

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Programmer-Transparent Efficient Parallelism

with Skeletons

Paul Metzger

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2021

Abstract

Parallel and heterogeneous systems are ubiquitous. Unfortunately, both require signif-

icant complexity at the software level to the detriment of programmer productivity. To

produce correct and efficient code programmers not only have to manage synchronisa-

tion and communication but also be aware of low-level hardware details. It is foresee-

able that the problem is becoming worse because systems are increasingly parallel and

heterogeneous.

Building on earlier work, this thesis further investigates the contribution which

algorithmic skeletons can make towards solving this problem. Skeletons are high-level

abstractions for typical parallel computations. They hide low-level hardware details

from programmers and, in addition, encode information about the computations that

they implement, which runtime systems and library developers can use for automatic

optimisations. We present two novel case studies in this respect.

First, we provide scheduling flexibility on heterogeneous CPU + GPU systems in

a programmer transparent way similar to the freedom OS schedulers have on CPUs.

Thanks to the high-level nature of skeletons we automatically switch between CPU and

GPU implementations of kernels and use semantic information encoded in skeletons to

find execution time points at which switches can occur. In more detail, kernel iteration

spaces are processed in slices and migration is considered on a slice-by-slice basis. We

show that slice sizes choices that introduce negligible overheads can be learned by pre-

dictive models. We show that in a simple deployment scenario mid-kernel migration

achieves speedups of up to 1.30x and 1.08x on average. Our mechanism introduces

negligible overheads of 2.34% if a kernel does not actually migrate.

Second, we propose skeletons to simplify the programming of parallel hard real-

time systems. We combine information encoded in task farms with real-time systems

user code analysis to automatically choose thread counts and an optimisation parameter

related to farm internal communication. Both parameters are chosen so that real-time

deadlines are met with minimum resource usage. We show that our approach achieves

1.22x speedup over unoptimised code, selects the best parameter settings in 83% of

cases, and never chooses parameters that cause deadline misses.

Lay Summary

For decades computer programs have benefited from processor improvements with-

out requiring modification. The interworkings between programs and processors was

carefully engineered so that technological improvements in processor designs bene-

fited programs without requiring changes or the awareness of programmers. This has

changed about 15 years ago when processors could no longer be improved in this way.

As a result, programmers must deal with significantly more complexity since then.

To reduce the costs of software development and maintenance this new complexity

must be hidden from ordinary application programmers. One way to achieve this is

to package complex processor specific code, which has been produced by specialists,

into reusable and configurable components that provide commonly needed function-

ality. Such components are so called skeletons and have been the subject of research

since the late 80s. This thesis presents two novel additions to the body of knowledge

on skeletons.

Firstly, we show that techniques for the orchestration of a new fine-grained re-

source management ability can be packaged into skeletons. Without intervention by

application programmers, our skeleton makes resource choices, manages data move-

ment, and even automates internal configuration decisions, which are difficult to make

manually, through machine learning. Programs with this capability execute up to 1.30x

faster (1.08x on average) and our skeleton reduces program size by at least 88%, which

benefits development and maintenance costs.

Secondly, we show that skeletons can simplify the programming of so called hard

real-time systems, which have to process inputs within a set time and violations of this

requirement are unacceptable. For example, robotics applications in which deadline

misses might lead to injuries. In the context of these systems, we show that skeletons

can automate configuration choices that would have to be made manually by applica-

tion programmers otherwise. Our skeleton chooses in 83% of cases the best configu-

rations and never makes choices that would cause inputs to be processed late.

Acknowledgements

I would like to thank my supervisors Murray Cole, Christian Fensch, and Volker Seeker

for their advice and for teaching me how to work as a researcher. Thanks to Volker for

helping me with the implementation of two benchmark applications for Chapter 3 and

for the discussion on how we could better generate OpenMP implementations in the

future (see Section 5.3.1).

Thanks to Chris Cummins and Hugh Leather for discussions at the early stages of

the work in Chapter 3 and during the annual reviews. Thanks to Enrico Bini and Marco

Aldinucci of the University of Turin for the collaboration on the work in Chapter 4, and

also thanks to XMOS and Paul Neil from XMOS for their donation of the evaluation

platform of that chapter.

Finally, I also would like to thank my parents, grandparents, partner, and friends

for their support during my PhD.

Table of Contents

1 Introduction 11

1.1 The Problem: Dealing with Hardware Complexity in Software 11

1.2 A Solution: Abstraction with Algorithmic Skeletons 14

1.3 Contributions . 15

1.4 Thesis Outline . 16

1.5 Summary . 17

2 Background and Related Work 19

2.1 Algorithmic Skeletons . 21

2.1.1 Recent Skeleton Works . 24

2.2 Alternative Parallel Programming Frameworks and Abstractions . . . 27

2.2.1 Other High-Level Abstractions 27

2.2.2 Mid-Level Abstractions . 28

2.2.3 Low-Level Abstractions . 30

2.3 Thread and Process Migration . 31

2.3.1 Migration Mechanisms for CPUs 31

2.3.2 Applications of Migration on CPUs 31

2.4 Heterogeneous Systems . 32

2.4.1 General Purpose Graphics Processing Units 32

2.4.2 Related Work . 36

2.5 Hard Real-Time Systems . 40

2.5.1 Terminology . 41

2.5.2 Task Farms for Real-Time Systems 41

2.5.3 Related Work . 42

2.6 Critical Reflections on Related Work 45

2.6.1 Mid-Kernel Migration . 45

2.6.2 Hard Real-Time Skeletons 46

7

2.7 Summary . 47

3 Transparent Kernel Migration 49

3.1 Introduction . 49

3.2 Motivation for Mid-Kernel Migration 52

3.2.1 Better Performance with Mid-Kernel Migration 53

3.2.2 Simplified Scheduling Decisions 53

3.3 Mid-Kernel Migration . 54

3.3.1 Iteration Space Slicing, Runtime Switching, and Slicing Aware

Data Transfers . 54

3.3.2 Migration Strategies . 57

3.3.3 Interference Reduction and Earlier Aborts 58

3.3.4 Device Setup Cost Reduction 59

3.4 Choosing Slice Sizes . 60

3.4.1 Target Slice Sizes . 60

3.4.2 Application Kernel Features for the Slice Size Predictors . . . 61

3.4.3 Training the Slice Size Predictors 62

3.4.4 Deploying the Slice Size Predictors 63

3.4.5 Choosing Slice Sizes for Sparse Matrix Vector Multiplication 64

3.5 Our High-Level Programming Model 64

3.6 An Idealised Performance Model . 67

3.6.1 Simplifying Assumptions 67

3.6.2 Our Baseline Comparator System 67

3.6.3 The Scheduler . 68

3.6.4 Components of the Model 68

3.6.5 Speedup with Migration over the Perfect Non-Migrating Sched-

uler . 69

3.6.6 Application Kernel and Device Independent Maximum Speedup 71

3.6.7 Speedups with Different k 71

3.6.8 Speedups with Different δ 71

3.7 Evaluation . 72

3.7.1 Experimental Setup . 72

3.7.2 Experimental Method . 73

3.7.3 Speedups Over the Perfect Non-Migrating Scheduler 76

3.7.4 Overheads in the Absence of Migration 79

3.7.5 Code Size Reduction with Parallel For 80

3.8 Summary . 81

4 Autotuning Parallel Hard Real-Time Systems 83
4.1 Introduction . 83

4.2 The Case for Job Batching and Self-Adaptation 85

4.2.1 Reduced Core Count via Job Batching 85

4.2.2 Improved Ease of Programming Through Self-Adaptation . . 86

4.3 System Model . 87

4.3.1 Jobs, Job Releases, and Deadlines 87

4.3.2 Cores and Batch Size . 88

4.3.3 Execution Time . 88

4.4 Our Analytical Framework: Analysis of Batch

Scheduling . 92

4.4.1 Worker Core Count vs. Task Period 92

4.4.2 Job Batch Size vs. Task Deadline 94

4.5 The Peso Library . 97

4.5.1 API Concepts . 97

4.5.2 Implementation and Internal Communication Overheads . . . 99

4.6 Experimental Setup . 99

4.6.1 Evaluation Platform and Methodology 99

4.6.2 Predictability and The Memory System 100

4.6.3 Worst-Case Execution Times 100

4.6.4 Benchmarks . 102

4.7 Evaluation . 102

4.7.1 Experimental Validation of our Analytical Framework 102

4.7.2 Fewer Cores with Batching and The Effect of Input Sizes . . . 104

4.7.3 Abstraction Layer Overheads 105

4.8 Conclusion . 106

5 Conclusion 109
5.1 Contributions . 109

5.2 Reflections on Related work . 110

5.3 Limitations and Future Work . 112

5.3.1 Transparent Kernel Migration 112

5.3.2 Autotuning Parallel Hard Real-Time Systems 118

5.4 Final Remarks . 120

Bibliography 123

Chapter 1

Introduction

“...[T]he Mind makes the particular Ideas, received from particular Objects, to become

general; which is done by considering them as they are in the Mind such appearances,

separate from all other Existences, and the Circumstances of real Existence, as Time,

Place, and any other concomitant Ideas. This is called Abstraction, whereby Ideas,

taken from particular Beings, become general Representatives of all of the same Kind;

and their Names, general Names, applicable to whatever exists, conformable to such

abstract Ideas.” [Loc53]

John Locke, An Essay Concerning Human Understanding

1.1 The Problem: Dealing with Hardware Complexity in

Software

For decades, improvements in chip manufacturing processes have steadily increased

transistor counts and led to more sophisticated processor designs with each new prod-

uct generation [Moo98, HP17, EBA+11]. Microarchitectural advancements like out-

of-order execution, caches, and deep pipelines were either not visible to programmers

by nature or were carefully hidden from programmers behind the ISA. About 15 years

ago it became clear that this trend could not continue because of growing thermal is-

sues and difficulties to further improve performance by purely smarter execution of a

single instruction stream [EBA+11, HP17]. From the perspective of programmers, a

paradigm shift occurred from simple seemingly sequential execution to complex ex-

plicit parallel execution on multicores and a heterogeneous set of accelerators. For

example, a modern system on chip for smartphones is comprised of, among others,

11

12 Chapter 1. Introduction

GPUCPU NPU

DRAM

Figure 1.1: Illustration of the heterogeneous set of processing devices in a modern

smartphone based on the Huawei Kirin SoC (reproduced from [LTXZ19]). The smart-

phone is comprised of a CPU, a GPU, and a Neural Processing Unit (NPU) for machine

learning tasks. The CPU has two types of cores, energy demanding high performance

cores and more energy efficient cores.

two types of multicores, a GPU, and an accelerator for machine learning tasks (see

Figure 1.1) [LTXZ19].

As illustrated in Figure 1.2, both multi-core processors and accelerators require

software developers to deal with significant complexity [SGG19, LNOM08]. To fully

utilise multi-core processors programmers must first identify suitable sources of par-

allelism and then distribute work over all cores. This includes having to deal with

issues such as synchronisation, load balancing, and dead- and live-locks. Addition-

ally, in heterogeneous systems programmers must be aware of low-level details of the

underlying architecture to achieve desirable performance. Among other things, pro-

grammers must find code sections that are suitable for available accelerators and then

provide code that orchestrates the execution on them. It is foreseeable that the prob-

lem of increasing programming complexity is becoming worse because over the past

decade computing systems have become more and more parallel and heterogeneous.

Architectures that expose parallelism to programmers have existed for a long time.

The IBM System 370 of the 1970s, the INMOS Transputer of the 1980s, and the Sony

Cell BE of the early 2000s are just a few famous examples [CSG99, GHF+06]. One of

the reasons why such systems have not become mainstream for a long time is likely the

difficulty of parallel programming. Processors expose parallelism to programmers now

but not because of a breakthrough in parallel programming or auto-parallelisation but

because a pure focus on single thread performance could not be maintained any longer,

as mentioned above. Therefore, to enable mainstream programmers to utilise heteroge-

neous multicore systems further research on better parallel programming models that

hide and manage the complexity of the underlying hardware is crucial.

1.1. The Problem: Dealing with Hardware Complexity in Software 13

1 __global__ void sum(int *input, int *results, unsigned int n) {

2 // Handle to thread block group

3 cg::thread_block cta = cg::this_thread_block();

4 int *sdata = SharedMemory<T>();

5

6 // Perform first level of reduction

7 unsigned int tid = threadIdx.x;

8 unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;

9 int mySum = (i < n) ? input[i] : 0;

10 if (i + BLOCK_SIZE < n) mySum += input[i + BLOCK_SIZE];

11 sdata[tid] = mySum;

12 cg::sync(cta);

13

14 // Do reduction in shared mem

15 for (unsigned int s=blockDim.x/2; s>32; s>>=1) {

16 if (tid < s) sdata[tid] = mySum = mySum + sdata[tid + s];

17 cg::sync(cta);

18 }

19

20 cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);

21 if (cta.thread_rank() < 32) {

22 // Fetch final intermediate sum from 2nd warp

23 if (BLOCK_SIZE >= 64) mySum += sdata[tid + 32];

24 // Reduce final warp using shuffle

25 for (int offset = tile32.size()/2; offset > 0; offset /= 2)

26 mySum += tile32.shfl_down(mySum, offset);

27 }

28 // Write result for this block to global mem

29 if (cta.thread_rank() == 0) results[blockIdx.x] = mySum;

30 }

Figure 1.2: Illustration of the complexity introduced by parallelism and low-level pro-

gramming on GPUs with a simple summation. The equivalent sequential code for a

CPU is 7.2x smaller and comprises only five lines of code. Additionally, programmers

must be aware of more concepts on the GPU such as scratchpad memory, warps, and

synchronisation. The sole purpose of this example is to illustrate the additional com-

plexity on the GPU and so we do not discuss the code in more detail. The code has

been taken from the CUDA SDK code samples with minor modifications [nVib].

14 Chapter 1. Introduction

1 ...

2 int result = reduction_skeleton(input, input_size, +);

3 ...

Figure 1.3: Illustration of how skeletons are used with a reduction skeleton, which is

used to implement a summation. Reductions combine all elements of an input buffer

with reduction operators such as +, *, min(), and max(). The skeleton in this example

is the function reduction skeleton. The skeleton is parameterised with a pointer to

the input buffer input, the size of that input buffer, and the reduction operation +.

1.2 A Solution: Abstraction with Algorithmic Skeletons

Algorithmic Skeletons are abstract high-level programming constructs for typical

parallel computations [Col04]. Examples of typical parallel computations include re-

ductions, stencil computations, and pipelines [MRR12]. Skeletons are reusable im-

plementations of these computations that are, for example, offered to programmers as

functions or classes, which are then parameterised with application specific code by

the programmer. For example, Figure 1.3 shows an implementation of the summation

of Section 1.1 with a reduction skeleton.

Skeletons are a solution to the problem described in the previous section in two

ways. Firstly, due to their high-level nature they hide low-level details concerned with

parallelism and concerned with details of the target architecture from software devel-

opers. For example, the skeleton in Figure 1.3 hides the parallelism and GPU specific

details of its implementation in Figure 1.2. Furthermore, the code in Figure 1.2 is only

one of many possible implementations. Skeletons can have multiple implementations

for different target architectures, thanks to their high-level nature. Secondly, infor-

mation encoded in skeletons about the computations they implement can be used by

runtime systems and specialised library developers for optimisations. For example, the

reduction skeleton encodes information about the access pattern in the input buffer and

the way input elements can be combined. The input buffer is accessed with no stride

and two input elements can be combined independent of the other elements. This in-

formation can be used to parallelise the reduction and coalesce memory accesses on

GPUs, as is done in Figure 1.2. We exploit these characteristics in the contributions of

this thesis (see below). Section 2.1 provides a more detailed introduction to skeletons.

1.3. Contributions 15

1.3 Contributions

Section 1.1 described how technological changes at the hardware level introduced com-

plexity at the software level. The previous section argued for skeletons as a way to hide

this complexity and, at the same time, use them for efficient implementations. This the-

sis demonstrates these benefits in two, for skeletons, novel contexts. Firstly, we present

a parallel for skeleton capable of mid-kernel migration in heterogeneous systems. Sec-

ondly, we present a self-tuning task farm skeleton for parallel hard real-time systems.

Both case studies are discussed in more detail below.

Transparent Mid-Kernel Migration with Parallel For In this case study we are the

first to provide fine-grained migration flexibility on heterogeneous systems in a pro-

grammer transparent way. We allow computational kernels to migrate and switch the

underlying language runtime, for example, from CUDA to OpenMP and vice versa

while they execute. We call this mid-kernel migration. In contrast, state-of-the-art

systems can schedule kernels only on a kernel-by-kernel basis [RVKP19, PS16].

Conventional runtime systems and operating systems can freely migrate computa-

tions on multi-cores. Adding similar flexibility to heterogeneous systems is intricate

and requires intimate knowledge of the applications in question. We automate this with

the parallel for skeleton and a novel extension to it for the description of memory ac-

cess patterns. Access pattern descriptions are used for a new optimisation that allows

for an efficient implementation of the migration mechanism. We also show that choices

for a tuning parameter of this mechanism, which has to be set on a kernel-by-kernel

basis, can be learned by predictive models and hidden behind a skeleton interface.

We show with analytical models that mid-kernel migration can outperform kernel-

by-kernel scheduling by up to 1.33x in our simple deployment scenario and confirm

this experimentally. In addition, we show that our skeleton interface reduces code size

by at least 88% compared to a hand implementation of mid-kernel migration. This

work is presented in Chapter 3.

Self-Tuning Skeletons for Hard Real-Time Systems In the second case study, we

are the first to present a timing-predictable and fully self-tuning skeleton for hard real-

time systems. This is a first step towards a set of composable self-tuning hard real-time

skeletons.

Real-time systems programmers must determine the minimum degree of paral-

16 Chapter 1. Introduction

lelism required to meet real-time timing requirements and for optimal resource usage.

This is even more challenging than on general purpose systems, because for hard real-

time system any violations of timing requirements are unacceptable. Additionally,

communication overheads can be reduced with careful use of knowledge about the

target microarchitecture and application. Using the concept of task farms and knowl-

edge about the independence of tasks encoded in the task farm skeleton we address

this challenge. We automatically choose the minimum degree of parallelism that is

required to process inputs in time and, additionally, we demonstrate that structural in-

formation encoded in skeletons can be used for optimisation in hard real-time systems.

For this we automatically choose a tuning parameter for an inter-thread communication

optimisation. Both self-tuning choices are made with carefully constructed models of

the response time of our task farm. The complexity of this optimisation and thread

management are hidden behind the skeleton.

We validate our models and implementation by showing that they never choose

parameters that would cause inputs to be processed too late. We also show that our

models choose either optimal or close to optimal parameters. This work is presented

in Chapter 4.

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2 provides necessary background knowledge and discusses related work.

Algorithmic skeletons and alternative abstractions are introduced at the start. The

chapter then discusses thread migration on CPUs because Chapter 3 brings similar

flexibility to heterogeneous systems, which are discussed subsequently with a focus

on CPU + GPU systems. Lastly, hard real-time systems and the real-time systems

terminology, which are necessary for Chapter 4, are introduced.

Chapter 3 presents our work on programmer transparent migration for heteroge-

neous systems. We enable computational kernels to migrate between heterogeneous

devices mid-execution without programmer intervention. We use semantic informa-

tion encoded in skeletons to find points at which the state of a kernel is stable and can

be migrated to another device. Furthermore, the complexity of this is hidden thanks

to the high-level nature of skeletons. Please note that this chapter does not consider

1.5. Summary 17

real-time systems. We present our real-time systems work in the following chapter.

Chapter 4 argues for the use of skeletons to program parallel hard real-time systems.

In a case study with the task farm skeleton, we show that information encoded in

this skeleton can be used to autotune applications. In more detail, we automatically

make complex static scheduling decisions and choose the degree of parallelism without

programmer intervention. Programmers only have to provide sequential code because

the complexity of the parallel execution is again hidden behind a skeleton.

Chapter 5 concludes the thesis and discusses limitations and future work.

1.5 Summary

This chapter outlined the problems of increasing hardware complexity that is visible

at the software level. A potential remedy is already ubiquitous in computer science:

abstraction. Algorithmic skeletons have been shown to simplify parallel programming

by abstracting away low-level implementation details. This thesis presents two novel

case studies in which the high-level nature of skeletons simplifies the programming of

parallel systems. In more detail, we are the first to show that skeletons can provide

similar scheduling flexibility on heterogeneous systems to that which OS schedulers

already have on CPUs, and this in a way that is transparent to programmers. We

are also the first to present a fully self-tuning and timing-predictable hard real-time

skeleton.

Chapter 2

Background and Related Work

Many abstractions for parallel programming have been devised over the past decades.

They fall along a spectrum from high-level to low-level abstractions. High-level ab-

stractions make parallelism implicit and, therefore, like with skeletons, anything paral-

lelism related is hidden from application developers. These abstractions give the most

freedom to libraries and runtime systems in terms of implementation choices. With

mid-level abstractions some details of the parallel execution are hidden from program-

mers. However, crucial performance relevant decisions are baked into the source code.

As a result, applications cannot adapt dynamically to changes in the execution environ-

ment and compilers have limited freedom for autotuning. Also, high-level application

information as it is encoded in, for example, skeletons is not available. Low-level

frameworks leave all implementation details to the programmer and provide only a

thin abstraction layer over the hardware.

In this chapter we first introduce skeletons and, following this, other common paral-

lel programming models of different abstraction levels are discussed. Next, we discuss

thread migration on CPUs in Section 2.3 and heterogeneous systems in Section 2.4.

These sections are relevant to our work on fine-grained migration on heterogeneous

systems in Chapter 3. Lastly, to provide the necessary background knowledge for

Chapter 4, Section 2.5 introduces real-time systems and the corresponding terminol-

ogy. Recent work on skeletons and other related work are discussed at the end of these

subsections after an introduction to the relevant background material. Finally, we con-

clude this chapter with critical reflections on previous work that is most relevant to the

main chapters of this thesis.

19

20 Chapter 2. Background and Related Work

1 sum = reduce(map(abs, in_buf), +, 0)

(a) High-level implementation of sum of absolute values with map and reduce skeletons.

1 int sum = 0;

2 for (size_t i = 0; i < IN_BUF_SIZE / 16; ++i) {

3 __m512i temp = _mm512_load_si512(in_buf); // Load 16 ints

4 temp = _mm512_abs_epi32(temp); // Apply abs()

5 sum += _mm512_reduce_add_epi32(temp); // Partial reduce

6 in_buf += 16;}

(b) Low-level single threaded SIMD implementation with C of the computation in (a).

1 int sum = 0; int partial_sum = 0;

2 #pragma omp parallel firstprivate(partial_sum, in_buf) shared(sum)

3 {

4 #pragma omp for schedule(static)

5 for (size_t i = 0; i < IN_BUF_SIZE / 16; ++i) {

6 __m512i temp = _mm512_load_si512(in_buf + 16 * i);

7 temp = _mm512_abs_epi32(temp);

8 partial_sum += _mm512_reduce_add_epi32(temp);

9 }

10 #pragma omp atomic

11 sum += partial_sum;}

(c) Low-level multithreaded SIMD implementation with C and OpenMP of the computation in (a).

Partial sums are computed in each thread and then combined with atomic operations.

Figure 2.1: Illustration of how skeletons are used and the flexibility they provide to run-

time systems and library developers. (a) shows the skeleton implementation of a kernel

that computes a sum of absolute values. (b) and (c) show potential corresponding

low-level implementations that a library could provide and from which a runtime sys-

tem could choose with a high-level programming model like skeletons. Alternatively,

the reduction component in (b) and (c) could be implemented with an OpenMP reduc-

tion. Compilers can also generate vectorised code, either automatically or guided by

programmers, for example, with the SIMD pragma of OpenMP. SIMD operations are

shown in (b) and (c) to illustrate how low-level operations can be hidden from program-

mers behind a skeleton interface in (a), which simplifies programming. Whether the

CPU implementations in (b) and (c) or a GPU implementation similar to the one in

Figure 1.2 is best depends on the relative performance of CPU and GPU and where

the input buffer resides. Additionally, the single threaded implementation in (a) is likely

better than the multithreaded implementation in (b) for small input buffers. A runtime

system could take these factors into account and choose the best implementation from

a set of implementations.

2.1. Algorithmic Skeletons 21

2.1 Algorithmic Skeletons

Algorithmic skeletons are high-level parallel programming constructs, which im-

plement common patterns of parallel computation and communication [Col04]. To

build applications, skeletons are composed and parameterised with application specific

code. Skeletons are an attractive programming model for two reasons. Programmers

Table 2.1: Examples of typical data parallel skeletons. The first three skeletons compute

new results by applying the application specific user function f to input data. Simple

data parallel skeletons like these are sometimes combined with skeletons like scatter

and zip, that do not compute new results but rearrange data.

Skeleton function Description
Sequential

pseudo-code

map(f, in, out)

Applies the user function f

to each element in the input

buffer. In- and output buffer

can be the same for in-place

updates.

for i in 1, in.size:

out[i] = f(in[i])

parallelFor(

f, r, ...)

Calls the user function f

r.end − r.start times, with

the iteration count and

other parameters passed to

parallelFor.

for i in r.start, r.end:

f(i, ...)

reduce(in, f,

init)

Folds elements in the input

buffer with the user function.

Typical user functions are +, -,

max, and min.

result = init

for i in 1, in.size:

f(result, in[i])

return result

scatter(

out, in, ind)

The skeleton reorganises data.

Elements in in are placed in

out at the indices in ind.

result = []

for i in 1, indices.size:

out[ind[i]] = in[i]

zip(in1, in2)

Creates a list of tuples. The

ith tuple contains in1[i] and

in2[i].

result = []

assert in1.size == in2.size

for i in 1, in1.size:

result[i] =

(in1[i], in2[i])

return result

22 Chapter 2. Background and Related Work

f_i f_i+1

(a) Illustration of the pipeline skeleton.

disp_f agg_f

f_1

f_n

(b) Illustration of the task farm skeleton.

Figure 2.2: Examples of task parallel skeletons based on the task farm and pipeline

skeletons of FastFlow [ADKT17]. Both skeletons process a continuous stream of input

data. Circles are functions that a compiler or runtime system can choose to execute in

parallel and arrows indicate the data flow between them. Pipelines apply user functions

consecutively (here f i and f i+1) to input data. Each user function is called a pipeline

stage, and stages can be executed in parallel. Task farms distribute input data via the

dispatcher (here disp f) to concurrent worker functions (here f 1 to f n), which are

provided by the programmer. Task farms can also run multiple instances of the same

worker function in parallel (not shown), which is helpful if the time required to process an

input is longer than the time between arrivals of new inputs. We exploit this in Chapter 4.

An aggregator function (here agg f) collects the results and passes them on to the

rest of the program.

1 read_input():

2 // Read input data e.g. via I /O

3 ...

4 send_to_next_stage(data)

5

6 process():

7 data ← receive_from_prev_stage()

8 // Process the data

9 ...

10 send_to_next_stage(data)

11 write_result():

12 data ← receive_from_prev_stage()

13 // Handle results e .g. write to I /O

14 ...

15

16 main()

17 p ← init empty pipeline

18 p.add_stage(read_input)

19 p.add_stage(process)

20 p.add_stage(write_result)

21 p.run()

Figure 2.3: Pseudocode illustration of pipeline skeletons, which are task parallel, based

on the API of FastFlow [ADKT17]. This skeleton instance is composed of three pipeline

stages. Again, a runtime system could choose whether to run them in parallel.

2.1. Algorithmic Skeletons 23

only specify the computations to be performed but not how they are implemented,

which gives libraries and runtime systems the freedom to choose among different

implementations and target devices, as has been demonstrated previously [SRD17,

DLK13, LFC13]. At the same time, they encode high-level semantic information about

memory access patterns and other properties, such as the independence of tasks, which

can be exploited by library programmers and runtime systems for efficient implementa-

tions. Figure 2.1 illustrates how skeletons enable implementation choices and abstract

complexity with a simple example. Figure 2.1a shows an implementation of a com-

putational kernel using two skeletons and figures 2.1b and 2.1c show corresponding

hand implementations. These are significantly more complex and leave less freedom

to runtime systems and compilers. For example, if the implementation in Figure 2.1b

was given by the programmer, runtime systems or compilers could not choose to run

the kernel on a GPU.

Skeletons can be categorised into data parallel and task parallel skeletons. The

distinction is based on the broader concepts of data parallelism and task parallelism.

Hennessy et al. and Culler et al. define these as follows:

• “Data-level parallelism (DLP) arises because there are many data items that can

be operated on at the same time.” [HP17].

• “In addition to data parallelism, applications often exhibit function parallelism

as well: entirely different calculations can be performed concurrently on either

the same or different data. Function parallelism is often referred to as control

parallelism or task parallelism, ...” [CSG99].

Therefore, data parallel skeletons typically process the same input data set in parallel

like the map and reduce skeletons in Figure 2.1. Table 2.1 provides further examples

of data parallel skeletons. Task parallel skeletons are concerned with the parallel exe-

cution of different user functions. Figure 2.2 illustrates typical task parallel skeletons,

and Figure 2.3 their use with the pipeline skeleton. The task farm skeleton, which is

illustrated in Figure 2.2, can be used in both ways. Task farms can exploit task par-

allelism with different user functions as is shown in Figure 2.2 or data parallelism by

applying the same worker function in parallel with multiple workers to, for example,

different parts of the same input data set.

24 Chapter 2. Background and Related Work

2.1.1 Recent Skeleton Works

Skeletons have been researched for the past thirty years [GVL10]. We discuss below

recent examples, which exploit skeleton information for efficient programmer trans-

parent implementations.

Copperhead generates CUDA code based on data parallel skeletons that are already

part of Python and other, for Python, new skeletons [CGK11]. To improve performance

programmers can either manually choose among different CUDA implementations of

nested skeletons or use an autotuner. As many skeleton frameworks do, the Copper-

head compiler uses semantic information encoded in skeletons to generate efficient

code. In more detail, the compiler attempts to fuse skeletons to improve locality. For

this, skeleton information is used to determine whether successive skeletons require

barrier synchronisation between them and to determine the size of temporary buffers.

Lastly, the authors show that using skeletons improves code size and therefore read-

ability and maintainability significantly compared to hand implementations in CUDA.

The Distributed Multiloop Language (DMLL) consists of a collection of data par-

allel skeletons that can be nested [BLR+16]. DMLL targets NUMA systems, clus-

ters with multiple GPUs, and single nodes. The DMLL compiler and runtime system

use skeleton knowledge for efficient implementations in two ways. The compiler can

rewrite combinations of skeletons with other skeletons to optimise for different tar-

gets and to better distribute data in NUMA systems and clusters. For example, the

dimension over which operations on matrices are parallelised can be changed this way.

Besides that, the runtime system uses skeleton specific knowledge about memory ac-

cess patterns to improve data locality. To achieve this, the runtime system schedules

sub-computations on NUMA and cluster nodes that store the corresponding input data.

DMLL is built on top of Delite which is a skeleton-based framework for the implemen-

tation of DSLs [SBL+14].

FastFlow is a C++ library for CPUs, GPUs, and clusters with task and data par-

allel skeletons [ADKT17, ASD+12, ACD+12]. A distinguishing characteristic is that

the library and programming interface are specialised for streaming applications, in

which a steady stream of new inputs is processed. To process inputs, the code of

task farm worker threads and pipeline stages (see below), which are the main abstrac-

tions of FastFlow, are invoked continuously. Internally, FastFlow uses queues to im-

plement communication over shared memory between, for example, worker threads

and pipeline stages. In addition, abstractions for typical communication patterns in

2.1. Algorithmic Skeletons 25

distributed system are offered [ACD+12]. To ease parallel programming, FastFlow

can automatically adjust its resource usage at runtime to meet quality of service tar-

gets [DSTD16]. For example, the runtime system can adjust dynamically the number

of cores an application uses. Furthermore, almost the complete Parsec benchmark suite

has been implemented with FastFlow [DSDMT+17]. With these implementations, the

authors show that the skeletons of FastFlow improve code size significantly compared

to implementations with lower-level abstractions.

Lift offers programmer transparent performance portability for heterogeneous sys-

tems [SRD17, SFLD15]. The Lift language includes data parallel skeletons and skeleton-

like functions for typical data layout operations. Skeletons are available at two different

abstraction levels. The first level are the typical device independent high-level skele-

tons, and the second are OpenCL specific low-level skeletons. The second level, for

example, offers a map skeleton that maps OpenCL workgroups to buffer elements. To

achieve performance portability the Lift compiler generates OpenCL code optimised

for the target device from high-level functional skeleton code. For this, semantic in-

formation encoded in skeletons is exploited in two ways. The compiler uses repeat-

edly rewrite rules that substitute high-level skeletons with other skeletons from both

abstraction levels. Next, efficient OpenCL code is generated from an intermediate pre-

sentation that uses only the low-level skeletons. RISE and ELEVATE are continuations

of Lift [KS21, HLK+20]. RISE is, like Lift, a functional programming language with

data parallel skeletons and skeletons for data reorganisation, which serves as an inter-

mediate language for the implementation of DSLs. One of the shortcomings of Lift is

that it relies on a fixed set of rewrite rules and does not let programmers influence the

compiler when it searches the space of possible rewritings to find good implementa-

tions of input kernels. ELEVATE, in comparison, lets programmers add new rewrite

rules by composing a set of basic rules, and gives programmers more control over how

the compiler applies them.

Musket is a C++ extension with data parallel skeletons, which generates code for

clusters with multi-GPU nodes [WK20, RWK19]. A source-to-source translator gen-

erates standard C++, MPI, CUDA, and OpenACC code. The extensions to C++ are

centred around distributed data structures for arrays and matrices, data parallel skele-

tons, and communication skeletons. An optimiser in the translator automatically fuses

skeletons, adapts the implementation of user functions depending on the contexts in

which they are called, and automatically distributes data over cluster nodes. The au-

thors emphasise ease of use, which informed the decision to extend C++. C++ is

26 Chapter 2. Background and Related Work

already known among the target user group, and many mistakes can be caught at com-

pile time or beforehand because C++ is statically typed. In line with this, plug-ins for

a common IDE, which implement static syntax checks and code completion, are pro-

vided. Musket is a continuation of Muesli, which is a C++ skeleton library for cluster

systems [KS02, EK16]. Muesli offers data and task parallel skeletons and distributed

data structures, which are very similar to the data structures of Musket. A distinguish-

ing feature of Muesli is support for currying. Currying modifies functions by binding

some of the functions’ arguments to values, which allows programmers to specialise

functions before they are passed to skeletons. Muesli has backends for MPI, OpenMP,

and CUDA. Also, a Java implementation exists, which, additionally, supports OpenCL.

Partans provides a high-level API for stencil computations and automatically gen-

erates efficient multi-GPU implementations [LFC13]. Iterative stencil computations

have to regularly copy data between memories in distributed memory systems. Typi-

cally, costly data transfers can be traded against redundant computations. Partans not

only generates code for these transfers but also finds good trade-offs between transfer

frequency and redundant computations without programmer intervention.

SkePU started as a purely macro-based C-library, and has evolved to a C++ library

and source-to-source translator with data and task parallel skeletons for which it offers

implementations in OpenMP, MPI, CUDA, StarPU, and OpenCL [ELK17, ÖEK19].

Some of its many features are discussed below. The runtime system automatically

manages memory coherence between main-memory and DRAM of dedicated GPUs

with an MSI-like protocol [DK16]. At the programming interface level, this is achieved

with container classes, which, besides the standard C++ container methods, offer fur-

ther methods for memory coherence. These methods are then used by the skeleton

implementations to ensure coherence in a programmer transparent way. In addition,

this allows for lazy data movement. A simple implementation might copy results from

dedicated GPUs to main memory after each skeleton execution on the GPUs. Instead

SkePU only copies data when needed. In more detail, this means that data is not

copied to main memory between successive skeleton executions on the GPU. The co-

herence mechanism works in a fine-grained way at the level of application defined

access ranges. If a skeleton reads only the first n elements of a buffer on a GPU, for

instance, then the mechanism ensures that only these n elements are up-to-date, and

no data transfers are performed for the remaining elements. Additionally, the runtime

system can also schedule kernels on heterogeneous systems on a skeleton-by-skeleton

basis, including the ability to spread the execution of a skeleton across multiple hetero-

2.2. Alternative Parallel Programming Frameworks and Abstractions 27

geneous devices [ÖEK19]. Skeletons are executed lazily, which means that they are not

executed right away but only when their execution cannot further be deferred [EK18].

Because the runtime system has thus an overview over multiple skeletons and their

relationship it can apply optimisations by, for example, fusing them. The source-to-

source translator of SkePU supports target device specific user functions [EK20]. In

addition to generic user functions for skeletons, programmers can provide functions

for specific target architectures or devices. This is helpful if users want to manually

optimise their code beyond what SkePU or a C++ compiler can do.

Spark is a continuation of the widely known MapReduce framework for cluster

computing [DG08, ZXW+16, ZCF+10]. With MapReduce programmers express their

computation with single or multiple successive map and reduce computations. The

execution on a cluster is orchestrated transparently to the programmer. One of the

design issues of MapReduce, that Spark overcomes, is that the results of each reduction

invocation are written to disk, which incurs overheads. To overcome this limitation,

skeleton calls can be arbitrarily chained without disk writes. Spark also offers a wider

variety of patterns, which are either similar to map and reduce or variations of it.

2.2 Alternative Parallel Programming Frameworks and

Abstractions

This section discusses examples of alternative high-, mid-, and low-level parallel pro-

gramming models and abstractions.

2.2.1 Other High-Level Abstractions

Domain Specific Languages (DSLs) are programming interfaces specialised to ap-

plications of a particular field. They can either be stand-alone languages with their

respective compilers or be embedded into existing languages. DSLs are very similar to

skeletons in some respects because they also encode semantic information, that is typ-

ically not available with generalist languages, through high-level constructs specific to

their domain. These high-level constructs also abstract low-level implementation de-

tails and provide freedom to runtime systems and compilers. In contrast, some skele-

tons are applicable to multiple domains. For example, the map skeleton is applicable

to a wide range of applications including financial analysis, computer vision, computer

graphics, and text analytics [DG08, DSDMT+17]. However, other skeletons, such as

28 Chapter 2. Background and Related Work

stencil skeletons, are applicable to only a few domains. Additionally, skeletons can

also be specialised to domains, such as FastFlow’s skeletons, which are specialised to

streaming applications [ADKT17].

A good example of a DSLs is Halide [RKBA+13], which is a language for image

processing pipelines. Programmers provide high-level implementations of kernels, and

optionally a separate specification of how they should be implemented. For example,

programmers can specify whether kernels should be fused or tiled. Alternatively, if

this is not specified then the compiler has the freedom to choose from a wide variety

of implementations. In contrast to the work presented in this thesis, Halide is only

applicable to a narrow set of applications and does not allow for mid-kernel migration

or provide real-time guarantees.

Specialised libraries with simple high-level functions provide performance-tuned

implementations of common and potentially time intensive operations. Examples in-

clude libraries for linear algebra and computer vision like OpenCV [WWX+16]. The

boundaries between DSLs and simple libraries are blurry. However, the programming

interface of such libraries is simpler. In general, the interface is not reminiscent of a

new language, and it is not implemented with dedicated compilers.

Efficient implementations can be chosen at compile- and runtime, and application

programmers are not concerned with implementation details. However, library devel-

opers have to provide new implementations for new target platforms and application

developers rely on the availability of libraries for their kernels and target systems.

Another major issue is that some optimisations such as kernel fusion, which would

optimise across multiple function calls, cannot always be applied [RKBA+13]. Again,

skeletons and, therefore, the work presented in this thesis are of wider applicability

than such libraries.

2.2.2 Mid-Level Abstractions

Bulk Synchronous Programming (BSP) based programs are executed in so called

supersteps, which themselves consist of two steps: first computation and asynchronous

communication and then barrier synchronisation [Val90]. While this frees program-

mers from having to implement synchronisation, BSP does not hide other aspects of

parallelism such as communication, task granularity, and load balancing.

Pregel is a C++ DSL for graph processing, which requires programs to have a BSP

2.2. Alternative Parallel Programming Frameworks and Abstractions 29

structure [MAB+10]. In each BSP superstep, vertices perform computations based on

their own value and data sent by other vertices in the preceding superstep. Pregel uses

the structure that it imposes on applications for efficient fault tolerance. Corrupted data

is recomputed based on checkpoints taken between supersteps and recorded messages.

Message passing allows concurrently running threads and processes to communi-

cate and synchronise via messages. Efficient implementations of the messaging infras-

tructure are abstracted from programmers and left to the compiler and runtime system.

However, programmers are exposed to all other details of parallel execution and re-

lated performance optimisations. Examples of this paradigm are the Message Passing

Interface (MPI) for distributed systems and the POSIX message passing interface for

shared memory systems [SGG19].

Task-based programming lets programmers express applications as collections of

interdependent tasks. Tasks that are independent at any one time during the execu-

tion can be executed in parallel. Some parallelism related issues such as synchroni-

sation between tasks, thread management, and task to device mappings are abstracted

away [PS16]. However, task-based programming models still put a bigger burden on

application developers because fewer parallelism related implementation details are

hidden than with skeletons. For example, a map skeleton does not require program-

mers to choose the granularity at which computations are assigned to threads internally.

However, a manual implementation of a map (see Section 2.1) with tasks would require

programmers to decompose the map into tasks and to carefully choose a granularity

for the decomposition. Tasks also do not provide any additional information about the

code within the tasks to the compiler or runtime system that could be used for efficient

implementations. In fact, programmers have to provide multiple task implementations

if they want to give the runtime system the freedom to schedule them on different de-

vices [ATNW09, Uni20]. Additionally, applications must be manually decomposed

into tasks.

OpenMP, OmpSs, and StarPU are well known implementation of this programming

paradigm [ATNW09, Boa20, Bar20, PBAL13]. OpenMP is a mature programming

language extension whose task pragma annotations are inspired by OmpSs, which is a

research implementation. StarPU and OmpSs can schedule tasks on different devices

but require programmers to provide multiple implementations as mentioned above.

Because these systems are scheduled on a task-by-task basis it is either not pos-

30 Chapter 2. Background and Related Work

sible to migrate kernels between heterogeneous devices if they are implemented as a

single task or programmers must manually decompose kernels, which is error prone

and time intensive. As discussed in Chapter 3, we provide more scheduling flexibility

without requiring programmers to manually decompose kernels or to provide multiple

implementations.

2.2.3 Low-Level Abstractions

Threads are sequential instruction streams, which by default share the same address

space with other threads that belong to the same process. To implement synchronisa-

tion and computation, threading libraries typically offer low-level primitives such as

mutexes, semaphores, and simple message queues. These are known to be error prone

and difficult to use [SL05, HM93, RCKH09]. Threads convey no information about

communication and synchronisation patterns that compilers or runtime systems could

use to assist programmers. A widely used thread-based API is Pthreads [Ker10].

Single Instruction Multiple Data (SIMD) Intrinsics are functions, which map to

SIMD instructions of the underlying hardware. SIMD instructions apply the same

operation in parallel to multiple input data elements [HP17]. Intrinsics are close to

the actual assembly instructions because programmers work manually with loads and

stores and have to be aware of the SIMD register width of the target microarchitecture.

Figure 2.1b uses SIMD intrinsics in lines three to five.

Single Instruction Multiple Threads (SIMT) is an abstraction for GPU compute ker-

nels in which, from the point of view of programmers, a single function is executed

in parallel by multiple threads but with different input data [HP17, LNOM08]. SIMT

is similar to SIMD programming (see above) because the same operations are applied

in parallel to different input data. However, among other things, programmers can

implement different per thread execution paths like in non-SIMD programs. Popular

implementations of SIMT include the CUDA programming framework for GPUs and

OpenCL. In practice, implementations of this paradigm encode information about the

independence of groups of threads. Besides that, this programming model provides no

further information about the computations in the threads that libraries or compilers

could use.

2.3. Thread and Process Migration 31

2.3 Thread and Process Migration

Operating system schedulers have been the subject of extensive research since the early

days of commercial computing [CMDD62]. The ability to migrate threads in mid-

execution from one core to another has been a crucial building block to implement a

range of scheduling policies. We first discuss the mechanism for migration on CPUs

and why it cannot be used for migration between CPUs and GPUs. Following this, we

discuss some of the existing policies, which exploit migration, to motivate our work

on providing similar programmer transparent flexibility for heterogeneous CPU + GPU

systems.

2.3.1 Migration Mechanisms for CPUs

To be able to migrate processes and threads, operating systems have a mechanism to

preempt them. When a process is preempted its architectural state, which comprises

the program counter and all other registers, is saved to a per process data structure in

the operating system, the so called Process Control Block (PCB) [SGG19]. To resume

execution on another core the OS copies the register values from the PCB and sets the

program counter with the saved value.

Migration is possible in this way on mainstream CPUs because all cores have the

same instruction set architecture (ISA) and the same, or in principle similar, microar-

chitectures. In more detail, if a process is resumed on another core the previously saved

values can simply be copied to the same registers on the new core, even if the microar-

chitectures between cores differ as in big.Little systems [CKC12]. However, the ISAs

and microarchitectures of CPUs and GPUs are vastly different, and the architectural

state recorded on one cannot directly be mapped to the other, let alone in an efficient

way.

2.3.2 Applications of Migration on CPUs

Operating systems can preempt threads if others with a higher priority, such as real-

time threads, require their CPU cores [SGG19]. The preempted threads can be re-

sumed on other, for example, weaker cores like in big.Little systems. Threads are also

migrated for load balancing. For example, Linux and FreeBSD periodically invoke a

load balancing function, which, if a load imbalance exists, migrates threads from cores

with higher load to cores with lower load [BCL+18]. Additionally, underutilised cores

32 Chapter 2. Background and Related Work

GPU DRAM

GPU Core N

Registers

Functional
units

Scratchpad
Memory

GPU
Core 1

Thread Block Scheduler

GPU
Core 2

GPU
Core N

Figure 2.4: High-level illustration of GPU microarchitectures based on nVidia

GPUs [LNOM08, HP17]. A GPU consists of multiple cores, which are called stream-

ing multiprocessors (SMs) in CUDA terminology. Each SM is composed of registers,

multiple functional units, which operate in lockstep, and scratchpad memory. The block

scheduler breaks the iteration space of the kernel down into blocks and schedules them

onto the SMs. (This figure is a simplification of the figures by Lindholm et al. [LNOM08].)

can steal threads from other cores to balance load. Lastly, the Energy Aware Scheduler

by ARM for the Linux kernel can migrate threads between heterogeneous cores if this

reduces energy consumption [kdc20].

2.4 Heterogeneous Systems

Heterogeneous systems are composed of a mix of different processing units like CPUs

and GPUs. Some example systems are discussed in Section 1. This section discusses

general purpose graphics processing units (GPGPUs) because we use CPU + GPU

systems in Chapter 3. We use CUDA terminology in this chapter [LNOM08, HP17].

2.4.1 General Purpose Graphics Processing Units

Figure 2.4 provides a high-level overview of typical GPU microarchitectures. A GPU

consists of multiple independent streaming multiprocessors (SMs) which are akin to

multi-lane vector processors [LNOM08, HP17]. A thread block scheduler divides the

iteration spaces of kernels into blocks and schedules them on the SMs. Each SM

consists of several functional units 1 that execute in lockstep. Per SM schedulers in

1Note, these functional units are also called CUDA cores.

2.4. Heterogeneous Systems 33

Time

W
a
rp

 1

W
a
rp

 2

W
a
rp

 3

W
a
rp

 4

W
a
rp

 2

W
a
rp

 3

W
a
rp

 4

W
a
rp

 2

W
a
rp

 3

W
a
rp

 4

W
a
rp

 1

Latency of load instruction

Load from GPU DRAM

Figure 2.5: Illustration of how GPUs hide the costs of high-latency operations with fine-

grained multithreading. In this example, the warp scheduler schedules other warps on

the functional units while Warp 1 waits for a long latency load from GPU DRAM to finish.

turn divide blocks into smaller groups of GPU-threads, so called warps, which are

then executed in parallel on the functional units (not shown). GPUs use fine-grained

multithreading to hide the cost of high-latency instructions such as loads and stores.

For example, while a warp waits for a load from GPU DRAM per-SM-schedulers can

run other warps on the functional units of an SM, as illustrated in Figure 2.5. Therefore,

it is important for GPUs to have multiple concurrent warps per SM to choose from.

The ratio of the theoretical maximum number of concurrent warps that the GPU could

schedule and the actual number of warps into which the iteration space of a kernel can

be divided and which can be run concurrently is called occupancy [LR11]. In general,

the higher the occupancy the better because the warp schedulers have more opportunity

to overlap high-latency operations with other operations.

2.4.1.1 Programming Frameworks for GPUs

GPUs can be programmed with CUDA or OpenCL, which are implementations of

the low-level SIMT programming paradigm discussed in Section 2.2. nVidia offers

CUDA for nVidia GPUs and OpenCL is a cross-vendor framework, which supports

several device types, including CPUs, GPUs, and FPGAs. From a programmer per-

spective both are in principle the same and because CUDA is more concise this chap-

ter uses only CUDA. Programmers write kernels, which are executed on the GPU, in

a C-like language, and so called host code, which is executed on the CPU to orches-

trates data transfers and the execution of kernels on the GPU. Figure 2.6 illustrates this

with a simple vector addition kernel. As shown in Figure 2.6b kernels are launched

with a special function call. To achieve high performance programmers must produce

very low-level CUDA code, which exploits the general microarchitectural principles

discussed above. In addition, programmers can use features of particular microarchi-

34 Chapter 2. Background and Related Work

1 __global__ void vector_addition(float* in1, float* in2, float* out) {

2 const unsigned int global_tid = blockIdx.x * blockDim.x + threadIdx.x;

3 out[global_tid] = in1[global_tid] + in2[global_tid];

4 }

(a) Kernel code that is executed on the GPU.

1 ...

2 // Copy data to the GPU

3 cudaMemcpy(in1_device, in1_host, VEC_SIZE_IN_BYTES, cudaMemcpyHostToDevice);

4 cudaMemcpy(in2_device, in2_host, VEC_SIZE_IN_BYTES, cudaMemcpyHostToDevice);

5

6 // Execute the kernel

7 vector_addition<<<VEC_SIZE / BLOCK_SIZE, BLOCK_SIZE>>>(

8 in1_device,

9 in2_device,

10 out_device);

11

12 // Wait for the execution to finish

13 cudaDeviceSynchronize();

14

15 // Copy results to main memory

16 cudaMemcpy(out_host, out_device, VEC_SIZE_IN_BYTES, cudaMemcpyDeviceToHost);

17 ...

(b) Host code that is executed by the CPU.

Figure 2.6: Illustration of how GPUs are programmed with CUDA with a simple vector

addition kernel. The kernel function in (a) is called in (b) in line seven. The two param-

eters within <<<...>>> specify the iteration space of the kernel. The parameter on the

right-hand side sets the size of the blocks, and the parameter on the left-hand side sets

how many blocks are executed. For simplicity, we assume that VEC SIZE is a multiple

of the block size. From a high-level perspective, CUDA launches a separate thread for

each point in the iteration space, which each execute the function in (a) once. Error

checking code is omitted for brevity.

tectures through intrinsics [nVi21].

Other alternative languages and libraries with a much more high-level program-

ming interface such as DSLs, skeletons, and specialised libraries exist [nVia, RKBA+13,

SRD17]. These often use OpenCL or CUDA internally or directly generate assembly

2.4. Heterogeneous Systems 35

Table 2.2: Typical DRAM and PCI-E bandwidths in a current system. PCI-E data trans-

fers can have significant costs because the PCI-E bandwidth is considerably smaller

than the bandwidth of main memory and GPU DRAM. We assume a system with dual

channel main memory.

Component Bandwidth (GB/s)

Main memory (DDR4-2400) 38.4 [HP17]

GPU DRAM (nVidia Titan Z) 672 [nVic]

PCI-E 3.0 with 16 lanes 16 [PS14]

CPU

Main MemoryDRAM

DMA Engine

GPU

PCI-E

Figure 2.7: Illustration of competing memory accesses by the CPU and PCI-E transfers.

code for the GPUs.

2.4.1.2 Data-Transfer Costs and Interference

Dedicated GPUs require input data and results to be transferred between host main

memory and GPU DRAM typically via PCI-E. Transfers have a high overhead because

PCI-E bandwidth is significantly smaller than the DRAM bandwidth on the host and

GPU, as illustrated in Table 2.2. Therefore, a simple implementation of a migration

mechanism, which would copy all input data when a kernel migrates would in some

cases incur unacceptably high costs because input data that has already been processed

would be copied. For example, if the vector addition kernel of Figure 2.6 would be

migrated from CPU to GPU after half the iteration space has been processed on the

CPU, such a simple mechanism would transfer half of the input data unnecessarily.

Data transfers between main memory and the GPU can also interfere with other

parts of the system. This subsection discusses only interference with execution on

the CPU because this kind of interference is most relevant to the work presented in

Chapter 3. Data transfers from and to the GPU are typically performed with DMA

transfers, as illustrated in Figure 2.7, which can slow down execution on the CPU for

various reasons. First of all, the CPU cannot use the full DRAM bandwidth if a DMA

transfer is in progress because both kinds of accesses, DMA and accesses by the CPU,

36 Chapter 2. Background and Related Work

have to be served by main memory. In addition, DMA transfers can cause cache line

invalidation or flushes to ensure memory consistency, which further interferes with

execution on the CPU [PH05]. Lastly, depending on the transfer mode, DMA and

CPU accesses are either interleaved or the CPU is barred from accessing main memory

during a transfer [TB15].

2.4.1.3 No Interrupt Support

Execution on the CPU can be interrupted, for example, by a timer to hand control

over to the operating system. This involves a context switch, which saves the state

of the preempted thread and so allows it to resume execution on another core. GPU

kernels cannot receive interrupts and do not support context switches as CPUs do.

Additionally, already launched GPU kernels and data transfers cannot be aborted by

host code.

2.4.1.4 Integrated GPUs

Integrated GPUs share DRAM with the CPU and, therefore, do not require costly

PCI-E data transfers. As with dedicated GPUs, integrated GPUs also do not sup-

port interrupts and CPU-style preemption, which could allow migration and, therefore,

also benefit from our work. However, in this thesis we only use dedicated GPUs and

leave integrated GPUs for future work. Because dedicated GPUs introduce additional

complexity with PCI-E data transfers they are a more challenging for our work than

integrated GPUs.

2.4.2 Related Work

Preliminary work on mid-kernel migration is presented in Section 2.4.2.1. Section 2.4.2.2

discusses work that schedules kernels on heterogeneous systems without mid-kernel

migration. Section 2.4.2.3 discusses the use of kernel slicing and data transfer chunk-

ing, which are our core migration mechanisms, in other contexts. Section 2.4.2.4 dis-

cusses work that executes kernels on multiple heterogeneous devices at the same time

with slicing but is not concerned with migration. Section 2.4.2.5 presents work that

predicts device affinities for unseen kernels. Our system would require such a predic-

tor in a real deployment.

2.4. Heterogeneous Systems 37

2.4.2.1 Preliminary Work on Mid-Kernel Migration

To improve the utilisation of heterogeneous systems, Lösch et al. present a framework

that allows fine-grained migration between heterogeneous devices and a novel high-

level scheduling algorithm, which exploits this capability [LP20]. The programming

interface is based on an abstract class, which requires programmers to implement meth-

ods for data transfers and kernel launches. Programmers provide a separate implemen-

tation of this abstract class for each device. The presented scheduling algorithm aims

to minimise the makespan of applications, which are implemented with a task graph.

Section 2.6.1 discusses weaknesses of this work and why we consider it preliminary.

2.4.2.2 Kernel-by-Kernel Scheduling

The following runtime systems migrate applications in heterogeneous systems but are

limited to coarse grained kernel-by-kernel scheduling decisions.

Rinnegan has a task-based programming model and makes scheduling decisions

on a task-by-task basis (tasks contain kernels) [PS16]. For each task, programmers

must provide multiple implementations for potential execution on each device in the

target system. Kernel-by-kernel scheduled runtime systems have two choices when

a new kernel arrives and its fast device is not available: (1) wait for an unpredictable

amount of time until the fast device becomes available, or (2) launch on the slow device

without the ability to migrate later on. The perfect decision requires knowledge about

the execution time of the kernel on each device and when the fast device will become

available. This information is typically not available. Rinnegan requires a profiling

phase and incorporates models to estimate these times. In contrast to Rinnegan, our

system does not require multiple implementations of the same kernel for each target

device. We can generate kernels for each device including data transfers for discrete

GPUs with the information encoded in our programming model.

HTrOP uses the polyhedral model to generate OpenCL code for loops from se-

quential C and C++ code [RVKP19]. These loop nests are dynamically scheduled to

accelerators or multicore CPUs depending on availability and input data size. Addi-

tionally, the runtime system can choose to execute the original sequential computation.

Like all kernel-by-kernel scheduled systems, HTrOP has to decide whether a kernel

should wait for an unavailable but better suited device or launch on an earlier available

but slower device. HTrOP considers input data location, in- and output data size, and

if an accelerator has previously been used to make this decision together with user set

38 Chapter 2. Background and Related Work

weights for each factor. Kernel generation and migration are user transparent. How-

ever, because OpenCL kernels are generated from sequential code users can add only

some performance optimisations for the fast device.

StarPU and OmpSs also use task-based parallel programming models and can dy-

namically schedule tasks to heterogeneous devices [ATNW09, PBAL15]. Program-

mers must provide multiple implementations of a task for the runtime system to be

able to consider different devices. OmpSs supports task stealing on heterogeneous

systems. For example, multicore CPUs can steal tasks from GPU task queue, assum-

ing an implementation for both devices is provided.

SkePU is a skeleton library with the ability to schedule data parallel skeletons auto-

matically to heterogeneous compute devices [DLK13]. In contrast to some task-based

parallel programming models, programmers do not have to provide multiple imple-

mentations for the same skeleton. However, programmers can choose to provide device

or input specific implementations to further improve performance [EK20].

Diamos et al. propose a system that dynamically constructs a dependency graph of

kernels and schedules them to heterogeneous compute devices in an out-of-order ex-

ecution fashion [DY08]. Again, this requires programmers to provide multiple device

specific implementations of each kernel.

ConSerner automatically generates data transfer code for devices with separate

memory from C code [GSB14]. The authors pair ConSerner in their evaluation with a

scheduler that is capable of kernel-by-kernel migration.

CheCL checkpoints OpenCL applications between OpenCL kernels and can mi-

grate and restart applications at checkpoints [TKS+11].

2.4.2.3 Kernel Slicing and Data Transfer Chunking

Slicing and data transfer chunking, which are our migration mechanisms in Chapter 3,

have been used without migration in real-time systems as mechanisms to preempt GPU

kernels and their data transfers [KLK+11, BK12, ZTL15].

RGEM makes data transfers preemptable by dividing them into chunks [KLK+11].

Dedicated GPUs have their own DRAM and all data needed by a kernel must be trans-

ferred from main memory to GPU DRAM before kernel launch (see Section 2.4.1).

In commodity systems data transfers take place over PCI-E and typically via a DMA

transfer, as explained in Section 2.4.1.2. However, once the DMA engine has started

a data transfer it cannot be signalled to abort the transfer. This poses a problem for

real-time systems in which jobs must be processed within a set time (see Section 2.5).

2.4. Heterogeneous Systems 39

A job performing a data transfer can block another job from transferring its data, which

may mean that the blocked job misses its deadline. To fix this, RGEM replaces a sin-

gle data transfer with multiple successive transfers in software. This creates potential

preemption points before and after each new transfer. The complexity of chunking is

hidden behind a CUDA-based programming model.

PKM combines data transfer chunking with kernel slicing to further increase the

granularity with which GPU jobs can be preempted [BK12]. The data transfer chunk-

ing strategy is the same strategy RGEM uses (see above) except that kernel executions

and memory transfers may be overlapped. PKM divides application-level kernels into

subkernels to add potential preemption points before and after each subkernel. The

programming model is inspired by CUDA and OpenCL. In contrast to our work, PKM

does not support slicing-aware data transfers (see Section 3.3.1) and it requires a pro-

filing phase to choose appropriate slice sizes. We present predictive models to choose

slice sizes and do not require a costly profiling phase.

GPES also combines kernel slicing and data transfer chunking [ZTL15]. The im-

plementation of kernel slicing is different than ours and the one of PKM (see above).

GPES inserts if-statements that check if the IDs of thread blocks are within the range

of the current slice and exits blocks if this is not the case. Slicing and chunking are hid-

den behind the standard CUDA API. This implementation of slicing does not require

additional computations to compute the, from the perspective of the original non-sliced

kernel, correct block IDs. However, the additional checks introduce overheads too and

each slice launches some blocks unnecessarily. The authors do not state how slice sizes

are chosen and data transfers are not slicing aware.

Chen et al. use slicing to alleviate thrashing in the programmer transparent caches

of GPUs [CHZ+18]. GPUs are more prone to cache thrashing than CPUs because the

per thread cache size is significantly lower. Chen et al. use slicing as a mechanism to

control the number of threads that execute on a GPU at any one time in order to reduce

cache contention.

2.4.2.4 Simultaneous Use of CPU and GPU without Migration

Several works distribute the execution of an application kernel over multiple hetero-

geneous devices at the same time and some of these works also use slicing. However,

these works are not concerned with migration. They also do not investigate the over-

heads that kernel partitioning mechanisms such as slicing introduce if a kernel executes

on only one device at a time.

40 Chapter 2. Background and Related Work

Cho et al. execute kernels in slices to parallelise the execution of a slice with the

preprocessing of the next slice for split computation on the CPU and GPU [CNP+18].

Intra-block load imbalance leads to inefficient use of GPUs because a block only fin-

ishes and frees its multithreading slot for a new block when all of its threads have

finished. Cho et al. reorder threads to reduce imbalance in blocks. Blocks with high

expected execution times are scheduled on the CPU and the others on the GPU. The

overheads of reordering and the profiling phase are hidden through slicing. A slice is

profiled and reordered while its predecessor slice executes on the CPU and GPU.

FluidiCL slices on the CPU to keep track of which parts of the iteration space have

already been processed on the CPU [PG14]. Pandit et al. process thread blocks 2 on

CPUs from the highest to the lowest block ID and vice versa on GPUs. Bookkeeping

data on GPUs, which keeps track of the block IDs run on CPUs is updated after each

CPU slice. Execution finishes once all blocks have been executed.

A range of other works executes kernels on the CPU and GPU simultaneously

without slicing [LHK09, GO11, SVZ+14, KBS+14]. We do not discuss these in detail

as they are not related to kernel migration with slicing.

2.4.2.5 Device Affinity Predictors

Grewe et al. determine device affinities for CPU + GPU systems with a decision

tree [GWO13]. The decision tree uses kernel features such as the communication to

computation ratio and the number of coalesced memory accesses. The presented model

correctly predicts the affinity of 97% of the NAS-PB benchmarks on two systems.

Taylor et al. use a hierarchy of support vector machines with polynomial kernels to

determine device mappings for different metrics [TMW17]. The authors report 100%

accuracy for the correct kernel to device mappings in a system with a big.Little CPU

and GPU and with execution time as target metric.

2.5 Hard Real-Time Systems

Chapter 4 demonstrates how parallel hard real-time systems can be autotuned in a pro-

grammer transparent way with skeletons. Therefore, this section introduces hard and

soft real-time systems and the terminology required for Chapter 4. Because Chapter 4

2We use the term thread block instead of the OpenCL term work group here to be consistent with the
rest of the chapter.

2.5. Hard Real-Time Systems 41

is a case study with the task farm skeleton we also discuss this skeleton in the context

of hard real-time systems.

Real-Time systems require inputs to be processed within set times and are typically

divided into soft real-time systems and hard real-time systems [But11]. Failure to pro-

cess inputs within the time limits, so called deadline misses, are unacceptable in hard

real-time systems. Examples, for such systems are robotics applications or, in general,

control systems in which deadline misses might lead to injuries. In contrast, in soft

real-time systems deadline misses only lead to reduced quality of service.

2.5.1 Terminology

Tasks make up real-time programs and correspond to program code, which may be

executed repeatedly [LL73, But11]. Tasks can be aperiodic, periodic, and sporadic.

Periodic tasks are invoked at regular intervals, the so called period. Similarly, sporadic

tasks have a minimum time between invocations, and aperiodic tasks are instantiated

unpredictably. Jobs are instantiations of real-time tasks. The release time of a job is

the time at which a particular job is instantiated [But11]. A relative deadline is the

time within which a job must finish starting from its release time [But11]. In diagrams,

job releases are depicted with an upwards facing arrow and job completions with a

downward facing arrow. Worst-Case Execution Times (WCETs) are the longest pos-

sible execution times of code fragments or functions [HP17]. WCETs are particular

important for hard real-time systems where system designers must ensure that a job

never exceeds its deadline. WCETs are determined either empirically or with a hard-

ware model and static code analysis [But11]. The slack time is the time between job

completion and deadline [But11].

2.5.2 Task Farms for Real-Time Systems

Task3 farms are composed of a set of workers that run in parallel and apply a function

to a stream of inputs, as explained at the start of this chapter [ADKT17]. Inputs are

generated by a producer and the results of workers are sent to a consumer. Figure 2.8

illustrates real-time applications that lend themselves to farms with a set of jobs, re-

leased every period T . Each job j is composed of a producer phase P j that generates

input data, a worker phase W j that processes the data, and a consumer phase C j that

3Note that the term task has here a different meaning than in the broader real-time systems context
(see Section 2.5.1).

42 Chapter 2. Background and Related Work

Pj Wj Cj

Jo
b
s

Time

Pj+1 Wj+1 Cj+1
Pj+2 Wj+2 Cj+2

T T

Figure 2.8: Illustration of hard real-time computations that can be implemented with

task farms. Such computations have three generic phases: a producer (P), a worker

(W), and a consumer phase (C).

consumes the results. Here the phases P j can be mapped to the same thread as their

execution does not overlap. The same is true for the C j phases. However, W j and

W j+1 cannot be mapped to the same thread as their execution overlaps.

Synchronisation and farm internal communication between producer, workers, and

consumer as well as the parallel execution of workers is implemented by a skeleton

library or compiler. The sole task of application developers is to provide sequential

worker, producer, and consumer functions. Internal communication is implemented

with the so-called dispatcher and aggregator. They are hidden from application devel-

opers behind the farm API. The dispatcher schedules jobs on workers and the aggre-

gator informs the consumer when new worker generated results are available.

2.5.3 Related Work

Section 2.5.3.1 discusses preliminary work on skeletons for real-time systems. Sec-

tion 2.5.3.2 and Section 2.5.3.3 discuss work on task-based programming models and

OpenMP for real-time systems. Commonly used mature programming models for real-

time systems are introduced in Section 2.5.3.4. Finally, Section 2.5.3.5 discusses work

that is similar to our job batching technique, which we use in Chapter 4 to demon-

strate that skeletons can hide complex efficient implementations in the context of hard

real-time systems.

2.5.3.1 Preliminary Work on Skeletons for Real-Time Systems

Stegmeier et al. and Ungerer et al. present work on skeletons for parallel real-time

systems [UBF+16, SFJU]. The framework is a set of composable skeletons which

exploits parallelism within job instances [SFJU, UBF+16]. To aid programmers, the

2.5. Hard Real-Time Systems 43

authors present a tool that makes core count recommendations based on UML models

and estimated WCETs [UBF+16, JFGU14]. For the evaluation, the authors use a sim-

ulator instead of real hardware [UBF+16]. Section 2.6.2 discusses why we consider

this work preliminary.

2.5.3.2 Task-Based Programming Models and Directed Acyclic Graphs

Task-based programming models are used for real-time and non-real-time systems (see

Section 2.2.2). Recent publicly available (academic) work try to adapt the task pragmas

of OpenMP, which is well known in non-real-time contexts, to real-time systems.

Pinho et al. use an implementation of OmpSs with real-time extensions [PNY+15].

In contrast to the original implementation of OmpSs, the authors extract the complete

task graph at compile time in order to compute a static schedule in advance. To achieve

this, they have to make pessimistic assumptions about the number of tasks and the

dependencies between tasks to ensure correct execution for all possible situations that

might arise at runtime. Firstly, programmers have to provide an upper bound for loop

iterations. To ensure correctness in all situations, their compiler has to assume that

the number of iterations in a loop with a dynamic iteration count is always equal to

that upper bound. As a consequence, the static task graphs may contain more tasks

than are actually executed at runtime. Secondly, dependencies between tasks whose

presence depends on dynamic information are assumed to be always present. This

means some opportunities for parallel execution may not be used because the task

graphs may contain dependencies that are actually not present at runtime.

Sun et al. investigate worst-case response times of complex OpenMP task-graphs,

which contain nested parallelism, tied tasks4, and branches that cannot be modelled by

standard directed acyclic graphs [SGW+17, SGSC19, SGL+20]. The authors present

techniques to compute the worst-case response times (WCRTs) of such graphs and

scheduling algorithms that improve WCRTs (see Section 2.5).

Serrano et al. analyse the response times of OpenMP tasks in the context of het-

erogeneous real-time systems [SQ18], and Wang et al. present a benchmark suite of

OpenMP applications for real-time systems [WGS+17].

These works are motivated by a wealth of works that model parallel real-time ap-

plications as directed acyclic graphs, which lend themselves to an implementation with

4Tied tasks have to execute only on a single thread [SGW+17]. For example, tied tasks cannot
resume execution on another thread after they have been preempted. All OpenMP tasks are tied tasks
by default.

44 Chapter 2. Background and Related Work

task-based programming models [LALG13, SFL+14, BMSSW13, BBMS+12].

2.5.3.3 Programming Models Based on the OpenMP for Pragma

Ferry et al. and Li et al. present first steps towards parallel for based program-

ming models for real-time systems. Both present RT-OpenMP, which is an imple-

mentation of the OpenMP for pragma that uses the theoretical results mentioned

above [FLM+13, LLF+14]. Li et al. also present another implementation based on

the unmodified OpenMP implementation of GCC and a patched Linux kernel that sup-

ports real-time scheduling algorithms [LLF+14].

Both works are motivated by theoretical work on the synchronous task model,

which is an alternative application model to task graphs [SLA+12] (see above). In

this model, applications are composed of sequential and parallel phases. All threads in

a parallel phase start at the same time and a phase ends with a barrier. The number of

threads in a phase and the execution time of each thread can be arbitrarily chosen.

2.5.3.4 Mature Real-Time APIs

We review parallelism related constructs that are offered by the commonly used real-

time APIs of POSIX, Java, and ADA [Hun19, Ope18, Ada16]. These APIs require

programmers to work with threads, which are a low-level abstraction, and set periods

and deadlines at the level of threads. Synchronisation and communication are imple-

mented with mutexes, monitors, queues, remote procedure calls and/or critical sec-

tions. Except for queues, programmers have to implement mutual exclusion manually.

Failing to do so correctly leads to subtle bugs that are hard to reproduce and fix. Queues

are on a higher abstraction level but are often used to send pointers to data structures.

Programmers have then to implement mutually exclusive access across concurrently

executing threads again themselves.

These constructs are on a lower abstraction level than skeletons. None of the cur-

rently used low-level constructs allow compilers or runtime systems to automatically

set the degree of parallelism or hide and tune resource efficient implementations such

as batching that are informed by the structure of a real-time task.

2.5.3.5 Job-Batching

Previous works also group computations to reduce communication costs and map jobs

to multicore processors [KB06, BBW11, TBG+17, SGW+19, Sar87]. For example,

2.6. Critical Reflections on Related Work 45

Sarkar and Kianzad et al. group sub-computations modelled as task graphs so that

they are scheduled on the same core to reduce communication costs [Sar87]. However,

the main contribution of the work presented in Chapter 4 is not batching. We use job

batching just as an example for how structural information encoded in skeletons can be

used for performance optimisations for real-time systems and how the complexity of

such optimisations can be hidden behind skeletons. Besides that, the work mentioned

above groups computations of a single task graph instance. As a reminder, periodic

real-time systems instantiate real-time tasks once per period. In contrast, we group

sub-computations of successive instantiations of a real-time task, which is an intricate

challenge because task instances must be delayed without missing their deadlines. The

complexity of this is hidden behind our task farm skeleton.

2.6 Critical Reflections on Related Work

In the light of our goal to simplify parallel programming and enable efficient imple-

mentations with structural information encoded in skeletons, as discussed in Chapter 1,

we discuss here weaknesses of the closest related work that has been presented in the

previous sections. In addition, other subordinate weaknesses are also discussed. We

address all of them with our work in chapters 3 and 4.

2.6.1 Mid-Kernel Migration

Section 2.4.2.1 discussed preliminary work on mid-kernel migration by Lösch et al. [LP20].

In comparison to this thesis, the authors focus more on high-level scheduling and

less on the migration mechanism and abstractions to hide the additional complexity.

Therefore, the presented work has multiple limitations that make it preliminary when

it comes to the mechanism and abstraction. Lösch et al. expose significant complexity

to application developers. Programmers have to provide multiple implementations of

each kernel for each device, and, in addition, kernels have to be manually modified

so that they are still correct in the presence of migration. Furthermore, parameters of

the migration mechanism have to be manually chosen by the programmer. However,

manual choices are, in some cases, impractical because they would require a manual

search through a very large parameter space.

The presented evaluation has two major weaknesses. Average speedups are deter-

mined based on the end-to-end execution times of several hundred randomly generated

46 Chapter 2. Background and Related Work

task-sets with up to 32 kernel instances. This means migration time points are uncon-

trolled and the impact of slowed down kernels could be hidden by kernels that benefit

from migration. Besides that, the authors do not use a benchmark suite to evaluate

kernel migration and their implementation.

Section 2.4.2.2 discussed kernel-by-kernel scheduled programming models. With

such programming models, application kernels could manually be made migratable

by decomposing them into multiple sub-kernels. However, this would expose to the

programmer the complexity of the decomposition and the decomposition granularity

would need to be chosen manually, in the worst-case with a time consuming brute force

search.

2.6.2 Hard Real-Time Skeletons

Section 2.5.3.1 presented work on real-time system skeletons by Stegmeier et al. and

Ungerer et al. [UBF+16, SFJU]. We consider this work preliminary for several reasons.

The presented skeletons are not self-tuning. This complicates parallel program-

ming because programmers have to choose parameters such as the degree of paral-

lelism by hand, which is complicated on general purpose systems but even harder on

hard real-time systems where programmers must ensure that no deadline misses oc-

cur. To aid programmers the authors present an autotuner that recommends how many

cores should be assigned to each skeleton to meet the real-time demands of the applica-

tion [UBF+16]. However, the tool only provides estimates because they are based on

approximated WCETs and UML diagrams. Programmers who take the recommended

core counts without manual analysis risk deadline misses, which are, as mentioned

above, unacceptable in hard real-time systems.

The authors also do not demonstrate how information encoded in skeletons can be

used for efficient implementations in the context of real-time systems, as demonstrated

before in other fields [DG08, MCF18, LFC13, DSTD16]. This is an important property

of skeletons and should be demonstrated to make a convincing case for hard real-time

skeletons.

Independent of these programmability related criticisms, the presented skeletons

are unfit for hard real-time systems because they are not fully timing analysable. As

mentioned above Stegmeier and Ungerer work only with approximated WCETs of

their skeletons. For example, the authors add a blanket 100,000 cycles to the WCET of

a code section for each skeleton invocation and another 10,000 cycles for each thread

2.7. Summary 47

used by a skeleton [JFGU14]. In the worst-case, deadline misses occur if these WCET

buffers are too small. In the best case, they waste computational resources. Lastly, the

authors use a simulator for the evaluation and not real hardware [UBF+16].

Section 2.5.3.3 discussed work on OpenMP and its for pragma in the context of

real-time systems. This pragma is very close to skeletons, however Ferry et al. and

Li et al. are not concerned with real-time skeletons but want to adapt the OpenMP

API for real-time systems [FLM+13, LLF+14]. In contrast, our vision is to develop a

composable set of real-time skeletons that encodes more structural information, which

can help runtime systems and compilers, than the current OpenMP and task-based

approaches. Lastly, no detailed WCET analysis of the OpenMP runtime system is

presented, which would be necessary for hard real-time systems.

2.7 Summary

This chapter discussed background material and related work. We first discussed skele-

tons in detail and, following this, alternative programming models at different abstrac-

tion levels. Next, we explained how existing operating systems implement thread mi-

gration on CPUs and why migration between CPUs and GPUs cannot be implemented

in the same way. We introduced heterogeneous systems, with a focus on GPGPUs, and

work related to our work on dynamic scheduling on heterogeneous systems. Follow-

ing this, we discussed real-time systems and related work on skeleton programming for

these systems. Lastly, we concluded this chapter with critical reflections on existing

works and opportunities for improvements in the context of our goal to ease parallel

programming.

Chapter 3

Transparent Kernel Migration

This chapter presents novel migration techniques for heterogeneous systems that allow

finer-grained scheduling decisions than competitor systems. The migration mechanism

is informed by the parallel for skeleton and the complexity of the mechanism is hidden

behind it. This chapter considers general purpose systems. Our work on real-time

systems is presented in Chapter 4.

3.1 Introduction

Resources available to an application can vary unpredictably over its execution. For

example, multiprogramming is used across the computing spectrum to improve utili-

sation: high-end data centre machines are multiprogrammed with demand-driven ser-

vices and other jobs that reuse resources at times of low activity [LCG+15, KMHK12,

VPK+15], while mixed criticality embedded systems mix timing critical workloads

with less critical ones, again to improve utilisation and energy consumption [dNLR09,

Ves07, BYA+19]. Energy and thermal constraints exacerbate the problem. An evolv-

ing workload mix can cause changes to the best allocation of the available power

budget to silicon, or the appropriate exploitation of hardware characteristics, as in

big.Little systems [CKC12]. In response, on CPU only systems, the OS is able to

migrate multithreaded applications between cores. For example, dynamic scheduling

strategies redeploy cores as they become available [CKB13, SGS14, RZLA], and dy-

namically review the application to device mapping [CHCF15]. Power capped systems

control the active core count and so their power consumption with thread migration

[CHCR11].

It would be natural and desirable for a similarly flexible migration capability to

49

50 Chapter 3. Transparent Kernel Migration

be available on CPU + GPU platforms. However, migrating running applications be-

tween devices in such systems is challenging. Current runtime systems for GPUs make

kernel-to-device scheduling decisions only at coarse-grained kernel launches and can-

not perform mid-kernel migration [RVKP19, PS16]. Because of this, perfect schedul-

ing decisions on whether to launch on an earlier available slow device or wait for a

fast device require unattainable knowledge of the future. If the best performance after

migration also requires a change of language runtime (e.g. switching from OpenMP

on the CPU to CUDA on the GPU, or vice-versa) the challenge is even greater.

In this chapter we investigate a mechanism which enables these flexibilities for

CPU + GPU systems, including the ability to switch the underlying language run-

time. Specifically, we investigate a mechanism which allows schedulers to migrate

applications in mid-kernel execution from CPU to GPU, and vice versa. In princi-

ple, to exploit mid-kernel migration, each application could be written with multi-

ple embedded variants, data transfer code to switch between these, and heuristics to

decide under which dynamic circumstances to do so. However, this would be very

challenging to application developers, and in fact, could reduce maintainability by

solidifying these decisions amongst true application-level code. We show that mid-

kernel migration can be hidden behind the parallel for skeleton, and that decisions on

scheduling granularities, migration strategies, and device utilisation can be handled

efficiently and transparently, without burdening the application programmer. In more

detail, our migration mechanism subdivides iteration spaces into slices as prior work

has done [CHZ+18, PG14, CNP+18, ZTL15], and considers migration on a slice-by-

slice basis. Slices provide stable states at which points the context of an application can

switch devices and runtimes. To choose slice sizes we use off-line trained predictive

models. Data transfers in systems with distinct per-device memory can have a signif-

icant cost, and so we also transfer data in a slicing aware way, to avoid unnecessary

transfers if a kernel migrates. Our mechanism provides the key technological basis for

transparent migration and runtime adaption of applications in CPU + GPU systems.

We evaluate mid-kernel migration with the First Come, First Served (FCFS) schedul-

ing policy, using a simple scenario to allow us to focus on the cost and contribution

of the migration mechanism. We show analytically that mid-kernel migration removes

the need for unattainable knowledge of the future for scheduling decisions. In more

detail, we show that FCFS with mid-kernel migration can achieve a theoretical max-

imum speedup of 1.33x over a perfect knowledge FCFS schedule without mid-kernel

migration, under ideal conditions. Crucially, FCFS with mid-kernel migration never

3.1. Introduction 51

performs worse. We confirm these results experimentally with nine benchmarks on

a CPU + GPU system and show that mid-kernel migration with our simple policy

achieves speedups of up to 1.30x over kernel-by-kernel scheduled systems even if they

benefit from a perfect schedule. We also demonstrate that if a kernel never migrates

the overheads of slicing are negligible, and lastly, that our parallel for reduces the code

complexity significantly if compared to a manual implementation of the migration ca-

pability. In summary, this chapter makes the following contributions:

1. We describe a mechanism that enables mid-kernel execution migration between

CPU and GPU in both directions, including the possibility of switching lan-

guage runtimes dynamically. In contrast, current systems cannot migrate kernels

between CPUs and GPUs once they have been launched [PS16, RVKP19].

2. We show that the complexity of the mechanism and its efficient implementation

can be hidden from programmers behind a skeleton-like high-level programming

model based on the widely known parallel for construct.

3. We show that slice size choices that introduce acceptable overheads can be

learned by predictive models.

4. We present an analytically derived maximum for the speedups with migration

over current kernel-by-kernel scheduled systems in a simple deployment sce-

nario.

5. We provide a detailed evaluation that demonstrates, among other things, the gen-

eral performance benefits of mid-kernel migration and exposes the performance

behaviour of the mechanism in edge cases.

The remainder of this chapter is structured as follows: Section 3.2 provides a moti-

vating example. Section 3.3 introduces the migration mechanism and techniques for an

efficient implementation. Section 3.4 discusses the predictive slice size models. Sec-

tion 3.5 discusses a high-level programming model based on parallel for that hides the

complexity of the migration mechanism and the slice size predictors. Section 3.6 dis-

cusses the comparator for our analytical models and experimental evaluation, and the

maximum theoretical speedup over it that can be achieved with mid-kernel migration

for our deployment scenario. Section 3.7 presents experimental results. Section 3.8

concludes this chapter.

52 Chapter 3. Transparent Kernel Migration

GPU

CPU

t Timet+0.4 t+0.9

(a) Execution without mid-kernel migration.

The new kernel waits for the faster GPU and

does not use the slower but immediately avail-

able CPU.

Unavailable New kernel

GPU

CPU

Timet+1t+0.4t

(b) Alternative execution strategy without mid-

kernel migration. The new kernel starts im-

mediately on the slower CPU but cannot use

the faster GPU when it becomes available.

t+0.7t Timet+0.4

CPU

GPU

(c) Execution with mid-kernel migration. The new kernel starts on the CPU and finishes execu-

tion on the faster GPU.

Figure 3.1: Illustration of the typical performance improvement opportunities missed

without mid-kernel migration. (3.1a) and (3.1b) illustrate two possible execution strate-

gies of a new kernel without migration, and (3.1c) its execution with migration. When

the new kernel arrives at time t the GPU, on which it would execute twice as fast as on

the CPU, is unavailable for 0.4 time units. Without mid-kernel migration the new kernel

either waits for the GPU (3.1a) or starts immediately on the slower CPU (3.1b). In the

former case, the new kernel finishes after 0.9 time units, after it waited for 0.4 time units

for the GPU and then executed for 0.5 time units on it. In the latter case, the kernel

launches immediately on the CPU and executes for one time unit. With migration the

kernel executes for 0.4 time units on the CPU and migrates to the GPU when it becomes

available to finish the remaining work in 0.3 time units (3.1c). With migration the new

kernel finishes after 0.7 time units, and, therefore, is 1.29x faster than the schedule that

results in the shortest combined waiting and execution time without migration, which is

illustrated in (3.1a). We leave scheduling policies that exploit simultaneous execution

on the CPU and GPU of a kernel for future work (see 5.3.1).

3.2 Motivation for Mid-Kernel Migration

This section illustrates the potential performance benefits of mid-kernel migration, and

how a scheduler can take advantage of it in a simple scenario. We make mid-kernel

migration and its implementation programmer transparent with our parallel for, which

is introduced in Section 3.5.

3.2. Motivation for Mid-Kernel Migration 53

3.2.1 Better Performance with Mid-Kernel Migration

In current systems, kernels are only scheduled at launch time as discussed in Sec-

tion 3.1 and illustrated with an example in Figure 3.1 [ATNW09, RVKP19, PS16] (see

Section 3.6.2 for a more detailed discussion of current systems). Opportunities for

performance improvements are therefore missed if devices are temporarily unavail-

able. On the one hand, kernels cannot make progress while they wait for their fast

device1. On the other hand, if launched on an alternative slow device, kernels cannot

migrate when faster devices become available. We fix this with mid-kernel migration.

As shown in Figure 3.1c, kernels make progress on earlier available devices instead of

waiting, and schedulers can migrate them to faster ones when they become available.

3.2.2 Simplified Scheduling Decisions

Without mid-kernel migration, perfect decisions on whether to launch kernels on their

fast or slow device require generally unattainable knowledge of the future. To deter-

mine which kernel launch decision leads to the shortest combination of waiting and

execution time, schedulers of such systems need to know when the fast device of a

kernel will become available, and how long a new kernel would take to complete on

each device. We simplify this decision with mid-kernel migration so that schedulers

do not require such knowledge about the future. With mid-kernel migration, sched-

ulers can launch kernels on the earliest available device and migrate them if a faster

device becomes available. This enables kernels which would not otherwise have been

migrated to make progress on another device in the meantime. Similarly, kernels can

utilise faster devices when they become available, which is advantageous when the

best decision for current systems and schedulers is to execute on their slow device.

Section 3.6 builds idealised models to show that this policy never performs worse

than the current kernel-by-kernel scheduled systems. However, in practice, manage-

ment code, interference during the migration, and on-the-fly device setup cause slow-

downs in some cases. We develop techniques and strategies which address these prob-

lems in order to leave an overall performance win.

1We distinguish between the fast and slow device from the perspective of a kernel. In the absence of
interference and contention kernels have a lower execution time on their fast device than on their slow
device. Whether the CPU or the GPU is the slow device depends on the kernel and the target system.

54 Chapter 3. Transparent Kernel Migration

Input matrix Output vectorInput vector

Slice 1

Shared by

Slice 2
Slice 3

all slices
Input
Output

1
D

 S
lic

in
g

 d
ir

e
ct

io
n

Figure 3.2: Slicing and slicing aware data transfers with matrix-vector multiplication.

The output vector is computed slice-by-slice. Only the matrix rows needed for a slice

are transferred. The input vector is shared by all slices and so not affected by slicing. In

this example the iteration space is one-dimensional, and its size is equal to the length

of the output vector. Additionally, each output element could be computed in multiple

slices with a 2D iteration space.

3.3 Mid-Kernel Migration

This section presents a migration mechanism for systems with a CPU and a dedi-

cated GPU, and techniques required for its efficient implementation. We implement the

mechanism on top of OpenCL, CUDA, and OpenMP. Specifically, in our implementa-

tion, kernels switch between CUDA on GPUs and OpenCL or OpenMP on CPUs. The

mechanism is enabled through our parallel for based programming model by which

the programmer guarantees that iteration space points can be processed independent of

each other (see Section 3.5). Moreover, the programming model makes the mechanism

and its optimisations programmer transparent by virtue of its high-level nature.

3.3.1 Iteration Space Slicing, Runtime Switching, and Slicing Aware

Data Transfers

To enable migration, kernel iteration spaces are processed in slices as illustrated

in Figure 3.2 and migration is considered on a slice-by-slice basis. For clarity, in the

remainder of this chapter we distinguish between application-level kernels and slice

kernels. The former are the simple intuitive CUDA and OpenCL kernels or OpenMP

loop nests which would have been written in a conventional coding of the application

and which are now generated implicitly by our system. With our mechanism, these

are each sliced into a sequence of finer grained kernels, as illustrated in Figure 3.3,

3.3. Mid-Kernel Migration 55

and for which we now reserve the term slice kernel. We slice in all dimensions of the

iteration space with the same slice size. More complex policies can be developed. For

example, slices in 2D iteration spaces are squares except for the slices at the end of

rows or columns, which might be rectangular. Optionally, kernels can execute without

slicing on their fast device if preemption on this device never occurs. In some cases,

offsets need to be added to the thread and block IDs in the generated internal kernel

code as illustrated in Figure 3.4.

It might be necessary or desirable to change the underlying language runtime when

an application kernel migrates. For example, CUDA kernels cannot execute on CPUs

and so the runtime system must be switched when an application kernel migrates from

a GPU where it used CUDA to a CPU. Between slices the state of a kernel, including

1 ...

2 // Execute the kernel in slices

3 while not all slices have been executed:

4 offset_into_iteration_space ← get iteration space offset

5 slice_size ← get slice size

6 target_dev ← get device

7 // Launch slice kernel

8 launch_slice_kernel(target_dev, offset_into_iteration_space, slice_size)

9 ...

(a) A pseudocode-based illustration of slicing.

1 ...

2 launch_application_kernel(target_device, iteration_space_size)

3 ...

(b) The equivalent unsliced pseudocode.

Figure 3.3: High-level illustration of how slicing is implemented internally with pseu-

docode. We do not require programmers to hand implement sliced kernels but auto-

mate this with our parallel for instead (see Section 3.5). Implementation details are

omitted for clarity. For example, we have omitted code for chunked data transfers, code

for the abortion of slices (see Sections 3.3.2 and 3.3.3), and code for edge cases such

as iteration space sizes that are not a multiple of the slice size. Additionally, our actual

CUDA implementation executes data transfers and manipulates pointers into the in- and

output buffers inside the loop before and after the kernel launch.

56 Chapter 3. Transparent Kernel Migration

1 parallel_for pf(0, problem_size, [&]DEVICE_HOPPER_FUNCTION_PARAMETER() {

2 int iteration = GET_ITERATION();

3 ...

4 });

5

(a) High-level application developer implementation with our parallel for skeleton (see Sec-

tion 3.5).

1 __global__ void cuda_kernel(size_t _batch_offset_x) {

2 int iteration = ((blockDim.x * blockIdx.x + threadIdx.x) +

3 _batch_offset_x * blockDim.x);

4 ...

5 }

6

(b) Generated CUDA kernel with automatically inserted offsets (see batch offset x).

Figure 3.4: Illustration of automatically added offsets to compute the correct iteration

count in each slice kernel. The CUDA constructs blockDim.x, blockIdx.x, and

threadIdx.x return only the respective values within a slice kernel and are not aware

of the complete iteration space of the application kernel. The source-to-source transla-

tor that inserts the required offsets in the generated code is introduced in Section 3.5.

which iteration space portion has already been processed, is stable and known. This

way, after migration the application kernel execution can be resumed on the target de-

vice with a different implementation and runtime. This does not require any changes

to the underlying CUDA, OpenCL, and OpenMP runtimes because slicing can be im-

plemented as a layer on top of them. After migration, execution is simply resumed by

calling the kernel launch functions and possibly data transfer calls of the new target

device to execute the next slice kernel2.

Data is transferred to dedicated GPUs in a slicing aware way to avoid unnecessary

transfers which might negate the benefits of migration. Without this, the entire input

data set needs to be transferred before the computation of the first slice kernel. If an

application kernel migrates later on, some of the input data would have been transferred

unnecessarily. Therefore, only the input data required for the current slice kernel must

be transferred. In Figure 3.2 slices and the parts of the input matrix they require are

2In the case of OpenMP a loop nest that implements the slice kernels is executed.

3.3. Mid-Kernel Migration 57

colour-coded. In some cases, such as sparse matrix multiplication, this is non-trivial

because some of the data required by a slice kernel is dependent on other input data,

but this is addressed in our implementation.

3.3.2 Migration Strategies

The migration strategy depends on the device in use, whether the kernel is idempotent3,

and the current execution step of the slice in execution. In addition, partial results

computed on different devices must be merged. In some situations, slice kernels on

the GPU are aborted. To abort a slice kernel, the execution jumps out of the current

sequence of data transfers and kernel launches and restarts the slice kernel on the CPU.

Migration from GPU to CPU In this migration scenario, the current slice kernel is

in most cases aborted on the GPU and restarted on the CPU. GPU slice kernels are

composed of multiple data transfers and a CUDA kernel launch, and can be aborted be-

tween these substeps, even though the individual steps cannot be aborted once launched.

Therefore, if the application kernel migrates from a GPU to a CPU the current slice

kernel is restarted on the CPU and aborted at the end of the current substep on the

GPU. Non-idempotent slice kernels are not aborted on the GPU if any results of the

slice kernel have already been transferred back from the GPU to the host. Unlike our

implementation, migration could be implemented without aborts but would be less effi-

cient because data transfers of the non-aborted slice kernel on the GPU would interfere

with execution on the CPU.

Migration from CPU to GPU In this scenario, either the current slice kernel on the

CPU is restarted on the GPU or the next slice kernel is started on the GPU and the

current one finishes on the CPU. On CPUs slice kernels correspond to either a sin-

gle OpenCL kernel without data transfers, which cannot be safely aborted, or to an

OpenMP loop nest, which will not be aborted in our implementation. We choose not to

abort OpenMP loops in order to avoid the performance penalty that the corresponding

code would introduce even if the abortion is not activated. Therefore, if the applica-

tion kernel migrates from a CPU to a GPU and the kernel is idempotent the current

3Our parallel for allows programmers to set whether the user code, that is passed to it, is idempo-
tent [dKSJ12]. The user code is idempotent if it can be re-executed multiple times for an iteration point
and produces the same correct outputs with each re-execution. The results of the parallel for are still
correct if this optional tuning parameter is not set despite the user code being idempotent, but potential
performance might be lost.

58 Chapter 3. Transparent Kernel Migration

slice on the CPU is started again on the GPU. In this case we do not wait for the old

instance of the slice on the CPU to finish if the application kernel finishes earlier on

the GPU. If the kernel is not idempotent the next slice kernel is started immediately on

the GPU and executes in parallel with the current already launched slice, which runs

on the CPU.

Merging results Intermediate results successively computed on more than one de-

vice must be merged. We use two strategies depending on the access patterns in the

output buffers. Both access pattern and whether a buffer is an in- or output buffer

are specified through our programming model (see Section 3.5 for a discussion of the

access pattern attributes).

Merging Strategy 1: If the slice kernels write to distinct subsections of an output

buffer, then results computed on the GPU for such a buffer are transferred into their

subsection in host main memory after each slice kernel.

Merging Strategy 2: If a buffer is not accessed in this way, then incremental buffer

updates in host main memory, as described above, are not possible. Instead, intermedi-

ate results computed on the CPU are transferred to the GPU before the first GPU slice

kernel executes. With this strategy, GPU results are only transferred to host main mem-

ory when the application kernel migrates to the CPU or once the application kernel has

completed on the GPU.

3.3.3 Interference Reduction and Earlier Aborts

Migration from GPU to CPU involves the abortion of the current slice kernel on the

GPU (see Section 3.3.2). To be able to abort GPU slices earlier, data transfers are

broken down into chunks as shown in Figure 3.5. Each data transfer chunk corresponds

to a new internal API call and so transfers can be aborted between them. Application

kernels cannot be aborted at arbitrary points because, as above, OpenCL and CUDA

do not allow already issued data transfers and kernels to be aborted. Because of this,

execution on the CPU and GPU are overlapped until the application kernel can be

aborted, as indicated in Figure 3.5 by the red dashed lines. This overlap must be

minimised for two reasons. Firstly, data transfers interfere with the execution on the

CPU and therefore degrade performance. Secondly, reaching the next point at which

the slice on the GPU can be aborted can take longer than the remaining application

kernel execution time on the CPU.

3.3. Mid-Kernel Migration 59

Time

CPU

GPU
- Iteration space slice i - - Migrated slice i + 1 -

Transfer
from device

Transfer to
device

Avoided actions

Data transfer for the new kernelNew application kernel Interference

Data transfer chunk boundary

Unavailable

Fastest for the
new kernel

(a) Migration without data transfer chunking. The slice kernel on the GPU cannot be aborted

until the data transfer is finished. The execution on the CPU is slowed down by interference

caused by the data transfer.

CPU

GPU
- Iteration space slice i - - Migrated slice i + 1 -

Fastest for the
new kernel

(b) Migration with data transfer chunking. The slice kernel on the GPU is aborted between data

transfer chunks. This reduces the interference with the execution on the CPU.

Figure 3.5: Migration without (3.5a) and with (3.5b) chunked data transfers.

We use a one-off brute force search to determine chunk sizes that introduce no

more than an implementation-set maximum slowdown over execution without chunk-

ing. In a full deployment, this search would take place only once, transparently to

programmers, “at the factory” or when the runtime system is installed. The search is

not repeated for each application kernel instance because the chunking overheads are

application kernel independent. This is the case because per buffer data transfer code is

the same across kernels. In our implementation, instead of a single call to cudaMemcpy,

cudaMemcpy is called once for each chunk in a loop, and the overheads are caused by

the loop, additional function calls, and pointer arithmetic.

3.3.4 Device Setup Cost Reduction

OpenCL and CUDA must set up devices before their use. Applications that execute

without migration can hide this cost when an application kernel is waiting for a device

other than the CPU. With migration this is not possible if waiting for the GPU, because

the CPU, where the setup must take place, is already occupied by the new application

kernel, as shown in Figure 3.6a. To fix this we introduce a daemon that performs

the setup once when it starts, on behalf of any applications that run afterwards, as

illustrated in Figure 3.6b. In this way, applications do not have to spend time in setup

60 Chapter 3. Transparent Kernel Migration

CPU

GPU

UnavailableNew application kernel CPU setup for the new kernel GPU setup for the new kernel

i i+1 i+2 i+3 i+4 Time

Fastest for the
new kernel

0

(a) Execution of the new application kernel with migration but without the daemon.

CPU

GPU

i i+1 i+2 i+4i+30 Time

Fastest for the
new kernel

(b) Execution of the new application kernel with migration and with the daemon.

Figure 3.6: Execution without and with a daemon that sets up OpenCL and/or CUDA

in advance. With the daemon the new application kernel does not spend time in setup

code when it migrates. The daemon performs the setup once when it starts as indicated

by the striped bar at time zero in (3.6b). Data transfers are not shown for simplicity.

code during migrations. To implement this, applications are executed by the daemon

to give them access to the preinitialised OpenCL and CUDA handles.

3.4 Choosing Slice Sizes

This section discusses our machine learning models that predict kernel instance-specific

slice sizes. Since slicing is hidden entirely behind our parallel for, slice size choices

are also handled transparently to the programmer. As discussed in Section 3.3.1 if the

slow device of an application kernel is available earlier than its fast device, then the

kernel executes on its slow device in slices to allow for mid-kernel migration once the

fast device becomes available. The models presented in this chapter are a function

f (v) = s, that based on a vector of application kernel features v predicts a slice size s.

We build separate models for the CPU and GPU because of their strong microarchitec-

tural differences. We also exploit prior work on slicing in the context of caching (see

Section 3.4.5) [CHZ+18, KHL+19].

3.4.1 Target Slice Sizes

The target slice sizes are a compromise between slicing overheads and resource wastage.

On the one hand, the larger the slice sizes the smaller the overheads because fewer

3.4. Choosing Slice Sizes 61

Table 3.1: Features used to predict slice sizes. “Device” indicates whether the features

are used to predict slice sizes for the CPU or GPU. All static features are extracted at

compile time and are adjusted at runtime. Dynamic features are extracted at runtime.

Feature Device Extraction Type

Bytes transferred to the GPU per CUDA thread GPU Dynamic

Comparison operations CPU Static

Floating point and integer compute operations CPU & GPU Static

Memory accesses CPU Static

slices are executed, which in turn means code that implements slicing and introduces

overheads is executed less often (see Section 3.3.1). These overheads cannot be amor-

tised if a kernel never migrates, and lead to slowdowns in these situations. On the

other hand, the smaller the slice sizes, the quicker an application kernel migrates once

a faster device becomes available because migration is considered more frequently.

Additionally, less interference is caused on the fast device by the residual execution

on the slow device after migration (see Section 3.3.2 and Section 3.3.3). This is so

because the remaining slice on the slow device finishes earlier with smaller slice sizes,

or because a point at which the slice can be aborted is reached earlier, since the data

transfers between two such points are smaller. Similarly, the smaller the slice sizes, the

less work is thrown away when a slice is aborted. Therefore, the target slice sizes are

the smallest slice sizes that introduce an acceptable slowdown if an application kernel

never migrates. As noted above, we do not consider real-time systems in this chapter.

Therefore, the acceptable overheads introduced by the predicted slice sizes do not have

a hard upper bound.

3.4.2 Application Kernel Features for the Slice Size Predictors

Table 3.1 lists the features used by the slice size predictors. To extract static source

code features, we build a feature extractor with Clang that traverses the abstract syntax

tree of the kernel code. The extractor is based on source code used by Cummins et al.

and Grewe et al. [CPWL17, GWO13, CGW20]. Static features are adjusted at runtime

once loop bounds are known by multiplying counts for operations inside the loops

with the iteration counts of the corresponding loops. Loop bounds are determined

based on the parameter values that are passed to the kernel if the parameter values

62 Chapter 3. Transparent Kernel Migration

can be directly inserted into the bounds, or the kernel source code if the bounds are

hard-coded. As heuristics, terms in the loop condition that cannot be evaluated before

the kernel execution are ignored and loops whose bounds cannot be determined are

set to an iteration count of one. Operations in if-branches without a corresponding

else-branch in loops are not counted as they are typically not taken, for example a

branch that is only taken when a sought value has been found. To generate training

data, we determine loop bounds manually if they cannot be determined automatically.

The only dynamic feature is “Bytes transferred to the GPU per thread”. This feature

is computed based on the amount of data to be transferred to the GPU and the number

of CUDA threads with which an application kernel implemented in CUDA would be

launched.

The chosen features are indicative of the work required for each iteration space

point. This enables the models to predict slice sizes that introduce acceptably low

overheads if an application kernel never migrates. This is so because the target slice

size for a set overhead and the average execution time per iteration space point corre-

late. The less work is required per iteration space point, the larger the slice sizes that

introduce only a set overhead. The reason is that the per slice execution time of the slic-

ing code that causes the overheads is independent of the slice size (see Section 3.3.1).

For example, for an average execution time per iteration space point of 1ms and 1ms

per slice for the slicing code, the smallest slice size that introduces a slowdown of no

more than 1.01x is 100.

Other features that we explored include global, local, and private memory accesses,

bytes transferred to and from the GPU4, and compute operations per memory access.

We did not consider high-level kernel features like memory access patterns that can be

encoded in skeletons or that can be detected via compiler analysis and leave this for

future work.

3.4.3 Training the Slice Size Predictors

We use linear regression for the CPU model, and a random forest regressor with 50

decision trees with a depth of two for the GPU model [Bre01]. All hyperparameters

except the tree depth and the tree count are the defaults of the popular Scikit-Learn

machine learning library [PVG+11]. We reduce the tree count to reduce the runtime

costs of predictions with the random forest. For slice sizes on the CPU, we use linear

4Note, we use bytes transferred per CUDA thread

3.4. Choosing Slice Sizes 63

Program
source Binary

Static
features

Instrumented
code

Slice size
predictors

1b. Extract static
 features from
 kernel code

3. Adjust static features (i) with loop
 bounds (ii) and add dyn. features (ii).

1a. Compile 2. Execute

4. Predict
 slice size

(ii)

(i)

Figure 3.7: Overview over the steps required to predict slice sizes (see Section 3.4.4

for a detailed discussion). The working steps are performed in order of the numbering.

regression because of its low runtime overheads and the strong linear correlations be-

tween CPU target slice sizes and input features. For GPU slice sizes we use random

forests because they performed best of all models explored. These other GPU models

were support vector machines, decision trees, and linear regression.

To train the models we extract features from the kernels in the training set, as de-

scribed in Section 3.4.2, and determine target slice sizes through brute force search.

The training and the required brute force search need to be done only once “at the

factory” before the system is deployed, as in previous work [WO09, GWO13]. If the

workload type in a real deployment changes the models can be retrained with applica-

tions representative of the new workload and updated. For practical reasons we do not

test each point in the slice size parameter space of each kernel, but step through the

parameter space with a step size that we set by hand for each kernel instance. During

the brute force search, we increase the slice size until the overheads are between 2%

and 4% (see Section 4.1). We use a maximum allowed overhead of 2% for slicing on

the GPU except for a small number of benchmark instances for which slice sizes with

only 2% overhead cannot be found. We increase the maximum allowed overhead to

up to 2.75% in these cases. For the same reason we always use a maximum of 4% for

slicing on the CPU. We take the logs of the features for both models and the log of

the training slice sizes for the CPU model to strengthen the linear correlations between

features and target slice sizes. Otherwise, the correlations are weakened by heavy tails.

Finally, for the CPU model we standardise the features and slice sizes to place their

means at zero and normalise them to their standard deviation.

3.4.4 Deploying the Slice Size Predictors

Figure 3.7 illustrates when features are extracted and predictions are made. Static

features are extracted at compile time (1) (see Section 3.4.2). At runtime (2) the size

of the buffers allocated on the GPU, the iteration space size, and application kernel

64 Chapter 3. Transparent Kernel Migration

parameters that determine loop bounds are recorded. Next, the loop bounds are used

to adjust the static features (3) as described in Section 3.4.2. Finally, the predictive

models predict a slice size (4). Because we use the log of the slice sizes and standardise

the slice sizes afterwards to train the CPU model (see Section 3.4.3), we apply the

inverse of both to the raw predictions to compute the final CPU slice sizes. Finally, to

avoid a load imbalance on the CPU we round the predicted slice size down to the next

multiple of number o f cores∗ocl block size. This way the same number of blocks is

executed by each core.

3.4.5 Choosing Slice Sizes for Sparse Matrix Vector Multiplication

The slice sizes for Sparse Matrix Vector Multiplication (SPMV) are handled differ-

ently, because SPMV is usually implemented as a specialised library, and so we as-

sume that the runtime system knows when SPMV is executed. We use this knowledge

to repurpose previous work that uses slicing without migration [CHZ+18, KHL+19].

This work exploits caching effects in SPMV of which our predictors are not aware with

smaller and so for our purposes better slice sizes (see Section 3.4.1). Chen et al. report

that SPMV benefits from these caching effects [CHZ+18]. With this knowledge we

use a static analysis-based slice size heuristic that is heavily inspired by the heuristic

presented by Kim et al. [KHL+19]. In contrast to Kim et al., we consider the L2 cache

instead of the L1 because on our GPU normal memory accesses do not go through the

L1 cache. Besides that, we do not change the block size but use the original block size

of the benchmark.

3.5 Our High-Level Programming Model

The complexity of mid-kernel migration and the slice size prediction is hidden

behind a high-level programming model based on parallel for in the style of OpenMP,

Kokkos, Raja, and SYCL [Boa20, ETS14, BBH+19, Gro20]. In comparison to existing

parallel for implementations, we require programmers to provide additional memory

access pattern attributes for each buffer. In return we hide the complexity of an efficient

implementation of slicing and the slice size prediction. In more detail, these attributes

are required to generate code for slicing aware data transfers (see Section 3.3.1) and to

merge partial results (see Section 3.3.2).

Our parallel for executes in parallel multiple instances of a function parameter that

3.5. Our High-Level Programming Model 65

1 ...

2 // Create parallel for instance. Code similar to this is required by existing parallel for

implementations.

3 parallel_for pf(0, output_vect_size, [=]DEVICE_HOPPER_FUNCTION_PARAMETER() {

4 int iteration = get_iteration();

5 int result = 0;

6 for (unsigned int col = 0; col < input_vector_size; ++col)

7 result += in_vector[col] * in_matrix[iteration * input_vector_size + col];

8 out_vector[iteration] = result;

9 });

10 // Specify memory accesses. Our programming model requires these in addition to the function

parameter.

11 int results_per_batch = pf.batch_size;

12 int matrix_inputs_per_batch = pf.batch_size * MATRIX_ROW_SIZE;

13 pf.add_buffer_access_patterns(

14 buf(in_vector, direction::in, pattern::all_or_any),

15 buf(in_matrix, direction::in, pattern::successive_subsections(

matrix_inputs_per_batch)),

16 buf(out_vector, direction::out, pattern::successive_subsections(

results_per_batch)));

17 // Set optional tuning parameters and run.

18 pf.opt_set_simple_indices(true).opt_set_is_idempotent(true).run();

19 ...

Figure 3.8: Illustration of the parallel for based programming model with a simple im-

plementation of matrix vector multiplication (see Section 3.5 for a detailed explanation).

Existing parallel for implementations require code similar to lines three to nine. The only

additional code that our model requires are access pattern attributes for each in- and

output buffer in lines 11 to 16. The method calls in 18 are optional tuning parameters

except for run(), which executes the parallel for.

each correspond to an iteration space point. As with any parallel for, programmers

must ensure that the function parameter does not assume any order in which the it-

eration space points are executed. Our API is implemented with a library and C++

source-to-source translator that generates CUDA, OpenCL, and OpenMP kernels, as

well as code that implements slicing and chunked data transfers (see Section 3.3).

Figure 3.8 uses an example user implementation of matrix vector multiplication

to demonstrate the parallel for. The first two arguments of the parallel for construc-

tor are the start and end of the iteration space, and the third is the function parameter

66 Chapter 3. Transparent Kernel Migration

(lines three to nine). Iteration points are grouped into successive batches. On GPUs

batches correspond to OpenCL workgroups and CUDA blocks. Slices are composed

of at least one batch. The current iteration and the batch size can be retrieved (line 4,

and lines 11 and 12) with a respective function and data field. All buffers that are used

by the function parameter are registered with attributes that describe the access direc-

tion and access pattern (lines 14 to 16). The access pattern attribute is all or any if

each batch accesses either all elements of a buffer or the access pattern does not fit the

attributes discussed below (line 14). The attribute is successive subsections (lines

15 and 16) if successive batches access only successive contiguous subsections of a

buffer. With this attribute programmers can simply specify how many buffer elements

each batch accesses. Optional tuning parameters indicate how indices are used (first

function call in line 18), or if the function parameter is idempotent, which informs the

migration strategy (see Section 3.3.2). The opt set simple indices(true) func-

tion call indicates that the get iteration() and get batch iteration() indices

are only used for memory accesses. get batch iteration() returns the current batch

ID. As an optimisation, buffers allocated on the GPU are only large enough to contain

data for a single slice if this tuning parameter is set, and if the buffers have the ac-

cess pattern attributes successive subsections or continuous subsections (see

below for an explanation of the latter).

We offer further API calls for more complex applications. For example, for appli-

cations with indirect memory access patterns or applications in which batches access

overlapping buffer subsections an attribute called continuous subsections can be

parametrised with two function parameters that compute the start and end indices of

the subsections based on the batch IDs. These function parameters can access other

buffers for indirect memory accesses. To optimise execution on the GPU, address

space qualifiers can be added to variables and buffers. Finally, the parallel for can be

specialised to a reduction with a method call.

One typical use-mode for our API is to code kernels from scratch. However, pre-

existing OpenCL and CUDA kernels can be ported to it in a simple process. Original

kernel code can be used as the function parameter for the parallel for with minor mod-

ifications, like replacing CUDA barrier operations with our barrier function. Code for

manual management of device buffers and data transfers is replaced with the memory

access attributes for each buffer.

3.6. An Idealised Performance Model 67

3.6 An Idealised Performance Model

This section shows analytically that mid-kernel migration outperforms kernel-by-kernel

scheduling, which is typical for current systems. For this, we create idealised models

of both and derive a maximum of 1.33x for the speedups that can be achieved by

adding migration in our deployment scenario (see below), irrespective of the kernels

and devices involved. Finally, insights into how these speedups change with system

characteristics and migration time points are provided. In Section 3.7.3, application

specific speedups based on this model serve as essentially unattainable idealised upper

bounds, allowing us to evaluate the quality of our practical slicing implementation and

its overheads. Our modelled scenario is composed of a new application kernel, and its

fast and slow devices (see Section 3.2.1 for an explanation of the terms fast and slow

device). The new kernel arrives while its fast device is temporary unavailable. This

simplified scenario allows us to focus on the evaluation of the migration mechanism.

The execution times on the fast and slow devices, and the waiting time for the fast

device are normalised to the execution time on the fast device.

3.6.1 Simplifying Assumptions

The models make simplifying assumptions regarding the absence of some practical is-

sues, including the ones discussed in Section 3.3. We assume that kernels can migrate

and resume execution after a migration instantaneously. However, in an actual imple-

mentation, kernels can migrate only between slices and have to wait for input data to

be transferred to the new target device. We also do not model interference caused by

other kernels that might execute on the system. In more detail, GPU management code

that is executed on the CPU can cause interference with kernels on the CPU. Similarly

data transfers of other kernels or residual data transfers of the same kernel can also

cause interference as discussed in Section 3.3.

3.6.2 Our Baseline Comparator System

In this section and our experimental evaluation in Section 3.7 mid-kernel migration

is compared against the best possible implementation of the non-migrating kernel-by-

kernel scheduling, which is typical of current systems [RVKP19, PS16]. These systems

require unattainable knowledge for perfect scheduling decisions (see also Section 3.2).

When a kernel arrives, and its fast device is occupied by another kernel or is otherwise

68 Chapter 3. Transparent Kernel Migration

not available, current systems have two options: (1) wait for an unpredictable amount

of time for its fast device or (2) launch earlier on an alternative but slower device with-

out being able to migrate when a better one becomes available. The wrong decision

can lead to serious slowdowns. A perfect scheduler for such systems would need to

know how long the new kernel will run on its slow and fast devices, and when in the

future its fast device will become available, information which is not always known.

As a comparator, we define a theoretical perfect scheduler which has this practi-

cally unattainable knowledge and, therefore, call it the Perfect Non-Migrating Sched-

uler (PNS). However, the PNS is incapable of mid-kernel migration and, therefore,

limited to kernel-by-kernel scheduling decision. Because the PNS has knowledge

about the future, actual systems presented in previous work can only be approxima-

tions of it [ATNW09, RVKP19, PS16]. Therefore, it is a harder reference point than

any of these systems. Other than the PNS our scheduler does not rely on unattain-

able knowledge. Kernels are simply started on their slow device if the fast device is

not available and are migrated to the fast device as soon as it becomes available (see

Section 3.2.2).

3.6.3 The Scheduler

We schedule kernels with the First Come, First Served (FCFS) policy, as in previous

work [RVKP19, PS16]. In more detail, in this section and the evaluation we compare

FCFS with mid-kernel migration with FCFS without mid-kernel migration but with

perfect knowledge about the future, the latter is implemented by the PNS.

3.6.4 Components of the Model

We will model idealised implementations of the PNS and a system with migration

in order to derive the maximum speedup of the latter over the former. The models

are idealised because they assume the absence of these practical issues: interference

during migration, device setup costs, slicing overheads, and the fact that kernels cannot

be migrated instantaneously (see Section 3.3 and Section 3.4.1 for a discussion of all

of these). The models use the following components:

• k denotes the ratio of how much faster the new application kernel executes on its

fast device than on its slow device.

• The normalised execution time on the slow device of a kernel is also k (now

3.6. An Idealised Performance Model 69

as a number of time units) because it is, as above, the execution time on the

slow device normalised to the execution time on the fast device. Because of this

equality we use k for both in the rest of the chapter. In fact, the formula to com-

pute the theoretical maximum speedup of a kernel through migration exploits

this equality.

• Time k−1 marks a crucial transition point for the PNS. Recall that (because of

normalisation) the new application will execute in one time unit on its fast de-

vice. Therefore, when the new kernel arrives, if PNS knows that the fast device

will become available before time k− 1, it is preferable to wait and execute it

there. This will cause the new kernel to finish earlier than executing it immedi-

ately on the slow device. In contrast, if PNS knows that the fast device will only

become available after time k−1, then it is preferable to execute it immediately

on the slow device. At k−1 either decision results in the same execution time.

• δ is the difference between k− 1 and the point in time at which the fast device

becomes available.

Additionally, the components C f ast , Cslow, CPNS, and Cmig denote the execution time of

the new kernel on its fast device, its slow device, with the PNS, and with our migration

mechanism respectively, and are used to derive the models. Wf ast (waiting time) is

the time starting from the arrival of the new kernel after which its fast device becomes

available and is also referred to as waiting time for the fast device.

3.6.5 Speedup with Migration over the Perfect Non-Migrating Sched-

uler

The maximum speedups for the two choices available to the PNS are modelled sepa-

rately. Our first model is a specialisation of Amdahl’s Law [HP17] and our second model

is related to it. Figures 3.1a and 3.1b depict the choices of the PNS and Figure 3.9 ex-

ecution with migration.

PNS Choice 1) Immediately launch the new application kernel on its slow device

We distinguish two cases for the value of δ.

a) δ < 0: This case is not possible. The choice made by the Perfect Scheduler

implies that the execution time of the new application kernel on its slow device Cslow

70 Chapter 3. Transparent Kernel Migration

Fast device

Slow device

Timek-1 k-1+δ

Unavailable New application kernel

Figure 3.9: Execution with migration at time k− 1+ δ. In contrast, the execution with

the PNS is as shown in Figure 3.1a for negative δ and as in Figure 3.1b for positive

delta.

is lower than the combined waiting and execution time with its fast device:

Cslow <Wf ast +C f ast (3.1)

However, if δ is negative then scheduling the application kernel on its fast device would

result in a shorter combined execution and waiting time which stands in contradiction

to the decision made by the PNS:

Cslow >Wf ast +C f ast (3.2)

⇔ k > k−1+δ+1 ,k > 1 and δ < 0 (3.3)

⇔ k > k+δ (3.4)

b) δ≥ 0: In this case the execution time CPNS with the PNS and Cmig with migration

are

CPNS = k ,k > 1 (3.5)

Cmig = k−1+δ+
1−δ

k
,k > 1 and δ≥ 0. (3.6)

The speedup S1(k,δ) of migration over the PNS derived from this is

S1(k,δ) =
CPNS

Cmig
(3.7)

⇔ S1(k,δ) =
k

k−1+δ+ 1−δ

k

. (3.8)

PNS Choice 2) Wait for the fast device

Again, we distinguish two cases for the value of δ.

a) δ > 0: This case is not possible. The choice made by the PNS implies

Wf ast +C f ast <Cslow. (3.9)

3.6. An Idealised Performance Model 71

However, if δ is positive then scheduling the new application kernel on its slow device

would have resulted in a shorter execution time which stands in contradiction to the

decision made by the PNS:

Cslow <Wf ast +C f ast (3.10)

⇔ k < k−1+δ+1 ,k > 1 and δ > 0 (3.11)

⇔ k < k+δ (3.12)

b) δ≤ 0: The execution times with the PNS and migration are

CPNS = k+δ ,k > 1 and δ≤ 0 (3.13)

Cmig = k−1+δ+
1−δ

k
,k > 1 and δ≤ 0. (3.14)

The speedup S2(k,δ) derived from this is

S2(k,δ) =
k+δ

k−1+δ+ 1−δ

k

. (3.15)

3.6.6 Application Kernel and Device Independent Maximum Speedup

The maximum speedup over the PNS is 1.33x. Both speedups derived in the previous

subsection are maximal at k = 2 and δ = 0.

S1(2,0) = S2(2,0) = 11/3 (3.16)

3.6.7 Speedups with Different k

The maximum speedup for a particular application kernel depends on the performance

difference between both devices, which is k. Figure 3.10a shows the maximum speedup

over the PNS for different k. The speedup decreases for k > 2 because the larger the

performance difference between the devices, the less progress can be made on an al-

ternative slow device before the migration. For k < 2 the speedup decreases because

the closer the performance of both devices, the less advantage can be gained through

migration compared to full execution on the slow device.

3.6.8 Speedups with Different δ

The amount of work done on the slow device before the migration determines the

speedup over the PNS. For example, if an application kernel migrates right after it

72 Chapter 3. Transparent Kernel Migration

2 4 6 8 10 12
Speed of the fast device normalised
to the speed of the slow device (k)

1x

1.15x

1.33x
S

p
e
e
d
u
p

 o
v
e
r

P
N

S

(a) Maximum speedup with migration over the

PNS for different speedups of the application

kernel on its fast device over execution on

its slow device. This is a limit study of the

speedup and so the best migration time point

is used, which means δ is set to zero.

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the total execution time
on the slow device before migration

1x
1.15x

1.33x

Sp
ee

du
p

ov
er

PN
S

k = 1.5 k = 2 k = 4

(b) Speedups for different migration time

points, i.e. for different δ. See Section 3.6.4

for an explanation of k.

Figure 3.10: Speedups over the PNS with different relative device speeds (a) and mi-

gration time points (b).

Table 3.2: Details of the evaluation machine. The GPU uses the Kepler microarchitec-

ture. DVFS and Turbo-Boost are deactivated.

CPU Model Cores Sockets Hyperthreading GPU Model

Intel Core i7-4770 4 1 Off nVidia GTX Titan

launched or with virtually no work left, no significant benefit can be gained with mi-

gration over just waiting for its fast device or finishing the execution on its slow de-

vice. Figure 3.10b shows speedups over the PNS for different migration time points

expressed as the fraction of the total execution time on the slow device. For k not equal

to 2 the maximum is lower. The maximum moves to the right for k > 2 and to the left

for k < 2.

3.7 Evaluation

3.7.1 Experimental Setup

Table 3.2 lists details of the evaluation platform. We use the Intel C++ Compiler (ICC)

19.0.5.281 with -O3, NVCC 10.2, version 455.23.05 of the nVidia GPU driver, Linux

Kernel 5.3.18, and version 18.1 of the Intel CPU OpenCL runtime and compiler. Thirty

samples are taken for each data point and the mean speedups are reported if not stated

3.7. Evaluation 73

otherwise. Error bars show the standard error of the mean and are in some cases barely

visible.

3.7.2 Experimental Method

The goal of the experiments is to measure speedups obtained through mid-kernel mi-

gration over an ideal implementation of current systems that provide migration flex-

ibility for heterogeneous systems in a programmer transparent way. These systems

make scheduling decisions on a kernel-by-kernel basis [RVKP19, PS16] (see also Sec-

tion 3.6.2). We leave comparisons against systems with non-transparent but more fine-

grained migration flexibility for future work (see Section 5.3.1).

The kernel-by-kernel approach assumes perfect scheduling decisions but cannot

migrate application kernels once they are launched, in other words it is an implemen-

tation of the Perfect Non-Migrating Scheduler (PNS) introduced in Section 3.6.2. For

the evaluation we use the scenario described in Section 3.6, in which the fast device5

of the new kernel is initially unavailable. Speedups for different migration time points

are measured because speedups change in response to how long the fast device is un-

available, as discussed in Section 3.6.8. Additionally, the geometric mean of the per

migration point speedups are reported to determine if migration benefits overall per-

formance. For a fair comparison, all sample points are equally spread out. The runtime

costs of the slice size models are included in the measurements.

We do not use iteration space slicing on the fast device as discussed in Section 3.3.1

because in our evaluation scenario kernels never migrate from their fast to their slow

device. We determine an application independent data transfer chunk size that in-

troduces a maximum slowdown of 0.5% for parallel for and 1.5% for reductions as

discussed in Section 3.3.3. For practical reasons, we double the tested chunk size

with each search step starting with a chunk size of 1MB. The chunk size is 64MB

for standard parallel for and 16MB if the parallel for is specialised to a reduction (see

Section 3.5).

Results are reported with nine benchmarks from the SHOC and Rodinia bench-

mark suites (see Table 3.3) [CBM+09, DMM+10]. We use all benchmarks of SHOC

and Rodinia that consist of a single kernel that is not invoked repeatedly and are there-

fore relevant to mid-kernel migration. Current runtime systems are not applicable to

5We determine device affinities experimentally. In a real deployment this would be replaced with
the predictive models of prior work [GWO13, TMW17] or the programmer would set the fast device as
is the case with OpenCL and implicitly with CUDA.

74 Chapter 3. Transparent Kernel Migration

Table 3.3: Application kernel instances. The fast devices of the kernels, and the relative

speeds of the fast and slow devices, which are indicated by k are determined experi-

mentally (see Section 3.6.4, and Section 3.7.2 for an explanation of k). Slice counts are

computed based on the predicted slice sizes. The final column shows the prediction

accuracy, which is the training slice size divided by the predicted slice size. Varying

accuracies might reflect the sensitivity of the benchmarks to the slice sizes. We cannot

report the accuracy for two benchmark instances because we could not generate train-

ing data with them as explained at the end of Section 3.7.2.

Suite Bench.
Input

size
Fast dev. CPU impl. Slices k

Pred.

Acc.

Small GPU OpenCL 507 2.74 442.81

Medium GPU OpenCL 1014 3.05 442.81
B+Tree

Find K
Large GPU OpenCL 2264 2.95 659.32

Small GPU OpenCL 949 2.45 920.45

Medium GPU OpenCL 1756 2.84 920.45

B+Tree

Find

Range Large GPU OpenCL 3161 2.54 920.45

Small CPU OpenCL 53 2.35 20.89

Medium CPU OpenCL 103 2.34 41.78

Rodinia

Nearest

Neigh-

bour Large CPU OpenCL 230 2.37 41.78

Small GPU OpenCL 53 12.31 -

Medium GPU OpenCL 115 12.94 0.71
MD5-

Hash
Large GPU OpenCL 245 13.02 0.64

Small CPU OpenCL 36 1.32 57.3

Medium CPU OpenCL 72 1.32 57.3FFT

Large CPU OpenCL 108 1.31 57.3

Small GPU OpenCL 64 7.19 1

Medium GPU OpenCL 121 5.54 16GEMM

Large GPU OpenCL 144 8.44 1

Small CPU OpenCL 36 1.32 57.3

Medium CPU OpenCL 72 1.31 57.3
Inverse

FFT
Large CPU OpenCL 108 1.31 57.3

Small CPU OpenMP 3 3.19 0.02

Medium CPU OpenMP 6 3.20 0.02Reduct.

Large CPU OpenMP 12 3.21 -

Small CPU OpenCL 15 3.47 0.17

Medium CPU OpenCL 22 3.36 0.13

SHOC

SPMV

Large CPU OpenCL 30 3.23 0.1

3.7. Evaluation 75

applications that consist of such single kernels because they make migration decisions

only on a kernel-by-kernel basis as discussed in Section 3.6.2. For measurements with

migration capable implementations all benchmarks are implemented with our paral-

lel for (see Section 3.5). To demonstrate the applicability of our API to kernels with

indirect memory accesses we also implement SPMV with parallel for in our exper-

iments. However, as explained in Section 3.4.5 we assume that our runtime system

knows when it executes SPMV and can use this knowledge to choose better slice sizes

as this is what would happen in a realistic library deployment. We measure execu-

tion time spent in a region of interest that includes all code sections of the benchmark

(kernel execution, data transfers, migration management, etc.) except the generation

or reading in of input data. As shown in Table 3.3 both CPU and GPU are about

equally often represented as the fast device, and the benchmarks cover a wide range

of values for the performance difference k between the devices, which is introduced in

Section 3.6.4.

We use CUDA on the GPU, and OpenCL for all CPU implementations except

reduction for which we use OpenMP. We experimentally determined that CUDA per-

forms better or equally well than OpenCL on the GPU, and that OpenCL outperforms

OpenMP on the CPU in the majority of cases. OpenMP improves performance only

marginally otherwise, except for reduction for which OpenMP performs significantly

better. Reductions are a distinct computational pattern and so the best implementa-

tion can be identified before the system is deployed with one-off costs. Additionally,

our runtime system knows when reductions are executed through our programming

model (see Section 3.5). Because SHOC uses only CUDA and OpenCL, we ported the

“reduction” benchmark to OpenMP with the reduction clause.

We replace the outdated standard problem sizes of the benchmarks with three larger

ones that roughly require these execution times on the slow device: 200-250ms (small),

400-500ms (medium), and 800-1000ms (large). The execution times on the fast de-

vices range from 17ms to 784ms.

To train the slice size predictors we use leave-one-out cross-validation, which

means we train the predictors separately for each benchmark, using only the other

benchmark kernels as the training set. This way the predictors choose a slice size for a

kernel they have not seen before.

Measurements with the PNS implementation, with which we compare migration,

do not include CUDA and OpenCL setup times. The migration-capable implemen-

tations benefit from setup taking place ahead of time in the daemon. To focus on

76 Chapter 3. Transparent Kernel Migration

migration, we factor this out by giving the PNS the same benefit.

Deliberate slicing can improve performance even if an application kernel never

migrates, for orthogonal reasons such as better use of the caches [KJKD13, CHZ+18].

To avoid unfairly disadvantaging the PNS implementation through these effects we

allow it to use slicing, but without migration, if this improves its performance. We

determine experimentally for each benchmark instance if this is the case.

For the training data we brute-force slice sizes as described in Section 3.4.3 with

all nine benchmarks on the CPU and GPU irrespective of which one is the fast and

slow device. We use the OpenCL implementation of reduction instead of the OpenMP

implementation to create training data for the CPU model. We use our small, medium,

and large input sizes except for two cases. We do not use the large input of reduction

because the Intel OpenCL implementation does not support buffers larger than 4GB.

Instead, we use a slightly smaller input. We do not use the small input of MD5Hash

because a slice size with acceptable overheads, which we set to 1.04x slowdown or less

(see Section 3.4.3), cannot be found on its fast device. This is because the execution

time of this benchmark instance is very low with less than 20ms and so a larger share

is spent in fixed overheads than in the other benchmark applications. We use a larger

input instead to generate training data.

3.7.3 Speedups Over the Perfect Non-Migrating Scheduler

Figure 3.11 shows speedups with migration over the implementation of the PNS (see

Section 3.6.2 and Section 3.7.2). As discussed in Section 3.6.2, the PNS includes a

perfect scheduler and is, therefore, at least as good as any possible implementation of

current mid-kernel migration incapable systems. Mid-kernel migration outperforms

the PNS in all cases, as shown by the geometric means of the speedups. The maxi-

mum and average speedups are 1.30x and 1.08x. Figure 3.11 supports contribution (5)

of Section 3.1 in two ways. Firstly, it shows that mid-kernel migration outperforms

current systems, which are represented by the PNS, for all benchmark instances as

indicated by the geometric mean speedups. Secondly, the figure provides detailed in-

sights into the performance behaviour of mid-kernel migration at different migration

time points during the execution of the kernels.

The remainder of this subsection first explains Figure 3.11 by describing the struc-

ture of one of its subgraphs, and then the experimental results in general. The subgraph

in the top left corner shows speedups with mid-kernel migration over the PNS with the

3.7. Evaluation 77

0 .25

0.9

1.0

1.1

1.2

1.3

S
p

e
e
d

u
p

 o
v
e
r

P
N

S

BTree
Find K

0 .25

BTree
Find

Range

0 .25

MD5-
Hash

0 .25

Nearest
Neighbour

0 .25

FFT

0 .25

GEMM

0 .25

Inverse
FFT

0 .25

Reduce

0 .25

S
m

a
ll

p
ro

b
le

m
 size

SPMV

0 .5
0.9

1.0

1.1

1.2

1.3

S
p

e
e
d

u
p

 o
v
e
r

P
N

S

0 .5 0 .5 0 .25
0 .5 0 .5 0 .5 0 .25

0 .5

M
e
d

iu
m

p
ro

b
le

m
 size

0 1
0.9

1.0

1.1

1.2

1.3

S
p

e
e
d

u
p

 o
v
e
r

P
N

S

0 1 0 1 0 1 0 1

Time until the fast device becomes available (s)

0 1 0 1 0 1 0 1

La
rg

e
p

ro
b

le
m

size

Speedup over kernel-by-kernel scheduling at potential migration time points

Geometric mean of the speedups at the potential migration time points

Benchmark instance specific theoretical max. speedup predicted by the model (see Sec. 4.3)

Figure 3.11: Speedups with mid-kernel migration (blue dots) and their geometric means

(green lines). We present speedups over current systems, which are represented by

the PNS. As discussed in Section 3.6.2, the PNS is better than any possible real imple-

mentation. Mid-kernel migration outperforms current systems in all cases as indicated

by the geo. means. Insights into the performance behaviour at different migration time

points are also provided. Each value on the x-axes corresponds to a distinct potential

migration time point. The green lines are the geo. means of the per migration point

speedups, which are the blue dots. The red lines indicate the break-even speedup of

1x. The theoretical maximum (black dotted lines) is benchmark instance specific be-

cause it depends on k, which is the speedup of a benchmark on its fast over execution

on its slow device as discussed in Section 3.6. At the arrival of a new benchmark its

fast device remains unavailable for the time on the x-axis, so the benchmark executes

for this time on its slow device before migrating. Migration causes slowdowns when a

kernel migrates soon after its start, as shown on the left-hand sides of the subgraphs

but speeds up the cases in the middle sections. Migration benefits performance of all

kernels because the speedups outweigh the slowdowns as indicated by the geo. means

of the speedups above 1x.

78 Chapter 3. Transparent Kernel Migration

B+Tree Find K benchmark and its small problem size. The blue dots show speedups

at distinct potential migration time points. For example, at the third blue dot the fast

device of the kernel is unavailable for 60ms starting from the arrival of the benchmark.

In this case, the PNS decides to wait for the fast device. In contrast, with mid-kernel

migration the benchmark makes progress on its slow device for the first 60ms instead

of waiting, and then migrates to its fast device. In this case, mid-kernel migration is

1.14x faster than the PNS. The speedup closest to the theoretical maximum (indicated

by the black line), occurs with a migration at time 150ms. This maximum is instance

specific because it depends on k, which is the kernel specific speedup on its fast over

its slow device. For this benchmark k is 2.74 as detailed in Table 3.3. The green

line shows the geometric mean of the speedups at the potential migration time points

(blue dots). Migration statistically benefits overall performance because the geometric

mean is above 1x, as indicated by the red line. The points on the x-axis are potential

migration points because migration does not happen at all of them as discussed below.

At the left-hand end of each subgraph, slowdowns are visible for small waiting

times for the fast device. In these corner cases the new application kernel has spent

little or no time on its slow device before it migrates and so the PNS chooses to wait

for the fast device. Thus, little or no advantage can be gained from the ability to use

the slow device before the fast one is available. In the worst-case, interference during

the migration caused by the slice kernel, which has started on the slow device, negates

all benefits of mid-kernel migration and causes a slowdown. MD5Hash, and GEMM

experience the worst slowdowns in this area. However, they also have the shortest

execution times of all benchmarks on their fast devices.

As expected, migration outperforms the PNS in the middle section of the subgraphs

because application kernels can use the slow device first and then the fast device as dis-

cussed in Section 3.3. On the left-hand side of the middle section of each subgraph the

PNS decides to wait for the fast device. If the time until the fast device becomes avail-

able, which is the value on the x-axis, is high enough the PNS decides not to use the

fast device and launches the kernel immediately on the slow device (see Section 3.6.5).

The maximum speedups in these areas are up to 96% (and 74% on average) of the

theoretical maximum speedups (see Section 3.6) that assume that kernels can migrate

at any point in time, execution on the slow device does not cause interference, and no

work is thrown away due to slice aborts (see Section 3.3). Reduction with the small

input has the largest gap between the measured maximum speedups and the theoretical

maximum. This is because the predicted slice size divides the iteration space into

3.7. Evaluation 79

very few slices (see Table 3.3), this in turn means that significant amounts of work are

thrown away when the kernel migrates because the slice that is at that time on its slow

device is aborted (see Section 3.3.3).

Towards the right-hand end of each subgraph the new application kernel does not

migrate because its fast device is unavailable for longer than the execution time of the

new application kernel on its slow device. The PNS chooses to execute the new kernel

on its slow device in these cases but has no slicing overheads. Most of these tail points

are just under 1x and the geometric mean of the slowdowns on the tails is 2.34%. This

is as expected because the training slice sizes for the predictors have overheads of up

to 2% to 4% (see Section 3.4.3)

The geometric means in Figure 3.11 exclude the final three points from the tail

towards the right-hand end of each figure. This is because the means are intended

to capture the trade-off between those areas of the subgraph in which our technique

generates a speedup, and those areas in which it generates a slowdown. Since the

right-hand end tail is arbitrarily extendable (i.e. the fast device could be unavailable

for an arbitrary amount of time), and since it inevitably converges to be close to one, its

impact would eventually swamp the mean and also converge it to one. This would leave

us with no useful information about the areas of practical interest. The maximum per

kernel instance geometric mean speedup is 1.15x with the Nearest Neighbour kernel

and the large problem size. The same has been applied to the overall average stated

above for the same reason. The rightmost tail points are above or below their preceding

points in some cases. We confirmed experimentally that this is not the general trend of

the subsequent migration time points. Subsequent points are closer to the other two tail

points shown. In summary, mid-kernel migration outperforms the PNS in accordance

with the model of Section 3.6 by up to 1.30x and 1.08x on average.

3.7.4 Overheads in the Absence of Migration

This section shows that our implementation of the migration mechanism introduces

only small slowdowns of 2.44% on average if an application kernel never migrates

from the slow device to the fast device. Time spent in additional code required for mi-

gration, like slicing code, which is continuously executed on the slow device introduces

overheads that cannot be amortised in these situations (see Sections 3.3 and 3.4.1). Fig-

ure 3.12 shows execution times on only the slow devices with the migration capable

implementations normalised to execution times without the migration mechanism. The

80 Chapter 3. Transparent Kernel Migration

B
T
FK

 (
S
)

B
T
FK

 (
M

)

B
T
FK

 (
L)

B
T
FR

 (
S
)

B
T
FR

 (
M

)

B
T
FR

 (
L)

FF
T
 (

S
)

FF
T
 (

M
)

FF
T
 (

L)

G
E
M

M
 (

S
)

G
E
M

M
 (

M
)

G
E
M

M
 (

L)

iF
FT

 (
S
)

iF
FT

 (
M

)

iF
FT

 (
L)

M
D

5
 (

S
)

M
D

5
 (

M
)

M
D

5
 (

L)

N
N

 (
S
)

N
N

 (
M

)

N
N

 (
L)

R
e
d
u
ce

 (
S
)

R
e
d
u
ce

 (
M

)

R
e
d
u
ce

 (
L)

S
P
M

V
 (

S
)

S
P
M

V
 (

M
)

S
P
M

V
 (

L)

G
e
o
.
m

e
a
n

1.00

1.02

1.04

1.06

1.08
N

o
rm

a
lis

e
d

e
x
e
cu

ti
o
n
 t

im
e
s Migratable impl. but without migration to the fast device Non-migratable impl.

Figure 3.12: This figure shows that the overheads of slicing if a kernel never migrates

are small. Blue bars are execution times only on the slow devices but with our migration

mechanism and slice size prediction, and green bars are execution times without slicing

normalised to the latter (lower is better). All green bars have a height of one. The let-

ters in brackets indicate the input sizes small, medium, and large (see Section 3.7.2).

BTree Find K, BTree Find Range, Inverse FFT, MD5Hash and Nearest Neighbour are

abbreviated to BTFK, BTFR, iFFT, MD5, and NN respectively. We collected 100 sam-

ples for each data point.

slice size choices by the predictors also govern the slowdowns because they determine

how often the slicing code is executed. Therefore, the results show that slicing can be

implemented with low overheads and that predictors can learn slice size choices that

introduce acceptable overheads in cases where a kernel never migrates.

3.7.5 Code Size Reduction with Parallel For

Our parallel for-based programming model hides the complexity of mid-kernel migra-

tion. Table 3.4 demonstrates that the significant complexity that a manual implemen-

tation of mid-kernel migration would introduce can be hidden with our parallel for.

The parallel for based code is at least an order of magnitude smaller for three rea-

sons. Firstly, it implements code required for an efficient implementation of migra-

tion, which is discussed in Section 3.3, like slicing aware data transfers and chunked

transfers. Secondly, programmers do not have to provide multiple versions of the same

code for the target devices in CUDA, OpenCL, and OpenMP. Compared to a manual

implementation our parallel for reduces the code size by at least 88%.

3.8. Summary 81

Table 3.4: This table shows that mid-kernel migration would introduce significant com-

plexity if implemented by hand, and that our parallel for removes this complexity from

application code. Lines of code (LOC) for code that is only concerned with migration

are provided in brackets. The total LOC for the hand-implementation (not in brackets)

includes this code. The LOC do not include comments, includes, defines, and blank

lines. The final column presents the code size reduction.

Benchmark
LOC of the hand

implementation

LOC with our

parallel for
Reduction

BTree Find K 731 (371) 55 92%

BTree Find Range 824 (382) 74 91%

Nearest Neighbour 634 (402) 29 95%

FFT 559 (392) 30 95%

Inverse FFT 559 (387) 30 95%

GEMM 633 (371) 67 89%

MD5Hash 598 (459) 74 88%

Reduction 589 (382) 6 99%

SPMV 820 (481) 45 95%

3.8 Summary

Operating Systems do not yet have the same fine-grained migration capabilities for

heterogeneous systems that they have for CPUs. We provide more flexibility in this

respect, including the ability to switch between the underlying CUDA, OpenCL, and

OpenMP runtimes. The complexity of this mechanism, management code, and execu-

tion strategies, that are required for an efficient implementation, is hidden behind the

parallel for skeleton. The semantics of this skeleton guarantee to the runtime system

the independence of its sub-computations. This information is key for the proposed

mechanism.

Mid-kernel migration has two benefits: firstly, kernels can utilise better devices

when they become available mid-kernel, and secondly, in our evaluation scenario, per-

fect scheduling decisions that require unattainable knowledge can be replaced with a

better scheduling policy that does not require such knowledge. We show analytically

that mid-kernel migration outperforms current systems by up to 1.33x, and that an ide-

alised implementation of the new scheduling policy never performs worse than current

systems even if they make perfect scheduling decisions. Our experimental results show

82 Chapter 3. Transparent Kernel Migration

that mid-kernel migration performs better than current systems by up to 1.30x, 1.08x

on average, and introduces an average slowdown of less than 2.44% if kernels never

migrate.

Chapter 4

Autotuning Parallel Hard Real-Time

Systems

This chapter presents the first fully self-tuning and timing predictable skeleton for

hard real-time systems (see Section 2.5 for an explanation of hard real-time systems).

Please note that this chapter does not consider GPUs. We presented our work on

heterogeneous systems in Chapter 3.

4.1 Introduction

High throughput applications with timing constraints, such as autonomous vehicles,

drive the development of parallel real-time systems [UBG+13, YAY+18, AUT14,

TSV+20, dD19]. To program these, programmers have to resort to low-level program-

ming models such as message passing and threads [Hun19, Ope18, Ada16, MSH11,

XMO15], (see Section 2.5.3.4). These are considered error prone, non-portable and

inefficient in terms of programmer productivity [Gor04, Lee06, LPSZ08, SL05]. As

previous work points out, new high-level programming models for real-time systems

are therefore needed [HGL12]. Task graphs, which have attracted considerable at-

tention from the theoretical real-time scheduling community (see Section 2.5.3.2),

are a very general application model that can capture any possible interaction among

threads [HJGG19] (see Section 2.5.3.2). In contrast, we propose to constrain the appli-

cation structure to a set of composable skeletons to improve programmability, resource

usage and timing analysis at the price of often expendable generality w.r.t. task graphs.

Individual skeletons may cover separate portions of an application. Therefore, we

envision a framework of different real-time skeletons that can be composed to imple-

83

84 Chapter 4. Autotuning Parallel Hard Real-Time Systems

ment full applications as is the case for mainstream parallel systems [Col04, DG08,

ADK+11, EK10].

As a first step towards such a framework we conduct a case study with the job farm

skeleton 1 that is applicable to a wide range of applications [ADK+11, DSDMT+17,

UBF+16]. Job farms lend themselves to programs that process streams of input data

such as signal processing, graphics, and networking applications [KCLL+05, KRD+03,

BBM+12, BLC16]. Thies et al. report 51 applications that use farms with a median

of eight farm instances per application [TA10]. These applications include a “Ground

Moving Target Indicator”, “2D Inverse Discrete Cosine Transform”, and “Fast Fourier

Transform”.

As explained earlier in this thesis, structural information encoded in skeletons can

be used to automatically tune applications. As an example of this, we introduce job

batching for shared memory parallel real-time systems. Batching reduces the over-

heads that come with parallelism and so decreases the required core counts. Alterna-

tively, it allows the use of less powerful and so cheaper hardware, or adding additional

workload without increasing resources. We show that batching is viable in the context

of real-time systems and that it can be implemented transparently to developers with

the farm skeleton. To further ease programming, we devise an analytical framework

for the computation of farm internal parameters, which would have to be carefully

chosen by hand otherwise. Using this framework, we implement Peso 2, a determin-

istic3 and self-tuning farm skeleton library for the hard real-time XMOS xCore-200

microcontroller.

We show experimentally that parameter choices that Peso makes are the same or

are very close to the best parameter choices that we determine through brute force

searches and never cause deadline misses. Batching reduces the minimum task period

that can be sustained by a given application and core count by 22.38%. Therefore,

it can improve the throughput by the same percentage or reduce the core count. Fi-

nally, we show that the overheads introduced by Peso over hand-coded solutions are

negligible.

1We remark that this skeleton is normally called “task farm” in the parallel computing community.
However, to not overload the term “task” with conflicting interpretations from real-time and non-real-
time contexts, we use the term job farm, which, we believe, better represents our intended interpretation
in real-time systems. See Section 2.5.1 for an explanation of real-time jobs.

2Available at: rtas2020.paulmetzger.info
3The WCETs of farm internal code and an upper limit for the time between input arrival and the

availability of corresponding results can be determined. This implicitly also means that if the farm is
executed multiple times with the same set of inputs, the assignment of input to farm worker is always
the same.

4.2. The Case for Job Batching and Self-Adaptation 85

With batching Without batching
0

200
400
600
800

1000
1200
1400

Na
no

se
co

nd
s/

Jo
b

Summation
Coordination
Batching

Figure 4.1: Breakdown of the per job execution time in a farm worker with and without

batching for a simple example application that sums up 30 integers per job (less is

better). 10 jobs are aggregated to a batch on the left-hand side.

The remainder of this chapter is structured as follows: Section 4.2 motivates and

describes job batching. Section 4.3 describes our system model. Section 4.4 presents

our analytical framework for farm parameters. Section 4.5 introduces our Peso library.

Sections 4.6 and 4.7 present the experimental setup and results. Finally, Section 4.8

summarises this chapter.

4.2 The Case for Job Batching and Self-Adaptation

This section motivates batching with a simple example and argues for a self-adaptive

implementation to further ease programming.

4.2.1 Reduced Core Count via Job Batching

Passing a job (see Section 2.5.1) through a job farm incurs bookkeeping overheads

as some of the execution time is spent by coordination between producer, worker,

and consumer threads. In the case of our evaluation platform and library, this means

passing a pointer to the in- and output data of a job from the producer to a worker, and

from a worker to the consumer. Note, the costs of this do not depend on the in- and

output size of a job. These coordination costs can be substantial for tasks with short

running rapidly arriving jobs. We propose job batching to reduce these overheads.

In a simple farm (with no batching), jobs are executed immediately when their

input data and the necessary computing resources are available. Job batching exploits

the slack time to the deadline to reduce communication overheads. With job batching,

86 Chapter 4. Autotuning Parallel Hard Real-Time Systems

No farm 2 3 4 5 6
Number of Workers

No batch.

2

3

4

5

6

7

8

9

10

B
a
tc

h
 S

iz
e

1450 870 584 458 452 452

1515 758 507 409 398 400

1447 724 484 392 375 375

1408 690 461 375 357 358

1384 684 457 372 352 353

1369 680 454 370 349 349

678 452 369 347

675 451 368

450

400 600 800 1000 1200 1400
Min. Sustainable Period (ns)

-- DEADLINE MISSES --

Figure 4.2: Measured minimum supported task periods with increasing batch size and

worker count on our evaluation platform (see Section 4.6.1). Each job computes the

sum of 30 integers and the relative deadlines are 15µs.

jobs are halted and aggregated to be then dispatched and processed in batches. This

way communication costs are spent only per batch and not per job. Reduced overheads

in turn allow tasks to run on cheaper hardware with fewer cores.

As a preliminary investigation, we break down the execution time that each job of

a simple example task spends in a worker with and without batching. Figure 4.1 shows

this breakdown for a benchmark. Job batching reduces the communication costs by

10× here and introduces a small overhead that comes from additional instructions that

implement batching. The number of instructions executed during each summation is

slightly higher when batching is used as the instructions generated by the compiler are

slightly different.

Multiple instances of this simple computation need to be run in parallel if new input

data arrives rapidly and a single core cannot meet the target period (see next section).

In this example job batching allows for 12% lower task periods than without batching.

Section 4.7.2 presents a quantitative study of the benefits of batching.

4.2.2 Improved Ease of Programming Through Self-Adaptation

The number of jobs in batches and worker counts have to be carefully chosen to avoid

deadline misses. Choosing these parameters is non-trivial for developers as the batch

size and worker count parameter space is difficult to navigate. For example, Figure 4.2

4.3. System Model 87

shows the minimum supported periods for all possible parameter combinations with

the same simple task used in Figure 4.1 on our evaluation platform. As can be seen if

this task has a period of 400ns then four workers and batch sizes larger than two are

best. Given a task and hardware platform it is not obvious what the best parameter

choice is if data like the one in this heatmap is not available. Without our analyti-

cal framework, this data can only be attained through a time consuming and so often

impractical exhaustive search.

4.3 System Model

The relation between the number of workers, batch size, and characteristics of the farm

workers is established in this section. The presented system model allows the imple-

mentation of a farm skeleton to automatically pick the minimal number of workers

required to meet the periods and deadlines of applications.

4.3.1 Jobs, Job Releases, and Deadlines

The workload to be executed by the job farm is modelled by a periodic task that re-

leases a sequence of jobs.4 The k-th job is released at time

rk = (k−1)T, k = 1,2, . . .

with T being the period of job releases. When a job is released, it processes its input

data and generates the corresponding output data. All jobs have a deadline D relative

to the release instant. This means that the k-th job cannot finish later than

dk = rk +D = (k−1)T +D.

We do not set any constraint on the deadline (neither implicit nor constrained deadline

model). Hence, we assume to have an arbitrary deadline.

The response time Rk is the time taken by the k-th job to complete starting from its

release at rk. Hence, no job misses any deadline if

∀k = 1,2, . . . , rk +Rk ≤ dk

which is equivalent to

∀k = 1,2, . . . Rk ≤ D. (4.1)
4Thanks to Enrico Bini for contributing most of Section 4.3.1 in the course of our collaboration on

this chapter.

88 Chapter 4. Autotuning Parallel Hard Real-Time Systems

The computation of the response time Rk depends on several scheduling decisions and

is investigated in Section 4.4.

4.3.2 Cores and Batch Size

To minimise the communication costs incurred through parallelisation, jobs are grouped

in batches of size b. An entire batch of b jobs is then executed on the same core. The

number of available cores that process batches is denoted by m. Usually the term

“worker” is used to denote a thread that executes the worker function of the jobs that

are assigned to it, while a “core” is a physical piece of hardware capable of execut-

ing instructions. However, from a scheduling point of view the distinction between

these two notions vanishes, in our case, because we assume a static one-to-one as-

signment from workers to cores. Hence, we use the terms worker cores and workers

interchangeably.

For the analysis we assume that code executing on one core cannot influence the

WCET of code on another. We discuss when this holds for our evaluation platform in

Section 4.6.3. Situations in which this does not hold are handled by our implementation

(see Section 4.6.3).

4.3.3 Execution Time

Introducing job batching requires a deeper understanding of the job execution time,

which goes beyond a single worst-case execution time (WCET). For this reason, we

split the job execution time into time intervals, which map to the execution phases of

Figure 4.3. Most terms stand for time spent in a worker and are denoted with CW....

• CD is the execution time spent in the dispatcher (see Sections 2.5.2 and 4.5.2).

• Ccom is the latency of farm internal communication that is required for the coor-

dination between dispatcher, workers, and aggregator. Therefore, this is appli-

cation independent. Ccom does not include execution time that is required to tear

down a communication channel on the sender side and set up a channel on the

receiver side because these instructions do not contribute to the latency. More

specifically, this is the communication delay between dispatcher and workers,

and workers and aggregator (see Sections 2.5.2 and 4.5.2).

• CWc is the execution time spent by a worker in farm internal communication.

4.3. System Model 89

W1

W2

Wm
f(xn-mb)

f(xn-2b)

f(xn-b)

xn-(m-2)b

xn-2mb

xn-(m-1)b

CA
f(xn)

DP
xn-(2m-1)b

Figure 4.3: Illustration of a farm implementation. The producer (P) generates jobs that

are scheduled in batches of size b over m workers (W) by a dispatcher (D). An aggre-

gator (A) receives results and sends them to the consumer (C). Grey ellipses indicate

that producer and dispatcher, and aggregator and consumer share a core each. Work-

ers execute on their private cores. Light and dark green boxes are in- and output data.

Drawn through and perforated arrows indicate communication channels and round robin

scheduling.

Unlike Ccom, it includes the code necessary to set up and tear down the commu-

nication channels. This corresponds to the coordination time in Figure 4.1.

• CWsetup is the execution time of code that sets up the execution of a batch and

so is executed once per batch. Hence, in the special case when b = 1 (no job

batching) this term is CWsetup = 0.

• CWonceJ is the execution time of code that implements batching and so is executed

once per job. For the same reason as above, if b = 1 then CWonceJ = 0. The sum

of CWsetup and CWonceJ corresponds to the time spent in batching in Figure 4.1.

• CWuser is the execution time for the user provided worker function. This function

is executed once per job. This corresponds to the time spent in the summation in

Figure 4.1.

• CA is execution time that is spent in the aggregator (see Sections 2.5.2 and 4.5.2),

once per batch. Note that no reordering is necessary in the aggregator, because

inputs are dealt out in a round-robin fashion, and likewise results are collected

from workers in a round-robin fashion, as illustrated in Figure 4.3.

• CC is the execution time to unbatch the results of a job. This takes place be-

fore results are used by the consumer and is necessary to hide batching from

90 Chapter 4. Autotuning Parallel Hard Real-Time Systems

application developers. Since unbatching happens sequentially

CC ≤ T (4.2)

must hold. Otherwise, the unbatching phase is overloaded. As above for CWsetup,

if b = 1 then CC = 0.

The concrete execution times that we used for our experiments are listed in Ta-

ble 4.1. These execution times may be summed up depending on whether they are

executed once per job or once per batch. To highlight these two portions of time, we

define the following quantities:

• CWonceB =CWc+CWsetup subsumes execution time that is spent once per batch.

• CWfullJ = CWonceJ+CWuser subsumes execution time of code that is executed once

per job.

Finally, we also set

• CWfullB = CWonceB +CWfullJb, which is the execution time required to process an

entire batch.

• CO = CA + 2Ccom +CD, which are the overheads of code that implements the

parallel execution. Ccom is multiplied by two to account for the communication

between dispatcher and a worker, and a worker and the aggregator. This is the

only term that subsumes execution time spent outside the workers.

From the perspective of a farm, jobs arrive when the input data associated with a

job is ready to be processed. Therefore, we do not introduce a term for any external

input data preparation.

Two example schedules of the same sequence of jobs with and without batching

are illustrated in Figure 4.4. As shown in Figure 4.4b, thanks to the savings of commu-

nication cost, one worker core less is required if three consecutive jobs are grouped in

a batch, at the price of an increase of response time. If the deadline D of a task allows

for larger response times as in Figure 4.4b then batching reduces the number of cores

required for a task. Communication blocks correspond to Ccom (see above). The next

section is dedicated to the formalisation of this qualitative argument.

4.3. System Model 91

P W
1

W
2

C

T
T

T
T

T

R
1

W
3

R
1

R
1

R
1

R
1

R
1

(a
)E

xe
cu

tio
n

w
ith

ou
tb

at
ch

in
g.

P W
1

W
2

C

T
T

T
T

T

R
1

R
2

R
3

C
o
m

m
u
n

ic
a
ti

o
n

+
Jo

b
 p

ro
ce

ss
in

g
R

e
su

lt
s

a
v
a
ila

b
le

U
n
b

a
tc

h
in

g

(b
)E

xe
cu

tio
n

w
ith

ba
tc

hi
ng

an
d

a
ba

tc
h

si
ze

of
th

re
e.

Fi
gu

re
4.

4:
Ill

us
tra

tio
n

th
at

sh
ow

s
th

at
ba

tc
hi

ng
re

du
ce

s
th

e
re

qu
ire

d
w

or
ke

r
co

re
co

un
ta

tt
he

ex
pe

ns
e

of
lo

ng
er

jo
b

re
sp

on
se

tim
es

R
k.

(a
)

an
d

(b
)i

llu
st

ra
te

th
e

ex
ec

ut
io

n
of

a
jo

b
fa

rm
w

ith
th

re
e

an
d

tw
o

w
or

ke
rs

(W
i),

a
pr

od
uc

er
(P

),
a

co
ns

um
er

(C
),

an
d

w
ith

th
e

sa
m

e
pe

rio
d

in
bo

th

su
bfi

gu
re

s.
Ti

m
e

flo
w

s
fro

m
le

ft
to

rig
ht

.
(a

)d
oe

s
no

tu
se

ba
tc

hi
ng

,b
ut

(b
)d

oe
s

w
ith

a
ba

tc
h

si
ze

of
th

re
e.

Th
e

fa
rm

in
(b

)n
ee

ds
fe

w
er

w
or

ke
r

co
re

s
fo

rt
he

sa
m

e
ta

sk
du

e
to

ba
tc

hi
ng

.
Th

e
re

sp
on

se
tim

es
ar

e
hi

gh
er

in
(b

)t
ha

n
in

(a
)b

ec
au

se
jo

bs
ha

ve
to

w
ai

tf
or

ot
he

rj
ob

s
in

th
e

sa
m

e

ba
tc

h.
S

om
e

of
th

e
ar

ro
w

s
in

(b
)t

ha
ti

nd
ic

at
e

th
e

ar
riv

al
of

a
ne

w
jo

b
ar

e
no

tf
ol

lo
w

ed
by

co
m

m
un

ic
at

io
n

be
ca

us
e

ba
tc

he
s

ar
e

on
ly

di
sp

at
ch

ed

af
te

re
no

ug
h

jo
bs

ha
ve

be
en

ac
cu

m
ul

at
ed

.
Th

e
in

de
x

k
of

R
k

in
(b

)i
nd

ic
at

es
th

e
re

la
tiv

e
po

si
tio

n
of

a
jo

b
in

its
ba

tc
h.

92 Chapter 4. Autotuning Parallel Hard Real-Time Systems

4.4 Our Analytical Framework: Analysis of Batch

Scheduling

This section presents an analytical framework that allows farm skeleton implementa-

tions such as Peso to automatically choose the number of worker cores and the batch

size. Firstly, we compute the minimum worker core count m as a function of the batch

size b and demonstrate that the required worker core count m decreases with the batch

size b. As the intuition suggests, we show that the job response times increase linearly

with the batch size b. Hence, the job deadline sets a natural upper limit on the batch

size b. The maximum feasible batch size bmax is then the value that:

• maximises throughput if the core count is given, or

• minimises resource usage if the job period T is given.

4.4.1 Worker Core Count vs. Task Period

We establish here the relationship between the task period T , which determines the

required throughput, and the worker core count m, which determines the available

throughput. Clearly, a shorter task period T needs more worker cores m and vice

versa.

The first step is to define the minimum sustainable period.

Definition 1. Given m worker cores and a batch size of b, we define the minimum

sustainable period Tmin(b,m) of a task as the minimum period which does not cause

overload and so deadline misses.

For an arbitrarily small period T the job farm will be overloaded at some point,

while it will never be overloaded for an arbitrarily large T .

As a first step, we compute the minimum period Tmin(b,1) that can be sustained if

only a single worker is used. A batch of b jobs is ready to be processed every b×T

time units. The time required by a worker to process such a batch is CWfullB. Hence,

with only one worker no overload occurs as long as

b×T ≥CWfullB b = 2,3, . . . (4.3)

4.4. Our Analytical Framework: Analysis of Batch Scheduling 93

which means that

Tmin(b,1) =
CWfullB

b
, b = 2,3, . . .

=
CWonceB+CWfullJb

b

=
CWc+CWsetup+(CWuser+CWonceJ)b

b
. (4.4)

Note that Equation (4.3) is only concerned with hypothetical job farms with a single

worker and so does not stand in contradiction with Figure 4.4, which uses multiple

workers.

Following the same arguments that we used to derive (4.4), if m worker cores are

available (instead of only 1) a lower period can be sustained. Therefore, we construct

Tmin(b,m) =
CWonceB+CWfullJb

bm
, b = 2,3, . . . , (4.5)

by multiplying the denominator of (4.4) by m.

Tmin(1,m), which is the minimum sustainable period without batching (b = 1) and

with m worker cores cannot be determined by setting b = 1 in (4.5). Tmin(b,m) in

(4.5) accounts for all batching overheads which are clearly not present if jobs are not

batched. Hence, we have

Tmin(1,m) =
CWc+CWuser

m
(4.6)

that is based on the same reasoning as (4.5) except that CWsetup and CWonceJ are set to 0

and b is set to 1 because jobs are not processed in batches.

To show that batching can reduce the minimum sustainable period we compute the

factor by which batching improves the minimum sustainable period over an implemen-

tation without batching. More specifically, we compute the ratio between Tmin(b,m)

of (4.5) and Tmin(1,m) of (4.6)

Tmin(b,m)

Tmin(1,m)
=

CWonceB
b +CWonceJ+CWuser

CWc+CWuser

=⇒ lim
b→∞

Tmin(b,m)

Tmin(1,m)
=

CWonceJ+CWuser

CWc+CWuser

=⇒ lim
b→∞

Tmin(b,m)

Tmin(1,m)

< 1, if CWc >CWonceJ

≥ 1, if CWc ≤CWonceJ.

(4.7)

Equation (4.7) shows two things. Firstly, batching improves the minimum sustainable

period because CWonceB
b approaches zero if b approaches infinity. Secondly, we can

assert that batching reduces the minimum sustainable period Tmin(b,m), if this factor

94 Chapter 4. Autotuning Parallel Hard Real-Time Systems

is lower than 1 i.e. if the time required for batching CWonceJ is lower than the time

required for communication CWc.

Finally, we address a different although related problem: given an application pe-

riod T , what is the minimum number of worker cores m that can match the demanded

workload? If the following inequality holds strictly

T ≥ Tmin(b,m) (4.8)

the difference between the task period T and minimum period that the system supports

Tmin(b,m) can be used to choose a lower core count than the maximum. From (4.5)

and (4.8) it follows that

T ≥ CWonceB+CWfullJb
mb

and

m≥ CWonceB+CWfullJb
T b

.

Since m must be an integer it must be

m≥ mmin(b,T)=

⌈
CWonceB+CWfullJb

T b

⌉
=

⌈
CWonceB

T b
+

CWfullJ

T

⌉
. (4.9)

As can be seen in (4.9), the minimum number of required worker cores mmin(b,T)

decreases with the batch size b. However, the batch size b cannot be chosen arbitrarily

high to minimise the number of worker cores as it has a natural limit due to the task

deadline D, as shown next.

4.4.2 Job Batch Size vs. Task Deadline

This section shows that the batch size cannot be chosen arbitrarily high. This is the

case because, as the size of batches grows, the time needed for a job to pass through a

job farm grows as well, which eventually leads to deadline violations.

Figure 4.4 illustrates how batching affects the response time. As expected, the

response time with batching (of Figure 4.4b) is higher than the response time without

batching (of Figure 4.4a). Other factors that can increase response times are the same

in both figures. As illustrated in Figure 4.4b the response time increases with the batch

size for multiple reasons:

• jobs are not immediately dispatched to workers but are halted until the batches

to which they belong are full,

4.4. Our Analytical Framework: Analysis of Batch Scheduling 95

• jobs have to wait until the other jobs in the same batch are processed by a worker,

• jobs have to wait until other jobs are unbatched.

We start by computing the response time Rk(b) of the k-th job, assuming a batch

size b, which is

Rk(b)
k=1,...,b

= (b− k)T︸ ︷︷ ︸
Batch

aggregation

+ bCWfullJ︸ ︷︷ ︸
Batch

processing

+(k−1)CC+CC︸ ︷︷ ︸
Unbatching

+CO. (4.10)

Job response times are composed of several components that are discussed in detail

below:

• (b− k)T is the time spent to batch b jobs. The first job in a batch (with k = 1)

experiences the longest delay (b−1)T , while the last one (with k = b) completes

a batch and experiences no aggregation delay.

• bCWfullJ is the batch processing time. As discussed in depth earlier, the comple-

tion of jobs is not communicated to the aggregator until all b jobs in the same

batch are processed. Therefore, all jobs in a batch experience a delay of bCWfullJ

which is the time required to process an entire batch.

• The time to unbatch the result of the k-th job is due to (i) the waiting time for

the earlier jobs in the same batch CC(k− 1) to be unbatched, plus (ii) the time

to unbatch the k-th job itself which is CC. Hence, altogether the time needed to

unbatch the result of the k-th job is kCC, which is the sum of two terms: time

spent by the k-th job waiting for earlier jobs to be unbatched, and the time needed

to unbatch the k-th job.

• The term CO represents time spent in farm internal communication, dispatcher,

and aggregator (see Section 4.3.3).

For clarity, some of the terms used in (4.10) are not explicitly shown in Figure 4.4b.

The batch aggregation time in (4.10) is the time between the arrival of a job and the

subsequent communication between the producer and worker in Figure 4.4b. The batch

processing time corresponds to the light green “Job processing” boxes, and the time

required for unbatching is directly shown in the figure. The term CO corresponds to the

yellow and green communication blocks.

96 Chapter 4. Autotuning Parallel Hard Real-Time Systems

Next, we determine the impact of the deadline constraint of (4.1) on the batch size

b. Since the task response time R is

R = max
k
{Rk}= max

k=1,...,b
{Rk} (4.11)

then the deadline constraint of (4.1) trivially becomes R≤ D.

From (4.10), the job response time Rk can be written as:

Rk(b)
k=1,..,b

= (b− k)T +bCWfullJ+ kCC+CO

= bT +bCWfullJ+CO− k(T −CC). (4.12)

From the constraint of (4.2), it follows that T −CC ≥ 0. Unsurprisingly, (4.12) is

maximal for k = 1 since the first job in a batch has the longest response time. By

setting k = 1 in (4.12), we find the response time R of the task that is

R = max
k=1,...,b

{Rk}= (b−1)T +bCWfullJ+CO+CC. (4.13)

Finally, from the deadline constraint of

R≤ D

we can find the constraint on the batch size b, that is

R = (b−1)T +bCWfullJ+CO+CC ≤ D

= b(T +CWfullJ)−T +CO+CC ≤ D

which allows us to find the maximum batch size bmax(T,D)

bmax(T,D) =
⌊D+T −CO−CC

T +CWfullJ

⌋
. (4.14)

We observe that the upper bound for bmax(T,D) is

bmax(T,D)≤
⌊D

T

⌋
+1

which states the natural fact that the number of jobs in a batch cannot exceed the

maximum number of pending jobs.

Based on Equation (4.14) we determine when a task benefits from batching. Natu-

rally, batching is beneficial if

bmax(T,D)≥ 2.

4.5. The Peso Library 97

This means that batching is only applicable if it is possible to aggregate two or more

tasks. This equation is equivalent to

D+T −CO−CC

T +CWonceJ+CWuser

≥ 2.

CWuser ≤
D−T −CO−CC−2CWonceJ

2
. (4.15)

A necessary condition for batching is D> T since jobs cannot be aggregated otherwise.

For example, by replacing the constants in Equation (4.15) with values for our

evaluation platform (see Table 4.1) we get

CWuser ≤
D−T −980ns

2
.

In this case a task with period T = 1µs and deadline D = 5µs benefits from batching

as long as CWuser ≤ 1.51µs.

Assuming that the maximum batch size bmax is used (there is no reason to use a

smaller batch size), we can find the minimum core count mmin(bmax(T,D),T). In fact,

as apparent from (4.9), it is always best to use the largest possible batch size. We find

the minimum core count by setting b = bmax(T,D) in (4.9):

mmin(bmax(T,D),T) =

⌈
CWonceB

T
⌊D+T−CO−CC

T+CWfullJ

⌋ + CWfullJ

T

⌉
. (4.16)

The values of the terms of the right-hand sides of (4.14) and (4.16) are either task

properties or can be determined with WCET analysis. These equations can thus be

used to compute the minimum number of worker cores and the maximum batch size at

compile time as demonstrated by our library.

4.5 The Peso Library

We present a macro-based farm library for real-time systems that is statically scheduled

to guarantee predictable WCETs. Peso uses the equations presented in Section 4.4. In

this section, we illustrate the farm API of Peso and discuss its implementation.

4.5.1 API Concepts

Figure 4.5 shows the implementation of an example application with Peso. The macros

PRODUCER, CONSUMER, WORKER FUNCTION, PREPARE FARM, and CONFIGURE FARM are

98 Chapter 4. Autotuning Parallel Hard Real-Time Systems

1 typedef struct per_job_data {

2 int per_job_input_vector[PER_JOB_INPUT_SIZE];

3 int result;

4 } per_job_data_t;

5 PREPARE_FARM(per_job_data_t, PERIOD_NS)

6

7 PRODUCER(producer_func, //Producer name

8 while (1) {

9 /*Wait for input data to be ready*/

10 submit_data();})

11

12 WORKER_FUNCTION(worker_func, //Worker function name

13 data_t,

14 unsigned int result = 0;

15 for (int i = 0; i < PER_JOB_INPUT_SIZE; ++i) {

16 result += access_data()-> per_job_input_vector[i];

17 }

18 access_data()->result = result;)

19

20 CONSUMER(consumer_func, //Consumer name

21 data_t,

22 printf("Result:%d", receive_data()->result);)

23

24 CONFIGURE_FARM(farm, //Farm name

25 producer_func, worker_func, consumer_func)

26

27 void main() {

28 start_farm();

29 }

Figure 4.5: Illustration of the API of Peso. Each job computes the sum of

PER JOB INPUT SIZE integers. Multiple summations are executed in parallel but each

one is performed sequentially.

provided by the library. The first parameters are unique names that are required to

instantiate the farm and the second is the implementation.

Peso provides functions for data accesses that hide the internal storage scheme. The

producer uses submit data() in line ten to send input data to the job farm. Either the

producer prepares the input data in per job input vector or an external process that

then signals the producer when the data is ready. The worker function accesses input

4.6. Experimental Setup 99

data and stores results via access data() in lines 16 and 18. Finally, the consumer

receives results via receive data(). Lines one to four specify the in- and output data

of each job. Note that an instance of per job data is accessed by only a single worker

but multiple instances are processed in parallel.

Finally, line five in Figure 4.5, and the code in lines 24 to 29 instantiate the task

farm. CONFIGURE FARM generates the start farm function, that is called in line 28,

based on the farm name that is passed to via its first parameter.

4.5.2 Implementation and Internal Communication Overheads

Figure 4.3 provides an overview over the architecture of Peso. The farm is composed of

two logical entities that are hidden from programmers by the farm API: the dispatcher,

and the aggregator. The dispatcher deals out batches to workers and the aggregator

collects the corresponding results. Both serve workers in a round robin fashion to

achieve predictability, for instance, the aggregator does not collect the n-th result of

worker i+1 before it has collected the n-th result of worker i. Peso stores the in- and

output data of the workers consecutively in a buffer. The dispatcher sends a pointer

into this buffer to a worker when it deals out a job or a batch. Only the pointer to

the inputs of the first job of a batch are sent. Data locations for other jobs in the

same batch are computed based on this pointer. Time spent in sending these pointers

makes up the internal communication overheads that we reduce through batching in

this implementation.

4.6 Experimental Setup

4.6.1 Evaluation Platform and Methodology

We use the XMOS xCore-200 microcontroller which is designed for hard real-time

systems and has two clusters of eight logical cores (see below) [XMO18]. The mi-

crocontroller is programmed with the xC programming language, which is akin to C

but offers, among other things, programming language constructs for threads and so

called channels for communication and synchronisation purposes [XMO15]. We use

the XCC compiler version 14.4.4 with the default -O2 optimisation flag. No OS is on

the device and no thread scheduler is required in the context of our experiments as all

threads execute on dedicated cores. We perform brute force parameter space searches

to determine optimal parameter choices for comparison with those computed by our

100 Chapter 4. Autotuning Parallel Hard Real-Time Systems

analytical framework (see Section 4.7.1.1 and 4.7.1.2). These are based on experiments

and measurements with timers provided by the target platform.

We take five samples per data point. This is true for the brute force parameter

searches as well. Each sample yields the same result except in a small number of cases

in Section 4.7.3 where small variations in intercore communication cost (of up to 1ns)

occur. Note that our WCET costs allow for this. Because of this invariability we do

not show error margins.

4.6.2 Predictability and The Memory System

To achieve predictability the xCore-200 microcontroller uses interleaved multithread-

ing [XMO18, CSG99]. In more detail, instructions of eight logical cores are issued to a

shared five stage pipeline in a round robin fashion. A core is serviced every five cycles

if five or fewer cores are used or every six, seven, or eight cycles if more are active.

Consequently, the device must be programmed with multiple threads to achieve best

performance. The memory system is designed so that all memory access instructions

complete in five cycles. Therefore, at a device clock frequency of 500Mhz the WCET

of memory accesses is: 10ns, 12ns, 14ns or 16ns depending on how many cores are

active. The best-case execution time is always 10ns.

The device does not have data caches and translation lookaside buffers which can

cause interference in conventional hardware [May, XMO18]. Each core has private

registers, an instruction buffer, and access to shared SRAM. Memory accesses have

exclusive access to the shared SRAM as all cores share the memory pipeline stage.

The WCET for memory requests is not affected by reordering or bank conflicts.

Cores can directly communicate with each other over so called channels. These are

set up and torn down with dedicated instructions in the ISA [May].

4.6.3 Worst-Case Execution Times

XMOS provides a static code analysis tool for WCETs [XMO13] that is similar to the

OTAWA Eclipse plugin [BCRS10]. The tool provides WCETs on the level of code

blocks, and single instructions. The WCET of a code section can be computed by

summing up the WCETs of the relevant instructions.

We determine the WCETs on our evaluation hardware through static code anal-

ysis and measurements. The WCET of intercore communication Ccom is determined

through measurements under stress. To put maximum stress on the core-interconnect

4.6. Experimental Setup 101

Table 4.1: WCETs in cycles of the job farm components (see Section 4.3.3) for the

benchmarks (see Section 4.6.4) and the used input sizes. Each cycle is 2ns. Pre-

sented WCETs are determined with fewer than six cores (see Section 4.6.3). Only

CWuser changes with the benchmark and the input size.

App. DMV RED SMV

Input size 5 10 15 30 10 15

CD 75 75 75 75 75 75

Ccom 65 65 65 65 65 65

CWc 125 125 125 125 125 125

CWsetup 5 5 5 5 5 5

CWonceJ 40 40 40 40 40 40

CWuser 630 4030 415 790 1455 3435

CA 115 115 115 115 115 115

CC 90 90 90 90 90 90

we execute dummy threads on all cores that use up all available interconnect commu-

nication channels and do nothing but constantly send data back and forth. The max-

imum of 10000 measurements is then used for Ccom. Note, the WCET and best-case

execution time of intercore communication differs. All other WCETs are determined

through static analysis.

The compiler generated instructions of the worker function and the farm internal

worker code can slightly vary with the batch size. With rare instruction sequences the

hardware cannot refill the instruction cache transparently and has to stall the pipeline

for a single cycle to fetch instructions [May]. This can cause the statically determined

execution times to vary with the batch size. Based on the maximum number of such

pipeline stalls that we could observe for a set of instructions we manually increase the

generated WCETs that we used for our evaluation to allow for these stalls. The so

adjusted WCETs are presented in Table 4.1. These stalls cause the slight increases in

Figure 4.2 when six instead of five workers are used.

Per instruction WCETs increase with each additional core if more than five cores

are used (see Section 4.6.2). Peso considers this when it chooses the worker count and

handles this further complexity for application developers.

102 Chapter 4. Autotuning Parallel Hard Real-Time Systems

4.6.4 Benchmarks

The benchmarks are: dense matrix vector multiplication (DMV), sparse matrix vec-

tor multiplication (SMV), and reduction (RED). They are widely used across various

domains such as computer vision and machine learning [Cor17]. SMV uses the com-

pressed sparse row format. RED computes the sum of a set number of integers. Each

worker executes the computational kernel of an application sequentially. However,

multiple kernel instances are executed in parallel. We use two input vector sizes with

each application. Table 4.1 shows the relevant WCETs.

4.7 Evaluation

This section experimentally validates the analytical framework presented in Section 4.4,

and shows that the overheads of Peso over hand-crafted code are small. As mentioned

in Section 4.6.2, to achieve predictability our evaluation platform uses an atypical core

design as opposed to the cores in conventional systems (see Section 4.6.2). For clarity,

we refer to the logical cores of our evaluation system as cores.

4.7.1 Experimental Validation of our Analytical Framework

4.7.1.1 Worker Core Counts

We validate the worker count choices of our framework (that is mmin(bmax,T)) as com-

puted from (4.16) against, the best possible worker counts that we determine with an

exhaustive search (see Section 4.6.1). For this we decrease the number of workers until

deadline misses occur.

Figure 4.6a shows that our framework chooses the best worker count in all cases

except two and crucially, never makes choices that cause deadline misses. Possible ex-

planations for these two cases are the pessimism added to WCETs by potential pipeline

stalls, and intercore communication that can be faster than its WCET as discussed in

Section 4.6. The pessimism added by stalls is highest in these two cases.

Required worker core counts decrease with higher periods, and increase with larger

input sizes. Increasing periods mean less pressure on the farm and so allow for fewer

worker cores. Larger input sizes cause higher batch processing times (see Section 4.4)

and so require more workers to match the task period.

4.7. Evaluation 103

DMV
i5 p0.5

DMV
i5 p1

DMV
i5 p1.5

DMV
i10 p3.5

DMV
i10 p6

DMV
i10 p8.5

RED
i15 p0.5

RED
i15 p0.75

RED
i15 p1

RED
i30 p0.5

RED
i30 p0.75

RED
i30 p1

SMV
i10 p1

SMV
i10 p2

SMV
i10 p3

SMV
i15 p3

SMV
i15 p4

SMV
i15 p5

036

Worker
core count

Ex
pe

rim
en

ta
l r

es
ul

ts
Ou

r a
na

ly
tic

al
 fr

am
ew

or
k

(a
)E

xp
er

im
en

ta
lly

de
te

rm
in

ed
w

or
ke

rc
or

e
co

un
ts

an
d

w
or

ke
rc

or
e

co
un

ts
ch

os
en

by
ou

ra
na

ly
tic

al
fra

m
ew

or
k.

DMV
i5 p0.5

DMV
i5 p1

DMV
i5 p1.5

DMV
i10 p3.5

DMV
i10 p6

DMV
i10 p8.5

RED
i15 p0.5

RED
i15 p0.75

RED
i15 p1

RED
i30 p0.5

RED
i30 p0.75

RED
i30 p1

SMV
i10 p1

SMV
i10 p2

SMV
i10 p3

SMV
i15 p3

SMV
i15 p4

SMV
i15 p5

0612 Batch size

(b
)E

xp
er

im
en

ta
lly

de
te

rm
in

ed
ba

tc
h

si
ze

s
an

d
ba

tc
h

si
ze

s
co

m
pu

te
d

by
ou

ra
na

ly
tic

al
fra

m
ew

or
k.

Fi
gu

re
4.

6:
Jo

b
fa

rm
pa

ra
m

et
er

co
m

pa
ris

on
s.

B
en

ch
m

ar
ks

:R
ed

uc
tio

n
(R

E
D

),
de

ns
e

an
d

sp
ar

se
m

at
rix

-v
ec

to
rm

ul
tip

lic
at

io
n

(D
M

V
an

d
S

M
V

).

Pe
rio

ds
in

µs
ar

e
pr

efi
xe

d
w

ith
a

p
an

d
in

pu
ts

iz
es

ar
e

pr
efi

xe
d

w
ith

an
i.

104 Chapter 4. Autotuning Parallel Hard Real-Time Systems

4.7.1.2 Batch Sizes

We validate the batch sizes computed by our framework by comparing them with the

best ones, which we determine through a brute force search (see Section 4.6.1). For

this we hard code the worker count to the maximum and increase the batch sizes until

we measure deadline misses.

Figure 4.6b shows that our framework chooses the best or close to best batch sizes

and never ones that cause deadline misses. Again, differences between the two batch

sizes can be explained with the pessimism inherent to the WCETs of the user code and

intercore communication (see Section 4.7.1.1).

The batch sizes decrease with increasing periods (see DMV) and with larger job

input sizes (see RED). Larger periods and input sizes cause longer job aggregation and

batch processing times (see Section 4.4) respectively and so only allow for smaller

batch sizes with the same relative deadlines.

Most deviations occur with the reduction benchmark. This computational pattern

might be less vulnerable to the instruction fetch issue explained in Section 4.6.3, which

adds pessimism to the WCETs. If this issue does not occur the actual execution time

of the benchmark and farm internal code is lower than its WCET, which in turn gives

our oracle the opportunity to choose larger batch sizes and lower worker core counts

than our models, without causing deadline misses.

4.7.2 Fewer Cores with Batching and The Effect of Input Sizes

To quantify the impact of batching, Figure 4.7 shows by how much batching reduces

the minimum sustainable periods Tmin(1,m) for a given number m of cores over im-

plementations without batching (see Equation (4.6)). A lower minimum period means

that tasks that previously needed additional cores because their periods are too low for

a given core count can now be scheduled. We use a variant of Peso without batching

for the baseline measurements. To experimentally determine the minimum periods of

both versions, we decrease the periods until the farm is overloaded and jobs miss their

deadlines. The number of worker cores is hard coded to the maximum for this.

Batching lowers the minimum periods Tmin(b,m) (and so enables higher through-

put) by up to 45.36%, 16.6% on average, and never degrades the minimum period.

However, the baselines of RED with input size 15 and DMV with input size 10 are

affected by the pipeline stall issue discussed in Section 4.6.3. Therefore, in the interest

of a fair comparison, omitting these gives a maximum and average lowering of the

4.7. Evaluation 105

DM
V

i1
0

b3

DM
V

i1
0

b5

DM
V

i1
0

b7

SM
V

i1
0

b2

SM
V

i1
0

b5

SM
V

i1
0

b8

SM
V

i1
5

b3

SM
V

i1
5

b4

SM
V

i1
5

b5

0

5

10

Pe
rio

d
Im

pr
ov

. (
%

)

DM
V

i5
 b

5

DM
V

i5
 b

10

DM
V

i5
 b

15

RE
D

i1
5

b3

RE
D

i1
5

b6

RE
D

i1
5

b9

RE
D

i3
0

b3

RE
D

i3
0

b4

RE
D

i3
0

b5

0

25

50
Pe

rio
d

Im
pr

ov
. (

%
)

Figure 4.7: Reduction in the minimum sustainable periods with batching over Peso

without batching (higher is better). Benchmarks: Reduction (RED), dense and sparse

matrix-vector multiplication (DMV and SMV). Numbers after the benchmark name indi-

cate the number of input elements per job and batch sizes prefixed by i and b.

DM
V

i5 DM
V

i1
0

RE
D

i1
5

RE
D

i3
0

SM
V

i1
0

SM
V

i1
5

0.00

0.85

1.70

M
in

im
um

pe
rio

d
(

s)

Hand impl. Peso

Figure 4.8: Minimum sustainable period with and without Peso (lower is better). Bench-

marks: Reduction (RED), dense and sparse matrix-vector multiplication (DMV and

SMV). Numbers after the benchmark names indicate the number of input elements

per job prefixed by i.

minimum period of 22.38% and 12.54% respectively.

The improvements of the minimum period decrease with increasing input sizes. For

example, RED benefits more with an input size of 15 elements than with 30 elements.

This is expected since larger input sizes mean higher application code WCETs. The

execution time share spent in communication decreases with higher application code

WCETs and so maximum achievable improvements through batching decrease.

4.7.3 Abstraction Layer Overheads

This section evaluates the overheads of Peso in terms of the minimum sustainable

period. Figure 4.8 compares the minimum periods of Peso-based implementations

106 Chapter 4. Autotuning Parallel Hard Real-Time Systems

with the ones of carefully hand-crafted code that does not use the abstractions of Peso

and thus parallelism and batching have to be implemented in the application code. To

measure minimum periods, we decreased the periods until the implementations are

overloaded and miss deadlines. The worker count is set to the maximum for this.

The minimum, average, and maximum difference between the minimum period of

the hand and Peso implementations are 8ns, 18.6ns, and 24ns. The overheads intro-

duced by the abstraction layer of Peso over hand implementations translates to an on

average 3.37% higher minimum period. The maximum overhead is 8.66% and the

minimum 1.06%. The minimum period of the hand implementation of the reduction

application with an input size of 30 is slightly higher than the period of the Peso-based

implementation due to the stall issue discussed in Section 4.6.3.

The overheads come from hiding job batching from programmers through the ab-

straction layer of Peso. To make batching application developer transparent the con-

sumer calls access data() for each job even though all results of a batch of jobs are

completed at the same time. Removing this abstraction and its associated costs lowers

the minimum period but exposes application developers to much more complexity.

4.8 Conclusion

We argue for skeletons to program parallel hard real-time systems as they ease pro-

gramming by abstracting implementation details. Structural information encoded in

skeletons also allows for tight analysis and efficient scheduling.

We conduct a case study with the farm skeleton. We present an analytical frame-

work that combines knowledge about this skeleton with predictable hardware to auto-

matically choose the minimum core count. Based on this, we also develop an efficient

execution strategy that reduces parallelism related overheads.

We demonstrate experimentally that in most cases our framework chooses the best

or close to best parameters, and never makes choices that cause deadline misses. Our

skeleton informed execution strategy improves minimum sustainable periods by up

to 22.38% and so reduces required core counts. Lastly, compared to carefully hand-

crafted code, the overheads of our farm are negligible.

The presented programming model is very restrictive and so can implement only

simple applications. For example, all workers must execute the same function, we only

support periodic real-time systems, and we offer only a single skeleton. As a result,

current systems can already schedule the simple applications that we support. Our aim

4.8. Conclusion 107

with this work is to make a first step towards a set of real-time skeletons that together

can implement complex applications. While current compiler analysis could determine

dependencies in the simple benchmarks that we presented in this initial work and then

schedule them, this is likely not possible in more complex situations. In these situa-

tions skeletons are beneficial in two ways. Firstly, they provide structural information,

in our case this is the knowledge that farm inputs can be processed independently, and,

secondly, their high-level nature provides considerable implementation flexibility. An

example of this in non-real-time contexts is Lift, where the high-level nature of skele-

tons and information encoded in them is used to dramatically change the structure of

computational kernels [SRD17]. Until now Lift and its extensions require a skeleton

programming interface and it has not yet been shown that solely compiler analysis of

sequential code or other programming models can be used instead.

Chapter 5

Conclusion

This thesis presents two novel case studies in how skeletons improve parallel pro-

gramming through abstraction. Chapter 3 enables migration of computational kernels

between heterogeneous devices and hides the complexity of this behind a skeleton

programming interface. Chapter 4 argues for the use of skeletons to program hard

real-time systems, and presents a timing predictable skeleton, which hides complex

scheduling decisions from programmers.

The remainder of this chapter is structured as follows. Section 5.1 provides an

overview over the contributions of this thesis. Section 5.2 reflects on how we address

weaknesses of previous work. Section 5.3 discusses limitations of the work presented

in this thesis and opportunities for future work. Finally, Section 5.4 concludes this

thesis with final remarks.

5.1 Contributions

This thesis makes the following contributions:

• We present a skeleton framework, which enables runtime systems to migrate

computations between CPUs and GPUs in a programmer transparent way. Adding

this flexibility to computational kernels by hand is in principle possible but

would introduce unacceptable complexity into the application code. We hide

this complexity with the parallel for skeleton and novel attributes, which de-

scribe the memory access patterns of kernels. To enable migration, kernels are

internally subdivided into smaller sub-kernels, which each cover a subsection

of the original iteration space, so called slices and slice kernels. Migration is

possible between the invocation of slice kernels because the high-level state of

109

110 Chapter 5. Conclusion

the application-level kernel is known and stable. The semantics of the paral-

lel for skeleton guarantees to runtime systems that this subdivision of the itera-

tion space is a legal transformation. To further hide complexity from application

programmers we use predictive models to choose the slice size of the subkernels.

We show with a simple but realistic evaluation scenario that mid-kernel migra-

tion improves performance by up to 1.30x and 1.08x on average. Furthermore,

compared to a hand-implementation of the migration mechanism, our skeleton

reduces the code size by at least 88%.

• We demonstrate that skeletons can simplify the programming of hard real-time

systems in a case study with the task farm skeleton. The skeleton implementation

uses knowledge about the independence of tasks and execution time analysis,

which is available for hard real-time systems, to automate difficult scheduling

decisions. We automatically choose the minimum degree of parallelism that is

required to meet the computational demands of an application and a parame-

ter of an optimisation technique. Parameter choices and the implementation of

the optimisation are made transparent to programmers with the high-level task

farm abstraction. We show that our skeleton implementation chooses the opti-

mal parameters with an accuracy of 83% and never parameters that would cause

deadline misses. We also show that the skeleton abstraction layer introduces only

small overheads by showing that it increases the minimum sustainable period by

only 3.37% on average.

5.2 Reflections on Related work

This section discusses how we address weaknesses in previous work that is closest

to the two main chapters of this thesis (see Section 2.6). In more detail, we discuss

work on migration in heterogeneous systems by Lösch et al., and preliminary work on

real-time skeletons by Ungerer et al. and Steigmeier et al..

As discussed in Section 2.4.2.1, Lösch et al. present a runtime system for fine-

grained migration in heterogeneous systems and a novel scheduling strategy [LP20].

In comparison to our programming model, Lösch et al. require programmers to man-

ually provide implementations for all devices and adapt kernels manually to support

migration. In addition, Lösch et al. also do not include slicing-aware data transfers

and chunked data transfers. From experience with our system we know that, if these

5.2. Reflections on Related work 111

features are missing, unnecessary data transfers can cause significant slowdowns over

alternative kernel-by-kernel scheduled systems. This is especially true for data inten-

sive kernels that spend most of their time in data transfers when they are scheduled

on dedicated GPUs. The authors also require programmers to choose parameters of

their mechanism manually. In comparison, we automatically choose slice sizes with

predictive models and chunk sizes with a one-off brute force search “at the factory”.

In our evaluation we use all nine applicable benchmark kernels from two standard

benchmark suites. In contrast, the authors use five kernels that are not from standard

suites. Over half of them are compute intensive which could leave slowdowns that

the simple data transfer scheme might cause unrevealed. In addition, the large mul-

tiprogrammed experiments that the authors use do not expose the behaviour of the

proposed mechanism in edge cases (see Section 2.6.1). However, we investigate the

benefits and overheads of slicing in detail and, therefore, present fine-grained results

for single kernels and a range of controlled migration time points.

Lastly, our implementation also benefits from smart management of OpenCL and

CUDA, and from more sophisticated migration strategies. We avoid OpenCL and

CUDA setup costs during migrations with our daemon. Our implementation can restart

slices, overlap the current and next slice on both devices, and overlap cleanup of the

old device and execution on the new device.

Stegmeier and Ungerer et al. present work on skeletons for parallel real-time sys-

tems [UBF+16, SFJU]. We consider this work preliminary because it uses estimated

WCETs, which makes it unsuitable for hard real-time systems. We make several con-

tributions that go beyond this work.

First of all, our skeleton is fully timing analysable, and, therefore, suitable for hard

real-time systems. As mentioned above, Stegmeier and Ungerer work only with ap-

proximated WCETs of their skeletons [JFGU14]. The authors add several thousand

cycles to their WCETs for each skeleton call and each additional thread (see Sec-

tion 2.6.2). We are the first to show that detailed models of the WCETs of skeletons

can be created without approximations.

Our skeleton is fully self-tuning. The authors provide a tool for core count recom-

mendations [UBF+16]. However, the recommended core counts can be underestimates

that could lead to deadline misses, because they are based on estimated WCETs (see

Section 2.6.2). In contrast, we model the required core count with a detailed model

and do not use approximated WCETs. Therefore, our autotuning mechanism for core

112 Chapter 5. Conclusion

counts is fully automatic and always chooses safe core counts. In addition, the auto-

tuner of Ungerer et al. uses a genetic algorithm [FJO+16]. Unfortunately, the authors

do not discuss how long it takes for this algorithm to make decisions and how close

they are to the optimum. Because we choose core counts based on an analytical model

our autotuner should be considerably faster than the authors’ genetic algorithm.

In the context of hard real-time systems, we are the first to demonstrate that struc-

tural information encoded in skeletons can be used for performance improvements.

We demonstrate this with job batching, which reduces communication overheads with

information encoded in our skeleton.

We also use a different kind of parallelism. Our skeleton exploits inter-job par-

allelism because it executes sequential code of multiple real-time task instances in

parallel. In contrast, the authors exploit intra-job parallelism [SFJU, UBF+16].

Finally, the authors use a simulator for their evaluation, and we use off-the-shelf

hardware [UBF+16].

5.3 Limitations and Future Work

Sections 5.3.1 and 5.3.2 discuss future work and limitations of chapters 3 and 4 respec-

tively. The ideas discussed in each section below are roughly ordered from high-level

research ideas to more concrete iterative improvements that could be added in the con-

text of a real deployment.

5.3.1 Transparent Kernel Migration

Chapter 3 has shown how the semantics of the parallel for skeleton enables our mid-

kernel migration mechanism and that the complexity of the machanism can be hidden

behind this skeleton. This section discusses limitations and new research directions.

Programming Model The benefits of even higher level programming models for our

migration mechanism could be investigated. A higher level of abstraction could give

compilers more freedom to automatically generate highly optimised implementations

for all devices in the system. In addition, with another programming model, program-

mers might not need to manually add optimisations, which improve performance for

some devices, as intended, but might actually degrade performance on other devices.

In more detail, with our current interface, programmers can manually add optimisa-

5.3. Limitations and Future Work 113

tions for one of the available devices, for instance, for the fast device. For example,

programmers can use Structure-of-Arrays (SoA) data layouts to optimise for execution

on GPUs or Arrays-of-Structures for CPUs [SLH12]. However, SoA layouts likely de-

grade performance on CPUs. As explained above, better compilers and a programming

model on a higher abstraction level might solve this problem.

Data parallel skeletons such as the ones used by RISE and Lift encode implicitly

memory access patterns [HLK+20, SRD17]. Using a similar set of skeletons would

simplify programming even more because programmers would not need to explicitly

provide information about access patterns, as is the case with our current programming

interface. RISE aims to be an intermediate language for DSLs. This in turn means that

DSLs that are implemented with RISE-like skeletons would automatically benefit from

mid-kernel migration.

Alternatively, a more iterative extension would be to keep our current interface and

add the ability to automatically undo device specific optimisation for one device if a

kernel is executed on another. Some work in this direction exists. For example, Grewe

et al. automatically optimise kernels, that are extracted from OpenMP loop nests,

for execution on GPUs with loop interchange and memory load reordering among

others [GWO13]. Sung et al. automatically transform data layouts from CPU to GPU

friendly layouts [SLH12].

Migration from or to Multiple Devices This chapter only considers migration be-

tween CPU and GPU in either direction. However, if the fast device becomes available

and the slow device remains available one might want to continue execution on both

devices at the same time, as has been done in previous work [GO11]. Vice-versa, in

scenarios in which new applications arrive unpredictably or scenarios in which hard-

ware availability changes unpredictably one would want, in some situations, to migrate

to just a single device. This could be added to a real deployment to further improve

performance.

Further Scheduling Policies Future work could investigate further policies that make

use of the new migration flexibility. For example, systems with priority scheduling

will benefit. Lower priority kernels could be migrated instead of just being preempted

when kernels with higher priorities require their current device. Also, schedulers that

co-schedule computations in interference-aware ways could benefit from mid-kernel

migration [CYG+17, DK13]. In this context, the best task-to-resource assignments

114 Chapter 5. Conclusion

might change as applications come and go. For example, if a new kernel has a strong

preference for a device, it might be beneficial for overall system performance to mi-

grate other kernels, which would cause interference, from that device to other devices.

Hardware Extensions More control over data transfers and the hardware scheduler

on the GPU could help to further reduce the performance costs of the migration mech-

anism. One source of overheads are chunked data transfers. What is on a conceptual

level a single data transfer is divided into multiple API calls to allow a data transfer

to be aborted between them. Alternatively, GPGPU low-level APIs could allow users

to abort data transfers while they are in progress. In addition, thread block sched-

ulers could be modified to support migration without slicing. A potentially simple

modification could allow the host processor to signal the thread block scheduler to not

schedule any further thread blocks. The scheduler could then return a bit mask of the

already scheduled thread groups, which have finished or will finish on the GPU. The

host could then schedule the remaining thread blocks on the CPU or another device.

However, with this scheme efficient data transfers would be a challenge. Because the

runtime system does not know which thread blocks will be executed on the GPU it

must transfer all input data to the GPU before kernel launch. If a kernel migrates then

later on, some input data will have been transferred unnecessarily. With slicing, in

contrast, only the input required for the next slice is transferred to the GPU.

Better Translation to OpenMP A more sophisticated translation mechanism is needed

for translation from our parallel for to OpenMP than the current one, which translates

only to CUDA and OpenCL except for reductions. An obstacle is that barriers within

batches do not have a one-to-one translation to OpenMP constructs. Figure 5.1 shows

with a simple example how barriers within a batch could be translated to OpenMP

with careful management of loops, that internally implement batch iterations. This is

a sketch for a potential translation strategy and likely does not cover all corner cases.

This idea has been developed in discussions with Volker Seeker as mentioned in the

acknowledgements.

Evaluation The evaluation could be extended in several directions:

• The goal of the work presented in this chapter is to provide programmer trans-

parent migration flexibility for heterogeneous systems. Therefore, we chose a

5.3. Limitations and Future Work 115

1 parallel_for pf(start, end, [&]DEVICE_HOPPER_LAMBDA() {

2 # This will be held in scratchpad memory on GPUs because of the attribute.

3 __attribute__((device_hopper_batch_shared)) int local_mem[BATCH_SIZE];

4

5 # Copy the weights to the scratchpad memory.

6 int local_id = get_batch_iteration();

7 local_mem[local_id] = weights[local_id];

8 device_hopper::batch_barrier();

9

10 ... # Code that uses local_mem

11 });

(a) Parallel for based code with GPU optimisations. The implementation uses scratchpad mem-

ory because local mem is annotated with attribute ((device hopper batch shared))

(see line three).

1 #pragma omp parallel for

2 for (int batch = start / BATCH_SIZE; batch < end / BATCH_SIZE; ++batch) {

3 int local_mem[BATCH_SIZE];

4

5 # Copy the weights to ’local_mem’.

6 # This loop implements the semantics of ’device_hopper::batch_barrier()’

7 for (int local_id = 0; local_id < BATCH_SIZE; ++local_id) {

8 int iteration = batch * BATCH_SIZE + local_id;

9 local_mem[iteration] = weights[iteration];

10 }

11

12 for (int local_id = 0; local_id < BATCH_SIZE; ++local_id) {

13 ... # Code that uses local_mem

14 }

15 }

(b) OpenMP translation of the code in Figure 5.1a.

Figure 5.1: Sketch for a potential translation strategy from GPU optimised parallel for

code to OpenMP. (b) is an OpenMP translation of the code in (a). The high-level idea

is that barriers split loops over the batch elements in generated CPU implementations.

This way, all iterations preceding a barrier are executed before any subsequent code.

In this example, the first loop in (b) at line seven performs all writes to the local mem

array before any later code is executed, as intended by the barrier in (a).

116 Chapter 5. Conclusion

baseline with the migration flexibility that current systems offer in a program-

mer transparent way, which is kernel-by-kernel migration. Future work could

compare our system with others that provide fine-grained migration flexibility

for heterogeneous system but in a non-transparent way. For example, kernel

slicing implemented on top of a task-graph based programming model. This

would provide insights into how the slicing overheads of our implementation

compare to other ways to schedule slices.

• We only use one machine for the evaluation. Repeating the experiments on fur-

ther machines would provide evidence that the migration mechanism and ma-

chine learning models will behave similarly on other systems.

• We co-execute benchmarks only with a dummy application to simulate unavail-

able devices. More realistic co-executing applications may cause interference.

For example, data transfers between main memory and a dedicated GPU will

likely interfere with the execution of another kernel on the CPU. Previous work

has shown that streaming access patterns, like the ones of DMA transfers, can

have significant impact on co-executing applications [MM07]. Our results do not

take this interference into account because the dummy application does require

data transfers and it does not perform any work while it blocks a device.

Slicing Overheads Our results indicate that the overheads of the mechanism are

higher the smaller the problem size of a kernel. In the worst-case, the benchmarks will

experience overall slowdowns for small enough inputs. A heuristic needs to be devised

that, for a kernel instance and the input size of it, decides if slicing should be used.

Irrespective of the input size, slicing introduces overheads in all cases, and these

are not amortised if kernels do not migrate. These overheads are likely caused by

additional instructions that are executed between slices and the associated cache line

evictions and cache misses. To further reduce the overheads, the exact sources need to

be determined with more fine-grained measurements including performance counters.

A potential solution to the additional cache misses is to pin cache lines containing

instructions and data for the bookkeeping required for slicing into one of the cache

levels. A similar feature exists on some ARM CPUs [ARM21]. Another potential

solution is to prefetch these cache lines when a slice is about to finish.

5.3. Limitations and Future Work 117

The Daemon The daemon might not be practical in a real deployment because of

security and stability issues. Kernels have access to the memory of each other, and an

exception in one kernel can crash other kernels executed by the daemon at the same

time. Future work could investigate how to provide isolation between daemon clients

(i.e. applications that use the daemon simultaneously) so that they cannot access the

memory of each other. On the CPU, this can potentially be achieved with an additional

field in the page table entries that indicate by which daemon client a page is owned.

This is similar to address-space identifiers or also called ASIDs, which are optional

TLB entry fields that associate entries with processes [SGG19]. The daemon would run

code belonging to different clients in different threads and these fields would contain

the thread IDs. A special purpose register would contain the ID of the current thread

and would be populated by the OS on a context switch. The TLBs could then check

the thread ID on a TLB hit and the OS could do the same on a TLB miss to detect

access violations. However, this adds complexity in several places. In addition to the

hardware extension described above, OS support is required, and the daemon needs to

handle access violations.

Data Transfer Chunk Sizes It may be possible to reduce data transfer chunk sizes

without increasing the overheads of chunking. Data transfers via memory mapped

I/O are more efficient than DMA transfers for small data sizes of a few MBs or

less [FAN+13]. However, the current implementation uses the high-level CUDA func-

tion cudaMemcpy, which is free to always use DMA transfers.

Kernel-level Scheduler Our prototype implementation is purely in user space. Fu-

ture work could extend existing schedulers in kernel space to use the new scheduling

flexibility or add new scheduling policies. The kernel could use signals to commu-

nication scheduling decisions to a user space component, which implements slicing.

The overheads of slicing should be unaffected because signals are asynchronous and

no significant changes on the current code that is executed between slice would be

required. The overheads would be affected if this is implemented in an inefficient

way via polling and a system call. However, such an inefficient implementation is not

required, as this can be implemented with signals.

118 Chapter 5. Conclusion

5.3.2 Autotuning Parallel Hard Real-Time Systems

Chapter 4 provides evidence that skeletons can ease the programming of parallel hard

real-time systems. As mentioned in the chapter introduction, this is a first step towards

a composable set of hard real-time skeletons and opens up scope for future work.

More Sophisticated Programming Models Future work could investigate more so-

phisticated and more high-level programming models, which hide more of the un-

derlying hardware. For example, hard real-time support for Lift- and RISE-like data

parallel programming models could be investigated. Compilers for such hard real-time

skeletons might also support heterogeneous systems, which the existing non-real-time

implementations of Lift and RISE already support. Additionally, they might also sup-

port mid-kernel migration because of the high-level nature of the programming models

of Lift and RISE (see the second paragraph in Section 5.3.1 for a discussion of related

ideas in non-real-time contexts). Adding hard real-time requirements to heterogeneous

systems with manually implemented fine-grained migration would only add further

complexity to systems and codebases that are already challenging. The proposed work

could significantly simplify their programming and maintenance.

This work would be motivated by existing heterogeneous real-time systems such as

the Tesla chip for self-driving cars, which incorporates CPUs, a GPU, and a machine

learning accelerator [TSV+20]. In addition, mid-kernel migration for heterogeneous

hard real-time systems would allow for schedules which are otherwise not possible.

More precisely, this would allow some task sets, which could previously not be sched-

uled on a given system, to be scheduled because the system could make better use of

the available resources.

A Less Restrictive System Model Our system model is too restrictive for some

applications because it assumes that new jobs arrive periodically. Future work could

extend the presented models to so called sporadic and aperiodic tasks whose jobs do

not arrive periodically 1. To accommodate such tasks the task farm could retain batches

to fill them just until the oldest job in a batch can still be processed in time.

More Extensive Evaluation Our evaluation has some limitations:

1This idea is the result of private conversations with attendants of the RTAS 2020 conference and
Enrico Bini of the University of Turin.

5.3. Limitations and Future Work 119

• We use only one system for the evaluation. Further evaluation systems with

different architectures would strengthen our evidence that skeletons can sim-

plify the programming of hard real-time systems without prohibitive overheads

or deadline misses.

• We use a set of important isolated kernels in the evaluation. To make an even

more convincing case for hard real-time skeletons full applications and bench-

mark suits for embedded systems could be implemented with skeletons 2. Fur-

ther skeletons, which can be combined to implement full applications, are needed

for this. A potentially fruitful next step is to develop a real-time pipeline skele-

ton that can be combined with our task farm. It is likely possible to imple-

ment some StreamIt applications and image processing pipelines with a combi-

nation of both skeletons. Another source of further suitable benchmarks are the

EEMBC benchmark suites [TA10].

Task Farms with Specialised Workers All workers of our task farm execute the

same function. However, Thies et al. identified applications that require task farms

that can execute specialised workers [TA10]. A simple example is an application in

which every second job should go to workers of type A and all other jobs to workers of

type B. Workers of type A and B execute different user functions in this example. This

would require more sophisticated scheduling logic in the dispatcher (see Section 2.5.2),

which in turn would affect farm internal WCETs.

Use the Full XMOS Processor The XMOS microcontroller consists of two CPUs

that each have eight logical cores. In our evaluation we use one CPU tile and all cores

of it. Future work could investigate the use of both at the same time. A complication

is that both CPUs have separate main memories but can communicate via messages.

There are two potential strategies to use both CPUs. Firstly, a new farm variant that can

manage workers on both CPUs and hides the communication between the CPUs from

the programmer. Secondly, use the current farm variant whose instances are confined to

one CPU with another skeleton, for example a pipeline, to implement communication

between both CPUs. Two instances of this simpler farm could then process different

parts of a more complex application on both CPUs and communicate with each other

via another skeleton.

2https://www.eembc.org/

120 Chapter 5. Conclusion

Limited Applicability of Batching On shared memory systems like our evaluation

platform batching saves the costs of copying two pointers. These costs are only sub-

stantial if new jobs arrive rapidly, as in our evaluation, with periods of less than 10µs.

However, batching serves as an example for optimisations that can be informed by

information encoded in skeletons and that can be hidden behind skeletons. In addi-

tion, batching can benefit applications with larger periods on other systems with higher

inter-thread communication costs.

Ease of Programming The Peso library uses macros for the task farm, which do

not fit naturally in the xC programming language (see Section 4.6.1). A compiler im-

plementation with new language constructs or a pragma-based implementation might

further simplify programming.

5.4 Final Remarks

The past two decades have seen a proliferation of parallelism in mainstream systems

across the computing spectrum [HP19, LNOM08, LTXZ19]. Data centre servers, desk-

top PCs, and mobile devices now include multithreaded CPUs with SIMD instructions,

GPGPUs, and, in some cases, machine learning accelerators or FPGAs. The com-

plexity of these is not hidden behind a single ISA but must be managed in software.

However, current mainstream programming languages and libraries often do not fully

shield software developers from this complexity, which hurts programmer productivity

and code maintainability.

Skeletons abstract away code for the management of parallel hardware, so that ap-

plication developers do not have to be concerned with this. Instead, parameterisable

and reusable low-level implementations are either provided by specialised program-

mers or are automatically generated by sophisticated compilers [SRD17, ELK17]. In

addition, high-level abstractions give more freedom to runtime systems in the choice

of tuning parameters and scheduling decisions that would otherwise be baked into ap-

plication code.

We demonstrate the benefits of skeletons in two novel contexts: OS scheduling

for heterogeneous systems, and hard real-time systems. We show that significant im-

plementation complexity can be hidden behind a skeleton interface and that complex

scheduling decisions can be automated. In this context, we would like to mention again

that in the chapter on migration our skeleton interface reduces code sizes by at least by

5.4. Final Remarks 121

88% compared to hand implementations.

As discussed above, this thesis provides a basis for future work in multiple direc-

tions. In particular, we hope we will see further research on how high-level program-

ming models can simplify the programming of modern real-time systems and enable

scheduling flexibility in programmer transparent ways.

Bibliography

[ACD+12] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick,

and Massimo Torquati. Targeting Distributed Systems in FastFlow. In

European Conference on Parallel Processing, pages 47–56. Springer,

2012.

[Ada16] Ada Conformity Assessment Authority. Ada Reference Manual, 2016.

ch. Real Time Systems.

[ADK+11] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano

Meneghin, and Massimo Torquati. Accelerating Code on Multi-cores

with FastFlow. In Int’l European Conf. on Parallel and Distributed

Computing, pages 170–181. Springer, 2011.

[ADKT17] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo

Torquati. FastFlow: High-Level and Efficient Streaming on Multi-

Core. John Wiley & Sons, Inc., 2017.

[ARM21] ARM. Register 9, cache lockdown register. https:

//developer.arm.com/documentation/ddi0184/b/

programmer-s-model/cp15-register-map-summary/

register-9--cache-lockdown-register, 2021. Last accessed:

12/05/2021.

[ASD+12] Marco Aldinucci, Concetto Spampinato, Maurizio Drocco, Massimo

Torquati, and Simone Palazzo. A Parallel Edge Preserving Algorithm

for Salt and Pepper Image Denoising. In Int’l Conf. on Image Process-

ing Theory, Tools and Applications, pages 97–104. IEEE, 2012.

[ATNW09] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-

André Wacrenier. StarPU: A Unified Platform for Task Scheduling

123

https://developer.arm.com/documentation/ddi0184/b/programmer-s-model/cp15-register-map-summary/register-9--cache-lockdown-register
https://developer.arm.com/documentation/ddi0184/b/programmer-s-model/cp15-register-map-summary/register-9--cache-lockdown-register
https://developer.arm.com/documentation/ddi0184/b/programmer-s-model/cp15-register-map-summary/register-9--cache-lockdown-register
https://developer.arm.com/documentation/ddi0184/b/programmer-s-model/cp15-register-map-summary/register-9--cache-lockdown-register

124 Bibliography

on Heterogeneous Multicore Architectures. In European Conf. on Par-

allel Processing, pages 863–874. Springer, 2009.

[AUT14] AUTOSAR. AUTOSAR Guide to Multi-Core Systems, March 2014.

[Bar20] Barcelon Supercomputing Center (BSC). OmpSs-2 Specification, De-

cember 2020.

[BBH+19] David Alexander Beckingsale, Jason Burmark, Rich Hornung, Holger

Jones, William Killian, Adam J. Kunen, Olga Pearce, Peter Robinson,

Brian S. Ryujin, and Thomas R.W. Scogland. RAJA: Portable Perfor-

mance for Large-Scale Scientific Applications. In Int’l. Workshop on

Performance, Portability and Productivity in HPC, pages 71–81. IEEE,

2019.

[BBM+12] Siegfried Benkner, Enes Bajrovic, Erich Marth, Martin Sandrieser,

Raymond Namyst, and Samuel Thibault. High-level Support for

Pipeline Parallelism on Many-Core Architectures. In European Conf.

on Parallel and Distributed Computing, pages 614–625. Springer,

2012.

[BBMS+12] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-Spaccamela,

Leen Stougie, and Andreas Wiese. A Generalized Parallel Task Model

for Recurrent Real-Time Processes. In Real-Time Systems Symp.,

pages 63–72. IEEE, 2012.

[BBW11] Giorgio Buttazzo, Enrico Bini, and Yifan Wu. Partitioning Real-Time

Applications Over Multicore Reservations. Transactions on Industrial

Informatics, 7(2):302–315, May 2011. Published by the IEEE.

[BCL+18] Justinien Bouron, Sebastien Chevalley, Baptiste Lepers, Willy

Zwaenepoel, Redha Gouicem, Julia Lawall, Gilles Muller, and Julien

Sopena. The Battle of the Schedulers: FreeBSD ULE vs. Linux CFS.

In USENIX Annual Technical Conference, pages 85–96, 2018.

[BCRS10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal

Sainrat. OTAWA: An Open Toolbox for Adaptive WCET Analysis. In

Int’l Workshop on Software Technologies for Embedded and Ubiqui-

tous Systems, pages 35–46. Springer, 2010.

Bibliography 125

[BK12] Can Basaran and Kyoung-Don Kang. Supporting Preemptive Task Ex-

ecutions and Memory Copies in GPGPUs. In Euromicro Conf. on Real-

Time Systems, pages 287–296. IEEE, 2012.

[BLC16] Jonathan C. Beard, Peng Li, and Roger D. Chamberlain. RaftLib: A

C++ Template Library for High Performance Stream Parallel Process-

ing. The International Journal of High Performance Computing Appli-

cations, 31(5):391–404, 2016. Published by SAGE.

[BLR+16] Kevin J. Brown, Hyouk Joong Lee, Tiark Romp, Arvind K. Sujeeth,

Christopher De Sa, Christopher Aberger, and Kunle Olukotun. Have

Abstraction and Eat Performance, Too: Optimized Heterogeneous

Computing with Parallel Patterns. In Int’l Symp. on Code Generation

and Optimization, pages 194–205. ACM, 2016.

[BMSSW13] Vincenzo Bonifaci, Alberto Marchetti-Spaccamela, Sebastian Stiller,

and Andreas Wiese. Feasibility Analysis in the Sporadic DAG Task

Model. In Euromicro Conference on Real-Time Systems, pages 225–

233. Euromicro, CPS, 2013.

[Boa20] OpenMP Architecture Review Board. OpenMP Application Program-

ming Interface, November 2020. Version 5.1.

[Bre01] Leo Breiman. Random Forests. Machine learning, 45:5–32, 2001.

[But11] Giorgio C. Buttazzo. Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications. Springer Science+Business

Media, 2011. Third Edition, see Section 1.2.1 for a discussion of hard

and soft real-time systems, page 9, see Section 2.2.1 for a discussion of

some of the real-time systems terminology, pages 27–28, see Section

12.5.1 for two WCET analysis tools, page 453.

[BYA+19] Ashikahmed Bhuiyan, Kecheng Yang, Samsil Arefin, Abusayeed Sai-

fullah, Nan Guan, and Zhishan Guo. Mixed-Criticality Multicore

Scheduling of Real-Time Gang Task Systems. In Real-Time Systems

Symp., pages 469–480. IEEE, 2019.

[CBM+09] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W.

Sheaffer, Sang-Ha Lee, and Kevin Skadron. Rodinia: A Benchmark

126 Bibliography

Suite for Heterogeneous Computing. In Int’l. Symp. on Workload

Characterization, pages 44–54. IEEE, 2009.

[CGK11] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. Copperhead:

Compiling an Embedded Data Parallel Language. In Symp. on Princi-

ples and Practice of Parallel Programming, pages 47–56. ACM, 2011.

[CGW20] Chris Cummins, Dominik Grewe, and Zheng Wang. Feature Ex-

tractor. https://github.com/ChrisCummins/phd/blob/master/

research/grewe_2013_cgo/feature_extractor_binary.cc,

2020. Last accessed: 02/06/2021.

[CHCF15] Alexander Collins, Tim Harris, Murray Cole, and Christian Fensch.

Lira: Adaptive Contention-Aware Thread Placement for Parallel Run-

time Systems. In Int’l. Workshop on Runtime and Operating Systems

for Supercomputers, pages 1–8. ACM, 2015.

[CHCR11] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief Reda.

Pack & Cap: Adaptive DVFS and Thread Packing Under Power Caps.

In Int’l. Symp. on Microarchitecture, pages 175–185. IEEE, 2011.

[CHZ+18] Yanhao Chen, Ari B. Hayes, Chi Zhang, Timothy Salmon, and Eddy Z.

Zhang. Locality-Aware Software Throttling for Sparse Matrix Oper-

ation on GPUs. In USENIX Annual Technical Conf., pages 413–425.

USENIX, 2018.

[CKB13] Timothy Creech, Aparna Kotha, and Rajeev Barua. Efficient Multipro-

gramming for Multicores with SCAF. In Int’l. Symp. on Microarchi-

tecture, pages 334–345. ACM, 2013.

[CKC12] Hongsuk Chung, Munsik Kang, and Hyun-Duk Cho. Heteroge-

neous Multi-Processing Solution of Exynos 5 Octa with ARM®

big.LITTLE™ Technology. Samsung White Paper, 2012.

[CMDD62] Fernando J. Corbató, Marjorie Merwin-Daggett, and Robert C. Da-

ley. An Experimental Time-Sharing System. In Spring Joint Computer

Conference, pages 335–344. ACM, 1962.

[CNP+18] Younghyun Cho, Florian Negele, Seohong Park, Bernhard Egger, and

Thomas R. Gross. On-The-Fly Workload Partitioning for Integrated

https://github.com/ChrisCummins/phd/blob/master/research/grewe_2013_cgo/feature_extractor_binary.cc
https://github.com/ChrisCummins/phd/blob/master/research/grewe_2013_cgo/feature_extractor_binary.cc

Bibliography 127

CPU/GPU Architectures. In Int’l. Conf. on Parallel Architectures and

Compilation Techniques, pages 1–13. ACM, 2018.

[Col04] Murray Cole. Bringing Skeletons Out of the Closet: A Pragmatic

Manifesto for Skeletal Parallel Programming. Parallel Computing,

30(3):389–406, 2004. Published by Elsevier.

[Cor17] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms

In MATLAB® Second, Completely Revised, volume 118. Springer,

2017. See Chapter 2 and Section 12.7.4 for uses of matrix multipli-

cation, pages 17–61 and page 405.

[CPWL17] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

End-to-end Deep Learning of Optimization Heuristics. In Int’l Con-

ference on Parallel Architectures and Compilation Techniques, pages

219–232. IEEE, 2017.

[CSG99] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Com-

puter Architecture: A Hardware/Software Approach. Morgan Kauf-

mann, 1999. See Section 1.5 for an overview over the history of paral-

lel computers, including the IBM 370 and the Transputer, pages 66–68.

See Section 3.1.1 for the quoted text on task parallelism, page 124. See

Section 11.7.1 for a discussion of interleaved multithreading, pages

902–904.

[CYG+17] Quan Chen, Hailong Yang, Minyi Guo, Ram Srivatsa Kannan, Jason

Mars, and Lingjia Tang. Prophet: Precise QoS Prediction on Non-

Preemptive Accelerators to Improve Utilization in Warehouse-Scale

Computers. In Int’l. Conf on Architectural Support for Programming

Languages and Operating Systems, pages 17–32. ACM, 2017.

[dD19] Benoı̂t Dupont de Dinechin. Consolidating High-Integrity, High-

Performance, and Cyber-Security Functions on a Manycore. In Design

Automation Conference, pages 1–4. ACM, 2019.

[DG08] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. Communications of the ACM,

51(1):107–113, 2008. Published by the ACM.

128 Bibliography

[DK13] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware

Scheduling for Heterogeneous Datacenters. ACM SIGPLAN Notices,

48(4):77–88, 2013. Published by the ACM.

[DK16] Usman Dastgeer and Christoph Kessler. Smart Containers and Skele-

ton Programming for GPU-Based Systems. International Journal of

Parallel Programming, 44(3):506–530, 2016.

[dKSJ12] Marc de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. Static

Analysis and Compiler Design for Idempotent Processing. In Conf. on

Programming Language Design and Implementation, pages 475–486.

ACM, 2012.

[DLK13] Usman Dastgeer, Lu Li, and Christoph Kessler. Adaptive Implemen-

tation Selection in the SkePU Skeleton Programming Library. In Int’l

Workshop on Advanced Parallel Processing Technologies, pages 170–

183. Springer, 2013.

[DMM+10] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Mered-

ith, Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S.

Vetter. The Scalable HeterOgeneous Computing (SHOC) Benchmark

Suite. In Workshop on General-Purpose Computation on Graphics

Processing Units, pages 63–74. ACM, 2010.

[dNLR09] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan (Raj) Rajku-

mar. On the Scheduling of Mixed-Criticality Real-Time Task Sets. In

Real-Time Systems Symp., pages 291–300. IEEE, 2009.

[DSDMT+17] Daniele De Sensi, Tiziano De Matteis, Massimo Torquati, Gabriele

Mencagli, and Marco Danelutto. Bringing Parallel Patterns Out of the

Corner: The P3ARSEC Benchmark Suite. Transactions on Architec-

ture and Code Optimization, 14(4):33:1–33:26, 2017. Published by

the ACM.

[DSTD16] Daniele De Sensi, Massimo Torquati, and Marco Danelutto. A Recon-

figuration Algorithm for Power-Aware Parallel Applications. Transac-

tions on Architecture and Code Optimization, 13(4):43:1–43:25, 2016.

Published by the ACM.

Bibliography 129

[DY08] Gregory Diamos and Sudhakar Yalamanchili. Harmony: An Execution

Model and Runtime for Heterogeneous Many Core Systems. In Int’l.

Symp. on High Perf. Distributed Computing, pages 197–200. ACM,

2008.

[EBA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan

Sankaralingam, and Doug Burger. Dark Silicon and the End of Multi-

core Scaling. In Int’l Symp. on Computer Architecture, pages 365–376.

ACM, 2011.

[EK10] Johan Enmyren and Christoph W. Kessler. SkePU: A Multi-Backend

Skeleton Programming Library for Multi-GPU Systems. In Int’l. Work-

shop on High-level Parallel Programming and Applications, pages 5–

14. ACM, 2010.

[EK16] Steffen Ernsting and Herbert Kuchen. Data Parallel Algorithmic Skele-

tons with Accelerator Support. Int’l Journal of Parallel Programming,

45(2):283–299, 2016. Published by Springer.

[EK18] August Ernstsson and Christoph Kessler. Extending Smart Contain-

ers for Data Locality-Aware Skeleton Programming. Concurrency and

Computation: Practice and Experience, 31(5):1–13, 2018. Published

by John Wiley & Sons, Ltd.

[EK20] August Ernstsson and Christoph Kessler. Multi-Variant User

Functions for Platform-Aware Skeleton Programming. Ad-

vances in Parallel Computing, 36:475–484, 2020. Published by

IOS Press, source: https://www.ida.liu.se/˜chrke55/papers/

APC-36-APC200074.pdf, last accessed: 28/05/2021.

[ELK17] August Ernstsson, Lu Li, and Christoph Kessler. SkePU 2: Flexible

and Type-Safe Skeleton Programming for Heterogeneous Parallel Sys-

tems. Int’l Journal of Parallel Programming, 46(1):62–80, 2017. Pub-

lished by Springer.

[ETS14] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos:

Enabling Manycore Performance Portability Through Polymorphic

Memory Access Patterns. Journal of Parallel and Distributed Com-

puting, 74(12):3202–3216, 2014. Published by Elsevier.

https://www.ida.liu.se/~chrke55/papers/APC-36-APC200074.pdf
https://www.ida.liu.se/~chrke55/papers/APC-36-APC200074.pdf

130 Bibliography

[FAN+13] Yusuke Fujii, Takuya Azumi, Nobuhiko Nishio, Shinpei Kato, and

Masato Edahiro. Data Transfer Matters for GPU Computing. In

Int’l Conf. on Parallel and Distributed Systems, pages 275–282. IEEE,

2013.

[FJO+16] Martin Frieb, Ralf Jahr, Haluk Ozaktas, Andreas Hugl, Hans Regler,

and Theo Ungerer. A Parallelization Approach for Hard Real-Time

Systems and Its Application on Two Industrial Programs. Int’l Jour-

nal of Parallel Programming, 44(6):1296–1336, 2016. Published by

Springer.

[FLM+13] David Ferry, Jing Li, Mahesh Mahadevan, Kunal Agrawal, Christopher

Gill, and Chenyang Lu. A Real-Time Scheduling Service for Paral-

lel Tasks. In Real-Time and Embedded Technology and Applications

Symp., pages 261–272. IEEE, 2013.

[GHF+06] Michael Gschwind, H. Peter Hofstee, Brian Flachs, Martin Hopkins,

Yukio Watanabe, and Takeshi Yamazaki. Synergistic Processing in

Cell’s Multicore Architecture. Micro, 26(2):10–24, 2006. Published

by the IEEE.

[GO11] Dominik Grewe and Michael F.P. O’Boyle. A Static Task Partitioning

Approach for Heterogeneous Systems Using OpenCL. In Int’l. Conf.

on Compiler Construction, pages 286–305. Springer, 2011.

[Gor04] Sergei Gorlatch. Send-Receive Considered Harmful: Myths and Re-

alities of Message Passing. Transactions on Programming Languages

and Systems, 26(1):47–56, 2004. Published by the ACM.

[Gro20] Khronos SYCL™ Working Group. SYCL™ Specification, SYCL™ In-

tegrates OpenCL™ Devices with Modern C++. Khronos Group, April

2020. Version 1.2.1.

[GSB14] Ramy Gad, Tim Süß, and André Brinkmann. Compiler Driven Au-

tomatic Kernel Context Migration for Heterogeneous Computing. In

Int’l. Conf. on Distributed Computing Systems, pages 389–398. IEEE,

2014.

Bibliography 131

[GVL10] Horacio González-Vélez and Mario Leyton. A Survey of Algorith-

mic Skeleton Frameworks: High-Level Structured Parallel Program-

ming Enablers. Software: Practice and Experience, 40(12):1135–

1160, 2010.

[GWO13] Dominik Grewe, Zheng Wang, and Michael F.P. O’Boyle. Portable

Mapping of Data Parallel Programs to OpenCL for Heterogeneous Sys-

tems. In Int’l. Symp. on Code Generation and Optimization, pages

1–10. IEEE, 2013.

[HGL12] Huang-Ming Huang, Christopher Gill, and Chenyang Lu. MCFlow: A

Real-Time Multi-Core Aware Middleware for Dependent Task Graphs.

In Int’l Conf. on Embedded and Real-Time Computing Systems and

Applications (RTCSA), pages 104–113. IEEE, 2012.

[HJGG19] Qingqiang He, Xu Jiang, Nan Guan, and Zhishan Guo. Intra-

Task Priority Assignment in Real-Time Scheduling of DAG Tasks

on Multi-Cores. Transactions on Parallel and Distributed Systems,

30(10):2283–2295, 2019. Published by the IEEE.

[HLK+20] Bastian Hagedorn, Johannes Lenfers, Thomas Kœhler, Xueying Qin,

Sergei Gorlatch, and Michel Steuwer. Achieving High-Performance

the Functional Way. Programming Languages, 4(ICFP):92:1–92:29,

2020. Published by the ACM.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Ar-

chitectural Support for Lock-Free Data Structures. In Int’l Symp. on

Computer Arch., pages 289–300, 1993.

[HP17] John L. Hennessy and David A. Patterson. Computer Architecture: A

Quantitative Approach. Morgan Kaufmann, 2017. see Section 1.2 for

the quoted text on data-level parallelism, page 10, see Section 1.4 for

a discussion of Moore’s Law, page 19, see Section 1.9 for a discussion

of Amdahl’s Law, pages 49–50, see Chapter 3 for comments on the

increasing difficulty to further exploit ILP in the early 2000s, which

motivated multithreaded and multicore architectures, pages 168–266,

see Chapter 4 or a discussion of SIMD instructions, vector processors,

132 Bibliography

and GPGPUs, pages 282–357, see the subsection on SDRAM in Sec-

tion 2.2, page 89, see Appendix E.1 for a discussion of worst-case

execution times, no page numbers.

[HP19] John L. Hennessy and David A. Patterson. A New Golden Age for

Computer Architecture. Communications of the ACM, 62(2):48–60,

2019. Published by the ACM.

[Hun19] James J. Hunt. Realtime and Embedded Specification for Java Version

2.0 Draft 72. TimeSys and aicas GmbH, March 2019.

[JFGU14] Ralf Jahr, Martin Frieb, Mike Gerdes, and Theo Ungerer. Model-based

Parallelization and Optimization of an Industrial Control Code. In

Dagstuhl-Workshops, pages 97–106, 2014.

[KB06] Vida Kianzad and Shuvra S. Bhattacharyya. Efficient Techniques for

Clustering and Scheduling onto Embedded Multiprocessors. Transac-

tions on Parallel and Distributed Systems, 17(7):667–680, 2006. Pub-

lished by the IEEE.

[KBS+14] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Brian T. Lewis,

Chunling Hu, and Keshav Pingali. Adaptive Heterogeneous Schedul-

ing for Integrated GPUs. In Int’l. Conf. on Parallel Architectures and

Compilation Techniques, pages 151–162. ACM, 2014.

[KCLL+05] Michael K. Chen, Xiao Feng Li, Ruiqi Lian, Jason H. Lin, Lixia Liu,

Tao Liu, and Roy Ju. Shangri-La: Achieving High Performance from

Compiled Network Applications while Enabling Ease of Program-

ming. In Conf. on Programming Language Design and Implementa-

tion, pages 224–236. ACM, 2005.

[kdc20] The kernel development community. 4. Energy-Aware task place-

ment. https://www.kernel.org/doc/html/v5.10/scheduler/

sched-energy.html, December 2020. Last accessed: 10/05/2021.

[Ker10] Michael Kerrisk. The Linux Programming Interface: A Linux and

UNIX System Programming Handbook. No Starch Press, 2010.

[KHL+19] Hyunjun Kim, Sungin Hong, Hyeonsu Lee, Euiseong Seo, and Hwan-

soo Han. Compiler-Assisted GPU Thread Throttling for Reduced

https://www.kernel.org/doc/html/v5.10/scheduler/sched-energy.html
https://www.kernel.org/doc/html/v5.10/scheduler/sched-energy.html

Bibliography 133

Cache Contention. In Int’l. Conf. on Parallel Processing, pages 1–10.

ACM, 2019.

[KJKD13] Onur Kayıran, Adwait Jog, Mahmut T. Kandemir, and Chita R. Das.

Neither More Nor Less: Optimizing Thread-level Parallelism for GPG-

PUs. In Int’l. Conf. on Parallel Architectures and Compilation Tech-

niques, pages 157–166. IEEE, 2013.

[KLK+11] Shinpei Kato, Karthik Lakshmanan, Aman Kumar, Mihir Kelkar, Yu-

taka Ishikawa, and Ragunathan (Raj) Rajkumar. RGEM: A Responsive

GPGPU Execution Model for Runtime Engines. In Real-Time Systems

Symp., pages 57–66. IEEE, 2011.

[KMHK12] Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A. Kim.

Measuring Interference Between Live Datacenter Applications. In

Int’l. Conf. on High Perf. Computing, Networking, Storage and Analy-

sis, pages 1–12. IEEE, 2012.

[KRD+03] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany,

Jung Ho Ahn, Peter Mattson, and John D. Owens. Programmable

Stream Processors. IEEE Computer, 36(8):54–62, 2003. Published

by the IEEE.

[KS02] Herbert Kuchen and Jörg Striegnitz. Higher-Order Functions and Par-

tial Applications for a C++ Skeleton Library. In Joint ACM-ISCOPE

Conference on Java Grande, pages 122–130. ACM, 2002.

[KS21] Thomas Kœhler and Michel Steuwer. Towards a Domain-Extensible

Compiler: Optimizing an Image Processing Pipeline on Mobile CPUs.

In Int’l Symp. on Code Generation and Optimization, pages 27–38.

IEEE, 2021.

[LALG13] Jing Li, Kunal Agrawal, Chenyang Lu, and Christopher Gill. Analysis

of Global EDF for Parallel Tasks. In Euromicro Conference on Real-

Time Systems, pages 3–13. Euromicro, CPS, 2013.

[LCG+15] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-

ganathan, and Christos Kozyrakis. Heracles: Improving Resource Effi-

ciency at Scale. In Int’l. Symp. on Computer Architecture, pages 450–

462. ACM, 2015.

134 Bibliography

[Lee06] Edward A. Lee. The Problem with Threads. IEEE Computer,

39(5):33–42, 2006. Published by the IEEE.

[LFC13] Thibaut Lutz, Christian Fensch, and Murray Cole. PARTANS: An Au-

totuning Framework for Stencil Computation on Multi-GPU Systems.

Transactions on Architecture and Code Optimization, 9(4):59:1–59:24,

2013. Published by the ACM.

[LHK09] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: Exploiting

Parallelism on Heterogeneous Multiprocessors with Adaptive Map-

ping. In Int’l. Symp. on Microarchitecture, pages 45–55. ACM, 2009.

[LL73] Chung Laung Liu and James W. Layland. Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment. Journal of the

ACM, 20(1):46–61, 1973. Published by the ACM.

[LLF+14] Jing Li, Zheng Luo, David Ferry, Kunal Agrawal, Christopher Gill, and

Chenyang Lu. Global EDF Scheduling for Parallel Real-Time Tasks.

Real-Time Systems, 51(4):395–439, 2014. Published by Springer.

[LNOM08] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.

NVIDIA Tesla: A Unified Graphics and Computing Architecture. Mi-

cro, 28(2):39–55, 2008. Published by the IEEE.

[Loc53] John Locke. An Essay Concerning Human Understanding. In Four

Books. Robert Taylor (Berwick), 1753. 15th edition, page 135.

[LP20] Achim Lösch and Marco Platzner. MigHEFT: DAG-based Scheduling

of Migratable Tasks on Heterogeneous Compute Nodes. In Int’l. Par-

allel and Distributed Processing Symp. Workshops, pages 6–16. IEEE,

2020.

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning

from Mistakes: A Comprehensive Study on Real World Concurrency

Bug Characteristics. In Int’l Conf. on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 329–339. ACM,

2008.

Bibliography 135

[LR11] Justin Luitjens and Steven Rennich. CUDA Warps and Occupancy

– GPU Computing Webinar, December 2011. presentation slides by

nVidia, see slide 6 for an explanation of occupancy.

[LTXZ19] Heng Liao, Jiajin Tu, Jing Xia, and Xiping Zhou. Davinci: A Scal-

able Architecture for Neural Network Computing. In Hot Chips

Symp., pages 1–44. IEEE, 2019. https://old.hotchips.org/

hc31/HC31_1.11_Huawei.Davinci.HengLiao_v4.0.pdf, last ac-

cessed: 13/05/2021.

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik, James C.

Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:

A System for Large-Scale Graph Processing. In Int’l Conf on Manage-

ment of Data, pages 135–146. ACM, 2010.

[May] David May. xCORE-200: The XMOS XS2 Architecture. XMOS, April.

[MCF18] Paul Metzger, Murray Cole, and Christian Fensch. NUMA Optimiza-

tions for Algorithmic Skeletons. In Int’l European Conference on Par-

allel and Distributed Computing, pages 590–602. Springer, 2018.

[MM07] Thomas Moscibroda and Onur Mutlu. Memory Performance Attacks:

Denial of Memory Service in Multi-Core Systems. In USENIX Secu-

rity Symp., pages 256–264, 2007.

[Moo98] Gordon E. Moore. Cramming More Components onto Integrated Cir-

cuits. Proceedings of the IEEE, 86(1):82–85, 1998. Published by the

IEEE.

[MRR12] Michael McCool, James Reinders, and Arch Robison. Structured Par-

allel Programming: Patterns for Efficient Computation. Elsevier, 2012.

[MSH11] John W. McCormick, Frank Singhoff, and Jérôme Hugues. Building

Parallel, Embedded, and Real-Time Applications with Ada. Cambridge

University Press, 2011.

[nVia] nVidia. cuBLAS. https://developer.nvidia.com/cublas. Last

accessed: 10/05/2021.

https://old.hotchips.org/hc31/HC31_1.11_Huawei.Davinci.HengLiao_v4.0.pdf
https://old.hotchips.org/hc31/HC31_1.11_Huawei.Davinci.HengLiao_v4.0.pdf
https://developer.nvidia.com/cublas

136 Bibliography

[nVib] nVidia. CUDA Samples Version 11. https://github.com/NVIDIA/

cuda-samples/blob/v11.0/Samples/reduction/reduction_

kernel.cu, see function reduce4, last accessed 26/04/2021.

[nVic] nVidia. nVidia Titan RTX Product Overview, May.

[nVi21] nVidia. B.18. Warp Vote Functions. https://docs.nvidia.

com/cuda/archive/11.2.2/cuda-c-programming-guide/

index.html#warp-vote-functions, March 2021. Last accessed:

10/05/2021.

[ÖEK19] Tomas Öhberg, August Ernstsson, and Christoph Kessler. Hybrid

CPU–GPU Execution Support in the Skeleton Programming Frame-

work SkePU. The Journal of Supercomputing, 76(7):5038–5056, 2019.

[Ope18] The Open Group and IEEE. The Open Group Base Specifications Issue

7, 2018 Edition, 2018. ch. 2.8 Realtime.

[PBAL13] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesús Labarta. Self-

adaptive OmpSs Tasks in Heterogeneous Environments. In Int’l Symp.

on Parallel and Distributed Processing, pages 138–149. IEEE, 2013.

[PBAL15] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesús Labarta. SS-

MART: Smart Scheduling of Multi-Architecture Tasks on Heteroge-

neous Systems. In Workshop on Accelerator Programming using Di-

rectives, pages 1–11. ACM, 2015.

[PG14] Prasanna Pandit and R. Govindarajan. Fluidic Kernels: Cooperative

Execution of OpenCL Programs on Multiple Heterogeneous Devices.

In Int’l. Symp. on Code Generation and Optimization, pages 273–283.

ACM, 2014.

[PH05] David. A. Patterson and John L. Hennessy. Computer Organization

and Design: The Hardware Software Interface. third edition, 2005.

[PNY+15] Luı́s Miguel Pinho, Vincent Nélis, Patrick Meumeu Yomsi, Eduardo

Quiñones, Marko Bertogna, Paolo Burgio, Andrea Marongiu, Clau-

dio Scordino, Paolo Gai, Michele Ramponi, and Michal Mardiak. P-

SOCRATES: A Parallel Software Framework for Time-Critical Many-

https://github.com/NVIDIA/cuda-samples/blob/v11.0/Samples/reduction/reduction_kernel.cu
https://github.com/NVIDIA/cuda-samples/blob/v11.0/Samples/reduction/reduction_kernel.cu
https://github.com/NVIDIA/cuda-samples/blob/v11.0/Samples/reduction/reduction_kernel.cu
https://docs.nvidia.com/cuda/archive/11.2.2/cuda-c-programming-guide/index.html#warp-vote-functions
https://docs.nvidia.com/cuda/archive/11.2.2/cuda-c-programming-guide/index.html#warp-vote-functions
https://docs.nvidia.com/cuda/archive/11.2.2/cuda-c-programming-guide/index.html#warp-vote-functions

Bibliography 137

Core Systems. Microprocessors and Microsystems, 39(8):1190–1203,

2015. Published by Elsevier.

[PS14] PCI-SIG. PCI Expressr 3.0 Frequently Asked Questions.

https://web.archive.org/web/20140201172536/http:

//www.pcisig.com/news_room/faqs/pcie3.0_faq/, 2014.

Last accessed: 10/05/2021.

[PS16] Sankaralingam Panneerselvam and Michael Swift. Rinnegan: Efficient

Resource Use in Heterogeneous Architectures. In Int’l. Conf. on Paral-

lel Architectures and Compilation Techniques, pages 373–386. ACM,

2016.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-

derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal

of Machine Learning Research, 12:2825–2830, 2011. No publisher

but hosted by the ACM.

[RCKH09] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo:

Taming Device Drivers. In European Conf. on Computer Systems,

pages 275–288. ACM, 2009.

[RKBA+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain

Paris, Frédo Durand, and Saman Amarasinghe. Halide: A Lan-

guage and Compiler for Optimizing Parallelism, Locality, and Re-

computation in Image Processing Pipelines. ACM SIGPLAN Notices,

48(6):519–530, 2013. Published by the ACM.

[RVKP19] Heinrich Riebler, Gavin Vaz, Tobias Kenter, and Christian Plessl.

Transparent Acceleration for Heterogeneous Platforms With Compila-

tion to OpenCL. Transactions on Architecture and Code Optimization,

16(2):1–26, 2019. Published by the ACM.

[RWK19] Christoph Rieger, Fabian Wrede, and Herbert Kuchen. Musket: A

Domain-Specific Language for High-Level Parallel Programming with

Algorithmic Skeletons. In Symp. on Applied Computing, pages 1534–

1543. ACM, 2019.

https://web.archive.org/web/20140201172536/http://www.pcisig.com/news_room/faqs/pcie3.0_faq/
https://web.archive.org/web/20140201172536/http://www.pcisig.com/news_room/faqs/pcie3.0_faq/

138 Bibliography

[RZLA] Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. Parcae:

A System for Flexible Parallel Execution. ACM SIGPLAN Notices,

47(6):133–144.

[Sar87] Vivek Sarkar. Partitioning and Scheduling Parallel Programs for Exe-

cution Multiprocessors. 1987. PhD thesis at Stanford University.

[SBL+14] Arvind K. Sujeeth, Kevin J. Brown, Hyoukjoong Lee, Tiark Rompf,

Hassan Chafi, Martin Odersky, and Kunle Olukotun. Delite: A

Compiler Architecture for Performance-Oriented Embedded Domain-

Specific Languages. Transactions on Embedded Computing Systems,

13(4s):134:1–134:25, 2014. Published by the ACM.

[SFJU] Alexander Stegmeier, Martin Frieb, Ralf Jahr, and Theo Ungerer. Al-

gorithmic Skeletons for Parallelization of Embedded Real-Time Sys-

tems. In Workshop on High-Performance and Real-time Embedded

Systems, pages 1–12.

[SFL+14] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang

Lu, and Christopher D. Gill. Parallel Real-Time Scheduling of DAGs.

Transactions on Parallel and Distributed Systems, 25(12):3242–3252,

2014. Published by the IEEE.

[SFLD15] Michel Steuwer, Christian Fensch, Sam Lindley, and Christophe

Dubach. Generating Performance Portable Code using Rewrite

Rules: From High-Level Functional Expressions to High-Performance

OpenCL Code. ACM SIGPLAN Notices, 50(9):205–217, 2015. Pub-

lished by the ACM.

[SGG19] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating

System Concepts Global Edition. John Wiley & Sons, 10th edition,

2019. See Section 9.3.2.1 for a discussion of ASIDs, 396.

[SGL+20] Jinghao Sun, Nan Guan, Feng Li, Huimin Gao, Chang Shi, and Wang

Yi. Real-Time Scheduling and Analysis of OpenMP DAG Tasks Sup-

porting Nested Parallelism. Transactions on Computers, 69(9):1335–

1348, 2020. Published by the IEEE.

Bibliography 139

[SGS14] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Adaptive, Ef-

ficient, Parallel Execution of Parallel Programs. In Conf. on Program-

ming Language Design and Implementation, pages 169–180. ACM,

2014.

[SGSC19] Jinghao Sun, Nan Guan, Jingchang Sun, and Yaoyao Chi. Calculating

Response-Time Bounds for OpenMP Task Systems with Conditional

Branches. In Real-Time and Embedded Technology and Applications

Symp., pages 169–181. IEEE, 2019.

[SGW+17] Jinghao Sun, Nan Guan, Yang Wang, Qingqiang He, and Wang Yi.

Real-Time Scheduling and Analysis of OpenMP Task Systems with

Tied Tasks. In Real-Time Systems Symp., pages 92–103. IEEE, 2017.

[SGW+19] Jinghao Sun, Nan Guan, Xiaoqing Wang, Chenhan Jin, and Yaoyao

Chi. Real-Time Scheduling and Analysis of Synchronous OpenMP

Task Systems with Tied Tasks. In Design Automation Conference,

pages 1–6. ACM, 2019.

[SL05] Herb Sutter and James Larus. Software and the Concurrency Revolu-

tion. ACM Queue, 3(7):54–62, 2005. Published by the ACM.

[SLA+12] Abusayeed Saifullah, Jing Li, Kunal Agrawal, Chenyang Lu, and

Christopher Gill. Multi-Core Real-Time Scheduling for Generalized

Parallel Task Models. Real-Time Systems, 49(4):404–435, 2012. Pub-

lished by Springer.

[SLH12] I-Jui Sung, Geng Daniel Liu, and Wen-Mei W. Hwu. DL: A Data

Layout Transformation System for Heterogeneous Computing. In In-

novative Parallel Computing, pages 1–11. IEEE, 2012.

[SQ18] Maria A. Serrano and Eduardo Quinones. Response-Time Analysis of

DAG Tasks Supporting Heterogeneous Computing. In Design Automa-

tion Conf., pages 1–6. ACM, 2018.

[SRD17] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: A

Functional Data-Parallel IR for High-Performance GPU Code Gener-

ation. In Int’l Symp. on Code Generation and Optimization, pages

74–85. IEEE, 2017.

140 Bibliography

[SVZ+14] Jie Shen, Ana Lucia Varbanescu, Peng Zou, Yutong Lu, and Henk Sips.

Improving Performance by Matching Imbalanced Workloads with Het-

erogeneous Platforms. In Int’l. Conf. on Supercomputing, pages 241–

250. ACM, 2014.

[TA10] William Thies and Saman Amarasinghe. An Empirical Characteriza-

tion of Stream Programs and its Implications for Language and Com-

piler Design. In Int’l Conf. on Parallel Architectures and Compilation

Techniques, pages 365–376. IEEE, 2010.

[TB15] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems

Global Edition. Pearson, 2015. Fourth Edition.

[TBG+17] Qi Tang, Twan Basten, Marc Geilen, Sander Stuijk, and Ji-Bo Wei.

Mapping of Synchronous Dataflow Graphs on MPSoCs Based on Par-

allelism Enhancement. Journal of Parallel and Distributed Computing,

101:79–91, 2017. Published by Elsevier.

[TKS+11] Hiroyuki Takizawa, Kentaro Koyama, Katsuto Sato, Kazuhiko Ko-

matsu, and Hiroaki Kobayashi. CheCL: Transparent Checkpointing

and Process Migration of OpenCL Applications. In Int’l. Parallel &

Distributed Processing Symp., pages 864–876. IEEE, 2011.

[TMW17] Ben Taylor, Vicent Sanz Marco, and Zheng Wang. Adaptive Optimiza-

tion for OpenCL Programs on Embedded Heterogeneous Systems. In

ACM SIGPLAN Notices, pages 11–20. ACM, 2017.

[TSV+20] Emil Talpes, Debjit Das Sarma, Ganesh Venkataramanan, Peter Ban-

non, Bill McGee, Benjamin Floering, Ankit Jalote, Christopher

Hsiong, Sahil Arora, Atchyuth Gorti, and Gagandeep S. Sachdev.

Compute Solution for Tesla’s Full Self-Driving Computer. IEEE Mi-

cro, 40(2):25–35, 2020. Published by the IEEE.

[UBF+16] Theo Ungerer, Christian Bradatsch, Martin Frieb, Florian Kluge, Jörg

Mische, Alexander Stegmeier, Ralf Jahr, Mike Gerdes, Pavel Zaykov,

Lucie Matusova, Zai Jian Jia Li, Zlatko Petrov, Bert Böddeker, Se-

bastian Kehr, Hans Regler, Andreas Hugl, Christine Rochange, Haluk

Ozaktas, Hugues Cassé, Armelle Bonenfant, Pascal Sainrat, Nick Lay,

David George, Ian Broster, Eduardo Quiñones, Milos Panic, Jaume

Bibliography 141

Abella, Carles Hernández, Francisco Cazorla, Sascha Uhrig, Mathias

Rohde, and Arthur Pyka. Parallelizing Industrial Hard Real-Time Ap-

plications for the parMERASA Multicore. Transactions on Embedded

Computing Systems, 15(3):53:1–53:27, 2016. Published by the ACM.

[UBG+13] T. Ungerer, C. Bradatsch, M. Gerdes, F. Kluge, R. Jahr, J. Mische,

J. Fernandes, P. G. Zaykov, Z. Petrov, B Böddeker, S. Kehr, H. Regler,

A. Hugl, C. Rochange, H. Ozaktas, H. Cassé, A. Bonenfant, P. Sain-

rat, I. Broster, N. Lay, D. George, E. Quiñones, M. Panic, J. Abella,

F. Cazorla, S. Uhrig, M. Rohde, and A. Pyka. parMERASA – Multi-

Core Execution of Parallelised Hard Real-Time Applications Support-

ing Analysability. In Euromicro Conference on Digital System Design,

pages 363–370. IEEE, 2013.

[Uni20] Université de Bordeaux, CNRS (LaBRI UMR 5800), Inria. StarPU

Handbook for StarPU 1.3.7, 10 2020. Last accessed: 11/05/2021.

[Val90] Leslie G. Valiant. A Bridging Model for Parallel Computation. Com-

munications of the ACM, 33(8):103–111, 1990. Published by the ACM.

[Ves07] Steve Vestal. Preemptive Scheduling of Multi-Criticality Systems with

Varying Degrees of Execution Time Assurance. In Int’l. Real-Time

Systems Symp., pages 239–243. IEEE, 2007.

[VPK+15] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. Large-Scale Cluster Management

at Google with Borg. In European Conf. on Computer Systems, pages

1–17. ACM, 2015.

[WGS+17] Yang Wang, Nan Guan, Jinghao Sun, Mingsong Lv, Qingqiang He,

Tianzhang He, and Wang Yi. Benchmarking OpenMP Programs for

Real-Time Scheduling. In Int’l Conf. on Embedded and Real-Time

Computing Systems and Applications, pages 1–10. IEEE, 2017.

[WK20] Fabian Wrede and Herbert Kuchen. Towards High-Performance Code

Generation for Multi-GPU Clusters Based on a Domain-Specific Lan-

guage for Algorithmic Skeletons. Int’l Journal of Parallel Program-

ming, 48:713–728, 2020. Published by Springer.

142 Bibliography

[WO09] Zheng Wang and Michael F.P. O’Boyle. Mapping Parallelism to Multi-

cores: A Machine Learning Based Approach. In Symp. on Principles

and Practice of Parallel Programming, pages 75–84. ACM, 2009.

[WWX+16] Linnan Wang, Wei Wu, Zenglin Xu, Jianxiong Xiao, and Yi Yang.

BLASX: A High Performance Level-3 BLAS Library for Heteroge-

neous Multi-GPU Computing. In Int’l Conf. on Supercomputing, pages

1–11. ACM, 2016.

[XMO13] XMOS Ltd. XMOS Timing Analyzer Manual Revision B, May 2013.

[XMO15] XMOS Ltd. XMOS Programming Guide, September 2015. Sections

1.2 and 2.2.

[XMO18] XMOS Ltd. XE216-512-TQ128 Datasheet, September 2018.

[YAY+18] Ming Yang, Tanya Amert, Kecheng Yang, Nathan Otterness, James H.

Anderson, F. Donelson Smith, and Shige Wang. Making OpenVX Re-

ally “Real Time”. In Real-Time Systems Symp., pages 80–93. IEEE,

2018.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. Spark: Cluster Computing with Working Sets.

In Workshop on Hot Topics in Cloud Computing, pages 1–7. USENIX,

2010.

[ZTL15] Husheng Zhou, Guangmo Tong, and Cong Liu. GPES: A Preemptive

Execution System for GPGPU Computing. In Real-Time and Embed-

ded Technology and Applications Symp., pages 87–97. IEEE, 2015.

[ZXW+16] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,

Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-

aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonza-

lez, Scott Shenker, and Ion Stoica. Apache Spark: A Unified Engine

for Big Data Processing. Communications of the ACM, 59(11):56–65,

2016. Published by the ACM.

	cover sheet.pdf
	MetzgerP_2021.pdf
	Introduction
	The Problem: Dealing with Hardware Complexity in Software
	A Solution: Abstraction with Algorithmic Skeletons
	Contributions
	Thesis Outline
	Summary

	Background and Related Work
	Algorithmic Skeletons
	Recent Skeleton Works

	Alternative Parallel Programming Frameworks and Abstractions
	Other High-Level Abstractions
	Mid-Level Abstractions
	Low-Level Abstractions

	Thread and Process Migration
	Migration Mechanisms for CPUs
	Applications of Migration on CPUs

	Heterogeneous Systems
	General Purpose Graphics Processing Units
	Related Work

	Hard Real-Time Systems
	Terminology
	Task Farms for Real-Time Systems
	Related Work

	Critical Reflections on Related Work
	Mid-Kernel Migration
	Hard Real-Time Skeletons

	Summary

	Transparent Kernel Migration
	Introduction
	Motivation for Mid-Kernel Migration
	Better Performance with Mid-Kernel Migration
	Simplified Scheduling Decisions

	Mid-Kernel Migration
	Iteration Space Slicing, Runtime Switching, and Slicing Aware Data Transfers
	Migration Strategies
	Interference Reduction and Earlier Aborts
	Device Setup Cost Reduction

	Choosing Slice Sizes
	Target Slice Sizes
	Application Kernel Features for the Slice Size Predictors
	Training the Slice Size Predictors
	Deploying the Slice Size Predictors
	Choosing Slice Sizes for Sparse Matrix Vector Multiplication

	Our High-Level Programming Model
	An Idealised Performance Model
	Simplifying Assumptions
	Our Baseline Comparator System
	The Scheduler
	Components of the Model
	Speedup with Migration over the Perfect Non-Migrating Scheduler
	Application Kernel and Device Independent Maximum Speedup
	Speedups with Different k
	Speedups with Different

	Evaluation
	Experimental Setup
	Experimental Method
	Speedups Over the Perfect Non-Migrating Scheduler
	Overheads in the Absence of Migration
	Code Size Reduction with Parallel_For

	Summary

	Autotuning Parallel Hard Real-Time Systems
	Introduction
	The Case for Job Batching and Self-Adaptation
	Reduced Core Count via Job Batching
	Improved Ease of Programming Through Self-Adaptation

	System Model
	Jobs, Job Releases, and Deadlines
	Cores and Batch Size
	Execution Time

	Our Analytical Framework: Analysis of Batch Scheduling
	Worker Core Count vs. Task Period
	Job Batch Size vs. Task Deadline

	The Peso Library
	API Concepts
	Implementation and Internal Communication Overheads

	Experimental Setup
	Evaluation Platform and Methodology
	Predictability and The Memory System
	Worst-Case Execution Times
	Benchmarks

	Evaluation
	Experimental Validation of our Analytical Framework
	Fewer Cores with Batching and The Effect of Input Sizes
	Abstraction Layer Overheads

	Conclusion

	Conclusion
	Contributions
	Reflections on Related work
	Limitations and Future Work
	Transparent Kernel Migration
	Autotuning Parallel Hard Real-Time Systems

	Final Remarks

	Bibliography

