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Abstract

Natural language allows for the same meaning (semantics) to be expressed in multiple

different ways, i.e. paraphrasing. This thesis examines automatic approaches for para-

phrasing, focusing on three paraphrasing subtasks: unconstrained paraphrasing where

there are no constraints on the output, simplification, where the output must be simpler

than the input, and text compression where the output must be shorter than the input.

Whilst we can learn paraphrasing from supervised data, this data is sparse and ex-

pensive to create. This thesis is concerned with the use of transfer learning to improve

paraphrasing when there is no supervised data. In particular, we address the following

question: can transfer learning be used to overcome a lack of paraphrasing data? To

answer this question we split it into three subquestions (1) No supervised data exists

for a specific paraphrasing task; can bilingual data be used as a source of training data

for paraphrasing? (2) Supervised paraphrasing data exists in one language but not in

another; can bilingual data be used to transfer paraphrasing training data from one

language to another? (3) Can the output of encoder-decoder paraphrasing models be

controlled?

We address question 1 by developing, in Chapter 3, a Neural Machine Transla-

tion (NMT) pivoting approach, which uses two pre-trained NMT models to perform

paraphrasing with no paraphrasing data. A source sentence is translated into multiple

foreign pivots, these multiple pivots are then simultaneously translated back into the

original language, producing a paraphrase. Chapter 4 extends this approach and ad-

dresses questions 1 and 3, where we train a sentence compression, with no sentence

compression data. Instead, we train NMT models using variable disentanglement to

separate the semantics of the sentence from the length of the output sentence in a con-

trollable manner. In this way, a user can specify the length of the translation, and when

combined with the pivoting technique a user can set the output length as shorter than

the original length, creating a compression of the original sentence.

In Chapter 5 we further explore question 3, addressing the problem of the sparsity

of simplification data, and the bespoke needs of simplification users. We develop a

variable disentanglement approach, which separates the semantics of the source sen-

tences, and the lexical and syntactic structure of the output simplification. A user is

then able to control the simplification to produce a simplification that best suits their

needs. Finally, in chapter 6 we answer question 2 where there exists simplification data

in a high resource language but not in low resource languages. We develop a model
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that uses task-specific transformer layers and a shared encoder which was trained us-

ing multi-task learning to both translate and simplify. By sharing encoding layers the

model is able to transfer simplification data from one language to another.
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Lay Summary

Natural language allows for the same meaning (semantics) to be expressed in multiple

different ways, i.e. paraphrasing. This thesis examines automatic approaches for para-

phrasing, focusing on three paraphrasing tasks: (1) paraphrasing, where the rewritten

sentence should mean the same as the input sentence, but should look dissimilar, (2)

sentence compression where the output sentence should capture the meaning of the in-

put sentence but be shorter, and (3) sentence simplification where the output sentence

should mean the same as the input sentence, but be easier to understand.

Automatic approaches to paraphrasing often use large amounts of example sen-

tences; given the input what should the output be? However, example sentences aren’t

always available, and if they do available, they often only exist in English, meaning

that automatic paraphrasing models can not be trained in other languages. In this the-

sis we explore alternative approaches for automatic paraphrasing models, which do

not use paraphrasing examples. Instead we propose using transfer learning, a family of

techniques that adapts example sentences from related tasks, where large amounts of

example sentences do exist. We focus on transferring translation data, where the input

sentence is in one language and the output sentence, which means the same, is in an-

other language. We focus on translation data because it exists in large quantities across

many languages and show how it can be used for automatic paraphrasing in multiple

different languages.
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Chapter 1

Introduction

Natural language allows for the same meaning (semantics) to be expressed in multiple

different ways, i.e. paraphrasing. Paraphrasing is an important task within NLP/NLG,

it can be used to increase the robustness of existing NLP/NLG systems, allowing them

to focus on the semantics of the language, rather than the surface form, the multiple

different ways in which semantics can be expressed. Constrained forms of paraphras-

ing, where there are requirements on the surface form, have even more applications

and include tasks such as sentence compression, simplification, grammatical error cor-

rection, and style transfer. These tasks can all improve accessibility for users, allowing

users to have their grammatical mistakes automatically corrected, making text easier

to read, or provide short summaries.

Automatic approaches for learning to paraphrase often require large amounts of

supervised training data, this data is sparse, not existing in large quantities for all para-

phrasing tasks, or does not exist in every language and the data can be expensive to

create, often requiring expert annotators. In this thesis we use transfer learning to

overcome this lack of supervised paraphrasing training data. In particular, we address

the following question:

• Can transfer learning be used to overcome a lack of paraphrasing data?

In the remainder of the chapter, we will further introduce paraphrasing, its chal-

lenges, our solutions, and the central question of the thesis in more detail.

1.1 Paraphrasing

Paraphrasing can be broadly described as the task of using an alternative surface form

to express the same semantic content (Madnani and Dorr, 2010). There are many pos-
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2 Chapter 1. Introduction

sible ways to construct a paraphrase; individual words which have the same semantic

content are often called lexical paraphrases or synonyms. For instance the words ex-

cited and thrilled mean the same things. Phrasal paraphrases on the other hand refer to

small fragments of text, a few words, which have the same meaning. Help out and lend

a hand are phrasal paraphrases of each other. Finally, sentential paraphrases are entire

sentences which convey the same meaning, such as The earthquake shook the city and

The metropolis trembled due to the quake. Whilst sentential paraphrases can be formed

by replacing words or phrases within a sentence, this would limit the possible output

surface forms. Within this thesis, we focus entirely on sentential paraphrasing, which

allows for a wide range of lexical and syntactic transformations.

Paraphrasing can be refined into subtasks by adding constraints to the output sur-

face form. For instance, by constraining the length of the output sentences, we can use

paraphrasing to perform sentence compression. If, however, we add the constraint that

the surface form is easily understandable, then the paraphrase is a simplification. Ta-

ble 1.1 highlights the wide range of paraphrasing tasks, further motivating their study.

Within this thesis, we focus on three types of paraphrasing: unconstrained paraphras-

ing (which we will often refer to as paraphrasing), sentence simplification, and sen-

tence compression.

Unconstrained Paraphrasing generates an output paraphrase where the surface form

differs from the source sentence, where there are no additional constraints. Table 1.2

shows several different paraphrasing examples, produced by phrasal paraphrasing and

sentential paraphrasing. The examples highlight how the same source sentences can

have multiple outputs, an additional challenge which is discussed in Section 1.4. While

automatic approaches for unconstrained paraphrasing have been used directly by end-

users, for example being used as a writing prompt tools (He et al., 2013), the main

appeal stems from its application to a wide range of NLP problems, by making exist-

ing NLP models more robust, allowing models to focus on semantics rather than the

surface form. There are two common ways to integrate paraphrasing; either through

training data augmentation, or test data augmentation. In training data augmentation

the training data is extended with paraphrases. For instance Wang et al. (2015) used

paraphrasing to overcome a lack of semantic parsing training data. Using a seman-

tic grammar they generated logical forms paired with canonical utterances. These

utterances were then paraphrased to produce more realistic and varied sentences. A

semantic parser was then trained from the paraphrases to the logical form.
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Task Description

Sentence Splitting Single sentences are split into multiple sentences.

Input: John is an astronaut who went to the moon.

Output: John is an astronaut. He went to the moon.

Sentence Fusion Multiple sentences are merged into a single sentence.

Input: John is an astronaut. He went to the moon.

Output: John is an astronaut that went to the moon.

Unconstrained Paraphrasing The output sentence has a different surface form.

Input: ’Cause everybody hates a tourist.

Output: Nobody likes tourists.

Sentence Compression The output sentence uses fewer words than the input.

Input: He never gave up hope, he kept writing.

Output: He kept writing.

Style Transfer The surface form is changed to match a particular

style, e.g., politeness.

Input: Send me the data!!!

Output: Could you please send me the data?

Post-Editing Translation mistakes found in the input sentence are

fixed.

Input Allons tous à la plage. → Let’s just all retire to a

beach...

Output: Let’s all go to the beach.

Grammatical Error Correction Grammatical mistakes found in the input text are

fixed.

Input: Run to the park is an good form of exercising.

Output: Running in the park is a good form of exercise.

Table 1.1: An overview of the different types of constrained paraphrasing tasks.
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Test data augmentation provides, as input to the model, the source sentence and

multiple paraphrases. Multiple paraphrases can be used to increase the confidence of

the answer, for instance by voting on the correct output.

Source There are a thousand ways to say I love you.

Phrasal There are a lot of ways to say I adore you.

Sentential I love you can be said in a thousand different ways.

Sentential A person can express the phrase "I love you" using many different surface forms.

Source The pigs ate the pie.

Phrasal The pigs devoured the pie.

Sentential The pie was eaten by the pigs.

Sentential There were pigs, and a pie, which was eaten by them.

Table 1.2: Examples of paraphrasing at different linguistic levels. We see that there are

many different paraphrases for the same source sentence. Bold indicates additional

words not found in the source sentence.

Source I took a couple of steps towards it, but the currents kept pushing the boat further

and further away.

Extractive I took steps towards it, but the currents kept pushing the boat away.

Abstractive The boat kept being pushed away.

Abstractive The boat kept being pushed further and further away.

Source He repeatedly dived under the water, frantically searching for me.

Extractive He repeatedly dived under the water, searching for me.

Abstractive He kept searching for me.

Abstractive He repeatedly dived under the water, to find me.

Table 1.3: Examples of abstractive and extractive sentence compressions.

Sentence Compression constrains the output paraphrase to be shorter than the in-

put, producing a summary that retains the most important information while preserv-

ing its fluency. This task has attracted much attention due to its potential applications

such as text summarization, (Jing, 2000; Madnani et al., 2007b; Woodsend and La-

pata, 2010; Berg-Kirkpatrick et al., 2011; Chali et al., 2017), and displaying text on

small-screens (Corston-Oliver, 2001). Approaches for generating compression can

be divided into two categories (Mani, 2001): (1) Extractive compression, words and

phrases are deleted, but no new words can be added and (2) Abstractive compression,



1.1. Paraphrasing 5

with no restrictions on how compressions can be generated, other than the output is

shorter than the input. Table 1.3 provides examples of both extractive and abstrac-

tive sentence compressions, as well as highlighting how there are multiple possible

compressions per source sentence, each of which provides different trade-offs between

retaining meaning and producing a shorter output. In addition to extractive approaches

being less flexible in the type of surface forms they can produce, it is not clear how

they would be applicable for other paraphrasing subtasks, such as sentence fusion. As

we wish our proposed solutions to be applicable to all paraphrasing tasks, we focus

exclusively on abstractive compression.

Source Parkes was a key location for the railway, serving as a hub for a great deal of

passengers.

Simplification Parkes was an important town for the railway, being used as a hub for many pas-

sengers.

Simplification Parkes was a key location for the railway. It served as a hub for a great deal of

passengers.

Source Shakespeare has always been celebrated, his works have been praised by theatre-

goers and readers.

Simplification Shakespeare’s works have always been celebrated by theatregoers and readers.

Simplification Everyone likes Shakespeare’s plays.

Table 1.4: Examples of multiple simplifications for the same source sentence.

Sentence Simplification constrains the output to make sentences easier to read and

understand whilst retaining most of their meaning. There are several groups of people

who have low literacy skills and could benefit from simplifications, including children,

second language learners, and people with autism, dyslexia and aphasia (Rello et al.,

2013; Shewan and Canter, 1971). Sentence simplification is a varied process; it can in-

clude replacing complex words and phrases with a simpler paraphrase or simplifying

the syntax, for instance splitting long sentences into multiple shorter sentences. Exam-

ples of different types of simplification can be found in Table 1.4, again we highlight

how there are many possible simplifications per source sentence. Sentence simplifi-

cation is not only applicable to end-users but can also be incorporated into other NLP

systems, acting as a preprocessing step to make sentences easier for NLP systems,

and has been used within: parsers (Chandrasekar et al., 1996), summarizers (Klebanov

et al., 2004), semantic role labelers (Vickrey and Koller, 2008; Woodsend and Lapata,

2014), and machine translation (Mehta et al., 2020).
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1.2 Automatic Approaches

Automatic approaches often treat paraphrasing as a text-to-text problem, with a source

input sentence and a corresponding output target sentence. To solve this problem ma-

chine translation frameworks - either Statistical Machine Translation (SMT) or, more

recently, encoder-decoder (Sequence-to-Sequence) models - are often used to learn

these. These approaches train on supervised paraphrasing datasets, trying to learn a

generalizable mapping between source and target sentences, allowing them to general-

ize to unseen sentences.

SMT, in an effort to reduce sparsity, decomposes the problem. Where instead of

mapping between entire sentences, SMT maps between sub-parts of the source and

target sentences. There are three commonly used decompositions: lexical, phrasal, and

syntactic (Och and Ney, 2000). Lexical approaches learn a mapping between words

in the source and target sentence, producing a probabilistic word translation table. To

generate a target sentence, source words are individually translated, and a language

model is used to ensure the output is fluent. Words, however, may not always be the

best choice for the decomposition. Sometimes one source word can map into multiple

target words or vice versa. Phrase-based models learn a probabilistic mapping, a phrase

table, between small sequences of words. Syntax-based approaches differ, as they learn

a joint syntactic grammar, consisting of syntactic fragments, applied to both the target

and source side (Och and Ney, 2000).

Neural approaches do not decompose the problem; instead, they rely on the ability

of a neural network to learn continuous features of the entire source sentence without

needing preprocessing tools or syntactic information (e.g., part-of-speech tags, parse

trees) to reduce sparsity. A common approach for neural models is encoder-decoder

with attention, as popularised by Bahdanau et al. (2015). There are three major archi-

tectures, Recurrent Neural Networks (RNN) (Bahdanau et al., 2015; Sutskever et al.,

2014), Convolutional Neural Networks (CNN) (Kalchbrenner et al., 2016; Gehring

et al., 2017), and Transformers (Vaswani et al., 2017). For all approaches a network

first encodes the source sentence into a sequence of latent representations, using the

encoder. The decoder then decodes the entire target sentence word-by-word, attending

to these latent representations.

SMT has previously been shown to be able paraphrase (Napoles-Cohen, 2019;

Ganitkevic et al., 2018), However, within this thesis we exclusively use encoder-decoder

models, they have has been shown to outperform SMT on a wide range of tasks and
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datasets, including machine translation (Barrault et al., 2019), post-editing (Chatterjee

et al., 2018), grammatical error correction1, simplification2, and summarization3.

1.3 Challenges

Whilst text-to-text frameworks are a powerful approach for paraphrasing they require

large amounts of supervised data. Neural approaches are particularly data-hungry, typ-

ically training on several hundred-thousand to several million sentence pairs. Training

on fewer datapoints can lead to a significant decrease in performance, as demonstrated

for sentence fusion (Malmi et al., 2019). This is problematic as paraphrasing data is of-

ten not available or not available in sufficient quantities. Within this thesis, we address

this data shortage, focusing on two particular aspects.

Lack of data As each supervised paraphrasing dataset is language-specific, every

language needs its own dataset. This results in the need for a huge amount of parallel

data across many languages. While datasets can sometimes be automatically gathered

by scraping the web, this requires language-specific heuristics to be developed for

each language, as well as a website (or an equivalent) existing in each language. The

alternative is to create the dataset using human annotators. This process is costly as

annotation is expensive, of variable quality, requires an adequate annotator pool for

each language, and may require the annotators to be in-domain experts.

Personalization Further exacerbating the issue over a lack of data, is the lack of

the right data. As the examples demonstrate in Tables 1.2, 1.3, and 1.4, each source

sentence can have multiple possible outputs, where the correct/preferred output is de-

termined by the users. For example, for sentence compression, what is the desired

length of the compression? What is acceptable to delete to produce a short output?

The answers to these questions depend on what the users wish to do with the sum-

mary. For instance, if there is limited screen space, then the summary must fit within

this limit. For simplification, what aspect is considered complex, syntactic or lexical?

Which words does the user not understand? Which syntactic construction does the

user not understand? The answers to all these questions are user-specific. Currently,

the output surface form is determined solely by the data the model was trained on. This

1https://nlpprogress.com/english/grammatical_error_correction.html
2https://nlpprogress.com/english/simplification.html
3https://nlpprogress.com/english/summarization.html
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is problematic if the data was scraped, as it may not match the requirements of the user.

In the case that the data was created, this still requires that each user or subset of users

creates their own bespoke training data, an expensive proposition.

1.4 Thesis Proposal

Within this thesis we propose using transfer learning and bilingual data to overcome

the lack of paraphrasing data. Transfer learning is a family of approaches that can

adapt training data from one task and apply it to a different task (Pan and Yang, 2009).

Bilingual data is a good source for paraphrasing, as translation is a similar task to

paraphrasing, in that the semantics are preserved between the input sentence and the

output translation. Using bilingual data also comes with many advantages: (1) Bilin-

gual datasets are parallel consisting of an input and output sentence, allowing them to

be easily used within an encoder-decoder frameworks. (2) Bilingual datasets are large

and exist in many languages. For instance, the open parallel corpus, provides over 2.5

billion bilingual sentence pairs, covering over 100 languages, and multiple different

domains Tiedemann (2012). (3) Bilingual datasets are continuously growing, either

through extracting translations from the web or through the efforts of translators pro-

ducing additional parallel text (Koehn, 2005; Lison and Tiedemann, 2016). To address

the personalization challenge we propose to use transfer learning to adapt datasets that

exist already for paraphrasing tasks that have no data, where no data can be a complete

lack of data or not personalised data as discussed previously.

In specifics this thesis addresses the following research question:

Can transfer learning be used to overcome a lack of paraphrasing data?

We further break this question down into three smaller subquestions:

1. No supervised data exists for a specific paraphrasing task. Can bilingual data be

used as a source of training data for paraphrasing?

2. Supervised paraphrasing data exists in one language but not in another. Can

bilingual data can be used to transfer paraphrasing training data from one lan-

guage to another?

3. Can the output of encoder-decoder paraphrasing models be controlled?
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The first question directly tackles the problem of a lack of supervised paraphrasing

data. The second question assumes there exists some data in one language but not an-

other. This is a common scenario, as often paraphrasing training data exists in English

but not in other languages. By transferring data across languages we are able to take

advantage of existing datasets. The third question relates to both the lack of data and

lack of the right data. We show that by adding a control mechanism to a paraphrasing

model we can perform other constrained paraphrasing tasks, for which we have no

data.

To answer these questions, we extend three existing transfer learning techniques:

pivoting (Ganitkevitch et al., 2013), cross-lingual learning, and variable disentangle-

ment (Higgins et al., 2016). We first show how pivoting can be used to perform un-

constrained paraphrasing with bilingual data, answering the first question. Secondly,

we show how variable disentanglement can be used to control the output of encoder-

decoder models, allowing users to produce personalized paraphrases, answering the

third question. By combining pivoting and variable disentanglement, bilingual data

can be used to perform specific paraphrasing sub-tasks, allowing users to produce per-

sonlized paraphrases, thereby also answering the third question. We then show how

cross-lingual learning can be used to transfer paraphrasing data from a high resource

language to a low resource language, thereby answering the second question. In Chap-

ter 2 we discuss alternative approaches to dealing with a lack of data, including unsu-

pervised learning, pre-training, and domain adapation.

Pivoting is a technique to overcome the lack of training data, by combining existing

datasets through a common element to create a new dataset. Pivoting has been previ-

ously used for paraphrasing, combining two bilingual datasets to form a monolingual

dataset (Bannard and Callison-Burch, 2005; Ganitkevitch et al., 2011; Madnani et al.,

2007a; Callison-Burch, 2008; Pavlick et al., 2015). The intuition behind bilingual piv-

oting is that two English phrases e1 and e2 that translate to the same foreign phrase f

can be assumed to have the same meaning.

Previous approaches used SMT phrase tables to model translation probabilities

(Ganitkevitch et al., 2013). Since phrase tables are finite, it is possible to pivot over all

possible, f , foreign phrases. We propose an approach which works with encoder-

decoder models, allowing us to take advantage of the improvements that encoder-

decoder models offers over SMT. In our framework, a source sentence is translated

into a foreign sentence, before being translated back into the original language. In this
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case, the possible pivots are comprised of all possible sentences, which is intractable to

pivot over. Within Chapter 3 we explore multiple approaches to making this tractable.

Variable Disentanglement is an approach to control some variable of interest while

leaving the remaining attributes unchanged (Higgins et al., 2016). In this thesis we use

variable disentanglement to control the output surface form; for instance the length,

lexical or syntax surface form of the generated paraphrases. Previous work has focused

on how to disentangle the variable of interest from the rest of the representation. A

common approach is to use an auto-encoder to encode a sentence into a vector. A

discriminator is then trained to predict the variable of interest from this vector (John

et al., 2018; Hu et al., 2017; Shen et al., 2017). The encoder must encode the semantics

of the input while perturbing the discriminator, ensuring that the discriminator is not

able to predict the variable of interest. The decoder is then conditioned on the encoded

sentences and a representation of the variable of interest.

An alternative but related set of approaches, which we call soft variable disen-

tanglement, does not focus on trying to disentangle the semantics from the feature of

interest but instead provides the feature of interest as an input, often as side informa-

tion. For instance Michel and Neubig (2018); Sennrich et al. (2016a) experimented

with adding tags to the source/target sentence to indicate the gender of the speaker or

the politeness level within machine translation systems. As such the model is trained

using a triplet consisting of the source sentence x, the target y and the feature of interest

F(y). A simple formulation of variable disentanglement is that the model then learns

to generate y from x and F(y), as such:

P(y|ENC(x),ENC(F(y))) (1.1)

where ENC is an encoding mechanism such as a feedfoward neural network or an

RNN. As the model is given gold information about the output in ENC(F(y)), there is

no need for this information to be encoded within ENC(x), and the parameter budget

would be better spent encoding the semantics. As such the model is encouraged to

produce a disentangled representation. At test time the user can provide their preferred

values for F(y).

We apply variable disentanglement to models trained with general-purpose para-

phrasing datasets allowing them to become user-centric, with no additional training.

We show, in Chapters 4 and 5, how this approach can allow users to control the length,

syntax and lexical items of the output. By combining variable disentanglement and
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pivoting we can train models on bilingual data and use them for specific constrained

paraphrasing tasks.

Cross-lingual learning attempts to embed multiple languages into the same space.

This allows data points between languages to be compared and by providing a shared

space, information can transferred between languages, e.g., between high and low re-

source languages. Prior work has focused on what to embed (Ruder et al., 2019):

words, sentences, or documents as well as what level of supervision is used. We focus

on supervised sentential embeddings, and transferring data between languages. Firat

et al. (2016b); Johnson et al. (2017); Ha et al. (2016) have shown that translation data

can be transferred across languages, while the model is trained on translation x↔ y

and x↔ z, (where x,y,z are different languages), it is able to translate z↔ y, with no

additional training data. We focus on transferring supervised paraphrasing data from a

resource rich language x to a resource poor language y. In this case we have x↔ y and

x→ x′, where x→ x′ is the supervised paraphrasing training data. We wish to learn

paraphrasing for resource poor language y→ y′, noticing that, unlike the translation

case, y′ does not appear in the training data.

Whilst there has been limited research on transferring generation data across lan-

guages, there has been work on transferring classification data across languages (Zhou

et al., 2016; Chen et al., 2019). Zhou et al. (2016) transferred supervised sentiment

labels from English to sentences in Chinese using a dual objective, that embeds Chi-

nese and English into the same space, and learns sentiment labels on the English data.

We propose a modeling framework which transfers supervised paraphrasing data from

English to another language (for which no supervised data exists). We train the model

on paraphrasing and translation data, using a shared transformer encoder, which con-

structs language-agnostic and task-agnostic representations, with a combination of

task-specific encoder layers added on top (e.g., for translation and paraphrasing). A

language-specific Transformer is then used to decode the sentence, which is described

in Chapter 5.

1.5 Thesis Structure

This thesis consists of six further chapters. The next chapter contains relevant back-

ground information, including information on encoder-decoder models, evaluation met-

rics, and alternative approaches for overcoming the lack of training data. The following
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Challenges Approaches

Unsupervised Transfer Control Pivoting Disentanglement Cross-lingual

Chapter 3 X 7 7 X 7 7

Chapter 4 X 7 7 X X 7

Chapter 5 7 7 X 7 X 7

Chapter 6 7 X 7 7 X X

Table 1.5: Outline of thesis, where each Chapter addresses a particular challenge using

a particular technique including: Pivoting, variable disentanglement, and Cross-lingual

learning. Unsupervised, means no paraphrasing training data is used, transfer means

training data is provided in one language but not another, and control, the output is

controllable by the user.

four chapters address the challenges and approaches outlined in Section 1.5, and the

last chapter presents our conclusions and directions for future work.

Papers published during my PhD but not discussed within the thesis include Dong

et al. (2017), Wieting et al. (2017), and Puduppully et al. (2019b). Within Dong et al.

(2017) we proposed a model which uses paraphrasing for question-answering. The

model receives as input questions and paraphrases of these questions. A neural scoring

model then scores the paraphrases, assigning a higher score to those paraphrases which

are most likely to produce the correct answer when used as input to the answering

model. The paraphrases and their scores were then used as input to the answering

model to produce the answer. The neural scoring model and answering model were

trained end-to-end.

In Wieting et al. (2017) we used neural machine translation to generate sentential

paraphrases via back-translation of bilingual sentence pairs. We found that the data

quality of these paraphrases were stronger than prior work based on bitext, and on par

with manually-written English paraphrase pairs. A further discussion of this work can

be found in Chapter 3 (Section 3.2.1).

Puduppully et al. (2019b) was the University of Edinburgh’s submission to the

Document-level Generation and Translation Shared Task. This shared task required

models to generate a summary of basketball games, and consisted of six tracks. In the

first and second track an English or German summary was produced from structured

data representing the basketball game. The third and fourth track consisted of trans-

lating a summary of the basketball game between English and German. The fifth and
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sixth provided structured data, and a summary in English or German. The model gen-

erated the summary in the other language. For the first and second track we trained a

multilingual German/English model using the content selection and planning approach

of Puduppully et al. (2019a) with an added language tag prepended to the decoders’

output to indicate the desired output language. For the third, fourth, fifth, and sixth

track, we trained a transformer encoder-decoder translation model on WMT19 parallel

data. Additionally, we created in-domain monolingual data by extracting basketball-

related texts from monolingual sources. These sentences were then back-translated

and added to the translation data.

Chapter 3: Paraphrasing with Neural Pivoting

This chapter demonstrates how neural pivoting can be used to overcome the lack of su-

pervised unconstrained paraphrasing data (see Table 1.5). We introduce bilingual piv-

oting in the context of Neural Machine Translation and present a paraphrasing model

based purely on neural networks. We propose and evaluate multiple variants of neu-

ral pivoting. Experimental results across tasks and datasets show that neural pivoting

outperforms those obtained with conventional statistical machine translation based piv-

oting approaches.

Chapter 4: Sentence Compression with Neural Pivoting

Within this chapter, we show how neural pivoting and variable disentanglement can be

used to generate sentence compressions from translation data (see Table 1.5). Com-

pressions are obtained by translating a source string into a foreign language and then

translating it back into the source while controlling the translation length. Using vari-

able disentanglement we train translation models to separate the representation of the

source sentence and the length of the target sentence. In this way, the user can con-

trol the length of the translation at test time. We release three cross-lingual sentence

compression datasets in English, German and Czech. Experimental results on these

datasets show that pivoting with variable disentanglement is an effective way of pro-

ducing compressions.
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Chapter 5: Controllable Simplification

Within this chapter we assume there exists general-purpose simplification data; how-

ever, this data is not tailored for specific users needs. We show how variable disen-

tanglement can be used to tailor the output of a model trained on this data. We train

models which allow users to control both the syntax and the lexical items which appear

within the output (see Table 1.5). Empirical results show that this is an effective way

of controlling the output simplicity level as well as producing good general-purpose

simplifications.

Chapter 6: Zero-Shot Crosslingual Sentence Simplification

Within this Chapter, we demonstrate a cross-lingual approach which allows us to trans-

fer supervised simplification data from one language to another language, where no

such data exists (see Table 1.5). For this chapter, we assume simplification data ex-

ists in English but not in German. We propose a cross-lingual Transformer encoder-

decoder model trained on bilingual and simplification data. To evaluate the perfor-

mance of our model we construct a German sentence simplification evaluation set.

Empirical results on our dataset and others, using both human and automatic metrics,

show that our approach produces better simplifications than unsupervised and pivot-

based methods.

The content of Chapter 3 was published in Mallinson et al. (2017), this work builds

upon the work of my master’s dissertation4 Mallinson (2016), which introduced piv-

oting with neural machine translation. This thesis expands upon this, by refining the

model, adding additional tasks, running new experiments, providing additional analy-

sis, and rewriting the text. The contents of Chapter 4 was published in Mallinson et al.

(2018), Chapter 5 in Mallinson and Lapata (2019) and Chapter 6 in Mallinson et al.

(2020a).

1.6 Summary

This chapter has introduced and motivated the transfer learning for paraphrasing. We

highlighted how a lack of data is problematic for paraphrasing models and proposed a

general-purpose transfer learning solution to overcome this lack of data. We discussed

4Which was part of the PhD program.
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four major contributions of this thesis: (1) Using bilingual data with encoder-decoder

models to perform unconstrained paraphrasing (2) Introducing user control to para-

phrase systems, allowing for personalized outputs. (3) By combining user control with

pivoting, we show how bilingual data can be used to perform specific paraphrasing sub-

tasks. (4) Introducing an approach that uses bilingual data to transfer supervised para-

phrasing training data between languages. In the next chapter we introduce background

information for the rest of the thesis, as well as discussing alternative approaches to

transfer learning.





Chapter 2

Background

This chapter provides the background information needed for the rest of the thesis. We

include a detailed description of neural encoder-decoder models, focusing on recur-

rent based models and Transformers. We describe the architecture, the training, and

inference time decoding. We provide details on the automatic evaluation metrics used,

describing the implementation and what they measure.

We also discuss the alternatives to transfer learning for overcoming a lack of para-

phrasing data, including domain adaptation (Chu and Wang, 2018), pre-training (De-

vlin et al., 2019), and unsupervised learning (Artetxe et al., 2018; Lample et al., 2018).

For related work on particular paraphrasing tasks, simplification, summarization, or

unconstrained paraphrasing we refer the reader to the chapters following which tackle

these tasks.

2.1 Encoder-decoder Models

As mentioned in Chapter 1, modern approaches (Zhang and Lapata, 2017; Nishihara

et al., 2019) view paraphrasing as monolingual text-to-text rewriting, and employ the

very successful neural encoder-decoder architecture (Bahdanau et al., 2015; Sutskever

et al., 2014). In contrast to traditional methods (Khosmood, 2012; Bhagat and Hovy,

2013; Kozlowski et al., 2003; Dras, 1999), which target individual aspects of para-

phrasing, such as passive to active voice, or lexical replacement, neural models have

no special-purpose mechanisms for ensuring how to best paraphrase text. They rely on

representation learning to implicitly capture paraphrase rewrites from data, i.e. exam-

ples of paraphrase sentence pairs.

The two most popular encoder-decoder architectures are Recurrent Neural Net-

17
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works (RNN) with attention (Bahdanau et al., 2015; Sutskever et al., 2014), and Trans-

formers (Vaswani et al., 2017). Both architectures are trained on sets of input sentences

x = (x1, ...x|x|) and corresponding output sentences y = (y1, ....,y|y|), from which the

models predict y given x, P(y|x), and decompose the problem into:

P(y|x) =
|y|

∏
j

P(y j|y< j,x) (2.1)

The model predicts the output sentence one token at a time, j, conditioning on the

source sentence and the previously generated words. Both architectures break the

model down into two parts, the encoder, which produces representations of the source

sentence and the decoder which sequentially generates the output, forming a new rep-

resentation at each time step. While both RNN and Transformers follow this pattern,

they differ in the way that they generate these representations.

2.1.1 Recurrent Neural Networks

Encoder RNN encoders sequentially encode source words one word at a time, xi,

into hidden state (hi), by combining word embeddings, vector representation of a word,

e(xi) and the previous hidden state:

hi = RNN(xi,hi−1) = f (Wee(xi)+Whhi−1) (2.2)

where f is any non-linear function, such as tanh or sigmoid, W is a matrix, and

Wee(xi) provides an embedding for the token xi. The source sentence is then repre-

sented as a set of hidden states, c=(h1, ...h|x|). In practice, bidirectional RNN encoders

are often used, where one RNN encodes the sentence left-to-right (
−→
h ), and another in-

dependent RNN encodes the sentence right-to-left (
←−
h ). These hidden representations

are then concatenated together to form the representations of the sentence:

hi = [
−→
hi ;
←−
h |x|−i] (2.3)

Decoder A conditional RNN decoder is then used to generate the output sequence

a word at a time. A decoder is initialised with the output of the encoder, which tries

to represent the meaning of the sentence. However, encoding the meaning of an entire

sentence into a single vector is an open problem (Conneau et al., 2018). "You can’t

cram the meaning of a whole **** sentence into a single **** vector!" - Raymond J.

Mooney. Instead attention mechanisms have been introduced (Bahdanau et al., 2015;
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Sutskever et al., 2014). In attention-based encoder-decoder models, the model assumes

that at different steps of the generation the decoder should focus on different parts of

the input. How much each part of the input should be focused on is determined by

an attention mechanism (Bahdanau et al., 2015), which consists of three components:

keys, query and values. In RNN encoder-decoder models, the encoder hidden states (h)

are the keys, which are then queried by the decoder hidden state (s j). Each key-query

pair returns a score: score(hi,s j). These scores are then normalised across all the keys

using the softmax function:

ATTi, j =
exp(score(i, j)

∑i′ exp(score(i′, j))
(2.4)

The normalized scores are then combined with the values, in this case the source

hidden state, to form a context vector at each time step of the decoder:

c j = ∑
i

ATTi, j ∗hi (2.5)

Thus, attention produces a weighted average of the source sentence. There are

many possible scoring functions that could be used, however popular choices include:

dot product (Luong et al., 2015a):

score(i, j) = sT
j hi (2.6)

the scaled dot product, where n is the size of the key vector (Vaswani et al., 2017):

score(i, j) =
sT

j hi√
n

(2.7)

and additive (Bahdanau et al., 2015):

score(i, j) = v> tanh(W [s j;hi]) (2.8)

With attention defined, we can now define the decoder, with a focus on the RNN

decoder architecture of Sennrich et al. (2017). An RNN decoder uses three inputs to

update its hidden state s j: the previous hidden state s j−1, the source hidden states c

and the previously predicted word y j−1:

s j = RNN(s j−1,y j−1,c) (2.9)

The model performs three steps. First the look step, which produces an intermedi-

ate representation s′j, using an RNN to combine the previous decoder hidden state and

the previously predicted word:
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s′j = RNN1(s j−1,y j−1) (2.10)

The attention mechanism, ATT, is then used to compute the context vector c j,

where the encoder states c are they keys and values, and the query is s′j.

The update step next generates the hidden representation s j using another RNN.

The inputs to this RNN are the intermediate representation s′j and the context vector

c j:

s j = RNN2(s′j,c j) (2.11)

Note that the two RNN blocks (RNN1, RNN2) are not individually recurrent, how-

ever the input to RNN2 is the output of RNN1, and the input of RNN1 is the output of

RNN2, making the decoder recurrent overall.

Finally, the model performs the generate step; a softmax layer is applied to s j to

produce a distribution over the vocabulary:

P(y|x) =
|y|

∏
j=1

p(y j|s j) (2.12)

It should be noted that Sennrich et al. (2017), produce an intermediate representa-

tion by combining, using a feed-forward layers, s j, c j, and y j−1. A softmax layer is

applied to this representation. The model is trained using a negative log-likelihood loss

and back propagation through time (BPTT) (Rumelhart et al., 1986; Werbos, 1988).

Training RNN, however, can be difficult due to the exploding and vanishing gradient

problems (Bengio et al., 1994). To remedy this Long Short-Term Memory Networks

(LSTM) (Gers et al., 2000) and Gated Recurrent Units (GRU) (Cho et al., 2014) were

proposed. As we use GRUs throughout this thesis, we will focus exclusively on them,

however they are conceptually similar to LSTMs.

Gated Recurrent Units use two linear gates to control the flow of information at

every update. The reset gate determines how much information from the previous

timestep to forget:

ri = sigmoid(Wee(xi)+W1hi−1) (2.13)

The hidden state is updated using the reset gate to form an intermediate representation:

ĥi = tanh(Wee(xi)+W3(ri�hi−1) (2.14)
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where � is the Hadamard product. The update gate determines how much information

from the previous timestep should be passed to the future, and is calculated as:

zi = sigmoid(Wee(xi)+Whhi−1) (2.15)

Finally the intermediate representation with the hidden state are combined:

hi = (1− zi)�ht−1 + zi� ĥi (2.16)

The use of linear gates allows information to easily propagate into the future, for

instance GRU can set the update gate to 0, meaning all the previous information is pre-

served, in contrast it would be hard for an RNN to learn a weight matrix that preserves

previous hidden state. LSTMs follow a similar approach but include an additional gate

as well as an additional state.

2.1.2 Transformers

Transformers have become an increasingly popular alternative to RNN, which replace

recurrent connections with multi-headed self-attention. In self-attention, unlike in

RNN where the previous hidden state is updated with a new word, the hidden state

is updated by attending to all hidden states in the sequences; as such the hidden state

is a weighted sum of all hidden states of the sentence. In this way transformers en-

code source sentences simultaneously, not sequentially, which allows the encoder to

make use of both the left and right context. Additionally, by using attention rather

than recurrences, transformers are better able to model long-distance dependencies, as

information does not need to be passed through multiple recurrent steps.

As shown in Figure 2.1 a Transformer is composed of an encoder and decoder,

where both are made up of multiple identical transformer layers. In the encoder,

a transformer layer is composed of two sublayers, a self-attention layer (Figure 2.1,

Multi-Head Attention), which allows a hidden state to attend to all other hidden state;

and a point-wise, fully connected feedforward layer (Figure 2.1, Feed Forward). A

residual connection (He et al., 2016) is employed around each of the two sublay-

ers (Figure 2.1, Add), followed by layer normalization (Ba et al., 2016) (Figure 2.1,

Norm). A hidden encoder state at time-step i and layer l is defined as:

hl
i = (hl−1

i + self-attention(hl−1
i ))+ f (hl−1

i + self-attention(hl−1
i )) (2.17)
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Figure 2.1: Diagram of Transformer encoder-decoder, as adapted (scaled) from

Vaswani et al. (2017). The Transformer encoder-decoder is composed of two parts,

on the left the encoder, and on the right the decoder. Both the encoder and decoder

consist of N identical layers, which take in as input the output of the previous layer.

An encoder layer consists of two sublayers: a self-attention mechanism and feedfor-

ward layer. After each sub-layer a residual connection is used and layer normalization

is applied. The decoder has an additional sublayer which attends to the output of the

encoder. A softmax layer is applied to the top of the decoder which predicts the out-

put. The input to both the encoder and decoder are word embeddings and positional

embeddings.
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where f is a point-wise, fully connected feedfoward layer and the output of the encoder

is the hidden states from the top transformer layer h = (hL
1 , ...h

L
|x|).

For the self-attention layer, Transformers use a scaled dot product attention mech-

anism, where each source hidden state hl
i is linearly transformed into a query vector qi

l ,

a key kl
i vector, and a value vector vl

i . Attention is then performed between the query

and keys, forming the output of the sublayer, a weighted average of the value vectors,

as described in Section 2.1.1.

Transformers extend attention to multi-headed attention, which consists of multiple

independent attention mechanisms, with separate query, key, and value matrices. The

output of the independent attention mechanisms are then concatenated together to pro-

duce the output of the self-attention sublayer. Using multiple attention layers allows

the attention mechanisms to focus on different aspects of output, such as syntactic or

semantic phenomena.

For the input layer, h0, word embeddings and positional embedding are added to-

gether and then used as the input to the model:

h0
i =Wee(xi)+Wpose(i) (2.18)

Unlike recurrent based approaches, where there are distinct timesteps, transformers

have no distinct order. To remedy this, positional embeddings, representing a distinct

timestep, are added to the word embeddings, where positional embeddings can be

learnt or a fixed representation.

Transformer Decoder

Transformer decoders (Figure 2.1, second block) are tasked with producing the output

sequence one word at a time, and they take as input the output of the encoder c, and

the previously predicted words (Figure 2.1, Outputs (shifted right)):

P(y|x) =
|y|

∏
j

P(y j|y< j,c) (2.19)

Transformer decoders are similar to transformer encoders and consist of multiple trans-

former decoder layers. However they include a third sublayer (Figure 2.1, Masked

Multi-Head Attention) before the self-attention layer, an attention layer which attends

to the output of the encoder. For time step i in layer l, we define the hidden state sl
i as1:

1For simplicity we exclude the residual connections.
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sl
j = f (self-attention(attention(sl−1

j ),c)) (2.20)

Attention is also multi-headed and uses a scaled dot product. A mask is applied to self-

attention in the decoder ensuring that the decoder can only attend to previous hidden

states. A softmax layer is applied to the final layer of the decoder sL
j which produces a

distribution over the vocabulary. The first decoder layer is defined as:

s0
j =Wee(x j−1)+Wpose( j) (2.21)

Transformers are trained using a negative log-likelihood loss and BPTT.

2.1.3 Decoding

When decoding, the goal to find the most probable output y of a given source sentence

x, argmmax P(y|x). However the search space is the vocabulary size to the power of

the maximum sequence length, with vocab size often being in the tens of thousands

and max length, as measured by the number of tokens, often ranges from 32 to 128.

It is therefore intractable to score all possible outputs. Instead, approximations are

used; one approach is greedy decoding, where at every timestep the most probable

word is chosen. However, a locally best decision does not guarantee that the sequence

as a whole is the most likely. As such, a popular alternative is beam search, which

compares probabilities of sequences. A fixed beam size is used and at each time step

the N-most probable sequences are kept and the rest discarded.

To counter the effect of long sequences having a lower probability than short se-

quences, as at each time step the probability can never increase, length normalisation

is usually applied:

P(y|x)∗ |Y |α (2.22)

A higher α leads to long sentences being given a higher scores.

2.2 Evaluation Metrics

Within this section, we provide an overview of the automatic evaluation metrics used

throughout the thesis. The majority of the metrics measure the token level overlap

between the model output sentence g, and the references r. Additionally, some metrics
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examine the overlap between the source sentence s and the output sentence. Metrics

often can be computed at the sentence level, where scores from individual sentences

are averaged, or at the corpus level, where the overlap is scored for the entire test set.

Throughout this thesis we use corpus level metrics, unless otherwise stated.

BLEU (BiLingual Evaluation Understudy) (Papineni et al., 2002) BLEU was orig-

inally developed for evaluating machine translation output, however, it is now com-

monly used to measure adequacy for paraphrasing tasks. It combines the n-gram pre-

cision, pn, between the generated output, g, and the reference r, and a brevity penalty

(BP):

BLEU(g,r) = BP · exp
( N

∑
n=1

1
N

log pn
)

(2.23)

BP =

1 if |g|> |r|

e(1−|r|)/|g| if |g|<= |r|
(2.24)

where |g| is the length (number of tokens), of the candidate output, |r| is the length

of the reference, and the standard choice is N = 4. BLEU was developed for use as a

corpus level metric, which, when used as a sentence level metric, it is fairly common

for log(pn = 0), leaving BLEU to be undefined. To avoid this, smoothing is often

applied (Chen and Cherry, 2014). BLEU can be used with multiple references. For

corpus level BLEU, output n-grams are matched against any reference n-gram and the

reference length |r| is set to the shortest reference length. When using sentence level

BLEU, the output can be compared against individual references, the maximum or

average BLEU is then reported.

self-BLEU While BLEU measures the distance between the model output and the

reference, self-BLEU measures the distance between the output and the source, quan-

tifying the amount of rewrites that the model has performed.

iBLEU (Sun and Zhou, 2012) combines BLEU and self-BLEU, rewarding model

output g which is close to the reference rn and penalising the output which is close to

the source sentence s:

iBLEU(s,r,g) = αBLEU(g,r)− (1−α)BLEU(g,s) (2.25)
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The α parameter determines the importance of matching against the reference sen-

tence, where a higher α de-emphasises the consequences of being close to the source

sentence.

Copy is a corpus level metric which measures the percentage of sentences copied

(with no changes made) from the source to the output, quantifying the extent to which

a model performs any rewrites at all.

ROUGE-N (Lin, 2004a) ROUGE-N is a recall-based evaluation metric, measuring

the n-gram recall between the generated output and the references. Unlike BLEU

where the average [1-4]-gram overlap is used, only one N is chosen, it is therefore

normal to report multiple ROUGE scores, i.e. ROUGE-1 and ROUGE-2. When there

are multiple references the recall n-gram score is based on the proportion of reference

that contain the n-gram. Although less common, ROUGE-N can use precision or F1

overlap between the output and the reference.

ROUGE-L (Lin, 2004a) measures the longest matching sequence of words between

the generated output and the reference sentence, using the longest common subse-

quence (LCS) algorithm. Unlike ROUGE-N, ROUGE-L has no parameter to select

(the choice of n-gram), and can compare arbitrarily long sequences. ROUGE-L is

defined as:

ROUGE-L(g,r) =
|LCS(g,r)|
|r|

(2.26)

where LCS is the longest common subsequence. When there are multiple refer-

ences LCS(g,r) is the union of all LCS(g,ri).

ROUGE-S (Lin, 2004a) measures skip-bigram matches between the generated output

and the reference. A skip-gram is a type of n-gram where the words do not need to be

in consequtive order, instead there can be additional words between them. ROUGE-S

is calculated in the same way as ROUGE-N, where n-grams are replaced with skip-

grams.

FKGL (Kincaid et al., 1975) The Flesch-Kincaid Grade Level index (FKGL) mea-

sures the readability of the output, by taking into account the average number of words

per sentence and the average number of syllables per word and is calculated as follows:
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FGKL = 0.39
(

total words
total sentences

)
+11.8

(
total syllables

total words

)
−15.59 (2.27)

Scores start from −3.4, with no upper limit. A higher score indicates that the text is

easier to read.

FKBLEU (Xu et al., 2016) One of the downsides of FKGL is that it only measures

readability, and offers no guarantee that the output is semantically related to the input.

To remedy this FKBLEU combines FKGL and iBLEU to measure both readability

and adequacy. The resulting metric, FKBLEU, is defined as a geometric mean of the

iBLEU and the FKGL difference between input and generated sentences:

FKBLEU = iBLEU(s,r,g)0.5 ∗FKdiff(g,s)0.5 (2.28)

FKdiff(g,s) = sigmoid(FKGL(s)−FKGL(g)) (2.29)

SARI (Xu et al., 2016) is calculated using the average of three rewrite operation

scores: addition, copying, and deletion. It rewards addition operations when the sys-

tem’s output is not in the input but occurs in the references. Analogously, it rewards

words deleted/retained if they are in both the system output and the references. For

addition and copying it uses F1 4-gram overlap, however for deletion it uses 4-gram

precision, encouraging models to be conservative when deleting. It is calculated as

follows:

SARI(s,r,g) = (F1keep(s,r,g)+F1add(s,r,g)+Pdelete(s,r,g))/3 (2.30)

SARI supports multiple references, rewarding an operation proportional to the

number of times that the operation appears within the reference.

TER (Translation Error Rate) (Snover et al., 2006) is a metric developed to deter-

mine the amount of Post-Editing required to correct a generated translation. It calcu-

lates the minimal number of edits required to transform the generated output to the

reference. Edits include insertion, deletion, and substitution of single words as well as

shifts of phrases (multiple words). A shift moves a phrase within the output to another

location. All edits, including shifts of any length and distance have the same cost. TER
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reports the number of each edit type, and by summing the number of edits is defined

as:

TER(ri,c) =
|edits(ri,c)|
|r|

(2.31)

where |ri| is the number of words in the reference, and the |edits(ri,c)| is the num-

ber of edits requires to change the reference into the generated output. It is calculated

at a sentence level and when there are multiple references |r| is the average reference

length and minimum TER per reference is returned.

2.3 Alternatives to Transfer Learning

In this thesis, we use transfer learning to overcome a lack of paraphrasing data. How-

ever, there are several alternatives that we do not explore, which could have been used.

2.3.1 Unsupervised Learning

Throughout this thesis we have assumed the existence of supervised parallel training

data that can be transferred to our primary task for which we have no data. However,

in unsupervised learning, the approach requires no supervised training data from a re-

lated task, instead using only non-parallel data. Unsupervised natural language gener-

ation models have recently shown promising results on a variety of tasks. Artetxe et al.

(2018); Lample et al. (2018), demonstrated how an unsupervised neural machine trans-

lation model can translate between two languages by training on non-parallel English

and German. They train an encoder-encoder model using two objectives: (1) denois-

ing, where a source sentence is noised and then the corresponding decoder is tasked

with reconstructing the original sentence and (2) on-the-fly back-translation, which

translates the sentence in inference mode; this translation is then encoded and the task

is to reconstruct the original sentence. Surya et al. (2019) showed that with additional

coverage loss how this approach could be applied to sentence simplification, where

one dataset consists solely of simple sentences and another dataset consists solely of

complex sentences. We further explain this approach in Chapter 5.

As discussed in Chapter 1 style transfer tasks, where the style of the output differs

from the input has increasingly used unsupervised techniques. In this task an input

text of style 1, must be written into style 2. For example taking an informal sentence

and making it formal, or rewriting modern English into Shakespearean English. There
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are rarely parallel style transfer datasets, however it is common for there to exist non

parallel data in both styles. A common approach is variables disentanglement where

the semantics of the source sentence and the style of the source sentence are separated.

As mentioned in Chapter 1 (Section 1.4) most solutions use an adversarial approach,

where discriminators try to predict the style and encoder is trained to perturb the dis-

criminator, leading to a style agnostic representation of the source sentence (Fu et al.,

2018; Shen et al., 2017; Zhao et al., 2018b).

2.3.2 Pre-Training

unsupervised pre-training on large text corpora has provided signifcant benefits to both

NLG and NLP. With BERT (Devlin et al., 2019), and related models such as RoBERTa

(Liu et al., 2019), and ALBERT (Lan et al., 2020) have shown significantly improved

results on multiple NLU benchmarks such as GLUE (Wang et al., 2019b), SuperGLUE

(Wang et al., 2019a), and SQuAD (Rajpurkar et al., 2016). These models were trained

using a Masked Language Modelling MLM) objective, where a model uses the context

words surrounding a [MASK] token to try to predict what the [MASK] word should be.

For example, for the sentence "Alaska is about [MASK] times large than New York",

the model is trained to predict the missing token, twelve. Unlike encoder-decoder mod-

els described in Section 2.2, these approaches consist of an encoder, where a softmax

layer is applied to the top of the encoder to predict the masked tokens.

Left-to-right language models, commonly called language models, are another

popular pre-training approach. Unlike MLM, these models have no encoder, instead

consisting solely of a decoder, where at every time-step they predict what the next

word is, given all the previous words. Radford et al. (2019); Brown et al. (2020) with

GPT-2 and GPT-3 respectively, showed that large language models trained on billions

of tokens could achieve impressive results on NLU benchmarks.

As neither language models nor masked language models follow an encoder-decoder

paradigm it is non-trivial to use these approaches within encoder-decoder models.

However, there has been work in adapting them to an encoder-decoder framework.

Liu and Lapata (2019) proposed initializing both the encoder and decoder with BERT

and then training on a document summarization task. As BERT is more similar to

an encoder rather than decoder, a separate learning rate was set for the encoder and

decoder. Rothe et al. (2020) experimented with initializing the encoder and decoder,

either randomly, with BERT, or with GPT-2. They evaluated on sentence fusion tasks



30 Chapter 2. Background

and document summarization tasks, showing BERT-2-random achieved impressive re-

sults. They also showed they were able to train the sentence fusion model with as few

as a 4500 sentences. Mallinson et al. (2020b); Malmi et al. (2019) used BERT to ini-

tizalize a text-editing model, and on a sentence fusion tasks showed that a model was

able to train on as few 450 sentence fusion examples.

In contrast to the encoder or decoder only approach, there have been several pre-

trained encoder-decoder models. These models are trained to produce the output, or

part of the output, sentence from the input sentence which has had noise or/and mask-

ing applied to it (Lewis et al., 2020; Raffel et al., 2019), achieving impressive results

on a wide range of NLG tasks.

While pre-training models have been shown to compensate for a lack of large train-

ing generation datasets they still require training data in order to fine-tune the model.

As such these approaches are orthogonal to this thesis where we assume no training

data. Additionally, in this thesis we avoided using pre-trained models in part due to

the recency in which the models have been released, but also because it ties our archi-

tectural decisions to those of the pre-trained models, often requiring the use of large

models, making training expensive and slow.

2.3.3 Domain Adaptation

Domain adaptation is the ability to apply a model trained on a source domain to a

different target domain. This is desirable as there may not be data in the target do-

main and domain mismatches between training and testing negativity impacting model

performance (Koehn and Knowles, 2017; Kobus et al., 2017).

Domain adaptation and transfer learning both focus on adapting data, transferring

learning focuses on how best to adapt data from another task, domain adaptation how-

ever focuses on how best to adapt data for the same task from another domain. This

is particularly relevant to question 2 of the thesis, where we could consider general

purpose data to be out-of-domain and personalized data, which rarely exists, could be

considered in-domain data.

Domain adaptation can be broken down into four distinct approaches: data, train-

ing, architecture, and decoding (Chu and Wang, 2018). Data centric approaches adapt

the data the model is being trained on. Moore and Lewis (2010) proposed extracting

in-domain data from out-of-domain datasets by scoring sentences using a language

model trained on the in-domain data and keeping only datapoints that receive a high
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score. Alternatively silver in-domain parallel data can be created by back-translating,

using a model trained on the inverse task, large amounts of in-domain monolingual

data (Sennrich et al., 2016d).

Training objective approaches change how the model is trained. A common ap-

proach is train on out-of-domain data then fine-tuned on in-domain data (Luong and

Manning, 2015). A related approach is to train on out-of-domain data, then fine-tuned

on both of in-domain and out-of-domain data (Chu et al., 2017). Up-weighting can

also be used, where the model is trained on both out-of-domain and in-domain data,

but the model gives greater importance to the in-domain data (Wang et al., 2017).

Architecture-based approaches change the architecture of the model. Domain tags

have been used to indicate which domain the output belongs to (Sennrich et al., 2016a).

Britz et al. (2017) use a discriminator, which is trained to predict the domain of the

source sentence, and the encoder is trained to perturb the discriminator.

Decoding-based approaches use custom decoding methods. Shallow fusion com-

bines the probability from a language model trained on in-domain data with the proba-

bilities produced by an encoder-decoder model trained on out-of-domain parallel data

(Gulcehre et al., 2015).

2.4 Summary

Conclusion In this chapter, we introduced the background information needed for

this thesis. We focused on encoder-decoder models and automatic evaluation metrics.

In addition, we discussed alternatives to transfer learning for overcoming a lack of

training data including unsupervised learning, domain adaptation, and pre-training.

Next Chapter In the next chapter, we introduce a transfer learning approach: Neu-

ral pivoting for unconstrained paraphrasing. We introduce unconstrained paraphrasing

and show how two bilingual pre-trained, RNN translation models can perform mono-

lingual paraphrasing with no paraphrasing data.





Chapter 3

Paraphrasing with Neural Pivoting

This chapter is based on Mallinson et al. (2017) which was published in EACL 2017

and answers the following question:

• No supervised data exists for a specific paraphrasing task. Can bilingual data be

used as a source of training data for paraphrasing?

We consider the case of unconstrained paraphrasing and propose neural pivoting,

an approach which requires no supervised paraphrasing training data. Instead, neural

pivoting leverages bilingual corpora to find meaning-equivalent phrases in a single lan-

guage by pivoting over a shared translation in another language, transferring supervis-

ing machine translation data over to paraphrasing. While previous pivoting approaches

used Statistical Machine Translation (SMT), we show how pivoting can be performed

using Neural Machine Translation (NMT) to produce sentential paraphrases. Our ap-

proach represents paraphrases in a continuous space, estimates the degree of semantic

relatedness between text segments of arbitrary length, and generates candidate para-

phrases for any source input. Experimental results across tasks and datasets show that

neural paraphrases outperform those obtained with conventional phrase-based SMT

pivoting approaches.

3.1 Introduction

Paraphrasing can be broadly described as the task of using an alternative surface form

to express the same semantic content (Madnani and Dorr, 2010) and has been used

in many NLP applications as discussed in Chapter 1 (Section 1.1). Historically, para-

phrasing literature has focused on the automatic extraction of paraphrases from various

33
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types of corpora consisting of parallel, non-parallel, and comparable texts (Deléger and

Zweigenbaum, 2009; Barzilay and McKeown, 2001; Brockett and Dolan, 2005). How-

ever, these corpora are limited in size, domain, quality, and language. As such one of

the most successful proposals does not use supervised paraphrasing data but instead

employs bilingual parallel corpora to induce paraphrases based on techniques from

phrase-based SMT (Koehn et al., 2003). As mentioned in Chapter 1 the intuition be-

hind Bannard and Callison-Burch (2005) bilingual pivoting method is, that two English

strings e1 and e2 that translate to the same foreign string f can be assumed to have the

same meaning. They pivot over f to extract 〈e1,e2〉 as a pair of paraphrases. Drawing

inspiration from syntax-based SMT, several subsequent efforts (Callison-Burch, 2008;

Ganitkevitch et al., 2011) extended this technique to syntactic paraphrases leading to

the creation of PPDB (Ganitkevitch et al., 2013; Ganitkevitch and Callison-Burch,

2014), a large-scale paraphrase database containing over a billion paraphrase pairs in

over 20 different languages.

Source Paraphrases

The general commanded his troops The general spoke to his troops X

The soloist commanded attention The soloist spoke to attention ×
She bought 10 stocks in Microsoft She bought 10 shares in Microsoft X

She made stock for the soup She made shares for the soup ×
he looked up the fact he researched the fact X

he looked up at the sky he researched at the sky ×

Table 3.1: Paraphrase examples which highlight the importance of a wider context. We

see how lexical substitution can be appropriate in one context but not in another.

We revisit the bilingual pivoting approach from the perspective of NMT, an ap-

proach to machine translation based purely on neural networks (Kalchbrenner and

Blunsom, 2013; Bahdanau et al., 2015; Sutskever et al., 2014; Luong et al., 2015b;

Vaswani et al., 2017). At its core, NMT uses a deep neural network trained end-to-end

to maximize the conditional probability of a correct translation given a source sentence,

using a bilingual corpus. In this chapter we introduce neural pivoting, an approach

which ports the bilingual pivoting method to NMT and argue that it offers at least three

advantages over conventional methods. Firstly, NMT has been shown to offer much

higher quality translations than SMT. Secondly, our neural paraphrasing model learns

continuous space representations for phrases and sentences (aka embeddings) that can
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be usefully incorporated in downstream tasks such as recognizing textual similarity

and entailment. Thirdly, the proposed model is able to score a pair of paraphrase can-

didates (of arbitrary length) and generate target paraphrases for a given source input.

Due to the architecture of NMT, generation takes advantage of wider context compared

to phrase-based approaches: target paraphrases are predicted based on the meaning of

the source input and all previously-generated target words. Table 3.1 demonstrates the

importance of using context when paraphrasing, where we see how lexical paraphrases

in one context are appropriate, but not in other contexts.

In the remainder of the chapter, we survey existing paraphrasing datasets, introduce

neural pivoting, and experimentally compare it to the phrase-based pivoting approach.

We evaluate the model’s paraphrasing capability both intrinsically in a paraphrase de-

tection task (i.e., decide the degree of semantic similarity between two sentences) and

extrinsically in a generation task. Across tasks and datasets our results show that neural

paraphrases yield superior performance when assessed automatically and by people.

3.2 Background

The literature on paraphrasing is vast with methods varying according to the type of

paraphrase being induced (lexical or structural), the type of data used (e.g., monolin-

gual or parallel corpus), the underlying representation (surface form or syntax trees),

and the acquisition method itself. We restrict ourselves to surveying existing super-

vised sentential paraphrasing corpora, generating paraphrase datasets with machine

translation, and bilingual approaches.

3.2.1 Supervised Datasets

This section provides an overview of publicly available human-generated paraphrase

datasets, with Table 3.3 providing an overview and Table 3.2 showing examples from

these dataset. It should be noted that many of the existing paraphrasing datasets were

created for either paraphrase identification, i.e. predicting if two sentences are para-

phrases, or semantic similarity scoring, i.e. assigning a score on how semantically

related two sentences are. These datasets can be converted into generation datasets by

removing the negative examples.
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Dataset Source Paraphrase

MSRP David Gest has sued his estranged wife

Liza Minelli for %MONEY% million for

beating him when she was drunk.

Liza Minelli’s estranged husband is taking

her to court for %MONEY% million after

saying she threw a lamp at him and beat

him in drunken rages.

MSRP Wynn paid $23.5 million for Renoir’s “In

the Roses (Madame Leon Clapisson)” at a

Sotheby auction on Tuesday

Wynn nabbed Renoir’s “In the Roses

(Madame Leon Clapisson)” for $23.5 on

Tuesday at Sotheby’s

PIT-2015 Ezekiel Ansah wearing 3D glasses wout

the lens

Wait Ezekiel ansah is wearing 3d movie

glasses with the lenses knocked out

PIT-2015 Marriage equality law passed in Rhode Is-

land

Congrats to Rhode Island becoming the

10th state to enact marriage equality

WikiAnswers How big is the biggest mall? most expensive mall in the world?

WikiAnsers How many of india’s population are mus-

lim?

How many populations of muslims in in-

dia?

Quora how to be a good geologist? what should i do to be a great geologist?

Quora why is creativity important? why creativity is important?

Semeval There are dogs in the forest. The dogs are alone in the forest.

Semeval A young person deep in thought. A young man deep in thought.

Semeval Un perro está con un juguete. Un perro tiene un juguete.

Semeval Una dama está cantando Una dama cantando.

MTC At least 12 people were killed in the battle

last week.

At least 12 people lost their lives in last

week’s fighting

MTC (Kuala Lumpur) Lien Hoe is expected to

redeem the rest 65% of the bonds, whose

tatal value is 53,810,000 lingji, at the end

of this year by getting the loan finacing

from banks.

(report from Kuala Lumpur) Lien Hoe ex-

pected that by way of bank loans, it may

redeem the currently remaining 65% or

53,810,000 ringgit of its bonds, before the

end of this year.

Book There was once a Prince who wished to

marry a Princess; but then she must be a

real Princess.

ONCE upon a time there was a prince who

wanted to marry a princess; but she would

have to be a real princess.

Book The head-master made a sign to us to sit

down. Then, turning to the class-master,

he said to him in a low voice–

The headmaster motioned us to be seated,

then, turning to the teacher:

Table 3.2: Examples of paraphrases from existing datasets, highlighting the wide range

in the types of rewrites and the varying quality of the paraphrases across datasets.
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Dataset Size Method Domain Languages

MSRP 4K Annotated News English

PIT-2015 4K Annotated Twitter English

WikiAnswers 2.4M User grouped Questions English

Quora 50K User grouped Questions English

Books 45K Automatic/Translation Fiction English

MTC 6K Translation News English

Semeval English 6K Annotated Mixed English

Semeval Spanish 1K Annotated Mixed Spanish

Semeval Arabic 1K Annotated Mixed Arabic

Table 3.3: Overview of Paraphrasing datasets, including the number of paraphrases

(size), method in which they were collected, the domain, and the languages of the

dataset.

MSR Paraphrase Corpus (MSRP, Dolan and Brockett (2005)) is a binary para-

phrase classification dataset, which contains 6000 human-annotated sentence pairs,

68% of which are paraphrases. It was created by clustering related news articles. A

classifier, using string similarity features, was then used to extract possible paraphrase

pairs from these clusters, which were then hand annotated. As the classifier used string

similarity features many paraphrases have high n-gram overlaps with the source sen-

tence. In addition to being used for paraphrase identification, MSRP has been used as

a paraphrase generation training set (Brad and Rebedea, 2017), and a test set (Roy and

Grangier, 2019).

Twitter Paraphrase Corpus (PIT-2015, Xu et al. (2015a)) is a paraphrase identifi-

cation dataset, which was created from Twitter’s trending topic data. Multiple crowd-

workers annotated pairs of tweets as paraphrases or not. This resulted in a paraphrase

classification dataset containing 18,000 sentence pairs on 400 distinct topics, of which

30% were marked as paraphrases. In addition to being used for paraphrase detection it

has also been used to extract idiomatic phrases (Pershina et al., 2015).

WikiAnswers (WikiAnswers, Fader et al. (2013)) contains questions taken from the

question/answer website WikiAnswers1. To reduce duplicate questions, users grouped

1http://wiki.answers.com/
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related questions together. WikiAnswers was then scraped to extract 2.4M distinct

questions sets. Fader et al. (2013) sampled 100 sentence pairs, and found 55% of

those sampled were valid paraphrases. Due to its size WikiAnswers has been used as

training data for paraphrase generation models (Wang et al., 2019c; Liu et al., 2020; Li

et al., 2019), as well as being used as a paraphrase evaluation set later in this chapter,

semantic passers dataset (Berant and Liang, 2014), question answering dataset (Fader

et al., 2013; Bernhard and Gurevych, 2008), and for paraphrase template extraction

(Dong et al., 2017; Fader et al., 2013).

Quora2 is a question/answer website, which released3 a dataset of potential para-

phrased questions collected from the site used for paraphrase identification. The cor-

pus consists of 400,000 pairs of sentences which have been human annotated with

binary labels, of which 12.5% are paraphrases. Due to Quora’s size, it has been used

extensively for training and evaluation paraphrase generation systems (Huang et al.,

2019; Mao and Lee, 2019; Li et al., 2018; Wang et al., 2019c).

Barzilay and McKeown (2001) (Books) dataset consists of paraphrases extracted

from multiple translations into English of the same fictional novels. Paraphrases are

extracted using automatic sentence alignment, resulting in a corpus of 45000 para-

phrases. 127 paraphrase pairs were sampled and 120 (94.5%) paraphrases were identi-

fied as being correct. This dataset was originally used for creating lexical and syntactic

paraphrase rules; and within this chapter we use it for paraphrase generation evalua-

tion.

The Multiple-Translation Chinese part 1-4 (MTC, Huang et al. (2002, 2003); Ma

(2004, 2006)) contains news stories from different news agencies. These texts are

translated into English by multiple different translation agencies, averaging 4 trans-

lations per source sentence. These multiple translations are aligned, under the as-

sumption that translations of the same source sentence are paraphrases, to create a

paraphrase corpus. As well as being used a multiple reference test set for translation,

this has also been used for paraphrase metric evaluation (Weese et al., 2014) and as an

evaluation sets by (Roy and Grangier, 2019) and us, as we describe in Section 3.4.6.

2http://www.quora.com)
3https://www.kaggle.com/c/quora-question-pairs
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Semantic Textual Similarity (STS, Agirre et al. (2016)) is a semantic text evaluation

task, where sentences are hand-annotated according to how related they are, giving a

score between 1 and 6. In addition to being treated as a regression set, binary labels

are also provided by thresholding the scores. The dataset was collected from a wide

variety of domains and across three languages: English, Spanish, and Arabic, with

the majority of the data being English. The Semantic Textual Similarity task has had

multiple iterations, where each iterations contains the previous iteration data as well

as new data. Later in this chapter we use an earlier iteration as a test set to evaluate

paraphrase classification (Section 3.4.5). Additionally Roy and Grangier (2019) have

also used STS as paraphrase generation test set.

As demonstrated in Table 3.3 there is limited supervised paraphrasing data, where

only large dataset exists for English within the question domain, motivating an alter-

native approach to supervised learning. We propose an approach based on translation,

which has been successfully used to create paraphrases datasets (Books & MTC), how-

ever, these datasets are small (see Table 3.3) as they required human generated trans-

lations. In the next section we demonstrate how human generated translations can be

partially replaced with automatically generated translations and use these translations

to generate paraphrase datasets.

3.2.2 Automatic construction of Paraphrasing Datasets

Since the completion of Mallinson et al. (2017) there have been several papers (Wiet-

ing et al., 2017; Wieting and Gimpel, 2018; Hu et al., 2019) which use a similar NMT

pivoting approach to create paraphrase datasets automatically. These datasets were

created by pairing references from bilingual dataset and a translation of the source

sentence, using NMT. These approaches could by considered a special case of neural

pivoting, where instead of using a NMT model to produce the intermediate foreign

pivot, a human written reference is used instead. However, by using human references

these approaches are not able to generate paraphrases for arbitrary sentences, as a hu-

man translation does not exist for all sentences. Instead they produce training data

by decoding large amounts of bilingual data; a separate paraphrasing encoder-decoder

model is then trained on these decoded and paired sentences, which can then be used

to generate paraphrases for arbitrary sentences. This has the advantage that specialised

neural pivoting models do not need to be used for paraphrasing; instead any model
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can be used. However, decoding large numbers of sentences is computationally ex-

pensive, with each language needing millions of decoded sentences. Neural pivoting

is therefore computationally cheaper, as it does not require decoding datasets for each

language, but instead can use existing neural machine translation models.

Specifically, Wieting et al. (2017); Wieting and Gimpel (2018) used English-Czech

translation data to create PARANMT, a large corpus of 50 million English paraphrases.

This paraphrasing data was then used to train paraphrastic sentence embeddings, achiev-

ing state-of-the-art results on a wide range of semantic similarity tasks. Hu et al. (2019)

proposed PARABANK, an 80 million paraphrase dataset, created using a similar ap-

proach to that of PARANMT. PARABANK, however, applied lexical constraints to the

NMT decoder when generating translations, marking words to be kept or not. These

constraints were used to ensure the paraphrases were sufficiently distinct from the in-

put. Human annotators were asked to judge the paraphrases from PPDB, PARABANK,

and PARANMT and found that 82% of PARABANKS were both grammatical and pre-

served meaning, compared to 73% of PARANMT, and 71% of PPDB.

3.2.3 Bilingual Pivoting

Source Paraphrases

run undertaken, ruled, turned, guaranteed, organised, organized

dog puppy, doggie, doggy, lapdog, watchdog

significant quantity large quantities, large quantity, substantial quantity

keenly most strongly, deeply, strongly, eagerly, very

Table 3.4: Examples of PPDB phrase-based paraphrases.

Paraphrase extraction using bilingual parallel corpora was proposed by Bannard

and Callison-Burch (2005). They first extract bilingual phrase tables and then obtain

English phrase-based paraphrases by pivoting through foreign language phrases. Para-

phrases for a given phrase are ranked using a paraphrase probability as defined by:

P(e2|e1) = ∑
f

P(e2| f )P( f |e1) (3.1)

using the translation model phrase probabilities P( f |e1) and P(e2| f ) where f and e are

the foreign and English strings, respectively. Several follow-up approaches have been

proposed, including representing paraphrases via rules obtained from a synchronous
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context-free grammar (Ganitkevitch et al., 2011; Madnani et al., 2007a) as well as

labelling paraphrases with linguistic annotations such as CCG categories (Callison-

Burch, 2008) and part-of-speech tags (Zhao et al., 2008). Pavlick et al. (2015) released

PPDB 2.0, a dataset containing millions of lexical, phrasal and syntactic paraphrases.

PPDB 2.0 used a supervised classifier to score how semantically related the automat-

ically extracted paraphrases were, and provided additional automatic annotation, such

as style information, of complexity and formality. Example paraphrasing rules from

PPDB can be seen in Table 3.4.

In addition to extracting paraphrases, there has been much work on generating

sentential paraphrases. Zhao et al. (2008); Ganitkevitch et al. (2011); Napoles et al.

(2016) parametrise SMT systems with extracted paraphrase rules. These rules are then

combined with other features, such as language model scores to generate paraphrases.

Sun and Zhou (2012) trained two independent phrase-based SMT models, e→ f and

f → e, which are then jointly fine-tuned for paraphrasing. A paraphrase is created by

translating a source sentence into a single foreign pivot which is then backtranslated.

3.2.4 Neural Machine Translation

As discussion in Chapters 1 and 2, neural approaches have become the dominant ap-

proach to machine translation, as seen on the leader board of WMT 19 (Bojar et al.,

2017). Central to this approach is an encoder-decoder architecture, where the encoder

reads the source sequence into a sequence of continuous-space representations from

which the decoder generates the target sequence one token at a time (Bahdanau et al.,

2015; Sutskever et al., 2014). An attention mechanism (Bahdanau et al., 2015) is used

to generate the region of focus during decoding.

We employed an encoder-decoder as the backbone of our paraphrasing model. In

its simplest form our model exploits a one-to-one NMT architecture: the source En-

glish sentence is translated into k candidate foreign sentences and then back-translated

into English. Inspired by multi-way machine translation, which has shown perfor-

mance gains over single-pair models (Zoph and Knight, 2016; Dong et al., 2015; Firat

et al., 2016a), we also explore an alternative pivoting technique which uses multiple

languages rather than a single one. Our model inherits advantages from NMT such

as a small memory footprint and conceptually easy decoding (implemented as beam

search). Beyond paraphrase generation, we experimentally show that the represen-

tations learned by our model are useful in semantic relatedness tasks. Our model is
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syntax-agnostic: paraphrases are represented on the surface level without knowledge

of any underlying grammar. We capture paraphrases at varying levels of granularity:

words, phrases or sentences, without having to explicitly create a phrase table.

3.3 Neural Pivoting

In this section we present PARANET, our Paraphrasing model based on Neural Ma-

chine Translation. PARANET uses neural machine translation to first translate from

English to a foreign pivot, which is then back-translated to English, producing a para-

phrase. In the following, we briefly overview the basic encoder-decoder NMT frame-

work and then discuss how it can be extended to paraphrasing.

3.3.1 NMT Background

In this chapter we restricted ourselves to Recurrent Neural Network (RNN) based neu-

ral machine translation models. However, we would like to note that our approach is

applicable to all encoder-decoder models NMT models. In the neural encoder-decoder

framework for MT (Sutskever et al., 2014; Bahdanau et al., 2015; Luong et al., 2015b),

the encoder is used to compress the meaning of the source sentence into a sequence

of vectors. The decoder, a conditional language model, generates a target sentence

word-by-word. PARANET uses a bi-directional RNN, where each context vector hi is

the concatenation of the forward and the backward RNN’s hidden states at time i.

The decoder is a conditional RNN language model that given the source sentence

and the previously generated words, produces a probability distribution over the trans-

lation.

P(y|x) =
|y|

∏
j

P(y j|y< j,x) (3.2)

where j is the decoder time step, more details on neural machine translation models

can be found in Chapter 2 (Section 2.1).

3.3.2 Pivoting

Pivoting is often used in machine translation to overcome the shortage of parallel data,

i.e., when there is not a translation path from the source language to the target. In-

stead, pivoting takes advantage of paths through an intermediate language. The idea
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of phrase-based pivoting dates back to at least da Fonseca and Carolino (1855), a

Portuguese-English phrasebook, which is believed to have been created by translating

a French-Portuguese phrasebook into English using only a French–English dictionary

(Monteiro, 2004). More recently Kay (1997) observed that ambiguities in translat-

ing from one language into another may be resolved if a translation into some third

language is available, and has met with success in traditional phrase-based SMT (Wu

and Wang, 2007; Utiyama and Isahara, 2007) and in neural MT systems (Firat et al.,

2016b).

In the case of paraphrasing, there is not a path from English to English. Instead,

a path from English to French to English can be used. In other words, we translate a

source sentence into a pivot language and then translate the pivot back into the source

language. Pivoting using NMT ensures that the entire sentence is considered when

choosing a pivot. The fact that contextual information is considered when translat-

ing allows for a more accurate pivoted sentence. It also places greater emphasis on

capturing the meaning of the sentence, which is a key part of paraphrasing. Unlike

Equation 3.1 where the pivots are a finite set of phrases, within NMT the pivots are en-

tire sentences. As such there is an infinite set of pivots which can not be marginalised

out.

A naive approach is one-to-one back-translation. The source English sentence E1,

is translated into a single French sentence F . Next, F is translated back into English,

giving a probability distribution over English sentences, E2. This translation distribu-

tion acts as the paraphrase distribution P(E2|E1,F):

P(E2|E1,F)≈ P(E2|F) (3.3)

One-to-one back-translating offers an easy way to paraphrase, because existing NMT

systems can be used with no additional training or changes. However, there are several

disadvantages; for example the French sentence F must fully capture the exact meaning

of E1, as E1 and E2 are conditionally independent given F . Since there is rarely a clear

one-to-one mapping between sentences in different languages, information about the

source sentence can be lost, leading to inaccuracies in the paraphrase probabilities.

To avoid this, we propose back-translating through multiple sentences within one and

multiple foreign languages.

Multi-pivoting PARANET uses multiple foreign translations, as this helps to ensure

that multiple aspects (semantic and syntactic) of the source sentence are captured.
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Moreover, multiple pivots provide resilience against a single bad translation, which

would prevent one-to-one back-translation from producing accurate paraphrase prob-

abilities. We propose an approach analogous to that of PPDB (Equation 3.1), where

foreign pivots are marginalised out. However, as there is a non-finite number of for-

eign pivots sentences this becomes intractable. Instead PARANET approximates this

and pivots through the set of K-best translations F = {F1, ...FK} of E1. Using Equation

3.1 and substituting in a NMT model (Equation 3.2), we get:

P(E2|E1)≈
K

∑
i=1

( |E2|

∏
j

P(E2 j|E2< j,Fi))P(Fi|E1)
)

(3.4)

Where k is the number of foreign pivots, if using a single language for a pivot this

would be equal to the first translation models beam size. We note that this requires

that we finish translating each pivot sentence before combining the probability distri-

butions. This is problematic, as the pivots may translate to different outputs.

Figure 3.1: Overview of NMT-based paraphrase generation, as adapted from Dong

et al. (2017). Source NMT (green) translates source sentence x into pivots f1... fK

which are then backtranslated by target NMT (blue) where K decoders jointly predict

tokens at each time step.

Instead, we draw inspiration from the Firat et al. (2016b) late averaging approach,

which averages the output probability of each translation at each time step. Each trans-

lation path individually computes the distribution over the target vocabulary

P(E2 j|E2< j,F1) and P(E2 j|E2< j,F2), which is then averaged at each time step:

P(E2|,F1,F2)≈
|E2|

∏
j

(
λ1P(E2 j|E2< j,F1)+λ2P(E2 j|E2< j,F2)

)
(3.5)
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where λ1 and λ2 are set to 0.5. We use this approach to provide a tokenwise approxi-

mation to Equation 3.4; for each output token we marginalise out the foreign pivots:

P(E2|E1)≈
|E2|

∏
j

( K

∑
i=1

P(Fi|E1)P(E2 j|E2< j,Fi)
)

(3.6)

In this case λ weights are set to the initial translation probabilities P(Fi|E1), thus cap-

turing the model’s confidence in the accuracy of the translation. To ensure a probability

distribution, we normalize the K-best list F , such that the translation probabilities sum

to one. An outline of our approach can be seen in Figure 3.1.

Multi-lingual Pivoting PARANET further expands on the multi pivot approach by

pivoting not only over multiple sentences from one language, but also over multiple

sentences from multiple languages. Multi-lingual pivoting has been recently shown to

improve translation quality (Firat et al., 2016b), especially for low-resource language

pairs. Here, we hypothesize that it will also lead to more accurate paraphrasing.

Multi-lingual pivoting requires a small extension to late-weighted combination. We

illustrate with German as a second language. First, the source sentence is translated

into a K-best list of French F Fr, and a K-best list of German F De. Late-weighted com-

bination is then applied, producing P(E2 j|E2< j,F Fr) and P(E2 j|E2< j,F De). These

two output distributions are averaged, producing a multi-sentence, multi-lingual para-

phrase score:

|y|

∏
j

1
2
( K

∑
i=1

P(E2 j|E2< j,F Fr
i )P(F Fr

i |E1)+

K

∑
i=1

P(E2 j|E2< j,F De
i )P(F De

i |E1)
) (3.7)

This can be trivially generalized to multiple languages. In this chapter we use up

to three.

3.3.3 PARANET Applications

The applications of PARANET are many and varied. We discuss some of these here

and present detailed experimental evidence in Section 3.4.

Detection PARANET can be readily used for paraphrase detection (the task of an-

alyzing two text segments and determining if they have the same meaning), by com-

puting Equation (3.6). In addition, it can identify which linguistic units (sentences,
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phrases, word) are considered paraphrases and to what extent. PARANET’s explanatory

power stems from the attention mechanism inherent in the NMT systems.

In encoder-decoder models, attention is used during each step of decoding to in-

dicate which are the relevant source words. In our case, each word of the paraphrase

attends to words within the pivot sentence and each word in the pivot sentence attends

to words within the source sentence. By summing out the weighted pivot sentence, it

is possible to see the attention from paraphrase to source:

α(E j
2,E

i
1,F ) =

K

∑
i

(
P(E2|E1,Fi) ·

|F |

∑
m
(αF,E2

m, j ·α
E1,F
i,m )

)
(3.8)

where αi,m is the attention weight source token at index i apply to target token at

index m.

Examples are shown in Figure 3.2 where attention has successfully identified the

semantically-equivalent parts of two sentences. It should be noted that recent work

has disputed the notion that attention can be used for interpretability Jain and Wal-

lace (2019); Wiegreffe and Pinter (2019). However, there has also been interest on

increasing the interpretability of attention (Tutek and Šnajder, 2020) .

Generation Furthermore, PARANET can be readily used to perform text generation

(via the NMT decoder) without additional resources or parameter estimation. It is able

to generate paraphrases for words, phrases, and sentences. As PARANET was primar-

ily trained on senential bilingual data it is best suited for generating entire sentences.

However, additional word/phrase level bilingual data could have been trained on.

Paraphrastic Embeddings The successful use of word embeddings in various NLP

tasks has provided further impetus to use paraphrases. Wieting et al. (2015) take the

paraphrases contained in PPDB and embed them into a low-dimensional space using

a RNN similar to Socher et al. (2013). In follow-up work (Wieting et al., 2016), learn

sentence embeddings based on supervision provided by PPDB. In our approach, em-

beddings are learned as part of the model and are available for any-length segments

making use of no additional machinery beyond NMT itself.

Data Augmentation As discussed in Chapter 1 (Section 1.1) paraphrasing has often

been used for data augmentation. Within Dong et al. (2017) PARANET was integrated

into a question answering framework, where multiple paraphrases of a question are

given as input to the model. It was compared against a PPDB based system, where
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How to be a good nurse

What should I study to be a great nurse

Two men sailing in a small boat

couple sailing in a tiny sail boat

The wood has wolves

Wolves live in the forest

Figure 3.2: Paraphrase attention between two sentences. Line thickness indicates the

strength of the attention.

words and phrase in the source sentence were paraphrased using PPDB. Across multi-

ple question-answering datasets PARANET was shown to outperform the PPDB based

approach.

3.4 Experiments

PARANET was evaluated in several ways: (a) we examined whether the paraphrases

learned by our model correlate with human judgments of paraphrase quality; (b) we

assessed PARANET in paraphrase and similarity detection tasks; and (c) in a sentence-

level paraphrase generation task. We first present details on how PARANET and com-

parison models were trained and then discuss our results.

3.4.1 Neural Machine Translation Training

We used Groundhog4 as the implementation of the NMT system for all experiments.

We generally followed the settings and training procedure from previous work (Bah-

danau et al., 2015; Sennrich et al., 2016c). As such, all networks have a hidden layer

size of 1000, and an embedding layer size of 620. During training, we used Adadelta
4http://www.github.com/sebastien-j/LV_groundhog
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(Zeiler, 2012), a minibatch size of 80, and the training set was reshuffled between

epochs. We trained a network for approximately 7 days on a single GPU, then the

embedding layer was fixed and training continued, as suggested in Jean et al. (2015),

for 12 hours. Additionally, the softmax was calculated over a filtered list of candi-

date translations. Following Jean et al. (2015), we set the common vocabulary size as

10000 and 25 uni-gram translations, using a bilingual dictionary based on fast-align

(Dyer et al., 2013).

In our experiments, we used up to six encoder-decoder NMT models (three pairs);

English→French, French→English, English→Czech, Czech→English, English→Ger-

man, German→English. All systems were trained on the available training data from

the WMT15 shared translation task (4.2 million, 15.7 million, and 39 million sen-

tence pairs for EN↔DE, EN↔CS, and EN↔FR, respectively). For EN↔DE and

EN→CS, we also had access to back-translated monolingual training data (Sennrich

et al., 2016c), which we also used in training. The data was pre-processed using stan-

dard pre-processing scripts5 found in MOSES (Koehn et al., 2007). Words were split

into sub-word units, following Sennrich et al. (2016d).

3.4.2 Statistical Machine Translation Training

Throughout our experiments we compare PARANET against a paraphrase model trained

with a commonly used Statistical Machine Translation system (SMT), which we hence-

forth refer to as PARASTAT. Specifically, for each language pair used, an equivalent

IBM Model 4 phrase-based translation model was trained. Additionally, an Opera-

tion Sequence Model (OSM) was included, which has been shown to improve the

performance of SMT systems (Durrani et al., 2011). SMT translation models were

implemented using both GIZA++ (Och and Ney, 2003) and MOSES (Koehn et al.,

2007) and were trained using the same pre-processed bilingual data provided to the

NMT systems. The SMT systems used a KenLM 5-gram language model (Heafield,

2011), trained on the mono-lingual data from WMT 2015. For all languages pairs,

both KenLM and MOSES were trained using the standard settings.

Under the SMT models, paraphrase probabilities were calculated analogously to

Equation (3.6):

P(E2|E1)≈
K

∑
i=1

P(E2|Fi)P(Fi|E1) (3.9)

5including: Truecasing (truecase.perl), and corpus cleaning (clean-corpus-n.perl)
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where P(E2|Fi) and (Fi|E1) are defined by the phrase-based translation model, and F
denotes the K-best translations of E1. This approach differs from PARANET in two

ways: (1) the pivot probabilities are combined at the sentence level rather than at the

token level and (2) the pivot sentences have to be combined outside of the decoder.

This is due to the limitation of SMT, providing no easy ways in which to perform

multi-source translation within the decoder.

Direction F→E E→F

System SMT NMT SOTA SMT NMT SOTA

French 0.241 0.201 0.349 6 0.233 0.271 0.336 7

German 0.207 0.282 0.320 8 0.208 0.248 0.320 9

Czech 0.216 0.197 0.262 10 0.145 0.176 0.188 11

Table 3.5: BLEU scores (WMT 2015 test set) for SMT and NMT, and SOTA models

(foreign to English (F→E) and English to foreign (E→F) directions).

BLEU scores for NMT and SMT systems, and the current state-of-the-art (SOTA)

can be seen in Table 3.5. We note while NMT and SMT achieve comparable scores,

they are below the current state-of-the-art systems. As such we would hope to see

better performance with better machine translation models.

3.4.3 Correlation with Human Judgments

The PPDB 2.0 Human Evaluation dataset is a sample of paraphrase pairs taken from

PPDB which have been human annotated for semantic similarity (Pavlick et al., 2015).

26,455 samples were taken from a range of syntactic categories, resulting in paraphrase

candidates varying from single words to multi-word expressions. Each paraphrase pair

was judged by five people on a 5-point scale. Ratings were then averaged giving each

paraphrase pair a score between not related(1) and a paraphase(5).

Using this dataset we measure the correlation (Spearman ρ) between (length nor-

malized) PARANET probabilities (Equation (3.6)) assigned to paraphrase pairs and

human judgments. Figure 3.3 shows correlation coefficients for all language pairs us-

6Edunov et al. (2018)
7Marie et al. (2015)
8Peter et al. (2017)
9Peter et al. (2017)

10Ding et al. (2016)
11Bojar and Tamchyna (2015)
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Score 5 4 3 2 1

Source about 10 afflicts uncivilized advise thank you

Paraphrase roughly 10 effects dirty guess yes/match?

Source gladness what then drafting preferably should

Paraphrase joy what now preprocessing ever protect

Source 5000.00 redifining telescope just now sweet

Paraphrase 5000 restating binoculars doing what uh

Table 3.6: Example pairs at each quality level, according to the average of 5 ratings

assigned by annotators on MTurk, 5 being the most similar.

ing a single foreign pivot and 200 pivots. Across all language combinations12 multiple

pivots achieve better correlations, with the German, Czech pair performing best with

ρ = 0.53. For comparison, Pavlick et al. (2015) report a correlation of ρ = 0.41 using

Equation (3.1) and PPDB (Ganitkevitch et al., 2013). The latter contains over 100 mil-

lion paraphrases and was constructed over several English-to-foreign parallel corpora

including Europarl v7 (Koehn, 2005) which contains bitexts for the 19 European lan-

guages. The approach of Wieting et al. (2016) as discussed in section 3.2.3 reports a

correlation of ρ = 0.61

Following Pavlick et al. (2015), we next developed a supervised scoring model.

Specifically, we fit a decision tree regressor on the PPDB 2.0 dataset using the imple-

mentation provided in scikit-learn (Pedregosa et al., 2011). To improve accuracy and

control overfitting we built an ensemble of regression trees using the Extra-Trees al-

gorithm (Geurts et al., 2006) which fits a number of randomized decision trees (a.k.a.

extra-trees) on various sub-samples of the dataset. In our experiments 1,000 trees were

trained to minimize mean square error. The regressor was trained with the following

basic features: sentence length, 1-4 gram string similarity, the paraphrase probabil-

ity P(E2|E1), the language model score P(E1), and the cosine distance of the sentence

vectors, as calculated by the encoder. To address the problem of rare sentences receiv-

ing low probabilities regardless of the source sentence, we create an inverse weighting

by P(E2|E2), which approximates how difficult it is to recover E2:

pscore(E2,E1) =
P(E2|E1)

P(E2|E1)+P(E2|E2)
(3.10)

12When considering pivots in multiple languages, we collapse subwords into words, averaging the
translation probability of the subwords. This is due to different language pairs using different subword
vocabularies.



3.4. Experiments 51

Two features reflect the alignment between candidate paraphrases. We built an align-

ment matrix according to Equation (3.8), and used the mean of the diagonal as a fea-

ture. The second feature is the number of unaligned words which we compute by

calculating hard alignments between the two paraphrases.
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Figure 3.3: Correlation of PARANET predictions against human ratings for paraphrase

pairs. Comparison using single and multiple (200) pivots, across language combina-

tions.

Regressors varied with respect to how P(E2|E1) was computed, keeping the string-

based features the same. Equations 3.7 and (3.9) were used to calculate paraphrase

probability for PARANET and PARASTAT, respectively. For both models beam search

(with width set to 100) was used to generate the K-best list. For each language, the

K-best list is the union of the 100-best list of E1 and the 100-best list of E2, giving

a maximum of 200 pivot sentences per language. As set out in Pavlick et al. (2015),

evaluation was done using cross validation: in each fold, we hold out 200 phrases.

Table 3.4 presents results for PARANET and PARASTAT using different languages as

pivots. PARANET outperforms PARASTAT across the board. Furthermore, despite

using fewer features and pivot languages, it obtains a closer correspondence to human

data compared to PPDB 2.0 (Pavlick et al., 2015).

3.4.4 Paraphrase Identification and Similarity

The SemEval-2015 shared task on Paraphrase and Semantic Similarity In Twitter (PIT),

as discussed in Section 3.2.1, uses a training and development set of 17,790 sentence

pairs and a test set of 972 sentence pairs. By design, the dataset contains colloquial
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Model PARASTAT PARANET

fr 0.574 0.700

de 0.638 0.710

cz 0.564 0.713

de,fr 0.566 0.722

de,cz 0.640 0.731

fr,cz 0.569 0.724

fr, cz, de 0.633 0.735

PPDB 2.0 0.713

Table 3.7: Correlation (Spearman ρ) of supervised models against human ratings for

paraphrase pairs. Boldface indicates the best performing model.

Source Paraphrase Score Binary

The Marlins just won 21 in 20 innings

20 INNINGS

The Marlins just beat the Mets 21 in 20

innings

5 X

Apple Launches the all new MacBook

Air

Also a new MacBook Air and Pro an-

nounced

4 X

Sarah Palin is at the game are you

pumped

sarah Palin at the IndyMia game 3 7

New MacBook Air no new MacBook

Pro

MacBook Air is the way to go 2 7

The last rap battle in 8 mile though But why were people watching the heat

play when 8 mile is on

1 7

Table 3.8: Examples of source-target pairs from PIT, with semantic scores and binary

paraphrase labels.

sentences representing informal language usage and sentence pairs which are lexically

similar but semantically dissimilar. The shared task consists of a (binary) paraphrase

identification subtask (i.e., determine whether two sentences are paraphrases) and an

optional semantic similarity task (i.e., determine the similarity between two sentences

on a scale of 1–5, where 5 means completely equivalent and 1 not equivalent).

We trained a decision tree regressor on the PIT-2015 similarity dataset using the

features described previously. Once trained, the decision tree regressor can be readily

applied to the semantic similarity subtask. For the paraphrase detection subtask, we

use the same model and apply a threshold (optimized on the validation set) such that

those pairs that are over this threshold are deemed paraphrases.
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Model
Similarity Detection

PARASTAT PARANET PARASTAT PARANET

fr 0.540 0.569 0.613 0.624

de 0.543 0.571 0.616 0.620

cz 0.547 0.569 0.620 0.622

de, fr 0.543 0.569 0.602 0.622

de, cz 0.540 0.570 0.606 0.615

fr, cz 0.546 0.568 0.600 0.634
fr, cz, de 0.539 0.568 0.596 0.620

random 0.017 0.266

WTMF 0.350 0.536

logistic reg 0.511 0.589

ASOBEK 0.475 0.674

MITRE 0.619 0.667

Table 3.9: Paraphrase detection results (F1) and Semantic similarity results (Pearson)

on the PIT-2015 data set. Boldface indicates the best performing paraphrasing model.

Tables 3.9 present our results on the two subtasks together with previously pub-

lished results. We evaluate system performance on the detection task using F1 (the

harmonic mean of precision and recall). For semantic similarity, system outputs are

compared by Pearson correlation against human scores. The first block in the tables

summarize results for PARANET and PARASTAT using different languages as pivots.

The second block includes three baselines provided by the organizers of the shared

task: a random baseline, a logistic regression baseline with minimal n-gram word over-

lap features; and a model which uses weighted matrix factorization (WTMF) and has

access to dictionary definitions provided in WordNet, OntoNotes, and Wiktionary (Guo

and Diab, 2012). The last two rows show the highest scoring systems: ASOBEK (Eye-

cioglu and Keller, 2015) ranked 1st in the identification subtask and MITRE (Zarrella

et al., 2015) in the similarity subtask. ASOBEK uses knowledge-lean features based

on word and character n-gram overlap, whereas MITRE is a combination of multiple

systems including mixtures of string matching metrics, alignments using tweet-specific

word representations, and recurrent neural networks. Since this work, the state-of-the-

art for detection stands at F1 72.1, as reported in Lan et al. (2017).

As can be seen, PARANET achieves better similarity and detection scores than all
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baselines and PARASTAT, for any combinations of languages. This is particularly im-

pressive as the translation models were trained on very dissimilar data. Compared to

the state of the art, PARANET fares worse; however our model was not particularly op-

timized on the PIT-2015 dataset which was merely used as a testbed for a fair compar-

ison. It is thus reasonable to assume that taking into account more elaborate features

(e.g., based on character embeddings) performance would be improved. The high-

est semantic similarity score is obtained with PARANET trained using German data.

The highest scoring paraphrase detection model was PARANET trained on French and

Czech data. Interestingly, using multiple pivot languages seems to offer small im-

provements in most cases. The languages selected as pivots in our experiments were

somewhat ad-hoc. We expect to get more mileage if these are selected from the same

language family or with more linguistic insight (e.g., morphologically rich vs. poor).

3.4.5 Semantic Textual Similarity

Source Paraphrase Score

A passenger train waiting in a station. A passenger train sits in the station. 5

Whats in Feinstein’s gun bill #tgdn #pjnet Whats in Feinstein’s bill? 4

Mall attackers used ’less is more’ strategy In Kenya, attackers used ’less is more’ strat-

egy

3

ALTHOUGH SATELLITE INTENSITY

ESTIMATES FROM TAFB AND SAB

ARE ONLY T.

SUBJECTIVE DVORAK INTENSITY ES-

TIMATES FROM TAFB AND SAB IN-

CREASED TO KT.

2

exceed or surpass, go beyond, be greater

than something

pass by, over, or under without making con-

tact.

1

Death toll rises in Russia plane crash Death toll rises to 39 in Italy coach crash 0

Table 3.10: STS examples with their corresponding scores.

As discussed in Section 3.2.1 the semantic textual similarity (STS) tasks requires

systems to rate the degree of semantic equivalence between two text snippets. We

present results on the Semeval-2015 English subtask which contains sentences from

a wide range of domains, including newswire headlines, image descriptions, and an-

swers from Q&A websites. The training/test sets consist of 11,250 and 3,000 sentence

pairs, respectively. Sentence pairs are rated on a 1–5 scale, with 5 indicating they are

completely equivalent.

We used the decision tree regressor with the same features described in the pre-

vious section. Again, we experimented with one, two, and three languages as pivots,
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Model PARASTAT PARANET

fr 0.657 0.682

de 0.666 0.678

cz 0.649 0.688

de, fr 0.665 0.684

de, cz 0.662 0.687

fr, cz 0.654 0.690
fr, cz, de 0.658 0.689

Tokencos 0.587

DLS@CU 0.801

Table 3.11: Results on the Semeval-2015 semantic similarity dataset. Boldface indi-

cates the best performing paraphrasing model.

and compared PARANET and PARASTAT directly. Our results are summarized in Ta-

ble 3.11. The third block in the table presents a simple cosine-based baseline provided

by the organizers (Tokencos) and the top-performing system (DLS@CU) which uses

PPDB paraphrases to identify semantically-similar words and word2vec embeddings

trained on approximately 2.8 billion tokens (Sultan et al., 2014).

PARANET outperforms PARASTAT on all languages and language combinations.

Both systems outperform the Semeval baseline but are worse compared to the top

scoring system. We see for PARANET Czech achieves the highest scores; this could be

in part due to Czech non-strict word order, which allows for paraphrases that employ

more movement.

3.4.6 Paraphrase Generation

Finally, we evaluated PARANET (and PARASTAT) in a paraphrase generation task. We

created sentential paraphrases for three (parallel mono-lingual) datasets representative

of different domains and genres: (a) the Multiple-Translation Chinese (MTC) cor-

pus, we sampled 1,000 sentences for validation and testing, respectively (each source

sentence had an average of 4 paraphrases); (b) the Jules Verne’s Twenty Thousand

Leagues Under the Sea novel (Leagues) as taken from the Book corpus, we sampled

500 sentences for validation/testing (each source sentence had one paraphrase); and

(c) the Wikianswers corpus, we sampled 1,000 questions for validation/testing (each
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question has on average 21 paraphrases). More information on these dataset can be

seen in section 2.2.1 and examples can be seen in Table 3.12.

WikiAnswers

Who wrote the Winnie the Pooh books?

Who is the author of winnie the pooh?

What was the name of the authur of winnie the pooh?

Who wrote the series of books for Winnie the poo?

Who wrote the children’s storybook ‘Winnie the Pooh’?

Who is poohs creator?

Leagues
"Electricity!" I exclaimed in some surprise.

"Electricity?" I cried in surprise.

MTC

At least 12 people were killed in the battle last week

At least 12 people lost their lives in last week’s fighting

Last week’s fight took at least 12 lives

The fighting last week killed at least 12

Table 3.12: Example paraphrase sets taken of the test sets.

In order to select the best paraphrase candidate for a given input sentence, PARA-

STAT was optimized on the training set using Minimum Error Training (MERT, Och

and Ney (2003)). MERT integrates automatic evaluation metrics such as BLEU into

the training process to achieve optimal end-to-end performance. Naively optimizing

for BLEU, however, will result in a trivial paraphrasing system heavily biased to-

wards producing identity (not rewriting the source sentence) “paraphrases”. Instead

we use iBLEU (described in Chapter 2 (Section 2.5)), applied to the second SMT

model P(E2|F ), which penalizes paraphrases which are similar to the source sentence

and rewards those close to the target.

Dataset Source PARANET

Wikianswers How many calories in a handful of straw-

berries?

The number of calories in a handful of

strawberries.

Leagues “Faith i should never have believed it,” said

Conseil.

“Faith, I never would have believed”, Con-

seil said.

MTC China expresses strong dissatisfaction over

the Japanese leader’s move this time.

China expresses a strong dissatisfaction

over Japanese leader’s move.

Table 3.13: Example paraphrases produced by PARANET.

PARANET relies on a relatively simple architecture which is trained end-to-end
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with the objective of maximizing the likelihood of the training data. Since evalua-

tion metrics cannot be straightforwardly integrated into this training procedure, we

reranked the k-best paraphrases obtained from PARANET using a simple regression

model which favours sentences which are dissimilar to the source. Specifically, we

trained a decision tree regression model with iBLEU as the target variable using the

same features described in Section 3.4.4. Examples of paraphrases generated by

PARANET are shown in the Appendix A (Section A.1) and in Table 3.13.

System output was assessed automatically using iBLEU with human-written para-

phrases as reference. In addition, we evaluated the generated text by eliciting human

judgments via Amazon Mechanical Turk. We randomly selected 100 source sentences

from each dataset and generated output with PARANET and PARASTAT (using Ger-

man as a pivot). We also included a randomly selected human paraphrase as a gold

standard. Workers (self-reported native English speakers) were asked to rank the three

paraphrases from best to worst (ties were allowed) in order of semantic equivalence

(does the paraphrase convey the same meaning as the source?) and fluency (is the

description written in well-formed English?). Participants were explicitly told to give

high ranks to output demonstrating a fair amount of paraphrasing and low ranks to

trivial paraphrases (e.g., deletion of articles or punctuation). Instructions given to the

workers can be found in Appendix A (Section A.2). We collected 5 responses per input

sentence.

Model PARASTAT PARANET

French 22.6 29.9

German 28.2 29.5

Czech 28.0 29.1

Gold 59.9

Table 3.14: Sentence level iBLEU scores Using plus one smoothing (Lin and Och,

2004), for PARASTAT and PARANET. Additionally we report a Human (Gold) score,

which is calculated by randomly using one of the references as the generated para-

phrasing, and removing this paraphrase from the reference set.

Table 3.14 summarizes our automatic results across the three datasets. We set

α = 0.8 for iBLEU as we experimentally found it offers the best trade-off between

semantic equivalence and dissimilarity. As an upper-bound we also measure iBLEU

amongst the gold paraphrases provided by humans. As the translation models had dif-
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Model Wikianswers Leagues MTC All

PARASTAT 2.09 2.38 2.23 2.26

PARANET 1.86 1.94 1.70 1.83
Humans 2.17 1.81 2.0 2.0

Table 3.15: Mean Rankings given to paraphrases by human participants (a lower score

is better).

ferent vocabularies, in part due to the creation of subwords, we only used one language

as a pivot. Again, we observe that PARANET has a slight advantage over PARASTAT

in terms of iBLEU, however both systems tend to paraphrase less compared to the gold

standard. Table 3.15 shows the mean ranks given to these systems by human subjects.

An Analysis of Variance (ANOVA) revealed a reliable effect of system type. Post-hoc

Tukey tests showed that PARANET is significantly (p < 0.01) better than PARASTAT

across datasets; PARANET is also significantly (p < 0.01) better than the the gold stan-

dard on both MTC and the Wikianswers dataset. We attribute this to the noisy nature

of these two datasets which contain a wealth of paraphrases, a few of which are un-

grammatical, or contain typos or abbreviations leading to low scores among humans.

3.5 Summary

Conclusion Within this chapter we set out to answer the question Can bilingual

data be used as a source of training data for paraphrasing? To answer it we devel-

oped a transfer learning approach, pivoting, which uses bilingual data and NMT to

perform unconstrained paraphrasing. Experimental results across several tasks (sim-

ilarity prediction, paraphrase identification, and paraphrase generation) showed that

NMT pivoting outperforms conventional paraphrasing methods.

Next chapter In the next chapter we expand the NMT pivoting approach, applying

it to sentence compression. We remove the external reranking component from the

model. Instead, we use variable disentanglement to control the output, specifically

the length of the paraphrases. We show, in multiple languages, that by controlling the

output length of a pivoting model we are able to perform sentence compression with

bilingual data.



Chapter 4

Sentence Compression with Neural

Pivoting

This chapter is based on Mallinson et al. (2018) which was published in EMNLP 2018

and answers the following questions:

• Can the output of encoder-decoder paraphrasing models be controlled?

• No supervised data exists for a specific paraphrasing task. Can bilingual data be

used as a source of training data for paraphrasing?

We consider the constrained paraphrasing task, sentence compression. Within this

chapter we add a controlability mechanism to the unconstrained pivoting paraphras-

ing approach of the previous chapter, allowing users to control the output length of

the paraphrase. To do so we train translation models using variable disentanglement,

where we separate the semantics of the sentence from the output length. At test time we

allow the user to specify the target length, producing their ideal compression ratio. The

approach is as follows; the source sentence is translated to a foreign pivot, this pivot is

then translated back into the original language, while controlling for the length, thus

producing a compression. By adding explicit length controls to our model, we also

remove the need for the external reranker of the previous chapter. We further improve

on the work of Chapter 3 by evaluating in multiple languages: English, French, and

German. However, due to the lack of sentence compression data, we created and re-

leased1 test data for these languages. Empirical results showed that a pivoting approach

combined with variable disentanglement outperformed various supervised efforts.

1The dataset can be found at https://github.com/Jmallins/MOSS

59
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4.1 Introduction

Source The firefighters and the townspeople rallied together and continued to fight the fire.

Extractive The firefighters and the townspeople continued to fight the fire.

Abstractive Everyone fought the fire.

Source Some people liked the Titanic and some people didn’t.

Extractive People liked the Titanic and people didn’t.

Abstractive Reviews for Titanic were mixed.

Table 4.1: Examples highlighting the difference between extractive and abstractive sen-

tence compression, extractive approaches can only delete source tokens, whereas ab-

stractive approach can perform any type of rewrite.

Sentence compression aims to produce a summary of a single sentence that re-

tains the most important information while preserving its fluency. As mentioned in

Chapter 1 (Section 1.1) there are many applications for sentence compression. His-

torically, research on sentence compression has focused on a simplification of the task

where compressions are produced exclusively by deleting words from the input text,

known as extractive sentence compression (Knight and Marcu, 2002; Riezler et al.,

2003; Turner and Charniak, 2005; McDonald, 2006; Clarke and Lapata, 2008; Cohn

and Lapata, 2009a), whereas more recently approaches have viewed sentence com-

pression as a more general text rewriting problem, where all edit operations are used,

known as abstractive sentence compression, (Galley and McKeown, 2007; Woodsend

and Lapata, 2010; Cohn and Lapata, 2013). The examples in Table 4.1 show that ab-

stractive approaches offer more flexibility, are more concise and produce more fluent

compressions than extractive compressions.

Irrespective of how the compression task is formulated, much of the earlier work

relies on syntactic information such as parse trees to help determine what to delete

from a sentence. Recently there has been much interest in applying neural network

models to sentence compression (Rush et al., 2015; Filippova et al., 2015; Chopra

et al., 2016; Kikuchi et al., 2016; Zhou et al., 2017; Baziotis et al., 2019). Neural

extractive sentence compression treats the task as a sequence labeling problem, where

each word is marked to either be deleted or kept (Filippova et al., 2015). In contrast

abstractive approaches use an encoder-decoder approach, as described in Chapter 2

(Section 2.2), which avoid the explicit use of syntax, which often require handwritten

rules, and which would need to be constructed on a per-language basis. In this chapter

we focus on encoder-decoder abstractive approaches, as it is not clear how extractive
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approaches would transfer over to other paraphrasing tasks, which require a wide range

of rewriting operations, and not just deletion, as demonstrated in Table 4.2.

Sentence Fusion John trained to be an astronaut for 10 years. John went to the moon.

Extractive John trained to be an astronaut for 10 years went to the moon. 7

Abstractive John trained to be an astronaut for 10 years and went to the moon. X

Simplification John adored Mary.

Extractive John adored Mary. 7

Abstractive John loved Mary. X

Table 4.2: Examples of an extractive approaches failing to be appropriate for the con-

strained paraphrasing tasks, simplification and sentience fusion.

Neural network-based approaches are data-driven, relying on the ability of recur-

rent architectures to learn continuous features without recourse to preprocessing tools

or syntactic information (e.g., part-of-speech tags, parse trees). In order to achieve

good performance they require large amounts of training data, in the region of millions

of long-short sentence pairs2. However, there is a lack of sentence compression data,

particularly for languages other than English.

This chapter addresses the paucity of data for sentence compression models. We

argue that bilingual corpora are a rich source for learning a variety of rewrite rules

across languages. Bilingual data is particularly suited for sentence compression as it

inherently has length variations, for instance the French sentence J’ai fait un voyage

à Paris quand j’étais beaucoup plus jeune could be translated to I went on a trip to

Paris when I was a lot younger or to the shorter translation I took a trip to Paris when

I was much younger. Baker et al. (1993) reported that translated text can be be more

explicit than the original sentence, less ambiguous, syntactically simpler, and avoids

repetitions, all of which can result in length variations between the source and target.

Graham et al. (2019) noted that there exists a length difference between bilingual par-

allel sentences if the sentence appeared was original or if it was the translation. In

addition length variations between different translations of the same source sentence

can be found within Creutz (2018), a dataset which consisted of paraphrases extracted

from bilingual subtitle, as described in Chapter 3 (Section 3.2.1).

Bilingual data and existing neural machine translation (NMT) models (Sutskever

et al. 2014; Bahdanau et al. 2015) can be easily adapted to the compression task

2Rush et al. (2015) use approximately four million training instances and Filippova et al. (2015) two
million.
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through the bilingual pivoting of Chapter 3 coupled with methods which decode the

output sequence to a desired length (e.g., subject to language and genre requirements).

We obtain compressions by translating a source string into a foreign language and then

back-translating it into the source while controlling the translation length using vari-

able disentanglement (Kikuchi et al., 2016). Our model can be trained for any language

as long as a bilingual corpus is available, and can perform arbitrary rewrites. We also

demonstrate that models trained on multilingual data perform well out-of-domain.

Although our approach does not employ compression corpora for training, for eval-

uation purposes, we create MOSS, a new Multilingual Compression dataset for En-

glish, French, and German. MOSS is a parallel corpus containing documents from

the European Parliament Proceedings, TED talks, news commentaries, and the EU

bookshop. Each document is written in English, French, and German, and compressed

by native speakers of the respective language who process a document at a time. We

obtain five compressions per document leading to 2,000 long-short sentence pairs per

language. Like previous related resources (Clarke and Lapata, 2008; Cohn and Lapata,

2013; de Loupy et al., 2010) our corpus is curated manually; however it differs from

Toutanova et al. (2016) in that it contains compressions for individual sentences.

There has been relatively little interest in compressing languages other than En-

glish, perhaps in part due to a lack of training data. A few models have been proposed

for Japanese (Hori and Furui, 2004; Hirao et al., 2009; Harashima and Kurohashi,

2012), including a neural network model (Hasegawa et al., 2017) which repurposes

Filippova and Altun’s data construction method for Japanese. There is a compression

corpus available for French (de Loupy et al., 2010); however, we are not aware of any

modelling work on this language.

Our contributions are three-fold: (1) a novel application of bilingual pivoting to

sentence compression; (2) corroborated by empirical results showing that our model

scales across languages and text genres without additional supervision over and above

what is available in the bilingual parallel data; (3) and the release of a multilingual,

multi-reference compression corpus which can be effectively used to gain insight in

the compression task and facilitate further research in compression modeling.

4.2 Compression Datasets

Within this section, we discuss publicly available sentence compression datasets. Table

4.3 provides an overview of existing datasets and Table 4.4 shows examples from these
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datasets.

Dataset Size Method Domain Type Languages

Ziff-Davis 1K Automatic Products Extractive English

Cohn and Lapata (2013) 1K Manual News Abstractive English

Clarke and Lapata (2008) 2K Human Spoken/News Extractive English

Gigaword 4M Automatic Headlines Abstractive English

Filippova and Altun (2013) 250K Automatic Headlines Extractive English

Toutanova et al. (2016) 26K Human Varied Abstractive English

de Loupy et al. (2010) 8K Human News Extractive French

Table 4.3: Overview of sentence compression datasets, including the number of para-

phrases (size), method in which they were collected, the domain, the type (extractive

or abstractive), and the languages of the dataset.

Cohn and Lapata (2013) collected newspaper articles from the American News Text

corpus and the British National Corpus. Annotators were asked to compress the source

sentences "while preserving the most important information and ensuring the com-

pressed sentences remained grammatical and preserving meaning". Additionally, an-

notators were told to ensure that the resulting (compressed) document was coherent.

Ziff-Davis corpus (Knight and Marcu, 2002) contains 1000 sentences-compression

pairs extracted from news articles on computer products and corresponding abstracts.

Sentences from the abstracts were automatically aligned against sentences in the full

article to produce source-compression pairs. This dataset has previously been used for

training and evaluating sentence compression models (Knight and Marcu, 2002; Cohn

and Lapata, 2009b).

Clarke and Lapata (2008) created two manual compression corpora where sen-

tences were extracted from written (1500 sentences) and spoken (1000 sentences)

sources. Annotators were asked to "delete any words they deemed unnecessary, pro-

vided their deletions, preserved the most important information in the source sentence

and the compressed sentence remained grammatical". Additionally, annotators could

leave a sentence unchanged. This dataset has previously been used for training and

evaluating sentence compression models (Clarke and Lapata, 2008; Cohn and Lapata,

2009b).
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Dataset Source Compression

Ziff-Davis Arborscan is reliable and worked accu-

rately in testing, but it produces very large

dxf files.

Arborscan produces very large dxf

files.

Clarke and Lapata (2008) The aim is to give councils some control

over the future growth of second homes

The aim is to give councils control

over the growth of homes.

Cohn and Lapata (2013) Bad weather dashed hopes of attempts to

halt the flow during what was seen as a nat-

ural lull in the lava’s momentum.

The weather prevented attempts to

stop the lava flow

Gigaword a detained iranian-american academic ac-

cused of acting against national security

has been released from a tehran prison af-

ter a hefty bail was posted, a to p judiciary

official said tuesday.

iranian-american academic held in

tehran released on bail

Gigaword ministers from the european union and its

mediterranean neighbors gathered here un-

der heavy security on monday for an un-

precedented conference on economic and

political cooperation .

european mediterranean ministers

gather for landmark conference by

julie bradford

Filippova and Altun (2013) Country star Sara Evans has married for-

mer University of Alabama quarterback

Jay Barker.

Country star Sara Evans has mar-

ried

Filippova and Altun (2013) Intel would be building car batteries,

expanding its business beyond its core

strength, the company said in a statement

Intel would be building car batteries

Toutanova et al. (2016) Think of all the ways everyone in your

household will benefit from your member-

ship N/A in Audubon.

Imagine how your household will

benefit from your Audubon mem-

bership.

Toutanova et al. (2016) Will the administration live up to its envi-

ronmental promises? Can we save the last

of our ancient forests from the chainsaw?

Can the administration keep its

promises? Can we save the last of

our forests from loss?

de Loupy et al. (2010) Les banques françaises n’ont pas publié

de chiffres précis sur leur exposition à

Lehman Brothers mais ont diffusé des mes-

sages au marché laissant entendre claire-

ment que celle-ci était limitée et bénéfici-

ait, pour ce qui est du risque de contrepartie

sur des transactions de marché, de sûretés

sous forme de collatéral.

Les banques françaises n’ont pas

publié de chiffres sur leur exposi-

tion à Lehman Brothers mais ont

diffusé des messages laissant en-

tendre que celle-ci était limitée et

bénéficiait de sûretés.

Table 4.4: Examples from sentence compression datasets.
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Gigaword (Rush et al., 2015) Since large scale compression datasets do not occur

naturally, they must be somehow approximated. Rush et al. (2015) pair headlines with

the first sentence of a news article, under the assumption that the headline will be

shorter, as headlines-first sentence pairs have been shown to be semantically similar

(Dorr et al., 2003). Using the Annotated English Gigaword corpus (Napoles et al.,

2011), they create 4 million sentence-compression pairs. Gigaword has been used ex-

tensively for the training and evaluation of sentence compression systems (See et al.,

2017; Paulus et al., 2018; Kouris et al., 2019). Although large, headlines are syntacti-

cally quite different from normal sentences. For example, they may not have a main

verb, they may not contains determiners or not appear as full sentences, limiting their

use as a general purpose simplification system (Filippova and Altun, 2013).

Whilst this approach could be used to construct sentence compression datasets for

many languages, the training corpus construction process must be repeated and recon-

figured for new languages and domains (e.g., many headline-first sentence pairs are

spurious and need to be filtered using language and domain specific heuristics).

Filippova and Altun (2013) Similarly to Gigaword, Filippova and Altun (2013) ex-

tract first sentences and headlines. However, they syntactically transform the head-

line ensuring it is extractive and a more natural sentence. They sampled sentence-

compression pairs from the dataset, and found them to be grammatical and meaning-

preserving. This dataset has been used for training and evaluating sentence compres-

sion models (Cífka et al., 2018; Filippova and Altun, 2013). This approach has also

been adapted for Japanese (Hasegawa et al., 2017), however the resulting dataset has

not been publicly released.

Toutanova et al. (2016) crowdsourced a large compression corpus which contains

manual compressions for single and multiple sentences (26,000 source-compression

pairs). Source sentences were taken from four domains: Newswire, Letters, Journal,

and Non-fiction. The sentences were first compressed to a minimum reduction of 25%

by five annotators, producing five compressions. A separate set of annotators were

then used to remove bad compressions. This dataset has been used for both evaluation

and training of sentence compression models (Toutanova et al., 2016; Mallinson et al.,

2020b). Toutanova et al. (2016) also used this dataset to correlate sentence compres-

sion evaluation metrics and human judgements.
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de Loupy et al. (2010) created a manual sentence compression dataset for French.

News articles from 20 topics were compressed sentence-by-sentence by four annota-

tors. Annotators could only delete words. As far as we are aware this corpus has not

been used for any sentence compression tasks.

From Table 4.3, we note that the only large scale sentence compression datasets are

automatically constructed for headline-first sentence pairs and only exist in English,

motivating the need for alternative approaches to supervised learning.

4.3 Neural Pivot Compression

In our pivot-based sentence compression model an input sequence is first translated

into a foreign language, and then back into the source language. We use the neural

pivoting approach of Chapter 3. However, unlike Chapter 3, we use variable disen-

tanglement to parameterize our translation models with a length feature, which allows

us to produce compressed output. In the next section we define two variants, either

performing compression in one step or alternatively in two steps which affords more

flexibility.

4.3.1 NMT Background

We now briefly describe the relevant parts of an encoder-decoder model. For a more

detailed description of RNN encoder-decoder models we refer the reader to Chapter

2 (Section 2.2). An encoder takes in a source x = (x1, ...,xTx) of length Tx and the

decoder generates a target sequence y = (y1, ...,yTy) of length Ty. Let hi be the hidden

state of the source symbol at position i, obtained by concatenating the forward and

backward encoder RNN hidden states, hi = [
−→
hi ;
←−
hi ]. We deviate from previous work

(Bahdanau et al., 2015; Sutskever et al., 2014) in that we initialize the decoder (s0)

with the average of the hidden states:

s0 = tanh(Winit
∑

Tx
i=1 hi

Tx
) (4.1)

where Winit is a learnt parameter. Our decoder is a conditional recurrent neural network,

specifically a Gated Recurrent Unit (GRU, (Cho et al., 2014)).
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4.3.2 Length Control

To be able to produce compressed sentences, we use variable disentanglement to sep-

arate the semantics of the source sentence and the length of the target sentence. The

model is parameterized with a length vector which informs the model of the target

output length. Our approach is similar to the LenInit model of Kikuchi et al. (2016),

who also parameterize a model with length information, using a scaling function, as

we will explain later. However we differ from Kikuchi et al. (2016) in two respects, (1)

we use a GRU instead of an LSTM and (2) we apply this technique to bilingual data,

not sentence compression data. The hidden state of the decoder consists of the average

of the encoder’s hidden states but also a length vector LV , a learnt parameter, which is

scaled by the desired target length Ty′ . We therefore rewrite Equation (4.1) as follows:

s0 = tanh
(

Winit

[
∑

Tx
i=1 hi

Tx
;LV ·T ′y

])
(4.2)

We now define our NMT model as:

P(y|x,T ′y ) =
Ty

∏
j

P(y j|y< j,x,T ′y ) (4.3)

During training, the target length is set to T ′y = Ty, i.e. the model is given the true

output length, which We consider this a form of soft variable disentanglement.

At test time, where we do not know the gold target length, the target length gen-

erally varies according to the domain, genre, and language at hand. We determine the

target length experimentally based on a small validation set.

4.3.3 Pivoting

Chapter 3 showed how pivoting could successfully be used to perform unconstrained

paraphrasing, where we defined the probability of generating a paraphrase E2 from E1

through a k-best list of intermediate pivots F :

P(E2|E1)≈
TE2

∏
j

( K

∑
i=1

P(Fi|E1)P(E2 j|E2< j,Fi)
)

(4.4)

To ensure the model produces compressed output, we extend the pivoting approach

in two ways, dual step and single step compression, a compairson can be seen in Figure

4.1. In single step compression, one of the translation models is parameterized with



68 Chapter 4. Sentence Compression with Neural Pivoting

Single step compression.

Many airports were forced to close Saturday evening.

Viele Flughäfen mussten am Samstagabend schließen.

Many airports had to close.

encoder-decoder

encoder-decoder

Dual step compression.

Many airports were forced to close Saturday evening.

Viele Flughäfen mussten schließen.

Many airports had to close.

encoder-decoder

encoder-decoder

Figure 4.1: Single and dual step compression.

length information:

P(E2|E1,T ′E2
)≈

TE2

∏
j

( K

∑
i=1

P(Fi|E1)P(E2 j|E2< j,T
′

E2
,Fi)

)
(4.5)

In this approach we parameterize the final translation model with length informa-

tion. Whilst we could have parameterized the first model, this would only allow us

to control the intermediate pivot translation, which would have no guarantees on the

final output. In dual-step compression, we parameterize both translation models with

length information:

P(E2|E1,T ′E2
,T ′F )≈

TE2

∏
j

( K

∑
i=1

P(Fi|E1,T ′F )P(E2 j|y< j,T ′E2
,Fi)

)
(4.6)

We use the heuristic below to set the length of the intermediate translation:

T ′F = T ′E2
+α(TE1−T ′E2

) (4.7)

where TE1 is the length of E1 and a high value for α results in the majority of the

compression happening in the first translation operation. The α value is determined

experimentally based on a small validation set.
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Figure 4.2: Histograms of output lengths at three compression rates (CR) compared to

a vanilla encoder-decoder system which does not manipulate output length. German is

used as pivot for English, and English as pivot for French and German.

In Figure 4.2 we illustrate how the pivot-based model sketched above can success-

fully control the output of the generated compressions. We show the output of a single-

step compression model on three languages initialized with varying compression rates,

which refers to the percentage of words retained from the source sentence in the com-

pression. (See Section 4.5 for details on how the models were trained and tested). The

compression rate (CR) is used to determine the length parameter of Equation (4.3):

T ′E2
= TE1 ·CR (4.8)

Figure 4.1 shows how the output length varies compared to a vanilla encoder-
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decoder system which uses pivoting to backtranslate the source language as explained

in Chapter 3. We can see that the majority of sentences are generated with length close

to the desired compression rate. However, we found that dual-compression performs

better when the system is expected to drastically compress the source sentence (e.g., in

a headline generation task). Imposing a high compression ratio from the start tends to

produce unintelligible text. The model attempts to reduce the length of the source at all

costs, even at the expense of being semantically faithful to the input. Performing two

moderate compressions in succession reduces both length and content conservatively

and as a result produces more meaningful text.

4.4 The MOSS Dataset

For evaluation purposes, we created a multilingual sentence compression corpus in

English, German, and French. The corpus was collated from existing document and

sentence aligned multilingual datasets which vary both in terms of topic and genre. We

sampled five documents each from:

1. Europarl, the European Parliament Proceedings Parallel Corpus (Koehn, 2005),

has been used extensively in machine translation research. It contains the min-

utes of the European parliament and is a spoken corpus of formulaic nature;

speakers take part in debating various issues concerning EU policy (e.g., taxa-

tion, environment).

2. The TED parallel Corpus (Cettolo et al., 2012) contains transcripts in multiple

languages of short talks devoted to "spreading powerful ideas on a variety of

topics ranging from science to business and global issues".

3. The EU bookshop corpus (Skadin, š et al., 2014) contains publications from Eu-

ropean institutions covering a variety of topics such as refugees, gender equality,

and travel.

4. The News Commentary Parallel Corpus contains articles downloaded from Project

Syndicate, an international media organization that publishes commentary on

global topics (e.g., economics, world affairs).

We obtained compressions using the Crowdflower platform3. Crowdworkers were

given instructions that explained the task and defined sentence compression with the

3Now known as Appen http://www.appen.com
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English French German

On the very day that the

earthquake struck, the

European Council asked the

High Representative and the

Commission to mobilise all

appropriate assistance.

Le jour même du tremblement

de terre, le Conseil européen a

demandé à la haute

représentante et à la

Commission de mobiliser toute

l’aide appropriée.

Am gleichen Tag, an dem das

Erdbeben ausbrach, ersuchte

der Europäische Rat die Hohe

Vertreterin und die Kommis-

sion um die Mobilisierung aller

angemessenen Hilfe.

Assistance was mobilized on

the very day of the earthquake.

Le Conseil européen a

demandé à la haute

représentante et à la

Commission de mobiliser

l’aide.

Europa erbrachte Hilfe noch

am selben Tag.

We’re at a tipping point in

human history, a species poised

between gaining the stars and

losing the planet we call home.

L’histoire humaine est à un

tournant. Notre espèce hésite à

toucher les étoiles ou à perdre

la planète qui est la sienne.

Wir stehen vor einem his-

torischen Wendepunkt: zwis-

chen dem Griff nach den Ster-

nen und dem Verlust unseres

Heimatplaneten.

We’re at tipping point in human

history, poised between gaining

the stars and losing the Earth.

L’humanité est à un tourt.

Notre espèce a envie des étoiles

ou à perdre sa planète.

Wir sind vor einem historischen

Wendepunkt: zwischen dem

Griff nach Sternen und Verlust

unseres Planeten.

Surveys undertaken by the

World Bank in developing

countries show that when poor

people are asked to name the

three most important concerns

they face good health is always

mentioned.

Les enquêtes menées par la

Banque mondiale dans les pays

en développement montrent

que, quand on demande aux

populations pauvres de

nommer les trois défis les plus

importants qu’ils rencontrent,

leur “bonne santé” fait toujours

partie de cette liste.

Umfragen der Weltbank in

Entwicklungsländern zeigen,

wenn man Arme nach den drei

wichtigsten Anliegen fragt,

die sie beschäftigen, wird

“Gesundheit” immer genannt.

World Bank surveys in

developing countries show

poor people always name good

health as an important

concern.

Quand on demande aux

populations pauvres de

nommer les trois défis les plus

importants qu’ils rencontrent,

leur “bonne santé” fait

toujours partie de la liste.

Umfragen in Entwicklungslän-

dern zeigen, dass bei Armen das

wichtigste Anliegen Gesundheit

ist.

Table 4.5: Examples of compressions from the MOSS corpus. Sentences shown (in

order of appearance) from Europarl, TED, and News Commentary corpora.
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aid of examples. They were asked to compress while preserving the most important

information, ensuring the sentences remained grammatical and meaning preserving.

Annotators were encouraged to use any rewriting operations that seemed appropriate,

e.g., to delete words, add new words, substitute them, or reorder them. Annotation pro-

ceeded on a document-by-document basis, line-by-line. Crowdworkers compressed

the first twenty lines of each document and we elicited five compressions per docu-

ment. Example compressions are shown in Table 4.5.

English SL TL CR TER Ins Del Sub Shft

EUPar 27.29 17.48 0.64 0.45 0.11 10.66 1.72 0.45

TED 10.64 8.12 0.76 0.34 0.02 2.57 1.02 0.15

News 19.17 14.22 0.74 0.38 0.14 5.39 1.91 0.43

Books 20.52 16.12 0.78 0.32 0.11 4.50 1.54 0.38

All 19.41 13.99 0.73 0.37 0.10 5.78 1.55 0.35

French SL TL CR TER Ins Del Sub Shft

EUPar 29.40 23.48 0.79 0.43 0.83 7.04 2.90 0.38

TED 6.16 5.11 0.83 0.44 0.03 1.35 1.33 0.04

News 27.52 21.95 0.79 0.37 0.14 6.37 3.06 0.50

Books 22.32 18.48 0.83 0.36 0.52 4.21 1.79 0.20

All 21.35 17.26 0.81 0.40 0.38 4.74 2.27 0.28

German SL TL CR TER Ins Del Sub Shft

EUPar 24.53 16.87 0.69 0.38 0.10 8.70 1.14 0.18

TED 5.36 4.55 0.85 0.24 0.02 0.76 0.53 0.10

News 23.48 16.49 0.70 0.45 0.13 8.39 2.15 0.47

Books 19.83 14.97 0.75 0.50 0.52 5.66 2.89 0.34

All 18.30 13.22 0.75 0.39 0.19 5.88 1.68 0.27

Table 4.6: MOSS statistics across corpora and languages: length of source (SL)

and target sentence (TL), compression rate (CR), TER scores, and the average (per

sequence) number of insertions (Ins), deletions (Del), substitutions (Sub), and shifts

(Shft).

Table 4.6 presents various statistics on our corpus. Europarl contains the longest
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sentences across languages (see column SL), TED contains the shortest sentences,

while the other two corpora are somewhere in between. We also observe that crowd-

workers compress the least when it comes to TED (see column CR), which is not

surprising given the brevity of the utterances. Overall, French speakers seem more

conservative when shortening sentences compared to English and German. In general,

compression rates are genre-dependent; they range from 0.64 (for English Europarl) to

0.85 (for German TED). We also examined the degree to which crowdworkers para-

phrase the source sentence using Translation Edit Rate (TER; Snover et al., 2006), a

measure commonly used to automatically evaluate the quality of machine translation

output, where a higher score means the output is more different, further described in

Chapter 2 (Section 2.2). We used TER to compute the (average) number of edits re-

quired to change a long sentence to shorter output. We also report the number of edits

by type, i.e., the number of insertions, substitutions, deletions, and shifts needed (on

average) to convert long to short sentences. We observe that crowdworkers perform

a fair amount of rewriting across corpora and languages. The most frequent rewrite

operations are deletions followed by substitutions, shifts, and insertions.

4.5 Experimental Setup

Neural Machine Translation Training Nematus4 (Sennrich et al., 2017) was used as

the machine translation system for all our experiments. We generally used the default

settings and training procedures as specified within Nematus. All networks have a

hidden layer size of 1,000, and an embedding layer size of 512. In addition, layer nor-

malization (Ba et al., 2016) was used. During training we used ADAM (Kingma and

Ba, 2015), a minibatch size of 80, and the training set was reshuffled between epochs.

We also employed early stopping using BLEU on their respective WMT validation set.

We used up to four encoder-decoder NMT models in our experiments. German train-

ing/test data was taken from the WMT16 shared task and French from the WMT14

shared task. The training data was 4.2 million and 39 million sentence pairs for en-de,

and en-fr, respectively. We also used back-translated monolingual training data, from

the news domain, (Sennrich et al., 2016c) in training for the German systems. BLEU

4The Theano branch was used.
5(Zhang et al., 2019)
6https://www.deepl.com/press.html
7(Sennrich et al., 2016b)
8(Macháček and Bojar, 2013)
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Languages US SOTA

English→ French 27.03 40.58 5

French→ English 29.14 45.90 6

English→ German 29.34 34.20 7

German→ English 31.19 40.20 8

Table 4.7: BLEU translation scores for our pivot based models (US) and the current

state-of-the-art (SOTA).

scores9 on the respective WMT test sets for our models and the current state-of-the-art

can be seen in Table 4.7. The data was pre-processed using standard scripts found in

MOSES (Koehn et al., 2007). Rare words were split into sub-word units, using byte

pair encoding (BPE; Sennrich et al. 2016d). The BPE operations are shared between

language directions.

We experimented with various model variants using one or multiple pivots. The

compression rate (see Equation (4.3)) was tuned experimentally on the validation set

which consisted of one document from each domain (20 source sentences; 100

compression-pairs). Compression rates varied from 0.55 to 0.85 and were broadly

comparable to those shown in Table 4.6.

Comparison Systems We compared our model against a GRU sequence-to-sequence

attention-based model (seq2seq). This model was trained on a monolingual dataset

extracted from the Annotated English Gigaword corpus (Napoles et al., 2011), as de-

scribed in Section 4.2. The dataset consists of approximately 4 million pairs of the

first sentence from each source document and its headline. We also trained LenInit

(Kikuchi et al., 2016) on the same corpus which is conceptually similar to sequence-

to-sequence model but additionally controls the output length using a length embed-

ding vector (as described in Section 4.3.2).10 Unfortunately, we could not train these

models for French or German, since there are no monolingual sentence compression

datasets available at a similar scale.

An obvious workaround is to translate Gigaword into French and German and then

train compression models on the translated data, where source and target sentences are

independently translated. As the quality of the translation is relatively poor, we also

9BLEU scores were calculated using mteval-v13a.pl.
10We used our own implementation of LenInit which on DUC-2004 obtained ROUGE scores similar

to those published in Kikuchi et al. (2016).
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propose a pivot-based method, where at test time we translated German or French into

English, compressed it with seq2seq and LenInit trained on the Gigaword corpus, and

then translated the compressions back to French or German. As such the probability

of the compression is:

P(F2|F1)≈ P(F2|E ′)P(E ′|E)P(E|F1) (4.9)

where P(E|F1) is the translation probability from foreign sentence (F) into English

(E), P(E ′|E) is the probability of generating the compression (E ′) and P(F2|E ′) is the

translation probability for translating the compression back into the original language.

For simplicity, instead of using multiple pivots, we used a single translation and a

single compression.

Finally, we include a prefix (Pfix) baseline which does not perform any rewriting

but simply truncates the source sentence so that it matches the compression ratio of the

validation set.

4.6 Results

RS-R D2-R R2-F1

Pfix 45.38 47.57 33.67

seq2seq 18.29 23.55 15.60

LenInit 17.90 19.64 11.18

SPL ,de 34.60 37.97 22.67
SPL , f r 27.42 32.34 19.29

MPL ,de 28.71 34.70 19.06

MPL , f r 20.74 27.50 13.89

Gold 76.60 71.68 42.89

English (a)

RS-R D2-R R2-F1 RS-R D2-R R2-F1

Pfix 60.33 62.44 53.37 56.28 50.78 45.84

seq2seq 13.84 18.00 9.74 5.72 12.95 5.21

seq2seqen 16.39 22.08 13.17 9.43 14.78 6.79

LenInit 9.91 14.52 8.08 4.91 11.77 2.87

LenIniten 20.08 24.41 13.06 13.19 18.67 7.65

SPL ,en 43.38 46.17 35.07 38.19 38.54 31.15
MPL ,en 31.55 37.88 26.59 23.62 29.13 17.36

Gold 74.42 80.00 52.13 76.01 77.48 48.36

French (b) German (c)

Table 4.8: Automatic evaluation on MOSS; S/MP: single/multiple pivot models; L :

length parameter; pivot languages: English (en), French (fr), German (de); seq2seq and

LenInit (Kikuchi et al., 2016) are sequence-to-sequence models trained on Gigaword;

Gold is inter-annotator agreement.

MOSS Evaluation We assessed model performance using three automatic metrics

which represent different aspects of the compression task and have been found to cor-
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relate well with human judgments (Toutanova et al., 2016; Clarke and Lapata, 2006).

These include a recall metric based on skip bi-grams, any pair of words in a sequence

allowing for gaps of size four11 (RS-R); a recall metric based on bi-grams of depen-

dency tree triples (D2-R); and bi-gram ROUGE (R2-F1). We used the Stanford neural

network parser (Chen and Manning, 2014) to obtain dependency triples. RS-R and

D2-R have been shown to strongly correlate with combined grammar and meaning

human judgements, and meaning human judgements (Toutanova et al., 2016). R2-

F1 correlates strongly with grammar human judgements. More information on these

evaluation metrics can be seen in Chapter 2 (Section 2.3).

Table 4.8(a) reports results on English with a model which controls the output

length (L) and uses either a single pivot (SP; K = 1) or multiple pivots (MP; K = 10).

We experimented with French (fr) or German (de) as pivot languages. All pivot-based

models perform compression in a single step (see Section 4.3.3). As can be seen,

models which use a single pivot are better than those using multiple ones (German is

better than French; see SPde vs SP f r). We found that the use of multiple pivots resulted

in more accurate semantics at the cost of compression.

Overall, pivot-based models outperform seq2seq and LenInit. This is perhaps to be

expected since these models are tested on out-of-domain data with different vocabu-

lary and writing conventions; MOSS does not contain any newspaper articles. Unfor-

tunately, it is not possible to train seq2seq and LenInt on in-domain data as compres-

sion data only exists for the headlines-first sentences pairs. As an upper bound, we

also report how well humans agree with each other, treating one (randomly selected)

reference as system output and computing how it agrees with the rest (row Gold in

Table 4.8). All models lag significantly behind human performance on this task.

Tables 4.8(b) and 4.8(c) report results on French and German, respectively. For

these languages, we obtained best results with English as pivot, using a single-step

compression model. Seq2seq and LenInit perform poorly when trained directly on

translations of Gigaword into French and German; their performance improves consid-

erably when they are trained on Gigaword and used to compress English translations of

French or German (seq2seqen, LenIniten). Again, we observe that our models (SPL ,en,

MPL ,en) outperform the comparison systems across all metrics and that using a single

pivot yields better compressions. Example compressions are given in Table 4.9 where

we show output produced by seq2seq and SP for each language (see the Appendix B.1

for more examples). Finally, notice that automatic scores for the prefix baseline across

11We add a begin-of-sentence marker at the start of the candidate and reference sentences.
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languages are misleadingly high, since it simply repeats the source sentence up to a

fixed length without performing any rewriting.

English French German

SEQ2SEQ Europe urged to help

quake victims.

Le Conseil Européen de-

mande une aide pour les

victimes du tremblement

de terre.

Europäischer Rat sucht

Hilfen für Quiz-Opfer.

SP The European Coun-

cil called on the High

Representative and the

Commission to mobilise

all appropriate assistance.

Le Conseil Européen

a demandé au Haut

Représentant et à la

Commission de mobiliser

l’assistance.

Am selben Tag forderte

der Europäische Rat die

Hohe Vertreterin und die

Kommission auf, jede

Hilfe.

SEQ2SEQ Advance for Sunday July

a new look at the world.

Un tournant pour le tour-

nant.

Die Stars der Stars und die

Stars.

SP We are at a turning point

in human history and los-

ing the planet we call

home.

L’histoire de l’humanité

est à la croisée des

chemins et de l’histoire.

Zwischen dem Griff der

Sterne und dem Verlust

unseres Planeten stehen

wir vor.

SEQ2SEQ Poor people ask to name

the three most important

concerns.

Les enquêtes de la

Banque mondiale révè-

lent que la santé fait

toujours partie de la liste.

Weltbank-Umfragen

zeigen arme Menschen in

Entwicklungsländern.

SP Polls conducted by the

World Bank show that

when poor people are

asked to mention the three

main concerns.

Les enquêtes menées

par la Banque mondi-

ale dans les pays en

développement montrent

que, lorsqu’on demande

aux pauvres de nommer

les trois plus grands éfis.

Wenn man die Armen

nach den drei Hauptan-

liegen fragt, werden sie

gefordert.

Table 4.9: System output for the example source sentences in Table 4.5.

We also elicited human judgments through the Crowdflower platform. We asked

crowdworkers to rate the grammaticality of the target compressions and whether they

preserved the most important information from the source. For both questions, they

used a five-point rating scale where a high number indicates better performance. Full

instructions can be found in Appendix B (Section B.2). We randomly selected 25 sen-
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Models
English French German

Imp Gram Avg Imp Gram Avg Imp Gram Avg

Pfix 2.72 2.98 2.85 2.73 2.89 2.80 3.17 2.96 3.06

LenInit 2.51 3.0 2.75 1.82 2.62 2.22 2.10 3.25 2.67

SPL 3.27 3.69 3.48 3.48 3.60 3.54 3.30 3.87 3.59
Ref 3.47 3.80 3.63 4.05 4.14 4.10 3.97 4.26 4.10

Table 4.10: Mean ratings elicited by humans on MOSS; Avg is the average rating of

grammaticality and importance.

tences from each corpus from the test portion of MOSS, i.e., 100 long-short sentence

pairs per language. We compared compressions generated by our model (SPL ), with

seq2seq models for the three languages, the prefix baseline, and (randomly selected)

gold-standard reference (Ref) compressions from MOSS. All systems used the length

parameter to allow comparisons with approximately the same compression rates. We

collected five ratings per compression. Our results are summarized in Table 4.10. We

show mean ratings for grammaticality (Gram), importance (Imp) and their combina-

tion (column Avg). Across languages our model (SPL) significantly (p < 0.05) outper-

forms comparison systems (Pfix, seq2seq) on both dimensions of grammaticality and

importance (significance tests were performed using a student t-test). All systems are

significantly worse (p < 0.05) than the human reference compressions.

SL TL CR TER Ins Del Sub Shft

English 19.41 12.31 0.63 0.65 0.10 6.68 2.14 0.44

French 21.35 14.98 0.70 0.67 0.29 5.71 3.36 0.61

German 18.30 12.51 0.68 0.67 0.16 6.38 2.94 0.50

Table 4.11: Statistics of model output (SPL ) on MOSS (aggregated across domains):

length of source (SL) and target (TL), compression rate (CR), TER scores, and the

average number of insertions (Ins), deletions (Del), substitutions (Sub), and shifts (Shft).

Finally, in Table 4.11 we analyze the output of our best model (SPL ) using the same

statistics we applied to the human compressions (see Table 4.6). As can be seen, the

model generally compresses more aggressively and applies more edits than the crowd-

workers (both compression rates and TER scores are higher for all three languages).

Although the rate of insertions and deletions is similar to humans, substitutions and
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shifts happen to a greater extent for our model, indicating that it performs a good

amount of paraphrasing.

DUC-2004 Evaluation Besides MOSS, we evaluated our model on the benchmark

DUC-2004 task-1 dataset. In this task, the aim is to create a very short summary

(75 bytes) for a document. The evaluation set consists of 500 source documents (from

the New York Times and Associated Press Wire services) each paired with four human-

written (reference) summaries. We follow previous work (Rush et al., 2015; Chopra

et al., 2016) in compressing the first sentence of the document and presenting this as

the summary. To make the evaluation unbiased to length, the output of all systems is

cut off after 75-characters and no bonus is given for shorter summaries.

Models RS-R D2-R R2-F1 R1-R R2-R RL-R

Pfix 15.25 15.59 5.38 20.42 5.86 18.07

SPL ,de 12.93 13.89 4.97 20.70 5.35 18.35
SPL , f r 12.06 12.18 4.42 19.77 4.75 17.40

MPL , f r 10.38 11.85 3.70 18.67 4.03 16.20

MPL ,de 11.06 13.26 4.30 19.10 4.69 16.84

Gold 16.41 18.12 7.72 26.95 7.72 22.79

seq2seq 25.03 8.40 22.35

ABS Rush et al. (2015) 26.55 7.06 22.05

ABS+ Rush et al. (2015) 28.18 8.49 23.81

RAS Chopra et al. (2016) 28.97 8.26 24.06

LenInit12 Kikuchi et al. (2016) 25.87 8.27 23.24

LenEmb Kikuchi et al. (2016) 26.73 8.40 23.88

Table 4.12: DUC-2004 results (75 char length cap); results for comparison systems are

taken from their respective papers.

Our results are shown in Table 4.12. To compare with existing methods, we

also report ROUGE (Lin, 2004b) unigram and bigram overlap (Lin, 2004b) and the

longest common subsequence (ROUGE-L)13. We employed a dual-step compression

model (see Section 4.3) because preliminary experiments showed that it was supe-

rior to single-stage variants. We compared single and multiple pivot models against

12Our LenInit implementation obtains R1-R 29.26, R2-R 9.56, and RL-R 25.70
13We used ROUGE version 1.5.5 with the original DUC-2004 ROUGE parameters.
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Source King Norodom Sihanouk has declined requests to chair a summit of Cambodia’s top

political leaders, saying the meeting would not bring any progress in deadlocked

negotiations to form a government.

SPL ,de King Norodom Sihanouk has refused to chair Cambodia summit.

Gold Sihanouk refuses to chair Cambodian political summit at home or abroad.

Source Cambodia’s ruling party responded Tuesday to criticisms of its leader in the U.S.

Congress with a lengthy defense of strongman Hun Sen’s human rights record.

SPL ,de Cambodia’s ruling party responded Tuesday to criticism of its leader in the US.

Gold Cambodian party defends leader Hun Sen against criticism of U.S. House.

Source The Swiss government has ordered no investigation of possible bank accounts be-

longing to former Chilean dictator Augusto Pinochet, a spokesman said Wednesday.

SPL ,de Swiss government ordered no inquiry into possible bank accounts of former Chilean

dictator Augusto.

Gold Switzerland joins charges against Pinochet but avoids bank probe.

Table 4.13: System output for DUC-2004.

seq2seq and existing compression models, ABS and ABS+ (Rush et al., 2015), two

encoder-decoder models trained on the English Gigaword. ABS+ applies minimum

error rate (MERT) training as a copying mechanism. LenEmb and LenInit include a

length parameter (Kikuchi et al., 2016), whereas RAS uses a convolutional based re-

current neural network architecture. Since the completion of this work there has been

continued interest in this test set and the state-of-the-art achieves a Rouge-1: 32.57,

Rouge-2: 11.63, and Rouge-L: 28.24 (Takase and Kobayashi, 2020), which combines

a Transformer and an approach which reduces the number parameters needed for word

embeddings. We also report how well DUC-2004 abstractors agree with each other

(row Gold in Table 4.12). Example compressions are given in Table 4.13, where we

show output produced by SPL ,de and a human reference (see the Appendix B (Section

B.1) material for further examples).

Using automatic metrics we see that our model generally performs worse compared

to these systems and that German is the best pivot for English. Although the objec-

tive of this chapter is not to obtain state-of-the-art scores on this evaluation set, it is

interesting to see that our model is able to compress out of domain. We do not have ac-

cess to headline-first sentence pairs, while all comparison systems do. We also elicited

human judgments on the compressions of 100 lead sentences whose documents were

randomly selected from the DUC-2004 test set. We compared the prefix baseline, our
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model (SPL ,de), ABS+ (Rush et al., 2015), LenEmb (Kikuchi et al., 2016), Topiary

(Zajic et al., 2004), and a randomly selected reference. Topiary came top in almost

all measures in the DUC-2004 evaluation; it first compresses the lead sentence using

linguistically motivated heuristics and then enhances it with topic keywords. Crowd-

workers rated grammaticality and importance, using a five-point scale; we collected

five ratings per compression.

Models Grammaticality Importance Average

Pfix 3.03 2.93 2.98

SPL ,de 3.37 3.22 3.29

Topiary 3.05 3.15 3.10

ABS+ 3.67 3.23 3.45
LenEmb 3.14 3.08 3.09

Ref 3.62 3.27 3.45

Table 4.14: Mean ratings elicited by humans on DUC-2004; Avg is the average rating

of grammaticality and importance.

As shown in Table 4.14 ABS+ has the lead with our system following. In terms of

grammaticality, ABS+ and SPL ,de are not significantly different from the gold standard

nor from each other (Pfix, Topiary, and LenEmb are significantly worse than Gold;

p < 0.05). In terms of importance, pairwise differences between systems and the gold

standard are not significant. Overall, we observe that SPL ,de performs comparably to

ABS+ even though it was not trained on any compression specific data. Inspection of

the system output reveals that our model performs more paraphrasing than comparison

systems (a conclusion also confirmed by the statistics in Table 4.11).

4.7 Summary

Conclusion In this chapter we set out to answer the question: Can the output of

encoder-decoder paraphrasing models be controlled? We showed that by using vari-

able disentanglement we were able to control the length of a translation, whilst leaving

the semantics intact. When paired with the pivoting approach of Chapter 3 we showed

that we are able to use bilingual data to perform sentence compression, thus answer-

ing: Can bilingual data be used as a source of training data for sentential NMT para-

phrasing models? Empirical results across three languages showed that our approach
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outperformed supervised baselines.

Next chapter In the next chapter, we expand upon the controllability aspect of this

chapter, we propose an approach which allows users to control the lexical choices and

syntax of the output of a sequence-to-sequence model. We demonstrate this approach

by introducing a controllable simplification model, which is trained on a generic su-

pervised simplification dataset, but allows for controlling the output simplicity.



Chapter 5

Controllable Simplification

This chapter is based on Mallinson and Lapata (2019) and answers the following ques-

tion:

• Can the output of encoder-decoder paraphrasing models be controlled?

In the previous chapter we saw how the output length of sequence-to-sequence

models can be controlled via variable disegentlament; we expand upon this approach

in this chapter. In doing so we focus on the constrained paraphrasing task of sen-

tence simplification. Whilst previous approaches have been able to simplify sentences

for a homogeneous audience, in this chapter we introduce an approach which allows

for personalised simplifications. We argue that different users have different sim-

plification needs (e.g., dyslexics vs. non-native speakers). We propose CROSS, a

ContROllable Sentence Simplification model, which provides fine grain control of

both the level of simplicity and the type of the simplification. We achieve this by en-

riching a Transformer-based architecture with syntactic and lexical constraints which

we implement using variable disegentlament, and training on readily-available general

purpose simplification data. Empirical results on two benchmark datasets show that

constraints are key to successful simplification, offering flexible generation output.

5.1 Introduction

As discussed previously (Chapters 1), sentence simplification aims to reduce the lin-

guistic complexity of a text whilst retaining most of its meaning. In this chapter, we

propose a user-centric simplification model which draws on the advantages of the

sequence-to-sequence architecture but can also explicitly model rewrite operations,

83
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such as lexical and syntactic simplifications, and as a result generate output accord-

ing to specifications. Although many simplification systems (e.g., (Zhu et al., 2010;

Kauchak, 2013; Zhang and Lapata, 2017; Palmero Aprosio et al., 2019; Zhao et al.,

2018a)) are intended for general purpose usage, different target populations may have

different needs (Siddharthan, 2014). For instance, whether or not the syntax should be

simplified depends on the reader: those affected by aphasia benefit from simpler syn-

tax, while dyslexics have trouble processing long and infrequent words (Rello et al.,

2013; Shewan and Canter, 1971). Unfortunately, simplification training datasets that

target these different user groups are not available. It is therefore beneficial to have a

model which can be trained on general purpose datasets and then be easily adapted for

particular users or user group without being redesigned or retrained every time from

scratch.

Our simplification model adopts the Transformer architecture (Vaswani et al., 2017)

which has become the de facto standard and state-of-the-art in machine translation (Bo-

jar et al., 2016) and relies entirely on self-attention to compute representations of its

input and output without using recurrent or convolutional neural networks. Our in-

novation is to enrich a Transformer-based sequence-to-sequence model with syntactic

and lexical constraints which allow the user to control both the level of simplicity and

the type of simplification. We enable the model to make decisions about which words

or syntactic structures to replace by enriching the training data with explicit informa-

tion pertaining to lexical substitution and syntactic simplification. For example, we

can mark words as to keep or substitute, or append a high-level level syntactic descrip-

tion (a template) to the source and target sentence. At test time, the user provides their

constraints and the decoder must first decode the syntax of the target sentence before

decoding the lexical tokens.

We evaluate our system on two publicly-available datasets collected automatically

from Wikipedia (Woodsend and Lapata, 2011; Kauchak, 2013; Zhu et al., 2010) and

human-authored news articles (Xu et al., 2015b) and report results using automatic

and human evaluation. By comparing our constrained model against non-constrained

variants we show that constraints are key to successful simplification, offering genera-

tion flexibility and controllable output. Our contributions in this chapter are three-fold:

(1) we show that adding lexical and syntactic constraints to a Transformer produces

state-of-the-art simplification results; (2) these constraints allow users to adapt the

model to their personal needs; and (3) we conduct a comprehensive evaluation and

comparison study which highlights the merits and shortcomings of various recently
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proposed simplification models on two datasets.

5.2 Background

In this section, we provide relevant background information on existing approaches to

simplification, controlling sequence-to-sequence models, and existing simplification

datasets.

5.2.1 Modelling

One of the first neural network approaches to simplification was presented in Zhang

and Lapata (2017), an encoder-decoder LSTM, trained with reinforcement learning,

to optimize for grammaticality, simplicity, and adequacy (DRESS), and its extension,

DRESS-Ls, which has an additional lexical simplification component. Dong et al.

(2019) use a Programmer-Interpreter (Reed and de Freitas, 2016), which receives as

input the source sentence and applies a sequence of edit operations (add, delete, keep).

Kriz et al. (2019) propose adapting the loss function to give greater importance to sim-

ple words and to rerank a diverse set of simplifications according to fluency, adequacy,

and simplicity.

Translation data, in the form of paraphrases, has also been incorporated into simpli-

fication models leading to significant improvements. Guo et al. (2018) use multi-task

learning to augment the limited amount of simplification training data. In addition to

training on complex-simple sentence pairs, their model employs paraphrases, created

automatically using machine translation. Zhao et al. (2018a) introduces DMASS, an

augmented Transformer-based simplification model with lexical rules obtained from

Simple PPDB (Pavlick and Callison-Burch, 2016), a database of paraphrase rules, au-

tomatically annotated with simplicity scores.

In recent years there has been increased interest in controlling the output of sim-

plification models. Bingel et al. (2018) notably acknowledge the fact that there is no

one-size-fits-all solution to text simplification and develop a tool which can be person-

alized to a user’s needs and adapted over time. Their system decides whether a word (in

context) poses difficulty to the reader and suggests lexical substitutions. Scarton and

Specia (2018) train a sequence-to-sequence model on Newsela, attaching tags which

specify the grade level of the output sentences. Nishihara et al. (2019) expand upon this

work by weighting the loss function to favour the generation of certain words. Since
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the completion of this work, Martin et al. (2020a) proposed a model, ACCESS, which

allows users to provide a high level specification of the output sentence, including:

the amount of character overlap between the source and output, as measured by Lev-

enshtein distance; character length ratio between source sentence and target sentence

(compression level); lexical simplicity as measured by word frequency; and syntactic

complexity as measured by the maximum depth of the dependency tree of the source

divided by that of the target.

Previous works outside of simplification on controllability have focused on con-

trolling the length and content of summaries (Kikuchi et al., 2016; Fan et al., 2018),

politeness in machine translation (Sennrich et al., 2016a), and style (Ficler and Gold-

berg, 2017). Iyyer et al. (2018) propose a paraphrasing approach where users can

control the paraphrase syntax by providing a syntactic template.

Our work draws inspiration from Grangier and Auli (2018) who post-edit the out-

put of machine translation under the assumption that a human modifies a sentence by

marking tokens they would like the system to change. Our model also controls simpli-

fication by taking as input both the sentence and change markers for it. However, we

allow for a wider spectrum of rewrite operations than Grangier and Auli (2018) who

focus solely on deletion and do not take syntax into account.

5.2.2 Datasets

In this section we provide details on the publicly-available English simplification datasets,

in the next chapter we provide details on non-English datasets. Table 5.1 provides an

overview of existing datasets and Table 5.2 shows examples from these datasets.

Dataset Size Method Domain Audience Languages

WikiSmall 89K Aligned Wikipedia Everyone English

WikiLarge 400K Aligned Wikipedia Everyone English

Mturk 2K Human Wikipedia N/A English

Newsela 94K Aligned News Children (8-18) English

Table 5.1: Overview of sentence simplification datasets, including the number of para-

phrases (size); method in which they were collected; the domain; the target audience

of the simplifications, where N/A indicates no target users were indicated when creating

the dataset; and the languages of the dataset.
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Dataset Source Simplification

WikiSmall Genetic engineering has expanded the

genes available to breeders to utilize in cre-

ating desired germlines for new crops.

New plants were created with genetic en-

gineering.

WikiSmall Every rhombus is a parallelogram, and a

rhombus with right angles is a square.

A rhombus with all angles equal is called a

square.

WikiLarge The Great Dark Spot is regarded as a hole

in the methane cloud deck of Neptune.

The Great Dark Spot is thought to repre-

sent a hole in the methane cloud deck of

Neptune.

WikiLarge 1. Allessandro (“Sandro”) Mazzola, born 8

November 1942, used to be an Italian foot-

ball player.

Alessandro (”Sandro”) Mazzola (born 8

November 1942) is an Italian former foot-

ball player.

Mturk admission to tsinghua is extremely com-

petitive.

admission to tsinghua is highly competi-

tive.

Mturk he also completed two collections of short

stories entitled the ribbajack & other cu-

rious yarns and seven strange and ghostly

tales.

he also wrote two books of short stories

called, the ribbajack & other curious yarns

and seven strange and ghostly tales.

Newsela One of the readers was Mohammed Bagh-

dadi, 32, a manager at the Ministry of

Trade.

Mohammed Baghdadi is 32.

Newsela Weariness frays their voices, but they’re

still on the freedom highway.

Their voices sound tired.

Table 5.2: Examples of sentence simplifications pairs from available datasets.
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WikiSmall (Zhu et al., 2010) is a parallel simplification corpus constructed by auto-

matically aligning sentences between English Wikipedia and simple Wikipedia. Sim-

ple Wikipedia is written by amateurs and "is for everyone! That includes children

and adults who are learning English.". When creating articles authors are instructed

to "Use Basic English vocabulary and shorter sentences.". The training set contains

89,042 sentence pairs. This dataset has been used extensively for both training and

evaluating simplification models (Zhang and Lapata, 2017; Guo et al., 2018; Zhao

et al., 2018a; Kriz et al., 2019). However, Xu et al. (2015b) highlighted several prob-

lems. They found that the alignments were prone to errors, that a large proportion

of simplifications were inadequate and that the data generalized poorly to other text

genres.

WikiLarge (Zhang and Lapata, 2017) is a large (296,402 sentence pairs) corpus

which consists of a mixture of three Wikipedia simplification datasets collated by Zhu

et al. (2010), containing WikiSmall, the two other Wikipedia simplification datasets

Woodsend and Lapata (2011), and Kauchak (2013). Thus simplifications are taken

from both English Wikipedia and Simple Wikipedia. WikiLarge has been used ex-

tensively as a training dataset for simplification (Zhang and Lapata, 2017; Guo et al.,

2018; Zhao et al., 2018a; Kriz et al., 2019).

Mturk (Xu et al., 2016) is used as a test set for WikiLarge (Zhang and Lapata, 2017).

It consists of 359 sentences, taken from Wikipedia, which were then simplified using

Mechanical Turk to create eight reference simplifications per source sentence. Turkers

were asked to produce a simpler version of the sentence. They were instructed to pro-

duce a "simpler version while preserving its meaning, without losing any information

or splitting sentence." and to "reduce the number of difficult words or idioms, simplify

complex phrasing and make the sentence more straight forward." Manual inspection

by the authors was done to remove bad workers.

Newsela is a simplification corpus comprising of news articles written by Newsela’s

professional editors in English and Spanish. Each news article is written at five dif-

ferent simplicity levels (5-0), corresponding to grade levels 3 (8 year olds) to 12 (18

year olds). To assist editors in writing at the correct simplicity level the Lexile frame-

work (Lennon and Burdick, 2004) was used. The Lexile framework is a proprietary

readability metric, which combines word frequency information and sentence length.
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The English subset of Newsela consists of 23,130 articles. Simplification pairs are

produced by aligning sentences between articles of different simplicities, such that the

source comes from more complex articles than the target. Unfortunately, due to the

restrictive license of Newsela, there are no publicly-available alignments of these sen-

tences; instead many have been proposed. For English, Zhang and Lapata (2017) pro-

duced 94K sentence pairs which have been used by many researchers for both training

and testing (Zhang and Lapata, 2017; Guo et al., 2018; Zhao et al., 2018a; Kriz et al.,

2019). They align all sentences from more complex to less complex, removing sen-

tences paired from 0–1, 1–2, and 2–3. Others, Alva-Manchego et al. (2017); Scarton

et al. (2018); Štajner and Saggion (2018) have proposed their own alignments which

only align sentences between adjacent simplicity levels (i.e. 0-1, 1-2, 2-3, and 3-4),

whereas Scarton and Specia (2018), generate alignments between all versions (i.e.,

0-{1,2,3,4}, 1-{2,3,4}, 2-{3,4}, and 3-{4}). Jiang et al. (2020) use a neural CRF align-

ment model, which they found produced a larger and a higher quality dataset.

From Table 5.1 we see that target audiences for existing simplification datasets

are very broad, ranging from no explicitly specified target audience, to everyone, to

children aged 8-18. As a result large groups of users, such as second language learners,

have no dedicated simplification datasets, thus requiring them to use general purpose

simplification data.

5.3 Model Description

In this chapter we propose an approach which allows us to train on general purpose

simplification but produce an output which targets individual users. The main idea is

to control the output of a neural encoder-decoder model using constraints in both the

encoder and decoder. The model still learns how to simplify from data, i.e., pairs of

source (complex) and target (simple) sentences which are additionally annotated with

change markers (e.g., indicating which words to replace, which syntactic constructs to

delete) and takes these into account while generating simplifications.

5.3.1 Transformer

We will first define a basic encoder-decoder model for sentence simplification and

then explain how to add constraints. Given a complex sentence x = (x1,x2, ...,x|x|),



90 Chapter 5. Controllable Simplification

Tokens take the square root of the variance .

Linearized ROOT( take OBJ( DET( the ) AMOD( square ) NMOD( variance CASE( of )

DET( the ) ) ) PUNCT( . ) )

Template OBJ( AMOD( d0 ) DET( d0 ) NMOD( d1) ) PUNCT( )

Input/Output OBJ( AMOD( d0 ) DET( d0 ) NMOD( d1) OBJ) PUNCT( ) ||| take the square

root of the variance .

Constraints ROOT(OBJ, PUNCT), OBJ(AMOD, DET, NMOD), PUNCT()

Table 5.3: Example of source sentence with linearized parse, template, constraints

extracted from the template, and input provided to our model (for training). To convert

from a linearized parse to a template, first the dependents are ordered, then the opening

and closing brackets are matched together (excluded for brevity). Finally, we remove

levels lower than 2 and instead replace them with the d* token which represents the

maximum depth of the child.

our model learns to predict its simplified target y = (y1,y2, ...,y|y|). Inferring the target

y given source x can be modeled as a sequence-to-sequence learning problem. We

adopt Transformer’s multi-layer and multi-head attention architecture; further details

can be found in Chapter 2 (Section 2.1.2) and Vaswani et al. (2017). The Transformer

encoder has n layers, which transform the input sequentially: X l+1 = Ll(X l), where

the first layer encodes the source embeddings:

X0
i =Wee(xi)+Wpose(i) (5.1)

where e is the word embedding matrix and epos,i are positional embeddings.

The output representations of the full Transformer, XN = L1:N(X0). The decoder

is composed of a stack of identical layers. In addition to self-attention the decoder

attends to the source sentence XN .

5.3.2 Lexical Constraints

Lexical substitution, the replacement of complex words with simpler alternatives, is

an integral part of sentence simplification and has been the subject of much previous

work (Specia et al., 2012; Paetzold and Specia, 2017; Lee and Yeung, 2018; Yatskar

et al., 2010; Devlin, 1999; Inui et al., 2003; Kaji et al., 2002). We enrich the encoder

of the Transformer with lexical constraints, by adding indicator features to each word

embedding, specifying if the token should be kept. We employ three indicator types:
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1. The token should be replaced; during training this is set if the token does not

appear in the target sentence;

2. The token should be kept; during training this is set if the token is in the target

sentence;

3. There is no preference for the token to be kept or replaced; during training half

of all tokens are randomly assigned this value.

We differ from Grangier and Auli (2018) in that we have a third no preference

type and we apply constraints more flexibly, as we mark tokens to be kept as long as

their stems match, which allows for greater syntactic changes, for instance run can be

changed to running.

Indicator features are added to the word embedding and positional encoding, as

seen in the equation below:

X0
i =Wee(xi)+Wpose(i)+Wce(cwi) (5.2)

where cwi are indicator features learnt during training. In this way we add soft con-

straints to the encoder. During training the indicator variables are true, therefore the

model can learn to rely on them, and not encode this information itself, we consider

this a form of soft variable disentanglement. In addition we also add hard constraints

to the decoder. We restrict the generation of complex words marked with delete; dur-

ing decoding we use constrained beam search, where complex words are given zero

probability (Post and Vilar, 2018).

At test time, the user can control the model’s output simply by (1) striking out

tokens they wish to discard; (2) marking tokens they want to keep; or (3) leaving

tokens unmarked. These could be words that an aphasic reader has trouble understand-

ing, or a second language learner is not familiar with. For example in the sentence

“Dextromethorphan occurs as a white powder”, occurs should be replaced and white

powder should be preserved.

We use a fairly inexpensive approach to learn a list of complex words from training

data, which can marked for replacement. To do so we follow Moore and Lewis (2010)

who use language models to filter out-of-domain data, we use two uni-gram language

models, one trained on complex sentences and one trained on simple sentences, to

produce a list of words ordered by their relative simplicity:
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Complexity(word) =
P(word|complex)
P(word|simple)

(5.3)

Using Equation (5.3), we order all words in the training set with Complexity(word)>1

and take the first N words to produce the complex list (e.g., cavalier, offbeat, insofar).

Additionally we experimented with using a simplification dictionary1 provided by

the Wikipedia editor “SpencerK” (Spencer Kelly). Due to the limited size of this dic-

tionary, we combine it with an automatically created simplification dictionary, learnt

from the training data. Word alignments, produced using GIZA++ (Och and Ney,

2003), were used to create phrase tables, which we treat as a simplification dictionary

(abandon → leave, replenished → filled, fraudulent → fake. However, preliminary

results showed this performed worse than using a list of complex words.

5.3.3 Syntactic Constraints

Syntactic simplification aims to reduce the syntactic complexity of a text while pre-

serving its meaning and information content. Although the bulk of previous work has

focused on sentence splitting, namely rewriting a complex sentence into multiple sim-

pler sentences (Carroll et al., 1999; Chandrasekar et al., 1996; Vickrey and Koller,

2008; Sulem et al., 2018b; Siddharthan, 2004), other operations which reduce syntac-

tic complexity involve rendering passive voice into active, simplifying relative clauses

and coordination, as well reordering constituents or deleting them.

Syntax is introduced to our model by annotating the complex source and simplified

target with high level syntactic descriptions (aka templates). Templates are induced

from the training corpus by parsing source and target sentences with a universal de-

pendencies parser (Straka, 2018). An example of a parse can be seen in Table 5.3.

Dependency parses are further linearized and we extract a template corresponding to

the top two levels of the parse. We differ from Iyyer et al. (2018), in that our tem-

plates are based on dependency parsers in contrast to constituent tree, and templates

are prepended to the front of the target sentence. As such our model produces a prob-

ability distribution over possible templates, allowing us to choose a relevant template

whilst still being able to reject complex templates.

The annotation process described above renders the model syntax-aware. Analo-

gously to the lexical constraints, a globally constraint variant of beam search is used at

test time and syntactic indicator features (i.e., replace, keep, indifference) are added to

1http://www.spencerwaterbed.com/soft/simple/about.html
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the encoder. To reduce sparsity, a Markovian assumption is applied to the templates.

Each constraint consists of one parent and its children as found within the template

(see Table 5.3 for examples). Unlike lexical constraints, which are applied at the token

level, syntactic constraints are applied at the rule level. At test time, the user provides

a list of constraints the system must adhere to. The list is used to mark the input syntax

and to constrain the decoder’s output. For example, applying the constraint Root(nsubj

nmod nmod advcl)→ Root(nsubj nmod advcl) to the source sentence “She remained

in the United States until 1927 when she and her husband returned to France.” pro-

duces the simplification “She remained in the USA until she returned to France with

her husband in 1927.”. We follow the lexical approach and generate a list of complex

rules which the output must avoid (see Table 5.4).

WikiLarge

Root(cop, det, nsubj, punct, vocative)

Root(avmod, cop, det, parataxis, punct)

Root(aux, cop, det, nsubj, parataxis, punct)

Newsela

Root(cop, nsubj, onl, punct)

Root(iobj, nsubj,punct,xcomp)

Root(advmod, cop, csubj, punct)

Table 5.4: Examples of complex syntactic root rules as taken from Newsela and Wiki-

Large.

5.3.4 Constraint Combination

Lexical and syntactic constraints can be easily combined by merging the two sets of

constraints provided by the user. In this case six indicator features are used, three for

the lexical constrains and three for the syntactic constraints.

5.4 Experimental Setup

Datasets We experimented with two simplification datasets: (1) Newsela using the

splits and alignments of Xu et al. (2015b) and (2) WikiLarge (Zhang and Lapata, 2017).
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Model Configuration For both datasets we used the Transformer as implemented

within OpenNMT-py (Klein et al., 2017). The encoder and decoder consist of 8 layers

with a hidden dimension of size 500. Word embeddings, size 500, were initialized

randomly and shared between the encoder and decoder. We used ten attentional heads

and a copy mechanism (See et al., 2017). The network was optimized using Adam

(Kingma and Ba, 2015), and SARI (Xu et al., 2016) was used for early stopping. The

vocabulary size was limited to the 50,000 most frequent tokens, the remaining tokens

were replaced with an UNK token.

Lexical Constraints Configuration At test time, we explored two approaches to

applying the constraints to the encoder. For WikiLarge, simple tokens were marked

with keep, and complex tokens were marked with replace. We included approximately

∼12,000 most complex words. For Newsela simple tokens were marked with indif-

ference and complex tokens were marked with replace. We included approximately

∼7,000 most complex words. In both approaches, all function words were marked

with indifference.

Syntactic Constraints Configuration At test time, complex syntactic rules were

marked with the replace indicator and all other rules were always marked with the

keep indicator. For Newsela, we include approximately 29% of the rules, whereas for

WikiLarge we include approximately 13% of the rules.

Evaluation Metrics As there is no single agreed-upon metric for simplification (Alva-

Manchego et al., 2020; Sulem et al., 2018a); we evaluate the models outputs using a

combination of five automatically generated scores, which have been used previously

in the literature Xu et al. (2016); Zhang and Lapata (2017). These metrics have been

previously shown to correlate with human judgments of simplification quality (Xu

et al., 2016)2 and essentially quantify: a) whether the output is similar to the gold

standard reference (Target-based, T); b) whether the output is similar to the source

(Source-based, S); and c) whether the output is simple on its own, with no regard to

preserving the meaning of the original sentence (Readability-based, R). We indicate

2However we note, that these correlations were calculated on a specific English test set using sen-
tence level metrics.
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the type of each metric using superscripts. We report BLEUT3, SARIT,S4, FKGLR5,

S-BLEUS, and CopyS. We included copy and S-BLEU to highlight the amount of

rewriting a models does. More details on these evaluation metrics can be found in

Chapter 2 (Section 2.3). We also evaluated system output by eliciting human judg-

ments via Amazon’s Mechanical Turk. Native English speakers (self reported) were

asked to rate simplifications on three dimensions: Grammaticality (is the output gram-

matical and fluent?), Meaning Adequacy (to what extent is the meaning expressed in

the original sentence preserved in the output, with no additional information added?),

and Simplicity (is the output a simpler version of the input?). Full instructions can be

found in Appendix C (Section C.2). The ratings were obtained using a five point Likert

scale. 100 sentences were randomly sampled from the test set6, each sample received

five ratings, resulting in 500 judgments per test set.

5.5 Results

Our first suite of experiments compares our approach against the state-of-the-art sim-

plification models aiming to show that our model can also function as a general-

purpose simplification system. There is no point in having a controllable model if it

cannot generate adequate simplifications on its own. Our second suite of experiments

examines how the simplicity level can be manipulated.

Automatic Evaluation Table 5.5 summarizes our automatic evaluation results7 on

WikiLarge and Newsela. We compared our model against three well-established non-

neural models: PBMT-R (Wubben et al., 2012), a phrase-based machine translation

model, SBMT-SARI (Xu et al., 2016), a syntax-based translation model trained on

PPDB and which is then tuned using SARI, and Hybrid (Narayan and Gardent, 2014),

a model which performs sentence splitting and deletions and then simplifies with

PBMT-R. We also compare against various neural simplification models: (a) the three

LSTM-based models reported in (Zhang and Lapata, 2017), namely EncDecA, an

encoder-decoder model with attention, DRESS and DRESS-Ls; (b) DMASS (Zhao

3We used multi-bleu-detok.perl to calculate corpus-level BLEU.
4We used corpus level SARI with precision for deletion operator.
5following Zhang and Lapata (2017) we used a corpus level FKGL, however we ensured that a

newline indicated a sentence break.
6We used the same samples as Zhang and Lapata (2017).
7As our automatic metrics differ from previous papers we re-calculate all scores for all available

simplification models.
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et al., 2018a), (c) a vanilla transformer-based encoder-decoder model without any con-

straints.

We report results for several variants of our model which we call CROSS as a short-

hand for ContROllable Sentence Simplification. CROSS-Lex contains lexical con-

straints only, CROSS-Syn focuses solely on syntactic simplifications, while CROSS is

the full model with both types of constraints. We also include two strong baselines,

repeating the source sentence (Source) and truncating the source sentence to the first

N words, as determined by the validation set (Truncate).

Results on WikiLarge are mixed, with no model being best for every metric. We

see that SBMT-SARI achieves the highest SARI, with minimal copying and a moderate

S-BLEU. Of the two existing state-of-the-art models, DRESS-Ls and DMASS, we see

that DRESS-Ls achieves a moderate SARI score and a moderate S-BLEU, however,

it has a high Copy score. This suggests that DRESS-Ls is very polar, applying high

amounts of rewriting to some sentences and keeping others completely unchanged.

DMASS achieves the second highest SARI score and Copy is low, however, S-BLEU

is high suggesting it produces modest changes consistently.

CROSS achieves a slightly worse SARI than the baseline Transformer, however

this is in part due to the Transformer’s high Copy and high S-BLEU. In contrast,

CROSS achieves a low S-BLEU and Copy score similar to that of the references.

CROSS has a lower SARI compared to CROSS-Lex, however, it has a better S-BLEU

and Copy. CROSS outperforms CROSS-Syn with a better SARI and Copy score. The

results also show that standard encoder-decoder models (EncDecA, Transformer) pro-

duce outputs which are highly similar to the input, highlighting the importance of

constraining the output.

We next consider the Newsela dataset. We see that DRESS-Ls achieves the highest

SARI, however, it also has the highest level of copying and a moderately high S-BLEU.

DMASS, on the other hand, achieves a low SARI, but with a low amount of copying

and a low S-BLEU. Also notice that the Truncate baseline has the highest BLEU score,

outside of the DRESS models. The Transformer achieves a moderate SARI, however,

it also has a high Copy and high S-BLEU. CROSS achieves a low SARI which in part

can be explained by its high level of rewriting as seen in the low S-BLEU and Copy.

We see that CROSS-Lex has a higher SARI compared to CROSS but worse S-BLEU

and Copy scores. CROSS-Syn and CROSS both have very similar scores, however,

CROSS-Syn performs more rewrites.
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WikiLarge SARI BLEU FKGL S-BLEU Copy

Reference N/A N/A 8.24 63.92 16.2%

Source 26.31 99.37 9.54 100.00 100%

Truncate 35.62 99.32 9.54 95.48 0%

PBMT-R 40.30 81.02 8.40 74.95 09.7%

Hybrid 27.59 48.69 4.72 30.57 03.1%

SBMT-SARI 40.75 73.01 7.53 67.93 10.6%

EncDecA 39.58 89.00 8.61 83.81 40.7%

DRESS 35.45 77.32 6.76 56.96 21.5%

DRESS-Ls 36.08 80.35 6.90 60.21 26.2%

Transformer 36.21 81.51 8.73 76.33 36.2%

DMASS 40.35 79.68 7.45 70.82 15.6%

CROSS-Lex 38.82 70.70 7.92 65.62 10.6%

CROSS-Syn 33.89 64.98 7.98 68.88 19.9%

CROSS 36.07 64.64 7.46 56.11 15.6%

Newsela SARI BLEU FKGL S-BLEU Copy

Reference N/A N/A 3.43 17.81 0%

Source 11.97 20.79 8.61 100.00 100%

Truncate 36.92 21.54 5.57 62.54 0%

PBMT-R 41.23 17.62 7.96 75.29 05.9%

Hybrid 35.37 10.87 4.14 19.96 03.3%

EncDecA 42.98 21.17 5.48 52.54 15.7%

DRESS 42.85 22.65 4.20 39.69 11.3%

DRESS-Ls 43.26 23.66 4.36 42.72 14.5%

Transformer 42.21 19.90 4.77 40.05 11.6%

DMASS 37.36 07.51 3.84 11.15 01.1%

CROSS-Lex 41.56 18.88 3.81 33.98 06.8%

CROSS-Syn 38.12 14.30 3.48 21.35 05.1%

CROSS 37.57 12.68 3.51 26.55 05.6%

Table 5.5: Automatic evaluation on WikiLarge and Newsela test set. We also report the

average FKGL, S-BLEU, and Copy of all references (Reference).
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WikiLarge Gram Mean Simp AVG Min

Reference 4.01* 4.13** 3.56** 3.90** 3.16*

DRESS-Ls 4.32** 3.97** 3.14 3.81** 2.80

DMASS 3.69 3.21 2.57** 3.16 2.29**

Transformer 3.91 3.63 3.04** 3.53 2.72**

CROSS-Lex 3.72 3.41 3.18 3.43 2.80

CROSS-Syn 3.54 2.22 2.46** 3.07* 2.15**

CROSS 3.61 3.37 3.13 3.37 2.84

Newsela Gram Mean Simp AVG Min

Reference 4.11** 3.73** 3.88** 3.91** 3.47**

DRESS-Ls 3.33* 2.98** 2.93 3.08** 2.45

DMASS 2.05** 1.55** 1.74** 1.78** 1.39**

Transformer 2.88** 2.47** 2.70 2.68** 2.00**

CROSS-Lex 3.07** 2.89** 2.95 2.97** 2.45

CROSS-Syn 3.60 3.37 2.89 3.27 2.31

CROSS 3.54 3.41 2.91 3.28 2.29

Table 5.6: Human evaluation on WikiLarge and Newsela. Models significantly different

from CROSS are marked with * (p < 0.05) and ** (p < 0.01). Significance tests were

performed using a student t-test.
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Human Evaluation The results of our human evaluation are presented in Table 5.6.

We follow previous approaches and report Grammaticality, Meaning Adequacy, and

Simplicity individually and combined (AVG is the average of the three dimensions).

In addition, we include a new metric Minimum, which is the (average) minimum value

of Grammaticality, Meaning Adequacy, and Simplicity per sentence. We include Min-

imum because we argue that a simplification is only as good as its weakest dimension.

We note that it is trivial to produce a sentence that is perfectly adequate and fluent,

by simply repeating the source sentence. It is also easy to produce a simple sentence

if we do not care about adequacy. We evaluated CROSS (and CROSS-Lex, CROSS-

Syn variants) against the two state-of-the-art models DMASS and DRESS-Ls as well

a Transformer baseline. We also elicited judgments on the gold standard Reference as

an upper bound.

Human evaluation on WikiLarge (top half in Table 5.6) shows that both DRESS-Ls

and CROSS achieve highest scores for Minimum. CROSS significantly outperforms all

other models for both Min and Simplicity. Transformer achieves a higher score for both

Grammaticality and Meaning compared to CROSS. However, this can be explained

due to the high Copy score, which guarantees high Grammaticality and Adequacy

scores. This can also in part explain the high Grammaticality and Meaning Adequacy

scores for DRESS-Ls. CROSS-Syn achieves lower scores compared to CROSS-Lex,

suggesting that syntactic changes are not as important for WikiLarge.

Human evaluation on Newsela (second half of Table 5.6) shows that all CROSS

variants are better than related Transformer and DMASS models across all metrics.

CROSS and DRESS-Ls both achieve the highest Minimum scores. For all other met-

rics, CROSS is better or the same than all other models. CROSS and CROSS-Syn

achieve similar results, both outperforming CROSS-Lex. This suggests that syntactic

simplifications are more prominent in Newsela compared to WikiLarge.

Analysis of Model Output We further analyzed the simplifications produced by

CROSS to gain insight on the types of simplifications it generates. We sampled 100

sentences (50 from each test set) and classified the simplifications into two categories,

namely lexical (Lex) or syntactic (Syn). For syntactic simplifications we further marked

whether these pertained to common changes, i.e., passive to active voice (Voice), past

tense to present or past perfect (Tense), and sentence splitting (Split). Table 5.7 shows

a breakdown of these phenomena for CROSS, the baseline Transformer model, and the

references. As can be seen, CROSS performs similar simplifications to the references,
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Lex Syn Voice Tense Split All

Reference 35% 10% 7% 5% 6% 41%

Transformer 9% 1% 1% 0% 0% 9%

CROSS 29% 8% 8% 2% 0% 35%

Table 5.7: Proportion of simplifications on a 100 sentence sample from the WikiLarge

and Newsela test sets. Examining Lexical simplifications (Lex), syntactic simplifications

(Syn), passive to active voice (Voice), past tense to present or past perfect (Tense), and

sentence splitting (Split).

WikiLarge Gram Mean Simp AVG Min FKGL

XSimple 3.30 3.09 3.06* 3.15 2.84 6.96

Simple 3.24 3.11 2.87 3.08 2.77 7.46

Newsela Gram Mean Simp AVG Min FKGL

XSimple 3.46** 2.88** 3.11** 3.15 2.33** 2.91

Simple 3.89 3.59 2.53 3.34 2.10 3.51

Table 5.8: Human evaluation on varying simplicity of model output. Ratings that are

significantly different are marked with * (p < 0.05) and ** (p < 0.01). Significance

tests were performed using a student t-test.
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Source In its pure form, Dextromethorphan occurs as a white powder.

Reference Dextromethorphan is a white powder in its pure form.

Simple In its pure form, Dextromethorphan is like a white powder.

XSimple Dextromethorphan can be found as white powder.

Source The Pentagon is poised to spend billions to build a new stealth bomber, a top secret

project that could bring hundreds of jobs to the wind-swept desert communities in Los

Angeles County’s northern reaches.

Reference Mission to build the secret warplane.

Simple The Pentagon secret project that could bring hundreds of jobs to the desert-swept

communities in Los Angeles County.

XSimple It could also bring hundreds of jobs.

Source The United States is about to spend billions of dollars to build a top-secret warplane.

Reference Mission to build the secret warplane

Simple The United States is about spend dollars to build a top-secret warplane.

XSimple The United States is about to build a warplane.

Table 5.9: Example outputs, including both simple and eXtra simple.

and substantially more syntactic changes compared to the Transformer.

Controllability A central claim of this chapter is that CROSS can be adapted to user

needs. We test this claim, by experimenting with varying the simplicity level of the

output. Specifically, we sampled 100 complex source sentences (with FKGL score

of 11 or higher) from the WikiLarge and Newsela test sets and produced two sets of

outputs, one with our general-purpose system which produces a moderate amount of

simplification (Simple), and another one where we forced the model to simplify more

drastically, extra simple (XSimple). This was achieved by increasing the number of

lexical and syntactic constraints the model must adhere to. Specifically, we include

the 12,000 most complex words for Newsela, and the 18,000 most complex tokens

for Wikilarge. We also increased the number of complex syntactic constraints to ap-

proximately 40% for Newsela and 25% for WikiLarge. We note that very restrictive

constraints can lead to a loss of meaning, where the output simplification shows no

resemblance to the input sentence.

Results in Table 5.8 show that CROSS is able to successfully alter the simplic-

ity level of the output. For both datasets we see that participants perceive differences

between the output of the simple and XSimple models (this is also reflected in the

FKGL which is lower for XSimple). For WikiLarge, all scores apart from simplifi-

cation do not differ significantly. For Newsela, we see that XSimple sentences are
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significantly less adequate and grammatical. However, on average Simple and XSim-

ple sentences do not significantly differ, showing a trade-off between simplicity and

adequacy/grammaticality. Examples of system output are shown in Table 5.9 and in

Appendix C (Section C.1).

5.6 Summary

Conclusion In this chapter we set out to answer: No supervised data exists for a

specific paraphrasing task. Can bilingual data be used as a source of training data

for paraphrasing? To answer this question we developed a simplification model us-

ing variable disentanglement, which can jointly or individually control the syntax and

lexical choice of its output. Experiments showed that our constraint-aware model pro-

duces state-of-the-art simplification results. We further showed that by adjusting these

constraints we can control the level of simplification of the output.

Next Chapter In the next chapter, we expand upon the idea of adapting existing

simplification data. We propose an approach which adapts simplification data from

one language and applies it to other languages. This is ideal for situations where there

exists data in a high resource language, but not in a low resource language.



Chapter 6

Zero-Shot Crosslingual Sentence

Simplification

This chapter is based on Mallinson et al. (2020a) which was published in EMNLP

2020 and answers the following question:

• Can bilingual data be used to transfer sentential paraphrasing training data from

one language to another?

We consider the constrained paraphrasing task of sentence simplification. In the pre-

vious chapter we trained a sequence-to-sequence model on large amounts of parallel

simplification data. However, large scale parallel paraphrasing data often only exists in

English. Therefore we propose a zero-shot modelling framework which transfers sim-

plification knowledge from English to another language (for which no parallel simplifi-

cation corpus exists). A shared transformer encoder constructs language-agnostic rep-

resentations, with a combination of task-specific encoder layers added on top (e.g., for

translation and simplification) and language-specific decoders. Empirical results using

both human and automatic metrics show that our approach produces better simplifica-

tions than unsupervised and pivot-based methods.

6.1 Introduction

As discussed in Chapters, 1 and 5, sentence simplification aims to reduce the linguistic

complexity of a text whilst retaining most of its meaning. Modern approaches (Zhang

and Lapata, 2017; Nishihara et al., 2019; Dong et al., 2019; Martin et al., 2020a) view

the simplification task as monolingual text-to-text rewriting and employ the very suc-

103
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cessful encoder-decoder neural architecture (Bahdanau et al., 2015; Sutskever et al.,

2014).

As seen in Chapter 5 (Section 5.2) large-scale parallel datasets exist for English

as well as Spanish (Agrawal and Carpuat, 2019), however there is a limited amount of

simplification data for other languages. For example, Klaper et al. (2013) automatically

aligned 7,000 complex-simple German sentences1, and Brunato et al. (2015) released

1,000 complex-simple Italian sentences. But data-driven approaches to simplification,

in particular popular neural models, require significantly more training data to achieve

good performance, making these datasets better suited for testing/development pur-

poses.

Unsupervised approaches (Surya et al., 2019; Artetxe et al., 2018; Zhao et al., 2020)

which forego the use of parallel corpora are an appealing solution to overcoming the

paucity of data. However, in this chapter we argue that better simplification models can

be obtained by taking advantage of existing complex-simple data in a high-resource

language and bilingual data in a low-resource language (i.e., a language for which no

parallel simplification corpus exists). Drawing inspiration from the success of machine

translation (Firat et al., 2016b; Blackwood et al., 2018; Johnson et al., 2017), we pro-

pose a modeling framework which transfers simplification knowledge from English to

another language while generalizing across language and task barriers during training.

The backbone of our model is an encoder-decoder transformer (Vaswani et al.,

2017) trained using multi-task learning to either translate, autoencode, simplify, or

language model in both high- and low-resource languages. Regardless of the task or

language, we employ the same base encoder on top of which task-specific transformer

layers are added, while language-specific transformer decoders are used to generate the

output sequence. Since the same base encoder is used for all tasks and languages, the

model learns task- and language-agnostic representations. A beneficial side-effect is

that the proposed architecture can be trained using one language and tasked to simplify

another.

As simplifications for multiple languages can be produced within the same model,

our approach is more scalable compared to pivot-based methods, as described in Chap-

ter 4. The latter would first translate the complex sentence into a high-resource lan-

guage, apply a monolingual simplification model, and then translate back the output

to the original language. We avoid having to train multiple models and make multiple

hops, where each hop can add noise, and instead develop a one-hop crosslingual zero-

1This dataset has not been publicly released.
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shot approach. We evaluate our model using English as our high-resource language and

German as our low-resource language on two test sets from different domains, and with

different end-users in mind. These include TextComplexityDE (Naderi et al., 2019),

a recently-created corpus of German Wikipedia sentences deemed complex by second

language German learners. We also release a second dataset which contains manual

simplifications of articles taken from GEOlino2, a popular children’s magazine. Empir-

ical results using both human and automatic metrics show that our approach produces

better simplifications than both unsupervised and pivot-based methods.

Our contributions in this chapter are threefold: (1) a cross-lingual model architec-

ture which allows the transfer of simplification knowledge from high- to low-resource

languages, alleviating the paucity of training data for monolingual simplification; (2) a

comprehensive evaluation framework using automatic metrics and human judges; and

(3) the release of a dataset in German which we hope will facilitate further research in

automatic simplification3.

6.2 Background

Within this section we cover background information on simplification, crosslingual

generation, and current simplification datasets.

Simplification Chapter 5 (Section 5.5) provides details on existing state-of-the-art

models for supervised simplification, including using bilingual data to supplement

simplification data. In this section we survey semi-supervised and unsupervised ap-

proaches. Martin et al. (2020b) trains a controllable paraphrasing model on general-

purpose paraphrases datasets and at test time the model is constrained to output simple

paraphrases. Artetxe et al. (2018); Lample et al. (2018) demonstrate how an unsuper-

vised neural MT model can be trained by optimizing two objectives: denoising and

on-the-fly back-translation, as discussed in Chapter 2 (Section 2.3). Surya et al. (2019)

extend this approach further by adding two losses, which they show result in better

simplifications: (1) an adversarial loss using a discriminator which tries to determine

if the source sentence is complex or simple, and (2) a diversification loss, where a

classifier is trained to determine if the source sentence was encoded using the com-

plex or simple encoder. Zhao et al. (2020) also extend Artetxe et al. (2018), by using

2https://www.geo.de/geolino
3https://github.com/Jmallins/ZEST-data
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simple PPDB to create noise, replacing simple phrases with complex phrases. Rein-

forcement learning is further used to reward the fluency, adequacy and simplicity of

simplifications.

Crosslingual Generation Cross-lingual transfer learning based approaches have orig-

inated in machine translation. Dong et al. (2015) translate from one source language to

multiple target languages (one-to-many) adding a separate decoder for each. Follow-

on work (Luong et al., 2015a; Firat et al., 2016a) perform translation with multiple

encoders and decoders (many-to-many). Johnson et al. (2017) and Ha et al. (2016)

train multilingual models where all languages share encoder and decoder parameters,

and language tags (appended to the source sentence) are used to specify the target.

Multilingual models are also capable of translating between unpaired languages,

thereby performing zero-shot translation (Firat et al., 2016b; Johnson et al., 2017; Ha

et al., 2016). Blackwood et al. (2018) propose sharing all parameters but the attention

mechanism, while Lu et al. (2018) develop a shared "interlingua layer" between the

language-specific encoders and decoders.

While zero-shot approaches are effective for translating between unpaired lan-

guages, they do not consider the case where there exists no parallel data for a lan-

guage. For simplification, we assume that there is no parallel corpus in the low-

resource language (e.g., complex-simple German). Furthermore, preliminary results

showed that zero-shot translation approaches (Johnson et al., 2017) which append a

tag in the source sentence — this tag would indicate the simplification task in our case

— perform poorly, basically resulting in the source sentence being copied over with no

changes made. We suspect this is due to tags not providing a sufficiently strong guid-

ance to the model. We circumvent this by replacing tags with task-specific transformer

encoder layers which are added on top of the base encoder. By using transformer lay-

ers instead of tags, we are able to better enforce the desired behaviour, simplification,

when performing zero-shot simplification, as the encoded information is forced to take

into account the simplification layer.

This proposed architecture allows us to transfer supervision signals across lan-

guages and is potentially useful for other generation tasks, including question gener-

ation (Kumar et al., 2019) and sentence compression (Shen et al., 2018; Duan et al.,

2019a).

Our approach of task-specific transformer layers is similar to recent work on adapters

(Houlsby et al., 2019). Adapters provide a lightweight alternative to fine-tuning neu-
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Dataset Size Method Domain Languages

WikiSmall 89K Aligned Wikipedia English

WikiLarge 400K Aligned Wikipedia English

Mturk 2K Human Wikipedia English

Newsela 94K Aligned News English

Newsela 150K Aligned News Spanish

Brunato et al. (2015) 1K Human Mixed Italian

SIMPITIKI 1K Human Wikipedia Italian

PaCCSS–IT 63K Aligned Web Italian

Caseli et al. (2009) 2K Human News Portugese

Table 6.1: Overview of sentence simplification datasets, including the number of para-

phrases (size), method in which they were collected, the domain and the languages of

the dataset. English dataset are included for comparison.

ral networks, and consist of adding intermediate parameters between already trained

transformer layers. The entire network is frozen apart from these new parameters,

thus allowing the model to be adapted to a particular task without training the entire

network. Duan et al. (2019b) train a generic varational auto-encoder; they then use

adapters to change attributes of the output text, such as sentiment topic, or length.

Task-specific adapters could have been used as an alternative to task specific layers for

ZEST. This would have allowed for quicker training.

6.2.1 Simplification Datasets

Within this section, we discuss existing non-English sentence simplification datasets

(For English simplification dataset we refer the reader to Chapter 5 (Section 5.2)),

restricting ourselves to datasets which are currently publicly available. Table 6.1

provides an overview of existing datasets and Table 6.2 shows examples from these

datasets.

Newsela As mentioned in the previous chapter Newsela is a simplification corpus

comprising news articles written by Newsela’s professional editors and exists in both

English and Spanish. For Spanish there exists two sets of splits/alignments; Agrawal

and Carpuat (2019), which produced 150K complex-to-simple pairs, and Palmero Apro-

sio et al. (2019) which produce 56K pairs.
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Dataset Source Simplification

SIMPITIKI Romani conquistarono la Valle Camonica

nel 16 a.C. tramite i&lt;/del&gt;l procon-

sole dell’Illiria Publio Silio Nerva.

I Romani conquistarono la Valle Camon-

ica nel 16 a.C. &lt;ins&gt;con un’azione

de&lt;/ins&gt;l proconsole dell’Illiria Pub-

lio Silio Nerva.

PaCCSS-it MIl risultato , purtroppo , è sotto gli occhi

di tutti .

I risultati sono sotto gli occhi di tutti .

Caseli et al. (2009) – Elas atacam mais nos locais em que o

pessoal das excursões lava mãos e pratos

após as refeições – diz Adalberto Silva,

presidente da associação dos moradores da

localidade.

– Elas atacam mais nos locais em que o

pessoal das excursões lava mãos e pratos

após as refeições – diz Adalberto Silva.

Adalberto Silva é presidente da associação

dos moradores da localidade.

Table 6.2: Examples of sentence simplifications pairs as directly taken from the avail-

able datasets.

SIMPITIKI (Tonelli et al., 2016) Aligns revised sentences and their corresponding

original sentences from the Italian Wikipedia, if the revision notes indicates a simpli-

fication has occurred. 4,356 sentence pairs were originally produced; these were then

manually curated into 1,166 pairs. SIMPITIKI has been used a as part of larger Italian

simplification dataset (Palmero Aprosio et al., 2019) and to evaluate Italian simplifica-

tion systems (Scarton et al., 2017).

Brunato et al. (2015) created two Italian simplification subcorpora, the first contains

32 short novels for children, which were then simplified. The second is composed of

24 texts produced and simplified by teachers. For both corpora sentences were aligned

across documents. It has been used as part of a larger Italian simplification dataset

(Palmero Aprosio et al., 2019).

PaCCSS-it (Brunato et al., 2016) contains 63,000 complex-to-simple Italian sen-

tence pairs automatically extracted from the Web. A subset of sentences were manually

annotated. These annotations were used to train a classifier, which scored the extracted

pairs which is then used to filter the corpus. Scarton et al. (2017) further filtered this

corpus to produce higher quality simplification pairs.

Caseli et al. (2009) is a Brazilian Portuguese simplification dataset composed of 104

texts from the Zero Hora newschapter, paired with manually created simplifications. It
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has been used for training sentence splitting models (Gasperin et al., 2009).

As can be seen in Table 6.1 English has by far the largest simplification dataset,

with Spanish Newsela being fairly large, however it comes with a restrictive licence.

The table also serves to highlight that most languages have no simplification dataset

at all. With no or little simplification data it becomes hard to train neural models,

motivating this chapter, where we transfer simplification data from English, where we

see there is lots of data and apply it to German where there is no data. We note that this

pattern of there being large amounts of data in English, but little in other languages is

repeated for many NLG tasks.

6.3 Zero-shot Simplification

We first define a basic encoder-decoder Transformer, for more complete details we

refer the reader to Chapter 2 (Section 2.1), before adapting it for zero-shot crosslingual

simplification with multi-task learning.

6.3.1 Encoder-Decoder

Given a source sentence x = (x1,x2, ...,x|x|), our model learns to predict target y =

(y1,y2, ...,y|y|), where y could be a translation (e.g., from English to German) or a

simplification (e.g., from complex to simple English). Inferring target y given source x

can be modeled as a sequence-to-sequence learning problem (Bahdanau et al., 2015).

Our approach adopts the Transformer’s multi-layer and multi-head attention encoder-

decoder architecture (Vaswani et al., 2017). The Transformer encoder has n layers

(denoted Ll for layer l), which transform the input sequentially: X l+1 = Ll(X l). For

details regarding the Transformer layer, we refer the reader to Chapter 2 (Section 2.1.2)

and Vaswani et al. (2017). The output representations of the full Transformer, XN =

L1:N(x). The decoder is composed of a stack of identical layers. In addition to self-

attention the decoder attends to the source sentence xN . Encoder and decoder stacks

are trained to minimize the cross-entropy loss of y given x:

LCE =−
|y|

∑
i=1

log p(yi|y<i,XN ;θ) (6.1)
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Task
Source Target Target

Language Language Domain

Auto-encoding HR HR complex

Auto-encoding LR LR simple

Auto-encoding LR LR complex

Auto-encoding HR HR simple

Translate HR LR complex

Translate LR HR complex

LM None HR complex

LM None HR simple

LM None LR complex

LM None LR simple

Simplify HR HR simple

Table 6.3: Training tasks and their instantiations.

6.3.2 Multi-task Learning

We define a multi-task crosslingual setup where the model is trained on four basic

tasks; namely translation, autoencoding, language modeling, and simplification. We

train on different instantiations of these tasks depending on the source language which

can be high-resource (HR; e.g., English) or low-resource (LR; e.g., German), the target

language (which is again HR or LR), and the output domain which can be simple

or complex. We assume we only have monolingual simplification data in the high-

resource language and that we have bilingual translation data only in the complex

domain. Table 6.3 has a breakdown of the tasks we consider, with a more detailed

description given below.

Simplification is the backbone of the model and consists of a complex source sen-

tence which must be transformed into a simple sentence, while still retaining the orig-

inal meaning. We assume we only have parallel training data in the high-resource

language (see last row in Table 6.3).

Translation consists of a source sentence, which must be translated into the target

language while retaining the meaning of the source. By training on translation data,

our model learns language-agnostic representations which are helpful for simplifying
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in the low-resource language.

Autoencoding We also include an autoencoding task, i.e., translation between the

same language. As it is trivial to autoencode with attention, we apply source token

dropout, where randomly-selected source tokens are replaced with a special DROP

token (Lample et al., 2018). We apply this dropout to all tasks (translation, autoencod-

ing, and simplification). Additionally, this task allows us to incorporate monolingual

non-parallel simple data from the low-resource language.

Language Modeling has no source sentence; instead the decoder must learn to pre-

dict the next token based on its history. This task also allows us to incorporate mono-

lingual non-parallel simple data from the low-resource language (see rows LM in Ta-

ble 6.3).

Domains We define two domains: the simple domain which consists of text that

is easy to read, and the complex domain where text has not been explicitly written

for ease of reading. Introducing domains to the model allows us to further inject

knowledge about monolingual non-parallel simple sentences from the low-resource

language. We use the target audience of the data to determine if it is simple or complex

(e.g., if the text comes from Simple Wikipedia or a children’s book it is representative

of simple language). In practice, there often exist only limited amounts of non-parallel

simple sentences in the low-resource setting, highlighting the difficulty of the task.

6.3.3 Crosslingual Training

With the tasks defined, we explain how the model is able to switch among them. We

propose a modular encoder, where different encoder layers are used for different tasks;

an outline of this can be seen in Figure 6.1. For every task we use the same k base

transformer encoder layers, where k is a hyper-parameter. Each task T (simplifica-

tion, translation, language modeling), has additional t dedicated transformer layers

LT
1:t , which are applied on top of the base k layers, LT

1:t(L1:k(X0)), replacing the need

for task tags, which we found the model was ignoring when performing zero-shot sim-

plification. Each domain D (simple/complex), also has d additional dedicated trans-

former layers dD
1:d applied on top of the task specific layers, again replacing the use

of tags to better enforce the output domain constraint. The final representation of the
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English/German 

Lexicon Encoder

Transformer layer
6 layers

Language Model
 Transformer layer

Translate
Transformer layer

Simplify
Transformer layer

1 layer 1 layer 2 layers

Complex Domain
Transformer layer

Simple Domain
Transformer layer

1 layer 1 layer

German
Decoder

English
Decoder
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Figure 6.1: Architecture of our crosslingual encoder-decoder model. The lexicon En-

coder transforms words into word embeddings. Solid lines indicate mandatory paths,

dotted lines indicate possible paths.
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source sentence x is:

xN = LD
1:d(L

T
1:t(L1:k(X0))) (6.2)

Training is done end-to-end to minimize the negative log-likelihood; for each mini-

batch we specify the task, domain and output language (O):

LCE=− logP(y|y< j,XN ;θ,{D,T ,O}) (6.3)

D and T determine the choice of dedicated Transformer layers. We use a dedicated

Transformer decoder for each output language O to encourage the model to learn a

language agnostic representation. All text is splt into subwords using SentencePiece

(Kudo and Richardson, 2018), resulting in a shared vocabulary between LR and HR.

This allows for word embeddings to be shared between the encoder and the decoders.

We further force representations to be language agnostic, by employing a DISCrim-

inator (Ganin and Lempitsky, 2015), a feed-forward network trained to distinguish HR

and LR from the hidden representations. The encoder is then trained to perplex the

discriminator. Specifically, we add two discriminators to our model; one determines

the language of the source sentence (I ) using L1:k(X0), and the other predicts the tar-

get language using the output of the encoder xN . In this way we ensure the input to

the simplification transformer layers is language agnostic as well as the output. The

discriminator is trained to minimize the binary cross-entropy loss (BCE) between its

predictions and the ground truth:

|X |

∑
i=1

BCE(I ,DISC(L1:k(X0)i;θdI )+

BCE(O,DISC(XN
i );θdO )

(6.4)

where θdI and θdO are the parameters of the two discriminators. The encoder is trained

using an adversarial loss, to perturb the discriminator:

LADV =−
|X |

∑
i=1

BCE(I ,DISC(L1:k(X0)i;θ)+

BCE(O,DISC(XN
i );θ)

(6.5)

The adversarial loss is combined, and optimized simultaneously, with the cross-

entropy loss to produce the training objective of the entire model.

L = LCE +λLADV (6.6)



114 Chapter 6. Zero-Shot Crosslingual Sentence Simplification

where λ moderates the degree to which the encoder should perturb the discriminators.

A high value for λ can cause the encoder to not encode any information regarding the

source input.

To perform simplification in the low-resource language at test time, the base en-

coder is used with the simplification stack which is subsequently decoded with the LR

decoder. To perform crosslingual simplification, the decoder can simply be changed to

the HR decoder.

6.4 Experimental Setup

Training Set Our training data is summarized in Table 6.5. For all experiments we

assume that English is the high-resource language and German is the low-resource

language. Simplification data in English is taken from WikiLarge (Zhang and Lap-

ata, 2017), described in Section 5.2.1. English-German bilingual data is taken from

the WMT19 news translation task. Complex monolingual non-parallel data uses one

side of the WMT19 translation data. Simple English non-parallel data uses sentences

extracted from simple Wikipedia, a simplified version of Wikipedia. Simple German

non-parallel data uses sentences scraped from GEOLino (Hancke et al., 2012). Exam-

ples of the training data can be seen in Table 6.4.

Test Set We evaluated our model on two German simplification datasets, each tar-

geting different users. TextComplexityDE (Naderi et al., 2019) consists of sentences

from Wikipedia, which were considered complex by second language German learn-

ers. These sentences were then simplified by a native German speaker and checked by

these learners. In addition, we created a test set from GEOlino. We extracted 20 ar-

ticles4 from three categories: nature, physics, and people. A trained German linguist

then simplified the articles, sentence by sentence, to be understandable for children

aged between 5–7 years. Examples from the test set can be seen in Table 6.7. Our

simplifying instructions can be found in the Appendix D (Section D.1).

Table 6.6 shows various descriptive statistics on our test sets. GEOlino is larger

and consists of both single and multiple source sentences. The FRE readability met-

ric (more information can be found in Chapter 2 (Section 2.1)) shows that both the

source and target sentence are very simple. We also see moderate amounts of sen-

tence splitting (the number of sentences per instance increases in the simplified target).

4Articles were limited to 20 sentences. Half the articles were reserved for a validation set.



6.4. Experimental Setup 115

Dataset Source Target

WMT19 SAN FRANCISCO – Es war noch nie le-

icht , ein rationales Gespräch über den

Wert von Gold zu führen .

SAN FRANCISCO – It has never been

easy to have a rational conversation about

the value of gold .

WMT19 Ich erkläre die am Freitag , dem 17.

Dezember unterbrochene Sitzungsperiode

des Europäischen Parlaments für wieder-

aufgenommen , wünsche Ihnen nochmals

alles Gute zum Jahreswechsel und hoffe ,

daß Sie schöne Ferien hatten .

I declare resumed the session of the Eu-

ropean Parliament adjourned on Friday 17

December 1999 , and I would like once

again to wish you a happy new year in the

hope that you enjoyed a pleasant festive pe-

riod .

WikiLarge Seventy-five defencemen are in the Hall of

Fame , more than any other current posi-

tion , while only 35 goaltenders have been

inducted .

Seventy-five defencemen are in the Hall of

Fame , more than any other current posi-

tion , while only 35 goaltenders have been

inducted .

GEOlino Verteilt die Himbeeren in einem Eiswürfelbereiter und füllt sie mit Wasser auf. Stellt sie

für mindestens 4 Stunden ins Gefrierfach.

GEOlino Seine Mutter möchte ihn also etwas bremsen.

Simple Wikipedia It is found in the region Pays de la Loire in the Vendée department in the west of France.

Simple Wikipedia For example, Mohandas Gandhi was a very influential person, because the things he did

and said changed many peoples lives, and many people believe he has even influenced

the world.

Table 6.4: Examples from the training datasets. Further examples from WikiLarge can

be seen in Table 6.1.

Source Target Size

WikiLarge EnglishC EnglishS 300K

WMT19 EnglishC GermanC 6.0M

GeoLino — GermanS 200K

Wikipedia — EnglishS 1.4M

Table 6.5: Training data used in our experiments; monolingual corpora shown under

Target; indices are shorthands for Complex and Simple language.
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TextComplexityDE GEOlino

Source Target Source Target

Length 28.66 29.23 15.68 15.05

Sents 1.09 2.17 1.13 1.55

FRE 28.53 49.3 62.87 68.73

Size 122 663

TER 67.95 24.12

Insertions 3.20 0.43

Deletions 3.17 1.08

Substitution 9.10 1.54

Shifts 1.70 0.18

Table 6.6: Descriptive statistics of test set, including: Size, the number of instances;

Length, average number of words; Sents, average number of sentences per instance;

average Flesch Reading Ease (FRE) score (higher is simpler); TER, the translation

error rate, measuring distance between source and target and is composed of 4 parts,

for which we report the average number of: insertions, deletions, Substitutions and

shifts.
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Dataset Simple Complex

TextComplexityDE Wegen dieser leichten Vergänglichkeit

wurde ,Seifenblase‘ zu einer Metapher für

etwas, das zwar anziehend, aber dennoch

inhalts- und gehaltlos ist.

Weil Seifenblasen nicht lange halten, wur-

den sie zu einem sprachlichen Ausdruck

für etwas, das anziehend aber inhaltslos ist.

TextComplexityDE Als Gründe dafür, dass Väter ihre Arbeit-

szeit relativ selten für die Familienarbeit

reduzieren, werden u. a. finanzielle

Nachteile aufgrund von Gehaltsunter-

schieden zwischen Männern und Frauen,

fehlende Teilzeitstellen für höhere Posi-

tionen sowie eine Profitorientierung der

Konzerne, die auf familiäre Bedürfnisse

der Angestellten keine Rücksicht nehme,

genannt.

Väter reduzieren ihre Arbeitszeit relativ

selten für die Familienarbeit. Das kann

verschiedene Gründe haben. - Sie fürchten

finanzielle Nachteile aufgrund von Gehalt-

sunterschieden zwischen Männern und

Frauen - es gibt keine Teilzeitstellen für

höhere Positionen - Konzerne nehmen

auf familiäre Bedürfnisse der Angestellten

keine Rücksicht, da sie profitorientiert or-

ganisiert sind

GEOlino Das Licht der Sonne bestimmt außer-

dem, wann und wie lange Tiere (und,

bis auf Ausnahmen, auch Menschen) ak-

tiv sind beziehungsweise schlafen: Vögel

beispielsweise beginnen bei einer bes-

timmten morgendlichen Helligkeit mit

ihrem Gesang.

Das Licht der Sonne bestimmt, wann und

wie lange Tiere und Menschen aktiv sind

oder schlafen. Vögel beginnen bei einer

bestimmten Helligkeit zu singen.

GEOlino Wie viele andere Tiere kommunizieren

Elefanten in Tonlagen, die das menschliche

Ohr gar nicht wahrnehmen kann.

Elefanten machen Töne in Tonlagen,

die das menschliche Ohr gar nicht

wahrnehmen kann.

Table 6.7: Examples from the GEOlino and TextComplexityDE test sets.
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TextComplexityDE is more complex, with the source sentences having the lowest FRE

score. The target simplifications, while noticeably simpler than the source, are still

more complex than GEOlino. We also observe a significant amount of sentence split-

ting in this dataset. TextComplexityDE also has a significantly higher Translation Error

Rate (TER), showing more of each type of operation. However, we should note that

GEOLino has approximately the same TER as the WikiLarge test set (25.85).

Evaluation As there is no single agreed-upon metric for simplification (Alva-Manchego

et al., 2020; Sulem et al., 2018a); we evaluate the models outputs using a combina-

tion of four automatically generated scores, which essentially quantify: a) whether

the output is similar to the gold standard reference (Target-based, T); b) whether

the output is similar to the source (Source-based, S); and c) whether the output is

simple on its own, with no regard to preserving the meaning of the original sen-

tence (Readability-based, R). We indicate the type of each metric using superscripts.

BLEUT5, iBLEUT,S, SARIT,S6, and FRE-BLEUT,S,R7, these metrics have been previ-

ously shown to correlate with human judgments of simplification quality (Xu et al.,

2016)8, where FRE-BLEU, is newly introduced, and combines metric which refer-

ence the target, source and simplicity level. FRE-BLEU (Xu et al., 2016) combines

the difference in FKGL of the source and the output and the iBLEU score. FKGL

is a shorthand for the Flesch-Kincaid Grade Level readability score which was orig-

inally developed for English but has not been ported to German. So instead we use

the Flesch Reading Ease readability test which has been ported for German (FRE;

Amstad 1978) and adapt FK-BLEU to use the difference in FRE. Calculated as FRE =

180−ASL−(58.5 ·ASW) where ASL is the average sentence length and ASW the av-

erage number of syllables per word. More information on these metrics can be found

in Chapter 2 (Section 2.2).

We also evaluated system output by eliciting human judgments via Amazon’s Me-

chanical Turk. Native German speakers (self reported) were asked to rate simplifica-

tions on three dimensions: Grammaticality (is the output grammatical and fluent?),

Meaning Adequacy (to what extent is the meaning expressed in the original sentence

preserved in the output, with no additional information added?), and Simplicity (is the

5Scores were calculated at the corpus level using multi-bleu-detok.perl
6Corpus level SARI scores were used.
7Sentence length was determined using mosses sentence splitter and syllables were counted using

hunspell de_DE dictionary.
8However we note, that these correlations were calculated on a specific English test set using sen-

tence level metrics.
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output a simpler version of the input?). Ratings were obtained using a five point Likert

scale. We randomly sampled 100 source sentences from each test set (GEOlino and

TextComplexityDE), each sample received five ratings, resulting in 500 judgments per

test set. Annotator instructions can be found in the Appendix D (Section D.3).

Model Parameters For all experiments, the base encoder stack consists of six trans-

former layers, the simplification stack has two layers, the decoder stack six layers, and

all other stacks are a single transformer layer. Each layer has a hidden dimension of

size 512 and an inner dimension size of 2,048. Word embeddings, size 512, were ini-

tialized randomly and shared between the encoder and both decoders. We used eight

attentional heads. Dropout was set to 0.1; source word dropout was also set to 0.1.

The discriminator consists of a four layer feedforward network with dropout set to 0.1.

The networks were optimized using Adam (Kingma and Ba, 2015). Multi-tasking was

performed by alternating batches of different tasks. We select a minibatch from a task

with a probability inversely proportional to the training loss of the task. This is due to

the differing amount of training data, allowing for quicker overfitting on the smaller

datasets. Additionally, some tasks such as autoencoding are easier than other tasks,

leading to quicker overfitting. One model was selected using the average FRE-BLEU

score across all development sets.

All text was preprocessed using the UDPipe tokenization script (Straka, 2018) and

truecasing was applied. SentencePiece was subsequently applied to the text, with a

SentencePiece vocabulary size of 50,000 and a sampling size of l = ∞ and a smoothing

parameter of α = 0.25 (Kudo, 2018).

6.5 Results

Automatic Evaluation Table 6.8 summarizes our automatic evaluation results. We

compare our ZEro-shot croSslingual Sentence simplificaTion model, which we call

ZEST, against multiple unsupervised and supervised baselines. We compare against

two unsupervised neural MT models. Surya et al. (2019) (U-NMT) and Surya et al.

(2019) (U-SIMP), as described in Section 5.2. Both models were trained on the non-

parallel simple and complex German datasets.

We additionally include a supervised baseline based on pivoting, which requires

three independently trained models: a complex source German sentence is first trans-

lated to English (de → en); it is then simplified (complex en → simple en), before
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Models FRE-BLEU iBLEU BLEU SARI

ZEST 36.04 12.99 21.11 41.12

Pivot 28.44 8.09 11.50 38.64

U-SIMP 29.95 8.97 15.03 37.40

U-NMT 26.63 7.09 11.72 35.97

(a) TextComplexityDE

Models FRE-BLEU iBLEU BLEU SARI

ZEST 62.37 44.72 58.68 39.09

Pivot 39.54 17.81 22.92 27.94

U-SIMP 59.53 46.33 61.10 40.00

U-NMT 62.57 39.50 52.02 35.22

(b) GEOlino

Table 6.8: Results using automatic evaluation metrics; best scores for each metric are

boldfaced.

TextComplexityDE GEOlino

Model FRE-BLEU SARI FRE-BLEU SARI

ZEST 36.04 41.11 62.37 39.09

−ADV 36.81 40.47 60.61 40.98

−LM 35.46 41.26 57.29 40.33

−AE 35.56 41.60 57.66 36.49

−LM−AE 35.39 41.71 55.37 35.42

Table 6.9: Ablation study examining the impact of removing the adversarial (ADV) loss,

and then additionally removing the language modeling loss (LM), and autoencoding

loss (AE), separately, then together.
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EN→DE DE→EN

ZEST 32.11 30.90

Pivot 34.15 31.72

SOTA 44.9 42.8

Table 6.10: BLEU scores on the WMT19 test set.

translating it back to German (en → de). All three models consist of a transformer

with eight encoder/decoder layers and were trained using the same data as employed

in our approach (see Table 6.5; WMT19 and WikiLarge). Results on the WMT19

test for ZEST, Pivot, and the state-of-the-art (Bojar et al., 2017) can be seen in Table

6.10. With regard to English simplification (complex en→ simple en), the Pivot sys-

tem achieved a SARI score of 36.30 on the WikiLarge test, and ZEST 37.78. On the

same test set, (Zhang and Lapata, 2017), a commonly used baseline simplification sys-

tem, obtains a SARI score of 37.26, whereas the state-of-the-art system achieves 41.70

(Martin et al., 2020a). Whilst our systems achieve simplification results below state-

of-the-art, it is possible to incorporate the improvements of these models into ZEST,

which we leave for further work.

The results in Table 6.8 show that ZEST obtains the highest results for all metrics on

TextComplexityDE. U-SIMP achieves the second best FRE-BLEU score, while Pivot

achieves the second best SARI. Overall, U-NMT produces the worst results. Results on

the GEOlino dataset are more mixed, with no model achieving the highest score across

all metrics. ZEST does well across all metrics, scoring the second highest for every

metric, whereas the scores for U-SIMP and U-NMT spike on different metrics. U-NMT

achieves the best FRE-BLEU score, however, on other metrics it is the second lowest.

In contrast U-SIMP has a low FRE-BLEU score but for all other metrics it scores the

highest. Pivot receives the lowest scores across all metrics. Example outputs can be

seen in Table 6.12 and in the Appendix D (Section D.2).

We further examined the impact different loss functions have on the performance

of ZEST and these results are presented in Table 6.9. We see that training only on

simplification and translation data (−LM−AE) significantly damages the performance

of the model, producing the lowest FRE-BLEU scores and the lowest SARI score on

GEOlino. We observed that removal of the autoencoding loss (−AE) led to sentences

which strayed too far from the source sentence, thereby losing meaning, whereas re-

moval of the language modeling loss (−LM) led to sentences being too close to the
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Models Mean Gram Simp AVG Min

Reference 4.35∗∗ 4.54∗∗ 3.81∗ 4.23∗∗ 3.60∗∗

U-SIMP 2.67∗∗ 2.87∗∗ 2.80∗∗ 2.78∗∗ 2.22∗∗

Pivot 3.65∗∗ 4.13 3.67 3.82∗ 3.18

ZEST 4.05 4.15 3.63 3.94 3.23

(a) TextComplexityDE

Models Mean Gram Simp AVG Min

Reference 4.73∗∗ 4.75∗∗ 3.79∗∗ 4.42∗∗ 3.69∗∗

U-SIMP 4.19∗ 4.30∗∗ 3.22∗ 3.90∗ 3.08∗∗

Pivot 3.69∗∗ 3.76∗∗ 3.25∗ 3.45∗∗ 2.83∗∗

ZEST 4.38 4.57 3.44 4.13 3.24

(b) GEOlino

Table 6.11: Mean ratings given to simplifications by human participants; highest ratings

for each system are boldfaced. Models significantly different from ZEST are marked

with ∗(p < 0.05) and ∗∗(p < 0.01). Significance tests were performed using a student

t-test.

source sentence, resulting in too little simplification. The inclusion of the adversarial

loss (−ADV) showed a small overall increase in FRE-BLEU and a small decrease in

SARI.

Human Evaluation Table 6.11 summarizes the results of the human evaluation. We

elicited judgments for three systems, namely ZEST, U-SIMP, and the Pivot-based ap-

proach. We also included the gold standard Reference as an upper bound (see the

Appendix D (Section D.3) for examples of sentence pairs shown to crowdworkers).

We report mean ratings for Meaning adequacy, Grammaticality and Simplicity, their

combined average (AVG), and their (average) Minimum value. As mentioned in Chap-

ter 5, we include Minimum because we argue that a simplification is only as good as

its weakest dimension.

On TextComplexityDE, ZEST is significantly better than the unsupervised approach

across all dimensions. It is on par with Pivot in terms of Grammaticality, Simplicity,

and Minimum (ratings are not significantly different). However, ZEST is significantly

better in terms of Meaning adequacy, and on average. On GEOlino, ZEST is signifi-

cantly better against all comparison models on all dimensions. Perhaps unsurprisingly,
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Complex Von hier aus erhaltet ihr einen [eindrucksvollen]1 Rundum-Blick über die ganze

Schlucht [hinweg]2 bis hin zu ihren etwa [5000]3 Meter hohen Kraterwänden.

U-SIMP Von hier eraus ihr haltet einen umfassenden Rundum-Blick über die ganze bis [hin-
weg]2 hinweg zu hin zu ihren [5000]3 Meter hohen Kraterwände.

Pivot Von hier genießen Sie einen [beeindruckenden]1 Rundumblick über die gesamte

Schlucht bis [zu]2 den 500 m hohen Kraterwänden.

ZEST Von hier aus erhaltet ihr einen Rundum-Blick auf die ganze Schlucht.

(a) GEOlino

Complex Das ist nur etwa das Doppelte [des Weltenergiebedarfs]4, [was]5 bedeutet, [dass]5

[Erdwärmenutzung]6 [im]2 großen Stil immer auf eine lokale Abkühlung des

Gesteins hinausläuft.

U-SIMP Das ist nur etwa das Doppelte [des Weltenergiebedarfs]4, [was]5 bedeutet, [dass]5

Erdwärmemer [im]2 großen Stil immer auf eine andere Abkühlung des Gesteins[)]7.

Pivot Dabei handelt es sich nur um eine [Verdoppelung]6 [des weltweiten Energiebe-
darfs]5, [was]5 [bedeutet]2, [dass]5 die großflächige [geothermische]8 [Nutzung]6

immer einer lokalen [Kühlung]6 [des Gesteins]4 entspricht.

ZEST Das bedeutet, [dass]5 Erdwärme im großen Stil immer auf eine lokale Abkühlung

[des]2 Gesteins hinausläuft.

(b) TextComplexityDE

Table 6.12: Examples of system output and simplification violations: (1) word has

13+ letters; (2) sentence has 12+ words; (3) high number; (4) genitive; (5) subordinate

clauses; (6) abstract words; (7) special characters; (8) difficult/foreign words.
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across datasets, participants perceive gold standard simplifications as superior to the

output of all comparison models.

Model lex SC RC pas suj gen spl

Reference 38.7 11.9 10.5 06.8 16.2 12.2 35.5

U-SIMP 41.2 18.7 04.3 04.6 07.7 08.0 03.2

Pivot 44.9 17.3 07.8 06.7 11.6 14.6 03.2

ZEST 51.9 08.3 11.8 04.9 13.0 5.8 02.3

Table 6.13: Proportion of simplifications on 100 sentences. Simplifications include: lex-

ical (lex), subordinate clause (SC), relative clause (RC), passive voice (pas) subjunctive

(suj), genitive (gen), and sentence splitting (spl).

Error analysis We further analysed the types of simplifications produced by each

system. We sampled 100 source sentences (50 from each dataset) and elicited judg-

ments from annotators. Guidelines given to the annonators can be found in Appendix D

(Section D.4) The annotators were asked to indicate the types of simplification which

occurred, including: lexical substitutions, passive to active voice, splitting sentence

into multiple sentences, and rewriting to avoid subordinate clauses, relative clauses,

the subjunctive mood, and the genitive case. The results in Table 6.13 show that ZEST

performs a wide variety of simplifications and produces the largest number of lexical

simplifications. While all models produce more lexical substitutions than the refer-

ences, the references split sentences frequently, whereas in all cases, the models split

the sentence minimally. The Pivot model simplifies genitives the most while U-SIMP

simplifies subordinate clauses most. ZEST produces the largest number of lexical

simplifications, and simplifications related to relative clauses and subjunctives.

Crosslingual Simplification We next explore how different tasks can be combined

with no additional training data. We illustrate how our model can be used to tackle

the task of both simplifying and translating. We now assume that the source complex

sentence is in English and the simplified output sentence is in German. As there cur-

rently exist no crosslingual German simplification test sets, for evaluation purposes we

hand-translated 100 complex sentences from each of the German test sets into English.
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Models FRE-BLEU iBLEU BLEU SARI

ZEST 31.82 10.26 14.29 41.11

Pivot 32.72 10.71 15.19 41.60

(a) TextComplexityDE

Models FRE-BLEU iBLEU BLEU SARI

ZEST 43.65 19.17 25.00 34.62

Pivot 42.61 18.29 23.78 34.43

(b) GEOlino

Table 6.14: Crosslingual, simplifying English into German, automatic results.

Results9 can be seen in Table 6.14 and example output in Table 6.15 and the Appendix

D (Section D.2). For comparison, we provide the results of Pivot, which requires two

independently-trained models: a complex source English sentence is first simplified

(complex en → simple en), and then translated into German (en → de). While the

results show that ZEST and Pivot are comparable, the fact that we can train our model

on single tasks and then recombine the task-specific layers to allow zero-shot transfer

to unseen task combinations opens up exciting new opportunities for future work.

6.6 Summary

Conclusion In this chapter we set out to answer the question: Can bilingual data be

used to transfer sentential paraphrasing training data from one language to another?

As such we developed a general approach for transferring generation data from high- to

low-resource languages using language agnostic transformers combined with task spe-

cific transformer layers. Experimental results on transferring simplification knowledge

from English to German showed that our approach was able to produce significantly

better German simplifications than unsupervised and pivot-based approaches. In ad-

dition to zero-shot simplification, we showed that our model can generate German

simplifications given English input, without any additional training.

Next Chapter The next chapter contains our conclusion, where we summarize our

contributions of this thesis and provide possible future direction for research.

9Both SARI and FRE-BLEU are monolingual evaluation metrics, as such we use the original German
source sentence.
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EN Source The mountain is the watershed on whose flanks the catchment areas of the Pacific

Ocean, the Atlantic Ocean over the Gulf of Mexico, and the Arctic Ocean over Hudson

Bay, meet.

DE Source Der Berg ist der Wasserscheidepunkt an dessen Flanken sich die Einzugsgebiete des

Pazifischen Ozeans, des Atlantischen Ozeans über den Golf von Mexiko und des Ark-

tischen Ozeans über die Hudson Bay berühren.

EN ZEST Der Berg ist der Weckschatz, auf dessen Flanken die Fanggebiete des pazifischen

Ozeans, des Atlantischen Ozeans über dem Golf von Mexiko, und des Arktischen

Ozeans über Hudson Bay, treffen.

DE ZEST Der Berg ist der Wasserscheidepunkt an dem sich die Einzugsgebiete des Pazifiks,

des Atlantischen Ozeans, des Golfs von Mexiko und des Arktischen Ozeans über die

Hudson Bay treffen.

(a) TextComplexityDE

EN Source Without the radiation energy of the sun, plant photosynthesis would not work.

DE Source Ohne die Strahlungsenergie der Sonne würde die pflanzliche Photosynthese nicht

funktionieren.

EN ZEST Ohne die Strahlungsenergie der Sonne, Pflanzen Photosynthese würde nicht funktion-

ieren.

DE ZEST Ohne die Strahlungsenergie der Sonne würde die Pflanze nicht funktionieren.

(b) Geolino

Table 6.15: Examples of crosslingual simplification (EN Source→ DE ZEST); for com-

parison, we also show the output of a monolingual system (DE Source→ DE ZEST).
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Conclusions and Future work

In this thesis we developed sentential paraphrasing models for a wide range of tasks,

users, and languages. We showed how transfer learning, an approach where train-

ing data from a related secondary task is adapted for a primary task, can be used to

overcome the lack of paraphrasing data. Our motivation stems from the benefits that

sentential paraphrasing models offer end-users as well as the ability for these models

to improve the robustness of existing NLP frameworks and the acute lack of sentential

paraphrasing data, hindering the training of these models. Data is often not available,

or only available in select high-resource languages, or the data is not well suited for

the target user. As such we developed transfer learning techniques, to adapt adjacent

data for paraphrasing and in doing so we answer the following question:

Can we perform paraphrasing tasks with neural sequence-to-sequence models
without task-specific paraphrasing data using transfer learning?

To help us answer this question we break it down into three further questions:

1. No supervised data exists for a specific paraphrasing task. Can bilingual data be

used as a source of training data for paraphrasing?

2. Supervised paraphrasing data exists in one language but not in another. Can

bilingual data can be used to transfer paraphrasing training data from one lan-

guage to another?

3. Can the output of encoder-decoder paraphrasing models be controlled?

In Chapter 3 we answered question 1, by proposing an unconstrained paraphrasing

model, which trained on no paraphrasing data. Instead, it adapted bilingual translation

127
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data, which is available in large quantities and across many languages. To use bilingual

data for monolingual paraphrasing we introduced neural pivoting; an approach which

combines two pre-trained neural machine translation models. A source sentence is first

translated into several foreign pivot sentences, these pivots are then simultaneously

translated back into the original language, producing a paraphrase. We showed, using

human and automatic evaluation, that neural pivoting produces semantically preserving

and grammatical paraphrases.

In Chapter 4 we address questions 1 and 3, we extended neural pivoting with a con-

trol mechanism to perform sentence compression, again using only bilingual data. To

do so, a length control mechanism was added to the translation models, which allowed

users to specify the output length. Neural machine translation models were trained us-

ing latent variable disentanglement, where the length of the output translation was dis-

entangled from the semantics of the translation. We showed that this approach allowed

us to control the output of the neural machine translation model, answering question

3. To produce monolingual compression, a source sentence is first translated into mul-

tiple foreign pivots, these foreign pivots are then simultaneously translated back into

the original sentence whilst controlling the target length. We demonstrated, in multiple

languages, that this approach is effective for producing compression without compres-

sion data, answering question 1. As there is a lack of sentence compression data outside

of English, we also produced and released multilingual sentence compression test sets,

which we used in the evaluation of our model.

In Chapter 5, we further addressed question 3, by extending the controllability as-

pect of Chapter 4. We showed how syntax and the lexical-choice of a simplification

can be disentangled from its semantics. We trained an encoder-decoder model on su-

pervised simplification data using variable disentanglement, separating the semantics

from the lexical and syntactic surface form, allowing a user to control the high-level

syntactic output and lexical choices of the models. By adding a control mechanism our

model can be trained on general-purpose simplification data whilst producing simpli-

fication tailored to a user’s specific needs, negating the need to create bespoke training

data for every user. We showed that this approach is able to produce good general

purpose simplifications, and that by controlling the syntax and lexical choices we are

able to adjust the simplicity level of the output.

In Chapter 6 we continued to explore sentence simplification, however, we focused

on question 2, where simplification data exists in English, a high-resource language,

but not in a low-resource language, German. To overcome this lack of data in German
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we proposed an encoder-decoder architecture which learns language-agnostic simplifi-

cation operations. The model was trained on translation data and English simplification

data. It consisted of a shared encoder, which learns a language-agnostic representation

of the sentence, this representation was then used as the input to a simplification trans-

former layer, trained solely on English simplifications. To evaluate our model, we

produced and released a German simplification test corpus. We showed, using auto-

matic and human evaluation, that our model can produce German simplifications from

English data.

Future work

In this thesis, we tackled several questions regarding transfer learning, showing how

existing data can be repurposed. However, there are several avenues which remain

open for exploration. For instance, the models presented in this thesis were developed

for a subset of paraphrasing task, in a small number of languages and in a mix of

domains. It is worth studying and exploring how to improve the proposed models’

scalability in terms of supporting more domains, languages, and paraphrasing tasks.

Avenues for future research about the scalability for paraphrasing are many and varied.

We discuss some promising directions below.

More Languages and Tasks In this thesis, we explored three paraphrasing tasks:

unconstrained paraphrasing, sentence compression, and sentence simplification. How-

ever, as discussed in Chapter 1 (Section 1.1), there are many other paraphrasing tasks,

such as sentence fusion, sentence splitting, and grammar correction, all of which have

different data conditions and different challenges associated with them, which could

lead to different architectures from those proposed in this thesis. For instance, in Chap-

ter 4 we used variable disentanglement to control the length of the outputs for sentence

compression, whereas for simplification, in Chapter 5, we used variable disentangle-

ment to control the outputs syntax and lexical choices. From this we see that the

different tasks required disentangling different variables, which we would assume this

would hold true for future tasks. Instead of developing a set of controllable variables

per task, a broad set of variables to disentangle could be developed which would be

applicable for many paraphrasing tasks.

Additionally, throughout this thesis, we have focused on three languages: English,

French, and German. These languages were chosen due to the availability of annota-
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tors1. However, it is worth exploring other languages, particularly those outside the

Indo-European language family, as these languages often suffer the most from a lack

of data and therefore would benefit the most from transfer learning.

Dataset Creation In Chapter 3 (Section 3.5) we discussed how neural pivoting, and

bilingual data can be combined to create large-scale paraphrasing training datasets.

Once such datasets are created, standard models can be trained on them, removing

the need for specialized architectures. A similar approach could also be used to cre-

ate sentence compression datasets using the model proposed in Chapter 4. Combin-

ing bilingual data and length controlled translation model, the foreign sentence from

the bilingual data is translated, while controlling the output length to ensure that it

is shorter than the source sentence. The translation and the source sentence are then

paired.

Similarly, in Chapter 6, we proposed ZEST, a model which transferred simplifica-

tion data from English to German, which could also be used to create simplification

datasets. Given a corpus of non-parallel German sentence, ZEST would generate sim-

plifications, which then would be paired with the original sentences. ZEST can be

trained with bilingual data from many languages, and therefore is able to produce sim-

plifications and datasets in many languages.

Domain Adaptation In Chapters 3, 5, and 6, we used machine translation models

trained on WMT data. While this data is collected from multiple sources, the two

largest sources, as determined by the number of parallel sentences, are news and parlia-

mentary proceedings. This leads to the models being trained on data which is far away

from the desired target domain. For instance, in Chapter 5 models were trained WMT

data and evaluated on Wikipedia sentences. Work within machine translation has high-

lighted the significant detrimental effects of training within one domain and testing in

another domain (Koehn and Knowles, 2017; Kobus et al., 2017). Fortunately, as dis-

cussed in Chapter 2 (Section 2.3.1), work within machine translation has also shown

ways in which to minimize the effect of differing domains, such as back-translation

(Sennrich et al., 2016d) or domain control (Kobus et al., 2017). Additionally there

exist significant amounts of translation data, from many domains, which were not in-

cluded within the WMT datasets. In the future, more varied translation data could be

1Although the models developed can be applied in any languages, the reality of finding annotators
creating dataset for evaluation meant that our experiments were conducted on exclusively European
languages
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used, as well as using existing machines translation approaches to overcome domain

mismatches.

Semi-Supervised Learning Within this thesis we have focused on unsupervised

learning, as we worked under the assumption that there was no available training data,

often resulting in the need for us to create small scale datasets which we have used as

the development and test set. However, instead of using this small amount of data as

a development set we could instead use it as supervised training data, augmenting the

large amount of unsupervised data the models are trained on. For instance, in Chapter

4 we propose unsupervised sentence compression; future work could focus on taking

advantage of the limited amount of supervised training data we already have by com-

bining it with the unsupervised data. In Chapter 6 we introduce a multi-task learning

setup for simplification, when there is no German simplification data available. How-

ever, if we had a small amount of German simplification data, this could be added as

an additional task to the multi-task setup.

Document/Paragraph Level Paraphrasing Within this thesis we have focused on

sentence-to-sentence paraphrasing, which is simpler, computationally cheaper, and

easier to create datasets for than document/paragraph level rewriting. However, re-

stricting rewrites to individual sentences limits the amount of context available to

model, and it limits the flexibility of the range of possible rewrites. As such we pro-

pose future work could examine paragraph or document level paraphrasing, which has

been successfully applied to machine translation tasks Läubli et al. (2018); Junczys-

Dowmunt (2019); Miculicich et al. (2018). Not only would working at the docu-

ment/paragraph level offer greater context, but it would also allow the model to re-

order the document, merge sentences, or even drop sentences entirely, where all three

of these operations are applicable to both simplification, and compression.

For instance, pivoting approaches of Chapters 3 and 4 could use document level

machine translation models instead of sentence level models, thus performing docu-

ment level paraphrasing. The simplification models in Chapters 5 and 6 are trained on

simplification created by aligning sentences between two documents; hence, instead of

using aligned sentences the entire documents could be used to train the simplification

models.
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Appendix A

Paraphrasing with Neural Pivoting

A.1 Paraphrase examples

Tables A.1–A.3 show examples of PARANET output on the Wikianswers, Leagues,

and MTC datasets.
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Wikianswers

Source. How many calories in a handful of strawberries?

PARANET. The number of calories in a handful of strawberries.

Source. Beauty is not in the eye of the beholder.

PARANET. Beauty is not in the mind of the viewer.

Source. What is the importance of employee satisfaction in an organization?

PARANET. What is the significance of staff satisfaction at an organisation?

Source. What is the difference between electrical power and electrical energy?

PARANET. What is the difference between electrical energy and electrical power?

Source. How many high tides happen at a given coast in any 24 hour period?

PARANET. How many high tides occur on a certain coast in 24 hours?

Source. What is a beverage that starts with the letter p?

PARANET. What is a drink that begins with the letter p?

Source. What Swiss mathematician and teacher was responsible for instituting the use of the

symbol for π in mathematical notation?

PARANET. What Swiss mathematicians and teachers were responsible for the introduction of the

symbol for π in math notation?

Source. How do you make a pina colada?

PARANET. How do you do a Pina colada?

Source. What is the difference between a captain and a skipper?

PARANET. What is the difference between being a captain and skipper?

Table A.1: Example PARANET paraphrases on the Wikianswers test set.
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Leagues

Source. “Faith i should never have believed it,” said Conseil.

PARANET. “Faith, I never would have believed”, Conseil said.

Source. “I owed myself this revenge!” Said the Captain to the Canadian.

PARANET. “I am indebted to this revenge!” the captain told the Canadian.

Source. “Well, sir, you will only get your deserts.”

PARANET. “Well, sir, you are only getting your deserts.”

Source. “That’s what I’ve been telling you Ned.”

PARANET. “That’s what I said, Ned.”

Source. Very much embarrassed, after having vainly exhausted our speaking resources, I

knew not what part to take, when Conseil said: “if master will permit me I will

relate it in German.”

PARANET. It was very embarrassing that I had used up our speaking time, and I did not know

what to do, as Conseil said: “If the Masters allow me, I shall refer to German.”

Source. Almost every day the panels in the lounge were open for some hours, and our eyes

never tired of probing the mysteries of the underwater world.

PARANET. Almost every day, the panels opened in the lounge for a few hours, and our eyes never

tired, the secrets of the underwater world.

Source. I bowed, and desired to be conducted to the cabin destined for me.

PARANET. I bow to and wish I headed to the cabin for me.

Source. I had one question left to address to Captain Nemo.

PARANET. I had a question left to Captain Nemo.

Source. “I have not the foggiest notion, Professor Aronnax.”

PARANET. I have no idea, Professor Aronnax.

Table A.2: Example PARANET paraphrases on the Leagues test set.
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MTC

Source. China expresses strong dissatisfaction over the Japanese leader’s move this time.

PARANET. China expresses a strong dissatisfaction over Japanese leader’s move.

Source. We will accelerate the drafting of telecommunications legalization, amend the law of

post and the regulations governing wireless telecommunications.

PARANET. We will speed up the design of telecommunications, change the law and regulations

governing wireless telecommunication.

Source. Liu said: the poverty-stricken areas are badly hit in the first stage of this year’s floods

and many counties and cities are listed as the poorest ones in the country.

PARANET. Liu said: poverty-stricken areas are hit hard in the first phase of this year’s flooding

and many counties and towns are listed as the poorest in the country.

Source. (London, AP) The British government is working on resolving the increasingly serious

problems of street crimes and will strengthen patrolling police.

PARANET. London, AP The British government is working to resolve the increasingly serious

problems of street crime and will strengthen patrols.

Source. Kida said that the dead killed by the heat wave were mostly old people with heart

diseases.

PARANET. Kida said the dead by heatwave were mostly old people with heart disease.

Source. Growth of Mobile Phone users in Mainland China to Slow Down.

PARANET. Growth of Mobile Phone users in Mainland China on Slow Down.

Source. The survey report said that in the first six months of last year 18 sandstorms struck

Beijing and they all originated from Inner Mongolia where 60% of the land is desert.

PARANET. The report said that 18 sandstorms struck Beijing in the first six months of last year,

and they were all from Inner Mongolia, where 60% of the desert is desert.

Source. The World Cup co-host by Japan and South Korea, will inaugurate on May 31.

PARANET. The World Cup, co-host Japan and South Korea, will open on May 31.

Source. Two days ago, President Bush seemed opposed to this idea when he held talks with

Sharon.

PARANET. Two days ago President Bush opposed this idea when he talks to Sharon.

Source. Russia Faces Population Crisis.

PARANET. Russia’s demographics problem.

Source. Computer Crimes Cost US billions of Dollars Last Year.

PARANET. Computer Crimes Cost American Billions of Dollars.

Source. However, many sports associations in Chile hope to cooperate with China not just for

the table tennis alone.

PARANET. However, many sports federations in Chile are hoping to collaborate with China, not

only for the table tennis players.

Table A.3: Example PARANET paraphrases on the MTC test set.
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A.2 Evaluation instructions

In this task, you will look at at a series of sentences and their corresponding para-

phrases, which have been created by different computer programs. Each sentence will

be presented alongside three paraphrase sentences. Paraphrases are alternative ways to

convey the same information. Your task is to rank these paraphrases from Best to Worst

using a 1-3 rating scale, where 1 is best and 3 is worst (ties are allowed). There are no

"correct" answers, so whatever choice seems appropriate to you is a valid response.

In general, you should give a paraphrase a high rank (i.e., 1) if it faithfully captures

the same information (gist) as the sentence, and is grammatical (i.e., written in well-

formed English). You should give a paraphrase a low rank (i.e., 3) if it is false, i.e., the

paraphrase has a different meaning or if it is missing information which is important

in the sentence. Furthermore, you should give a low rank to those paraphrases which

are too similar to the original sentence e.g., deletion of a single world or just changing

the punctuation.





Appendix B

Sentence Compression with Neural

Pivoting

B.1 Sentence Compression Examples

In the following tables we provide sample outputs from all domains and languages

for our strongest pivot based model, the strongest baseline model and the Gold hu-

man produced compressions. Where SP: single pivot models; L : length parameter;

seq2seq: encoder-decoder model trained on Gigaword; pivot languages: English (en),

French (fr), German (de).
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MOSS TED

Source: It was very cold.

seq2seq: The cold in the cold of the cold.

SPL ,de: It was cold.

Gold: It was freezing.

Source: and the thermometer on the front porch read minus 40 degrees -

seq2seq: a guide to the summer

SPL ,de: and thermometers on front read minus 40 -

Gold: Thermometer in the front reads -40

Source: Because I had an early flight to Europe the next morning,

seq2seq: Early flight to Europe

SPL ,de: Because I had an early flight to Europe.

Gold: Because I was flying to Europe the next morning,

Source: Your physician says, "You know, I think you have some depression.

seq2seq: You know about depression

SPL ,de: Your doctor says: I think you have depression.

Gold: The doctor thinks you have depression.

Source: So I quickly ran around and tried all the other doors and windows,

seq2seq: All the doors open for windows

SPL ,de: So I ran quickly and tried all other doors and windows,

Gold: I sped round trying every door and window.
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MOSS News

Source: The reaction of the European parliament and, I hope, of the European union,

will be clear.

seq2seq: EU parliament’s reaction to EU parliament will be clear

SPL ,de: How the European parliament will be clear of the EU

Gold: I hope that the European union will be clear.

Source: It offers a vital opportunity for the leaders of both the industrialised world

and the emerging economies to work together on a common agenda for immediate

economic stability and longer-term recovery.

seq2seq: Emerging economies to work together on economic stability.

SPL ,de: Emerging economies offer vital opportunity for emerging economies to work

together on economic stability and recovery efforts.

Gold: It is an important opportunity for the leaders of the industrialised countries and

emerging economies.

Source: We have reiterated the most important principles in our report which should

underscore our foreign policy.

seq2seq: The most important principles of foreign policy.

SPL ,de: A look at the world’s foreign policy.

Gold: Our report reaffirms our foreign policy principles.

Source: The prime minister will make a statement to the european parliament on the

preparations for next week’s G20 summit .

seq2seq: prime minister to make statement to european parliament on preparations

for summit

SPL ,de: Prime minister to make statement on preparations for next european parlia-

ment.

Gold: The prime minister will make a statement next week.
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MOSS EUPar

Source: Mr President, I believe that the level of interest in this matter far outweighs

the crowd of people that have hurried.

seq2seq: It’s time for President

SPL ,de: Mr President, I believe that interest in this matter far exceeds the crowds of

people in this House this afternoon.

Gold: Mr. President, the level of interest in this matter outweighs the crowd of people

who hurried into the Chamber, which I regret for both groups.

Source: Mr President, Guinea-Conakry needs the support of the international com-

munity.

seq2seq: President calls for international community to support international commu-

nity

SPL ,de: Mr President, Guinea needs international support.

Gold: They need international support, Mr President.

Source: Following the death of President Conté, a military junta seized power.

seq2seq: Military junta seizes power in ivory coast.

SPL ,de: A military junta took power.

Gold: A military junta seized power.

Source: Indeed, I believe that the Union’s foreign policy is worthy of attention.

seq2seq: The union ’s foreign policy.

SPL ,de: I think Union foreign policy deserves attention.

Gold: Unions foreign policy is worth attention

DUC-2004

Source: King Norodom Sihanouk has declined requests to chair a summit of Cambo-

dia’s top political leaders, saying the meeting would not bring any progress in dead-

locked negotiations to form a government.

SPL ,de: King Norodom Sihanouk has refused to chair Cambodia summit.

Gold: Sihanouk refuses to chair Cambodian political summit at home or abroad

Source: Cambodia’s ruling party responded Tuesday to criticisms of its leader in the

U.S. Congress with a lengthy defense of strongman Hun Sen’s human rights record.

SPL ,de: Cambodia’s ruling party responded Tuesday to criticism of its leader in the

US.

Gold: Cambodian party defends leader Hun Sen against criticism of U.S. House
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MOSS Books

Source: The establishment of Europol was agreed in the Maastricht Treaty on Euro-

pean Union of 7 February 1992.

seq2seq: Europol agrees in Maastricht Treaty on 1992.

SPL ,de: The Maastricht Treaty was agreed on 7 February 1992.

Gold: The establishment of Europol was agreed in the Maastricht Treaty on European

Union of 02/07/1992.

Source: We assist partner countries in developing quality education and training sys-

tems and in putting them into practice.

seq2seq: Helping partner countries in developing quality education.

SPL ,de: We support partner countries in developing quality and training systems.

Gold: We assist partner countries in developing quality education and training and

implementing these.

Source: We work on behalf of the European Union institutions, particularly the Euro-

pean Commission.

seq2seq: The EU commission on behalf of EU institutions.

SPL ,de: We work on behalf of the European Commission.

Gold: We work with European union institutions, even the European Commission.

DUC-2004

Source: The Swiss government has ordered no investigation of possible bank accounts

belonging to former Chilean dictator Augusto Pinochet, a spokesman said Wednesday.

SPL ,de: Swiss government ordered no inquiry into possible bank accounts of former

Chilean dictator Augusto.

Gold: Switzerland joins charges against Pinochet but avoids bank probe

Source: Britain has defended its arrest of Gen. Augusto Pinochet, with one lawmaker

saying that Chile’s claim that the former Chilean dictator has diplomatic immunity is

ridiculous.

SPL ,de: Britain has defended its arrest of Augusto Pinochet: Chile claims absurd.

Gold: Britain defends, Chile condemns, arrest of Pinochet in London
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MOSS TED

Source: Die Bedrohung hat einen merkwürdigen Ursprung: das organisierte Ver-

brechen.

seq2seqen: Organisierte kriminalität ist eine bedrohung für das organisierte ver-

brechen.

SPL ,en: Diese Bedrohung beruht auf organisierten Verbrechen.

Gold: Die Bedrohung hat einen Ursprung: das organisierte Verbrechen.

Source: Das organisierte Verbrechen ist stets auf der Suche nach solchen

Möglichkeiten und wird immer wieder fündig.

seq2seqen: Das organisierte verbrechen der kriminalität

SPL ,en: Organisierte Kriminalität sucht solche Möglichkeiten immer noch immer

wieder.

Gold: Das organisierte Verbrechen ist sucht stets nach solchen Möglichkeiten und

wird immer wieder fündig.

Source: Aber die meisten Menschen sehen die Dinge anders.

seq2seqen: Die meisten menschen sehen dinge anders, aber die meisten menschen

sehen sich anders.

SPL ,en: Die meisten sehen anders.

Gold: Menschen sind intressenlos.

Source: Die Desillusionierung mit der Politik und den Politikern ist ebenfalls ein

Schlüsselelement unserer Sehnsucht nach vom Schicksal begünstigten Führern.

seq2seqen: Politische parteien in der nähe der politik

SPL ,en: Die Enttäuschung über Politik und Politik ist auch ein Schlüsselelement un-

serer langjährigen Machthaber.

Gold: Die Desillusionierung der Politik und den Politikern ist ein Schlüsselelement

unserer Sehnsucht nach vom Schicksal begünstigten Führern.
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MOSS News

Source: Dass es mir wirklich egal war, ob mich

seq2seqen: Es ist zeit für mich.

SPL ,en: Dass mir wirklich egal war

Gold: Dass es mir wirklich egal war, ob mich

Source: Zwischen dem Griff nach den Sternen

seq2seqen: Es ist zeit für mich.

SPL ,en: Zwischen den Sternen

Gold: Zwischen dem Griff nach den Sternen

Source: Brach ich in mein eigenes Haus ein.

seq2seqen: Wie man ein eigenes haus ist.

SPL ,en: Ich brach ins Haus.

Gold: Brach ich in mein Haus ein.
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MOSS Books

Source: Der Verwaltungsrat setzt sich aus je einem Vertreter der einzelnen EU-

Mitgliedstaaten zusammen und hat die Aufgabe, die Aktivitäten von Europol zu kon-

trollieren.

seq2seqen: EU will Europol kontrollieren , die aktivitäten von europol kontrollieren.

SPL ,en: Der Vorstand besteht aus einem Vertreter der einzelnen EU-Mitgliedstaaten

und hat die Aufgabe, Europol zu kontrollieren.

Gold: Der Verwaltungsrat setzt sich je einem Vertreter der einzelnen EU-

Mitgliedstaaten zusammen und hat die Aufgabe,die Aktivität von Europol zu kon-

trollieren.

Source: Darüber hinaus stärkt er Europa sowohl politisch als auch wirtschaftlich.

seq2seqen: ein blick auf europa , um die europäische union zu stärken.

SPL ,en: Außerdem stärkt Europa politisch und wirtschaftlich.

Gold: Darüber hinaus stärkt er Europa politisch und wirtschaftlich.

Source: Die Europäische Union will eine Vorreiterrolle bei der Durchsetzung eines

langfristigen Entwicklungsmodells spielen.

seq2seqen: EU will eine vorreiterrolle bei der durchsetzung.

SPL ,en: Die Europäische Union will bei der Umsetzung eines langfristigen Entwick-

lungsmodells.

Gold: viele veränderungen zur verbesserung der zukunft für europa dar.

Source: Dies ist umso wichtiger, als derzeit alle europäischen Staaten über den

wirtschaftlichen Aufschwung und die Überwindung der Finanzkrise diskutieren.

seq2seqen: Europäische Länder suchen Wege zur Überwindung der Finanzkrise.

SPL ,en: Umso wichtiger ist jetzt, dass alle europäischen Staaten die wirtschaftliche

Erholung und Bewältigung der Finanzkrise diskutieren.

Gold: Dies ist umso wichtiger, als derzeit alle Staaten über wirtschaftlichen Auf-

schwung und Überwindung der Fizkrise diskutieren.



B.1. Sentence Compression Examples 183

MOSS EUPar

Source: Die Geschwindigkeit, mit der er geholfen hat, die G20 als neues Instrument

einer internationalen wirtschaftlichen Governance zu entwickeln, ist sowohl ermuti-

gend als auch beeindruckend.

seq2seqen: G20 begrüßt neues instrument für die entwicklung der G20.

SPL ,en: Die Geschwindigkeit, mit der er die G20 als neues Instrument der interna-

tionalen Wirtschaftsregierung entwickelt.

Gold: Die Geschwindigkeit, mit der er half, die G20 als neues Instrument einer in-

ternationalen wirtschaftlichen Goverce zu entwickeln, ist ermutigend und beeindruck-

end.

Source: Die Minister hatten zu der Sache bereits beim ECOFIN-Frühstück am 15.

März eine erste Aussprache.

seq2seqen: Das frühstück mit den ministern.

SPL ,en: Die Minister hatten bereits am 15. März eine erste Aussprache.

Gold: Minister hatten zum frühstück aussprache.

Source: Herr Präsident, Guinea-Conakry braucht die Unterstützung der interna-

tionalen Völkergemeinschaft.

seq2seqen: Guinea: böhne braucht internationale unterstützung.

SPL ,en: Herr Präsident! Guinea braucht die Unterstützung der internationalen.

Gold: Guinea braucht internationale unterstützung.

Source: Angesichts dieser Verletzung der zuvor von der Junta zugesagten Verpflich-

tungen organisierte die Opposition eine Demonstration, die von der Präsidentengarde

brutal unterdrückt wurde.

seq2seqen: Opposition verschiebt Protest angesichts der Zusage der Junta

SPL ,en: Die Opposition organisierte eine Demonstration, die vom Präsidentenamt bru-

tal niedergeschlagen worden war.

Gold: Die Opposition eine Demonstration, die von der Präsidentengarde brutal unter-

drückt wurde.
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MOSS EUPar

Source: auteure. - Monsieur le Président, je pense que l’intérêt dépasse largement la

foule qui s’est précipitée dans cet hémicycle cet après-midi, ce que je regrette une fois

de plus pour mon groupe et pour les autres.

seq2seqen: Au lendemain de la semaine.

SPL ,en: Auteur. - Monsieur le Président, je crois qu’il existe un grand intérêt qui va

bien au-delà de la foule, précipité dans cette Assemblée cet après-midi.

Gold: auteure. - Monsieur le Président, je pense que l’intérêt dépasse la foule qui

s’est précipitée dans cet hémicycle cet après-midi, ce que je regrette pour mon groupe

et pour les autres.

Source: Nous demandons la mise en place d’un gouvernement de transition pour

préparer les élections présidentielles et législatives, la junte s’étant définitivement mise

au ban de la communauté internationale.

seq2seqen: Myanmar junte interdit à la communauté internationale.

SPL ,en:Nous appelons à la création d’un gouvernement de transition pour la prépara-

tion des élections présidentielles et parlementaires avec la junte.

Gold: Que soit mis en place un gouvernement de transition pour les présidentielles et

législatives, la junte étant définitivement au ban de la communauté internationale.

Source: Il n’y a eu que quelques lignes ici et là, comme s’il n’y avait pas eu des

centaines de personnes tuées, des actes terribles de torture et des actes effrayants de

viol destinés à annihiler la dignité humaine. Au Moyen-Orient, tout le monde attend

l’arrivée d’un nouvel Anouar Sadat dans le monde arabe.

seq2seqen: Il est temps de sauver des vies humaines dans la dignité humaine.

SPL ,en: Il y avait quelques lignes ici et là, des centaines de personnes tuées, des actes

de torture et des actes de viol effroyables visant à détruire la dignité humaine.

Gold: Juste quelques lignes ci et là, comme s’il n’y avait pas eu des centaines de

morts, des actes terribles de torture et de viol pour annihiler la dignité humaine.
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Books MOSS

Source: Il repose sur le succès du marché unique etcontribue largement à la stabilité

économique requise pour une croissance plus intense.

seq2seqen: La stabilité économique du marché unique

SPL ,en: Le succès du marché unique contribue grandement à la stabilité économique

nécessaire à la croissance.

Gold: Reposant sur la marché unique, il contribue largement à la stabilité économique

nécessaire à la croissance.

Source: Il renforce également l’Europe sur les plans politique et économique.

seq2seqen: L’Europe crise politique crise politique

SPL ,en: Elle renforce également politiquement et économiquement l’Europe.

Gold: l’Europe sur les plans politique et économique.

Source: Les nouveaux États membres se sontégalement engagés à entériner l’UEM et

l’euro dans leurs traités d’adhésion. Au Moyen-Orient, tout le monde attend l’arrivée

d’un nouvel Anouar Sadat dans le monde arabe.

seq2seqen: Les nouveaux Etats membres se sont engagés à soutenir l "émeu euro

SPL ,en: Les nouveaux États membres s’engagent également à approuver l’UEM et les

billets en euros.

Gold: Les États membres se sont également engagés à entériner l’UEM et l’euro dans

leurs traités d’adhésion.

TED

Source: Cette aspiration à trouver des hommes ou des femmes providentiels en ces

temps de mondialisation vient de trois facteurs.

seq2seqen: Le monde de la mondialisation.

SPL ,en: Cette aspiration à trouver des hommes ou des femmes provient de trois fac-

teurs de mondialisation.

Gold: Cette tendance vers des hommes et femmes providentiels en ce temps mondi-

alisé vient de trois causes.

Source: Dans un premier temps, il s’agit de la complexité et de la vulnérabilité de

notre monde.

seq2seqen: Un regard sur l’avenir du monde

SPL ,en: Premièrement, nous parlons de la complexité et de la vulnérabilité du monde.

Gold: Premièrement, la complexité et la vulnérabilité du monde.
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MOSS News

Source: Pourtant, pour la plupart, nous ne voyons pas les choses ainsi.

seq2seqen: N’y voyez pas les choses qui ne voient pas les choses.

SPL ,en: Pourtant, nous ne voyons pas encore les choses.

Gold: Cependant, la majorité n’est pas du même avis.

Source: La plupart des gens chercheront toujours instinctivement de « grands hommes

» pour figures historiques, les hommes (et les femmes) qui semblent forger les événe-

ments grâce à leur vision politique, leur charisme personnel et la force de leurs posi-

tions morales.

seq2seqen: Les hommes sont à la recherche de chiffres historiques.

SPL ,en: La plupart des gens vont toujours chercher instinctivement les hommes et les

femmes qui sont dépistés par leur vision politique, leur charisme personnel et la force

de leur moral.

Gold: La population tend à se rattacher à de grands hommes politique, à des personnes

qui utilisent leur personnalité, leurs avis pour modifier l’histoire.

Source: Par la simple force de leur conviction et de leur personnalité, de telles figures,

croyons-nous, peuvent faire avancer les choses, tout en apportant une lueur d’espoir

dans un univers autrement détaché et impersonnel. Au Moyen-Orient, tout le monde

attend l’arrivée d’un nouvel Anouar Sadat dans le monde arabe.

seq2seq: Un regard sur l’avenir de notre pays.

SPL ,en: Par leur seule conviction et personnalité, nous croyons que de telles figures

pourraient faire avancer les choses, et apporter une lueur d’espoir dans un univers

détaché et impersonnel.

Gold: Par leur seule conviction et personnalité, nous croyons que de telles figures

pourraient faire avancer les choses, et apporter une lueur d’espoir dans un univers

détaché et impersonnel.
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B.2 Evaluation instructions

In this experiment you will be asked to judge how well a given sentence compresses

the meaning of another sentence. You will see a series of sentences together with their

compressed versions. Some sentence compressions will seem perfectly OK to you, but

others will not. All compressed versions were generated automatically by a computer

program.

Your task is to judge how good a compressed sentence is according to two crite-

ria:(a) grammaticality,and (b) importance. The grammaticality judgement is based on

whether the sentence is understandable. The importance judgement relates to how well

the compression preserves the most important information of the original and whether

it is adequately compressed. Both judgements are rated on scales from 1 (poor) to 5

(good).

A compression with a low grammaticality score is one that is almost impossible

to understand. Compressions should receivelow importance scoresif they miss out

important information from the original sentence. Or do NOT remove any unneeded

information from the original sentence even though it is evident that it can be omitted

without drastic information loss.

A good compression is one that is readily comprehensible andretains the most im-

portant information from the original sentence. Good sentence compressions should

receive high grammaticality and importance scores.

For example, if you were asked to rate the following compression:

• Nonetheless, FBI director Louis Freeh has today ordered a change - this is being

reported by the New York Times - ordering new restrictions on the sharing of

confidential information with the White House.

• Nonetheless, FBI director ordered change new restrictions sharing confidential

information with White House.

This sentence would probably receive a low grammaticality score(for example, 1 or

2) as it is difficult to understand. However it should receive ahigh score for importance

(for example, 4 or 5) as it is possible to get the gist of the original.

Now, consider the following compression of the same sentence:

• Nonetheless, FBI director Louis Freeh has today ordered a change - this is being

reported by the New York Times - ordering new restrictions on the sharing of

confidential information with the White House.
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• FBI director Louis Freeh has today ordered a change - this is being reported by

the New York Times.

you would give the compression a higher grammaticality score(for example, 4 or

5) but alow importance score (for example, 1 or 2). The compression preserves the

least important information (the fact that the New York Times is reporting).

You will be presented with the original sentence and its corresponding compres-

sion. Once you read both sentences, please make your grammaticality and importance

judgement. Simply select a number between 1 and 5 by clicking the appropriate button.

There are no ’correct’ answers, so whatever numbers seem appropriate to you are

a valid response. While you are deciding a number for a compression, try to ask the

following questions:

Does the compressed sentence preserve the most important bits of information

from the original sentence? Is the compressed sentence easy to understand? Has the

compressed sentence removed information you deem not to be very important to the

original sentence? Does the compressed sentence seem fluent? Use high numbers if

the answer to the above questions is ’yes’, low numbers if it is ’no’, and intermedi-

ate numbers for sentences that are understandable, yet not entirely accurate or natural

compressions of the original sentence.



Appendix C

Controllable Simplification

C.1 Simplification Examples

We show simplification examples created by our model and comparison systems on

WikiLarge and Newsela (see Tables C.3–C.4).
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Complex It is situated at the coast of the Baltic Sea, where it encloses the city of Stral-

sund.

Reference It is located at the coast of the Baltic Sea where it surrounds the city of

Stralsund.

DRESS-Ls It is situated at the coast of the Baltic Sea.

Transformer It is situated at the coast of the Baltic Sea, where it encloses the city of Stral-

sund.

DMASS It is located at the shore of the Baltic Sea, where it is located at the shore of

the borough of stralsund.

CROSS-Lex It is at the coast of the Baltic Sea, where it encloses the city of Stralsund.

CROSS-Syn It is located at the coast of the Baltic Sea.

CROSS It is found at the coast of the Baltic Sea, near the city of Stralsund.

Complex In 1987 Wexler was inducted into the Rock and Roll Hall of Fame.

Reference In 1987 Wexler was inducted into the Rock and Roll Hall of Fame.

DRESS-Ls In 1987 Wexler was inducted into the Rock and Roll Hall of Fame.

Transformer In 1987, Wexler was inducted into the Rock and Roll Hall of Fame.

DMASS In 1987 Wexler was inducted into the Rock and Roll Hall of Fame.

CROSS-Lex In 1987 Wexler was added into the Rock and Roll Hall of Fame.

CROSS-Syn He was inducted into the Rock and Roll Hall of Fame in 1987.

CROSS He was added into the Rock and Roll Hall of Fame in 1987.

Table C.1: System output on WikiLarge. Lexical items indicated for replacement are

marked with a strike out. We show the source Complex sentence and the simplified

Reference as well as output from DRESS-Ls, a simple Transformer, DMASS, and three

variants of our model; CROSS is the full system, CROSS-Lex applies only lexical con-

straints, while CROSS-Syn only syntactic ones. Substitutions are shown in bold.
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Complex In its pure form, Dextromethorphan occurs as a white powder.

Reference Dextromethorphan is a white powder in its pure form.

DRESS-Ls In its pure form, Dextromethorphan occurs as a white powder.

Simple In its pure form, Dextromethorphan is like a white powder.

XSimple Dextromethorphan can be found as white powder.

Complex After graduation he returned to Yerevan to teach at the local Conservatory and

later he was appointed artistic director of the Armenian Philarmonic Orches-

tra.

Reference After graduation he returned to Yerevan to teach at the local Conservatory and

was later appointed artistic director of the Armenian Philarmonic Orchestra.

DRESS-Ls After graduation he returned to Yerevan to teach at the local Conservatory.

Simple After graduation he returned to Yerevan to teach at the local Conservatory and

later he became artistic director of the Armenian Philarmonic Orchestra.

XSimple after graduation he returned to Yerevan to teach at the Conservatory and later

he became artistic director of the Armenian Philarmonic Orchestra.

Table C.2: System output on WikiLarge for varying simplicity levels. We show the source

Complex sentence and the simplified Reference as well as output from DRESS-Ls, and

two variants of our model Simple and XSimple. Substitutions are shown in bold.
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Complex He thinks the new stealth bomber program would ultimately cost $90 billion.

Reference He thinks the new stealth bomber program would actually cost $90 billion.

DRESS-Ls He thinks the new combat number would cost $90 billion.

Transformer He thinks the new bomber program would cost $90 billion.

DMASS The new $ sinkhole program would be used this year.

CROSS-Lex He thinks the new program would cost $90 billion.

CROSS-Syn He thinks the program would cost $90 billion for the new stealth bomber.

CROSS He thinks the program would cost $90 billion for the new bomber.

Complex But then he heard the radio : a massive glacier had crashed down the moun-

tain.

Reference A huge glacier of ice had just crashed down the mountain.

DRESS-Ls But then he heard the radio: A massive glacier had crashed down the moun-

tain.

Transformer But then he heard the radio: A massive glacier had crashed down the moun-

tain.

DMASS Then he heard the radio even though a huge piece had crashed down the

mountain.

CROSS-Lex But then he heard the radio: A huge glacier had crashed down the mountain.

CROSS-Syn But then he heard a glacier crash down the mountain.

CROSS But then he heard a glacier crash down the mountain.

Table C.3: System output on Newsela. We show the source Complex sentence and the

simplified Reference as well as output from DRESS-Ls, a simple Transformer, DMASS,

and three variants of our model; CROSS is the full system, CROSS-Lex applies only

lexical constraints, while CROSS-Syn only syntactic ones. Substitutions are shown in

bold. Lexical items indicated for replacement are marked with a strike out.
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Complex The Pentagon is poised to spend billions to build a new stealth bomber,

a top secret project that could bring hundreds of jobs to the wind-swept

desert communities in Los Angeles County’s northern reaches.

Reference Mission to build the secret warplane.

DRESS-Ls The Pentagon is trying to spend billions to build a new drone.

Simple The Pentagon secret project that could bring hundreds of jobs to the

desert-swept communities in Los Angeles County.

XSimple It could also bring hundreds of jobs.

Complex The United States is about to spend billions of dollars to build a top-

secret warplane.

Reference Mission to build the secret warplane.

DRESS-Ls The United States is about to spend billions of dollars to build a secret

bomb.

Simple The United States is about spend dollars to build a top-secret warplane.

XSimple The United States is about to build a warplane.

Table C.4: System output on Newsela for varying simplicity levels. We show the source

Complex sentence and the simplified Reference as well as output from DRESS-Ls, and

two variants of our model Simple and XSimple. Substitutions are shown in bold.
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C.2 Evaluation Instructions

In this task you will read a series of sentences and their simpler versions created by

a computer program. The program performs simplification by removing content but

also by changing the structure and wording of the sentences so that they are easier to

read. Please read all the sentences carefully, this should take you about 2 minutes + 30

seconds for the bonus (if you do the task very very quickly your hit will be rejected).

You will be asked to judge three aspects of the simplifications: (1) is the simple version

grammatical and fluent? if so you should give it a high Grammaticality score. (2) To

what extent is the meaning expressed in the original sentence preserved in the simple

version, with no additional information added? If most of the meaning is preserved

you should give it a high meaning score. (3) is the proposed simplification a simpler

version of the original sentence? If so you should give it a high Simplicity score.

In some cases the computer program will chose to add information which is not in

the orginal sentence. If this is the case then you should probably rate it lower in terms

of meaning.

In some cases, the simple sentence will be a copy of the original sentence, if this is

the case, you should give it a 5 for meaning. For the Simplicity score, you should con-

sider if you could make the original sentence simpler? if you can’t make the sentence

simpler, you should give the simplification a high simple score.

In the end, you will be asked to provide comments if you provide an insightful

comment we will pay an additional $0.15 bonus. Bad comments include: Sentence

3 was not simpler or didn’t contain all the information. The comment should say

something which is not inferable from the scores you give.
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Zero-Shot Crosslingual Sentence

Simplification

D.1 Dataset construction examples

The following was provided for the simplification dataset construction.

This annotation experiment is concerned with simplification. You will be presented

with a document. Your task is to read each sentence and simplify it such that children

aged between 5 and 7 can understand it. The simplified version should be grammatical

and retain all the important information of the original sentence.

In producing simplifications, you are free to delete words, add new words, substi-

tute them, or reorder them. In addition, you might find it useful to change a complex

sentence into multiple simple sentences.

To help you with the simplification task, we have produced a set of guidelines

which you can follow. However, not all guidelines will always be applicable, so if you

believe you can produce a simpler versionn then you may ignore the guidelines. We

split the guidelines into two sections: word-level and sentence-level guidelines.

Word-level Guidelines

1. Special characters are not allowed, with the exception of: full stops, question

marks, exclamation marks, quotation marks, and Mediopunkts (used to indicate

compound splitting).

2. Numbers should be written as digits and not words.
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3. The word ein (‘one’) should only be written with a 1 when it represents a num-

ber, not when it takes the role of an indefinite article.

4. Roman numerals must be avoided.

5. Large numbers, percentages and year dates should be used sparsely.

6. Use easy, short and well-known words. In case a difficult word is needed, it

should be explained using simple words. For a list of simple words, please con-

sult this dictionary: https://hurraki.de/wiki/Hauptseite.

7. Technical terms, foreign words and abbreviations should be avoided. Common

acronyms like CD or WC may be used if their full forms (compact disc, water

closet) are less common.

Sentence-level Guidelines

1. Coordinate and subordinate clauses are forbidden and should be transformed

into independent main clauses. Main clauses should preferably contain active

voice, and present, or past perfect tense. The subject-verb-object (SVO) word

order should be chosen, unless another word order is more understandable.

2. Nominalizations and passive constructions are forbidden.

3. Attributive genitives should also be avoided. If possible, the genitive attribute

should be transferred into a prepositional phrase using von (‘of’).

4. Negation should be avoided. If needed, it is better to formulate a sentence with

nicht (‘not’) instead of kein (‘no’).

5. Transparent metaphors like leichte Sprache may be used if they can be easily

understood. More complex metaphors and idioms should be replaced by literal

expressions.

6. Split complex sentences into multiple simple sentences at semicolons and dashes.

Also split sentences after colons if the segment after the colon is a complete sen-

tence and not just an enumeration.
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7. If a subordinate conjunction is found, split the sentence at the conjunction; edit

and rephrase both resulting segments to form independent sentences. Add suit-

able connectives that express the intended rhetorical relation and restore word

order.

8. Rephrase concessive clauses with subjunctions like obwohl (‘although’) the con-

nective trotzdem (‘however’).

9. Analogously, rephrase consecutive clauses starting with sodass (‘so that’) using

deshalb (‘therefore’).

10. Rephrase final clauses using the modal verb wollen (‘want’) and the connective

deshalb (‘therefore’). Since the subject is not mentioned overtly in German final

clauses containing um zu (‘in order to’), it has to be retrieved from the main

clause.

11. Split coordinate clauses at coordinating conjunctions (e.g., und (‘and’), oder

(‘or’), aber (‘but’), dennoch (‘however’)). The second clause can start with und

(‘and’) and oder (‘or’) to emphasize that they are linked to the previous sentence.

12. Replace appositions by sentences in which the noun phrase referred to by the ap-

position forms the subject (X) and the apposition itself becomes the predicative

noun (Y), yielding an X is Y structure.

Final Remarks

The annotation will proceed on a document-by-document basis. In simplifying indi-

vidual sentences you should ensure that:

• You have preserved all important information in the original sentence.

• The sentences are understandable to children aged 5 to 7.

• You did not render the resulting document incoherent or unreadable.

• You have preserved the grammaticality of the simplified sentences.
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D.2 Simplification Examples

In Table D.1 we present examples of simplifications from both GEOlino and TextCom-

plexityDE. We show the input Complex sentence, the Reference simplification, and the

output of our model, ZEST, and two comparison systems U-SIMP and Pivot (see Sec-

tion 5 in the main paper for more details). To provide some further insight on what

the models are doing we have annotated words and phrases in the examples which

constitute violations of simple language according to our guidelines above and those

provided in https://hurraki.de/pruefung/pruefung.htm.

Table D.2 and D.3 contains additional examples, without annotation, while Ta-

ble D.4 presents crosslingual simplicity examples. Specifically, we show model output

in German (DE ZEST) when the input is complex English (EN Source), and for com-

parison German output (DE ZEST) when the input is complex German (DE Source).
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Complex Von hier aus erhaltet ihr einen [eindrucksvollen]1 Rundum-Blick über

die ganze Schlucht [hinweg]2 bis hin zu ihren etwa [5000]3 Meter hohen

Kraterwänden.

Reference Von hier aus erhaltet ihr einen Rundum-Blick über die ganze Schlucht.

Ihr seht hier bis hin zu ihren etwa [5000]3 Meter hohen Kraterwänden.

U-SIMP Von hier eraus ihr haltet einen umfassenden Rundum-Blick über die

ganze bis [hinweg]2 hinweg zu hin zu ihren [5000]3 Meter hohen

Kraterwände.

Pivot Von hier genießen Sie einen [beeindruckenden]1 Rundumblick über

die gesamte Schlucht bis [zu]2 den 500 m hohen Kraterwänden.

ZEST Von hier aus erhaltet ihr einen Rundum-Blick auf die ganze Schlucht.

(a) GEOlino

Complex Das ist nur etwa das Doppelte [des Weltenergiebedarfs]4, [was]5 be-

deutet, [dass]5 [Erdwärmenutzung]6 [im]2 großen Stil immer auf eine

lokale Abkühlung des Gesteins hinausläuft.

Reference Das ist nur etwa das Doppelte [des Energiebedarfs der Welt]4. Das

bedeutet, [dass]5 die [Benutzung]6 von Erdwärme immer dazu führt,

[dass]5 an [sich]2 diesen Stellen das Gestein abkühlt.

U-SIMP Das ist nur etwa das Doppelte [des Weltenergiebedarfs]4, [was]5 be-

deutet, [dass]5 Erdwärmemer [im]2 großen Stil immer auf eine andere

Abkühlung des Gesteins[)]7.

Pivot Dabei handelt es sich nur um eine [Verdoppelung]6 [des weltweiten

Energiebedarfs]5, [was]5 [bedeutet]2, [dass]5 die großflächige

[geothermische]8 [Nutzung]6 immer einer lokalen [Kühlung]6 [des

Gesteins]4 entspricht.

ZEST Das bedeutet, [dass]5 Erdwärme im großen Stil immer auf eine lokale

Abkühlung [des]2 Gesteins hinausläuft.

(b) TextComplexityDE

Table D.1: Examples of system output and simplification violations

(https://hurraki.de/pruefung/pruefung.htm): (1) word has 13+ letters; (2) sentence

has 12+ words; (3) high number; (4) genitive; (5) subordinate clauses; (6) abstract

words; (7) special characters; (8) difficult/foreign words.
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Source Zusätzlich kommt in der Forschung ein breites Spektrum ver-

schiedener Isotopenanalysen zum Einsatz, deren jüngste Entwick-

lungen eine bis vor kurzem unerreichbare Messgenauigkeit er-

möglichen.

Reference Außerdem werden in der Forschung viele verschiedene Isotopen-

analysen eingesetzt. Ihre jüngste Entwicklung ermöglichen er-

möglichen eine bis vor kurzem unerreichbare Messgenauigkeit.

U-SIMP Zusätzlich kommt in der Forschung ein großes verschiedene

verschiedenen Gitopenempfindliche zum Einsatz, deren jüng-

sten Jahren eine bis vor kurzem brennende Messoberfläche er-

möglichen.

Pivot Darüber hinaus wird in der Forschung ein breites Spektrum unter-

schiedlicher Isotopanalysen eingesetzt.

ZEST Zusätzlich kommt in der Forschung ein breites Spektrum ver-

schiedenster Isotopen-Analysen zu Einsatz.

Source Das ist nur etwa das Doppelte des Weltenergiebedarfs, was be-

deutet, dass Erdwärmenutzung im großen Stil immer auf eine

lokale Abkühlung des Gesteins hinausläuft.

Reference Das ist nur etwa das Doppelte des Energiebedarfs der Welt. Das

bedeutet, dass die Benutzung von Erdwärme immer dazu führt,

dass an sich diesen Stellen das Gestein abkühlt.

U-SIMP Das ist nur etwa das Doppelte des Weltenergiebedarfs, was be-

deutet, dass Erdwärmemer im großen Stil immer auf eine andere

Abkühlung des Gesteins).

Pivot Dabei handelt es sich nur um eine Verdoppelung des weltweiten

Energiebedarfs, was bedeutet, dass die großflächige geother-

mische Nutzung immer einer lokalen Kühlung des Gesteins

entspricht.

ZEST Das bedeutet, dass Erdwärme im großen Stil immer auf eine

lokale Abkühlung des Gesteins hinausläuft.

(a) TextComplexityDE

Table D.2: Simplification examples from TextComplexityDE and GEOlino.
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Source Tiere tauschen mittels Duftmarken viele verschlüsselte

Botschaften untereinander aus.

Reference Tiere tauschen mit ihrem Geruch viele Botschaften untereinander

aus.

U-SIMP Tiere tauschen Hilfe Duftmarken viele verschlüsselte Botschaften

untereinander aus.

Pivot Tiere tauschen viele verschlüsselte Nachrichten mit Duftmarken

aus.

ZEST Tiere tauschen mit Duftmarken viele verschlüsselte Botschaften

aus.

Source Der wiederum war überlebenswichtig für alle Landwirtschaft be-

treibenden Kulturen.

Reference Der war wichtig für alle Kulturen, die Landwirtschaft betreiben.

U-SIMP Der wiederum war überlebenswichtig für alle Landwirtschaft ben

Kulturen.

Pivot Sie war wiederum lebenswichtig für alle landwirtschaftlichen

Kulturen.

ZEST Der wiederum war für alle Landwirtschaft wichtig.

(b) GEOlino

Table D.3: Simplification examples from TextComplexityDE and GEOlino.
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EN Source The mountain is the watershed on whose flanks the catchment

areas of the Pacific Ocean, the Atlantic Ocean over the Gulf of

Mexico, and the Arctic Ocean over Hudson Bay, meet.

DE Source Der Berg ist der Wasserscheidepunkt an dessen Flanken sich die

Einzugsgebiete des Pazifischen Ozeans, des Atlantischen Ozeans

über den Golf von Mexiko und des Arktischen Ozeans über die

Hudson Bay berühren.

Reference Der Berg markiert die Grenze zwischen den Gebieten des Pazifis-

chen Ozeans, des Atlantischen Ozean und des Arktischen Ozeans.

EN ZEST Der Berg ist der Weckschatz, auf dessen Flanken die Fanggebiete

des pazifischen Ozeans, des Atlantischen Ozeans über dem Golf

von Mexiko, und des Arktischen Ozeans über Hudson Bay, tref-

fen.

DE ZEST Der Berg ist der Wasserscheidepunkt an dem sich die Einzugs-

gebiete des Pazifiks, des Atlantischen Ozeans, des Golfs von

Mexiko und des Arktischen Ozeans über die Hudson Bay treffen.

(a) TextComplexityDE

EN Source Without the radiation energy of the sun, plant photosynthesis

would not work.

DE Source Ohne die Strahlungsenergie der Sonne würde die pflanzliche Pho-

tosynthese nicht funktionieren.

Reference Ohne die Energie der Sonne würde die Photosynthese von den

Pflanzen nicht funktionieren.

EN ZEST Ohne die Strahlungsenergie der Sonne, Pflanzen Photosynthese

würde nicht funktionieren.

DE ZEST Ohne die Strahlungsenergie der Sonne würde die Pflanze nicht

funktionieren.

(b) Geolino

Table D.4: Examples of crosslingual simplification (EN Source→ DE ZEST); for com-

parison, we also show the output of a monolingual system (DE Source→ DE ZEST).
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D.3 Evaluation Instructions

In this task you will read a series of sentences and their simpler versions created by

a computer program. The program performs simplification by removing content but

also by changing the structure and wording of the sentences so that they are easier to

read. Please read all the sentences carefully, this should take you about 2 minutes + 30

seconds for the bonus (if you do the task very very quickly your hit will be rejected).

You will be asked to judge three aspects of the simplifications: (1) is the simple version

grammatical and fluent? if so you should give it a high Grammaticality score. (2) To

what extent is the meaning expressed in the original sentence preserved in the simple

version, with no additional information added? If most of the meaning is preserved

you should give it a high meaning score. (3) is the proposed simplification a simpler

version of the original sentence? If so you should give it a high Simplicity score.

In some cases the computer program will chose to add information which is not in

the orginal sentence. If this is the case then you should probably rate it lower in terms

of meaning.

In some cases, the simple sentence will be a copy of the original sentence, if this is

the case, you should give it a 5 for meaning. For the Simplicity score, you should con-

sider if you could make the original sentence simpler? if you can’t make the sentence

simpler, you should give the simplification a high simple score.

In the end, you will be asked to provide comments if you provide an insightful

comment we will pay an additional $0.10 bonus (pay out aims to be done within a

week).

D.4 Simplification Analysis

Below we list the simplification phenomena we asked annotators to analysis.

Passive voice Does the complex sentence use the passive voice and the simple sen-

tence use active voice?

Active voice means that a sentence has a subject that acts upon its verb. This is

when the subject of a sentence performs the verb’s action, Passive voice means that a

subject is a recipient of a verb’s action. This is when the subject is acted on by the verb.
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• Complex: Als der Manager gefeuert wurde.

• Simple: Sie hat den Manager entlassen

Subordinate clause Does the complex sentence contain a subordinate clause and

the simple sentence does not?

a sentence with 2 or more verbs and the second one is dependent on the first one

and often indicated by words like dass, ob, weil.

• Complex: Sie ist nicht in die Schule gekommen, weil sie erkältet war.

• Complex: Ich mag, dass das Taschentuch so weich ist.

• simple:Sie war erkältet. Deshalb ist sie nicht zur Schule gekommen.

• Simple: Das Taschentuch ist weich. Ich mag das.

Relative clause Does the complex sentence contain a Relative clause and the simple

sentence does not?

A relative clause is a type of subordinate clause that starts with the following: der,

die, dass

Genitive Does the complex sentence use the genitive case whereas the simple sen-

tence does not?

The genitive case is the case that shows possession. The genitive case is used with

the genitive prepositions and some verb idioms. In simple German, von plus the dative

often replaces the genitive.

• Complex: Der Sattel des Fahrrads.

• Simple: Der Sattel von dem Fahrrad.

• Complex:Der Sattel deines Fahrrads.

• Simple: Der Sattel von deinem Fahrrad.
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Subjunctive Was the subjunctive mood used in the complex sentence and not in the

simple sentence?

The subjunctive mood (Konjunktiv), is used to express unreal situations such as

wishes, hypothetical situations and unreal conditional clauses, or to repeat what people

say in indirect speech.

• Complex: Sie sagte, morgen könnte es regnen.

• Simple: Morgen regnet es vielleicht.

• Complex:Morgen könnte es regnen.

• Simple: Morgen regnet es vielleicht.

Sentence splitting Has the complex sentence been split into multiple sentences?

• Complex: Tim liebt Tina und Tina liebt Tim.

• Simple: Tim liebt Tina. Tina liebt Tim.

• Complex: Er hat nicht nur Hunde, sondern auch Katzen.

• Simple: Er hat Hunde. Er hat Katzen.
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