparative TPs will mostly be shown in parentheses, in

this format (n.nn/n.nn); the order of comparison is determined

by the containing sentence. The high group was more likely to

transition initially to goal setting than the low group (0.21/

0.14). Counterintuitively, the low group was more likely to

access the dashboard on initial access (0.07/0). Engagement

with dashboards, as a means of comparison with the class aver-

age on the amounts of activities performed, is shown to pro-

mote performance goal orientation [68]. Although a healthy

balance between mastery and performance goal orientation is

desirable [69], the dominance of performance orientation can

lead to a surface approach to learning, the focus of which is

mostly on assessment and leads to limited understanding [70],

[71]; the summative gamblers exhibit a strong inclination

toward surface learning approach even through seeking the

type of feedback that may not be healthy for performance.

Viewing activities associated with dashboard evaluation

throws up some telling comparisons. After dashboard engage-

ment, the high-performance group was much more inclined to

move to knowledge building tasks than the low-performance

group (0.84/0.46). In addition, the low group was nearly three

times more likely to engage directly with the summative tasks

than the high group (0.1/0.27). These transitions again indicate

a less optimal inclination toward planned learning. Accessing

the dashboard was more likely to inspire uncoordinated and

speculative summative attempts in the lower performers. This

is similarly reflected in goal setting associations. After this

engagement, the higher performers were more likely to access

knowledge building exercises than their counterparts (0.73/

0.51), but less likely to jump straight to summative attempts

(0.2/0.33). This can be explained by higher levels of judge-

ment of learning, that is, high-performing students were more

accurate at judging how well they mastered a topic, in compar-

ison to the lower performers [72]. Other behavior associations

with knowledge building indicate that the high-performance

group tends to stick in tighter self-loops (0.58/0.38). This

could indicate a more disciplined approach to engagement in

learning, as they showed less inclination to divert to other

behaviors. This consistency in choices and systematic use of

study strategy has also been proven in the literature on prob-

lem solving [17]. We can also see that, after engaging in for-

mative work, the high group was more likely to transition to

knowledge building than the low group (0.6/0.44). This is

interesting, as it indicates an assessment of academic standing

and then a decision to address this through knowledge build-

ing; clearly an SRL trait.

Finally, regarding summative engagement, we see predict-

able patterns. The low group was more inclined to engage in

sustained cycles of this behavior, as indicated by the self-loop

TP (0.49/0.2). Conversely, the high groups were nearly three

times more likely to disengage with summative attempts and

move to knowledge building (0.58/0.22). This indicates a

greater inclination of the higher group to reflect on their

engagement and attempt to remedy matters; again another

clear SRL trait demonstrated by strong metacognitive moni-

toring and control of own learning [65]. This shift was codified

in this study as Reflect. The reason we see the composite ele-

ments in our FOMM was because the codified shift must have

happened within a learning session. In this case, it represented

SRL in a more strategic light.

TABLE VII
MICROLEVEL ACTION RELATIVE FREQUENCIES BY GROUP (%)

Fig. 7. FOMM Comparison: Active agile and summative gamblers.
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In summary, we can typify a broader set of behaviors that

define SRL function and dysfunction; thus, sustained cycles of

reflection, evaluation, and assessment, leading to further

knowledge-building (good SRL); unprepared speculative fast-

tracking to the summative assessments (no SRL).

3) FOMM Comparison: Active Cohesive (High) and Semi-

engaged (Low): Viewing the comparative opening moves of

the two groups in the FOMM comparison diagram (see

Fig. 8), there appears to be no significant differences in initial

learning behaviors. Both groups display a similar probabilistic

proclivity in terms of goal setting (0.21/0.18) and knowledge

building (0.71/0.75). A small percentage of the active group

engages initially in making plans (0.08).

If we look at the dashboard evaluation task, we can detect

differences in next-step engagement. The active group dis-

played a strong inclination to build knowledge after viewing

the dashboard (0.7) as compared to the semiengaged group

(0.53). The active group was less likely to move straight to

summative task after evaluation (0.5/0.38), displaying a little

more composure in regard to self-regulation. Similar behavior

can be seen with the goal-setting task: The semiengaged group

were twice as likely to move from this task to the summative

task (0.23/0.11). Again, here we see increased evidence of

minor summative-gambling traits, although not as pronounced

as the other lower performing group (summative gamblers).

Also, after goal setting, we see that the active group displayed

a slightly greater tendency to access knowledge building,

although this was less pronounced (0.59/0.43).

In viewing the knowledge building task, the active group

displayed a stronger sustained focus with a TP self-loop of

0.52, as compared to 0.38. Although margins seem slim, this

does indicate a greater sense of value in sustained knowledge

building in the active group. If we look at the paths going

into this activity, we see the active group was more likely to

move here from other activities than the semiengaged group.

This highlights a stronger emphasis on knowledge building,

as opposed to summative attempts. The semiengaged group

displayed a greater focus on the summative assessments

(0.19./0.36.), a trait they shared with the summative gam-

blers (although to a lesser degree). We can see a larger TP

self-loop, and likelier tendency to attempt this activity after

tackling others.

It is interesting to note that the active group was twice as

likely to move from summative work to dashboard evaluation

(0.25/0.13). This is also reflected in TPs from other activities,

such as knowledge building, formative work, and reflection

activities. One could speculate that this demonstrates a ten-

dency toward an optimal SRL tactic of postactivity evaluation;

it could also be viewed as a cynical surface learning tactic to

maximize dashboard metrics. Either way, it is a manifestation

of self-regulation.

V. CONCLUSION

Using the Trace-SRL framework, we categorized raw

learner actions into SRL microprocesses. In doing so, we out-

lined a method of transforming raw trace data into SRL event

data. This in turn allowed for the meaningful analysis of SRL

processes in temporal and probabilistic context. Whereas the

study by Saint et al. [46] tested a novel way of analyzing event

dynamics, sustained activity engagement produced very high

self-loop TPs, making interpretation challenging in some cases.

SRL categorization has removed these data-skewing TPs. We

can view a learning sequence as a single event, and thus, it pro-

vides a clearer view. Contextualizing sequences of learning

actions in a paired or transitional context provides us with a

much richer view of behavior, not just strict frequency counts.

We can still see the strong urge for students to engage in sum-

mative tasks, but in parsing these sequences contextually, we

can, to an extent, distinguish between unregulated summative

engagement and considered summative engagement.

The findings also reflect the divisive nature of dashboard

usage. As posited by both Biggs [70] and Entwistle [71], an

unhealthy focus on performance orientation indicates a surface

learning approach, indicating an overbalanced focus on sum-

mative assessment, and therefore, a suboptimal level of con-

sidered, incremental learning. Whilst being useful for certain

types of learner, dashboards do not promote effective learning

for all groups of students. Clearly, process and self-regulation

feedback [66] would be much more beneficial than relying on

the comparative measures typically afforded such interfaces.

The findings have genuine empirical echoes. We see a sub-

optimal overreliance on unsubstantiated reflection and goal

setting from the weaker learners, as reported by Veenman [67]

and Pintrich [73]. Contrasting movements through Winne and

Hadwin’s model of SRL [10] are definable between the

groups. Optimal learners plan and construct more cohesive

patterns of learning. Effective strategy changes, as discussed

by Hattie and Timperley [66], are evidenced throughout. Stu-

dents with optimal SRL processes are seen to favor movement

from goal setting to knowledge acquisition (as opposed to

summative short-cutting), demonstrating a higher level of

metacognitive judgement than their counterparts, as also evi-

denced by Schraw [72]. This consistency with literature is

pleasing, but impactful research needs to go beyond empirical

ratification. Only once the method gains its own theoretical

traction, can we hope to uncover genuinely novel insights.

Fig. 8. FOMM Comparison: Active cohesive and semiengaged.
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This study still represents a simplistic formulation of SRL,

notwithstanding the limits to the levels of SRL sophistication,

we can glean from trace data. We do not grade the usefulness

of learning sequence, for example, a sequence of mainly incor-

rect summative tests without remedial action (undesirable

SRL) or a sequence of mainly incorrect summative tests, then

engagement with formative/content access, then a succession

of successful actions (good SRL). This metric-based assess-

ment, the parameters of the pattern, as described by Winne in

his COPES heuristic framework [73], could afford a rich

potential for SRL analysis of trace data. Caution is advised

when making inferences on behaviors. Despite its usage, non-

objective inferences are sometimes difficult to avoid, even in

context of our chosen model of SRL [9]. A more robust frame-

work of validity will be investigated in future work. FOMMs

have a short memory; whilst they have provided us with

engaging insights into learning behaviors, it would be worth

exploring more sophisticated methods of temporal and proce-

dural dynamics in the next cycle of research. The generaliz-

ability of this study is limited, and further replications would

be constrained to highly similar learning contexts, as opposed

to those that use different learning designs and in different

subject areas.

Nonetheless, the proposed Trace-SRL framework offers

some opportunities to study SRL learning in more general

terms that are aligned with the literature of SRL. As such it

also offers opportunities for deployment across different learn-

ing designs where, previously, LMS platforms exist in concep-

tual abstraction to SRL. Analysis with PM could allow for

early diagnosis of undesirable patterns in SRL and articulation

of personalized feedback, as explored in [74].

Our study should be viewed as a groundwork on which to

develop technological solutions that support personalized scaf-

folding of SRL in real-time. We foresee the development of

mechanisms that both detect the nuanced details of students’

SRL processes and offer guidance on how to improve them.

Such solutions do not currently exist but are critical to the sys-

tematic and impactful advancement of SRL. For example, the

development of an SRL-informed approach proposed here

could be used to address some of the critical issues raised by

Matcha et al. [75] in their systematic review of SRL in learning

analytics dashboards (LADs). Our approach could integrate

with the next-generation intelligent LADs, such as the one pro-

posed by Shabaninejad et al. [76]. Such solutions could provide

teachers with valuable insights into students’ SRL behaviors.

Educators could reflect on and improve their learning designs,

thus, enhancing support for students in the context of their own

SRL. Student facing systems could also benefit from the use of

the proposed approach for the analysis of SRL. This could

inform the development of automated methods for the provi-

sion of feedback in real-time. This could be achieved by creat-

ing rules to trigger specific indicators to the students in a

learning system. For example, if the absence of goal setting or

metacognitive monitoring is observed, the students would be

recommended to take time to review relevant information in

the course materials (e.g., learning outcomes or marking crite-

ria) or attempt certain formative assessments.

In order to progress this type of work from exploratory to

confirmatory, a more formalized articulation is required. The

next logical step is a systematic review of the literature in the

context of temporal and sequential approaches to the analysis

of SRL. Once relevant dimensions described in the literature

are identified, we propose a study that explores how different

PM algorithms address all these different dimensions. This

could provide critical insights into the trajectory of the next

cycle of our research and provide a strong empirical base for

an impactful technological solution. The aim is always to

improve learning and, as such, we perceive the eventual crea-

tion of an in-situ mechanism to identify and inform learners in

the context of their own SRL.
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4.3 Summary

This chapter represents the first exploration SRL model deployment in authentic trace data settings.

We acknowledge the debt to Greene and Azevedo (2009) for developing the micro-process analysis

method, and to Siadaty et al. (2016), who highlighted the use of regular expressions (REGEX) to

parse raw data into SRL processes. We developed a REGEX script in R to parse authentic LMS

data, using a pattern library derived from informed analysis of sequences of the raw data. Although

this was not highlighted in the publication, we actually used the first order Markov model process

mining algorithm to undertake initial research on the data. This provided us with a broad view of

the commonly occurring action sequences on which to inform our definition of the micro-process

pattern library which provided the rules for the data transformation.

The generation of such pattern libraries throws up a number of questions around action sequence

priority. To clarify, certain higher cognition SRL pattern sequences are composites of lower cogni-

tion sequences. For example, we determined the high cognition Make Plans micro-level process as a

sequence of orientation tasks, then content access, then back to orientation. In this context, content

access is seen as a low-level cognitive activity, which is an SRL process in its own right, and is also

part of a more complex high level process. In our study we employed a priority mechanism which

prevented content access from being part of two concurrent SRL processes. This mechanism re-

mained in place for the remainder of our studies but it opens up an interesting ontological question.

Can a learner engage in two levels of self regulation, and should we represent it?

Notwithstanding this, and the broader question of construct validity, we maintain that the study

reported on in this chapter provided a bedrock on which similar trace-based SRL studies can be

built. As with the Chapter three study, we made use of the pMineR “compare models” to elicit key

difference in learner behaviours from a position of temporal and sequential likelihood, but critically

in this study, we were able to employ the context of SRL. For example, we detected that, at the

start of learning sessions, low performing learners were more than three times likely to engage with

summative assessment tasks without any session preparation, than high performers. This indication

of a less disciplined approach to self-regulation could be used to inform learning design, or could

be used to generate specific feedback messages to learners, or as part of a broader message on the

importance of SRL.

Whilst we hope that the benefits of using pMineR and stochastic process mining are well artic-

ulated in this study, we recognise that even richer insights can be derived from combining analytic

methods. As such, we retained the “Trace-SRL” framework for the two studies reported on in Chap-

ter five and Chapter six, but explore a broader set of methods, with the hope of providing richer

outcomes.
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5 Comparing Discovery Algorithms

Don’t compare your beginning to someone else’s middle, or your middle to

someone else’s end.
— Tim Hiller, Strive: Life is Short, Pursue What Matters

5.1 Introduction

T HE use of multiple and/or mixed methods is common in many research disciplines, and this

use has itself been the source of a reasonable body of research (e.g., Morse (2003), Johnson

et al. (2007)). In the context of the exploration of temporally focused SRL, there are two broad

categories, as discussed in Chapter two. One is the use of multiple data sources or channels, com-

monly a mixture of trace data and some sort of self-report mechanism. The other is the use of

multiple analytic techniques for the discovery and visualisation of designated phenomena, and it is

this diversification of methods that we explore in this chapter.

Several key studies have explored the dynamics of learning using multiple analytic discovery

methods. The Sonnenberg and Bannert (2016) and Sedrakyan et al. (2016) studies both used

process mining algorithms and dotted chart graphs to provide insights into SRL. The Sonnenberg

and Bannert study did not, however, capture authentic trace data. The studies by Ahmad Uzir et

al. (2020) and Fan et al. (2021) both used combinations of process mining and epistemic network

analysis, which provided key insights into the sequence and duration of learner tactics and their

transitions (as afforded by process mining), and the temporal co-occurrence of the same learner

tactics (as afforded by epistemic network analysis). This combined interpretation did prove to offer

richer insights into tactic use. In our study, we explored this multi-perspective analysis, but further

explored how combining them provided a more ontologically complete view of the SRL processes

analysed. No one, as far as we are aware, has presented a study which explores the combination

and consolidation of various analytic methods to analyse systematically generated SRL process data.

To that end, building on the trace-SRL method explored in Chapter four, we expand the analytic

scope to present a study which serves to investigate these research questions:
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(RQ2) How effectively can we measure the temporal dynamics of learning strategies in delineated stu-

dent groupings, using process analytic techniques?

(RQ3) To what extent can we develop a framework to embed temporally focused analysis of learning in

a theoretical model of self-regulated learning?

(RQ4) To what extent can we combine analytic methods to further explore self-regulated learning from

a perspective of temporality and sequence?

5.1.1 Chapter overview

In the previous studies, reported on in Chapter three and Chapter four, we established the use of

a novel stochastic process mining algorithm (pMineR’s first order Markov models) as a means of

exploring learner behaviours from authentic trace data, and a way of framing this authentic trace

data in a recognised model of SRL (Trace-SRL). In this chapter, we seek to build on this work by

exploring the use of multiple analytic discovery methods on a common SRL-transformed dataset.

Although the data comes from the same LMS as was used in the previous two studies, we extracted

different learner groups, based purely on assessment performance. The key insights from this study

come from the comparison of insights from the following techniques:

• Frequency-based statistics: we produced a very simple set of descriptive measures relating to

the absolute and relative engagement in SRL activities of our two learner groups (high and

low performers). This serves as a base-level discovery method, and is overtly simplistic in

design.

• Epistemic Network Analysis: a method which categorises features of individual and group

learning (e.g., action or communication), which it then uses to create nodes in an epistemic

network. Associative connections are established through relative weighting and statistical

techniques. In simpler terms, this technique does emphasise transition between activities

(like process mining), but through temporal co-occurrence, as well as using singular value

decomposition to identify salient properties (Shaffer et al., 2016).

• Stochastic process mining: The main stochastic process mining method explored in the pre-

vious studies in this paper, utilising the pMineR algorithm (Gatta, Lenkowicz, et al., 2017). It

provided us with a sense of likelihood of transition from one SRL process to the next.

• Temporal process mining: more accurately, time-based process mining. The bupaR package

(Janssenswillen et al., 2019) was used to analyse SRL process engagement in which median

duration/lag was deployed as the main metric.
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5.2 Publication: Combining analytic methods to unlock sequential and tem-

poral patterns of self-regulated learning

The following section includes the verbatim copy of the following publication:

Saint, J., Gašević, D., Matcha, W., Ahmad Uzir, N., & Pardo, A. (2020). Combining

analytic methods to unlock sequential and temporal patterns of self-regulated learning.

Proceedings of the Tenth International Conference on Learning Analytics & Knowledge,

402–411. https://doi.org/10.1145/3375462.3375487
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ABSTRACT 
e temporal and sequential nature of learning is receiving 
increasing focus in Learning Analytics circles. e desire to embed 
studies in recognised theories of self-regulated learning (SRL) has 
led researchers to conceptualise learning as a process that unfolds 
and changes over time. To that end, a body of research knowledge 
is growing which states that traditional frequency-based 
correlational studies are limited in narrative impact. To further 
explore this, we analysed trace data collected from online 
activities of a sample of 239 computer engineering undergraduate 
students enrolled on a course that followed a flipped class-room 
pedagogy. We employed SRL categorisation of micro-level 
processes based on a recognised model of learning, and then 
analysed the data using: 1) simple frequency measures; 2) 
epistemic network analysis; 3) temporal process mining; and 4) 
stochastic process mining. We found that a combination of 
analyses provided us with a richer insight into SRL behaviours 
than any one single method. We found that beer performing 
learners employed more optimal behaviours in their navigation 
through the course’s learning management system.   

CCS CONCEPTS 
• Applied computing → Education → Learning management
systems • Computing methodologies → Machine learning →
Learning seings → Active learning seings

KEYWORDS 
Learning Analytics, Self-regulated Learning, Micro-level 
Processes, Epistemic Network Analysis, Process Mining 
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John Saint, Dragan Gašević, Wannisa Matcha, Nora’Ayu Ahmad Uzir and 
Abelardo Pardo. 2020. Combining Analytic Methods to Unlock Sequential 
and Temporal Paerns of Self-Regulated Learning. In Proceedings of the 
10th International Conference on Learning Analytics & Knowledge (LAK’20). 
ACM, New York, NY, USA, 10 pages.  
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1 INTRODUCTION 
There is an increasing focus on the capture and analysis of learner 
data to provide insights into patterns of self-regulated learning 
(SRL). In Learning Analytics (LA), the temporal nature of SRL is 
inspiring researchers to augment conventional statistical 
measures with techniques more suited to capturing the dynamics 
of temporality in learner engagement [10,19]. Despite this positive 
trajectory, many challenges exist in articulating the nuanced 
dimensions of SRL from data extracted from online and blended 
educational environments. Such data can be noisy, which presents 
challenges in the moderation of data dimensionality. More 
crucially, although lip service is often paid to SRL, many studies 
do not strictly employ recognised theoretical models of SRL to 
underpin their analyses e.g. [30]. 

The increasing focus on SRL has inspired the creation and 
ongoing development of numerous models of SRL [27,38,39]. A 
general theme is a cyclical dynamic of 1) Planning and 
forethought; 2) Performance and monitoring; and 3) Reflection 
and evaluation. To facilitate the framing of analyses in models of 
SRL, a technique known as micro-level process analysis was 
developed [16]. Raw log data (digital or self-report) are 
categorised into event sequences – micro-processes – which 
represent sub-processes of a broad SRL construct, or macro-
process. The aim of micro-level process analysis is to articulate a 
set of event categorisations which form the requisite model of 
SRL.  

Several approaches have been proposed to analyse sequential 
and temporal aspects of SRL. Most of these studies are based on 
self-reported extraction of SRL micro-level processes, and they 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for components of this work owned by others 
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Request permissions from Permissions@acm.org. 
LAK '20, March 23–27, 2020, Frankfurt, Germany  
© 2020 Association for Computing Machinery. 
ACM ISBN 978-1-4503-7712-6/20/03…$15.00   
https://doi.org/10.1145/3375462.3375487  
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typically use a single methodological approach for analysis. Some 
of these approaches emphasise sequencing through the use of 
sequence mining algorithms such as optimal state matching [37]. 
Others employ process-oriented approaches, e.g., process mining 
algorithms such as FuzzyMiner or Heursitic Miner e.g. [5,35] and 
co-temporal approaches e.g., graph-based methods [36]. These 
studies provided useful comparative insights but not in the 
context of micro-level processes of SRL. Studies by [34] employed 
trace data in an embedded model of micro-level process SRL. 
These studies, however, utilised a single method of model 
discovery, providing a useful, but limited analytical view of the 
event activities. A study by [23] introduced a multi-method 
approach to learner data analysis but was not embedded in a 
recognised model of SRL.    

We argue that the following factors underpin impactful studies 
of this kind: 1) An explicit usage of recognised theoretical model 
of SRL; 2) A data-driven method of capture that is authentic, yet 
nuanced enough, to reflect the paerns of learner behaviour 
outlined in the chosen model of SRL; 3) An analytical method 
capable of articulating SRL in a dimensional way, using a range of 
methods i.e. frequency-based, sequential, and temporal. As far as 
we are aware nobody has aempted a combined frequency-based, 
temporal and cotemporal study embedded in a recognised model 
of SRL.  

We therefore present a novel study which: 
• Adopts an approach for the measurement of SRL micro-

level processes from digital traces collected from an 
authentic learning environment. 

• Proposes a complementary method combining epistemic 
network analysis (ENA) and process mining techniques 
on sequences of extracted SRL micro-level processes. 

• Identifies paerns of self-regulation across different 
learner groups. 

• Presents an approach for the qualitative and quantitative 
comparison of SRL across learner groups.  

2 BACKGROUND 

2.1 Measurement of Self-Regulated Learning 
The benefits of effective self-regulation have been well-
documented [9]. A common theme is the idea that effective 
learners take control of their own learning through a cyclical 
process of internal and external feedback mechanisms. The main 
procedural elements of the cycle are planning, performance 
(monitoring), and reflection [27,38,39]. There is, however, an 
ongoing ontological disparity between what is described in 
theoretical models of SRL and what can be captured to support 
their constructs. For this reason, there is still a heavy reliance on 
self-report mechanisms to support the capture of the (meta-) 
cognitive and motivational elements of SRL [21]. While self-
reports provide the requisite level of conceptual articulation, there 
are proven shortcomings. Students generally exhibit suboptimal 
reporting of their own learning processes, introducing a kind of 
cognitive sample bias. In addition, post-event recollections are 
subject to natural memory degradation [13].  

The choice to forgo self-report data and use pure trace data to 
measure SRL eliminates some issues but introduces new ones. For 
studies that seek to extract trace-data from authentic settings, 
challenges exist around validating engagement sequences as 
actual constructs of SRL. Some researchers advise against 
analysing trace-data at all without employing a complementary 
off-line self-report method [40]. This notwithstanding, one of the 
techniques available to dampen the noise of raw data and embed 
analysis in a recognised model of SRL, is micro-level process 
analysis. 

2.2 Micro-level Process Analysis  
Raw learner data, whether it is self-report or trace, can be quite 
noisy. Extracting valid meaning from it poses challenges around 
interpretation, validity, and generalisability. To answer this 
challenge Greene and Azevedo [16] devised a system of 
categorisation which defined a set of self-regulatory activities as 
micro-level SRL processes. These micro-level processes were 
themselves sub-categories of broader macro-level processes: 
planning, monitoring activities, strategy use, handling task 
difficulties and demands, and interest. These elements form the 
constructs of their chosen SRL model[4]. This thus represents a 
hierarchy: macro-level processes  micro-level processes  
system specific learner activities. A majority of existing studies 
into micro-level processes are based on self-report instruments. A 
notable exception is Siadaty et al. who use trace data in their 
analyses [34]. From this data, a comprehensive picture of 
workplace learners’ self-regulation was interpreted in the context 
of the model of SRL, as theorised by Zimmerman [39]. This paper 
builds on this method to similarly embed the analyses in a model 
of SRL.  

2.3 Temporal Analysis  
A large body of LA research is based on conventional, frequency-
based statistical analysis. The prevalence of such analyses is 
understandable; correlational analysis is, as a method, the lingua 
franca of social sciences quantitative analysis. Its rules are widely 
known, and it has the empirical weight of many years of applied 
experimentation. It is, however, limited in its expression and 
measurement of temporal dynamics [28]. 

The idea that learning and, more specifically SRL, is a process 
that unfolds in temporal, yet cyclical, space [9] is well-established. 
Indeed, given the trajectorial nature of learning and the 
significance of temporal factors in LA, we would expect a great 
wealth of time-based analyses in the field. Temporality is, 
however, relatively underexplored in relation to its importance, 
despite the availability of data relating to the learning process in 
context of time and order [19]. Chen, Knight, and Wise [10] 
highlight temporal analytics in two modes: 1) the passage of time 
and frequency/lengths of engagement; 2) the order of sequence of 
engagement events. It would be prudent to consider a third 
direction; the analysis of the change in patterns of engagement 
over time, as evidenced in [14] and [24]. 

Oshima, Oshima, and Fugita use a mixed-method approach in 
their study in an effort to articulate multiple scales of temporality 
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[25]. As posited by Knight et al., “Such efforts towards 
triangulation are important for validating results and offering 
robust interpretations of the data with which to inform practice” 
[19, p.13]. To that end, descriptive statistics are employed to 
augment, if not underpin, the analytical narrative of this study. 
This study seeks to establish a novel direction in promoting the 
multi-method measurement of SRL temporal dynamics using 
complementary approaches that emphasise network [22] and 
process dimensions [15,17].  

2.4 Methodological Choices  
2.4.1 Network analysis. Network-based approaches fall into 

several categories. Transition graphs provide insight into process 
movement in terms of likely temporal sequence. Cotemporal 
methods allow us to frame activity engagement in terms of co-
occurring temporal associations[33]. Swiecki et al. [36] provide a 
compelling account of the relative efficacy of cotemporal methods 
and sequential methods also used in the current study, 
sugg[26]esting that cotemporal methods provide stronger 
analyses. Epistemic network analysis (ENA) is a cotemporal 
analytical technique which utilises epistemic frames theory to 
analyse log/trace data in individual and collaborative settings [32]. 
The theory of epistemic frames views expertise in complex 
domains as a network of connections among knowledge, skills, 
values, and decision-making processes [33]. ENA categorises 
features of individual and group learning e.g. action, 
communication, and cognition, which it then uses to create nodes 
in an epistemic network. Associative connections are established 
through relative weighting. Statistical techniques are employed to 
compare the salient properties of networks generated in the 
context of the content of the network and traces of learning 
processes [33].  

2.4.2 Process Mining. Process mining (PM) is an event-based 
analytical method that derives sequential, associative and 
temporal analyses from log data files. It has steadily gained 
traction in educational science as LA and EDM researchers 
continue to explore alternatives to variable-centric analytical 
methods. Taking event log files as its input, PM utilises discovery 
algorithms which allow the identification of common logical 
arrangements of processes in a temporal space [1]. This can be 
seen in SRL studies reported in [5,6,20]. These studies provide 
crucial insights into sequential and temporal dynamics of SRL, 
however, the empirical weight of some of the PM metrics 
employed has not been fully established.  

2.5 Research estions 
To our knowledge, there have been limited attempts to analyse 
patterns of SRL through the lens of frequency-based, temporal and 
cotemporal models. We posit that the combined analytical picture 
provided by these methods is richer than their individual 
contribution. We aim to combine these methods on authentically 
generated LMS trace data to address these questions: 

1. To what extent can we qualitatively and quantitively 
characterise students’ learning behaviours from event 
sequences of SRL micro-level processes, using frequency 

measures, network analysis, and process mining? 
2. To what extent can we articulate contrasting patterns of 

SRL behaviours across different student groups, based on 
assessment performance, by using frequency measures, 
network analysis, and process mining? 

3. To what extent can we consolidate these analytical methods 
to provide a coherent temporal/sequential narrative on SRL, 
as enacted in a blended-learning environment?  

3 METHODOLOGY 

3.1 Trace Data Collection 
The data for this study were collected from a Computer 
Engineering course at a university in Australia. The course 
material and activities were managed using a bespoke LMS with 
a set of additional tools for instrumentalisation. Three student 
cohorts of data provided the initial combined trace dataset from 
which we took a sample of 239 students’ action logs. For each of 
the three years, 12 weeks of LMS engagement data are present. 
The course was based on a flipped classroom pedagogy. The data 
used in this study were generated from students’ engagement 
with the online LMS activities. These activities served the purpose 
of preparation for the classroom-based face-to-face activities. 
Every time a student engaged with an element of the LMS, a 
timestamped log was generated, identifying the learning action.  
Table 1 contains a list of the recorded learning actions. A more 
detailed account of the educational and methodological settings of 
the course can be found in [26]. 
Table 1: LMS learning actions and descriptions 
Learning 
Action 

Description 

EXE_CO Correctly solving a summative assessment item  
EXE_IN Incorrectly attempted summative assessment item 
MCQ_CO Correctly solved formative assessment item (MCQ) 
MCQ_IN Incorrectly attempted formative assessment item (MCQ) 
MCQ_SR Solution request for an MCQ 
VIDEO_LOAD Course video load 
VIDEO_PL Course video play 
VIDEO_PA Course video pause 
VIDEO_END Course video end 
CONTENT_ACCESS Reading materials access 
MC_EVAL Dashboard access 
INDEX_ACCESS Index page access 
PROJECT_ACCESS Project page access 
MC_ORIENT Accessing the schedule and the learning objective pages 

3.2 Data Preparation  
3.2.1 Session Identification. As part of a study reported in [18], 

the LMS trace data were, for each learner, further segmented into 
temporally discrete sessions, so as to distinguish separate 
passages of engagement over the course of the taught term. A 
session included all timestamped traces of events between log-in 
and log-out events. In cases of too long time between two 
consecutive activities (several hours), implicit log-out and log-in 
pairs were inserted whenever activities were longer than 95th 
percentile, as per the approach proposed in [18].  This is a critical 
point in this study, as sessions are used as an important unit of 
analysis (see Data Analysis section). 
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3.2.3 Decile Extraction. Previous studies have demonstrated 
the usefulness of comparing contrasting groups to identify 
differences in learning processes. In studies where access to 
assessment marks is provided, e.g. [5], researchers can use these 
to distinguish higher vs lower performers. We accessed the 
midterm and final exam scores for all students and combined them 
to derive the overall marks. Based on these marks, we identified 
the top and bottom 10 percent of students, in terms of overall 
assessment performance. The two groups were named ‘top decile’ 
(n = 107, nlearner_actions = 159,125) and ‘bottom decile’ (n = 132, 
nlearner_actions = 128,267).     

3.2.2 SRL Categorisation (micro-process analysis). In order to 
represent the log data in an SRL context, we derived a theoretical 
model of macro- and micro-level processes, building on the work 
undertaken by Siadaty et al. [34]. Based on this model, we created 
a regular expression (REGEX) parsing engine to categorise 
sequences of learner actions into micro-level actions. For example, 
a sequence of MC_ORIENT activities is categorised as SRL micro-
process action Goal_Set; a sequence of CONTENT_ACCESS or 
VIDEO access actions is categorised as 
Work_on_Task.Knowledge.Build. Table 2 contains a full account of 
the macro to micro-level mappings, based on a theoretical model 
of SRL similar to that used by Siadaty et al. In this way, we 
characterise learner behaviours in the context of an established 
theoretical model of SRL.  
Table 2: SRL Micro Process Mapping 
Macro-level 
process 

Micro-
level 
process 

Micro-level activity mapping 
 

Planning 

Goal 
Setting 

Goal_Set 
MC_ORIENT, INDEX ACCESS, PROJECT ACCESS 
(single event or sequence)  

Making 
Personal 
Plans 

Make_Plans 
MC_ORIENT to a cycle of Content/Video access then 
back to MC_ORIENT  

Engagement 
Working on 
a Task  
 

Work_on_Task.Summative EXE_CO or EXE_IN 
(in a randomly assorted sequence) 
Work_on_Task.Formative MCQ_CO or MCQ_IN 
(in a randomly assorted sequence) 
Work_on_Task.Knowledge_build 
CONTENT_ACCESS or VIDEO activity (in a 
randomly assorted sequence) 

Evaluation and 
Reflection 

Evaluation 

Eval.Dash 
MC_EVAL sequence 
Eval.Formative_Answer  
MSQ_SR sequence 

Reflection 

Reflect 
EXE actions (both correct and incorrect, assorted) 
before switch to CONTENT_ACCESS or VIDEO 
activity sequence  

The end result is a coarsened dataset of timestamped SRL events 
ready for input to the next cycle of analyses. For the top decile, 
the SRL event count is 23,462; for the bottom decile, 13,818.  

3.3 Data Analysis 
We employed four analysis methods: 1) simple frequency 
analysis; 2) epistemic network analysis; 3) temporal process 
mining; and 4) stochastic process mining.  

All of these methods were employed to address RQ1 (see 
Section 4.1). In this section, we present the four methods in 
discrete succession, as a means of demonstrating the contrasting 

analytical outcomes as articulated on the same dataset(s). We do 
not, at this stage, emphasise the differing behaviours of the 
groups, but rather present general analysis of commonality. 

For RQ2 (Section 4.2), we again employed all four methods 
discretely. We explicitly drew comparisons between the two 
deciles in order to identify differing optimal, sub-optimal, or 
neutral shades of learner behaviour.  

For RQ3 (section 4.3), we present a combined methodological 
analysis, contextualised across the phases of our SRL model: 
Planning, Engagement, and Evaluation & Reflection. In this 
section, we present a consolidation of methods in order to prove 
that a richer analytical insight can be derived from combination, 
as opposed to discrete narratives. In addition, we present an ENA-
specific analysis – weekly means rotation – which provides a 
longer term temporal view.   

3.3.1 Frequency Analysis. Frequency distributions were 
produced for each decile. Both absolute and relative distributions 
were recorded to provide a simple count-based representation of 
SRL behaviours. This serves to highlight the usefulness of simple 
metrics but also their limitations. 

3.3.2 Epistemic Network Analysis. To conduct an ENA, we 
used the rENA package for the statistical programming language 
[22]. To construct a network model, ENA requires the definition 
of a unit of analysis, an activity code, and a stanza, i.e., a logical 
temporal sequence of event data. Network associations are 
defined as the co-occurrence between codes within the bounds of 
a stanza [36]. For this study, students (USER_ID) were identified 
as the unit of analysis. The activity code was the micro-level 
process (as created by the SRL parsing engine) and the stanza was 
the session (ID) as identified through the process outlined in 
Section 3.2.1. The ‘week’ variable – i.e. the week of the term in 
which the interaction took place – was also used; we produced a 
comparative trajectory graph – a weekly means rotation – for the 
two groups, in support of RQ3. This allowed the tracking of 
network centroids from week to week, providing temporal insight 
not possible in the other methods. In this context a centroid is 
essentially the centre of gravity of a network, based on arithmetic 
mean of edge weights for a given unit of analysis [33]. In ENA, 
frequently co-occurring nodes were displayed with thick 
connecting lines, allowing us to identify cotemporally relevant 
relationships between SRL phases. We produced two epistemic 
networks, one for each decile group. To provide a richer 
comparative view, we produced subtracted performance diagram, 
which superimposed the two decile ENAs onto each other, 
visually subtracting network associations to provide a 
comparative analysis.  

3.3.3 Frequency and Temporal Process Mining. We used two 
PM discovery/visualisation tools. For frequency/temporal 
analysis, we employed the R package bupaR, which produces 
sequential process maps with a temporal and/or frequency-based 
focus. The key PM roles were assigned as follows: Case – Session 
ID (the session value indicated in section 3.2.1); Activity – Micro-
level Action; Start and End Timestamps – as expected. We present 
a frequency-based process model of the bottom decile group, 
which identifies the activities in terms of total frequency of 
engagement (the node metrics) and of associative inter-node total 
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frequency (edge metrics). We also present two temporal process 
models of both deciles, in which the node metrics represent the 
median time spent on a particular node (micro-level process) and 
the edge metrics represent the median time lag between nodes. 

3.3.4 Stochastic Process Mining. To explore the same data 
through the lens of associative process probabilities, we employed 
the PM R package pMineR [15] to generate and visualise First 
Order Markov Model (FOMM) probability transition matrices for 
each of the two deciles. The arc between one node and the next 
shows a measure of the likelihood of transition between the 
nodes; the transition probability (TP). We conduct visual 
interpretations from the thickness of the lines, and more forensic 
analyses by interpreting the actual TP values. To provide 
comparative insights, we interpreted the comparison diagrams of 
the FOMM models. We mapped the bottom decile group onto the 
top decile group. The arcs in black represent similar TPs. In cases 
of comparatively disparate TPs, both probabilities are shown. Red 
arcs represent the lower TP; the green arcs represent a higher. It 
is in through analysis of these differing TPs that we identified 
contrasting SRL engagement behaviours across the two groups.  

4 RESULTS 

4.1 SRL Analysis of learner behaviours (RQ1) 
4.1.1 Frequency Analysis. Tables 3 provides relative frequency 

distributions by activity, recorded for both deciles. The table 
indicates a certain commonality of engagement in both groups. 
The distributions are, on first view, quite similar. The first four 
activities follow the same order with both sets of learners 
investing most of their resources in building knowledge, 
formative assessment, summative assessment and goal setting. 
Evaluative and reflective phases attract the lowest levels of 
engagement. Goal-setting and plan-making are seemingly deemed 
of medium importance. 
Table 3: Top and Bottom decile frequency statistics 
Micro-level SRL  
Activity 

Freq. 
top decile 

Rel. Freq. 
top decile 

Freq. 
bottom  
decile 

Rel. Freq. 
bottom  
decile 

Work_on_Task. 
Knowledge_Build 

6,668 28.42% 3,231 23.38% 

Work_on_Task. 
Formative 

5,206 22.19% 3,221 23.31% 

Work_on_Task. 
Summative 

2,784 11.87% 1,934 14% 

Goal_Setting 2,731 11.64% 1,875 13.57% 
Make_Plans 2,385 10.17% 1,069 7.74% 
Eval.Dash 1,534 6.54% 522 3.78% 
Eval. 
Formative_Answer 

1,486 6.33% 1,629 11.79% 

Reflect 668 2.85% 337 2.44% 

 
4.1.2 Epistemic network analysis. The high and low deciles 

exhibit quite similar behaviour patterns, in general terms. As we 
see in figure 1, both networks indicate, through analysis of 
relative density connections, strong linkages between formative 
work and knowledge-building, knowledge-building and 
summative work, and summative work and goal setting. 

The triangle of links between knowledge building, formative 

quiz work, and accessing of quiz answers 
(Eval.Formative_Answer) is significant. Both diagrams hint at a 
lesser focus on reflection and plan making in the context of the 
other major activities.    

 
Figure 1: Top decile (blue) and bottom decile (red) ENA 

 4.1.3 Frequency-based Process Mining. Figure 2 indicates the 
associative and absolute frequencies of the SRL processes of 
the bottom decile. 

 
Figure 2: Bottom decile frequency-based PM model 

The node values are simply generated frequencies for each 
SRL activity and are directly linked, for this example, to the 
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metrics in Table 2 (with the less frequent activities filtered out). 
In this sense, this visualisation does not offer any more than Table 
2. Its value, in this case, lies in the edge frequencies, which 
indicate the strength and direction of association between pairs 
of activities. We can glean strong associations between formative 
work, knowledge building, and accessing formative quiz answers. 
It seems that this group (bottom decile) makes as much use of the 
free quiz answers as it does of other knowledge-building media. 
This is one of three main paths, the second being path through 
goal-setting, and the third being path though summative work. 
There are linkages between these paths but they are less strong 
than the intra-path linkages. This type of sequential analysis 
provides crucial insights but is lacking a temporal focus. By 
contrast, Section 4.2.3 provides a comparative analysis of this 
model against the top decile group using temporal metrics.     

4.1.4 Stochastic Process Mining. The FOMMs in Figure 3 show 
commonality between both student groups. 

 
Figure 3: Top decile (top) and bottom decile (bottom) 
FOMMs 

Knowledge building is the most likely first activity for both 
groups, with almost identical TPs of around 0.57. We also see a 
common pattern of engagement with formative work and access 
to the formative answers. There is a clear three-node Markov 
chain of knowledge building and formative work. Both diagrams 
indicate a common focus on summative work. This is to be 
expected as summative activities contribute to overall module 

scores. The reflection activity is generally followed by formative 
or summative work, plan making, or session ending. Sessions 
come to an end after engagement with summative tasks, plan-
making, goal-setting, and dashboard evaluation. 

4.2 SRL Comparison of learner groups (RQ2) 
4.2.1 Descriptive Statistics. On a closer examination, the 

frequency metrics in Table 1 provide more insight. The top decile 
students are more inclined to knowledge building, plan-making 
and dashboard access than the bottom decile. The bottom decile 
students focus more on summative tasks, goal setting, and 
accessing answers to formative quizzes. On a more fundamental 
level, the bottom decile group are, on average, half as active, 
based on overall engagement frequency.      

4.2.2 Epistemic network analysis. We can see from Figure 1 that 
the relative density connections are stronger for the top decile, 
indicating a higher level of engagement in almost all the 
activities. The subtracted performance diagram (Figure 4, top) 
reinforces this assertion. 

 

 
Figure 4: ENA Subtracted Performance (top) and Weekly 
Means Rotation (bottom) 

In addition, for the bottom decile, we observe a stronger 
connection between work on summative task and goal setting, 
which shows that students more frequently revisit the goal setting 
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before/after engaging the summative assessment. This points to a 
less cohesive learner dynamic in relation to the summative test 
and a surface approach to score accumulation. 

The weekly mean network (Figure 4, bottom) depicts the 
longer-term temporal perspective in showing the centroid 
movement of the two groups by week; in essence showing the 
movement of students as the course progresses. The top decile 
students are located on the left side, focusing on summative 
assessment, formative assessment activities and knowledge 
building. The bottom decile students are located on the right side, 
focusing on goal-setting and summative work. A focus on goal 
setting is recognised as an optimal trait, but only if accompanied 
by other actions to achieve an identified goal. From a temporal 
perspective, we can see evidence of an increasing emphasis on 
summative work and goal-setting in both groups in the latter 
weeks of the course. 

4.2.3 Temporal Process Mining. The process models for the 
bottom and top deciles are presented in Figure 5; the node and 
edge metrics are median minutes.  

Figure 5: Top decile (top) and bottom decile (bottom) 
performance PM models 

From an SRL phasal point of view, we see that the top decile 
applies a greater focus on the plan making than the bottom decile, 
where the Make_Plans node is not present (due to filtering). 
Instead of this, the Eval.Formative_Answer (accessing formative 
quiz answers) is present as part of a link between formative work 
and knowledge building. This distinction hints that the bottom 
group exhibit a greater inclination toward surface learning as 
evinced by reliance of formative quiz answers. 

From a temporal perspective, the top decile group spend longer 

LAK’20, March 23–27, 2020, Frankfurt, Germany 

on summative activities (median 6.93 minutes as opposed to 4.07 
minutes) and also show a lesser lag between these repetitions 
(1.57/3.62). This hints at an increased level of focus in the top 
decile. This group’s focus on formative tasks is also stronger than 
its counterpart with 1.05 on-task median and 0.28 repetition 
median lag compared to 0.23/6.16 for the bottom. Both groups 
display similar temporal foci on knowledge building activities 
(0.89/0.8), with a slightly greater repetition lag for the bottom 
(1.4/2.06). 

Visual interpretation is somewhat counterintuitive compared 
to the equivalent frequency-based analysis (Section 4.1.3). Thicker 
lines represent higher median lags between SRL phasal 
engagement. On first look, it seems that the bottom decile displays 
greater focus generally exhibiting shorter median edges. This is 
misleading.  For example, there appears to be a long edge 
lag between goal-setting and formative work for both 
deciles (4.74/4.81). On closer inspection, we see that the top 
decile goes through plan-making activities prior to formative 
work, thus indicating a more considered learning dynamic. 
The plan making sequence is not present on the bottom decile 
model; it has been replaced, frequency-wise by evaluation of 
formative quiz answers. Other behavioural clues lie around 
the summative activity sequence. The bottom group are 
generally slower to move between this and formative 
sequences (1.72/2.08), and knowledge building (0.94/2.47). This 
indicates a sustained attachment to summative work 
when reflection and further formative/knowledge 
building may be more beneficial.       

4.2.4 Stochastic Process Mining. Figure 6 shows a FOMM 
comparison of the top and bottom deciles of the entire event 
sample. Opening behavioural engagement is similar although we 
do see a slightly greater inclination to summative work from 
the bottom decile (0.11/0.16), as opposed to planned formative 
work. We also see that the loop between summative work 
and plan making is somewhat tighter in the top decile than the 
bottom. 

Figure 6: FOMM comparison of top and bottom deciles 
The most compelling comparative pattern can be found around 

engagement with formative quizzes. We see that the top decile 
exhibit a lesser inclination to break from formative work to look 
up the free answers to the quizzes, with comparative TPs of 0.31 
and 0.53. The top decile likelihood of moving from formative 
activities to knowledge building is 0.51 compared to the bottom’s 
0.37. This provides a critical insight into contrasting behaviours. 
In the context of formative assessment, the better performers 
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incline more towards knowledge acquisition to improve 
performance, rather than simply accessing the correct answers. 
This in turn points to a greater focus on deep learning from the 
top decile.   

4.3 Consolidation 
To emphasise the overarching SRL framework of Planning, 
Engagement, and Evaluation & Reflection (Table 2), we delineate 
a consolidated analysis by each SRL phase.  

4.3.1 Planning Phase. This phase comprises the following 
micro-level activities: Goal setting; Plan-making. Both deciles 
allocate reasonable amounts of resource to this phase but 
distribution between the activities differs between the deciles. 
The bottom decile, in relative terms, engages more frequently 
with goal setting and less frequently with plan-making than the 
top decile (table 3). ENA analysis indicates that the bottom decile 
places a greater focus on this goal-setting and, in the subtracted 
performance diagram (Figure 4, left), the co-occurrence of goal-
setting and summative work is noticeably stronger for the bottom 
decile. In PM terms (Figure 5), the bottom group spend a longer 
median period of time on this activity with slightly longer lags in 
repetition cycles. In stochastic terms (Figure 6), we see a richer 
view of the gravitational pull that this activity exerts on the 
bottom decile, compared to the top decile. The green arcs pointing 
to the goal setting node indicate that the bottom decile is more 
likely, at any point, to engage with it after other activities. After 
engaging in goal-setting, both groups are equally likely to end the 
session (both around 0.50) or go to summative work. A combined 
analysis indicates not only that the bottom decile concerns itself 
more with goal-setting in absolute terms, but in sequential and 
temporal terms, the goal-setting activity is more heavily utilised 
by the bottom decile in the learning space. Although engagement 
with goal-setting is generally seen as an optimal trait, our view is 
that repeated engagement can traverse a point where useful gains 
begin to diminish [12]. 

In relative frequency terms, plan-making is more actively 
engaged in by the top decile. ENA indicates its relatively low 
priority for the bottom decile, in comparison. Due to filtering, it is 
not present in the temporal PM analysis for the bottom decile, 
which tells its own story. For the top decile, we see that there are 
relatively long lags between activity repetition. Plan making 
seems to be a bridging node between other activities and 
formative work. Stochastic analysis also indicates that formative 
work is the most likely destination after plan making, for both 
deciles. A combined appraisal here relies more on frequency 
metrics combined with stochastic analysis. It indicates that the 
better performers do engage more with plan-making than the 
lesser performers. This phenomenon has an empirical precedent 
in the work reported in [31].  

4.3.2 Engagement Phase. This phase comprises the following 
Micro-level activities: Knowledge-building; Formative work; 
Summative work. Predictably, these activities attract the greatest 
levels of engagement. The overall phase percentages are similar 
for both deciles with the top decile favouring more knowledge 
building, and bottom decile favouring more summative work. 

This dominance is reflected in temporal terms. The ENA plots 
indicate that, in addition to relative frequency, the three activities 
share strong cotemporal links; more specifically knowledge-
building shares strong links with formative work, and with 
summative work. The link between summative and formative 
work is less emphatic. Analysis of the subtracted performance 
plot reveals that the top decile, despite being a slightly smaller 
group of students, engages approximately twice as much in all 
activities. The bottom decile element is almost completely 
blanked out, so making it difficult to compare the relative 
cotemporality of both deciles. 

The temporal PM perspective affords us more insight. It is 
revealed that, despite being a less frequently engaged activity, 
summative work enjoys a more sustained engagement than 
knowledge building and formative work. This reflects the 
pedagogic reality that summative work, in raw learner action 
terms, dominates in terms of focus. We should remember that the 
nodes we are examining are not representing LMS click/activities, 
but SRL categorised sequences. We see that the top decile spend 
more time on discrete sequences of this activity than the bottom, 
in median minutes (6.93/4.07) and have a shorter repetition lag 
(1.57/3.62). This points to a more focussed approach to this task. 
We cannot discern any real insights into the equivalent temporal 
metrics of the formative and knowledge-building activities, with 
both deciles exhibiting a similar focus. 

Stochastic PM analysis provides us with another analytical 
layer, unlocking a behavioural trait unseen to the other methods. 
ENA and Frequency-based PM identify the presence of a 
relationship between the three activities, but the FOMM 
comparison diagram allows us to articulate the probabilistic 
dynamics. As we saw in the ENA plot, knowledge building seems 
to be the cotemporal centre of this learning space. The FOMM plot 
shows us that the top decile is more likely to transition to the 
formative work to knowledge building than the bottom, with 
respective TPs of 0.51 and 0.37. The bottom decile is more likely 
to transition to access of formative quiz answers than the higher 
decile (0.53/0.31). This offers a key insight into relative behaviours 
not available to the other methods. Conversely, FOMM analysis 
does not always convey the significance of an activity in terms of 
absolute engagement. In this case, the importance of summative 
engagement is not so apparent. 

A combined perspective highlights the relative levels of SRL 
phase activity engagement, the cotemporal importance of 
knowledge building, the level of focus on summative work, and 
the intriguing play-off between formative work and knowledge 
access/quiz answers. The top decile exhibit more optimal learning 
behaviours and display a greater mastery in a meta-cognitive 
context. These behavioural traits have been highlighted in 
previous research [3] and [7]. 

4.3.3 Evaluation and Reflection Phase. This phase comprises the 
following micro-level activities: Dashboard access; Formative quiz 
answer access; Reflection. This phase attracts the lowest levels of 
activity for both deciles. The ENA diagrams show us that 
formative answer access and reflection sit in the same quadrant, 
indicating a thematic association. It is interesting to note that 
dashboard evaluation sits in the same quadrant as plan-making, 
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which highlights the ambiguous nature of dashboard access in 
terms of SRL phases. It can legitimately be part of both reflection 
and planning phases. This highlights a problematic issue in the 
codification of cyclical models, such as SRL. ENA provides a 
means of potential resolution. In this case, we could argue that 
dashboard evaluation is a pre-engagement activity, not post. 

Temporal PM analysis, in this case, offers us only a little 
insight. Engagement with these activities is light and so 
compelling analyses are not readily available. Comparative 
stochastic analysis highlights this focus differential in a broader 
context (discussed in the previous phase section). Dashboard 
evaluation is a less likely bottom decile destination from the 
sessions of reflection, and goal setting. Likely behaviour after a 
reflective activity is not comparatively distinct, with a slightly 
greater inclination toward formative work in the top decile. 

It is more challenging to form a coherent combined analysis 
for this phase, with the results being complementary rather than 
confirmatory. Nonetheless, important insights can be gleaned. 
The phasal position of dashboard evaluation in our SRL model 
must now be called into question. In summary, there is an over-
reliance on reflection and goal-setting from the bottom decile, 
reflecting research undertaken by Pintrich [27]. 

5 DISCUSSION 
The results show that combining methods provides us with a 
richer insight into learner behaviours than would be possible 
individually. Simple frequency measures provide a basic insight 
into activity focus, but do not offer insights into sequential and 
temporal co-occurrence. ENA provides an essential insight into 
process cotemporality. We can form analyses which position 
phases of SRL and indicate the strength of association between 
activities (nodes) within a projected SRL space. This immediately 
provides us with a more dimensional view from an associative and 
temporal focus. ENA does not provide an inter-node directional 
insight. The PM methods allow us to overlay insights into 
sequential associative direction from a perspective of frequency, 
temporality, and probability. Each method brings its own type of 
insight but combining the methods provides a completer and more 
dynamic ontological viewpoint. Consider the following analyses 
based loosely around knowledge building: 

Frequency: Knowledge building is the most popular activity 
by engagement count, followed by formative and summative 
work. 

ENA: Knowledge building is a key activity and engaged with 
in frequent association with formative and summative work. We 
also see that, to a lesser extent, quiz answer evaluation, combine 
to form a group of SRL phases. 

PM temporal: Despite engagement statistics, we see that 
learners actually place a heavier focus on summative work than 
knowledge building and formative work, showing us that it is, in 
temporal terms, the most engaged activity, especially for the 
bottom decile. 

PM probabilistic: The top decile learners are more likely to 
break engagement with formative quiz work to engage in 
knowledge building. 

Combined: Learners more actively engage in cycles of 
knowledge-building, formative work and summative work, than 
any other. Although knowledge building is most frequently 
engaged in, more time is actually allocated to summative work, 
and summative work is the most likely point of engagement after 
SRL phases of reflection and goal setting. Knowledge building 
engagement is the most likely destination as a break-out activity 
during cycles of formative work, for the top decile, with the 
bottom decile favouring access to quiz answers. 

The combined analysis provides a richer temporal narrative 
than any one of the individual analyses and allows us to capture 
the likely movements of behavioural clusters in time and (digital) 
space. Building on this, we could overlay the analyses with 
metrics relating to frequency, time and/or probability. We also 
need to consider the synergistic level of consolidation. By this, we 
mean the level to which the methods are narratively subsumed. 
From one end of the spectrum, we may merely present a sequence 
of analyses discretely positioned within each method. At the other 
end, we may attempt to lose all sense of any single method in pure 
narrative consolidation. The ideal narrative balance probably lies 
somewhere between these two extremes. This balance, and the 
inclusion of metrics, are decisions to be made by researchers in 
the context of their specific study aims. We should be mindful that 
empirical evidence already shows that a ‘usable’ visualisation 
does not always equate to an effective one in an educational 
setting [11].  

One clear outcome is that the narrative is strengthened by 
inter-group comparison. As can be found in similar work 
[5,24,30], comparing learner groups, typically stronger vs weaker 
performers, provides a critical contextual delineation. More 
plainly expressed, we can more clearly see good practices if 
articulated in the context of bad. In the analyses above, we see that 
high achievers are more inclined to boost knowledge through 
content access, as opposed to simply accessing quiz answers. This 
insight may not have been possible without this vital comparative 
context.  

The combination, or consolidation, of methods goes some way 
to address the concerns raised by Reimann [2], who stated the 
merit of event-based ontologies, but recognised that important 
decisions need to be made around the definition of an ‘event’  and 
also the assertion of association or causality between these events 
in a theoretically robust setting [28]. In embedding event 
codification in a model of SRL, we go some way to addressing 
important issues of validity and causality. Reimann et al. [28] 
assert that, despite the merit of event-based analyses, analyses 
using a single sequential method may suffer from ontological 
flatness. Whether this study provides the stratified ontological 
framework that Reimann and colleagues posit, we assert that our 
blended-method approach provides the ontologically (and 
epistemologically) nuanced form of investigation into learning 
phenomena. 

From a more temporally specific viewpoint, we need to be 
mindful of what we are attempting to achieve and in what 
conceptual context. Knight et al. [19] posit two concepts of 
temporality; that which relates to quantifiable measures of 
duration, rate and passage, and that which relates to sequence and 
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progression. This second mode is particularly important in the 
context of the dynamics of SRL [10]  In this study, we hint at a 
way of combining these temporal modes to articulate patterns of 
movement through learning spaces. As stated, the analytical 
narrative can be qualitative, quantitative, or a combination.  

6 CONCLUSIONS 
We do not claim to be pioneers of combined temporal methods; 
Malmberg, Järvelä, and Järvenoja explored the change of temporal 
features over time using multiple methods [21]. We assert that our 
proposed method provides a similar richness of analysis using 
trace data, as opposed to Malmberg and colleagues’ more 
experimental focus on self-report data. 

A study of this kind invites questions on the utility of a 
hypothesis-driven method in a live and authentic learning setting. 
The current study is certainly observational, as opposed to 
experimental, and as such can benefit from a posteriori theory-
driven data transformations, informed by our chosen model of 
learning. Challenges still exist in the successful deployment of our 
method in real-time learning setting. How do we use the method 
to track and remediate some of the sub-optimal behaviours 
highlighted in this and other similar studies? We submit that the 
increasing popularity of such studies will reach an empirical 
critical mass, so that legitimate construct validity is inherent in 
our chosen theoretical framework. Another path is to explore 
atheoretical, data-driven methods, as demonstrated by Boroujeni 
and Dillenbourg [8]. A resolution to this issue would open the 
door to genuinely impactful in-class interventions. 
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5.3 Summary

In this chapter, we applied our SRL transformation framework, Trace-SRL, to a different set of learner

data (albeit from the same LMS as the previous studies) in order to unlock a similar set of SRL

processes. Like the previous studies, we articulated these processes by comparing different learner

groups. Unlike the previous studies, where we made use of pre-clustered learner groups (based

on tactic usage), we delineated two user groups based solely on assessment performance. This

decision was driven by the desire to explore whether the behavioural differences could be effectively

articulated in scenarios where learner action sequences did not contribute to the grouping; could

grouping based on top and bottom assessment deciles provide compelling outcomes. We argue

that these deciles did demonstrate differing behaviours, despite the large (and rather noisy) sample

used. In truth, this was only part of the thrust of the study, although it did provide some very useful

insights. The main comparative edge was demonstrated in the use of multiple analysis methods.

It is important to note that although we maintain that frequency-based measures are limited,

we do not discount their utility, even in the context of the temporally focused analyses in this study.

For example, in our study, we noted that the lower decile students engaged in more summative

activities but less knowledge-building (in relative terms). This tells its own story but this story,

and other narratives can be extracted by interpretation of these types of measures. We presented

interpretations of various phases of SRL, that is, planning, engagement, and evaluation and reflection,

through the lenses of frequency, temporal co-occurrence, time-focused sequence, and probabilistic

sequence, which emphasises this point. For example, we noted that, in relative frequency terms,

the lower decile group engaged in more goal-setting activities, which seemed counter-intuitive. In

analysing this phenomenon using stochastic process mining, we saw that goal-setting was more

likely to be followed by summative assessment work, as opposed to the upper decile. The upper

decile displayed more efficiency in goal-setting but a more cohesive subsequent approach which

encompassed a more likely broader use of learning resources. The time-focused process mining

view also provided a layer of richness. It is this articulation of the dynamic temporal play between

SRL processes that we have explored throughout the thesis, and one which is enriched by exploring

multiple analytic methods. These types of layered interpretations, we argue, unlock insights not

possible using single methods, and provide more dimensional insights into the dynamics of SRL.

The key contribution of this study is that it demonstrated and assessed the value of the insights that

come from multiple discovery methods, making use of the respective quantitative metrics to present

a layered qualitative interpretation. We build on this exploration in Chapter six.
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6 Comparing and Combining Process Mining

Metrics

Cooking is like painting or writing a song. Just as there are only so many

notes or colors, there are only so many flavors - it’s how you combine them

that sets you apart.

— Wolfgang Puck, Puck Goes Back to His (Ginger) Roots

6.1 Introduction

T HE work undertaken in the previous chapter (Chapter five) explored the possibilities of com-

bining analytic methods to analyse SRL. This type of multiple or mixed method analysis has

been deployed with some success in other related studies, such as Matcha, Gašević, Ahmad Uzir,

Jovanović, Pardo, et al. (2019), in which the authors presented a comparison of three analytic ap-

proaches (process, sequence, and network) to detect learning tactics and strategies, and Swiecki

et al. (2019), in which the authors championed the use of epistemic network analysis in collabo-

rative learning scenarios, in a comparative study with sequential pattern mining. These types of

studies provide critical insights into the relative strengths of certain methods, as well as the col-

lective strength of using them together. They did not, however, embed their analyses in models of

SRL (in the manner of “Trace-SRL”), and they did not propose a means of consolidating the metric

outcomes which we believe address the shortcomings of using a single metric, that is, the trade-off

of relative vs absolute scales of measurement.

To that end, we present a study which explores the use of multiple processing mining algorithms

to analyse SRL, providing a systematic comparison of the chosen algorithms and a proposed consol-

idation of the metrics. The study presented serves to further investigate these research questions:

(RQ2) How effectively can we measure the temporal dynamics of learning strategies in delineated stu-

dent groupings, using process analytic techniques?

(RQ3) To what extent can we develop a framework to embed temporally focused analysis of learning in

a theoretical model of self-regulated learning?

(RQ4) To what extent can we combine analytic methods to further explore self-regulated learning from

102



6. COMPARING AND COMBINING PROCESS MINING METRICS

a perspective of temporality and sequence?

6.1.1 Chapter overview

This chapter is effectively the second of a two-chapter exploration of multiple analytic methods;

their strengths, weaknesses, and the potential of their combination and consolidation. The key

development in this chapter is that the incorporated study provides a more specific methodological

focus on process mining platforms and the metrics associated with the algorithms they support. To

restate, we use the term metric in reference to the measures of process activity engagement and

transition between these activities. As in the previous study, we used a common data source to

ensure a consistent comparison across the platforms. We chose process mining platforms based on

their presence within the area of temporally focused SRL, and leveraged the research we conducted

in our systematic review of literature (Chapter two). This resulted in the systematic analysis of these

four process mining platforms.

• Heuristics Miner (Weijters et al., 2006): Building on the prototypical Alpha Miner algorithm

(van der Aalst & Weijters, 2004), its distinguishing feature is the dependency metric, a pro-

prietary measure which identifies the level of dependency between one activity and another

using a 0-to-1 scale.

• Inductive Miner (Leemans et al., 2014): The Inductive Miner algorithm, at its inception,

represented the best attempt at addressing a concept called process model soundness, that

is, the extent to which the discovered process model can reproduce the broadest and most

accurate permutations of process flows (Buijs et al., 2012). This is key for modelling structured

processes, where accurate discovery is critical.

• Fuzzy Miner (Günther & Rozinat, 2012; Günther & van der Aalst, 2007): Unlike Inductive

Miner, process model soundness is not a priority. As such there is little focus on the generation

of models that represent all permutations of a given process. Its visualisations are suitable for

easier, high-level analysis of more organic processes, as typified in SRL.

• pMineR (Gatta, Lenkowicz, et al., 2017): Using first order Markov modelling to train and visu-

alise process models, it has a similar visual feel to Fuzzy Miner but the relationships between

activities are measured in terms of transition probability.

In truth, the differences and commonalities between the platforms are conceptually blurred. For

example, Heuristic Miner can be configured to produce frequency metrics, as well as its proprietary

dependency metric. Inductive Miner can be configured to produce time-based metrics. Fuzzy Miner

can be configured to show both in its “modern” incarnation in platforms, such as Fluxicon Disco

(Günther & Rozinat, 2012); in its classic form (Günther & van der Aalst, 2007), it provides a set of

proprietary correlation and significance metrics. As such, we were inspired to focus not just on the
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distinguishing features of the platforms, but on those of the metrics. In broad terms, we compared

and commented on the outputs of the algorithms (given a common set of data), and explored the

value of combining some of the key metrics that were provided.

6.2 Publication: Using process mining to analyse self-regulated learning

The following section includes the verbatim copy of the following publication:

Saint, J., Fan, Y., Singh, S., Gasevic, D., & Pardo, A. (2021). Using process mining to

analyse self-regulated learning: A systematic analysis of four algorithms. LAK21: 11th

International Learning Analytics and Knowledge Conference, 333–343. https://doi.org/1

0.1145/3448139.3448171
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ABSTRACT
The conceptualisation of self-regulated learning (SRL) as a process
that unfolds over time has influenced the way in which researchers
approach analysis. This gave rise to the use of process mining in
contemporary SRL research to analyse data about temporal and
sequential relations of processes that occur in SRL. However, little
attention has been paid to the choice and combinations of process
mining algorithms to achieve the nuanced needs of SRL research.
We present a study that 1) analysed four process mining algorithms
that are most commonly used in the SRL literature – Inductive
Miner, Heuristics Miner, Fuzzy Miner, and pMineR; and 2) exam-
ined how the metrics produced by the four algorithms complement
each. The study looked at micro-level processes that were extracted
from trace data collected in an undergraduate course (N=726). The
study found that Fuzzy Miner and pMineR offered better insights
into SRL than the other two algorithms. The study also found that
a combination of metrics produced by several algorithms improved
interpretation of temporal and sequential relations between SRL
processes. Thus, it is recommended that future studies of SRL com-
bine the use of process mining algorithms and work on new tools
and algorithms specifically created for SRL research.

CCS CONCEPTS
• Applied computing → Learning management systems; •
Computing methodologies→ Online learning settings.

KEYWORDS
LearningAnalytics, Self-Regulated Learning, ProcessMining,Micro-
level Process Analysis
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1 INTRODUCTION
The study and analysis of self-regulated learning (SRL) is now
well established in learning analytics (LA). SRL is conceptually in-
formed by the notion that students can exercise control of their own
knowledge-building, given an appropriate learning environment
[40]. This environment is now typified less by traditional monologic
delivery and more by engagement in interactive digital settings.
Several theoretical models of SRL have been developed [20, 36, 41].
Although these models vary in conception, they share a common
cyclical dynamic of planning, engagement, and evaluation [19]. One
of the challenges of analysing SRL is the meaningful articulation of
its temporal and cyclical nature.

To address this challenge, many researchers have adopted the
use of Process Mining (PM) to articulate the temporal nature of
SRL. PM is an event-based data analytic method that derives se-
quential, associative, and temporal analyses from trace data files
[31]. PM has attracted the interest of SRL researchers who seek to
explore alternatives to conventional statistical methods [23]. PM
algorithms such as Heuristics Miner [33], Inductive Miner [14],
Fuzzy Miner [13], and pMineR [11] have been variously used to
explore patterns of SRL from digital and self-report (think aloud)
data. Each of these algorithms is typified by the use of metrics to
express the relationships between the identified learning processes
in terms of sequence and association, informed by metrics such as
frequency, time, and probability (amongst others). The choice of
algorithm is important, and opportunities to combine algorithms
have rarely been grasped.

Although several studies used PM algorithms to study SRL, very
little justification for their choice of algorithm is offered. We assert
that if PM is chosen as a means of modelling SRL, the choice of PM
algorithm should not be arbitrary, but informed by consideration
of their major characteristics. Moreover, we are unaware of any
studies that conduct a comparison of the use of these different PM
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algorithms for the analysis SRL. The aim of the current study is
to provide a systematic comparison of four PM algorithms used in
research of SRL. This comparison was done on a dataset that was
processed by following the Trace-SRL approach [25], whereby SRL
processes were extracted from digital traces of student interactions
with online resources of an online undergraduate course. The Trace-
SRL approach is underpinned by an SRL codification framework
defined in the study undertaken by Siadaty et al. [27].

In this study, we systematically compared the four PM algorithms
that have been most commonly used in SRL research: Inductive
Miner, FuzzyMiner, HeuristicsMiner, and pMineR. This comparison
informs the choice of algorithms for researcherswho seek to analyse
SRL as a process that unfolds over time.We provide insights into the
factors that demand consideration when choosing PM algorithms
in SRL research. We also propose a novel method of interpreting a
combined set of metrics, as generated by various PM algorithms.
This is, for the first time, a joint interpretation based on the PM
algorithm outputs, and one which highlights a new and promising
direction in the field of LA.

2 BACKGROUND
The study of SRL and the development of models of learning within
this context has gathered at pace and evolved to form a comprehen-
sive ecosystem of research [19]. The concept of SRL is predicated
on that notion that learners, at any given moment in a cycle of
learning, employ a set of cognitive and meta-cognitive attributes to
reach one or more learning goals [21, 35]. As such, learners exercise
agency over the path towards these goals [34]. Given a set of ex-
ternal and internal conditions and drivers [36], the management of
this agency can be seen as a manifestation of SRL. Such goals may
be micro or macro in scale — the completion of a multiple choice
test, or the authoring of a dissertation — and the ultimate resolution
of the task may be a single SRL cycle or an ongoing sequence of
cycles and sub-cycles. In this sense, SRL is viewed as an ongoing
process which unfolds and develops over time [2, 38].

Themajor SRL theorists —Zimmerman [41], Pintrich [20],Winne
and Hadwin [36], and Boekaerts [4] — have all developed multiple
versions of their models through iterations and empirical testing.
As Panadero [19] highlights, these models are defined by thematic
variations of the same fundamental cyclic framework of SRL: 1) a
preparatory/planning phase; 2) a performance/tactic management
phase, and; 3) a reflective/evaluative phase. These variations hinge
on differing focuses on, amongst other things, meta-cognition, strat-
egy, tactics, and affective and emotive states.

2.1 Micro-level analysis of SRL processes
Significant advances in SRL framing are made by employing micro-
process analysis to codify think-aloud data about learners’ verbal
accounts of their own learning [12]. In micro-process analysis of
think-aloud data, learners were initially coached to verbally artic-
ulate tactics and strategies in the course of their learning cycle.
The verbal utterances were captured and analysed through content
analysis that makes use a coding scheme in which codes represent
micro-level processes of a given SRL model. Content analysis is
performed by categorising a verbal utterance with the most appli-
cable micro-level process code. So if a student expresses learning

aims of some sort, this expression would be manually coded to the
micro-level process, goal-setting, which itself is part of the planning
macro-level process. This macro-level process equates to one of
the main SRL constructs often referred to as a phase of SRL. In this
way, data are transformed through codification into recognisable
SRL processes, and are, by definition, embedded in a recognised
theoretical model of SRL. This analysis protocol is used in SRL
research by several studies such as those by Bannert et al. [3] and
Sonnenberg and Bannert [30]. These studies promised an informed
way of measuring the nuances of SRL. Methodologically, however,
there are trade-offs in the use of think aloud protocols as a form
of self-reports. Winne and Jamieson-Noel [37] explored the dis-
parity between students’ reporting of their own study tactics and
their actual behaviours. In relation to think-aloud protocols for data
collection and analysis of SRL, Young [39] highlights such issues
as cognitive load, verbal acuity, and the intrinsic veracity of the
verbal utterances, and their subsequent inferential value. The use of
digital trace data offers resolution to some of these issues. Siadaty
et al. [27] applied the same type of micro-level analysis to trace
data collected from knowledge workers. In this scenario, the trace
data were recorded by a digital learning systems, and parsed into
micro-level processes by automated scripts. This mitigates the is-
sues of subjectivity that surround think-aloud and other self-report
protocols.

We also define the terminology for micro-level analysis which is
used throughout this paper (Figure 1). First, learning actions are
determined based on the occurrences of learning events recorded
in raw trace data. For example, a learner’s click to open reading
resources would register as a type of READING action. Sequences
of learning actions are conceptually mapped asmicro-level SRL
processes, such as Working On a Task [24, 26]. For example, when
learners engage a sequence of first-reading actions, this would be de-
tected as building knowledge process, and could be coded asWorking
On a Task.Build Knowledge.Micro-level processes of reading previous
materials could be coded as Working On a Task.Address Learning
Gap. Such coding is based on relevant models of SRL [36, 41]. These
micro-level SRL processes are sub categories of macro-level SRL
process, which are themselves the main constructs of the chosen
model of SRL. The transitions between SRL processes can be ex-
tracted from trace data based on the timestamps of occurrences of
event sequences that represent relevant micro-level processes. The
transitions between these SRL processes are used to form process
maps, with the use of PM algorithms, that are referred to as SRL
process models.

2.2 Process mining for temporal and
sequential analysis of SRL

The definition of SRL as a cyclical process that unfolds over time is
well-established [7]. In acknowledging this dimension of SRL, re-
searchers are bound to address the methodological demands of pro-
cess, sequence, and temporality. Quantitative LA research is largely
characterised by the use of statistical models for data interrogation
and discovery. Despite their value, a body of research suggests
the use of statistical methods can impose ontological limitations
on temporally focused studies [22, 23]. Constructs formerly mea-
sured by frequency of occurrence and analysed with conventional
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Figure 1: The terminologies and analytic framework in this study

statistical models are now conceptualised in terms of sequence
and temporality[18]. PM is a promising choice for SRL researchers
seeking to capture a learning dynamic that is not possible using
statistical frequency measures alone [22]. PM algorithms are driven
by event-based trace data and seek to establish temporal and se-
quential relationships between processes in the form of associative
paths and metrics. In outputs of PM algorithms, process transition
is visualised in node-based transition diagrams known as process
models [31]. Several PM algorithms have been developed and are
differentiated by usage of various PM metrics, for example, time,
frequency and probability.

The first PM algorithm, AlphaMiner, established the basic design
for many of the subsequent algorithms. It generates an associative
matrix (the footprint matrix) to derive a set of relationships across
all of the event process instances in the trace. Unidirectional an-
tecedent and precedent behaviour is identified in sequential or
parallel terms. Its ultimate aim is to articulate a process model that
reflects the major permutations of event sequences, which are then
visualised using Petri nets [32]. Enhancements were made to accom-
modate more complex models and looping, but this algorithm has
not been used in any significant studies of SRL, and is not assessed
methodologically in this study.

In choosing PM algorithms for this study, we assessed their pres-
ence in the published studies of SRL as part of a systematic literature
review that we have conducted in parallel with the current study.
Our systematic review showed that Fuzzy Miner [13] (including its
incarnation in commercial platforms, Fluxicon Disco and Celonis)
is the most frequently used algorithm, reported in nine SRL stud-
ies. The pMineR algorithm [10] is reported on in six SRL studies.
Heuristics Miner [33] is reported on in four SRL studies. Inductive
Miner [14] is used in two SRL studies.

2.2.1 HeuristicsMiner. TheHeuristicsMiner algorithm [33], which
can be deployed in tools like ProM and BupaR, was developed to
address the perceived shortcomings of the Alpha Miner. Heuristics
Miner builds on the Alpha Miner algorithm by providing frequency
metrics and allowing for the articulation of short loops. It gener-
ates a process map which can articulate multi-directional metric-
informed relationships between the processes. Its distinguishing

feature is the dependency metric, which is built around the follow-
ing formula:

a ⇒w b =

( |a >w b | − |b >w a |
|a >w b | + |b >w a | + 1

)
(1)

where |a >w b | is the frequency of b directly following a in the
event log, and |b >w a | is the converse relationship. This produces a
real-number value between -1 and +1. If the two event instances of a
following b and b following a are very close in frequency, the metric
value will tend toward zero. If there are large differences in ordering
between a and b, the value will tend toward 1 or -1. It is, in a sense, a
measure of reciprocation between processes. Figures of dependency
close to zero do not always signify a lack of relationship, but a lack
of dependency between one process and another. The dependency
metric has been used in several SRL studies, for example, contrasting
learning-challenge situations [29], and the use of meta-cognitive
and cognitive prompts as deployed in a computer-based learning
environment [9].

2.2.2 Inductive Miner. At its inception, the Inductive Miner algo-
rithm, first developed in the ProM platform, represented the best
attempt at addressing process model soundness, that is, the extent
to which the discovered model can reproduce the various permu-
tations of processes flows in the context of their cases [6]. Using a
process tree design, Inductive Miner is able to model case paths
which can branch in parallel or be exclusive choices. This is use-
ful for modelling structured business processes, where exclusive
choice and parallelism are key to accurate discovery. In the context
of LA and SRL, this distinction may be viewed as redundant, as the
cycles of SRL are typified by more random associations of learning
processes. The algorithm has been used in two studies of SRL which
explored contrasting models of passing and failing students [5, 8].

2.2.3 Fuzzy Miner. The Fuzzy Miner algorithm [13], first devel-
oped in the ProM platform, represents a significant diversion from
the previous algorithms in that it does not seek to distinguish par-
allelism and choice in process sequence. This reduction of logic
granularity is a trade-off. The Fuzzy model cannot be used to pro-
vide a strict articulation of sequential process permutations, and
is therefore not able to address the demands of the PM tests of
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soundness, unlike Heuristics and Inductive. However, its visualisa-
tions are suitable for the analysis of the loosely structured patterns
of SRL. This algorithm can also be configured to identify less im-
pactful processes and merge them with other low frequency/high
correlation processes, in order to simplify process models. Its more
immediate practical value has seen Fuzzy Miner rise to promi-
nence through its incorporation into commercial products such as
Fluxicon Disco and Celonis. Frequency and time are its prominent
discovery metrics; they have been used in SRL studies to explore
high and low performing groups as extracted from self-report data
[16] and MOOC interaction sequences, and how they differ across
academic performance [15].

2.2.4 pMiner. The pMineR algorithm [10] is the only one to use
probability as a metric. First order Markov modelling (FOMM) is
deployed to train and visualise process models. It shares a similar
visual layout as Fuzzy Miner but the lines between one process
and the next one show a measure of the likelihood of transition
between the processes, that is, the transition probability. Visual
interpretations can be conducted from the thickness of the lines
but more formal analyses rely on interpreting the actual transi-
tion probability values. pMineR has been used in SRL studies to
explore time management [1] and learning strategies [17], and in
conjunction with the Trace-SRL framework [25] to explore the
use of SRL micro-level processes across groups of students who
followed different learning strategies.

2.3 Research Questions
It is clear that the use of PM has a presence in the study of SRL. As
such it is important that the choice of PM algorithm is informed
by considerations of the suitability of the associated metrics to
solve specific research questions and to achieve specific analytic
objectives. In addition, the promise of combining PM metrics in
SRL settings is one which has rarely been explored. Utilising the
Trace-SRL framework [25] for coding micro-level processes of SRL
from raw trace data collected by a learning management system,
we present a systematic comparison of prominent PM algorithms
to model sequential and temporal relations between micro-level
processes of SRL. We also explore the promise of combining PM
metrics from the PM algorithms to explore meaningful patterns of
SRL. We seek to answer these questions:
RQ1 What insights can be obtained from commonly used process

mining algorithms when applied in the analysis of temporal
and sequential relationships of micro-level processes of SRL
extracted from digital trace data?

RQ2 What insights can be obtained from interpreting a combina-
tion of metrics from the commonly used PM algorithms in
the analysis of micro-level processes of SRL extracted from
digital trace data?

3 METHODOLOGY
3.1 Data Collection and Preparation
The data for this study were collected from a Moodle learning man-
agement system (LMS) created to support a Python coding course
at an Australian university. The source trace data were generated by
as single cohort of 726 students over the course of a 13-week term.

General LMS engagement data were additionally augmented with
reading and annotation data generated from student engagement
with the integrated eTextbooks. The annotation data were gener-
ated from a novel web-based annotation tool called Hypothes.is [28].
Using this tool, students were able to generate, categorise, edit and
delete tag-based annotations within the pages of the texts. As such,
these kinds of annotation events could be viewed as expressions
of a certain control of learning, or more specifically SRL. For each
instance of learner engagement with the LMS, raw event data were
recorded. Over the course of the term, 571,718 raw trace events
were generated.

In order to transform the raw trace events into micro-level SRL
processes, we first needed to segment streams of events into learn-
ing sessions and then label theses events into learning actions (as
shown in Figure 1). In several previous studies, the “unreasonable
long dwell times” between two events were often used as mark-
ers for separating learning sessions. For example, in the Matcha
et al. [17] study, a 45 minute period of inactivity indicated that
the learner had already left this learning task and ended the cor-
responding learning session. However, after initial analysis of the
trace data in our study, we discovered that learners usually needed
to login several times in one day to finish the whole pre-class task,
that is, several short sessions (terminated after 45 minutes of inac-
tivity) in one day. We also received feedback from teachers that,
based on their observation and experience, the learners usually
needed several such short sessions to complete pre-class tasks in
the course. Since we aimed to look at micro-level processes related
to completion of learning tasks, a sequence of daily events was more
appropriate as a session in our study. Considering that learners
often studied very late at night, we chose 4AM as the starting and
ending points for 24-hour sessions. Once the learning sessions were
defined, an action library was derived in order to provide initial
transformation of the raw event data in each session into descrip-
tively meaningful learning actions. This resulted in the creation
of 24 learning action descriptions, allocated to 7 categories. The
detailed action library can be found at LAK21SM.

3.2 Data Processing
We adapted the Siadaty et al. [26] basic framework for micro-level
analysis of SRL to reflect micro-level processes of SRL derived from
trace data recorded in authentic LMS settings. There are three
parts to this sequence: i) micro-level SRL framework definition;
ii) SRL process library creation; and iii) SRL micro-level process
generation. The final step, in which the raw trace data were parsed
into SRL processes (micro- and macro-levels), was achieved run-
ning a REGEX Python script. The learning action sequences were
transformed into micro-level SRL processes in order to provide
the required SRL characterisation (the first step in Figure 1). For
more details on this approach, refer to the studies by Siadaty et al.
[26] and Saint et al. [25]. The generated process library (LAK21SM)
comprises three macro-level processes of SRL, which correspond
to the three constructs of the our model of SRL: 1) Planning; 2)
Engagement; and 3) Evaluation. Categorised within these macro-
level processes, we adapted a set of micro-level processes from
the Siadaty et al. [26] framework. Within these categories, we la-
belled a set of processes. For example, a three-step process, such as
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Reading → HomePage_Viewed → Forum_Post was categorised as
CLTS.Interaction, where CLTS refers to the Coordinating Learning
Task Sequences micro-level process. The CLTS micro-level process
is one of the elements that make up the macro-level process, Engage-
ment. In this sense, the raw data were actually coarsened, in terms
of grain, through this transformation approach. This produced a
final micro-level process dataset of 156,586 records.

3.3 Data Analysis
3.3.1 Building the Process Models. PM has mandatory require-
ments of its event trace. The key elements are: 1) an activity – a
well-defined step in a broader process; 2) a case – a process in-
stance; and 3) a timestamp. These three PM roles were populated
thus: micro-level process → Activity; Day Timestamp → Times-
tamp; User Learning Session→ Case.

3.3.2 Evaluating the PM Algorithms. To address RQ1, we supplied
identical event data to the four chosen PM algorithms. In present-
ing the algorithms, we cover four key metrics when discussing the
process models. In this context, our processes are the micro-level
processes (as opposed to the raw learner actions from which they
had been parsed), as described in the process library. When collec-
tively referring to the relationship between micro-level processes,
the term ‘transition’ is used. Fuzzy Miner and Inductive Miner can
provide frequency and time metrics, while Heuristics Miner can
provide frequency and dependency metrics. pMineR uniquely pro-
vides probability transition metrics. To avoid duplication of metric
interpretation, we present the following PM algorithms and asso-
ciated metrics: Inductive Miner (process frequency); Fuzzy Miner
(process and transition frequency, transition median time); Heuris-
tics Miner (dependency); and pMineR (transition probability). For
each PM algorithm, we use this three-paragraph structure: 1) An
overview of the process model and insights provided for the al-
gorithm analysed; 2) An interpretation of transitional behaviour
between a specific subset of the micro-level processes in the context
of SRL – TA.Overview, Eval.Learning Processes, and Eval.Learning
Outcomes; and 3) An appraisal of the algorithm in this context. The
three chosen micro-level processes represent key SRL relationships
in the model, and also provide an optimal mix of metrics to explore
the method.

3.3.3 Comparing the PM Algorithm Metrics. To address RQ2, the
key transition metrics, frequency and time from Fuzzy Miner, and
and probability from pMineR, are interpreted in combination. The
Inductive Miner model does not provide transition metrics between
processes, and the Heuristic Miner dependency metric was deter-
mined not to be suitable for a combined interpretation, due to its
non-intuitive construction. We used the three micro-level processes
highlighted in the previous section to provide this combined inter-
pretation of the relationships between the processes, as articulated
through the three chosen metrics.

4 RESULTS
4.1 RQ1: Analysis by Algorithm
For the purposes of this analysis, we briefly discuss the concept of
process model soundness. In conventional process mining, unlike

LA processing, the goal is to provide the best approximation of pro-
cess flows of a particular system. As such there are four dimensions
of process model soundness: 1) replay fitness – how accurately
can the model reproduce the process combinations; 2) simplicity –
how cleanly can the process map be rendered and how easily can it
be interpreted; 3) precision – the fraction of the behavior allowed
by the model which is not seen in the source event trace; and 4)
generalisation – how well can the model reproduce future process
behaviour [6]. Whilst these dimensions are not applicable to Fuzzy
and pMineR, they do inform our treatment of Inductive Miner and
Heuristics Miner.

4.1.1 InductiveMiner. The focus of InductiveMiner ismodel sound-
ness, that is, to accurately reflect all possible event paths throughout
a process life-cycle. As such, multiple case paths are presented as
completely as possible. Moving from the left to the right of Figure 2,
we start with 48,907 cases (i.e., learning sessions). The first major
branching in our model is parallel. This is indicated by an icon
resembling a diamond with a plus sign, and also by the metrics for
the outgoing branches from the + diamond, which are unchanged
at 48,907. This indicates that any of these paths is taken at any
given point in the overall flow.

We can trace a path of 48,907 sessions from the beginning of the
process flow (the small green node at the left of the figure). This path
can then split into a number of directions, one of which tells us that
in 20,704 cases, TA.Overview is engaged. In 7,628 cases, we see this
flow loop back on itself. This means that on 7,628 occasions, there
were transitions to the same micro-level process, within a single
learning session, making a total engagement frequency of 28,332. It
is unclear how we articulate the relationship of TA.Overview with
the other micro-level processes. As with TA.Overview, Eval.Learning
Processes and Eval.Learning Outcomes are presented in the terms of
frequency of cases, but with seemingly non-joined paths. In essence,
each instance of these two micro-level processes simply tells us that
learners can engage with the micro-level process, or not engage.
The metrics show us process frequency engagement, but not in the
sense that there is a transition between the micro-level processes.
As such, we can interpret micro-level process frequency. In terms of
SRL, it provides some sense about relative engagement with task
analysis and evaluation of learning.

That we cannot easily see the multiple transitions between the
processes is not a failing of the algorithm, but an expression of
its unsuitability in the research of SRL. For the purposes of SRL,
the process model visualisation is problematic in that it does not
show transitions between micro-level processes. We know from
the data, and from the other PM visualisations, that there were
transitions between many of these micro-level processes but this is
difficult to interpret in the model extracted by Inductive Miner. The
branch types — parallel or choice — are employed to service model
soundness, not to articulate the dynamics of a model of learning
and its many variations. Inductive Miner works well when the
learning sequence is more structured and shaped relatively strictly
by a learning or course design. For example, the study reported in
Bogarín et al. [5] presented useful results obtained with the use of
Inductive Miner and demonstrated good soundness in context of
the four dimensions of process model soundness [6]. However, the
SRL behaviours captured in our study are more fluid in nature, and
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Figure 2: Inductive Miner Process Map

Inductive Miner struggled to articulate transitions between micro-
level phases. We can derive an interpretation from the frequency
metrics presented in the process model, but not much else. Inductive
Miner is more suitable for traditional business process modelling
where the exact type of notation (OR, XOR, and AND) is extensively
used. However, such structured processes are not so common in
SRL where learners continuously exercise their agency and adapt
to the changing internal and external conditions [36].

4.1.2 Fuzzy Miner. The Fuzzy Miner process model, as rendered
in Fluxicon Disco, provides an immediate snapshot of the relative
prominence of the micro-level processes and the measure of the rela-
tionships between them, that is, the transitions. A quick overview
(see Figure 3) identifies Eval.Learning Process as the most heavily
engaged. This is indicated by the frequency metric (59,964) of the
micro-level process and also its colour, which is the darkest in the
process map. The colour grade lightens for micro-level processes
that are less frequently engaged. The edges between the nodes also
have frequency and temporal metrics, indicating the absolute count
of transitions between the two joined processes and the median
lag time. Disco also provides visual cues in the form of relative
thickness of the edges. In event data where start and end date-
timestamps are available, the median time-on-process (i.e., median
time spent engaging on an micro-level process) would be present. In
an event log with a single timestamp, such as the one used in the
current study, this is not available.

We can interpret frequent transitions between TA.Overview,
Eval.Learning Processes, and Eval.Learning Outcomes. We can also
make an informed choice as to the starting point of our interpreta-
tion of the Fuzzy Miner process model; we know that TA.Overview
is the most frequently engaged micro-level process at the start of
a session (18,519). Transition from TA.Overview to Eval.Learning

Process, is common, with a frequency metric of 13,037. We see
transition from Eval.Learning Process to Eval.Learning Outcomes,
is less common, with edge frequency of 8,984. The transition be-
tween Eval.Learning Outcomes and Eval.Learning Process even less
frequent (2847). We interpret the temporal association in the tran-
sition from Eval.Learning Outcomes to TA.Overview, with median
lag time of 105 seconds. This is the shortest lag time in the pro-
cess model. There is a longer median lag time from TA.Overview to
Eval.Learning Process (7.7 minutes). The lag time from Eval.Learning
Process to Eval.Learning Outcomes is 3.6 minutes. This gives us a
sense of transition between the micro-level processes in temporal
space. We could interpret the short lag time between evaluating as-
sessment results (Eval.Learning Process) and assessing the learning
tasks (TA.Overview) as positive expression of SRL.

Fuzzy Miner allows practical interpretation of micro-level pro-
cesses transitions in terms of frequency and time. In our model,
strong micro-level processes relationships can be articulated both
from the transition metrics and the visual cues; the colour and
shading of the micro-level processes, and the the thickness of the
transition edges between the micro-level processes. Frequency and
time are universally known measures and easy to interpret. This
being said, a reliance is placed on the researcher if they want to com-
pare metrics from different micro-level processes. It may be difficult
to get a sense of dominant transitions without a broader analy-
sis of the other micro-level process metrics in the model. Also, the
time metric can be deceptive if: 1) the original trace data collection
method does not contain start and end timestamps of every event
in the log data; and 2) the engagement timestamps are subject to
skewing from, for example, learners clicking a page of the LMS and
then leaving the page open while doing some other task.
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Figure 3: Fuzzy Miner Process Map

4.1.3 Heuristics Miner. This algorithm is designed to produce a
sound process model, that is, one that measures against the four
dimensions of process model soundness [6]. Looking at the process
model discovered by Heuristic Miner (Figure 4), we can get some
sense of the connection between the micro-level processes; it does
not, however, display the full set of transitions we know to exist
between the micro-level processes. To recap, the dependency metric,
it is a value between -1 and +1, where a value closer to 1 indicates
a strong dependency relationship.

In assessing a selection of the dependency metrics in this model,
we see there is a strong dependency relationship between TA.
Overview and Eval.Learning Process, with a the dependency met-
ric of 0.824. This indicates that Eval.Learning Process followed
TA.Overview on a large number occasions and whilst there was a
transition back, it was less frequent. The dependency metric from
Eval.Learning Process to Eval.Learning Outcomes is 0.0002, indicat-
ing that no dependency exists. It should not not be interpreted
as infrequent transition. In this model, it means that there was a
similar level of transition both ways between Eval.Learning Process
and Eval.Learning Outcomes.

The dependency metrics provide useful insights but their inter-
pretation is somewhat counter-intuitive in terms of typical inter-
pretation of SRL. In more conventional measures of transition, such

as frequency or time, we can easily determine some sort of mean-
ing, such as when two micro-level processes frequently transition to
each other, or follow each other with a long or short time lag. This
is not immediately obvious on initial viewing of Heuristic Miner
models; to an untrained eye, small value metrics may infer a lack
of association between micro-level processes. This is not necessarily
the case, as can be seen in our Heuristics model.

4.1.4 pMineR. The interpretation of pMineR’s first order Markov
models lies in assessing the transition probabilities between the
(micro-level processes). The emphasis, therefore, is on the likely
learning paths betweenmicro-level processes. In Figure 5, we see the
arrangement of micro-level processes within the bounds of BEGIN
and END processes. The BEGIN process is positioned in the process
model to allow us to describe the transition probabilities from the
beginning of a session to the first micro-level processes. It allows us
to interpret the most probable micro-level processes engaged at the
beginning of a session. The END process allows us to interpret the
probability of a micro-level process transitioning to the end of the
session.

In assessing the transition probabilities in this model, we see that
learners engaging with TA.Overview were more likely to engage
next to Eval.Learning Process than any other micro-level process,
with a transition probability of 0.57. This describes an emphatic
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Figure 4: Heuristics Miner Process Map

Figure 5: pMiner FOMM Process Map

probabilistic link. From Eval.Learning Process, there was a 0.22 prob-
ability of transition to Eval.Learning Outcomes and the transition
probability from Eval.Learning Outcomes to TA.Overview was 0.17.
This provides us with sense of the likely movement between these
micro-level processes. We see that Eval.Learning Process seems to
have been a likely transition from TA.Overview. In the other transi-
tions, this likelihood was less.

Transition probability metrics are useful, as they allows an easy
interpretation ofmicro-level process relationships in a measurement
scale with which most researchers and practitioners are familiar.
They provide a means of articulating the dynamics of SRL in terms
of probabilistic likelihood. We can glean important insights from
transition pairings of learners who exhibits SRL behaviours. For
example, we could identify optimal SRL as a learner starting a
session by assessing the learning tasks in hand (TA.Overview), then
moves to a reading micro-level process, that is, (WOT.Knowledge
Build), then maybe to engagement with other learning processes
such as Eval.Learning Process. The transition probabilities between
these processes provide a useful insight into probable movements
of such learners. One shortcoming of transition probabilities is they
offer no sense of absolute frequency; only relative frequency. A

high transition probability may genuinely represent a probable
transition, but it may also represent a transition from a very low
frequency micro-level process. In Figure 5, GS.Identify Learning Gap
appears to have a strong relationship withWOT.Address Learning
Gap, with a transition probability of 0.57. In reality, this micro-level
process had a very low frequency and a low transition frequency,
rendering the transition probability largely meaningless.

4.2 RQ2: Algorithm Consolidation
The PM algorithms assessed in this study can provide valuable
insights if used individually, but it is useful to consider what re-
searchers could gain in combining insights from more than one
algorithm, or, more specifically, from the metrics they provide. In
considering a combined set of metrics, we need to establish which
metrics are the easiest to interpret individually, and as a group.
Assessing Inductive Miner, the first thing to note is that it does not
provide transition metrics between the micro-level processes in the
model. For example, we know that transitions from TA.Overview to
Eval.Learning Process occurred on 13,037 occasions. This cannot be
interpreted from the process model provided by Inductive Miner. In
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summary, Inductive Miner does not provide the edge metrics in the
form that is suitable for SRL analysis. Assessing Heuristics Miner’s
dependency metric, we see that it does provide an indication of
dependency between the micro-level processes. Its interpretation,
however, is not immediately intuitive (as outlined in RQ1), and is
at odds with the other PM metric measurement scales, which are
based on frequency and probability. A combination of frequency,
time and transition probability, holds some promise. Consider the
visualisation in Figure 6.

Figure 6: Combined PM Metric Visualisation

The strong linkage from TA.Overview to Eval.Learning Process is
emphatically articulated. More importantly, the frequency metric
(Fuzzy, Inductive) is given a probabilistic context by the transition
probability (pMineR). So we can say that, not only is this a frequent
micro-level process transition, but it is the most likely transition from
the TA.Overview. If we look at the transition from Eval.Learning
Process to Eval.Learning Outcomes, the frequency metric (13,037)
tells us something, but the transition probability immediately ar-
ticulates the likelihood of this transition (0.57). This provides a
useful complementary interpretation. Frequency of transition pro-
vides an absolute transition measure and articulates a clear sense
of micro-level process association. Without interpreting some other
connected transition frequencies, a comparative sense of frequency
may not be immediately clear. The transition probability metric
provides an immediate sense of context. In models where there
are varying frequencies of occurrences of micro-level processes, this
probabilistic insight provides a standardised measure, that is, one
that is independent of absolute frequency. Conversely, we know
(from RQ1) that high transition probabilities can be generated from
micro-level processes of low frequency. A large transition probabil-
ity may be the effect of a genuinely strong association, or it may
just be the effect of transition from a very infrequently engaged
micro-level process. Combining these metrics would help mitigate
spurious interpretations of transition probabilities. Infrequent tran-
sitions could be easily identified, such as those seen around the
micro-level process comprised of text annotations, that is,GS.Identify
Learning Gap or Eval.Learning Gap Resolve. The time metric (Fuzzy),
that is, the median lag time between micro-level processes, provides
another layer. In Figure 6, we see a less probable transition from
Eval.Learning Outcomes to TA.Overview but the median lag time is
the shortest in the model. In this way, we can further articulate the
dynamics of the transition. Certain SRL behaviour maybe typified
by variations in frequency, transition probability and median lag
time between micro-level processes.

5 DISCUSSION
5.1 Discussion of Results
PM provides insights into SRL that cannot be obtained using con-
ventional statistical modelling that typically use counts and du-
ration of occurrences of micro-level SRL processes. If we accept
that SRL is a process that unfolds over time [7], then we must also
accept that there are certain ontological limitations that statistical
modelling imposes. PM algorithms provide a means of capturing
a learning dynamic that is not possible using conventional fre-
quency measures alone [22]. The suitability of PM in the research
of SRL is demonstrated by the body of studies currently published
[1, 3, 8, 9, 15–17, 24, 25, 29].

In this study, we assessed the value of four PM algorithms used
in previous SRL studies. Firstly, using a common dataset coded with
the instances of the use of micro-level SRL processes, we conducted
an empirical study to systematically explore the insights provided
by the different process models, using key PM metrics generated
from these models. In Table 1, we summarised the high-level find-
ings from six dimensions. Secondly, we explored the promise of
combining the metrics from the various models in a unified in-
terpretation to explore the extent to which different PM metrics
— frequency, time, and probability — complement each other. We
assessed Inductive Miner for process frequency metric, Heuristics
Miner for transition dependency metrics, FuzzyMiner for transition
and process frequency and time metrics, and pMiner for transition
probability metrics

In addressing RQ1, our research showed that the PM algorithms
fall into two broad categories: algorithms to seek process model
soundness (i.e., Inductive Miner and Heuristics Miner) and those
that focus on simplified model generation (i.e., Fuzzy Miner and
pMineR). This finding informs the choice of algorithms for re-
searchers who seek to study how SRL unfolds over time [7]. The
process model generated from Inductive Miner proved quite diffi-
cult to interpret. The process flows articulated in its visualisations
were presented in an unwieldy parallel configuration which did not
convey the various transitions that we know exist between the SRL
micro-level processes. This algorithm was successfully used in two
studies of SRL [5, 8], which were conducted in the context of a more
structured set of learning paths. The Heuristics Miner dependency
metric provided some promising insights in certain pairs of micro-
level processes. We were able to glean a sense of process directional
process dependency, that is, a sense of when one micro-process
follows another and whether the transition was often reversed.
The Heuristics dependency metric is, however, not immediately
intuitive to interpret. The SRL studies in which Heuristic Miner
has been used did not systematically interpret the dependency met-
ric, although those studies did identify relationships between the
learning processes that were modelled [9, 29]. We gleaned richer
results from Fuzzy Miner, whose metrics are easy to interpret. The
transition frequencies and lag times provided clear insights into the
relationships between between micro-level processes in the context
of SRL. This clarity of insight is seen in a number of SRL studies
that use Fuzzy Miner [15, 16]. Interpreting the absolute frequency
of a specific process measure, particularly in a process model with
numerous processes, can put responsibility on the researcher to
assess other process frequency measures to get a sense of relative
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Table 1: Summary and comparison of the four process mining algorithms

Inductive Miner Fuzzy Miner Heuristics Miner pMineR
Metrics Frequency, time Frequency, time Dependency, frequency Transition probability
Package/Toolkit ProM, BupaR Fluxicon Disco, Celonis,

ProM
ProM, BupaR pMineR R package

Key features Process model sound-
ness

Simplified models Process model sound-
ness

First order Markov
models

Study examples [5, 8] [15, 16] [9, 29] [1, 17, 25]
Advantages Model soundness Ease of interpretation

for SRL
Unique dependency
metric

Ease of interpretation,
Unique probability met-
ric

Limitations Not useful for unstruc-
tured models in SRL

No relative scale for fre-
quency and time

Dependency metric not
intuitive

No absolute scale

scale. pMineR also provided clear insights in the context of probable 
transitions between micro-level processes, addressing the issue of 
relative scale by providing probability as a measure. Conversely, we 
need to be mindful when interpreting high transition probabilities, 
as they may be due to small process frequencies, as opposed to 
probable transitions.

The main finding obtained in addressing RQ1 was that none 
of the metrics provided by a single PM algorithm provided a com-
plete picture of SRL. To provide a complete picture, in RQ2, we 
presented a novel method of combining and comparing PM metrics 
to form a joint interpretation. Our results show that combining 
and comparing the metrics from different PM algorithms provides 
a level of nuance that cannot be gleaned from the interpretation 
of single models. Combining frequency and probability provided a 
complementary interpretation of transitions between micro-level 
processes, which articulates both relative (i.e., transition proba-
bility) and absolute scales (i.e., transition dependency, transition 
frequency, and time lag). The addition of time provides another 
dimension through which we can interpret SRL. For example, we 
may see strong evidence of transition between an SRL phase of 
Planning to an SRL phase of Engagement, but also evidence of long 
time lags between these two phases. Shorter lag times may indicate 
a more pro-active self-regulated learner. As a counterpoint, these 
results also show that combining and analysing multiple algorithm 
metrics requires a deeper consideration of the nuances of the met-
rics available to each algorithm, and the resources to train and 
generate multiple process models.

5.2 Implications for Future Research
If the use of PM algorithms in SRL research is to move from ex-
ploratory work to more impactful studies, greater consideration 
must be given to their selection and deployment. The use of Induc-
tive Miner or Heuristics Miner may not be suitable in environments 
where SRL processes are subject to the nuances of the learning 
design and the learners who enact it. In these scenarios, a more 
forgiving process model, such as Fuzzy Miner or pMineR, would 
be more viable. A combined interpretation of relative and abso-
lute metrics provided by different PM algorithms should also be 
considered in the future studies of SRL. To that end, a significant 
benefit could be gained by developing a unified tool for analysis of

SRL that combines inputs from the various PM metrics, or a new
unified process miner that provides native support for multiple met-
rics beyond what is currently available in the four PM algorithms
commonly used in SRL research.
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6.3 Summary

The study presented in this chapter builds on the aspirations of Chapter five in the sense we explored

the output from multiple methods on a common SRL-informed dataset. There were, however, a

number of key developments. In this chapter we emphasised a more systematic comparison, which

was possible due to the specific targeting of process mining algorithms. This decision was informed

by the broader analysis of temporally focused SRL in Chapter two, in which it became clear that

process mining was one of the most commonly used techniques in this area, and as such demanded

a sharper focus. One important factor to note is that process mining algorithms were born in the

sectors of industry and corporate logistics, and were designed to capture more rigidly designed

process flows than those of SRL. Two of the algorithms analysed in our study—Heuristics Miner

and Inductive Miner—are manifestations of this design, and, as such, did not provide satisfactory

process maps when applied to our SRL data. To our knowledge, only the studies by Bogarín et al.

(2018) and Cerezo et al. (2020) made satisfactory use of Inductive Miner, due to the specific and

structured nature of the learner data. Previous studies that used Heuristics Miner tended to be

vague in their interpretation of its metrics; our study highlighted their counter-intuitive nature in

the context of SRL data. The first conception of Fuzzy Miner (Günther & van der Aalst, 2007),

in which the attainment of process model soundness was relegated in favour of more immediate

interpretability, was a key development. It provided the possibility of the use of process mining in

less structured settings, such as those typified by SRL; a possibility that was explored by Bannert

et al. (2014) in their seminal study. In our study, we found that the Fuzzy-informed Disco platform

produced a set of rich and interpretable insights, which aligned with the fluid nature of SRL. This

richness was also afforded by the probabilistic outcomes produced by pMineR (Gatta, Vallati, et al.,

2017). The key contribution here is that our analysis forces a more specific conversation about

the choice of process mining platform, algorithm, and metric(s) (and a sense that all three are not

always synonymous); one which we feel is more critical if the LA community want to push this type

of SRL research beyond the exploratory.

The other key contribution is the promise of combining the metrics from various algorithms into

a unified visualisation. Given that these metrics can be proprietary (such as the dependency metric

from Heuristics Miner) or universal (such as frequency, time, or probability), and can be absolute

or relative, the use of each metric provides its own view of the SRL processes and the relation-

ships between them. Each view necessarily has strengths and limitations in terms of temporally

and sequentially-informed SRL analysis. An awareness of this factor is not only key to choosing

the most appropriate metric for a study, but also to the consideration how they can be combined

and interpreted in unison. This combined view was presented in our study and is prototypical; it

requires some finessing in order to provide more immediate actionable insights, but the promise of

developing a unified and configurable multi-metric discovery algorithm is an intriguing one. For ex-

ample, we noted that we may see strong evidence of transition between an SRL phase of Planning to
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an SRL phase of Engagement, but also evidence of long time lags between these two phases. Could

shorter lag times indicate more pro-active self-regulated learners? If the relationship is weak, what

does this indicate? These are dimensions of interpretation not possible from single metrics. We

acknowledge that several packages, such as Fluxicon Disco, provide the option to display secondary

metrics, but we are unaware of one that provides probabilistic, frequency, and time-based metrics,

and we have seen few SRL studies that make full use of the variety of metrics available. Another

key contribution is the deployment of the Trace-SRL framework on a new data source (Moodle)

which allowed us to test its utility in the context of different learner actions. Up to now, we have

stressed the importance of data transformation to reduce dimensionality and provide theoretical

underpinning, but the other key demand is the ability to apply it in different contexts.
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There is no end to education. It is not that you read a book, pass an

examination, and finish with education. The whole of life, from the moment

you are born to the moment you die, is a process of learning

— Jiddu Krishnamurti, Krishnamurti on Education

T HE overarching theme of this thesis is the use of analytic methods to unlock patterns of self-

regulated learning from trace data collected in authentic digital learning environments. More

specifically, it seeks to explore how these methods can be used: i) to embed analyses in recog-

nised models of self-regulated learning; ii) to unlock the temporal and sequential dynamics of self-

regulated learning that cannot be detected using conventional statistical methods; and iii) in unison,

to provide richer analytical insights. As such, we presented the findings of multiple studies in which

we explore these areas, contextualised by a systematic review of the research area.

In this chapter, we briefly summarise the main findings and contributions of the work presented

in this thesis according to the key research goals and questions stated in Section 1.1. Next, we

focus the impact of the present work and its implications, both for research and practice, and posit

a number of directions for future work. Finally, we provide some concluding remarks.

7.1 Impact of the present work

7.1.1 RQ1: Self-regulated Learning, time, and sequence

In Chapter two, we presented a systematic review of the literature on self-regulated learning as

viewed through the lenses of temporality and sequence. This was inspired by the notion, first

hinted at by Winne and Perry (2000) and developed by Reimann (2009) and Molenaar (2014),

that learning is a process that unfolds in sequences over time. In accepting this conceptualisation

in the context of self-regulated learning, we subscribe to the notion that conventional statistical

and variable-centric methods are limited in this context. The review systematically analysed studies

whose authors also subscribed to this notion. As such, we revealed a variety of insightful and novel

explorations of temporally focused self-regulated learning. More importantly, we posited a set of
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perspectives that we feel future researchers should consider before embarking on studies in this

area.

Methodological: We argue that the choice of analytic method should be approached with greater

consideration than is generally articulated in many of the studies. We suggest that on the basis of

the excellent work undertaken in these studies, researchers are now in a stronger position to make

explicit assessments of available methods, as opposed to choosing them by convenience, curiosity,

or familiarity.

Theoretical: SRL model usage is subject to much nuance. Some researchers demonstrate a clear

and definable use of a recognised model of SRL; for others, SRL has a lighter presence, and is more of

a contextual backdrop for the study. We would not prescribe an alignment in one specific direction,

and acknowledge that there are many other positions on the spectrum of SRL model usage, but we

would suggest a greater clarity of purpose in the use of learning theory. As stated, we hope this

inspires a response to the call by Gašević et al. (2015) to embed LA research in recognised theories

of learning.

Validity-focused: Whilst we cannot claim to address the many challenging issues around validity,

the review does point to a number of ways in which researchers augment the robustness of their

work. We argue that the greatest empirical gains can be made in employing multi-channel analysis

(in which the same SRL phenomena are analysed from different data sources), whilst acknowledging

the demand on skills and resources needed to deploy this. Nonetheless, there are measures, linked

to decisions around method and theory, that can be addressed.

Temporal: In a sense, considerations of how researchers approach temporality are interlinked

with methodological considerations. The review provides insights into some of the ways in which

researchers can more readily consider the alignment between method and temporal insights.

To provide a more actionable framework, the review outlines a series of 26 questions, categorised

by the four perspectives outlined above, which, we argue, will force a more explicit conversation

around the conceptualisation and implementation of temporally focused SRL projects.

7.1.2 RQ2: The measurement of temporal dynamics

As stated repeatedly throughout this thesis and the incorporated studies, the conception of learning

as an unfolding sequence of events (Molenaar, 2014; Reimann, 2009; Winne & Perry, 2000) is a

major conceptual inspiration. The capture and analysis of the temporal and sequential dynamics of

learner engagement is a research goal which underpins all of the studies reported on in chapters 3

to 6, although its emphasis does shift from study to study. Chen et al. (2018) conceptualised two

broad temporal features: i) The passage of time, pertaining to event duration or frequency; and

ii) temporality as a dynamic of how events are ordered and how they relate in terms of sequence.

Whilst the first feature is important, it is the second feature that we sought to capture and articulate

in addressing this research question.
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That the study reported on in Chapter three (Saint et al., 2018) made use of a (then) novel

process mining algorithm (Gatta, Lenkowicz, et al., 2017) is important but its true importance

derives from the interpretation of its process mining metrics, which are transition probabilities.

More specifically, in viewing the relationships between learning events in probabilistic terms, we

articulated likelihoods of the occurrences of learning sequences. This allowed us to view learning in

a temporal and sequential context not achievable using variable-centric methods. Although the use

of process mining is not novel in and of itself, our deployment of stochastic process mining allowed us

to take a set of learner groups, already extracted in the Jovanović et al. (2017) study, and provide an

arguably richer and more sequentially dynamic characterisation of their learning behaviours. This

is a key implication of the work. Another aspect of this analysis was the systematic interpretation of

the process model metrics. Although there were a selection of relevant studies using process mining

in learning contexts (see the outcomes of Chapter two), metric choice and interpretation generally

stopped short of being systematic, being more general in nature (notable exceptions being the work

undertaken by Ahmad Uzir et al. (2020) and Matcha, Gašević, Ahmad Uzir, Jovanović, and Pardo

(2019)). We deployed a similar level of forensic interpretation to the remaining studies in order

to further address the demands of RQ2 in differing contexts, using different process and network

analytic algorithms.

Another key element of these interpretations was the use of pairwise model comparison, as

demonstrated in all studies except the one reported on in Chapter six. In these studies, we com-

pared different learner groups, mainly through pMineR “compare” plots as represented by their

trained process models. This allowed us to directly assess the differences in specific temporal se-

quences, in context of likelihood, based on the differences between their respective event transition

probabilities. This provided key insight into well-formed and malformed learning behaviours that

may have gone unseen if analysed in isolation.

Our explorations of RQ2 outlined a robust and systematic way of capturing and visualising

learner data, providing a dynamic view of its temporal and sequential nature, one which we hope

is more widely adopted.

7.1.3 RQ3: A framework for embedding SRL

Transforming or coding raw data provides a means of viewing and analysing it through a lens which

is better aligned to the demands of the given research scope. In effect, it translates data into a

language that researchers can more readily understand and communicate, and with this comes

other benefits, such as reduction of noise and dimensionality. Whilst these benefits are of great

importance, we argue that they are undermined without the use of recognised models or theories of

SRL to inform the coding process. The call to embed learning theory more explicitly in LA research

has been made repeatedly (Dawson et al., 2015; Gašević et al., 2015; Gašević et al., 2017) and it is

this call that we sought to answer in addressing this research question, and one which is deployed
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in the studies reported on in Chapter four, Chapter five, and Chapter six.

The work of Greene and Azevedo (2009) is of key importance as they provided a formalised

method of interpreting raw learner data into categorised codes whilst aligning it with a recognised

SRL model. Siadaty et al. (2016) formulated a means of implementing the Greene and Azevedo

(2009) micro-level process analysis method using trace data in semi-experimental settings. We fur-

ther expanded the method by deploying it using authentic LMS data, which allowed us to explore

learner engagement in the context of SRL. Our “Trace-SRL” framework represents a cohesive the-

oretical and methodological process which can be deployed in different learning contexts. In our

deployment, we used a Zimmerman-inspired SRL model, REGEX, and various process analytic tech-

niques, but in reality, researchers are not bound to all theoretical and methodological elements. In

the three studies which utilise the framework, two different REGEX scripts are used, and multiple

analytic discovery methods. The key implication here is that the framework can be adjusted to fit

multiple contexts, as long as adherence to SRL theory is not abandoned.

The key overarching implication here is that we have outlined a way of bridging the gap between

macro-level SRL constructs and the micro-level learner events that are typically generated from

authentic LMSs. It is in the bridging of this gap, highlighted by Molenaar (2014), that researchers

are forced to have explicit conversations about the robustness and validity of their analyses.

7.1.4 RQ4: Comparing and combining analytic methods

The comparison of analytic methods is one which has been explored in a small number of SRL-

related studies (see Chapter two). The Matcha, Gašević, Ahmad Uzir, Jovanović, Pardo, et al. (2019)

study, for example, employed a systematic comparison of process, sequence, and network analytic

methods, in assessing the different dimensions that each approach emphasises. The combining of

analytic methods was explored, for example, in the Ahmad Uzir et al. (2020) study. The final two

studies in this thesis (Chapter five and Chapter six) build on the methodological explorations of the

previous chapters to provide both comparative and consolidated analyses of the dynamics of SRL.

There are broad synergies between the two studies, so it is worth analysing implications of each

study and the key differences.

The study reported on in Chapter five (Saint, Gašević, Matcha, et al., 2020) provided a com-

parison of techniques from a broad selection: frequency analysis, epistemic network analysis, and

process mining. In this selection, the ontology of the phenomena observed effectively changes from

method to method: the frequency analyses provided count-based aggregations on SRL engagement;

epistemic network analysis provided insights into SRL event co-occurrence; and processing mining

provided a more sequential and cyclical view. As such, they provided very distinct analytical perspec-

tives, which we compared and consolidated. In doing so, we presented potential SRL researchers

with a systematic view of each method’s insights, and a qualitative example of a consolidated view.

The study reported on in Chapter six followed the same comparison/consolidation trajectory but
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placed a more specific focus on various process mining algorithms, which intrinsically share a simi-

lar temporal and sequential ontological aspect. There are other key differences, which are also key

implications: in undertaking a systematic assessment of the various process mining metrics avail-

able, we make explicit statements about their respective suitability for the analysis of SRL; and we

demonstrate how these metrics could be combined to provide a richer, more ontologically complete

view of SRL phenomena.

Perhaps the most important message, and one which chimes with the outcomes of the systematic

review of Chapter two, is the call for researchers to formulate a more explicit assessment of process

analytic methods, given the current level of maturity of SRL research.

7.2 Directions for future research

The work undertaken in this thesis paves the way for the exploration of some promising ideas and

techniques. The focus of this work could be directed on the theoretical considerations around the

conceptualisation of models of SRL and the methodological challenges of embedding the model in

applied analytical settings. The focus could also be directed towards the conceptual considerations

of representing SRL as a temporal entity and the methodological challenges of enacting it. We hope

that any meaningful research in this encompasses all of these aspects.

In general, the conceptualisation of SRL models is well researched. In the context of its analysis

in a temporal and sequential context, its deployment is subject to much nuance. Whilst we stop

short of prescribing a specific direction, we suggest that the explicit and cohesive way in which we

deployed our chosen SRL model should provide an impetus for researchers who seek to explore

insights into the dynamics of SRL. One important factor is the alignment of SRL models to data

collection methods. For example, self-report and specialised trace data capture allows the deploy-

ment of sophisticated models of SRL, such as the Winne and Hadwin (1998) model. Conversely, the

challenges presented in capturing SRL processes from authentic trace data may mean some facets

of this model would be necessarily underused, if deployed in this context. Authentic trace data

capture may align more fully with a simpler, cyclical model of SRL, whose elements are common

to most major models (Panadero, 2017). Much benefit could be derived from a conceptual study

of the delineation of SRL models in context of data collection methods, with specific focus on the

positioning of the constructs: i) as processes in an ongoing cycle of SRL, for example, preparation,

engagement, and reflection, which can, if necessary, be further characterised as meta-cognitive or

cognitive (e.g., the studies undertaken in chapters 4 to 6), or; ii) as overt categorisations of metacog-

nition, cognition, and motivation, in which processes are subcategories (e.g., Bannert et al. (2014)

and associated researchers).

Building on this conceptual work but focusing more on the capture of SRL from authentic trace

data, we suggest that the deployment of REGEX in our “Trace-SRL” framework should be further

developed and enhanced to make it more transferable (notwithstanding the need to improve validity
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robustness, discussed later in this section). Due to its novel and exploratory positioning in our

studies, the REGEX routine must be seen as contextual to its data sources, which somewhat inhibits

its immediate transfer to different settings. One direction may be to develop a configurable version

of the routine in which parameters such as model choice, constructs, action sequences, amongst

others, could be supplied and calibrated to generate SRL process data. The use of REGEX itself

could be challenged; it is powerful but challenging to deploy in the context of more nuanced SRL

sequences. A more transparent and procedural method would encourage more engagement with

trace data coding, which is still relatively underexplored beyond the studies in this thesis.

Another promising avenue, as touched upon in the study reported on Chapter six, is the de-

velopment of discovery algorithms that i) synergise more closely with with theoretical frameworks

of learning, and ii) allow multi-metric consolidation. Multiple metrics can be configured in most

process mining algorithms but we have yet to see one which combines probabilistic, temporal, and

frequency metrics. Thought should be given to innovative ways of visually communicating multi-

ple metrics in this context. This raises the broader question of the development of process analytic

tools in educational contexts. Process mining as a tool was developed to serve the needs of com-

merce and industry and although it has been deployed successfully in several LA studies, it has been

suboptimally used in others (see Chapter two). As far as we are aware, the only discovery tool

specifically developed to analyse cognitive behaviours in educational and/or collaborative settings

is ENA (Shaffer et al., 2009), which, in its original form, does not reflect the dynamics of order and

sequence that are key to our temporal view of SRL. It is encouraging to see that the new version

of ENA, dENA (Fogel et al., 2021), has been designed to articulate a sense of directional sequence,

and employs a set of intuitive visuals to communicate the relationships between it activities/states.

This kind of methodological evolution is critical to the advancement of research areas that seek to

explore learner process dynamics.

Although the studies in this thesis are driven by single-source trace data collection, we recognise

the import of exploring multi-channel data capture in order to improve measures of validity within

this field of research. Although utilising a model of SRL contributes to sense of validity, there are

still major challenges around the validation of cognitive and, especially, metacognitive expressions of

SRL, as derived from trace data sources. To establish a more robust ground truth, the triangulation of

multiple data sources (channels) in the capture of the same phenomena is critical. The triangulation

of SRL self-report and trace data, as being currently explored by the researchers of the FLoRA project,

van der Graaf et al. (2021) and featured in Pelletier et al. (2021), is a major step in the direction of

construct and content validity (Messick, 1987); the holy grail of analytics research.

We hope that the LA research community will take heed of the framework of considerations

presented in our systematic review of literature (Chapter two) and move toward a more transparent

articulation of research in the exploration of the dynamics of SRL. Ultimately, we hope that the final

outcome of our research is the development of mechanisms which combine effective SRL analytic
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techniques in combination with automated personalised feedback tools, such as advocated by Pardo

(2018). In combining these technologies, we can provide support not just for learning designers

and analysts, but for the most important stakeholder; the student.
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TLT-2019-07-0220 Supplementary Material 

Fig. 2.  FOMM diagram for active agile (higher performers). 

Fig. 1.  FOMM diagram for summative gamblers (lower performers). 
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TLT-2019-07-0220 Supplementary Material 
 

 

Fig. 3.  FOMM diagram for active cohesive (higher performers). 
 

Fig. 4.  FOMM diagram for semi-engaged (lower performers). 
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TLT-2019-07-0220 Supplementary Material 
 

 

Fig. 5.  FOMM Comparison: Active agile and summative gamblers. 

Fig. 6.  FOMM Comparison: Active cohesive and semi-engaged. 
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Using process mining to analyse self-regulated learning: a systematic analysis of four algorithms 

Supplementary Materials 

Appendix A. The Hierarchical Action Library 

Action Sub_Action Description 

Reading First_Reading First time reading of the pre-class reading materials. 

Re_Reading Re-read some pre-class reading materials within the 
same learning session. 

Review_Reading Review some reading materials which learners read in 
previous learning sessions. 

Expand_Reading Learners read materials which are not  compulsory 
and not assessed. 

Practical_Reading Learners read practical class instructions before, in or 
after class. 

Annotation Annotation_Comment Learners add comment for certain keywords or 
sentences in the reading  materials. 

Annotation_Confusing Learners highlight certain keywords or sentences as 
“Confusing”, or upvote others’ “Confusing” highlights. 

Annotation_Errata Learners highlight certain keywords or sentences as 
“Errata” to report some error they found, or upvote 
others’ “Errata” highlights. 

Annotation_Question Learners highlight certain keywords or sentences as 
“Help” to ask questions and seek help from peers or 
teachers, or upvote others’ “Help” highlights. 

Annotation_Important Learners highlight certain keywords or sentences as 
“Important”, or upvote others’ “Important” highlights. 

Annotation_Interesting Learners highlight certain keywords or sentences as 
“Interesting”, or upvote others’ “Interesting” 
highlights. 

Annotation_Deleted Learners delete annotations made by  themselves. 

Videos Videos_Viewed Learners open and watch videos in Moodle. 

Videos_List Learners open the list page of videos. 

Quiz Quiz_Attempt Learners attempt quiz in Moodle, including start a 
quiz, attempt a quiz, submit a quiz and view a quiz. 

Quiz_List Learners open the list page of quizzes. 

Assignment Assignment_Attempt Learners attempt quiz in assignment, including open, 
attempt and submit an assignment . 
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Note: 
 
1- We labelled actions as Noise if the duration of the actions were less  than 5 seconds, then 
we excluded these Noise actions in the following SRL process detection. 
 
2-There are some other actions logged in the Moodle system, such as search or download 
slides in the Moodle, which are very infrequent actions, therefore we also excluded them in 
the following analysis. 
 
 
  

Assignment_Feedback_Vi
ewed 

Learners view the teacher’s feedback on their 
submitted assignment. 

Assignment_Submission_
Viewed 

Learners view their submitted assignment. 

Assignment_List Learners open the list page of assignment. 

Forum Forum_Post Learner post something in the forum or view other’s 
posts in the forum. 

Forum_List Learners open the list page of forum. 

Informing Homepage_Viewed Learners view or navigate to the LMS homepage. 

Task_Marked_As_Comple
ted 

Learners mark something (e.g., reading task, quiz) in 
the homepage as completed, by click the check boxes. 
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Appendix B. The Hierarchical Pattern Library 
 

Macro-level 
process 

Micro-level 
process 

Description Micro-level action mapping 
 

Planning Task Analysis 
(TA) 

To get familiar 
with the 
learning 
context of a 
learning task 
at hand 

TA. Overview 
HomePage_Viewed/ Quiz_List/ Videos_List (in first half of the whole 
learning session) 
 
TA. Assess Knowledge 
Quiz_Attempt*-> (HomePage_Viewed*) -> Reading (in first half of 
the whole learning session) 
 

Goal Setting 
(GS) 

To identify 
learning gaps 
and goals 

GS. Identify Learning Gap 
Reading -> Annotation_Confusing/ Annotation_Question 
 

Engagement Working on a 
Learning Task 
(WOT)  

To engage 
with learning 
tasks  

WOT. Build Knowledge: 
First_Reading/ Practical_Reading/ Expand_Reading/ Videos_Viewed 
 
WOT. Processing Materials: 
First_Reading/ Practical_Reading/ Expand_Reading/ -> 
Annotation_Important/ Annotation_Interesting/ Annotation_Errata 
 
WOT. Address Learning Gap: 
Re_Reading/ Review_Reading 
 

Coordinating 
Learning Task 
Sequence(s) 
(CLTS) 

To coordinate 
task sequences 
to achieve a 
learning goal. 

CLTS. Elaboration/Organisation 
Reading -> Annotation_Comment;  
Re_Reading/ Review_Reading -> Annotation_Important/ 
Annotation_Interesting 
 
CLTS. Interaction 
(Reading) -> (HomePage_Viewed*) -> Forum_Post* 
 
CLTS. Evaluate Knowledge After Reading 
(Reading) -> (HomePage_Viewed*) -> Quiz_Attempt* (in second half 
of the whole learning session) 
 

Evaluation Evaluating 
(EVAL) 
 

To evaluate 
one’s learning 
process and 
goals  
 

EVAL. Learning Process 
HomePage_Viewed/ Quiz_List/ Videos_List/ 
Task_Marked_As_Completed (in second half of the whole learning 
session) 
 
EVAL. Learning Outcomes 
Assignment_Submission_Viewed/ Assignment_Feedback_Viewed 
 
EVAL. Learning Gap Resolve: 
(Re_Reading/Review_Reading) -> Annotation_Deleted 
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Note: 
1-“->” means a transition from learning action A to learning action B;  
 
2-“()” means a learning action is optional;  
 
3-“*” means one or more consecutive instances of the same learning action;  
 
4-“/” means either learning action A or learning action B;  
 
5-“Reading” means all five sub_actions under the Reading action were included; 
 
6-The processes were terminated by any actions longer than 45 mins; 
 
7-If one action does not belong to any processes in the process library, then this row will be 
labelled as No_Process and will not be included in the subsequent analysis; 
 
8-The same consecutive processes were merged into one process in the final output. 
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