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Abstract
Representing words by vectors of numbers, known as word embeddings, enables compu-
tational reasoning over words and is foundational to automating tasks involving natural
language. For example, by crafting word embeddings so that similar words have similar
valued embeddings, often thought of as nearby points in a semantic space, word similar-
ity can be readily assessed using a variety of metrics. In contrast, judging whether two
words are similar from more common representations, such as their English spelling, is
often impossible (e.g. cat/feline); and to predetermine and store all similarities between
all words is prohibitively time-consuming, memory intensive and subjective. As a suc-
cinct means of representing words – or, perhaps, the concepts that words themselves
represent – word embeddings also relate to information theory and cognitive science.

Numerous algorithms have been proposed to learn word embeddings from different data
sources, such as large text corpora, document collections and “knowledge graphs” –
compilations of facts in the form 〈subject entity, relation, object entity〉, e.g. 〈Edinburgh,
capital of, Scotland〉. The broad aim of these algorithms is to capture information from
the data in the components of each word embedding that is useful for a certain task or
suite of tasks, such as detecting sentiment in text, identifying the topic of a document,
or predicting whether a given fact is true or false. In this thesis, we focus on word
embeddings learned from text corpora and knowledge graphs.

Several well-known algorithms learn word embeddings from text on an unsupervised
(or, more recently, self-supervised) basis by learning to predict context words that occur
around each word, e.g. word2vec (Mikolov et al., 2013a,b) and GloVe (Pennington et al.,
2014). The parameters of word embeddings learned in this way are known to reflect
word co-occurrence statistics, but how they capture semantic meaning has been largely
unclear.

Knowledge graph representation models learn representations both of entities, which
include words, people, places, etc., and binary relations between them. Representations
are typically learned by training the model to predict known true facts of the knowledge
graph in a supervised manner. Despite steady improvements in the accuracy with which
knowledge graph representation models are able to predict facts, both seen and unseen
during training, little is understood of the latent structure that allows them to do so.

This limited understanding of how latent semantic structure is encoded in the geometry
of word embeddings and knowledge graph representations makes a principled direction
for improving their performance, reliability or interpretability unclear. To address this:

1. we theoretically justify the empirical observation that particular geometric rela-
tionships between word embeddings learned by algorithms such as word2vec and
GloVe correspond to semantic relations between words; and

2. we extend this correspondence between semantics and geometry to the entities
and relations of knowledge graphs, providing a model for the latent structure of
knowledge graph representation linked to that of word embeddings.

We first give a probabilistic explanation for why word embeddings of analogies – phrases
of the form “man is to king as woman is to queen” – often appear to approximate a
parallelogram. This “analogy phenomenon” has generated much intrigue since word
embeddings are not trained to achieve it, yet it allows many analogies to be “solved”
simply by adding and subtracting their embeddings, e.g. wqueen ≈ wking − wman +
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wwoman. Similar probabilistic rationale is given to explain how semantic relations such
as similarity and paraphrase are encoded in the relative geometry of word embeddings.

Lastly, we extend this correspondence, between semantics and embedding geometry, to
the specific relations of knowledge graphs. We derive a hierarchical categorisation of
relation types and, for each type, identify the notional geometric relationship between
word embeddings of related entities. This gives a theoretical basis for relation repre-
sentation against which we can contrast a range of knowledge graph representation
models. By analysing properties of their representations and their relation-by-relation
performance, we show that the closer the agreement between how a model represents a
relation and our theoretically-inspired basis, the better the model performs. Indeed, a
knowledge graph representation model inspired by this research achieved state-of-the-
art performance (Balažević et al., 2019b).
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Lay Summary
Humans effortlessly perform many tasks involving words with which they are familiar,
e.g. we know instantly whether two words refer to similar concepts, or if their meanings
are related in other ways, such as being opposites, or one being a part of the other (e.g.
wheel/car). Indeed, we perform far more complex word-based tasks, such as forming
coherent sentences to describe scenarios, or translating from one language to another.
Despite our ability at these tasks, often from childhood, they are typically hard to
automate. This is in good part because the way in which we represent words, e.g. their
spelling in a given language, does not facilitate these tasks. For example, deciding
if two words have similar meaning cannot generally be achieved by considering their
spelling alone, e.g. van/truck, or eagle/falcon.

As a result, to automate language tasks, words are instead represented by vectors
(or lists) of numbers, known as embeddings, that can be thought of similar to co-
ordinates in space. The idea is that by assigning numerical values to words, their
semantic properties, e.g. whether a noun/verb/adjective/etc., should be identifiable
from the location of their embedding; and semantic relationships between words, e.g.
is similar to or is bigger than, are reflected in the relative locations of their embeddings.

Several methods have been developed to produce word embeddings with these semantic
properties, in particular so that embeddings of similar words are near one another, so
that identifying similar words simply requires calculating the distance between their em-
beddings. An intriguing finding is that these embeddings can often be (approximately)
added and subtracted intuitively, e.g. man+royal = king or US+currency = dollar,
and an analogy question like “man is to king as woman is to ...?” is solvable by find-
ing the closest embedding to king −man + woman, which turns out to be that of
“queen”. These embeddings were previously known to reflect statistics of the data they
are learned from. We explain the described phenomena by considering interactions be-
tween those statistics to show how semantic relationships between words lead to spatial
relationships between their embeddings.

Other methods have been developed to learn facts of the form 〈subject entity, relation,
object entity〉, e.g. 〈Edinburgh, capital of, Scotland〉. Collections of such facts are called
knowledge graphs (or knowledge bases). As with word embeddings, the entities of
knowledge graphs can be represented by vectors of numbers and the relation between
them can be seen as a transformation or mapping from subject entity embeddings to
object entity embeddings. By representing entities and relations numerically in this
way, new facts can be predicted that were not in the original knowledge graph. To try
to understand how this works, we extend the connection established between semantic
relationships and the spatial arrangement of word embeddings. From this we propose
templates of how embeddings are spatially arranged relative to one another for different
types of semantic relations between words, as found in knowledge graphs.

By improving our understanding of how word embeddings and knowledge graph rep-
resentations reflect the semantics of words in this thesis, we hope that improved em-
bedding methods can be developed in future, e.g. that perform better or that are more
interpretable. Indeed, a state-of-the-art method for representing knowledge graph en-
tities and relations was developed in the course of this research.
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Chapter 1

Introduction

Humans are able to perform many tasks involving words with which they are familiar
with apparent ease, often from a young age, e.g. we generally know instantly whether
two words refer to similar concepts, or if their meanings are related in other ways,
such as being opposites, or one being a part of the other (e.g. wheel/car). Indeed, we
can perform far more complex word-based tasks, such as forming coherent sentences
to describe a real or imagined scenario, or translating from one language to another.
Despite our ability at these tasks, they are typically non-trivial to automate. This is
in good part because our familiar representations of words, in particular their spelling
in a given language, are not well suited to such tasks. For example, even the relatively
simple task of deciding whether words have similar meaning cannot be achieved in
general by considering their spelling alone, e.g. van/truck, or eagle/falcon.

The prevailing approach to overcome this is to (re-)represent words by vectors of real
numbers, known as embeddings, that are often thought of as co-ordinates in a semantic
space. By assigning numerical values to words, it is found that semantic properties can
be identified by rules, e.g. by classification models for part-of-speech tagging or named
entity recognition; and semantic relationships between words can be encoded in numer-
ical relationships between their embeddings, interpretable as geometric relationships in
semantic space. These word embeddings can also be incorporated into more complex
models, e.g. for automated text generation or machine translation.

The question then is which values, and how many of them (the dimensionality of the
embedding), to assign to each word so that the desired semantic properties are present,
i.e. how to create word embeddings. For many languages, the vast number of words sug-
gests that this process itself is automated, which also avoids a multitude of subjective
human judgements. Many algorithms have been proposed to generate word embed-
dings from different sources of data, most commonly large text corpora, collections of
documents and “knowledge graphs”. Text is readily available from web sources such
as Wikipedia, document collections are commonly obtained from news sources and
knowledge graphs (or knowledge bases) are curated lists of facts representing every
day knowledge, in the form 〈subject entity, relation, object entity〉, e.g. 〈Edinburgh,
capital of, Scotland〉.

Word embeddings are often learned from text corpora as the parameters of a classi-
fication model trained to predict the context words observed around each word (e.g.
Mikolov et al., 2013a,b; Pennington et al., 2014). Representations of entities and re-
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2 Chapter 1. Introduction

lations of knowledge graphs are likewise often learned within a classification model
trained to identify true facts in the knowledge graph (e.g. Nickel et al., 2011; Yang
et al., 2015; Bordes et al., 2014; Trouillon et al., 2016; Balažević et al., 2019c,b). A
good number of algorithms exist in each case with impressive performance on tasks of
interest. However, despite a few inroads (e.g. Levy and Goldberg, 2014b), both lack a
firm mathematical basis for how semantic properties and relations of words/entities are
captured in the geometry of their embeddings; in short, how these embeddings “work”.

The existence of successful representation algorithms allows the broad question of how
to generate useful representations, to be approached more concretely by analysing what
such algorithms learn, and deciphering why that is useful for semantic tasks. In the case
of knowledge graphs, it is not immediately clear how to determine what KGR models
learn or how to mathematically model the latent structure of the data that they cap-
ture. However, certain word embedding models are known to capture specific statistical
relationships in the data, leaving the question of how those statistics relate to seman-
tics. We thus consider how the semantic relations similarity, relatedness, paraphrase
and analogy manifest in observed geometric patterns between word embeddings. The
identified correspondence between semantics and geometry is then extended to knowl-
edge graphs on the premise that similar latent semantic structure may underpin both
word embeddings and knowledge graphs, after all the same words/entities, with their
same semantic meanings and relationships, can arise in either.

Beyond the natural scientific interest in establishing a firmer theoretical understanding
of word/entity and relation representations, including intriguing properties such as
the “analogy phenomenon” where word embeddings of analogies often approximate a
parallelogram, other reasons for doing so include:

1. that it may foster algorithms producing embeddings that perform better on down-
stream tasks, are more interpretable aiding explainability, mitigate against un-
wanted bias in the data and/or enable confidence assessments of their predictions;

2. that it may have broader application since word embedding algorithms have been
applied in many other domains, e.g. to represent members of social networks;

3. that it may extend to larger scale embeddings, such as of phrases, sentences or
documents, e.g. algorithms for generating these embeddings sometimes perform
little better than the mean of their word embeddings (Wieting and Kiela, 2018);

4. although focus has recently turned to large language models and contextualised
embeddings (e.g. Devlin et al., 2019; Brown et al., 2020), understanding “sim-
pler” un-contextualised embeddings may provide an essential foundation for un-
derstanding these more complex models;

5. not only can many words/entities appear in both text corpora and knowledge
graphs, they may arise in other data, e.g. in speech or as class labels in image
classification tasks. A clearer understanding of word embeddings may lead to a
principled basis for multi-modal embeddings learned jointly across such domains.

1.1 Personal Motivation

This thesis began with an early investigation into the representation of knowledge graph
data and the surprising ability of knowledge graph representation (KGR) models to pre-
dict many previously unknown facts from known true facts. This early research led to
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the development of two improved KGR models: TuckER (Balažević et al., 2019c) based
on Tucker tensor decomposition and capable of multi-task learning across relations; and
HypER (Balažević et al., 2019a), which simplified yet outperformed the then state-of-
the-art convolutional model ConvE (Dettmers et al., 2018). However, this investigation
revealed little understanding of how KGR models work, i.e. how the latent semantic
structure they capture enables unobserved facts to be predicted, leaving no clear path
to their further improvement or to understand when they fail. One clear pattern was
that KGR models typically represent entities as vectors (embeddings) and relations
between entity pairs as parametric transformations (e.g. matrix multiplication) that
map embeddings of related entities “close together” (e.g. by Euclidean distance or dot
product, as determined by the loss function). As such, KGR models represent entities
comparably to how word embedding algorithms represent words, i.e. as vectors in a
semantic space, hinting that perhaps a common latent structure may underpin both.
This thesis is based on following this intuition to explore the latent structure of word
embeddings, both as an end in itself (§3, §4) and as a step towards deciphering the
latent structure of knowledge graph representation (§5).

1.2 Thesis Structure

This thesis consists of three main chapters, each centred around a published conference
paper:

• Chapter 3 explains why the embeddings of words that form an analogy, e.g. “man
is to king as woman is to queen”, often approximate a parallelogram, based on:

Analogies Explained: Towards Understanding Word Embeddings. C.
Allen and T. Hospedales, International Conference on Machine Learning, 2019
(Honourable Mention).

• Chapter 4 explores further the relationship between word embedding geometry
and word semantics, extending it to other semantic relationships and explaining
common heuristics, based on:

What the Vec? Towards Probabilistically Grounded Embeddings. C.
Allen, I. Balažević and T. Hospedales. Advances in Neural Information Processing
Systems, 2019.

• Chapter 5 extends the findings for word embeddings into a correspondence between
the semantic relations of knowledge graphs and geometric relationships between
entity embeddings learned by knowledge graph representation models, based on:

Interpreting Knowledge Graph Relation Representation from Word
Embeddings. C. Allen*, I. Balažević*, and T. Hospedales. International Con-
ference on Learning Representations, 2021.





Chapter 2

Background and Related Work

2.1 Word Embedding

Representing words by vectors, or embeddings, that in some way capture a word’s se-
mantic meaning is essential to almost every natural language processing (NLP) task,
such as part-of speech (POS) tagging, named-entity recognition (NER), sentiment anal-
ysis and machine translation.

2.1.1 Count-based Embeddings

Early word embeddings involved human judgement to determine both the meaning of
each dimension, and where a word should fall along them (e.g. Osgood et al., 1957).
The subjectivity involved was reduced in subsequent count-based embeddings, gener-
ated automatically from co-occurrence counts extracted from large text corpora (e.g.
Schütze, 1992; Lund and Burgess, 1996; Landauer and Dumais, 1997). This approach
was inspired by the distributional hypothesis that words with similar meaning appear
in similar contexts (Wittgenstein, 1953; Harris, 1954), reflected in Firth’s maxim “you
shall know a word by the company it keeps” (Firth, 1957).

Given a dictionary of words to embed D, the jth component of the embedding of
w ∈ D is determined by the number of times cj , the jth word of a context vocabulary
E , is observed within a defined neighbourhood, or context, of w across the corpus. The
“neighbourhood” around each instance of w can be defined in several ways, e.g. as a
fixed number of words (or tokens) either side, as all words in the same document of
a collection, or according to a particular syntactic rule (Terra and Clarke, 2003). The
set of embedded words D need not be the same as the context vocabulary E , the size
of which defines the embedding length m = |E|. Since a large context vocabulary is
required to capture the wide spectrum of semantic meaning, raw count vectors can be
large, yet sparse since many words do not co-occur at all within a given corpus. As such,
many algorithms include a dimensionality reduction step, such as principal component
analysis (PCA), so that embeddings capture sufficient semantic meaning but remain
succinct and efficient to use (e.g. Schütze, 1992; Landauer and Dumais, 1997).

Embedding components need not contain direct co-occurrence counts and several statis-
tics derived from such counts have been explored (Lee, 2001; Bullinaria and Levy, 2007;
Turney and Pantel, 2010). Of these, Point-wise Mutual Information (PMI) from in-
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6 Chapter 2. Background and Related Work

An example of context and target︸ ︷︷ ︸
context

target︷ ︸︸ ︷
words for a context︸ ︷︷ ︸

context

window of size 6.

Figure 2.1: An example of context and target words for a context window of size l = 6 (3
words each side of the target word). The target location steps through each token in the
corpus with the context window moving relatively.

formation theory, defined as

PMI(w, c) = log
p(w, c)

p(w)p(c)
= log

p(w|c)
p(w)

, (2.1)

has been found to perform well (Church and Hanks, 1990; Terra and Clarke, 2003).
PMI quantifies the independence of two random variables: a positive value indicates
that the word w occurs more frequently in the presence of word c than otherwise (i.e.
under its marginal probability); a negative value indicates w becomes less frequent in
the presence of c; and zero indicates that w and c occur independently. A closely related
statistic, positive PMI (PPMI), where PPMI(w, c) = max{0,PMI(w, c)}, is also often
found to perform well (Turney and Pantel, 2010). For a more comprehensive review
of count-based embeddings we defer to Bullinaria and Levy (2007); Turney and Pantel
(2010); Baroni and Lenci (2010).

2.1.2 Neural Embeddings

More recently, word embeddings have been generated from the parameters of neural
networks, in particular following their application to language modelling (e.g. Bengio
et al., 2000, 2003; Emami et al., 2003; Morin and Bengio, 2005). In language modelling,
a key task is to learn the probability distribution over word sequences, which is often
approached by predicting each word from its preceding words. Since the number of
word sequences is exponential in the vocabulary size, those observed form an extremely
sparse subset of the full space of sequences, hence models that directly capture such
statistics, e.g. n-gram models (Katz, 1987; Jelinek and Mercer, 1980; Chen and Good-
man, 1999), suffer the “curse of dimensionality” (Bengio et al., 2003). Neural networks
were introduced to tackle this by learning distributed representations of words used
to predict sequence statistics. The intuition is that if similar representations can be
learned for semantically similar words, then learning to predict the statistics of one
(observed) sequence should partially improve predictions for all semantically similar
sequences (even if unobserved). Early neural language models gave promising results,
especially in combination with n-gram models (Bengio et al., 2003; Emami et al., 2003),
but suffered from long training times, e.g. 3 weeks for 5 epochs (Bengio et al., 2003).
Subsequent neural language models focused on improved training times (e.g. Schwenk
and Gauvain, 2005; Mnih and Hinton, 2007; Mnih and Teh, 2012).

Interestingly, the distributed representations learned by language models were found
to improve performance when used as word features for natural language processing
applications, such as semantic role labelling (Collobert and Weston, 2008), sentiment
analysis (Maas and Ng, 2010), named entity recognition (Turian et al., 2010), and
parsing (Socher et al., 2011). This finding led to algorithms that resemble earlier
language models, but whose sole purpose is to generate word embeddings useful in
NLP applications. These include word2vec (Mikolov et al., 2013a), the log bi-linear
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language model (LBL) of Mnih and Kavukcuoglu (2013) and GloVe (Pennington et al.,
2014). Similar to many earlier count-based approaches, these models consider in turn
each token of a large corpus (a target word) together with l nearby tokens in its context
window (see Figure 2.1). The vocabularies of embedded words and context words are
typically the same (i.e. D = E), referred to simply as the dictionary E . The word
embeddings output by these algorithms, often known as neural or dense embeddings,
have been shown to significantly improve performance on down stream NLP tasks,
relative to count-based embeddings (Baroni et al., 2014). In this thesis, we focus on
these neural embeddings and their close derivatives (e.g Ling et al., 2015; Jameel et al.,
2019), referred to henceforth as simply word embeddings.

2.1.2.1 Word2vec

The word2vec model (Mikolov et al., 2013a,b) has two forms: the Continuous Bag-
of-Words model (CBOW) and the Continuous Skip-Gram model (Skip-Gram). The
former learns to predict a target word from its context words; the latter predicts context
words from a target word, treating them as conditionally independent given the target
word. Both models learn two d-dimensional vectors per dictionary word, one relating
to it as the target word, the other as a context word. Typically the former are taken
to be the output word embeddings, the latter discarded.

As initially proposed, CBOW and Skip-Gram make predictions using a softmax function
of the general form

p(y|x) = expφ(x, y)/
∑

y′∈Y
expφ(x, y′), (2.2)

where φ is some function of the arguments x, y; and Y is the domain of the predicted
random variable y. Since the denominator sums over all possible values of y, predicting
a word, e.g. the target word in CBOW, with the softmax function involves a sum
over all dictionary words, which is computationally expensive for a typical dictionary
size of order ≥ 106 words. Initially, this was addressed using a hierarchical softmax
approach (Morin and Bengio, 2005; Mnih and Hinton, 2008) and later, for the Skip-
Gram model, by introducing negative sampling (Mikolov et al., 2013b), a variation
on noise contrastive estimation (Gutmann and Hyvärinen, 2010, 2012) (see panel),
as had been recently applied to language modelling (Mnih and Teh, 2012).

In an approach similar to NCE, Skip-Gram with negative sampling (SGNS) learns
to classify the context words observed for each target word from amongst k (e.g. 5 –
20) times as many words drawn from a noise distribution (negative samples). Negative
sampling primarily differs from NCE in that the noise distribution is sampled from but,
together with k, not “factored out” in the loss function. As such, the noise distribution
need not necessarily be known analytically, but remains a component of the statistics
learned by the model (discussed further in §2.1.5).

Good results were obtained by setting the noise distribution to the marginal (uni-gram)
word distribution raised to the power 0.75 and re-normalised. Other empirically-driven
algorithm details include sub-sampling – discarding target words according to their
global frequency, subject to a threshold τ ; and down-weighting the contribution of
context words according to the number of tokens between them and the target word.
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Noise Contrastive Estimation (NCE) is a technique for estimating the pa-
rameters θ of a statistical model pθ of a data distribution pd, given samples
from pd. Under NCE, a logistic classification model learns to distinguish true
data samples from samples drawn randomly from an analytically defined noise
distribution pn.

A logistic regression model learns to predict a binary random variable z ∈ {0, 1}
associated with a random variable x ∈ X given samples {(x, z)} drawn from a
joint distribution, such that σ(f(x)) ≈ p(z = 1|x = x), where σ is the standard
sigmoid function, σ(x) = (1 + e−x)−1, and f : X → R is a function of the data.

Implicitly, f(x) learns to approximate the “log odds” log p(z=1|x)
p(z=0|x) = log p(x|z=1)

p(x|z=0)κ ,

a log ratio of class conditional distributions with κ = p(z=0)
p(z=1) the class probability

ratio.

In NCE, z is chosen to indicate whether a sample x is from the data distribution
(z = 1) or noise distribution (z = 0), hence the logistic classifier learns the log

ratio f(x) ≈ log pd(x)
pn(x)k , with k the ratio of noise to data samples. Since both k

and pn are known, f(x) can be chosen f(x) = log pθ(x)
pn(x)k , whereby pθ learns to

approximate the true data distribution pd.

Unlike maximum likelihood estimation, NCE does not require the statistical
model pθ to be normalised since the normaliser can also be learned. Mnih and
Teh (2012) apply NCE to predict the next word given a set of preceding words
in a language model by calculating the conditional probability distribution over
all words as in Equation 2.2 but avoiding the costly denominator.

The loss function of SGNS is given by:

`SGNS =
∑

w,c

log σ(w>c) +
k∑
r=1

E c′∼pn [log σ(−w>c′)], (2.3)

where the outer summation is over all target-context word pairs (w, c) observed in a
training corpus (post sub-sampling and down-weighting). The expectation is over all
negatively sampled words c′ drawn from the noise distribution pn. Enumerating all
words in the dictionary E , the ith word is denoted wi when considered a target word
and ci when a context word. Target and context word embeddingswi, cj ∈ Rd represent
words wi, cj respectively, and can be viewed as the i/jth columns of embedding matrices
W ,C ∈ Rd×|E|. For clarity, wi and ci always refer to the same word (i ∈ {1, ..., |E|}),
whereas embeddings wi and ci may differ.

SGNS word embeddings are not only learned more quickly than using hierarchical
softmax, they are found to give significantly improved performance on tasks such as
predicting word similarity and analogical reasoning (see §2.1.4) (Mikolov et al., 2013b).

2.1.2.2 Log Bi-linear Language Model

The LBL model (Mnih and Kavukcuoglu, 2013) has two forms analogous to those
of word2vec: vector LBL (vLBL), which predicts target words from a set of context
words (cf CBOW); and its inverse (ivLBL) that predicts context words from the target
word, assuming conditional independence given the target word (cf Skip-Gram). The
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main differences between LBL models and their word2vec counterparts are the full
adoption of NCE, and the inclusion of position-dependent weights and biases bi for
each word (the authors go on to show that position-dependent weights in fact tend to
impede performance and we omit them here). Since NCE is used rather than negative
sampling, the loss functions of vLBL and ivLBL are minimised, respectively, if:

log p(wi|cj1 , ..., cjl) = w>i

l∑

r=1

cjr + bi, (2.4)

log p(cj |wi) = w>i cj + bj , (2.5)

where l is the length of the context window. The LBL models are shown to out-
perform their word2vec counterparts trained using hierarchical softmax (Mnih and
Kavukcuoglu, 2013) but not when negative sampling is used (Mikolov et al., 2013b).
This suggests that negative sampling, although a simplification of NCE, is preferable
to using NCE in full.

2.1.2.3 GloVe: Global Vectors for Word Representation

Inspired by word2vec, the GloVe model (Pennington et al., 2014) has a similar under-
lying architecture: two matrices of target and context word embeddings that interact
via a dot product. The GloVe loss function is given by

`GloV e =
∑

i,j

fi,j
(
w>i cj + bi + bj − log p(wi, cj)

)2
, (2.6)

where weighting terms fi,j = min(1,
p(wi,cj)

τ )0.75, with threshold τ , act comparably
to the sub-sampling in word2vec. The main differences between the GloVe and SGNS
algorithms are that GloVe: (i) has bias terms bi, bj for each word, (ii) uses pre-computed
co-occurrence counts, and (iii) has a weighted least squares loss function.

An initial claim by Pennington et al. (2014) that GloVe embeddings outperform those of
word2vec has been questioned in several subsequent evaluations (Lai et al., 2016; Levy
et al., 2015; Schnabel et al., 2015; Wang et al., 2019). A cursory meta-analysis of these
results suggests that the performance of these two popular word embedding algorithms
is broadly comparable over a range of downstream tasks and datasets, perhaps slightly
in favour of word2vec.

2.1.3 Other Word Embedding Models

Many other algorithms can be used to generate vector representations of words, e.g.
Latent Dirichlet Allocation (Blei et al., 2001, 2003), a hierarchical probabilistic model
that views documents as distributions over topics and topics as distributions over
words; FastText (Bojanowski et al., 2017), which considers sub-word information, i.e.
the spelling of a word; and Eigenwords (Dhillon et al., 2015), a spectral approach based
on canonical correlation analysis. We focus, however, on word embeddings produced by
the methods previously described, e.g. SGNS and GloVe, as the first neural embeddings
to exhibit the semantic structure we aim to understand, in particular the analogy phe-
nomenon (§2.1.4), due to their simplicity yet strong performance and their widespread
use and popularity (including application to other domains).
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Recently, much attention has turned towards large language models, such as BERT (De-
vlin et al., 2019) and GPT1-3 (Radford et al., 2018, 2019; Brown et al., 2020). These
highly parameterised models take into account a word’s immediate context within a
passage of text when considering its meaning in each instance, offering clear advantages
in problems such as word sense disambiguation or complex tasks such as text genera-
tion. We do not, however, consider these models or any word representations learned
within their parameters for two reasons: (i) our related interest in knowledge graph
representation, where entities are typically represented by vectors without considering
contextual information, e.g. from other elements of a triple or the wider knowledge
graph; and (ii) it follows a natural approach of tackling the least complex models first.

2.1.4 Semantic Properties of Word Embeddings

An ideal set of word embeddings might be expected to enable the successful automation
of an arbitrary NLP task. Since the breadth of such tasks is vast, a subset is chosen to
evaluate the relative performance of different word embeddings. Common evaluation
tasks are either full “down-stream” NLP tasks, i.e. practical use-cases of embeddings
(termed extrinsic evaluation (Galliers and Jones, 1993; Jones and Galliers, 1995)); or
test for a particular semantic property believed indicative of useful word embeddings
(termed intrinsic evaluation).

Of the two, extrinsic evaluation might be considered the more practical indicator of
embedding performance since it directly involves NLP applications. However, extrinsic
tasks typically require word embeddings to be incorporated into a task-specific model,
e.g. a softmax classifier for part-of-speech tagging or named entity recognition, or a
recurrent neural network for language modelling. As such, the performance of word
embeddings is entangled with that of the task-specific model, their compatibility with
that model, and the complexity of the evaluation task. This makes it difficult to the-
oretically analyse why certain word embeddings perform better than others or how
they capture semantic properties. In contrast, intrinsic evaluation tasks directly esti-
mate specific semantic properties using relatively simple functions of the embeddings,
without having to “embed them in a complete NLP system” (Linzen, 2016). For this
reason we, together with much prior research (discussed in §2.1.5), focus on intrinsic
evaluation tasks to gain theoretical insight into the latent semantic structure captured
by word embeddings. We note that the relationship between performance on extrinsic
and intrinsic evaluation tasks is non-trivial (e.g. see Wang et al., 2019, Figure 1) and
understanding one may not readily explain the other, but the latter appears to offer a
simpler place to start.

Two common intrinsic evaluation tasks are:

• predicting the semantic similarity or relatedness of a word pair wi, wj . These
are typically estimated by the cosine similarity of their (target) embeddings,

cos sim(wi, wj) = cos θi,j =
w>i wj

‖wi‖‖wj‖
, (2.7)

where θi,j is the interior angle between wi and wj (Figure 2.2a). The overall
evaluation result is given by the correlation between such predictions and human
judgements.

• solving analogies (or analogical reasoning), i.e. predicting the missing word b∗

from an expression of the form “a is to a∗ as b is to ...?” (also denoted (a :
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wdog

whound

(a) Similar / Related

wking

wman

wwoman

wwoman +wking −wman

≈ wqueen

(b) Analogy

wcurrency

wcurrency +wCzech

wkoruna

(c) Paraphrase

Figure 2.2: Illustration of the geometric relationships between word embeddings correspond-
ing to different semantic relationships (a) similarity and relatedness; (b) paraphrases; and
(c) analogies, or phrases of the form “a is to a∗ as b is to b∗”. “Closeness” of embeddings
is typically measured by cosine similarity, the angle subtended at the origin.

a∗ :: b : ?)), such as “man is to king as woman is to ...?”. This task arises
from the empirical observation that the solution is often identified by finding the
closest embedding to wa∗ − wa + wb, measuring closeness by cosine similarity
and excluding the embeddings of a, a∗ and b, often referred to as the vector
offset method (Mikolov et al., 2013b,c). This surprising finding, which we refer
to as the analogy phenomenon, suggests that the embeddings of an analogy
approximate a parallelogram (Figure 2.2b).

Further to analogies, Mikolov et al. (2013b) also observed that word2vec embeddings
can be “meaningfully combined” by vector addition, e.g. wCzech +wcurrency ≈ wkoruna.
Originally called “additive compositionality”, we refer to this as paraphrasing (folow-
ing Gittens et al., 2017), i.e. koruna paraphrases the word set {Czech, currency} (Fig-
ure 2.2c). Identifying paraphrases from word embeddings is not a common evaluation
task, but we include it here as a further simple relationship between semantics and
word embedding geometry, comparable to analogies and similarity.

2.1.5 Prior theoretical analysis of word embeddings

At a high level, the neural word embedding models that we consider, word2vec, LBL
and GloVe (§2.1.2), take a similar approach. Each learns to predict the context words
surrounding a target word (or vice versa) using a linear underlying model from which
word embeddings are extracted. Here, we review works that try to understand how
the embeddings of these algorithms reflect semantics by analysing them and/or their
embeddings. This problem can be broken down into understanding:

(i) what values embedding parameters learn when an algorithm’s loss function is
minimised; and

(ii) how such values correspond to word semantics.
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2.1.5.1 What word embedding parameters learn

LBL: vLBL and ivLBL are trained using NCE to satisfy:1

w>i

l∑

r=1

cjr + bi = log p(wi|cj1 , ..., cjl) (2.4)

w>i cj + bj = log p(cj |wi) (2.5)

GloVe: The loss function of GloVe (Equation 2.6) can be seen to be minimised if:

w>i cj + bi + bj = log p(wi, cj) (2.8)

Word2vec: By setting its derivative to zero, Levy and Goldberg (2014b) show that
the SGNS loss function (Equation 2.3) is minimised if:

w>i cj = log
p(wi, cj)

k p(wi)p(cj)
.
= PMI(wi, cj)− log k (2.9)

We note that the marginal distribution p(cj) in the denominator of Equation 2.9 reflects
the negative sampling distribution and appears in the learned statistics due to not
being “factored out” as it would under NCE (see §2.1.2.1). Under the original softmax
formulation, Skip-Gram embeddings would instead satisfy w>i cj = log p(cj |wi), very
similar to ivLBL (Equation 2.5). Thus, although negative sampling was implemented
as a means of improving efficiency of the softmax computation, it in fact changes the
solution of the Skip-Gram algorithm, i.e. what its embeddings learn.

This relationship to PMI links SGNS to earlier general embedding methods, used for
exploratory data analysis and visualisation. Globerson et al. (2004) propose a method
to represent discrete heterogeneous data, x, y (with embeddings x, y) based on their
co-occurrence statistics. Conditional probabilities are modelled as

p(y|x) =
p(y)

Z(x)
exp{−‖x− y‖2}, (2.10)

for a partition function Z(x) =
∑

y′ p(y
′)e−‖x−y

′‖2 , whereby embeddings satisfy

−‖x− y‖2 = PMI(x, y)− logZ(x), (2.11)

where − logZ(x) can be viewed as a bias specific to x. Here, PMI statistics are encoded
in the Euclidean distance rather than dot product between embeddings, but since−‖x−
y‖2 = 2x>y − ‖y‖2 − ‖x‖2, Equation 2.11 compares closely to the SGNS solution
(Equation 2.9) with `2 regularisation of the embeddings.

Equations 2.4, 2.5, 2.8 and 2.9 define solutions to the word embedding algorithms,
specifying relationships that the parameters achieve, or learn, when the loss function is
minimised. A few algorithm details are omitted for simplicity: raising negative sampling
probabilities (p(cj) in the denominator of Equation 2.9) to the power 0.75 and down-
weighting more distant target-context pairs in SGNS. However, the equations capture
the core aspects of the algorithms and can be modified to include the omitted details.

1Equations 2.4, 2.5 repeated here for ease of reference.
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Considered over all target and context words, several of these solutions can be inter-
preted as factorisation of a matrix of co-occurrence statistics M ∈ R|E|×|E|,

W>C,= M , (2.12)

where W ,C are embedding matrices in which word embeddings are columns.

• GloVe: embeddings and biases can be concatenated, w′i
> = [ bi | · · ·w>i · · · | 1 ],

c′j
> = [ 1 | · · · c>j · · · | bj ], and stacked into matrices W ,C ∈ R(d+2)×|E|, whereby

Equation 2.8 is equivalent to Equation 2.12 with Mi,j = log p(wi, cj).

• SGNS: arranging target and context embeddings as columns of W ,C ∈ Rd×|E|,
Equation 2.9 is equivalent to Equation 2.12 with Mi,j = PMI(wi, cj) − log k,
known as shifted PMI (“shift” refers to the log k term).

• ivLBL: concatenating embeddings and biases (as for GloVe), Equation 2.5 is
equivalent to Equation 2.12 with Mi,j = log p(cj |wi).

CBOW and vLBL can not be interpreted as matrix factorisation (for l > 1), since they
learn probabilities with l + 1 variables that form (l + 1)-order tensors.

From the perspective of matrix factorisation, it is clear that for a solution to be reached,
the embedding dimension d must at least equal the rank of M . In practice, d is in
the range 100 – 1000, whereas M typically has full rank equal to the dictionary size,
of order > 105. Thus, the solutions are only achieved approximately with errors that
depend on (i) the embedding dimension; (ii) the loss function, e.g. least squares or
binary cross entropy; and (iii) the weighting of each loss component, e.g. the fi,j terms
in GloVe or the probability of sampling each target-context word pair in word2vec.

The realisation that SGNS, in particular, implicitly factorises a matrix of co-occurrence
statistics (Levy and Goldberg, 2014b) is significant because it relates this effective but
initially uninterpretable algorithm to earlier work on count-based methods that explic-
itly factorise such matrices. Empirical evidence supporting the theoretical connection
between SGNS and PMI shows that SGNS performs comparably on several tasks to
count-based embeddings based on both (a) shifted PMI and (b) explicit factorisation
(SVD) of a PPMI matrix (Levy and Goldberg, 2014b; Levy et al., 2015).

2.1.5.2 Relating word embedding parameters to semantics

Here we discuss prior theoretical research into the relationship between word embed-
dings and semantics, much of which focuses on the analogy phenomenon (§2.1.4), aim-
ing to explain why embeddings of words that form an analogy often approximate a
parallelogram. This phenomenon has piqued particular interest since word embeddings
are not trained to achieve it. It is also of practical use for solving analogical queries
by the vector offset method (Mikolov et al., 2013c). By contrast, similar words are
expected to have similar distributions of context words under the distributional hy-
pothesis, hence finding that their embeddings are nearby seems relatively intuitive.
Although analyses typically consider SGNS, their findings may extend to other word
embedding models due to the similarity between what their embeddings learn (§2.1.5.1).

Before the connection between SGNS and PMI was discovered (Levy and Goldberg,
2014b), explanations for how embeddings capture semantics were largely qualitative:
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Mikolov et al. (2013c) justify the additive compositionality of embeddings to find
paraphrases on the basis that embeddings “represent” their context distributions loga-
rithmically “so the sum of two word vectors is related to the product of the two context
distributions.”

Levy and Goldberg (2014a) show empirically that many analogies can also be
solved by the vector offset method using high-dimensional count-based embeddings
based on positive PMI. An alternative way to combine the word embeddings of analogies
(“3CosMul”) is also proposed. Having introduced a notion of word “aspects”, e.g.
king has aspects man and royal, the authors suggest that (i) “relational similarities
[between word pairs] can be viewed as a composition of attributional similarities [of
words]” that relate to aspects; and (ii) “solving the analogy question involves identifying
the relevant aspects, and trying to change one of them while preserving the other”. The
intuition is that a word is (in some sense) the sum of its aspects, e.g. king = man+royal,
queen = woman + royal. As such the analogy “man is to king as woman is to queen” is
solved by identifying the difference between man and king, i.e. royal, and adding this
to woman, while preserving the woman aspect, to give queen. Context words related
to an aspect are identified by point-wise multiplying count-based embeddings of words
sharing that aspect. (Note that this does not relate to neural embeddings and does not
explain how aspects are quantified or “added”.)

Pennington et al. (2014) also refer to “aspects of meaning” and that words co-occur
based on mutual aspects in justifying the GloVe loss function (Equation 2.6).

The connection between SGNS embeddings and PMI (Levy and Goldberg, 2014b)
spurred several quantitative analyses.

Arora et al. (2016) propose a generative latent variable model for language in which
a discourse vector takes a slow random walk in a latent space containing word em-
beddings. Under the model, words are emitted over a series of time-steps with log
probability proportional to the dot product between their embedding and the position
of the discourse vector at the current step. The model has an appealing intuition but
requires several strong and unexplained assumptions (as noted by Gittens et al., 2017),
e.g. that directions of word embeddings are isotropically distributed under a spherical
Gaussian; that embedding magnitudes are upper bounded by a fixed constant κ; and
that the stationary distribution of the random walk is uniform over the unit sphere.
Furthermore, the generative model assumes each word has only one embedding, whereas
the embedding models it aims to explain, such as SGNS and GloVe, have two; and the
square of embedding norms are expected to relate linearly to log marginal word prob-
abilities (see their Equation 2.4), which is not observed in practice for models such as
SGNS and GloVe (Arora et al., 2015, Fig. 6).

Hashimoto et al. (2016) relate word embedding to metric recovery (see panel) on the
premise that word embeddings exist in an innate Euclidean semantic space from where
they are recoverable. To support this notion, studies from psycho-metrics and cogni-
tive science are referenced that: (a) show reasoning problems such as analogies can be
solved with word embeddings derived from human word similarity judgements (Rumel-
hart and Abrahamson, 1973); and (b) propose that human reasoning is consistent with
embeddings in a Euclidean space, e.g. human subjects solve reasoning problems by
“finding the word closest (in semantic space) to an ideal point”, e.g. as the vertex of a
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Metric Recovery is a form of manifold learning. Manifolds (or, loosely speak-
ing, surfaces) in high dimensional space can be approximated by joining nearby
points on the manifold by straight lines to form a graph. Shortest paths over the
graph approximate geodesics over the manifold. Metric recovery methods recover
the relative co-ordinates and probability distribution of the data by considering
random walks over a neighbourhood graph (see Hashimoto et al., 2015).

parallelogram for analogies, and as points in a line for series (e.g. “penny, nickel, dime,
?”) (Sternberg and Gardner, 1983). The connection to an assumed Euclidean semantic
space is extended to word embeddings that learn PMI co-occurrence statistics by show-
ing that such statistics (from several text corpora) correlate with human judgements
and approximately satisfy two tests indicating that they are “mostly consistent with
a Euclidean hypothesis”. Several word embedding algorithms, including GloVe and
Skip-Gram, are thus framed as metric recovery methods in which passages of text are
considered random walks over a graph in semantic space where each word is represented
by a node. This explanation involves several strong assumptions:

(i) that an innate semantic space exists, without justification of its origin, the mean-
ing attributed to different dimensions, or how those meanings are chosen;

(ii) that each word is represented by a single embedding, despite several of the con-
sidered word embedding models generating two (e.g. Skip-Gram and GloVe); and

(iii) that, in the underlying theory (Hashimoto et al., 2015), context windows are
asymptotically large, whereas several of the considered word embedding models
(e.g. Skip-Gram and GloVe) use small windows in practice (e.g. l = 5).

We note also that the observed additive compositionality of embeddings is not ex-
plained, rather it is an assumed property of the underlying semantic space.

Paperno and Baroni (2016) consider the addition of (PMI) count-based embeddings
for phrases “ab” formed of words a, b. It is shown that, for each embedding dimension
corresponding to any context word c:

PMI(ab, c) = log
p(a|c)
p(a)︸ ︷︷ ︸

PMI(a,c)

+ log
p(b|c)
p(b)︸ ︷︷ ︸

PMI(b,c)

+ log
p(ab|a ∧ c)
p(b|c)︸ ︷︷ ︸

“PMI(ab|c)”

− log
p(ab|a)

p(b)︸ ︷︷ ︸
“PMI(ab)”︸ ︷︷ ︸

∆c

. (2.13)

Equation 2.13 shows that adding (PMI) count-based embeddings should predict “phrase
vectors”, subject to a “correction” term ∆c that captures “how [c] changes the ten-
dency of [a, b] to form a phrase”. The authors find that for adjective-noun phrases,
∆c is very often negative (92% of examples considered) whereby adding embeddings
PMI(a, c),PMI(b, c) over-estimates PMI(ab, c) the true PMI vector of the noun phrase.
Prediction accuracy of the noun phrase PMI vector was found to increase by weighting
embedding components.

Gittens et al. (2017) introduce a probabilistic definition of paraphrase: a word c is
said to paraphrase a set of words C = {c1, ..., cm} if p(w|C) ≈ p(w|c) for every word
w. Analogies are then explained in terms of paraphrases: for an analogy “a is to a∗ as
b is to b∗”, the relationship between a and a∗ is assumed to mean that a paraphrases
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{a∗} ∪ R for some set of words R that reflect the relationship. The same relationship
is assumed to hold between b and b∗, whereby b paraphrases {b∗}∪R. A mathematical
justification is given for why word embeddings can be added to find the embedding of
their paraphrase and, thereby, for the linear relationship of analogy embeddings. There
are, however, notable limitations to the proposed argument:

(i) context words are assumed conditionally independent given the target word, a
strong assumption in practice;

(ii) negative sampling in SGNS is overlooked, hence embeddings are assumed to sat-
isfy p(wi|cj) ∝ expw>i cj , or w>i cj ≈ log p(wi|cj) − logZj (for a proportionality
constant Zj), as opposed to w>i cj ≈ PMI(wi, cj) per Equation 2.9;

(iii) in explaining embedding compositionality, word frequencies are assumed to be
uniform for all words, in significant contrast to the observation that most words
occur rarely and relatively few occur very frequently (Zipf’s law); and

(iv) by defining paraphrases in terms of minimising a KL divergence, the quantitative
difference between p(w|C) and p(w|c) for each word w is overlooked, whereas
some words may form “good” paraphrases with small KL divergence but others
may have minimal but large KL divergence, meaning that c bares little semantic
relationship to the paraphrased word set C.

Hakami et al. (2018) analyse a bi-linear operator for representing relations between
words, but word embeddings are pre-supposed to exist in a semantic space with inde-
pendent dimensions rather than explained. Furthermore, relations between words are
assumed to be independent, whereas they can be strongly inter-dependent in practice,
e.g. being equivalent, the inverse or one another, or transitive. Weaker dependencies
may also hold, such as one relation simply making another more likely.

2.1.5.3 Other analysis of word embeddings

An extensive further body of work explores properties of word embedding algorithms
or the embeddings they produce. Here, we review those most relevant to this thesis.

Several works look to situate word embedding algorithms within established
mathematical frameworks. For example, Cotterell et al. (2017) relate the loss func-
tion of Skip-Gram to exponential principal component analysis (EPCA). EPCA gen-
eralises standard PCA, associated with Gaussian distributed data, to all exponential
family distributions, e.g. Bernoulli and Multinomial. Landgraf and Bellay (2017) ex-
tend this work to account for negative sampling to show that the SGNS loss function
is equivalent to weighted logistic PCA. Separately, Melamud and Goldberger (2017)
draw a connection between SGNS and information theory, relating its loss function to
a quantity based on mutual information. Each of these works offers a description of
the overall embedding algorithm, but do not explain the observed semantic properties
of their embeddings or why those are useful in downstream tasks.

Of works that explore empirical properties of word embeddings, Mimno and
Thompson (2017) compare SGNS and GloVe embeddings, concluding for the former
that: (i) embeddings have a large positive inner product with their mean, i.e. “point
in roughly the same direction”; (ii) target and context embeddings tend to have neg-
ative inner products, i.e. “point away” from each other; and (iii) the arrangement of
embeddings is strongly affected by the number of negative samples k.
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A notable body of research investigates the performance of the vector offset
method for analogies with different types of semantic relations.

• Levy and Goldberg (2014a) observe wide performance variability (15-91%) for
SGNS embeddings across the analogies found in common benchmark datasets.

• Köper et al. (2015) note that most relations in common datasets are morpho-
syntactic, e.g. comparatives and superlatives; and find that performance drops
significantly for paradigmatic relations, such as synonyms, antonyms (opposites),
meronyms (parts of, e.g. aeroplane:cockpit) and hypernyms (categories, e.g. ani-
mal:dog), concluding that such relations require “deeper semantic knowledge”.

• Similarly, Vylomova et al. (2016) compare:

(i) lexical semantic relations, such as hypernyms, meronyms, quality/action
(e.g. cloud:rain) and cause/purpose (e.g. cook:eat);

(ii) morpho-syntactic relations, such as noun-to-plural (e.g. year:years) and present-
to-past tense (e.g. know:knew); and

(iii) morpho-semantic relations, such as “light verb constructions” (e.g. give:approval)
and collective nouns (e.g. army:ants).

The vector offset method is not evaluated, but lexical semantic relations are shown
to be captured less well than other types, consistent with Köper et al. (2015).

• Gladkova et al. (2016) categorise relations between inflection (e.g. noun-to-plural,
infinitive-to-past), derivation (e.g. noun+“less”, “un”+adjective), lexicographic
(e.g. hypernyms, meronyms) and encyclopedic (e.g. animal-to-sound, country-to-
language). Consistent with earlier findings, performance on morpho-syntactic
inflections tends to significantly exceed that of other relation types.

• Linzen (2016) compares several variations of the vector offset method across dif-
ferent relation types. To solve analogy (a :a∗ :: b :?), rather than take the closest
embedding by cosine similarity to wb +wa∗ −wa, variations include taking the
closest to wb, wb +wa∗ or wb−wa∗ +wa. Performing comparably to 3CosMul
(§2.1.5.2), vector offset is seen to outperform all proposed baselines across all
relation types considered. Although performance margins vary by relation, this
suggests that:

(i) the vector offset method is better than simply taking the nearest neighbour
of wb, and

(ii) adding the relational vector wa∗ − wa to wb tends to “point in the right
direction”.

The ability to predict an analogy is also seen to correlate well with that of its
“reverse” (a∗ : a :: b∗ :?), supporting the notion that the vector offset represents
the semantic relation, which can be viewed in either direction. Excluding other
analogy words a, a∗, b as possible solutions is shown to be essential to identifying
b∗.

• Drozd et al. (2016) propose supervised methods to solve analogies using sets of
commonly-related word pairs {(ai, a∗i )}i (requiring additional information):
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– adding the mean vector r̂ = 〈wa∗i −wai〉i to wb (cf Bollegala et al., 2015),
rather than any individual wa∗i − wai . Improved performance relative to
vector offset is put down to avoiding “idiosyncrasies of individual words”.

– using logistic regression to classify target words {a∗i } of a given relation set
from their embeddings. Candidate solutions b∗ for a new source word b are
ranked by the product of their classification score and cosine similarity to
b. Performance ranges from comparable to significantly better than vector
offset or mean vector offset.

This study suggests that at least some semantic relations correspond to more
complex geometric relationships between word embeddings than a vector offset.

More recently, the variable performance of solving analogies by vector offset has led
to questions over its suitability as an intrinsic evaluation task for word embeddings
(e.g. Rogers et al., 2017; Schluter, 2018). This seems somewhat justified since, as an
evaluation metric, performance on the analogy task is intended to indicate “useful”
word embeddings. However, if the vector offset serves as a poor representation of some
analogy relations, then the results may be skewed arbitrarily and not fully reliable.

In this thesis, we take a more optimistic view that, even though performance varies, the
vector offset method clearly captures some semantic relational structure for the word
embeddings considered, as evidenced by it outperforming a nearest neighbour approach
(Drozd et al., 2016). It is this positive presence of latent semantic structure in the
geometry of word embeddings, for similarity, relatedness, paraphrases and analogies,
that we wish to explain and in doing so justify the variable performance that arises.
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2.2 Knowledge Graph Representation

Knowledge Graphs (or Knowledge Bases) are collections of known true facts, or triples,
of the form 〈subject entity, relation, object entity〉, e.g. 〈London, captial of, U.K.〉. E
and R denote the sets of all entities and relations, respectively. Since knowledge
graphs often have many entities and relations, they typically contain only a subset of
all facts that are actually true amongst the vast number of combinations of entities
and relations, referred to as being incomplete. Table 2.1 shows the statistics of popular
datasets used to evaluate knowledge graph representation (KGR) models.

Dataset # Entities (ne) # Relations (nr)

FB15k (Bordes et al., 2013) 14,951 1,345
FB15k-237 (Toutanova et al., 2015) 14,541 237
WN18 (Bordes et al., 2013) 40,943 18
WN18RR (Dettmers et al., 2018) 40,943 11
NELL-995 (Xiong et al., 2017) 75,492 200

Table 2.1: Statistics of popular data sets for evaluating knowledge graph representations.

KGR models aim to numerically represent entities and relations of a knowledge graph
so that (i) known facts can be recalled, e.g. for question answering ; and (ii) missing
facts can be inferred, known as link prediction or knowledge base completion.

A knowledge graph is commonly viewed as either:

• a graph G in which nodes represent entities and relations between entities are
indicated by typed, directed edges (Figure 2.3, left); or

• a binary tensor B ∈ {0, 1}|E|×|R|×|E|, comparable to a graph adjacency matrix,
where Bs,r,o = 1 if subject and object entities es, eo ∈ E are related by relation
r ∈ R, otherwise Bs,r,o = 0 (Figure 2.3, right).
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Knowledge Graph G = {〈A, father of, B〉, 〈A,married to, C〉, ...}
Entities E = {A, B, C, D, ...} Relations R = {married to, father of, ...}

Figure 2.3: Interpretations of Knowledge Graph data: (left) as a graph where nodes rep-
resent entities and typed, directed edges represent relations; (right) as a binary tensor of
dimension |E| × |E| × |R| (cf a graph adjacency matrix). Link prediction aims to predict
unknown facts based on those in the knowledge graph, e.g. 〈B, mother of, C〉.
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Figure 2.4: An illustration of how many knowledge graph representation can be interpreted:
subject and object entities are represented by vectors es, eo ∈ Rd; a relation r is repre-
sented by transformations that act on the entity embeddings to give relation-transformed

embeddings e
(r)
s , e

(r)
o ∈ Rd; the score φs,r,o is given by applying a proximity function ρ.

Many knowledge graph representation models have been proposed, with a significant
increase in recent years. We focus on a subset of models that each achieved state-of-
the-art performance and exhibit structural properties common to many KGR models:

(i) each entity e ∈ E is represented by a vector, or embedding, in Rd, denoted es
when the subject entity, eo when the object entity.

(ii) each relation r ∈ R is represented by a parameterised transformation applied to

the subject and/or object entity embedding (to give e
(r)
s , e

(r)
o ∈ Rd, respectively);

(iii) a score φs,r,o = ρ(e
(r)
s , e

(r)
o ) is obtained by applying a proximity function ρ, e.g.

dot product or negative Euclidean distance, to relation-transformed entity em-
beddings (see Figure 2.4); and

(iv) a fact prediction is derived from the score, e.g. by applying the sigmoid function,
Prob[〈es, r, eo〉 is True] = σ(φs,r,o).

Some models directly treat scores as predictions, using a least squares loss function
to trained to train scores to 1 for true facts, 0 otherwise (e.g Nickel et al., 2011). An
obvious drawback is that predictions may exceed 1 or be less than 0. Other models take
a margin-based approach, training scores of true triples to differ, by a fixed margin,
from those of mostly false random triples (e.g. Bordes et al., 2011; Yang et al., 2015).
This induces an ordering over scores with high scoring triples more likely to be true,
but the relative ranking prevents triples being independently predicted true or false.
In all cases, scores are trained to be higher for true triples than false triples. Applying
the sigmoid function to the score has become more common, it gives probabilistically
interpretable predictions and avoids the issues of other approaches.

We categorise KGR models according to their loss function: as additive, multiplicative,
or both. Table 2.2 summarises their score functions.

2.2.1 Additive KGR Models

TransE (Bordes et al., 2013) is the simplest additive KGR model. Each relation is
represented by a vector r ∈ Rd, which is added to the subject entity embedding (the
relation transformation). The score φs,r,o = −‖es + r − eo‖ is given by the negative
Euclidean distance (the proximity function) between the relation-transformed subject
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Table 2.2: Score functions for additive (A), multiplicative (M) and both (A+M) KGR
models. d, dr are entity and relation embedding dimensionalities. e ∈ Cd is the complex
conjugate of e, ⊗n denotes the tensor product along the n-th mode, C ∈ Rd×dr×d is the
core tensor of a Tucker decomposition.

Model Score function Relation parameters

A TransE Bordes et al. (2013) −‖es + r − eo‖ r ∈ Rd

RESCAL Nickel et al. (2011) e>s Reo R ∈ Rd×d

M
DistMult Yang et al. (2015) e>s Reo R = diag[r], r ∈ Rd
ComplEx Trouillon et al. (2016) Re(e>s Reo) R = diag[r], r ∈ Cd
TuckER Balažević et al. (2019c) C⊗1 es ⊗2 r ⊗3 eo r ∈ Rdr

A+M MuRE Balažević et al. (2019b) −‖Res+r−eo‖22+ bs + bo r ∈ Rdr ,R ∈ Rd×d

entity and the object entity. Fact predictions are given by applying the sigmoid function
to the score. Many derivations of TransE have been proposed, but we restrict focus to
the simplest architecture.

2.2.2 Multiplicative KGR Models

In multiplicative models, relations are represented by matrices R ∈ Rd×d and the score
includes a bi-linear product with the entity embeddings, e>s Reo. This can be viewed
as matrix multiplication of the subject entity embedding (the relation transformation)
followed by a dot product with the object embedding (the proximity function). Fact
predictions are obtained by applying the sigmoid function to the score. Multiplicative
models relate to tensor decomposition of B.

RESCAL (Nickel et al., 2011) is perhaps the earliest multiplicative model in which
each relation is represented by a distinct relation matrix.

DistMult (Yang et al., 2015) is similar to RESCAL, but relation matrices are restricted
to diagonal matrices. DistMult is found to outperform RESCAL despite its symme-
try preventing asymmetric relations being accurately represented (any triple 〈s,r,o〉 is
assigned the same score as its reverse 〈o,r,s〉). The higher performance of DistMult
relative to RESCAL, despite being less expressive, is indicative of a tendency for KGR
models to over-fit due to a scarcity of data relative to the number of model parameters.

ComplEx (Trouillon et al., 2016) has the same architecture as DistMult, but entity
embeddings and relation matrices are in the complex domain. This breaks the sym-
metry allowing ComplEx to better represent asymmetric relations and so outperform
DistMult for the same parameter number.

TuckER (Balažević et al., 2019c) is similar to RESCAL but the relation matrices
are linear combinations of a common (low rank) set of matrices in a core tensor
C ∈ Rd×dr×d, with relation-specific coefficient vectors r ∈ Rdr . TuckER has fewer
parameters than RESCAL and enables multi-task learning of relations, which is of par-
ticular benefit to scarce relations. It is shown that TuckER subsumes the DistMult and
ComplEx models under specific dimensionality and parameter choices.
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2.2.3 Additive & Multiplicative Models

MuRE (Balažević et al., 2019b) is a recent model that combines aspects of additive
and multiplicative models, with relations parameterised by both a matrix R ∈ Rd×d
and a vector r ∈ Rd.

The multiplicative KGR models considered in §2.2.2 can each be interpreted as differ-
ent forms of low-rank tensor factorisation, in some cases subject to a sigmoid function
relating to low sign-rank factorisation (Alon et al., 1985; Bouchard et al., 2015). How-
ever, KGR models that contain an additive component, e.g. TransE and MuRE, cannot
readily be viewed in this way. That MuRE is found to outperform these multiplicative
models on the popular WN18RR dataset (Balažević et al., 2019b), brings into question
whether KGR representation is optimally addressed by tensor factorisation methods.

The approach of this thesis is to investigate knowledge graph representation by first
understanding how semantic relations can be encoded geometrically between word em-
beddings, and, from that, consider how knowledge graph relations might be encoded
similarly. This aims to avoid preconceived ideas of knowledge graph relation repre-
sentation, such as using tensor factorisation, and instead build an understanding from
first principles grounded in identified mathematical relationships between semantic re-
lations, word co-occurrence statistics and word embedding geometry.



Chapter 3

Analogies Explained: Towards
Understanding Word Embeddings

The central contribution of this chapter is the paper “Analogies Explained: Towards
Understanding Word Embeddings” (Analogies Explained, AE), published at the
International Conference on Machine Learning in June 2019 where it received an Hon-
ourable Mention for Best Paper. We first outline the motivation for this work (§3.1),
followed by the paper itself (§3.2), the impact that it has had so far (§3.3) and a
discussion (§3.4).

3.1 Motivation

The motivation for this thesis is to work towards an understanding of the latent struc-
ture of knowledge graph representation, where entities are represented by vectors and
relations by transformations between them. In principle, this might be tackled by:

(i) constructing a mathematical model of the latent structure of knowledge graph
data, or

(ii) analysing representations of KGR models to decipher what they learn.

It is not immediately clear how to proceed in either case: there is no obvious basis
for modelling entities and relations of a knowledge graph, and it is unclear where to
begin or what to look for amongst the plethora of KGR models. We therefore take a
tangential approach inspired by the observation that linear structure, as seen in the loss
functions of additive and multiplicative knowledge graph representation models (§2.2),
also arises in the relationships between word embeddings of well-known algorithms, e.g.
the additive compositionality of paraphrases and the vector offset of analogies (§2.1).

In fact, a strong parallel can be seen between analogy relations and knowledge graph
relations (as noted, e.g., by Hakami et al., 2018): both involve common binary seman-
tic relations between words/entities. In their respective settings, relation and analogy
serve as “catch-all” terms to refer to many heterogeneous semantic relations. Knowledge
graph relations are often considered in logical or structural terms, e.g. symmetry, asym-
metry and transitivity, 1-to-1, 1-to-many, etc. (e.g. Ali et al., 2020); those of analogies
tend to be differentiated semantically, e.g. as morpho-syntactic or paradigmatic (Köper
et al., 2015; Vylomova et al., 2016; Gladkova et al., 2016). These different perspectives

23
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arise from separate research communities and can be unified to categorise relations in
many ways in either setting.

In essence, word analogies and knowledge graph relations both involve the same range
of semantic relations, simply in different formats. This is supported empirically by the
KGR model TransE (Bordes et al., 2013). Just as the vector offset often successfully
represents the relation of an analogy, TransE often successfully represents knowledge
graph relations as vectors from subject entity embedding to object entity embedding.

The key difference between word analogy and knowledge graph relations is that each
analogy (a : a∗ :: b : b∗) is considered individually with word pair (a, a∗) providing
a single training example of the implicit relation and (b, b∗) effectively the test set;
whereas, knowledge graph relations typically have multiple subject-object entity pairs
as training instances. The singular training instance of analogies restricts the scope for
representing their relations to relatively simple “one-size-fits-all” functions of wa,wa∗ ,
e.g. the vector offset wa∗ −wa. The multiple training samples of knowledge graphs (or
labelled analogy datasets (e.g. Bollegala et al., 2015; Drozd et al., 2016)) allow more
bespoke relation representations to be learned, e.g. with relation-specific parameters.

Thus, considering words and entities as broadly similar concepts and recognising that
the same semantic relations between them can arise as analogies or in knowledge graphs,
we proceed on the premise that similar latent semantic structure may underpin repre-
sentations in both cases. As such, we look to understand the latent semantic structure
of KGR models, our ultimate goal, by investigating how semantic relations between
words are encoded in geometric relationships between word embeddings. This side-
step from knowledge graphs to word embeddings seems promising for several reasons:

• it avoids the potential difficulty of deciphering what knowledge graph relation
representations learn in practice (approach (ii) above) – instead, if a certain ge-
ometric relationship between embeddings is found to correspond to a particular
semantic relation between words, then it indicates one way to represent that
relation (option (i));

• certain semantic relations, similarity, relatedness, paraphrase and analogy, are
known to be reflected in spatial relationships between embeddings (§2.1.4); and

• the word embeddings produced by several algorithms are known to reflect co-
occurrence statistics, providing a quantitative basis to consider them (§2.1.5.1).

This explains how our core motivation leads to a consideration of word analogies. Of
course, the analogy phenomenon is of particular interest in itself, not least due to its
natural intrigue: word embeddings are not trained to form the (approximate) parallel-
ogram structure that often seems to arise. That a classifier trained to identify context
words surrounding each word produces word embeddings that can be seemingly added
and subtracted intuitively may appear a profound anomaly, yet it reflects experimen-
tal findings from developmental psychology and human cognition that may give its
understanding far greater significance (Rumelhart and Abrahamson, 1973; Sternberg
and Gardner, 1983; Peterson et al., 2020). Accordingly, multiple works have sought to
explain this phenomenon since its initial observation (§2.1.5.2).

The approach taken in Analogies Explained is inspired initially by Gittens et al. (2017),
in particular their definition of paraphrase (§2.1.5.2), which we develop into a proba-
bilistic identity (AE, Equation 5). This identity can also be seen to extend the work
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of Paperno and Baroni (2016), in particular Equation 2.13 (§2.1.5.2), that relates the
distribution of context words around a phrase to those around each word of the phrase.1

Equation 2.13 can be aligned more clearly with Equation 5 of the paper by re-stating
it as:

PMI({a, b}, c) = log
{p({a, b}|c)
p({a, b})

p(a|c)p(b|c)
p(a|c)p(b|c)

p(a)p(b)

p(a)p(b)︸ ︷︷ ︸
1

}

= log
p(a|c)
p(a)︸ ︷︷ ︸

PMI(a,c)

+ log
p(b|c)
p(b)︸ ︷︷ ︸

PMI(b,c)

+ log
p({a, b}|c)
p(a|c)p(b|c) − log

p({a, b})
p(a)p(b)︸ ︷︷ ︸

∆c

3.2 The Paper

Author Contributions

The paper is co-authored by myself and Timothy Hospedales. As the lead author, I
conceived and developed the theory behind Analogies Explained and wrote the paper.
Tim provided helpful discussions and suggestions throughout and helped with editing
the paper into its final form.

1We were unaware of this work at the time of writing AE, hence its omission from the paper.
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Abstract
Word embeddings generated by neural network
methods such as word2vec (W2V) are well known
to exhibit seemingly linear behaviour, e.g. the
embeddings of analogy “woman is to queen as
man is to king” approximately describe a paral-
lelogram. This property is particularly intriguing
since the embeddings are not trained to achieve
it. Several explanations have been proposed, but
each introduces assumptions that do not hold in
practice. We derive a probabilistically grounded
definition of paraphrasing that we re-interpret
as word transformation, a mathematical descrip-
tion of “wx is to wy”. From these concepts we
prove existence of linear relationships between
W2V-type embeddings that underlie the analogi-
cal phenomenon, identifying explicit error terms.

1. Introduction
The vector representation, or embedding, of words under-
pins much of modern machine learning for natural language
processing (e.g. Turney & Pantel (2010)). Where, previ-
ously, embeddings were generated explicitly from word
statistics, neural network methods are now commonly used
to generate neural embeddings that are of low dimension
relative to the number of words represented, yet achieve
impressive performance on downstream tasks (e.g. Turian
et al. (2010); Socher et al. (2013)). Of these, word2vec2

(W2V) (Mikolov et al., 2013a) and Glove (Pennington et al.,
2014) are amongst the best known and on which we focus.

Interestingly, such embeddings exhibit seemingly linear be-
haviour (Mikolov et al., 2013b; Levy & Goldberg, 2014a),
e.g. the respective embeddings of analogies, or word rela-
tionships of the form “wa is to wa∗ as wb is to wb∗”, often
satisfy wa∗ −wa +wb ≈ wb∗ , where wi is the embedding

1School of Informatics, University of Edinburgh. Correspondence
to: Carl Allen <carl.allen@ed.ac.uk>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).
2Throughout, we refer to the more commonly used Skipgram im-
plementation of W2V with negative sampling (SGNS).

of word wi. This enables analogical questions such as “man
is to king as woman is to ..?” to be solved by vector addi-
tion and subtraction. Such high order structure is surprising
since word embeddings are trained using only pairwise word
co-occurrence data extracted from a text corpus.

We first show that where embeddings factorise pointwise mu-
tual information (PMI), it is paraphrasing that determines
when a linear combination of embeddings equates to that of
another word. We say king paraphrasesman and royal, for
example, if there is a semantic equivalence between king
and {man, royal} combined. We can measure such equiva-
lence with respect to probability distributions over nearby
words, in line with Firth’s maxim “You shall know a word
by the company it keeps” (Firth, 1957). We then show that
paraphrasing can be reinterpreted as word transformation
with additive parameters (e.g. from man to king by adding
royal) and generalise to also allow subtraction. Finally, we
prove that by interpreting an analogy “wa is to wa∗ as wb

is to wb∗” as word transformations wa to wa∗ and wb to
wb∗ sharing the same parameters, the linear relationship
observed between word embeddings of analogies follows
(see overview in Fig 4). Our key contributions are:

• to derive a probabilistic definition of paraphrasing and
show that it governs the relationship between one (PMI-
derived) word embedding and any sum of others;

• to show how paraphrasing can be generalised and inter-
preted as the transformation from one word to another,
giving a mathematical formulation for “wx is to wx∗”;

• to provide the first rigorous proof of the linear relation-
ship between word embeddings of analogies, including
explicit, interpretable error terms; and

• to show how these relationships materialise between
vectors of PMI values, and so too in word embeddings
that factorise the PMI matrix, or approximate such a
factorisation e.g. W2V and Glove.

2. Previous Work
Intuition for the presence of linear analogical relationships,
or linguistic regularity, amongst word embeddings was first
suggested by Mikolov et al. (2013a;b) and Pennington et al.
(2014), and has been widely discussed since (e.g. Levy &
Goldberg (2014a); Linzen (2016)). More recently, several
theoretical explanations have been proposed:
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Figure 1. The relative locations of word embeddings for the anal-
ogy "man is to king as woman is to ..?". The closest embedding
to the linear combination wK −wM +wW is that of queen. We
explain why this occurs and interpret the difference between them.

• Arora et al. (2016) propose a latent variable model for
language that contains several strong a priori assump-
tions about the spatial distribution of word vectors, dis-
cussed by Gittens et al. (2017), that we do not require.
Also, the two embedding matrices of W2V are assumed
equal, which we show to be false in practice.

• Gittens et al. (2017) refer to paraphrasing, from which
we draw inspiration, but make several assumptions that
fail in practice: (i) that words follow a uniform distri-
bution rather than the (highly non-uniform) Zipf dis-
tribution; (ii) that W2V learns a conditional distribu-
tion – violated by negative sampling (Levy & Goldberg,
2014b); and (iii) that joint probabilities beyond pairwise
co-occurrences are zero.

• Ethayarajh et al. (2018) offer a recent explanation based
on co-occurrence shifted PMI, however that property
lacks motivation and several assumptions fail, e.g. it re-
quires more than for opposite sides to have equal length
to define a parallelogram in Rd, d > 2 (their Lemma 1).

To our knowledge, no previous work mathematically inter-
prets analogies so as to rigorously explain why if “wa is
to wa∗ as wb is to wb∗” then a linear relationship manifests
between correponding word embeddings.

3. Background
The Word2Vec algorithm considers a set of word pairs
{(wik , cjk)}k generated from a (typically large) text corpus,
by allowing the target word wi to range over the corpus, and
the context word cj to range over a context window (of size
l) symmetric about the target word. For each observed word

pair (positive sample), k random word pairs (negative sam-
ples) are generated according to monogram distributions.
The 2-layer “neural network” architecture simply multiplies
two weight matrices W,C∈Rd×n, subject to a non-linear
(sigmoid) function, where d is the embedding dimensional-
ity and n is the size of E the dictionary of unique words in
the corpus. Conventionally, W denotes the matrix closest
to the input target words. Columns of W and C are the
embeddings of words in E : wi ∈ Rd (ith column of W)
corresponds to wi the ith word in E observed as a target
word; and ci∈Rd (ith column of C) corresponds to ci, the
same word when observed as a context word.

Levy & Goldberg (2014b) identified that the objective func-
tion for W2V is optimised if:

w>i cj = PMI(wi, cj)− log k , (1)

where PMI(wi, cj) = log
p(wi, cj)
p(wi)p(cj)

is known as pointwise
mutual information. In matrix form, this equates to:

W>C = SPMI ∈ Rn×n , (2)

where SPMIi,j =PMI(wi, cj)−log k, (shifted PMI).

Glove (Pennington et al., 2014) has the same architecture
as W2V. Its embeddings perform comparably and also ex-
hibit linear analogical structure. Glove’s loss function is
optimised when:

w>i cj = log p(wi, cj)− bi − bj + logZ (3)

for biases bi, bj and normalising constant Z. (3) generalises
(1) due to the biases, giving Glove greater flexibility than
W2V and a potentially wider range of solutions. However,
we will show that it is factorisation of the PMI matrix that
causes linear analogical structure in embeddings, as approx-
imately achieved by W2V (1). We conjecture that the same
rationale underpins analogical structure in Glove embed-
dings, perhaps more weakly due to its increased flexibility.

4. Preliminaries
We consider pertinent aspects of the relationship between
word embeddings and co-occurrence statistics (1, 2) relevant
to the linear structure between embeddings of analogies:

Impact of the Shift As a chosen hyper-parameter, reflect-
ing nothing of word properties, any effect on embeddings
of k appearing in (1) is arbitrary. Comparing typical values
of k with empirical PMI values (Fig 2), shows that the so-
called shift (− log k) may also be material. Further, it is ob-
served that adjusting the W2V algorithm to avoid any direct
impact of the shift improves embedding performance (Le,
2017). We conclude that the shift is a detrimental artefact of
the W2V algorithm and, unless stated otherwise, consider
embeddings that factorise the unshifted PMI matrix:

w>i cj = PMI(wi, cj) or W>C = PMI . (4)

3.2. The Paper 27
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Figure 2. Histogram of PMI(wi, cj) for word pairs randomly sam-
pled from text (blue) with PMI(wi, ci) for the same word overlaid
(red, scale enlarged). The shift is material for typical values of k.

Reconstruction Error In practice, (2) and (4) hold only
approximately since W>C ∈ Rn×n is rank-constrained
(rank r � d < n) relative to the factored matrix M, e.g.
M=PMI in (4). Recovering elements of M from W and
C is thus subject to reconstruction error. However, we rely
throughout on linear relationships in Rn, requiring only that
they are sufficiently maintained when projected “down” into
Rd, the space of embeddings. To ensure this, we assume:

A1. C has full row rank.

A2. Letting Mk denote the kth column of factored matrix
M ∈ Rn×n, the projection f :Rn → Rd, f(Mi) = wi is
approximately homomorphic with respect to addition, i.e.
f(Mi + Mj) ≈ f(Mi) + f(Mj).

A1 is reasonable since d�n and d is chosen. A2 means that,
whatever the factorisation method used (e.g. analytic, W2V,
Glove, weighted matrix factorisation (Srebro & Jaakkola,
2003)), linear relationships between columns of M are suf-
ficiently preserved by columns of W, i.e. the embeddings
wi. For example, minimising a least squares loss func-
tion gives the linear projection wi = fLSQ(Mi) =C†Mi

for which A2 holds exactly (where C†=(CC>)−1C, the
Moore-Penrose pseudo-inverse of C>, which exists by A1);1

whereas for W2V, wi =fW2V (Mi) is non-linear.2

Zero Co-occurrence Counts The co-occurrence of rare
words are often unobserved, thus their empirical probability
estimates zero and PMI estimates undefined. However, for
a fixed dictionary E , such zero counts decline as the corpus
or context window size increase (the latter can be arbitrarily

1w.l.o.g. we write f(·) = C†(·) throughout (except in specific
cases) to emphasise linearity of the relationship.

2It is beyond the scope of this work to show A2 is satisfied when the
W2V loss function is minimised (4). We instead prove existence
of linear relationships in the full rank space of PMI columns, thus
in linear projections thereof, and assume A2 holds sufficiently for
W2V embeddings given (2) and empirical observation of linearity.

large if more distant words are down-weighted, e.g. Pen-
nington et al. (2014)). Here, we consider small word sets
W and assume the corpus and context window to be of suf-
ficient size that the true values of considered probabilities
are non-zero and their PMI values well-defined, i.e.:
A3. p(W)>0, ∀W⊆E , |W|<l,
where (throughout) “|W|< l” means |W| sufficiently less
than l.

The Relationship between W and C Several works (e.g.
Hashimoto et al. (2016); Arora et al. (2016)) assume em-
bedding matrices W and C to be equal, i.e. wi = ci ∀i.
The assumption is convenient as the number of param-
eters is halved, equations simplify and consideration of
how to use wi and ci falls away. However, this implies
W>W = PMI, requiring PMI to be positive semi-
definite, which is not true for typical corpora. Thus wi,
ci are not equal and modifying W2V to enforce them to
be would unnecessarily constrain and may well worsen the
low-rank approximation.

5. Paraphrases
Following a similar approach to Gittens et al. (2017), we
consider a small set of target wordsW={w1, . . . , wm}⊆E ,
|W|< l; and the sum of their embeddings wW =

∑
i wi.

In practice, we say word w∗∈E paraphrasesW if w∗ and
W are semantically interchangeable within the text, i.e. in
circumstances where all wi ∈W appear, w∗ could appear
instead. This suggests a relationship between the probability
distributions p(cj |W) and p(cj |w∗), ∀cj ∈ E . We refer to
such conditional distributions over all context words as the
distribution induced byW or w∗, respectively.

5.1. Defining a Paraphrase

Let CW={cj1 , . . . , cjt} be a sequence of words (with repe-
tition) observed in the context ofW .3 A paraphrase word
w∗ ∈ E can be thought of as that which best explains the
observation of CW . From a maximum likelihood perspective
we have w(1)

∗ =argmaxwi∈E p(CW |wi). Assuming cj ∈CW
to be independent draws from p(cj |W), gives:

w(1)

∗ = argmax
wi

∏
cj∈E p(cj |wi)

#j

→ argmax
wi

∑
cj∈E p(cj |W) log p(cj |wi) ,

as | CW | → ∞, where #j denotes the count of cj in CW .
It follows that w(1)

∗ minimises the Kullback-Leibler (KL)
divergence ∆W,w∗

KL between the induced distributions, i.e.:

∆W,w∗
KL = DKL[P (cj |W) ||P (cj |w∗) ]

=
∑

jp(cj |W) log
p(cj |W)
p(cj |w∗) .

3By symmetry, CW is the set of target words for which all wi∈W
are simultaneously observed in the context window.
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Alternatively, we might consider w(2)
∗ , the target word whose

set of associated context words Cw∗ is best explained byW ,
in the sense that w(2)

∗ minimises KL divergence ∆w∗,W
KL =

DKL[P (cj |w∗) ||P (cj |W)] (where, in general, ∆W,w∗
KL 6=

∆w∗,W
KL ). Interpretations of w(1)

∗ and w(2)
∗ are discussed in

Appendix A. In each case, the KL divergence lower bound
(zero) is achieved iff the induced distributions are equal,
providing a theoretical basis for:
Definition D1. We say word w∗∈E paraphrases word set
W ⊆ E , |W| < l, if the paraphrase error ρW,w∗ ∈ Rn is
(element-wise) small, where:

ρW,w∗
j = log

p(cj |w∗)
p(cj |W) , cj ∈E .

Note that W and w∗ need not appear similarly often for
w∗ to paraphraseW , only amongst the same context words.
We now connect paraphrasing, a semantic relationship, to
relationships between word embeddings.

5.2. Paraphrase = Embedding Sum + Error

Lemma 1. For any word w∗ ∈ E and word set W ⊆ E ,
|W|<l:

PMI∗ =
∑

wi∈W
PMIi + ρW,w∗ + σW − τW1 , (5)

where PMI• is the column of PMI corresponding to
w• ∈ E , 1 ∈ Rn is a vector of 1s, and error terms
σWj =log

p(W|cj)∏
i p(wi|cj) and τW=log p(W)∏

i p(wi)
.

Proof. (See Appendix B.) As Lem 1 is central to what fol-
lows, we sketch its proof: a correspondence is drawn be-
tween the product of distributions induced by each wi∈W
(I) and the distribution induced by w∗ (II), by comparison
to the distribution induced by joint eventW (III), i.e. ob-
serving all wi∈W in the context window. I relates to III by
the (in)dependence of wi∈W (i.e. by σWj , τW ).4 II relates
to III by the paraphrase error ρW,w∗

j .

Following immediately from Lem 1 we have:
Theorem 1 (Paraphrase). For any word w∗ ∈E and word
setW⊆E , |W|<l:

w∗ = wW + C†(ρW,w∗ + σW − τW1) , (6)
where wW=

∑
wi∈W wi.

Proof. Multiply (5) by C†.

Thm 1 shows that an embedding (of w∗) and a sum of
embeddings (of W) differ by the paraphrase error ρW,w∗

between w∗ andW; and σW , τW (collectively dependence
error) reflecting relationships withinW (unrelated to w∗):

• σW is a vector reflecting conditional dependencies
withinW given each cj ∈E ; σWj =0 iff all wi∈W are
conditionally independent given each and every cj ∈E ;

4Analogous to a product of marginal probabilities relating to their
joint probability subject to independence.

• τW is a scalar measure of mutual independence of wi∈
W (thus constant ∀cj ∈ E); τW = 0 iff wi ∈ W are
mutually independent.

Corollary 1.1. A word set W has no associated depen-
dence error iff wi∈W are both mutually independent and
conditionally independent given each context word cj ∈E .

Thm 1, which holds for all words w∗ and word sets W ,
explains why and when a paraphrase (e.g. of {man, royal}
by king) can be identified by embedding addition (wman +
wroyal ≈ wking). The phenomenon occurs due to a rela-
tionship between PMI vectors in Rn that holds for embed-
dings in Rd under projection by C† (by A1, A2). The vector
error w∗−wW depends on both the paraphrase relationship
between w∗ andW; and statistical dependencies withinW .

Corollary 1.2. For word w∗ ∈ E and word set W ⊆ E ,
w∗ ≈ wW if w∗ paraphrasesW and wi∈W are materially
independent (i.e. net dependence error is small).

5.3. Do Linear Relationships Identify Paraphrases?

The converse of Cor 1.2 is false: w∗≈wW does not imply
w∗ paraphrases W . Specifically, false positives arise if:
(i) paraphrase and dependence error terms are material but
happen to cancel, i.e. total error ρW,w∗ +σW − τW1 ≈ 0;
or (ii) material components of the total error fall within
the high (n− d) dimensional null space of C† and project
to a small vector difference between w∗ and wW . Case
(i) can arise in PMI vectors (Lem 1) and thus lower rank
embeddings also (Thm 1), but is highly unlikely in practice
due to the high dimensionality (n). Case (ii) can arise only
in lower rank embeddings (Thm 1) and might be minimised
by a good choice of factorisation or projection method.

5.4. Paraphrasing in Explicit Embeddings

Lem 1 applies to full rank PMI vectors, without reconstruc-
tion error or case (ii) false positives (Sec 5.3), explaining the
linear relationships observed by Levy & Goldberg (2014a).

Corollary 1.3. Thm 1 holds for explicit word embeddings,
i.e. columns of PMI.

Proof. Choose factorisation W=PMI, C=I (the identity
matrix) in Thm 1.

5.5. Paraphrasing in W2V Embeddings

Thm 1 extends to W2V embeddings by substituting
w>i cj = PMI(wi, cj)− log k and fW2V :

Corollary 1.4. Under conditions of Thm 1, W2V embed-
dings satisfy:

w∗ = wW+fW2V

(
ρW,w∗+σW−τW1+log k(|W|−1)1

)
.

(7)
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Comparing (6) and (7) shows that paraphrases correspond to
linear relationships in W2V embeddings with an additional
error term linear in |W|, and hence with less accuracy if
|W|>1, than for embeddings that factorise PMI.

6. Analogies
An analogy is said to hold for words wa, wa∗, wb, wb∗ ∈E
if, in some sense, “wa is to wa∗ as wb is to wb∗”. Since in
principle the same relationship may extend further (“... as
wc is to wc∗” etc), we characterise a general analogy A by a
set of ordered word pairs SA⊆E×E , where (wx, wx∗)∈SA,
wx, wx∗ ∈ E , iff “wx is to wx∗ as ... [all other analogical
pairs]” under A. Our aim is to explain why respective word
embeddings often satisfy:

wb∗ ≈ wa∗ −wa + wb , (8)

or why in the more general case:

wx∗ −wx ≈ uA , (9)

∀(wx, wx∗)∈SA and vector uA∈Rn specific to A.

We split the task of understanding why analogies give rise
to Equations 8 and 9 into: Q1) understanding conditions
under which word embeddings can be added and subtracted
to approximate other embeddings; Q2) establishing a math-
ematical interpretation of “wx is to wx∗”; and Q3) drawing
a correspondence between those results. We show that all
of these can be answered with paraphrasing by generalising
the notion to word sets.

6.1. Paraphrasing Word Sets

Definition D2. We say word setW∗⊆E paraphrases word
setW⊆E , |W|, |W∗|<l, if paraphrase error ρW,W∗ ∈Rn

is (element-wise) small, where:

ρW,W∗
j = log

p(cj |W∗)
p(cj |W) , cj ∈E .

D2 generalises D1 such that the paraphrase termW∗, pre-
viously w∗, can be more than one word.5 Analogously
to D1, word sets paraphrase one another if they induce
equivalent distributions over context words. Note that para-
phrasing under D2 is both reflexive and symmetric (since
|ρW,W∗ | = |ρW∗,W |), thus “W∗ paraphrases W” and “W
paraphrasesW∗” are equivalent and denotedW≈PW∗.
Analogues of Lem 1 and Thm 1 follow:

Lemma 2. For any word setsW ,W∗⊆E , |W|, |W∗|<l:
∑

wi∈W∗
PMIi =

∑

wi∈W
PMIi + ρW,W∗ + σW − σW∗

− (τW − τW∗)1 . (10)

Proof. (See Appendix C.)
5Equivalently, D1 is a special case of D2 with |W∗| = 1, hence
we reuse terms without ambiguity.

Theorem 2 (Generalised Paraphrase). For any word sets
W ,W∗⊆E , |W|, |W∗|<l:
wW∗ = wW + C†(ρW,W∗+σW−σW∗− (τW− τW∗)1) .

Proof. Multiply (10) by C†.

Note that |W∗| = 1 recovers Lem 1 and Thm 1. With
analogies in mind, we restate Thm 2 as:

Corollary 2.1. For any words wx, wx∗ ∈E and word sets
W+,W−⊆E , |W+|, |W−| < l − 1:

wx∗ = wx + wW+ −wW− + C†(ρW,W∗ + σW − σW∗

− (τW − τW∗)1),
(11)

whereW={wx} ∪W+,W∗={wx∗} ∪W−.

Proof. SetW={wx}∪W+,W∗={wx∗}∪W− in Thm 2.

Cor 2.1 shows how any word embedding wx∗ relates to a
linear combination of other embeddings (wΣ =wx+wW+−
wW−), due to an equivalent relationship between columns
of PMI. Analogously to one-word (D1) paraphrases, the
vector difference wx∗ − wΣ depends on the paraphrase
error that reflects the relationship between the two word sets
W∗, W; and the dependence error that reflects statistical
dependence between words within each ofW andW∗.
Corollary 2.2. For terms as defined above, wx∗ ≈wx +
wW+ − wW− if W∗ ≈P W and wi ∈ W and wi ∈ W∗
are materially independent or dependence terms materially
cancel.

False positives can arise as discussed in Sec 5.3.

6.2. From Paraphrases to Analogies

A special case of Cor 2.1 gives:

Corollary 2.3. For any wa, wa∗ , wb, wb∗ ∈E:

wb∗ = wa∗ −wa + wb + C†(ρW,W∗ + σW − σW∗

− (τW − τW∗)1) ,
(12)

whereW={wb, wa∗} andW∗={wb∗ , wa}.
Proof. Set wx = wb, wx∗ = wb∗ , W+ = {wa∗}, W− =
{wa} in Cor 2.1.

Thus we see that (8) holds if {wb∗ , wa}≈P{wb, wa∗} and
those word pairs exhibit similar dependence (Sec 6.6). More
generally, by Cor 2.1 we see that (9) is satisfied by uA≈
wW+−wW− if {wx∗,W−} ≈P {wx,W+} ∀(wx, wx∗) ∈ SA

for common word setsW+,W−⊆E and each pair of para-
phrasing word sets exhibit similar dependence.

This establishes sufficient conditions for the linear relation-
ships observed in analogy embeddings (8, 9) in terms of
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semantic relationships, answering Q1. However, those rela-
tionships are paraphrases, with no obvious connection to the
“wx is to wx∗ ...” relationships of analogies. We now show
that paraphrases sufficient for (8, 9) correspond to analogies
by introducing the concept of word transformation.

6.3. Word Transformation

The paraphrase of a word setW by word w∗ (D1) has, so
far, been considered in terms of an equivalence betweenW
and w∗ by reference to their induced distributions. Alter-
natively, that paraphrase can be interpreted as a transfor-
mation from an arbitrary ws ∈W to w∗ by adding words
W+ ={wi∈W, wi 6=ws}. Notionally,W+ can be consid-
ered “words that make ws more like w∗”. More precisely,
wi∈W+ add context to ws: we move from a distribution
induced by ws alone to one induced by the joint event of
simultaneously observing ws and all wi∈W+, a contextu-
alised occurrence of ws with an induced distribution closer
that of w∗. A similar view can be taken of the associated
embedding addition: starting with ws, add wi ∀wi∈W+ to
approximate w∗. Note that only addition applies.

Moving to D2, the paraphrase of one word set W by an-
otherW∗ can be interpreted additively as starting with some
wx∈W , wx∗ ∈W∗, and addingW+={wi∈W, wi 6=wx},
W−= {wi ∈ W∗, wi 6= wx∗}, respectively, such that the
resulting sets W and W∗ induce similar distributions, i.e.
paraphrase. In effect, context is added to both wx and wx∗

until their contextualised casesW andW∗ paraphrase (Fig
3a). NoteW andW∗ may have no intuitive meaning and
need not correspond to a single word, unlike D1 paraphrases.
Alternatively, such a paraphrase can be interpreted as a trans-
formation from wx ∈W to wx∗ ∈W∗ by adding wi ∈W+

and subtracting wi ∈ W−. “Subtraction” is effected by
adding words to the other side, i.e. to wx∗ .6 Just as adding
words to wx adds or narrows its context, subtracting words
removes or broadens context. Context is thus added and
removed to transform from wx to wx∗ , in which the para-
phrase betweenW andW∗ effectively serves as an interme-
diate step (Fig 3b). We refer toW+,W− as transformation
parameters, which can be thought of as explaining the dif-
ference between wx and wx∗ with a “richer dictionary” than
that available to D1 paraphrases by including differences
between words. More precisely, transformation parameters
align the induced distributions to create a paraphrase.

This interpretation show equivalence between a paraphrase
W≈PW∗ and a word transformation – a relationship be-
tween wx ∈ W and wx∗∈ W∗ based on the addition and
subtraction of context that is mirrored in the addition and
subtraction of embeddings. Mathematical equivalence of the
perspectives is reinforced by an alternate proof of Cor 2.1

6Analogous to standard algebra: if x < y, equality is achieved
either by adding to x or by subtracting from y.

W ≈P W∗

wx wx∗

+W+ +W−

(a) Adding context to each of wx and wx∗ to
reach a paraphrase.

W ≈P W∗

wx wx∗

+W+ −W−

word transformation

(b) Adding and subtracting context to transform
wx to wx∗ .

Figure 3. Perspectives of the paraphraseW ≈P W∗.

in Appendix D that begins with terms in only wx and wx∗,
highlighting that any words W+, W− can be introduced,
but only certain choices form the necessary paraphrase.

Definition D 3. There exists a word transformation from
wx ∈ E to wx∗ ∈ E with transformation parameters W+,
W− ⊆ E iff {wx} ∪W+≈P {wx∗} ∪W−.

Note that transformation parameters may not be unique and
always (trivially) includeW+ ={wx∗},W−={wx}.

6.4. Interpreting “a is to a* as b is to b*”

With word transformation as a means of describing seman-
tic difference between words, we mathematically interpret
analogies. Specifically, we consider “wx is to wx∗” to re-
fer to a transformation from wx to wx∗ and an analogy to
require an equivalence between such word transformations.

Definition D4. We say “wa is to wa∗ as wb is to wb∗” for
wa, wb, wa∗, wb∗∈E iff there exist parametersW+,W−⊆E
that simultaneously transform wa to wa∗ and wb to wb∗ .

We show that the linear relationships between word embed-
dings of analogies (8, 9) follow from D4.

Lemma 3. If “wa is to wa∗ as wb is to wb∗” by D4 with
transformation parametersW+,W−⊆E , then:

PMIb∗ = PMIa∗− PMIa + PMIb

+ ρW
b,Wb
∗ − ρW

a,Wa
∗

+ (σW
b−σWb

∗)− (σW
a−σWa

∗ )

− ((τW
b− τWb

∗)− (τW
a− τWa

∗ ))1, (13)

whereWx ={wx}∪W+, Wx
∗ ={wx∗}∪W− for x∈{a, b}

and ρW
b,Wb
∗ ,ρW

a,Wa
∗ are small.

Proof. LetW=Wx,W∗=Wx
∗ for x∈{a, b} in instances

of Cor 2.1 and take the difference. Wx paraphrasesWx
∗ for

x∈{a, b} by D3 and D4.

3.2. The Paper 31



Analogies Explained: Towards Understanding Word Embeddings

“wa is to wa∗

as
wb is to wb∗”

wa
W+−→
W−

wa∗

∧
wb

W+−→
W−

wb∗

{wa,W+}≈P {wa∗ ,W−}
∧

{wb,W+}≈P {wb∗ ,W−}

wa∗ −wa

≈
wb∗ −wb

Figure 4. Summary of steps to prove the relationship between analogies and word embeddings (omitting dependence error).

wx
W+

−→
W−

wx∗ denotes a word transformation wx to wx∗ with parametersW+,W−⊆E .

Theorem 3 (Analogies). If “wa is to wa∗ as wb is to wb∗”
by D4 withW+,W−⊆E , then:

wb∗ = wa∗ −wa + wb

+ C†(ρW
b,Wb
∗ − ρW

a,Wa
∗

+ (σW
b−σWb

∗)− (σW
a−σWa

∗ )

− ((τW
b− τWb

∗)− (τW
a− τWa

∗ ))1).

with terms as defined in Lem 3.

Proof. Multiply (13) by C†.

More generally, if D4 applies for a set of ordered word
pairs S = {(wx, wx∗)}, i.e. “wa is to wa∗ as wb is to wb∗”
∀ (wa, wa∗), (wb, wb∗)∈S with transformation parameters
W+,W−⊆E , then each set {wx∗ ,W−} must paraphrase
{wx,W+} by D3, and (11) holds with small paraphrase
error. By this and Thm 3 we know that word embeddings of
an analogy wa,wb,wa∗ ,wb∗ satisfy linear relationships (8,
9), subject to dependence error.

A few questions remain: how to find appropriate transfor-
mation parameters; and, given non-uniqueness, which to
choose? Addressing these in reverse order:

Transformation Parameter Equivalence

By Lem 3, if “wa is to wa∗ as wb is to wb∗” then, subject
to dependence error:

PMIb∗− PMIb ≈ PMIa∗− PMIa . (14)

If parametersW+
2 ,W−2 exist that (w.l.o.g.) transform wa

to wa∗ then (13) holds by suitably redefiningWx,Wx
∗ , in

which ρW
a,Wa
∗ is small but nothing is known of ρWb,Wb

∗ .
Thus, subject to dependence error:

PMIb∗− PMIb ≈ PMIa∗− PMIa + ρW
b,Wb
∗ . (15)

By (14), (15), subject to dependence error, ρWb,Wb
∗ is also

small andW+
2 ,W−2 must also transform wb to wb∗ . Thus

transformation parameters of any analogical pair transform
all pairs and all applicable transformation parameters can
be considered equivalent, up to dependence error.

Corollary 3.1. For analogy A, if parametersW+,W−⊆E
transform wx to wx∗ for any (wx, wx∗) ∈ SA, then W+,
W− simultaneously transform wx to wx∗ ∀(wx, wx∗)∈SA.

Identifying Transformation Parameters

To identify “words that explain the difference between other
words” might, in general, be non-trivial. However, by Cor
3.1, transformation parameters for analogy A can simply be
chosen asW+ ={wx∗},W−={wx} for any (wx, wx∗)∈
SA.7 Making an arbitrary choice, Thm 3 simplifies to:

Corollary 3.2. If “wa is to wa∗ as wb is to wb∗” then:

wb∗ = wa∗−wa + wb + C†(ρW,W∗ + σW − σW∗

−(τW− τW∗)1), (16)

whereW={wb, wa∗},W∗={wb∗, wa} and ρW,W∗ is small.

Proof. LetW+ ={wa∗},W−={wa} in Thm 3.

We arrive back at (12) but now link directly to analogies,
proving that word embeddings of analogies satisfy linear
relationships (8) and (9), subject to dependence error. Fig
4 shows a summary of all steps to prove Cor 3.2. D4 also
provides a mathematical interpretation of what we mean
when we say “wa is to wa∗ as wb is to wb∗”.

6.5. Example

To demonstrate the concepts developed, we consider the
canonical analogy A∗: “man is to king as woman is
to queen”, for which SA∗ = {(man, king), (woman,
queen)}. By D4, there exist parameters W+,W− ⊆ E
that simultaneously transform man to king and woman
to queen, which (by Cor 3.1) can be chosen to be
W+ = {queen}, W− = {woman}. Thus A∗

implies that {man, queen} ≈P {king, woman} and
{woman, queen} ≈P {queen, woman}, the latter being
trivially true. By Cor 2.1, A∗ therefore implies:

wQ = wK −wM + wW + C†(ρW,W∗ + σW − σW∗

− (τW− τW∗)1) ,

where we abbreviate words by their initials and, explicitly:

ρW,W∗ = log
p(cj |wQ,wM )
p(cj |wW ,wK) (which must be small),

σW=log
p(wW ,wK |cj)

p(wW |cj)p(wK |cj) , τW=log p(wW ,wK)
p(wW )p(wK) ,

σW∗=log
p(wQ,wM |cj)

p(wQ|cj)p(wM |cj) , τW∗=log
p(wQ,wM )

p(wQ)p(wM ) .

7In the case of an analogical question “wa is to wa∗ as wb is to ...
?”, there is only one choice: W+={wa∗},W−={wa}.
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woman

king

queen

man

permitting
auxiliary

royal

crown

sol

reign

princess
lord

prince

wK −wM + wW

ρ

σ

τ

Figure 5. The plot shows the same embeddings of Fig 1, now with
the difference between wK − wM + wW and the embedding
of queen explained (see connecting “zigzag”) as the sum of con-
ditional independence error (σ), independence error (τ = τ1)
and paraphrase error (ρ). As anticipated, their sum is smallest
for queen. Related words are seen nearby, with unrelated words
clustered further away. Plot generated by fixing the xy plane to
contain man, king, queen and all other vectors plotted relatively,
i.e. the z-axis captures any component off the xy-plane. Values
are computed from the “text8” corpus (Mahoney, 2011).

Thus wQ ≈ wK −wM +wW subject to the accuracy with
which {man, queen} paraphrases {king, woman} and sta-
tistical dependencies within those word pairs (see Fig 5).

6.6. Dependence error in analogies

Dependence error terms for analogies (13) bear an im-
portant distinction from those in one-word paraphrases
(5). When a word setW is paraphrased by a single word
w∗, the dependence error comprises a conditional indepen-
dence term (σW) and a mutual independence term (τW1)
that bear no obvious relationship to one another and can
only cancel by chance, which is low in high dimensions.
However, (13) contains offsetting pairs of each component
(σW ,σW∗ , τW , τW∗), i.e. terms of the same form that may
cancel, thus word sets with similar dependence terms will
paraphrase with small overall dependence error.

It is illustrative to consider the case wa =wb, wa∗=wb∗,
corresponding to the trivial analogy “wa is to wa∗ as “wa is
to wa∗”, which holds true with zero total error for any word
pair. Considering specific error terms: the paraphrase error
is zero since p(cj |{wa, wa∗}) = p(cj |{wa∗, wa}), ∀cj ∈
E , thus the net dependence error is also zero. However,
individual dependence error terms, e.g. log p(wa,wa∗ )

p(wa)p(wa∗ )
, are

generally non-zero. This therefore proves existence of a
case in which non-zero dependence error terms negate one
another to give a negligible net dependence error.

6.7. Analogies in explicit embeddings

As with paraphrases, analogical relationships in embeddings
stem from relationships between columns of PMI.

Corollary 3.3. Cor 3.2 applies to explicit (full-rank) em-
beddings, i.e. columns of PMI, with C = I (the identity
matrix).

6.8. Analogies in W2V embeddings

As with paraphrases (Sec 5.5), the results for analogies can
be extended to W2V embeddings by including the shift
term appropriately throughout. Since the transformation
parameters for analogies are of equal size (i.e. |W+| =
|W−| = 1), we find that all shift terms cancel.

Corollary 3.4. Cor 3.2 applies to W2V embeddings replac-
ing the projection C†(·) with fW2V (·).

Thus, linear relationships between embeddings for analogies
hold equally for W2V embeddings as for those derived
without the shift distortion. Whilst perhaps surprising, this
is corroborative since linear analogical relationships have
been observed extensively in W2V embeddings (e.g. Levy
& Goldberg (2014a)), as is now justified theoretically. Thus
we know that analogies hold for W2V embeddings subject
to higher order statistical relationships between words of
the analogy as defined by the paraphrase and dependence
errors.

7. Conclusion
In this work, we develop a probabilistically principled defi-
nition of paraphrasing by which equivalence is drawn be-
tween words and word sets by reference to the distributions
they induce over words around them. We prove that, subject
to statistical dependencies, paraphrase relationships give
rise to linear relationships between word embeddings that
factorise PMI (including columns of the PMI matrix), and
thus others that approximate such a factorisation, e.g. W2V
and Glove. By showing that paraphrases can be interpreted
as word transformations, we enable analogies to be math-
ematically defined and, thereby, properties of semantics to
be translated into properties of word embeddings. This pro-
vides the first rigorous explanation for the presence of linear
relationships between the word embeddings of analogies.

In future work we aim to extend our understanding of the
relationships between word embeddings to other applica-
tions of discrete object representation that rely on an un-
derlying matrix factorisation, e.g. graph embeddings and
recommender systems. Also, word embeddings are known
to capture stereotypes present in corpora (Bolukbasi et al.
(2016)) and future work may look at developing our un-
derstanding of embedding composition to foster principled
methods to correct or debias embeddings.
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Appendices

A. The KL-divergence between induced
distributions

We consider the words found by minimising the difference
KL-divergences considered in Section 5. Specifically:

w(1)

∗ = argmin
wi∈E

DKL[ p(cj |W) || p(cj |wi) ]

w(2)

∗ = argmin
wi∈E

DKL[ p(cj |wi) || p(cj |W) ]

Minimising DKL[ p(cj |W) || p(cj |wi) ] identifies the word
that induces a probability distribution over context words
closest to that induced byW , in which probability mass is
assigned to cj wherever it is forW . Intuitively, w(1)

∗ is the
word that most closely reflects all aspects ofW , and may
occur in contexts where no word wi∈W does.

Minimising DKL[ p(cj |wi) || p(cj |W) ] finds the word that
induces a distribution over context words that is closest to
that induced byW , in which probability mass is assigned as
broadly as possible but only to those cj to which probability
mass is assigned forW . Intuitively, w(2)

∗ is the word that
reflects as many aspects ofW as possible, as closely as pos-
sible, but nothing additional, e.g. by having other meaning
thatW does not.

A.1. Weakening the paraphrase assumption

For a given word set W , we consider the relationship be-
tween embedding sum wW and embedding w∗ for the word
w∗ ∈ E that minimises the KL-divergence (we illustrate
with ∆W,w∗

KL ). Exploring a weaker assumption than D1, tests
whether D1 might exceed requirement, and explores the rela-
tionship between w∗ and wW as paraphrase error increases.

Theorem 4 (Weak paraphrasing). For w∗ ∈ E ,W ⊆ E , if
w∗ minimises ∆W,w∗

KL

.
=DKL[ p(cj |W) || p(cj |w∗) ], then:

w∗
>ĉ = wW

>ĉ−∆W,w∗
KL + σ̂W − τW (17)

where ĉ =Ej|W [cj ], σ̂W =Ej|W [σWj ] and Ej|W [·] denotes
expectation under p(cj |W).

Proof.

∆W,w∗
KL =

∑
jp(cj |W) log

p(cj |W)
p(cj |w∗)

(5)
= Ej|W [

∑
iPMI(wi, cj)

− PMI(w∗, cj) + σWj − τW ]

= Ej|W [wW
>cj −w∗

>cj ] + σ̂W − τW

Thus, the weaker paraphrase relationship specifies a hyper-
plane containing w∗ and so does not uniquely define w∗

(as under D1) and cannot explain the observation of embed-
ding addition for paraphrases (as suggested by Gittens et al.
(2017)). A similar result holds for ∆w∗,W

KL . In principle,
Thm 4 could help locate embeddings of words that more
loosely paraphraseW , i.e. with increased paraphrase error.

B. Proof of Lemma 1
Lemma 1. For any word w∗ ∈ E and word set W ⊆ E ,
|W|<l:

PMI∗ =
∑

wi∈W
PMIi + ρW,w∗ + σW − τW1 , (5)

where PMI• is the column of PMI corresponding to
w• ∈ E , 1 ∈ Rn is a vector of 1s, and error terms
σWj =log

p(W|cj)∏
i p(wi|cj) and τW=log p(W)∏

i p(wi)
.

Proof.

PMI(w∗, cj)−
∑

wi∈W
PMI(wi,cj)

= log
p(w∗|cj)
p(w∗)

− log
∏

wi∈W

p(wi|cj)
p(wi)

= log
p(w∗|cj)∏
W p(wi|cj)

− log
p(w∗)∏
W p(wi)

+ log
p(W|cj)
p(W|cj)

+ log
p(W)

p(W)

= log
p(w∗|cj)
p(W|cj)

− log
p(w∗)
p(W)

+ log
p(W|cj)∏
W p(wi|cj)

− log
p(W)∏
W p(wi)

= log
p(cj |w∗)
p(cj |W)

+ log
p(W|cj)∏
W p(wi|cj)

− log
p(W)∏
W p(wi)

= ρW,w∗
j + σWj − τW ,

where, unless stated explicitly, products are with respect to
all wi in the set indicated.

Introduced terms are highlighted to show their evolution
within the proof. At the step where terms are introduced,
the existing error terms have no statistical meaning. This is
resolved by introducing terms to which both error terms can
be meaningfully related, through paraphrasing and indepen-
dence.
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C. Proof of Lemma 2
Lemma 2. For any word setsW ,W∗⊆E , |W|, |W∗|<l:

∑

wi∈W∗
PMIi =

∑

wi∈W
PMIi + ρW,W∗ + σW − σW∗

− (τW − τW∗)1 . (10)

Proof.
∑

wi∈W∗
PMI(wi,cj)−

∑

wi∈W
PMI(wi,cj)

= log
∏

wi∈W∗

p(wi|cj)
p(wi)

− log
∏

wi∈W

p(wi|cj)
p(wi)

= log
∏
W∗p(wi|cj)

∏
W p(wi|cj)

− log
∏
W∗p(wi)

∏
W p(wi)

+ log
p(W∗|cj)
p(W∗|cj)

+ log
p(W∗)
p(W∗)

+ log
p(W|cj)
p(W|cj)

+ log
p(W)

p(W)

= + log
p(W∗|cj)
p(W|cj)

− log
p(W∗)
p(W)

+ log
∏
W∗p(wi|cj)
p(W∗|cj)

− log
∏
W∗p(wi)

p(W∗)

+ log
p(W|cj)

∏
Wp(wi|cj)

− log
p(W)

∏
Wp(wi)

= + log
p(cj |W∗)
p(cj |W)

+ log
p(W|cj)

∏
Wp(wi|cj)

− log
p(W∗|cj)

∏
W∗p(wi|cj)

− log
p(W)

∏
Wp(wi)

+ log
p(W∗)

∏
W∗p(wi)

= ρW,W∗
j + σWj − σW∗j − (τW − τW∗) ,

where, unless stated explicitly, products are with respect to
all wi in the set indicated.

The proof is analogous to that of Lem 1, with more terms
added (as highlighted) to an equivalent effect. A key differ-
ence to single-word (or direct) paraphrases (D1) is that the
paraphrase is between two word setsW andW∗ that need
not correspond to any single word. The paraphrase error
ρW,W∗ compares the induced distributions of the two sets,
following the same principles as direct paraphrasing, but
with perhaps less interpretatability.

D. Alternate Proof of Corollary 2.1
Corollary 2.1. For any words wx, wx∗ ∈E and word sets
W+,W−⊆E , |W+|, |W−| < l − 1:

wx∗ = wx + wW+ −wW− + C†(ρW,W∗ + σW − σW∗

− (τW − τW∗)1),
(11)

whereW={wx} ∪W+,W∗={wx∗} ∪W−.

Proof.

PMI(wx∗ ,cj)− PMI(wx, cj)

= log
p(cj |wx∗)

p(cj |wx)
+ log

∏

wi∈W+

p(cj |wi)

p(cj |wi)

+ log
∏

wi∈W−

p(cj |wi)

p(cj |wi)

=
∑

wi∈W+

log p(cj |wi) −
∑

wi∈W−
log p(cj |wi)

+ log
∏
W∗p(cj |wi)

∏
W p(cj |wi)

=
∑

wi∈W+

PMI(wi, cj) −
∑

wi∈W−
PMI(wi, cj)

+ log
∏
W∗ p(wi|cj)

∏
W p(wi)

∏
W p(wi|cj)

∏
W∗ p(wi)

=
∑

wi∈W+

PMI(wi, cj) −
∑

wi∈W−
PMI(wi, cj)

+ log
p(cj |wx∗,W

−)

p(cj |wx, W+)

+ log
∏
W∗p(wi|cj)

p(wx∗ ,W−|cj)
p(wx,W

+|cj)
∏
Wp(wi|cj)

− log
∏
W∗p(wi)

p(wx∗ ,W−)

p(wx,W
+)

∏
Wp(wi)

=
∑

wi∈W+

PMI(wi, cj) −
∑

wi∈W−
PMI(wi, cj)

+ ρW,W∗
j + σWj − σW∗j − (τW − τW∗) ,

where, unless stated explicitly, products are with respect
to all wi in the set indicated; and W = {wx} ∪ W+,
W∗ = {wx∗} ∪ W− to lighten notation. Multiplying by
C† completes the proof.
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3.3 Impact

Analogies Explained received an honourable mention for best paper at ICML 2019 and
has received 59 citations as of August 2021, according to Google Scholar. Of these,
the only works that follow up on the specific findings of the paper are included in later
chapters.

Two contemporaneous works claim similar findings to the paper, which we discuss.

Seonwoo et al. (2019) extend the work of Gittens et al. (2017) to take account of
negative sampling, but maintain the assumption that context words are independent
given a target word (within their Equation 5) and that paraphrase words (c of a word
set C) are identified by minimising a KL divergence. The first assumption is violated
in practice and together those assumptions abstract away the statistical differences
between distributions p(w|c) and p(w|C), over all words w ∈ E , i.e. the interpretable
error terms ρ,σ, τ that explain the difference between the embedding of c and the sum
of embeddings of C (AE, Equation 6).

Ethayarajh et al. (2019) claim an alternative theoretical explanation of the analogy
phenomenon for SGNS and GloVe embeddings assuming:

(i) the dimension of embeddings matches the rank of the factorised matrix, e.g. the
shifted PMI matrix in Skip-Gram;

(ii) for each analogy, corresponding rows of the factorised matrix (e.g. our PMI vec-
tors) lie in a plane;

(iii) analogous word pairs satisfy several co-occurrence shifted PMI (csPMI) relation-

ships, where csPMI(x, y) = log p(x,y)2

p(x)p(y) = log p(x|y)p(y|x);

(iv) all words co-occur with themselves, i.e. occur twice in close succession, with prob-
ability proportional to their marginal probability, i.e. p(wi, ci) ∝ p(wi), ∀i; and

(v) embedding matrices W ,C are equivalent up to a multiplicative scalar λ.

These assumptions raise significant issues, undermining the paper’s claim:

• (i) is invalid for typical word embeddings, where the dimensionality is far below
the rank of the factorised matrix;

• (ii) and (iii) are strong unintuitive assumptions that require justification to avoid
simply restating one unexplained phenomenon in terms of several others:

– why high-dimensional rows of the factorised matrix lie in a 2-D plane is a
key aspect of explaining why parallelograms arise;

– “csPMI” is a novel statistic with no evident semantic meaning;

• dividing by p(wi), (iv) implies p(ci|wi) is a constant for all words of any given
language, i.e. that, having occurred once, every word occurs again within the
context window with identical probability – this is clearly false in general since
context windows are arbitrarily defined;

• (v) implies PMI = W>C = λW>W and so λ−1PMI is positive semi-definite
with all diagonal elements positive – this is empirically false in general, e.g. typ-
ically some diagonal elements of the PMI matrix are positive, some negative.
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The potential impact of Analogies Explained may go beyond word embeddings since
similar analogy relationships have been observed in document level embeddings (Dai
et al., 2015) and in supervised (Reed et al., 2015) and unsupervised (Radford et al.,
2016) representations from computer vision. Furthermore, the SGNS algorithm has
been widely applied to other real-word domains, such as materials science (Tshi-
toyan et al., 2019), bio-medicine (Moen and Ananiadou, 2013; Chen et al., 2018; Chiu
and Baker, 2020) and social/technological networks (Perozzi et al., 2014; Grover and
Leskovec, 2016; Rozemberczki et al., 2021). Since nothing in the paper is domain spe-
cific, should analogous pairs exist within these data domains, e.g. as explicitly observed
by Tshitoyan et al. (2019), the analogy phenomenon would be expected to occur and
explained by the same theory based on co-occurrence statistics.

3.4 Discussion

The paper builds on aspects of prior works to explain why and how well (as reflected in
the error terms) word embeddings of analogies approximate parallelograms. We empha-
sise that the central probabilistic relationships (Lemmas 1-3) are identities that hold
for any words, but error terms vary for different word combinations. The better words
satisfy statistical co-occurrence relationships that correspond to analogies, the smaller
the error terms and the better their word embeddings approximate a parallelogram.

From this, it is unlikely that any word embeddings form a precise parallelogram since
that requires strong independence conditions to hold, hence deviations from a parallel-
ogram are a necessary statistical consequence rather than a “fault” of the embeddings.
Thus, the presence of error terms is important in justifying why deviations from paral-
lelograms are variable, which may, in part, explain the observed variable performance of
the vector offset method (§2.1.5.3). Computing these error terms explicitly, however, is
problematic since they are higher order (triple) co-occurrence terms and so particularly
sparse and subject to sampling error.

We note known limitations of the paper that may merit further investigation to improve
understanding of the analogy phenomenon or the latent semantic structure learned by
word embedding algorithms.

• Several aspects or heuristics of word embedding algorithms remain unexplained,
e.g. the sub-sampling of frequent words, the marginal noise distribution being
raised to the power 0.75 in SGNS, the choice of context window size and that
“average” embeddings 1

2(wi + ci) are found to improve performance (Pennington
et al., 2014; Levy et al., 2015).

• Geometric relationships between PMI vectors are assumed to be sufficiently pre-
served when projected to the far lower dimensionality of word embeddings, but
the projection of word embedding algorithms, which may be probability-weighted
and/or non-linear, and the chosen number of dimensions are not analysed.

• No explanation is given for why other words of the analogy, a, a∗, b, must be
excluded, which is problematic in practice where they may be valid answers to
the analogy, e.g. “man is to doctor as woman is to ...” (Nissim et al., 2020).

• It is unclear how the embedding wb∗ of a candidate solution to an analogy should
be compared to wb + wa∗ − wa to evaluate or mitigate (projected) error terms
(AE, Equation 6) for which common heuristics, e.g. cosine similarity, remain
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unjustified. This should account for the observation that net dependence error
terms tend to be negative, causing systematic error in paraphrases (Baroni and
Lenci, 2010).

• Although the identified error terms explain inaccuracies in the parallelogram rela-
tionship of embeddings, they do not explain the observed performance variability
of the vector offset method for analogies with different semantic relation types.
The paper explains those analogies that satisfy the probabilistic definition based
on word transformations, but not all analogies necessarily fit that semantic tem-
plate.





Chapter 4

What the Vec? Towards
Probabilistically Grounded

Embeddings

The main contribution of this chapter is the paper What the Vec? Towards Probabilis-
tically Grounded Embeddings (What the Vec), which was published at the Annual
Conference on Neural Information Processing Systems in December 2019. We first out-
line the motivation for this work (§4.1), before including the paper itself (§4.2), followed
by a summary of its impact so far (§4.3) and a discussion (§4.4).

4.1 Motivation

The motivation for What the Vec is to build on Analogies Explained to develop a
fuller understanding of the latent semantic space of word embeddings that factorise a
PMI matrix (or similar), as learned by algorithms such as SGNS and GloVe (PMI-
based embeddings). Where Analogies Explained offers a mathematically rigorous
but terse explanation of the analogy phenomenon, which treats paraphrases as an
intermediate step, What the Vec takes a more holistic view of PMI-based embeddings
and the semantic relations of similarity, relatedness, paraphrase and analogy. The paper
puts previous findings into clearer perspective and fills gaps left by Analogies Explained
by explicitly analysing the SGNS loss function, exploring the geometry of the space of
PMI vectors and considering the relationship between the two embedding matrices W
and C.

4.2 The Paper

Author Contributions

The paper is co-authored by myself, Ivana Balažević and Timothy Hospedales. As the
lead author, I developed the theoretical findings of the paper, designed the experiments,
implemented some, and wrote the paper. Ivana implemented and ran some of the
experiments, and proofread the paper. Tim provided useful discussions and suggestions
during its development, and helped editing the final paper.
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Abstract

Word2Vec (W2V) and GloVe are popular, fast and efficient word embedding al-
gorithms. Their embeddings are widely used and perform well on a variety of
natural language processing tasks. Moreover, W2V has recently been adopted in
the field of graph embedding, where it underpins several leading algorithms. How-
ever, despite their ubiquity and relatively simple model architecture, a theoretical
understanding of what the embedding parameters of W2V and GloVe learn and
why that is useful in downstream tasks has been lacking. We show that different
interactions between PMI vectors reflect semantic word relationships, such as
similarity and paraphrasing, that are encoded in low dimensional word embeddings
under a suitable projection, theoretically explaining why embeddings of W2V
and GloVe work. As a consequence, we also reveal an interesting mathematical
interconnection between the considered semantic relationships themselves.

1 Introduction

Word2Vec1 (W2V) [25] and GloVe [29] are fast, straightforward algorithms for generating word
embeddings, or vector representations of words, often considered points in a semantic space. Their
embeddings perform well on downstream tasks, such as identifying word similarity by vector
comparison (e.g. cosine similarity) and solving analogies, such as the well known “man is to king as
woman is to queen”, by the addition and subtraction of respective embeddings [26, 27, 19].

In addition, the W2V algorithm has recently been adopted within the growing field of graph em-
bedding, where the typical aim is to represent graph nodes in a common latent space such that their
relative positioning can be used to predict edge relationships. Several state-of-the-art models for
graph representation incorporate the W2V algorithm to learn node embeddings based on random
walks over the graph [13, 30, 31]. Furthermore, word embeddings often underpin embeddings of
word sequences, e.g. sentences. Although sentence embedding models can be complex [8, 17], as
shown recently [38] they sometimes learn little beyond the information available in word embeddings.

Despite their relative ubiquity, much remains unknown of the W2V and GloVe algorithms, perhaps
most fundamentally we lack a theoretical understanding of (i) what is learned in the embedding
parameters; and (ii) why that is useful in downstream tasks. Answering such core questions is of
interest in itself, particularly since the algorithms are unsupervised, but may also lead to improved
embedding algorithms, or enable better use to be made of the embeddings we have. For example,
both algorithms generate two embedding matrices, but little is known of how they relate or should
interact. Typically one is simply discarded, whereas empirically their mean can perform well [29] and
elsewhere they are assumed identical [14, 4]. As for embedding interactions, a variety of heuristics
are in common use, e.g. cosine similarity [26] and 3CosMult [19].

1We refer exclusively, throughout, to the more common implementation Skipgram with negative sampling.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

42 Chapter 4. What the Vec? Towards Probabilistically Grounded Embeddings



Of works that seek to theoretically explain these embedding models [20, 14, 4, 9, 18], Levy and
Goldberg [20] identify the loss function minimised (implicitly) by W2V and, thereby, the relationship
between W2V word embeddings and the Pointwise Mutual Information (PMI) of word co-occurrences.
More recently, Allen and Hospedales [2] showed that this relationship explains the linear interaction
observed between embeddings of analogies. Building on these results, our key contributions are:

• to show how particular semantic relationships correspond to linear interactions of high dimensional
PMI vectors and thus to equivalent interactions of low dimensional word embeddings generated
by their linear projection, thereby explaining the semantic properties exhibited by embeddings of
W2V and GloVe;

• to derive a relationship between embedding matrices proving that they must differ, justifying the
heuristic use of their mean and enabling word embedding interactions – including the widely used
cosine similarity – to be semantically interpreted; and

• to establish a novel hierarchical mathematical inter-relationship between relatedness, similarity,
paraphrase and analogy (Fig 2).

2 Background

Word2Vec [25, 26] takes as input word pairs {(wir , cjr )}Dr=1 extracted from a large text corpus,
where target word wi∈E ranges over the corpus and context word cj ∈E ranges over a window of
size l, symmetric about wi (E is the dictionary of distinct words, n= |E|). For each observed word
pair, k random pairs (negative samples) are generated from unigram distributions. For embedding
dimension d, W2V’s architecture comprises the product of two weight matrices W,C∈Rd×n subject
to the logistic sigmoid function. Columns of W and C are the word embeddings: wi∈Rd, the ith
column of W, represents the ith word in E observed as the target word (wi); and cj ∈Rd, the jth

column of C, represents the jth word in E observed as a context word (cj).

Levy and Goldberg [20] show that the loss function of W2V is given by:

`W2V = −
n∑

i=1

n∑

j=1

#(wi, cj) log σ(w
>
i cj) +

k
D#(wi)#(cj) log(σ(−w>i cj)), (1)

which is minimised if w>i cj = Pi,j − log k, where Pi,j = log
p(wi, cj)
p(wi)p(cj)

is pointwise mutual
information (PMI). In matrix form, this equates to factorising a shifted PMI matrix S∈Rn×n:

W>C = S . (2)

GloVe [29] has the same architecture as W2V, but a different loss function, minimised when:

w>i cj = log p(wi, cj)− bi − bj + logZ, (3)

for biases bi, bj and normalising constant Z. In principle, the biases provide flexibility, broadening
the family of statistical relationships that GloVe embeddings can learn.

Analogies are word relationships, such as the canonical “man is to king as woman is to queen”,
that are of particular interest because their word embeddings appear to satisfy a linear relationship
[27, 19]. Allen and Hospedales [2] recently showed that this phenomenon follows from relationships
between PMI vectors, i.e. rows of the (unshifted) PMI matrix P∈Rn×n. In doing so, the authors
define (i) the induced distribution of an observation ◦ as p(E|◦), the probability distribution over all
context words observed given ◦; and (ii) that a word w∗ paraphrases a set of wordsW⊂E if the
induced distributions p(E|w∗) and p(E|W) are (elementwise) similar.

3 Related Work

While many works explore empirical properties of word embeddings (e.g. [19, 23, 5]), we focus here
on those that seek to theoretically explain why W2V and GloVe word embeddings capture semantic
properties useful in downstream tasks. The first of these is the previously mentioned derivation
by Levy and Goldberg [20] of the loss function (1) and the PMI relationship that minimises it (2).
Hashimoto et al. [14] and Arora et al. [4] propose generative language models to explain the structure
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found in word embeddings. However, both contain strong a priori assumptions of an underlying
geometry that we do not require (further, we find that several assumptions of [4] fail in practice
(Appendix D)). Cotterell et al. [9] and Landgraf and Bellay [18] show that W2V performs exponential
(binomial) PCA [7], however this follows from the (binomial) negative sampling and so describes the
algorithm’s mechanics, not why it works. Several works focus on the linearity of analogy embeddings
[4, 12, 2, 10], but only [2] rigorously links semantics to embedding geometry (S.2).

To our knowledge, no previous work explains how the semantic properties of relatedness, similarity,
paraphrase and analogy are all encoded in the relationships of PMI vectors and thereby manifest in
the low dimensional word embeddings of W2V and GloVe.

4 PMI: linking geometry to semantics

The derivative of W2V’s loss function (1) with respect to embedding wi, is given by:

1
D∇wi

`W2V =
n∑

j=1

(
p(wi, cj) + kp(wi)p(cj)︸ ︷︷ ︸

d
(i)
j

)(
σ(Si,j) −σ(w>i cj)︸ ︷︷ ︸

e
(i)
j

)
cj = C D(i)e(i) , (4)

for diagonal matrix D(i) = diag(d(i))∈Rn×n; d(i), e(i)∈Rn containing the probability and error
terms indicated; and all probabilities estimated empirically from the corpus. This confirms that (1) is
minimised if W>C=S (2), since all e

(i)
j =0, but that requires W and C to each have rank at least

that of S. In the general case, including the typical case d�n, (1) is minimised when probability
weighted error vectors D(i)e(i) are orthogonal to the rows of C. As such, embeddings wi can be
seen as a non-linear (due to the sigmoid function σ(·)) projection of rows of S, induced by the loss
function. (Note that the distinction between W and C is arbitrary: embeddings cj can also be viewed
as projections onto the rows of W.)

Recognising that the log k shift term is an artefact of the W2V algorithm (see Appendix A), whose
effect can be evaluated subsequently (as in [2]), we exclude it and analyse properties and interactions
of word embeddings wi that are projections of pi, the corresponding rows of P (PMI vectors). We
aim to identify the properties of PMI vectors that capture semantics and are then preserved in word
embeddings under the low-rank projection induced by a suitably chosen loss function.

4.1 The domain of PMI vectors

PMI vector pi∈Rn has a component PMI(wi, cj) for all context words cj ∈E , given by:

PMI(wi, cj) = log
p(cj ,wi)
p(wi)p(cj)

= log
p(cj |wi)
p(cj)

. (5)

Any difference in the probability of observing cj having observed wi, relative to its marginal
probability, can be thought of as due to wi. Thus PMI(wi, cj) captures the influence of one word
on another. Specifically, by reference to marginal probability p(cj): PMI(wi, cj)>0 implies cj is
more likely to occur in the presence of wi; PMI(wi, cj)<0 implies cj is less likely to occur given
wi; and PMI(wi, cj)=0 indicates that wi and cj occur independently, i.e. they are unrelated. PMI
thus reflects the semantic property of relatedness, as previously noted [36, 6, 15]. A PMI vector thus
reflects any change in the probability distribution over all words p(E), given (or due to) wi:

pi ,
{
log

p(cj |wi)
p(cj)

}
cj∈E , log p(E|wi)

p(E) . (6)

While PMI values are unconstrained in R, PMI vectors are constrained to an n−1 dimensional surface
S⊂Rn, where each dimension corresponds to a word (Fig 1) (although technically a hypersurface,
we refer to S simply as a “surface”). The geometry of S can be constructed step-wise from (6):

• the vector of numerator terms qi=p(E|wi) lies on the simplex Q⊂Rn;

• dividing all q∈Q (element-wise) by p=p(E)∈Q, gives probability ratio vectors q
p that lie on a

“stretched simplex”R⊂Rn (containing 1∈Rn) that has a vertex at 1
p(cj)

on axis j, ∀cj ∈E ; and

• the natural logarithm transformsR to the surface S, with pi=log p(E|wi)
p(E) ∈S, ∀wi∈E .
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Note, p = p(E) uniquely determines S. Considering each point s ∈ S as an element-wise log
probability ratio vector s=log q

p ∈S (q∈Q), shows S to have the properties (proofs in Appendix B):

P1 S, and any subsurface of S, is non-linear. PMI vectors are thus not constrained to a linear
subspace, identifiable by low-rank factorisation of the PMI matrix, as may seem suggested by (2).

P2 S contains the origin, which can be considered the PMI vector of the null word ∅, i.e. p∅ =
log p(E|∅)

p(E) = log p(E)
p(E) = 0 ∈ Rn.

P3 Probability vector q∈Q is normal to the tangent plane of S at s=log q
p ∈S .

P4 S does not intersect with the fully positive or fully negative orthants (excluding 0). Thus
PMI vectors are not isotropically (i.e. uniformly) distributed in space (as assumed in [4]).

P5 The sum of 2 points s + s′ lies in S only for certain s, s′∈S. That is, for any s∈S (s 6=0),
there exists a (strict) subset Ss⊂S, such that s + s′∈S iff s′∈Ss. Trivially 0∈Ss, ∀s∈S .

Note that while all PMI vectors lie in S, certainly not all (infinite) points in S correspond to the
(finite) PMI vectors of words. Interestingly, P2 and P5 allude to properties of a vector space, often
the desired structure for a semantic space [14]. Whilst the domain of PMI vectors is clearly not a
vector space, addition and subtraction of PMI vectors do have semantic meaning, as we now show.

Figure 1: The PMI surface S, showing sample PMI vectors of words (red dots)

4.2 Subtraction of PMI vectors finds similarity

Taking the definition from [2] (see S.2), we consider a word wi that paraphrases a word setW∈E ,
whereW={wj} contains a single word. Since paraphrasing requires distributions of local context
words (induced distributions) to be similar, this intuitively finds wi that are interchangeable with, or
similar to, wj : in the limit wj itself or, less trivially, a synonym. Thus, word similarity corresponds
to a low KL divergence between p(E|wi) and p(E|wj). Interestingly, the difference between the
associated PMI vectors:

ρi,j = pi − pj = log p(E|wi)
p(E|wj)

, (7)

is a vector of un-weighted KL divergence components. Thus, if dimensions were suitably weighted,
the sum of difference components (comparable to Manhattan distance but directed) would equate to
a KL divergence between induced distributions. That is, if qi = p(E|wi), then a KL divergence is
given by qi>ρi,j . Furthermore, qi is the normal to the surface S at pi (with unit l1 norm), by P3.
The projection onto the normal (to S) at pj , i.e. −qj>ρi,j , gives the other KL divergence. (Intuition
for the semantic interpretation of each KL divergence is discussed in Appendix A of [2].)

4
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4.3 Addition of PMI vectors finds paraphrases

From geometric arguments (P5), we know that only certain pairs of points in S sum to another point
in the surface. We can also consider the probabilistic conditions for PMI vectors to sum to another:

x = pi + pj = log p(E|wi)
p(E) + log

p(E|wj)
p(E)

= log
p(E|wi,wj)

p(E)︸ ︷︷ ︸
pi,j

− log
p(wi,wj |E)

p(wi|E)p(wj |E)︸ ︷︷ ︸
σij

+ log
p(wi,wj)
p(wi)p(wj)︸ ︷︷ ︸
τ ij

= pi,j − σij + τ ij1, (8)

where (overloading notation) pi,j ∈S is a vector of PMI terms involving p(E|wi, wj), the induced
distribution of wi and wj observed together;2 and σij∈Rn, τ ij∈R are the conditional and marginal
dependence terms indicated (as seen in [2]). From (8), if wi, wj ∈ E occur both independently
and conditionally independently given each and every word in E , then x=pi,j ∈S, and (from P5)
pj ∈Spi and pi∈Spj . If not, error vector εij =σij−τ ij1 separates x and pi,j and x /∈S, unless by
meaningless coincidence. (Note, whilst probabilistic aspects here mirror those of [2], we combine
these with a geometric understanding.) Although certainly pi,j ∈S , the extent to which pi,j≈pk for
some wk∈E depends on paraphrase error ρk,{i,j}=pk−pi,j , that compares the induced distributions
of wk and {wi, wj}. Thus the PMI vector difference (pi+pj)−pk for any words wi, wj , wk ∈E
comprises: εij a component between pi+pj and the surface S (reflecting word dependence); and
ρk,{i,j} a component along the surface (reflecting paraphrase error). The latter captures a semantic
relationship with wk, which the former may obscure, irrespective of wk. (Further geometric and
probabilistic implications are considered in Appendix C.)

4.4 Linear combinations of PMI vectors find analogies

PMI vectors of analogy relationships “wa is to wa∗ as wb is to wb∗” have been proven [2] to satisfy:

pb
∗ ≈ pa

∗ − pa + pb. (9)

The proof builds on the concept of paraphrasing (with error terms similar to those in Section 4.3),
comparing PMI vectors of analogous word pairs to show that pa + pb

∗ ≈ pa
∗
+ pb and thus (9).

5 Encoding PMI: from PMI vectors to word embeddings

Understanding how high dimensional PMI vectors encode semantic properties desirable in word
embeddings, we consider how they can be transferred to low dimensional representations. A key
observation is that all PMI vector interactions, for similarity (7), paraphrases (8) and analogies (9),
are additive, and are therefore preserved under linear projection. By comparison, the loss function
of W2V (1) projects PMI vectors non-linearly, and that of GloVe (3) does project linearly, but not
(necessarily) PMI vectors. Linear projection can be achieved by the least squares loss function:3

`LSQ = 1
2

n∑

i=1

n∑

j=1

(
wi
>cj − PMI(wi, cj)

)2
. (10)

`LSQ is minimised when ∇W>`LSQ =(W>C−P)C>=0, or W>=P C†, for C†=C>(CC>)−1
the Moore–Penrose pseudoinverse of C. This explicit linear projection allows interactions performed
between word embeddings, e.g. dot product, to be mapped to interactions between PMI vectors, and
thereby semantically interpreted. However, we do better still by considering how W and C relate.

5.1 The relationship between W and C

Whilst W2V and GloVe train two embedding matrices, typically only W is used and C discarded.
Thus, although relationships are learned between W and C, they are tested between W and W. If

2Whilst wi, wj are both target words, by symmetry we can interchange roles of context and target words to
compute p(E|w,w′) based on the distribution of target words for which wi and wj are both context words.

3We note that the W2V and GloVe loss functions include probability weightings (as considered in [35]),
which we omit for simplicity.
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W and C are equal, the distinction falls away, but that is not found to be the case in practice. Here,
we consider why typically W 6=C and, as such, what relationship between W and C does exist.

If the symmetric PMI matrix P is positive semi-definite (PSD), its closest low-rank approximation
(minimising `LSQ) is given by the eigendecomposition P = ΠΛΠ>, Π,Λ ∈ Rn×n, Π>Π = I;
and `LSQ is minimised by W=C=S1/2U>, where S∈Rd×d, U∈Rd×n are Λ, Π, respectively,
truncated to their d largest eigenvalue components. Any matrix pair W∗=M>W, C∗=M−1W,
also minimises `LSQ (for any invertible M∈Rd×d), but of these W, C are unique (up to rotation
and permutation) in satisfying W=C, a preferred solution for learning word embeddings since the
number of free parameters is halved and consideration of whether to use W, C or both falls away.

However, P is not typically PSD in practice and this preferred (real) factorisation does not exist
since P has negative eigenvalues, S1/2 is complex and any W,C minimising `LSQ with W=C
must also be complex. (Complex word embeddings arise elsewhere, e.g. [16, 22], but since the word
embeddings we examine are real we keep to the real domain.) By implication, any W,C∈Rd×n
that minimise `LSQ cannot be equal, contradicting the assumption W=C sometimes made [14, 4].
Returning to the eigendecomposition, if S contains the d largest absolute eigenvalues and U the
corresponding eigenvectors of P, we define I′= sign(S) (i.e. I′ii=±1) such that S= |S|I′. Thus,
W= |S|1/2U>and C=I′W can be seen to minimise `LSQ (i.e. W>C≈P) with W 6=C but where
corresponding rows of W, C (denoted by superscript) satisfy Wi=±Ci (recall word embeddings
wi, ci are columns of W,C). Such W,C can be seen as quasi-complex conjugate. Again, W,C
can be used to define a family of matrix pairs that minimise `LSQ, of which W,C themselves are a
most parameter efficient choice, with (n+1)d free parameters compared to 2nd.

5.2 Interpreting embedding interactions

Various word embedding interactions are used to predict semantic relationships, e.g. cosine similarity
[26] and 3CosMult [19], although typically with little theoretical justification. With a semantic un-
derstanding of PMI vector interactions (S.4) and the derived relationship C=I′W, we now interpret
commonly used word embedding interactions and evaluate the effect of combining embeddings of W
only (e.g. w>i wj), rather than W and C (e.g. w>i cj). For use below, we note that W>C=USU>,
C† =U|S|−1/2I′ and define: reconstruction error matrix E=P −W>C, i.e. E=USU>where
U,S contain the n−d smallest absolute eigenvalue components of Π, Σ (as omitted from U, S);
F=U(S− |S|2 )U>, comprising the negative eigenvalue components of P; and mean embeddings ai

as the columns of A= W+C
2 =U|S|1/2I′′∈Rd×n, where I′′= I+I′

2 (i.e. I′′ii∈{0,1}).
Dot Product: We compare the following interactions, associated with predicting relatedness:

W, C : w>i cj = Ui S Uj> = Pi,j −Ei,j

W,W : w>i wj = Ui |S|Uj> = Ui(S− (S−|S|))Uj> = Pi,j −Ei,j − 2Fi,j

A, A : a>i aj = Ui |S| I′′Uj> = Ui(S− (S− |S|2 ))Uj> = Pi,j −Ei,j − Fi,j

This shows that w>i wj overestimates the PMI approximation given by w>i cj by twice any component
relating to negative eigenvalues – an overestimation that is halved using mean embeddings, a>i aj .

Difference sum: (wi −wj)
>1 = (pi − pj)C†1 =

∑n
k=1 xk log

p(ck|wi)
p(ck|wj)

, x = U|S|−1/2I′1
Thus, summing over the difference of embedding components compares to a KL divergence between
induced distributions (and so similarity) more so than for PMI vectors (S.4.2) as dimensions are
weighted by xk. However, unlike a KL divergence, x is not a probability distribution and does
not vary with wi or wj . We speculate that between x and the omitted probability weighting of the
loss function, the dimensions of low probability words are down-weighted, mitigating the effect of
“outliers” to which PMI is known to be sensitive [37], and loosely reflecting a KL divergence.

Euclidean distance: ‖wi −wj‖2 = ‖(log p(E|wi)
p(E|wj)

)C†‖2 shows no obvious meaning.

Cosine similarity: Surprisingly, w>i wj

‖wi‖‖wj‖ , as often used effectively to predict word relatedness
and/or similarity [33, 5], has no immediate semantic interpretation. However, recent work [3]
proposes a more holistic description of relatedness than PMI(wi, wj)>0 (S.4.1): that related words

6

4.2. The Paper 47



Table 1: Accuracy in semantic tasks using different loss functions on the text8 corpus [24].

Model Loss Relationship Relatedness [1] Similarity [1] Analogy [25]

W2V W2V W>C ≈ P .628 .703 .283
W=C LSQ W>W ≈ P .721 .786 .411
LSQ LSQ W>C ≈ P .727 .791 .425

(wi, wj) have multiple positive PMI vector components in common, because all words associated
with any common semantic “theme” are also more likely to co-occur. The strength of relatedness
(similarity being the extreme case) is given by the number of common word associations, as reflected
in the dimensionality of a common aggregate PMI vector component, which projects to a common
embedding component. The magnitude of such common component is not directly meaningful, but
as relatedness increases and wi, wj share more common word associations, the angle between their
PMI vectors, and so too their embeddings, narrows, justifying the widespread use of cosine similarity.

Other statistical word embedding relationships assumed in [4] are considered in Appendix D.

6 Empirical evidence

Word embeddings (especially those of W2V) have been well empirically studied, with many exper-
imental findings. Here we draw on previous results and run test experiments to provide empirical
support for our main theoretical results:

1. Analogies form as linear relationships between linear projections of PMI vectors (S.4.4)
Whilst previously explained in [2], we emphasise that their rationale for this well known phe-
nomenon fits precisely within our broader explanation of W2V and GloVe embeddings. Further,
re-ordering paraphrase questions is observed to materially affect prediction accuracy [23], which
can be justified from the explanation provided in [2] (see Appendix E).

2. The linear projection of additive PMI vectors captures semantic properties more accurately than
the non-linear projection of W2V (S.5).
Several works consider alternatives to the W2V loss function [20, 21], but none isolates the effect
of an equivalent linear loss function, which we therefore implement (detail below). Comparing
models W2V and LSQ (Table 1) shows a material improvement across all semantic tasks from
linear projection.

3. Word embedding matrices W and C are dissimilar (S.5.1).
W, C are typically found to differ, e.g. [26, 29, 28]. To demonstrate the difference, we include
an experiment tying W=C. Comparing models W=C and LSQ (Table 1) shows a small but
consistent improvement in the former despite a lower data-to-parameter ratio.

4. Dot products recover PMI with decreasing accuracy: w>i cj ≥ a>i aj ≥ w>i wj (S.5.2).

The use of average embeddings a>i aj over w>i wj is a well-known heuristic [29, 21]. More
recently, [5] show that relatedness correlates noticeably better to w>i cj than either of the “sym-
metric” choices (a>i aj or w>i wj).

5. Relatedness is reflected by interactions between W and C embeddings, and similarity is reflected
by interactions between W and W. (S.5.2)
Asr et al. [5] compare human judgements of similarity and relatedness to cosine similarity between
combinations of W, C and A. The authors find a “very consistent” support for their conclusion that
“WC ... best measures ... relatedness” and “similarity [is] best predicted by ... WW”. An example
is given for house: w>i wj gives mansion, farmhouse and cottage, i.e. similar or synonymous
words; w>i cj gives barn, residence, estate, kitchen, i.e. related words.

Models: As we perform a standard comparison of loss functions, similar to [20, 21], we leave
experimental details to Appendix F. In summary, we learn 500 dimensional embeddings from word
co-occurrences extracted from a standard corpus (“text8” [24]). We implement loss function (1)
explicitly as model W2V . Models W=C and LSQ use least squares loss (10), with constraint W=C
in the latter (see point 3 above). Evaluation on popular data sets [1, 25] uses the Gensim toolkit [32].
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Figure 2: Interconnection between semantic relationships: relatedness is a base pairwise comparison
(measured by PMI); global relatedness considers relatedness to all words (PMI vector); similarity,
paraphrase and analogy depend on global relatedness between words (w∈E) and word sets (W⊆E).

7 Discussion

Having established mathematical formulations for relatedness, similarity, paraphrase and analogy
that explain how they are captured in word embeddings derived from PMI vectors (S.4), it can be
seen that they also imply an interesting, hierarchical interplay between the semantic relationships
themselves (Fig 2). At the core is relatedness, which correlates with PMI, both empirically [36, 6, 15]
and intuitively (S.4.2). As a pairwise comparison of words, relatedness acts somewhat akin to a
kernel (an actual kernel requires P to be PSD), allowing words to be considered numerically in terms
of their relatedness to all words, as captured in a PMI vector, and compared according to how they
each relate to all other words, or globally relate. Given this meta-comparison, we see that one word is
similar to another if they are globally related (1-1); a paraphrase requires one word to globally relate
to the joint occurrence of a set of words (1-n); and analogies arise when joint occurrences of word
pairs are globally related (n-n). Continuing the “kernel” analogy, the PMI matrix mirrors a kernel
matrix, and word embeddings the representations derived from kernelised PCA [34].

8 Conclusion

In this work, we take two previous results – the well known link between W2V embeddings and
PMI [20], and a recent connection between PMI and analogies [2] – to show how the semantic
properties of relatedness, similarity, paraphrase and analogy are captured in word embeddings that
are linear projections of PMI vectors. The loss functions of W2V (2) and GloVe (3) approximate
such a projection: non-linearly in the case of W2V and linearly projecting a variant of PMI in GloVe;
explaining why their embeddings exhibit semantic properties useful in downstream tasks.

We derive a relationship between embedding matrices W and C, enabling word embedding interac-
tions (e.g. dot product) to be semantically interpreted and justifying the familiar cosine similarity as a
measure of relatedness and similarity. Our theoretical results explain several empirical observations,
e.g. why W and C are not found to be equal despite representing the same words, their symmetric
treatment in the loss function and a symmetric PMI matrix; why mean embeddings (A) are often
found to outperform those from either W or C; and why relatedness corresponds to interactions
between W and C, and similarity to interactions between W and W.

We discover an interesting hierarchical structure between semantic relationships: with relatedness
as a basic pairwise comparison, similarity, paraphrase and analogy are defined according to how
target words each relate to all words. Error terms arise in the latter higher order relationships due to
statistical dependence between words. Such errors can be interpreted geometrically with respect to
the hypersurface S on which all PMI vectors lie, and can, in principle, be evaluated from higher order
statistics (e.g. trigram co-occurrences).

Several further details of W2V and GloVe remain to be explained that we hope to address in future
work, e.g. the weighting of PMI components over the context window [31], the exponent 3/4 often
applied to unigram distributions [26], the probability weighting in the loss function (S.5), and an
interpretation of the weight vector x in embedding differences (S.5.2).
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A The W2V shift

The number of negative samples per observed word pair arises in the optimum of the W2V loss
function (4) as the so-called shift term, −log k. The shift is of a comparable magnitude to empirical
PMI values [2] and causes dot product interactions to take more negative values, distorting embeddings
relative to there being no shift term.

Under certain word embedding interactions, e.g. the linear combination associated with analogies,
the shift terms cancel and thus have no effect [2]. However, elsewhere the shift term has been seen to
have a detrimental impact on downstream task performance that removing it corrects [28].

Stemming from an arbitrarily chosen hyper-parameter k, the shift term is an artefact of the W2V
algorithm that vanishes only if k=1. Setting that explicitly reduces the number of negative samples
and results in poorer performance of the embeddings. Alternatively, k can be effectively set to 1 by
averaging the loss function components of each set of k negative samples, i.e. multiplying by 1

k .

B Properties of the PMI surface: proofs (Sec 4.1)

P1 S, and any subsurface of S, is non-linear. This follows directly from the construction of S,
in particualr the application of the natural logarithm to the linear surfaceR.

P2 S contains the origin Follows from construction: p = p ∈ Q implies 1 = p
p(E) ∈ R, and

therefore 0=log 1∈S
P3 Probability vector q∈Q is normal to the tangent plane of S at s = log q

p ∈S. Consider
q = (q1, ..., qn) ∈ Q as having free parameters qj<n that determine qn, and let J ∈ Rn×(n−1)

define the tangent plane to S at s, i.e. Ji,j=
∂si
∂qj

. It can be seen that for i<n, Ji,j = q−1j if i=j,
and Ji,j=0 otherwise; and that Jn,j=−(1−

∑n−1
j=1

qj)
−1 = −q−1n , ∀j. It follows that q>J = 0

and q is therefore normal to the tangent plane.

P4 S does not intersect with the fully positive or fully negative orthants (excluding 0). This
follows from the fact that components of one probability distribution, e.g. p(E|wi), cannot all be
greater (or all less) than their counterpart in another, e.g. p(E). Any point in the fully positive or
fully negative orthants would contradict this.

P5 The sum of 2 points s + s′ lies in S only for certain s, s′ ∈S. For probability vectors p,
q, q′ ∈Q and s = log(q/p), s′ = log(q′/p)∈S, we consider operations element-wise with
corresponding vector elements denoted by lower case: s + s′ ∈ S iff s + s′ = log(q∗/p) for
some probability vector q∗∈Q. Thus, (q/p)(q′/p) = q∗/p, or simply (q/p)q′ = q∗, whereby
components (q/p)q′ must sum to 1, or in vector terms (q/p)>q′ = 1. since q′ is a probability
we can also say (q/p− 1)>q′ = 0, and we have that s + s′∈S only if s′ = log(q′/p)∈S with
q′ a probability vector orthogonal to (q/p)− 1. We see that the intersection of the hyperplane
orthogonal to (q/p)− 1 and the simplex defines points q′ that correspond to points in s′∈S that
can be added to s, i.e. Ss (See Figs 3a and 3b). Trivially 0∈Ss, ∀s∈S .

(a) Given point s′ = logq′/p∈S, those q′ on
simplex Q such that s′ = logq′/p satisfies s+ s′∈S .

(b) Subsurfaces Ss for a given point s∈S, and
Ss′ for any point s′∈Ss; showing also s+ s′∈S

Figure 3: Understanding the PMI surface S.
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C Further Geometric properties of the PMI surface

Combining both geometric and probabilistic arguments shows:

1. PMI vectors of words wj that are both conditionally and marginally independent of word wi, lie
in a strict subsurface Spi⊂S;

2. only pj ∈ Spi add to pi to give another point on the surface, specifically pi + pj = pi,j

corresponding to the joint occurrence of wi and wj ;

3. for any pj /∈ Spi , pi+pj is off the surface, separated from p{w,w
′} by an error vector εi,j ,

reflecting statistical dependence between wi and wj .

4. By symmetry, s′∈Ss iff s∈Ss′ , thus subsurfaces occur in distinct pairs (Ss,Ss′ ) that partition all
points in S. Furthermore, for any pair of points t∈Ss, t′∈Ss′ , their sum t + t′∈S and every
s∈S is the sum of a unique such pair, which we denote Ss ⊕Ss′ = S , analogous to the Cartesian
product.

D Comparison to embedding relationships of previous works

The following relationships between W2V embeddings and probabilities are assumed in [4]:

wi = ci, log p(wi) ≈ ‖wi‖
2d

2 − logZ and log p(wi, cj) ≈ ‖wi+wj‖
2d

2
− 2 logZ,

By rearranging w>i cj ≈ PMI(wi, cj), as is claimed to follow from those above, we prove (below):

log p(wi) ≈ −wi
>ci

2 + log p(wi,ci)
2 and log p(wi, cj) ≈ −(wi−wj)

>(ci−cj)
2 +

log p(wi,ci)p(wj ,cj)
2 .

Having previously shown that wi 6=ci (Sec 5.1), if we nevertheless assume that equality for the sake
of comparison, it can be seen that the relationships above differ fundamentally, e.g. having opposite
sign. Also, the assumed constant Z can be seen to vary arbitrarily with the extent to which each word
co-occurs with itself.

D.1 Proofs

Noting p(wi)=p(ci), since the difference is only the role attributed to a word, shows:

w>i cj ≈ log
p(wi,cj)
p(wi)p(cj)

= log p(wi, cj)− log p(wi)− log p(wj) (11)

If i = j, i.e. target and context words are the same, it follows that:

w>i ci ≈ log p(wi, ci)− 2 log p(wi)

i.e. log p(wi) ≈ −w
>
i ci

2 + log p(wi,ci)
2 (12)

In the general case:

(wi −wj)
>(ci − cj) = w>i ci −w>j ci −w>i cj + w>j cj

∗
= w>i ci + w>j cj ,−2w>i cj

(11,12)≈ (log p(wi, ci)− 2 log p(wi)) + (log p(wj , cj)− 2 log p(wj))

− 2(log p(wi, cj)− log p(wi)− log p(wj))

= log p(wi, ci) + log p(wj , cj)− 2 log p(wi, cj)

thus log p(wi, cj) ≈ −(wi−wj)
>(ci−cj)
2 +

log p(wi,ci)p(wj ,cj)
2 . (13)

The step marked * relies on w>i cj = w>i (I
′wj) = (w>i I′)wj = c>i wj = w>j ci, which follows

from C=I′W.
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E Why order matters in analogies

Here, we develop the explanation of [2] to interpret the finding of Linzen [23] that some words within
a particular analogy are more accurately predicted than others (see their “Reverse (add)”).

From [2], we see that for analogy “wa is to wa∗ as wb is to wb∗”, a “total error” term arises in
the relationship pb

∗
+ pa = pa

∗
+ pb between PMI vectors, and thus also word embeddings, due

to statistical interactions between word pairs {wa, wb∗} and {wb, wa∗}. Thus if wb∗ is considered
“missing” and to be predicted to complete the analogy, the statistical independence with wa is relevant,
whereas if wb is to be predicted, statistical independence with wa∗ is relevant. One of these may
happen to exhibit higher independence, thus introduces less error and so be “easier to predict”.

Separately, PMI vectors are unevenly distributed due to the non-uniform Zipf distribution of words.
As such, some PMI vectors may happen to lie in more “cluttered” regions than others, an effect that
may be exacerbated when projected to the far fewer dimensions of word embeddings. Thus, for the
same magnitude error terms, words whose PMI vectors lie in more cluttered regions may be “harder
to predict” due to many potential false positives nearby.

These two reasons explain (more concretely that the intuition of [23]) why the same analogy might
more accurately be solved by predicting wb rather than wb∗ , or vice versa.

F Experimental details

F.1 Training

PMI values are pre-computed from the corpus similarly to [29], substituting −1 for missing PMI values.
We use the text8 data set [24] containing c.17m tokens and c.0.5m unique words (sourced from the
English Wikipedia dump, 03/03/06). 5 random word pairs (negative samples) are generated for each
true word co-occurrence (positive sample) according to unigram word distributions. Dimensionality
is 500. Words appearing less than 5 times are filtered and down-sampling is applied (see [26]). All
models converged within 100 epochs (full passes over the PMI matrix). Learning rates that worked
well were selected for each model: 0.01 for the least squares models, 0.007 for the W2V loss function.
Results are averaged over 3 random seeds.

F.2 Testing

Embeddings are evaluated on relatedness, similarity and analogy tasks using WordSim353 [11, 1].
Ranking is by cosine similarity and evaluation compares Spearman’s correlation between rankings
and human-assigned similarity scores. Analogies use Google’s analogy data set [25] of c.20k semantic
and syntactic analogy questions “wa is to wa∗ as wb is to ..?”. Out-of-vocabulary words are filtered
as standard [21]. Accuracy is computed by comparing argminwb∗ ‖wa −wa∗ −wb + wb∗‖ to the
labelled answer.
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4.3 Impact

According to Google Scholar, the paper has received 12 citations as of August 2021.
As with Analogies Explained, the potential impact of this paper may extend to the
many other domains where the SGNS algorithm has been applied. The paper provides
theoretical grounding for previous heuristics employed by practitioners, such as the use
of average embeddings.

4.4 Discussion

What the Vec extends the previous findings of Analogies Explained to give a fuller
understanding of PMI-based embeddings, their domain and how their interactions entail
semantic meaning. The paper introduces two novel perspectives that may be useful to
pursue in future work:

• a geometric view of the PMI surface S, the domain of word embeddings, a d-
dimensional hyper-surface in |E| dimensions (where d and |E| are typically of order
102–103 and 105–106, resp.). This perspective allows meaningful probabilistic
quantities, e.g. KL divergences, to be considered geometrically, which may lead
to more principled word embedding comparison metrics than current heuristics,
such as cosine similarity.

• a potential parallel to kernel theory: kernels allow objects to be numerically
represented, wi → φ(wi), and compared by inner product φ(wi)

>φ(wj); word
embeddings enumerate words wi = φ(wi), which are compared by a dot product
w>i wj (we note that the PMI matrix factorised by word embeddings is not positive
semi-definite, as required of true kernels).

While the paper clarifies several points left outstanding in Analogies Explained and
related works, various questions remain in terms of what word embeddings learn and
how they capture semantics. We note these and other limitations we see in the paper:

• to consider interactions of word embeddings analytically, the paper assumes em-
beddings to be derived from PMI vectors under unweighted, linear projection,
whereas projections are weighted in SGNS and GloVe and also non-linear for
SGNS. More accurate analysis of the loss functions may be possible, e.g. by con-
sidering their Taylor approximations.

• several aspects of word embedding algorithms remain unexplained, e.g. the effect
of context window size and the raising of marginal noise distribution probabilities
to the power 0.75,

• two mathematical interpretations are given for the relatedness of words wi, wj :

(i) the single value PMI(wi, wj) that reflects their direct correlation, as might
capture relationships between words such as hot and dog ; and

(ii) a relationship between full PMI-vectors, as might capture thematic related-
ness of words that co-occur with many common words, e.g. milk and cheese.

Differentiating types of relatedness may require more precise linguistic definitions
and corresponding data sets, e.g. as considered by Kacmajor and Kelleher (2020);



4.4. Discussion 57

• As noted previously for Analogies Explained, the variable performance of the vec-
tor offset method remains unexplained, it is also unclear whether the probabilistic
definition of analogies, based on word transformations, reflects all semantic rela-
tion types.

Picking up on the last point, there are in fact several indications that the definition of
analogies in Analogies Explained, as word pairs that share a common word transforma-
tion, may not be appropriate for all semantic relations:

(i) word transformations are 1-to-1 (subject to synonyms) whereas relations can also
be 1-to-many, many-to-1 or many-to-many;

(ii) two entities may be related by non-equivalent relations that require distinct repre-
sentations, e.g. 〈kitten, young of, cat〉, 〈kitten, smaller than, cat〉 (Hakami et al.,
2018), whereas there is only one vector offset between their embeddings;

(iii) performance of the vector offset method is observed to vary significantly for rela-
tions of different semantic types (Levy and Goldberg, 2014a; Köper et al., 2015;
Linzen, 2016; Drozd et al., 2016); and

(iv) the KGR model TransE (Bordes et al., 2013), which implements the vector offset
method, is found to be outperformed by other KGR models, e.g. MuRE (Balažević
et al., 2019b).

Although Analogies Explained describes a family of analogy relations that correspond
to vector offsets, point (ii) above proves that a vector offset cannot apply to all seman-
tic relation types if distinct relations between a common word pair are to have distinct
representations. Furthermore, recent research in human cognition concludes that the
vector offset is “limited in the range of semantic relations that it can capture” and in
explaining human analogy judgements (Peterson et al., 2020). Hence, understanding
more expressive relation representations, which subsume the vector offset, may help us
consider how humans reason about concepts and their relations. Alternative functions
for representing relations might differ structurally, e.g. vector offset vs a bi-linear op-
erator (Hakami et al., 2018), or parametrically, as in knowledge graph representation
models. However, as discussed in §3.1, there are limitations to how analogy relations
can be modelled given only two word embeddings (of a, a∗), hence there may be an
upper bound on how well analogy relations can be represented. To model each rela-
tion on a bespoke basis requires multiple related word pairs, as in labelled analogy sets
(Bollegala et al., 2015; Drozd et al., 2016) or knowledge graphs.





Chapter 5

Interpreting Knowledge Graph
Representation from Word

Embeddings

The main contribution of this chapter is the paper Interpreting Knowledge Graph Rela-
tion Representation from Word Embeddings (Interpreting KGs), which was published
at the International Conference on Learning Representations in May 2021. We first
outline the motivation for this work (§5.1), before including the paper itself (§5.2),
followed by a summary of its impact so far (§5.3) and a discussion (§5.4).

5.1 Motivation

The motivation for this paper is that of the overall thesis: to try to understand how
knowledge graph entities and their semantic relations can be encoded in the geometry
of embeddings and relation representations. This goal is inspired by well-performing
knowledge graph representation models that compose entity embeddings and relation
representations linearly (e.g. Nickel et al., 2011; Bordes et al., 2013; Yang et al., 2015;
Trouillon et al., 2016; Balažević et al., 2019c) (§2.2). Such models beg the question
how their relatively simple loss functions can capture every day knowledge and enable
unknown facts to be predicted. Understanding the latent semantic structure behind
these models is both of natural interest in itself and may lead to the development
of representation models that achieve greater link prediction performance, are more
interpretable or more uncertainty-aware.

The approach of the paper follows from recent understanding of how semantic relations
between words can be encoded in the semantic space of PMI-based embeddings (§3, §4).
In particular we build on the understanding of the vector offset method for analogies,
cognisant of its apparent limitations for representing all semantic relations (§4.4).

5.2 The Paper

Author Contributions

The paper is co-authored by myself, Ivana Balažević and Timothy Hospedales, with
Ivana and myself joint lead authors with equal contribution. The work lies at the
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intersection of my work towards theoretically understanding how semantics are encoded
in the geometry of embeddings (see previous chapters) and Ivana’s work on learning
knowledge graph representations. Ivana and I co-wrote the paper and, through ongoing
discussions, jointly developed the semantic relation types, their relation conditions and
the corresponding theoretical score functions. I had the initial idea for the paper based
on the findings of my earlier work on word embeddings, which developed into the central
theory. Ivana and I discussed all experiments, which Ivana implemented and ran. Tim
provided useful suggestions and helped in revising the final paper.
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ABSTRACT

Many models learn representations of knowledge graph data by exploiting its
low-rank latent structure, encoding known relations between entities and enabling
unknown facts to be inferred. To predict whether a relation holds between entities,
embeddings are typically compared in the latent space following a relation-specific
mapping. Whilst their predictive performance has steadily improved, how such
models capture the underlying latent structure of semantic information remains
unexplained. Building on recent theoretical understanding of word embeddings,
we categorise knowledge graph relations into three types and for each derive
explicit requirements of their representations. We show that empirical properties of
relation representations and the relative performance of leading knowledge graph
representation methods are justified by our analysis.

1 INTRODUCTION

Knowledge graphs are large repositories of binary relations between words (or entities) in the form
of (subject, relation, object) triples. Many models for representing entities and relations have been
developed, so that known facts can be recalled and previously unknown facts can be inferred, a task
known as link prediction. Recent link prediction models (e.g. Bordes et al., 2013; Trouillon et al.,
2016; Balažević et al., 2019b) learn entity representations, or embeddings, of far lower dimensionality
than the number of entities, by capturing latent structure in the data. Relations are typically represented
as a mapping from the embedding of a subject entity to those of related object entities. Although the
performance of link prediction models has steadily improved for nearly a decade, relatively little is
understood of the low-rank latent structure that underpins them, which we address in this work. The
outcomes of our analysis can be used to aid and direct future knowledge graph model design.

We start by drawing a parallel between the entity embeddings of knowledge graphs and context-free
word embeddings, e.g. as learned by Word2Vec (W2V) (Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014). Our motivating premise is that the same latent word features (e.g. meaning(s), tense,
grammatical type) give rise to the patterns found in different data sources, i.e. manifesting in word co-
occurrence statistics and determining which words relate to which. Different embedding approaches
may capture such structure in different ways, but if it is fundamentally the same, an understanding
gained from one embedding task (e.g. word embedding) may benefit another (e.g. knowledge
graph representation). Furthermore, the relatively limited but accurate data used in knowledge graph
representation differs materially from the highly abundant but statistically noisy text data used for
word embeddings. As such, theoretically reconciling the two embedding methods may lead to unified
and improved embeddings learned jointly from both data sources.

Recent work (Allen & Hospedales, 2019; Allen et al., 2019) theoretically explains how semantic
properties are encoded in word embeddings that (approximately) factorise a matrix of pointwise
mutual information (PMI) from word co-occurrence statistics, as known for W2V (Levy & Goldberg,
2014). Semantic relationships between words, specifically similarity, relatedness, paraphrase and
analogy, are proven to manifest as linear geometric relationships between rows of the PMI matrix
(subject to known error terms), of which word embeddings can be considered low-rank projections.
This explains, for example, the observations that similar words have similar embeddings and that
embeddings of analogous word pairs share a common “vector offset” (e.g. Mikolov et al., 2013b).

∗Equal contribution
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Table 1: Score functions of representative linear link prediction models. R ∈ Rde×de and r ∈ Rde are the
relation matrix and translation vector, W ∈ Rde×dr×de is the core tensor and bs, bo ∈ R are the entity biases.

Model Linear Subcategory Score Function

TransE (Bordes et al., 2013) additive −‖es + r − eo‖22
DistMult (Yang et al., 2015) multiplicative (diagonal) e>s Reo
TuckER (Balažević et al., 2019b) multiplicative W×1 es ×2 r ×3 eo
MuRE (Balažević et al., 2019a) multiplicative (diagonal) + additive −‖Res+r−eo‖22+ bs + bo

We extend this insight to identify geometric relationships between PMI-based word embeddings
that correspond to other relations, i.e. those of knowledge graphs. Such relation conditions define
relation-specific mappings between entity embeddings (i.e. relation representations) and so provide
a “blue-print” for knowledge graph representation models. Analysing the relation representations
of leading knowledge graph representation models, we find that various properties, including their
relative link prediction performance, accord with predictions based on these relation conditions,
supporting the premise that a common latent structure is learned by word and knowledge graph
embedding models, despite the significant differences between their training data and methodology.

In summary, the key contributions of this work are:
• to use recent understanding of PMI-based word embeddings to derive geometric attributes of

a relation representation for it to map subject word embeddings to all related object word
embeddings (relation conditions), which partition relations into three types (§3);

• to show that both per-relation ranking as well as classification performance of leading link
prediction models corresponds to the model satisfying the appropriate relation conditions, i.e. how
closely its relation representations match the geometric form derived theoretically (§4.1); and

• to show that properties of knowledge graph representation models fit predictions based on relation
conditions, e.g. the strength of a relation’s relatedness aspect is reflected in the eigenvalues of its
relation matrix (§4.2).

2 BACKGROUND

Knowledge graph representation: Recent knowledge graph models typically represent entities
es, eo as vectors es, eo ∈ Rde , and relations as transformations in the latent space from subject to
object entity embedding, where the dimension de is far lower (e.g. 200) than the number of entities
ne (e.g. >104). Such models are distinguished by their score function, which defines (i) the form of
the relation transformation, e.g. matrix multiplication and/or vector addition; and (ii) the measure
of proximity between a transformed subject embedding and an object embedding, e.g. dot product
or Euclidean distance. Score functions can be non-linear (e.g. Dettmers et al., 2018), or linear and
sub-categorised as additive, multiplicative or both. We focus on linear models due to their simplicity
and strong performance at link prediction (including state-of-the-art). Table 1 shows the score
functions of competitive linear knowledge graph embedding models spanning the sub-categories:
TransE (Bordes et al., 2013), DistMult (Yang et al., 2015), TuckER (Balažević et al., 2019b) and
MuRE (Balažević et al., 2019a).

Additive models apply a relation-specific translation to a subject entity embedding and typically use
Euclidean distance to evaluate proximity to object embeddings. A generic additive score function is
given by φ(es, r, eo)=−‖es+r−eo‖22+bs+bo. A simple example is TransE, where bs=bo=0.

Multiplicative models have the generic score function φ(es, r, eo)=e>s Reo, i.e. a bilinear product of
the entity embeddings and a relation-specific matrix R. DistMult is a simple example with R diagonal
and so cannot model asymmetric relations (Trouillon et al., 2016). In TuckER, each relation-specific
R=W×3 r is a linear combination of dr “prototype” relation matrices in a core tensor W∈Rde×dr×de

(×n denoting tensor product along mode n), facilitating multi-task learning across relations.

Some models, e.g. MuRE, combine both multiplicative (R) and additive (r) components.

Word embedding: Algorithms such as Word2Vec (Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014) generate low-dimensional word embeddings that perform well on downstream tasks
(Baroni et al., 2014). Such models predict the context words (cj) observed around a target word (wi)
in a text corpus using shallow neural networks. Whilst recent language models (e.g. Devlin et al.,
2018; Peters et al., 2018) achieve strong performance using contextualised word embeddings, we
focus on “context-free” embeddings since knowledge graph entities have no obvious context and,
importantly, they offer insight into embedding interpretability.

2
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Levy & Goldberg (2014) show that, for a dictionary of ne unique words and embedding dimension
de� ne, W2V’s loss function is minimised when its embeddings wi, cj form matrices W,C ∈
Rde×ne that factorise a pointwise mutual information (PMI) matrix of word co-occurrence statistics
(PMI(wi, cj)=log

P (wi,cj)
P (wi)P (cj)

), subject to a shift term. This result relates W2V to earlier count-based
embeddings and specifically PMI, which has a history in linguistic analysis (Turney & Pantel, 2010).
From its loss function, GloVe can be seen to perform a related factorisation.

Recent work (Allen & Hospedales, 2019; Allen et al., 2019) shows how the semantic relationships
of similarity, relatedness, paraphrase and analogy are encoded in PMI-based word embeddings
by recognising such embeddings as low-rank projections of high dimensional rows of the PMI
matrix, termed PMI vectors. Those semantic relationships are described in terms of multiplicative
interactions between co-occurrence probabilities (subject to defined error terms), that correspond to
additive interactions between (logarithmic) PMI statistics, and hence PMI vectors. Thus, under a
sufficiently linear projection, those semantic relationships correspond to linear relationships between
word embeddings. Note that although the relative geometry reflecting semantic relationships is
preserved, the direct interpretability of dimensions, as in PMI vectors, is lost since the embedding
matrices can be arbitrarily scaled/rotated if the other is inversely transformed. We state the relevant
semantic relationships on which we build, denoting the set of unique dictionary words by E :

• Paraphrase: word subsetsW ,W∗⊆E are said to paraphrase if they induce similar distributions
over nearby words, i.e. p(E|W)≈p(E|W∗), e.g. {king} paraphrases {man, royal}.

• Analogy: a common example of an analogy is “woman is to queen as man is to king” and can
be defined as any set of word pairs {(wi, w

∗
i )}i∈I for which it is semantically meaningful to say

“wa is to w∗a as wb is to w∗b ” ∀a, b∈I.
Where one word subset paraphrases another, the sums of their embeddings are shown to be equal
(subject to the independence of words within each set), e.g. wking ≈ wman+wroyal. An in-
teresting connection is established between the two semantic relationships: a set of word pairs
A= {(wa, w

∗
a), (wb, w

∗
b )} is an analogy if {wa, w

∗
b} paraphrases {w∗a, wb}, in which case the em-

beddings satisfy wa∗−wa ≈ wb∗−wb (“vector offset”).

3 FROM ANALOGIES TO KNOWLEDGE GRAPH RELATIONS

Analogies from the field of word embeddings are our starting point for developing a theoretical basis
for representing knowledge graph relations. The relevance of analogies stems from the observation
that for an analogy to hold (see §2), its word pairs, e.g {(man, king), (woman, queen), (girl, princess)},
must be related in the same way, comparably to subject-object entity pairs under a common knowledge
graph relation. Our aim is to develop the understanding of PMI-based word embeddings (henceforth
word embeddings), to identify the mathematical properties necessary for a relation representation to
map subject word embeddings to all related object word embeddings.

Considering the paraphrasing word sets {king} and {man, royal} corresponding to the word embed-
ding relationship wking≈wman+wroyal (§2), royal can be interpreted as the semantic difference
between man and king, fitting intuitively with the relationship wroyal≈wking−wman. Fundamen-
tally, this relationship holds because the difference between words that co-occur (i.e. occur more
frequently than if independent) with king and those that co-occur with man, reflects those words that
co-occur with royal. We refer to this difference in co-occurrence distribution as a “context shift”,
from man (subject) to king (object). Allen & Hospedales (2019) effectively show that where multiple
word pairs share a common context shift, they form an analogy whose embeddings satisfy the vector
offset relationship. This result seems obvious where the context shift mirrors an identifiable word, the
embedding of which is approximated by the common vector offset, e.g. queen and woman are related
by the same context shift, i.e. wqueen ≈ wwoman+wroyal, thus wqueen−wwoman ≈ wking−wman.
However, the same result holds, i.e. an analogy is formed with a common vector offset between
embeddings, for an arbitrary (common) context shift that may reflect no particular word. Importantly,
these context shift relations evidence a case in which it is known how a relation can be represented,
i.e. by an additive vector (comparable to TransE) if entities are represented by word embeddings.
More generally, this provides an interpretable foothold into relation representation.

Note that not all sets of word pairs considered analogies exhibit a clear context shift relation, e.g. in
the analogy {(car,engine), (bus,seats)}, the difference between words co-occurring with engine and
car is not expected to reflect the corresponding difference between bus and seats. This illustrates how
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≈

(a) Similarity

≈

(b) Relatedness

≈

(c) Specialisation

≈

(d) Context-shift

≈

(e) Gen. context-shift

Figure 1: Relationships between PMI vectors (black rectangles) of subject/object words for different relation
types. PMI vectors capture co-occurrence with every dictionary word: strong associations (PMI > 0) are shaded
(blue define the relation, grey are random other associations); red dash = relatedness; black dash = context sets.

analogies are a loosely defined concept, e.g. their implicit relation may be semantic or syntactic, with
several sub-categories of each (e.g. see Gladkova et al. (2016)). The same is readily observed for the
relations of knowledge graphs. This likely explains the observed variability in “solving” analogies
by use of vector offset (e.g. Köper et al., 2015; Karpinska et al., 2018; Gladkova et al., 2016) and
suggests that further consideration is required to represent relations (or solve analogies) in general.

We have seen that the existence of a context shift relation between a subject and object word implies
a (relation-specific) geometric relationship between word embeddings, thus the latter provides a
necessary condition for the relation to hold. We refer to this as a “relation condition” and aim to
identify relation conditions for other classes of relation. Once identified, relation conditions define
a mapping from subject embeddings to all related object embeddings, by which related entities
might be identified with a proximity measure (e.g. Euclidean distance or dot product). This is the
precise aim of a knowledge graph representation model, but loss functions are typically developed
heuristically. Given the existence of many representation models, we can verify identified relation
conditions by contrasting the per-relation performance of various models with the extent to which
their loss function reflects the appropriate relation conditions. Note that since relation conditions are
necessary rather than sufficient, they do not guarantee a relation holds, i.e. false positives may arise.

Whilst we seek to establish relation conditions based on PMI word embeddings, the data used to train
knowledge graph embeddings differs significantly to the text data used by word embeddings, and the
relevance of conditions ultimately based on PMI statistics may seem questionable. However, where
a knowledge graph representation model implements relation conditions and measures proximity
between embeddings, the parameters of word embeddings necessarily provide a potential solution
that minimises the loss function. Many equivalent solutions may exist due to symmetry as typical
for neural network architectures. We now define relation types and identify their relation conditions
(underlined); we then consider the completeness of this categorisation.
• Similarity: Semantically similar words induce similar distributions over the words they co-occur
with. Thus their PMI vectors and word embeddings are similar (Fig 1a).
• Relatedness: The relatedness of two words can be considered in terms of the words S ⊆E with
which both co-occur similarly. S defines the nature of relatedness, e.g. milk and cheese are related by
S={dairy, breakfast, ...}; and |S| reflects the strength of relatedness. Since PMI vector components
corresponding to S are similar (Fig 1b), embeddings of S-related words have similar components in
the subspace VS that spans the projected PMI vector dimensions corresponding to S. The rank of
VS is thus anticipated to reflect relatedness strength. Relatedness can be seen as a weaker and more
variable generalisation of similarity, its limiting case where S=E , hence rank(VS)=de.
• Context-shift: As discussed above, words related by a common difference between their distribu-
tions of co-occurring words, defined as context-shifts, share a common vector offset between word
embeddings. Context might be considered added (e.g. man to king), termed a specialisation (Fig 1c),
subtracted (e.g. king to man) or both (Fig 1d). These relations are 1-to-1 (subject to synonyms) and
include an aspect of relatedness due to the word associations in common. Note that, specialisations
include hyponyms/hypernyms and context shifts include meronyms.
• Generalised context-shift: Context-shift relations generalise to 1-to-many, many-to-1 and many-
to-many relations where the added/subtracted context may be from a (relation-specific) context
set (Fig 1e), e.g. any city or anything bigger. The potential scope and size of context sets adds
variability to these relations. The limiting case in which the context set is “small” reduces to a 1-to-1
context-shift (above) and the embedding difference is a known vector offset. In the limiting case
of a “large” context set, the added/subtracted context is essentially unrestricted such that only the
relatedness aspect of the relation, and thus a common subspace component of embeddings, is fixed.
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Categorisation completeness: Taking intuition from Fig 1 and considering PMI vectors as sets of
word features, these relation types can be interpreted as set operations: similarity as set equality;
relatedness as subset equality; and context-shift as a relation-specific set difference. Since for any
relation each feature must either remain unchanged (relatedness), change (context shift) or else be
irrelevant, we conjecture that the above relation types give a complete partition of semantic relations.

Table 2: Categorisation of WN18RR relations.

Type Relation Examples (subject entity, object entity)

R
verb_group (trim_down_VB_1, cut_VB_35), (hatch_VB_1, incubate_VB_2)
derivationally_related_form (lodge_VB_4, accommodation_NN_4), (question_NN_1, inquire_VB_1)
also_see (clean_JJ_1, tidy_JJ_1), (ram_VB_2, screw_VB_3)

S hypernym (land_reform_NN_1, reform_NN_1), (prickle-weed_NN_1, herbaceous_plant_NN_1)
instance_hypernym (yellowstone_river_NN_1, river_NN_1), (leipzig_NN_1, urban_center_NN_1)

C

member_of_domain_usage (colloquialism_NN_1, figure_VB_5), (plural_form_NN_1, authority_NN_2)
member_of_domain_region (rome_NN_1, gladiator_NN_1), (usa_NN_1, multiple_voting_NN_1)
member_meronym (south_NN_2, sunshine_state_NN_1), (genus_carya_NN_1, pecan_tree_NN_1)
has_part (aircraft_NN_1, cabin_NN_3), (morocco_NN_1, atlas_mountains_NN_1)
synset_domain_topic_of (quark_NN_1, physics_NN_1), (harmonize_VB_3, music_NN_4)

3.1 CATEGORISING REAL KNOWLEDGE GRAPH RELATIONS

Analysing the relations of popular knowledge graph datasets, we observe that they indeed imply (i) a
relatedness aspect reflecting a common theme (e.g. both entities are animals or geographic terms);
and (ii) contextual themes specific to the subject and/or object entities. Further, relations fall under a
hierarchy of three relation types: highly related (R); generalised specialisation (S); and generalised
context-shift (C). As above, “generalised” indicates that context differences are not restricted to be
1-1. From Fig 1, it can be seen that type R relations are a special case of S, which are a special case of
C. Thus type C encompasses all considered relations. Whilst there are many ways to classify relations,
e.g. by hierarchy, transitivity, the proposed relation conditions delineate relations by the required
mathematical form (and complexity) of their representation. Table 2 shows a categorisation of the
relations of the WN18RR dataset (Dettmers et al., 2018) comprising 11 relations and 40,943 entities.1
An explanation for the category assignment is in Appx. A. Analysing the commonly used FB15k-237
dataset (Toutanova et al., 2015) reveals relations to be almost exclusively of type C, precluding a
contrast of performance per relation type and hence that dataset is omitted from our analysis. Instead,
we categorise a random subsample of 12 relations from the NELL-995 dataset (Xiong et al., 2017),
containing 75,492 entities and 200 relations (see Tables 8 and 9 in Appx. B).

3.2 RELATIONS AS MAPPINGS BETWEEN EMBEDDINGS

Given the relation conditions of a relation type, we now consider mappings that satisfy them and
thereby loss functions able to identify relations of each type, evaluating proximity between mapped
entity embeddings by dot product or Euclidean distance. We then contrast our theoretically derived
loss functions, specific to a relation type, with those of several knowledge graph models (Table 1) to
predict identifiable properties and the relative performance of different knowledge graph models for
each relation type.
R: Identifying S-relatedness requires testing both entity embeddings es, eo for a common subspace
component VS , which can be achieved by projecting both embeddings onto VS and comparing their
images. Projection requires multiplication by a matrix Pr∈Rd×d and cannot be achieved additively,
except in the trivial limiting case of similarity (Pr=I) when r≈0 can be added.
Comparison by dot product gives (Pres)

>(Preo)=e>s P
>
r Preo=e>s Mreo (for relation-specific

symmetric Mr=P>r Pr). Euclidean distance gives ‖Pres−Preo‖2 = (es−eo)>Mr(es−eo) =
‖Pres‖2 − 2e>s Mreo + ‖Preo‖2.
S/C: The relation conditions require testing for both S-relatedness and relation-specific entity
component(s) (vs

r , vo
r ). This is achieved by (i) multiplying both entity embeddings by a relation-

specific projection matrix Pr that projects onto the subspace that spans the low-rank projection of
dimensions corresponding to S, vs

r and vo
r (i.e. testing for S-relatedness while preserving relation-

specific entity components); and (ii) adding a relation-specific vector r = vo
r − vs

r to the transformed
subject entity embeddings.

1We omit the relation “similar_to” since its instances have no discernible structure, and only 3 occur in the
test set, all of which are the inverse of a training example and trivial to predict.

5

5.2. The Paper 65



Published as a conference paper at ICLR 2021

Comparing the transformed entity embeddings by dot product equates to (Pres + r)>Preo; and by
Euclidean distance to ‖Pres + r − Preo‖2=‖Pres + r‖2 − 2(Pres + r)>Preo + ‖Preo‖2 (cf
MuRE: ‖Res + r − eo‖2).

Contrasting these theoretically derived loss functions with those of knowledge graph models (Table
1), we make the following predictions:
P1: The ability to learn the representation of a relation is expected to reflect:

(a) the complexity of its type (R<S<C) independently of model choice; and
(b) whether relation conditions (e.g. additive/multiplicative interactions) are met by the model.

P2: Knowledge graph relation representations reflect the following type-specific properties:
(a) relation matrices for relatedness (type R) relations are highly symmetric;
(b) offset vectors for relatedness relations have low norm; and
(c) as a proxy to the rank of VS , the eigenvalues of a relation matrix reflect relatedness strength.

To elaborate, our core prediction P1(b) anticipates that: (i) additive-only models (e.g. TransE) are
not suited to identifying the relatedness aspect of relations, except in limiting cases of similarity,
requiring a zero vector); (ii) multiplicative-only models (e.g. DistMult) should perform well on type R
relations, but are not suited to identifying entity-specific features of type S/C (an asymmetric relation
matrix in TuckER may help compensate); and (iii) the loss function of MuRE closely resembles that
derived for type C relations, which generalise all others, and is thus expected to perform best overall.

4 EVIDENCE LINKING KNOWLEDGE GRAPH AND WORD EMBEDDINGS

We test whether the predictions P1 and P2, made on the basis of word embeddings, apply to
knowledge graph relations by analysing the performance and properties of competitive knowledge
graph models. We compare TransE, DistMult, TuckER and MuRE, which entail different forms
of relation representation, on all WN18RR relations and a similar number of NELL-995 relations
(spanning all relation types). All models have a comparable number of free parameters.

Since for TransE, the logistic sigmoid cannot be applied to the score function to give a probabilistic
interpretation comparable to other models, for fair comparison we include MuREI , a constrained
variant of MuRE with Rs=Ro=I , as a proxy to TransE. Implementation details are included in
Appx. D. For evaluation, we generate 2ne evaluation triples for each test triple (ne= |E| denoting
the number of entities) by fixing the subject entity es and relation r and replacing the object entity
eo with each entity in turn and then keeping eo and r fixed and varying es. Each model’s scores for
the evaluation triples are ranked to give the standard metric Hits@10 (Bordes et al., 2013), i.e. the
fraction of times a true triple appears in the top 10 ranked evaluation triples.

4.1 P1: JUSTIFYING THE RELATIVE PERFORMANCE OF KNOWLEDGE GRAPH MODELS

Ranking performance: Tables 3 and 4 report Hits@10 for each relation and include the relation
type as well as known confounding influences: percentage of relation instances in the training and
test sets (approximately equal), the actual number of instances in the test set (causing some results
to be highly granular), Krackhardt hierarchy score (see Appx. E) (Krackhardt, 2014; Balažević
et al., 2019a) and maximum and average shortest path between any two related nodes. A further
confounding effect is dependence between relations: Lacroix et al. (2018) and Balažević et al. (2019b)
independently show that constraining the rank of relation representations is beneficial for datasets
with many relations due to multi-task learning, particularly when the number of instances per relation
is low. This is expected to benefit TuckER on the NELL-995 dataset (200 relations).

As predicted in P1(a), all models tend to perform best at type R relations, with a clear performance gap
to other relation types. Also, performance on type S relations appears higher in general than type C.
In accordance with P1(b), additive-only models (TransE, MuREI ) perform worst on average since all
relation types involve (multiplicative) relatedness. Best performance is achieved on type R relations,
which can be represented by a small/zero additive vector. Multiplicative-only DistMult performs well,
sometimes best, on type R relations, fitting expectation as it can represent those relations and has
no inessential parameters, e.g. that may overfit to noise, which may explain instances where MuRE
performs slightly worse. As expected, MuRE, performs best overall (particularly on WN18RR),
and most strongly on S and C type relations, predicted to require both multiplicative and additive
components. Comparable performance of TuckER on NELL-995 may be explained by its multi-task
learning ability.

6

66 Chapter 5. Interpreting Knowledge Graph Representation from Word Embeddings



Published as a conference paper at ICLR 2021

Table 3: Hits@10 per relation on WN18RR.

Relation Name Type % # Khs Max/Avg Path TransE MuREI DistMult TuckER MuRE

verb_group R 1% 39 0.00 - - 0.87 0.95 0.97 0.97 0.97
derivationally_related_form R 34% 1074 0.04 - - 0.93 0.96 0.96 0.96 0.97
also_see R 2% 56 0.24 44 15.2 0.59 0.73 0.67 0.72 0.73
instance_hypernym S 4% 122 1.00 3 1.0 0.22 0.52 0.47 0.53 0.54
synset_domain_topic_of C 4% 114 0.99 3 1.1 0.19 0.43 0.42 0.45 0.53
member_of_domain_usage C 1% 24 1.00 2 1.0 0.42 0.42 0.48 0.38 0.50
member_of_domain_region C 1% 26 1.00 2 1.0 0.35 0.40 0.40 0.35 0.46
member_meronym C 8% 253 1.00 10 3.9 0.04 0.38 0.30 0.39 0.39
has_part C 6% 172 1.00 13 2.2 0.04 0.31 0.28 0.29 0.35
hypernym S 40% 1251 0.99 18 4.5 0.02 0.20 0.19 0.20 0.28
all 100% 3134 0.38 0.52 0.51 0.53 0.57

Table 4: Hits@10 per relation on NELL-995.

Relation Name Type % # Khs Max/Avg Path TransE MuREI DistMult TuckER MuRE

teamplaysagainstteam R 2% 243 0.11 10 3.5 0.76 0.84 0.90 0.89 0.89
clothingtogowithclothing R 1% 132 0.17 5 2.6 0.72 0.80 0.88 0.85 0.84
professionistypeofprofession S 1% 143 0.38 7 2.5 0.37 0.55 0.62 0.65 0.66
animalistypeofanimal S 1% 103 0.68 9 3.1 0.50 0.56 0.64 0.68 0.65
athleteplayssport C 1% 113 1.00 1 1.0 0.54 0.58 0.58 0.60 0.64
chemicalistypeofchemical S 1% 115 0.53 6 3.0 0.23 0.43 0.49 0.51 0.60
itemfoundinroom C 2% 162 1.00 1 1.0 0.39 0.57 0.53 0.56 0.59
agentcollaborateswithagent R 1% 119 0.51 14 4.7 0.44 0.58 0.64 0.61 0.58
bodypartcontainsbodypart C 1% 103 0.60 7 3.2 0.30 0.38 0.54 0.58 0.55
atdate C 10% 967 0.99 4 1.1 0.41 0.50 0.48 0.48 0.52
locationlocatedwithinlocation C 2% 157 1.00 6 1.9 0.35 0.37 0.46 0.48 0.48
atlocation C 1% 294 0.99 6 1.4 0.22 0.33 0.39 0.43 0.44
all 100% 20000 0.36 0.48 0.51 0.52 0.52

Other anomalous results also closely align with confounding factors. For example, all models perform
poorly on the hypernym relation, despite it having a relative abundance of training data (40% of all
instances), which may be explained by its hierarchical nature (Khs ≈ 1 and long paths). The same
may explain the reduced performance on relations also_see and agentcollaborateswithagent. As
found previously (Balažević et al., 2019a), none of the models considered are well suited to modelling
hierarchical structures. We also note that the percentage of training instances of a relation is not a
dominant factor on performance, as would be expected if all relations could be equally represented.

Classification performance: We further evaluate whether P1 holds when comparing knowledge
graph models by classification accuracy on WN18RR. Independent predictions of whether a given
triple is true or false are not commonly evaluated, instead metrics such as mean reciprocal rank and
Hits@k are reported that compare the prediction of a test triple against all evaluation triples. Not
only is this computationally costly, the evaluation is flawed if an entity is related to l>k others (k
is often 1 or 3). A correct prediction validly falling within the top l but not the top k would appear
incorrect under the metric. Some recent works also note the importance of standalone predictions
(Speranskaya et al., 2020; Pezeshkpour et al., 2020).

Since for each relation there are n2e possible entity-entity relationships, we sub-sample by computing
predictions only for those (es, r, eo) triples for which the es, r pairs appear in the test set. We split
positive predictions (σ(φ(es, r, eo)) > 0.5) between (i) known truths – training or test/validation
instances; and (ii) other, the truth of which is not known. We then compute per-relation accuracy
over the true training instances (“train”) and true test/validation instances (“test”); and the average
number of “other” triples predicted true per es, r pair. Table 5 shows results for MuREI , DistMult,
TuckER and MuRE. All models achieve near perfect training accuracy. The additive-multiplicative
MuRE gives best test set performance, followed (surprisingly) closely by MuREI , with multiplicative
models (DistMult and TuckER) performing poorly on all but type R relations in line with P1(b), with
near-zero performance on most type S/C relations. Since the ground truth labels for “other” triples
predicted to be true are not in the dataset, we analyse a sample of “other” true predictions for one
relation of each type (see Appx. G). From this, we estimate that TuckER is relatively accurate but
pessimistic (∼0.3 correct of the 0.5 predictions≈60%), MuREI is optimistic but inaccurate (∼2.3 of
7.5≈31%), whereas MuRE is both optimistic and accurate (∼1.1 of 1.5≈73%).

Summary: Our analysis identifies the best performing model per relation type as predicted by P1(b):
multiplicative-only DistMult for type R, additive-multiplicative MuRE for types S/C; providing a
basis for dataset-dependent model selection. The per-relation insight into where models perform
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Table 5: Per relation prediction accuracy for MuREI (MI ), (D)istMult, (T)uckER and (M)uRE (WN18RR).
Accuracy (train) Accuracy (test) # Other “True”

Relation Name Type #train #test MI D T M MI D T M MI D T M

verb_group R 15 39 1.00 1.00 1.00 1.00 0.97 0.97 0.97 0.97 8.3 1.7 0.9 2.7
derivationally_related_form R 1714 1127 1.00 1.00 1.00 1.00 0.96 0.94 0.95 0.95 8.8 0.5 0.6 1.7
also_see R 95 61 1.00 1.00 1.00 1.00 0.64 0.64 0.61 0.59 7.9 1.6 0.9 1.9
instance_hypernym S 52 122 1.00 1.00 1.00 1.00 0.32 0.32 0.23 0.43 1.3 0.4 0.3 0.9
member_of_domain_usage C 545 43 0.98 1.00 1.00 1.00 0.02 0.00 0.02 0.00 1.5 0.6 0.0 0.3
member_of_domain_region C 543 42 0.88 0.89 1.00 0.93 0.02 0.02 0.00 0.02 1.0 0.4 0.8 0.7
synset_domain_topic_of C 13 115 1.00 1.00 1.00 1.00 0.42 0.10 0.14 0.47 0.7 0.6 0.1 0.2
member_meronym C 1402 307 1.00 1.00 1.00 1.00 0.22 0.02 0.01 0.22 7.9 3.4 1.5 5.6
has_part C 848 196 1.00 1.00 1.00 1.00 0.24 0.05 0.09 0.22 7.1 2.4 1.3 3.9
hypernym S 57 1254 1.00 1.00 1.00 1.00 0.15 0.02 0.02 0.22 3.7 1.2 0.0 1.7

all 5284 3306 0.99 0.99 1.00 0.99 0.47 0.37 0.37 0.50 5.9 1.2 0.5 2.1

poorly, e.g. hierarchical or type C relations, can be used to aid and direct future model design.
Analysis of the classification performance: (i) shows that MuRE is the most reliable fact prediction
model; and (ii) emphasises the poorer ability of multiplicative-only models to represent S/C relations.

4.2 P2: PROPERTIES OF RELATION REPRESENTATION

P2(a)-(b): Table 6 shows the symmetry score (∈ [-1, 1] indicating perfect anti-symmetry to symmetry;
see Appx. F) for the relation matrix of TuckER and the norm of relation vectors of TransE, MuREI

and MuRE on the WN18RR dataset. As expected, type R relations have materially higher symmetry
than both other relation types, fitting the prediction of how TuckER compensates for having no
additive component. All additive models learn relation vectors of a noticeably lower norm for type R
relations, which in the limiting case (similarity) require no additive component, than for types S or C.

P2(c): Fig 2 shows eigenvalue magnitudes (scaled relative to the largest and ordered) of relation-
specific matrices R of MuRE, labelled by relation type, as predicted to reflect the strength of a
relation’s relatedness aspect. As expected, values are highest for type R relations. For relation types
S and C the profiles are more varied, supporting the understanding that relatedness of such relations
is highly variable, both in its nature (components of S) and strength (cardinality of S).

Table 6: Relation matrix symmetry score [-1.1] for TuckER; and
relation vector norm for TransE, MuREI and MuRE (WN18RR).

Symmetry Score Vector Norm
Relation Type TuckER TransE MuREI MuRE

verb_group R 0.52 5.65 0.76 0.89
derivationally_related_form R 0.54 2.98 0.45 0.69
also_see R 0.50 7.20 0.97 0.97
instance_hypernym S 0.13 18.26 2.98 1.88
member_of_domain_usage C 0.10 11.24 3.18 1.88
member_of_domain_region C 0.06 12.52 3.07 2.11
synset_domain_topic_of C 0.12 23.29 2.65 1.52
member_meronym C 0.12 4.97 1.91 1.97
has_part C 0.13 6.44 1.69 1.25
hypernym S 0.04 9.64 1.53 1.03
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Figure 2: Eigenvalue magnitudes of
relation-specific matrices R for MuRE
by relation type (WN18RR).

5 CONCLUSION

Many low-rank knowledge graph representation models have been developed, yet little is known of
the latent structure they learn. We build on recent understanding of PMI-based word embeddings to
theoretically establish a set of geometric properties of relation representations (relation conditions)
required to map PMI-based word embeddings of subject entities to related object entities under
knowledge graph relations. These conditions partition relations into three types and provide a basis
to consider the loss functions of existing knowledge graph models. Models that satisfy the relation
conditions of a particular type have a known set of model parameters that minimise the loss function,
i.e. the parameters of PMI embeddings, together with potentially many equivalent solutions. We
show that the better a model’s architecture satisfies a relation’s conditions, the better its performance
at link prediction, evaluated under both rank-based metrics and accuracy. Overall, we generalise
recent theoretical understanding of how particular semantic relations, e.g. similarity and analogy,
are encoded between PMI-based word embeddings to the general relations of knowledge graphs.
In doing so, we provide evidence in support of our initial premise: that common latent structure is
exploited by both PMI-based word embeddings (e.g. W2V) and knowledge graph representation.
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A CATEGORISING WN18RR RELATIONS

Table 7 describes how each WN18RR relation was assigned to its respective category.

Table 7: Explanation for the WN18RR relation category assignment.

Type Relation Relatedness Subject Specifics Object Specifics

R
verb_group both verbs; similar in meaning - -
derivationally_related_form different syntactic categories; semantically related - -
also_see semantically similar - -

S hypernym semantically similar instance of the object -
instance_hypernym semantically similar instance of the object -

C

member_of_domain_usage loosely semantically related (word usage features) usage descriptor broad feature set
member_of_domain_region loosely semantically related (regional features) region descriptor broad feature set
member_meronym semantically related collection of objects part of the subject
has_part semantically related collection of objects part of the subject
synset_domain_topic_of semantically related broad feature set domain descriptor

B CATEGORISING NELL-995 RELATIONS

Categorisation of NELL-995 relations and the explanation for the category assignment of are shown
in Tables 8 and 9 respectively.

Table 8: Categorisation of NELL-995 relations.

Type Relation Examples (subject entity, object entity)

R
teamplaysagainstteam (rangers, mariners), (phillies, tampa_bay_rays)
clothingtogowithclothing (shirts, trousers), (shoes, black_shirt)
agentcollaborateswithagent (white_stripes, jack_white), (barack_obama, hillary_clinton)

S
professionistypeofprofession (trial_lawyers, attorneys), (engineers, experts)
animalistypeofanimal (cats, small_animals), (chickens, livestock)
chemicalistypeofchemical (moisture, gas), (oxide, materials)

C

athleteplayssport (joe_smith, baseball), (chris_cooley, football)
itemfoundinroom (bed, den), (refrigerator, kitchen_area)
bodypartcontainsbodypart (system002, eyes), (blood, left_ventricle)
atdate (scotland, n2009), (wto, n2003)
locationlocatedwithinlocation (medellin, colombia), (jackson, wyoming)
atlocation (ogunquin, maine), (palmer_lake, colorado)

Table 9: Explanation for the NELL-995 relation category assignment.

Type Relation Relatedness Subject Specifics Object Specifics

R
teamplaysagainstteam both sport teams - -
clothingtogowithclothing both items of clothing that go together - -
agentcollaborateswithagent both people or companies; related industries - -

S
professionistypeofprofession semantically related (both profession types) instance of the object -
animalistypeofanimal semantically related (both animals) instance of the object -
chemicalistypeofchemical semantically related (both chemicals) instance of the object -

C

athleteplayssport semantically related (sports features) athlete descriptor sport descriptor
itemfoundinroom semantically related (room/furniture features) item descriptor room descriptor
bodypartcontainsbodypart emantically related (specific body part features) collection of objects part of the subject
atdate loosely semantically related (start date features) broad feature set date descriptor
locationlocatedwithinlocation semantically related (geographical features) part of the subject collection of objects
atlocation semantically related (geographical features) part of the subject collection of objects

C SPLITTING THE NELL-995 DATASET

The test set of NELL-995 created by Xiong et al. (2017) contains only 10 out of 200 relations present
in the training set. To ensure a fair representation of all training set relations in the validation and test
sets, we create new validation and test set splits by combining the initial validation and test sets with
the training set and randomly selecting 10,000 triples each from the combined dataset.
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D IMPLEMENTATION DETAILS

All algorithms are re-implemented in PyTorch with the Adam optimizer (Kingma & Ba, 2015) that
minimises binary cross-entropy loss, using hyper-parameters that work well for all models (learning
rate: 0.001, batch size: 128, number of negative samples: 50). Entity and relation embedding
dimensionality is set to de=dr=200 for all models except TuckER, for which dr=30 (Balažević
et al., 2019b).

E KRACKHARDT HIERARCHY SCORE

The Krackhardt hierarchy score measures the proportion of node pairs (x, y) where there exists a
directed path x→ y, but not y → x; and it takes a value of one for all directed acyclic graphs, and
zero for cycles and cliques (Krackhardt, 2014; Balažević et al., 2019a).

Let M ∈Rn×n be the binary reachability matrix of a directed graph G with n nodes, with Mi,j = 1
if there exists a directed path from node i to node j and 0 otherwise. The Krackhardt hierarchy score
of G is defined as:

KhsG =

∑n
i=1

∑n
j=1 1(Mi,j == 1 ∧Mj,i == 0)∑n
i=1

∑n
j=1 1(Mi,j == 1)

. (1)

F SYMMETRY SCORE

The symmetry score∈ [−1, 1] (Hubert & Baker, 1979) for a relation matrix R∈Rde×de is defined as:

s =

∑∑
i 6=j RijRji −

(
∑∑

i6=j Rij)
2

de(de−1)∑∑
i 6=j R

2
ij −

(
∑∑

i6=j Rij)2

de(de−1)

, (2)

where 1 indicates a symmetric and -1 an anti-symmetric matrix.

G “OTHER” PREDICTED FACTS

Tables 10 to 13 shows a sample of the unknown triples (i.e. those formed using the WN18RR
entities and relations, but not present in the dataset) for the derivationally_related form (R),
instance_hypernym (S) and synset_domain_topic_of (C) relations at a range of probabilities
(σ(φ(es, r, eo)) ≈ {0.4, 0.6, 0.8, 1}), as predicted by each model. True triples are indicated in
bold; instances where a model predicts an entity is related to itself are indicated in blue.
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5.3 Impact

According to Google Scholar, the paper has received 13 citations as of August 2021,
including from a recent survey of knowledge graphs and “explainable AI” (Bianchi
et al., 2020).

5.4 Discussion

Interpreting KGs presents a model for the latent semantic structure of knowledge graph
representation. In doing so, the paper brings together representations of words and en-
tities learned from text corpora and knowledge graphs. This is appealing since it might
be expected that representations of words, or the concepts they themselves represent,
are independent of the learning method. Where, previously, we noted parallels between
word embeddings and knowledge graph representations, in particular between analogy
and knowledge graph relations (§3.1), Interpreting KGs develops this into a unifying
theoretical model for knowledge graph representations and word embeddings.

Although the latent structure of knowledge graph representation models is analysed
by consideration of PMI-based embeddings, we re-emphasise that we do not expect
that KGR models learn PMI statistics. Instead, by deriving geometric relationships
between PMI vectors of entities that satisfy different semantic relation types, we identify
latent structure that can be learned by a suitably designed model. This might be seen
analogously to first theoretically determining that data is, say, linear or Gaussian and
then applying a linear regression model or principal component analysis, respectively,
because those models are known to “fit” such data.

Analogies Explained shows that the vector offset method captures analogies involving
a particular type of semantic relation, but several indications have suggested it may
not represent all semantic relations: the 1-to-1 nature of the vector offset method; the
presence of multiple relations between certain pairs of words; the variable performance
of the vector offset method across different relation types; and the outperformance of
TransE by other KGR models (§4.4). While the minimal data available to learn analogy
relations – a single related word pair a, a∗ – restrict options for representing them to
relatively simple functions, such as the vector offset, having multiple related entity
pairs allows more expressive parameterised functions to be learned, e.g. for knowledge
graphs. Interpreting KGs offers the first explanation based on latent semantic structure
for why the vector offset is indeed insufficient for modelling all relations. The paper
illustrates how embeddings relate to one another for different types of semantic relation,
showing where the vector offset fits within a hierarchy of relation types.

The paper culminates in justifying why the additive and multiplicative knowledge graph
representation model MuRE (Balažević et al., 2019b) outperforms models that are
strictly additive or multiplicative. We note that this justification is not retrospective,
rather the MuRE model was developed (by the same authors) contemporaneously with
Interpreting KGs, inspired by early theoretical insight. As such, Interpreting KGs can
be seen to justify the performance of MuRE, or the MuRE model can be viewed as a
practical implementation and empirical validation of the paper.

We note several limitations of Interpreting KGs, which may be fruitful to address in
future work:

• the paper considers relationships between PMI vectors based on co-occurrence
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statistics that use a fixed context window, abstracting away word order and failing
to account for this likely important information;

• although the paper implicitly attributes semantic meaning to components of re-
lation representations, e.g. the vector offset and the common subspace of related
embeddings, it does not explore this explicitly or verify it empirically; and

• although the paper evaluates the performance of several recent competitive knowl-
edge graph representation models, there are many other KGR models, some of
which may potentially have entirely different and unexplained rationale.



Chapter 6

Conclusion

This thesis presents three works that develop our understanding of the latent semantic
space that underpins well-known word embedding algorithms and knowledge graph
representation models.

• Analogies Explained (§3) provides a mathematical justification of why word em-
beddings learned by algorithms such as SGNS and GloVe can be used to “solve
analogies” by taking linear combinations corresponding to parallelograms. The
result follows from recognising that such word embeddings are low rank projec-
tions of PMI vectors; and that PMI vectors of analogies form parallelograms
subject to semantically interpretable error terms.

• What the Vec (§4) develops an understanding of the space of PMI vectors, consid-
ers more fully the semantic relationships of similarity, relatedness, analogy and
paraphrase and their inter-connection, and justifies previous empirical findings
such as the improved performance of average embeddings wi + ci

2 .

• Interpreting KGs (§5) extends the correspondence between embedding geometry
and semantics for certain relation types (similarity, paraphrases, analogies) to
include the specific relations of knowledge graphs, enabling geometric properties
of relation representations to be derived and justifying the relative per-relation
performance of a range of knowledge graph representation models.

Throughout, we have drawn parallels between (a) word embeddings and semantic rela-
tionships between them, such as similarity and analogies, and (b) the representations
of entities and relations of knowledge graphs. Although these two paradigms are often
treated separately, the same words/entities and relations may appear in a text cor-
pus or knowledge graph, hence it seems both intuitive and useful to represent them
in a common way since representations may then be learned jointly and utilised more
widely. This thesis takes positive steps, providing theoretical and empirical support
for the premise that common semantic structure can underpin word embeddings and
knowledge graph representations.

While some recent works question whether the vector offset method does or does not
represent analogies (Rogers et al., 2017; Schluter, 2018), we find that the answer is nu-
anced since analogies are not homogeneous. Some analogies may be well represented by
a vector offset, others less so and some very poorly, justifying the observed variable per-
formance in analogical reasoning for different semantic relations. Analogies Explained
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describes the positive cases, i.e. those semantic relations that are represented well by a
vector offset; Interpreting KGs extends that to more general semantic relations, where
it can be seen that the vector offset alone is insufficient. For analogies, however, the
options for representing relations are highly limited due to the availability of only one
training instance. Relation representations cannot easily be parameterised on a be-
spoke basis without over-fitting, hence it may be that some other (unparameterised)
function outperforms the vector offset where the latter is insufficient (averaged over a
given dataset). A better function might also account for known trends in error terms
(e.g. Paperno and Baroni, 2016). As such, future work may improve on the vector offset
method or explain heuristics such as 3CosMul (Levy et al., 2015).

Having linked word embedding and knowledge graph representation, future algorithms
might be developed that learn word/entity embeddings jointly from text corpora and
knowledge graphs in a principled manner. This is appealing since the data sources
complement one another: text is abundant but its co-occurrence statistics are noisy,
whereas knowledge graph data is largely accurate but more difficult to acquire. Bringing
together text and knowledge graphs may also lead to improved methods for extracting
relations from text.

We hope that future work can build more generally on the insights into latent seman-
tic structure presented in this thesis to develop algorithms that perform better, offer
greater interpretability and allow unwanted statistical biases in the data to be miti-
gated. Future work may also extend the understanding of un-contextualised embeddings
to contextualised word embeddings that presently achieve impressive performance in
many downstream NLP tasks (Devlin et al., 2019; Brown et al., 2020) and may become
increasingly pervasive across numerous applications. Such models contain vast numbers
of parameters, requiring significant time and energy to train. A clearer understand-
ing of what such parameters learn may allow more succinct models to be developed
and their limitations, such as biases picked up from the data, to be understood and
potentially mitigated.
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Balažević, I., Allen, C., and Hospedales, T. M. (2019a). Hypernetwork Knowledge
Graph Embeddings. In International Conference on Artificial Neural Networks.
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