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Abstract 

This thesis explores, implements, and examines the methods to improve the 

efficiency of model calibration experiments for synthetic biological circuits in 

three aspects: experimental technique, optimal experimental design (OED), 

and automatic experiment abnormality screening (AEAS). Moreover, to obtain 

a specific benchmark that provides clear-cut evidence of the utility, an 

integrated synthetic orthogonal promoter in yeast (S. cerevisiae) and a 

corresponded model is selected as the experiment object. 

This work first focuses on the “wet-lab” part of the experiment. It verifies the 

theoretical benefit of adopting microfluidic technique by carrying out a series 

of in-vivo experiments on a developed automatic microfluidic experimental 

platform. Statistical analysis shows that compared to the models calibrated 

with flow-cytometry data (a representative traditional experimental technique), 

the models based on microfluidic data of the same experiment time give 

significantly more accurate behaviour predictions of never-encountered stimuli 

patterns. In other words, compare to flow-cytometry experiments, microfluidics 

can obtain models of the required prediction accuracy within less experiment 

time. 

The next aspect is to optimise the “dry-lab” part, i.e., the design of experiments 

and data processing. Previous works have proven that the informativeness of 

experiments can be improved by optimising the input design (OID). However, 

the amount of work and the time cost of the current OID approach rise 

dramatically with large and complex synthetic networks and mathematical 

models. To address this problem, this thesis introduces the parameter 

clustering analysis and visualisation (PCAV) to speed up the OID by narrowing 

down the parameters of interest. For the first time, this thesis proposes a 

parameter clustering algorithm based on the Fisher information matrix 

(FIMPC). Practices with in-silico experiments on the benchmarking promoter 
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show that PCAV reduces the complexity of OID and provides a new way to 

explore the connections between parameters. Moreover, the analysis shows 

that experiments with FIMPC-based OID lead to significantly more accurate 

parameter estimations than the current OID approach. 

Automatic abnormality screening is the third aspect. For microfluidic 

experiments, the current identification of invalid microfluidic experiments is 

carried out by visual checks of the microscope images by experts after the 

experiments. To improve the automation level and robustness of this quality 

control process, this work develops an automatic experiment abnormality 

screening (AEAS) system supported by convolutional neural networks (CNNs). 

The system learns the features of six abnormal experiment conditions from 

images taken in actual microfluidic experiments and achieves identification 

within seconds in the application. The training and validation of six 

representative CNNs of different network depths and design strategies show 

that some shallow CNNs can already diagnose abnormal conditions with the 

desired accuracy. Moreover, to improve the training convergence of deep 

CNNs with small data sets, this thesis proposes a levelled-training method and 

improves the chance of convergence from 30% to 90%. 

With a benchmark of a synthetic promoter model in yeast, this thesis optimises 

model calibration experiments in three aspects to achieve a more efficient 

procedure: experimental technique, optimal experimental design (OED), and 

automatic experiment abnormality screening (AEAS). In this study, the 

efficiency of model calibration experiments for the benchmarking model can 

be improved by: adopting microfluidics technology, applying CAVP parameter 

analysis and FIMPC-based OID, and setting up an AEAS system supported 

by CNN. These contributions have the potential to be exploited for designing 

more efficient in-vivo experiments for model calibration in similar studies. 

Keywords: synthetic biology; model calibration; microfluidics; parameter 

clustering; convolutional neural network (CNN)
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Lay Summary 

This PhD thesis involves optimising the efficiency for a type of experiment in 

developing synthetic biological circuits. Synthetic biology is a field that aims to 

implement new functions in cells with increased reliability and efficiency by 

designing and integrating synthetic genetic circuits in these cells. However, the 

synthetic biology community still has a limited understanding of the highly 

entangled regulatory mechanisms in cells. As a result, the development of 

synthetic biological circuits is far from the “plug and play” paradigm but closer 

to a cycle of “design-build-test-design” (the DBT cycle). Nowadays, in most 

cases, it still takes years to turn a conceptual design into a commercial 

synthetic biological product. In practice, the “test” steps, i.e., the experiments 

on these synthetic prototypes to quantitively analyse their performances under 

the given stimuli, takes a considerable share of the development time. 

Quantitative analysis is usually achieved by first establishing one or more 

mathematical models for the interested synthetic parts, and then tuning the 

model parameters to minimise the difference between the model predictions 

and the observations in the experiments. This procedure is called model 

calibration. 

This thesis explores several methods to improve the efficiency of these 

experiments, so that with the same or even less experiment duration and 

resources, the performances of cells could be quantitatively analysed with 

higher accuracy. The work is divided into three aspects: improving the 

experimental technique, optimising the stimuli design of these experiments 

(OED), and adopting an automatic experiment abnormality screening (AEAS). 

In this study, a model of a synthetic promoter (a type of DNA sequences that 

regulates the expression of proteins) in yeast (S. cerevisiae) is used as a 

benchmark. 
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This study statistically proves that the efficiency of model calibration 

experiments for the benchmarking model can be improved by: 

1. Replacing the classic flow-cytometry experiments with microfluidics 

experiments (upgrading the experiment technique); 

2. Applying clustering analysis of the model parameters to find the 

parameters having similar effects to the model when their values change 

and running optimal experimental design (OED) based on the clustering 

results. Parameters having similar effects to the observables are most 

likely to cause identifiability problems and lead to inaccurate calibrations, 

so clustering these parameters together can achieve a more efficient OED 

process by narrowing down the parameters to focus on; 

3. Setting up an automatic experiment abnormality screening system 

supported by a convolutional neural network. This system can identify the 

abnormal experimental condition during the experiment to reduce the time 

wasted on invalid experiments and also free the experts from the drudgery 

of manual checking after experiments. 

These contributions have the potential to be exploited for designing more 

efficient experiment platforms for model calibration in similar studies. 
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1 

Chapter 1:  Introduction 

1.1 Background 

1.1.1 Background of Synthetic Biology 

Synthetic biology is a field of bioengineering that aims to implement new 

functions in cells with increased ease and efficiency by designing new genetic 

circuits and studying their behaviour in cells [1, 2]. In the 2012 Synthetic 

Biology Roadmap for the UK, the potential contributions of this field are 

summarised under three headings: well-being (diseases prediction/prevention, 

healthcare and employment), security (food, water and energy supply), and 

sustainability (natural resources management) [3, 4]. Although synthetic 

biology is a relatively recent discipline that inherits (but not merely a direct 

extension of) the genetic engineering technologies [5], it has developed as a 

key distinction for the Bioeconomy growth [6, 7]. Despite the severe impact of 

a global pandemic, the global investments of this field broke the historical 

records in 2020 [8-10] (Figure 1-1). 

Figure 1-1. Global Funding for Synthetic Biology since 2009 [9]. 
This summary includes private, public, and non-dilutive government-

grant funding. 
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Although the genetic-level manipulations of cells have presented before the 

conceptualisation of synthetic biology, many scholars hold the view that these 

designed biological systems are mostly ad hoc, limited in complexity, and are 

not always predictable when implemented in different biological contexts [11, 

12]. To address this challenge, synthetic biology involves interdisciplinary 

projects that bring together the experts of different realms from cell biology to 

engineering and introduces a framework that is more “engineering-ready” [11, 

13, 14] (Figure 1-2). Researchers implement engineering concepts such as 

modularisation and standardisation since the emergence of this field [15-17]. 

Figure 1-2. A confluence of advanced biological technologies and 
engineering principles leads to the emergence of synthetic biology 

[14]. 

A concrete practice of the engineering ideology in synthetic biology is the 

separation of the biological circuits design, genetic fabrication, and the 

experiments for testing these circuits [12, 15]. With the advent of precise gene-
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editing techniques such as CRISPR-Cas9, the speed, costs and robustness of 

gene editing have been continuously improved [7, 18]. The sprung-up DNA 

foundries around the world provide genetic toolkits services with increased 

efficiency and affordability [3, 7, 19]. 

 

1.1.2 Design‐Build‐Test (DBT) Cycle and Model Calibration 

With the guidance of engineering principles, synthetic biology projects involve 

a paradigm of directly assembling the functioning systems with standardised 

genetic parts. In practices, this construction procedure cannot be simplified as 

a “plug-and-play” pattern [5, 20]. In evolution, species change different 

features at the genetic level concurrently, which results in highly entangled and 

delicate gene regulation networks. Because of this, the complex crosstalk and 

resource sharing between synthetic and natural networks could lead to 

unwanted behaviours [13]. It is also described as interfacing engineering 

problems by Prof. Kitney and Prof. Freemont [5]. Therefore, the development 

of the prototypes and commercial products that work as expected requires 

decent knowledge not only of every synthetic part but also of the chassis 

organisms (the cells being modified) [12]. 

Prof. Clarke (Co-chair of the UK Synthetic Biology Leadership Council) and 

many scholars emphasises the necessity of applying a cycle pattern to 

overcome the interfacing problem during the development of synthetic 

biological products [5, 20]: as shown at the top of Figure 1-2, the pattern stands 

for the iterative procedures of design‐build‐test‐(analysis/learn) 

(DBT/DBTA/DBTL [3, 14, 20-22]). The principle is to design and build chassis 

organisms containing synthetic parts, and then carry out experiments to test 

the performance of the product and to calibrate the corresponding 

mathematical models. The calibrated models would be used to refine the 

design to achieve better performance and reliability [13, 17]. 
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On the one hand, about the building procedure, developments in DNA 

synthesis and sequencing in the last decade have dramatically improved its 

affordability and efficiency [23, 24]. On the other hand, about the testing 

procedure, although advances in measurement technologies (e.g. flow-

cytometry [25] and microfluidics [26]) enabled high-throughput quantifications 

of fluorescent reporter proteins and reduced the reagent costs of experiments, 

the informativeness of wet-lab experiments is still in general limited by sparse 

(in time) and noisy observations and sub-optimal stimuli design because of the 

traditional experimental platforms [27, 28]. Till now, the test phase is still a 

costly and time-consuming step of the DBT cycle, which slows down the 

progress of product development [29, 30]. Moreover, with the increasing 

complexity of discovered and engineered genetic pathways, the demand for 

efficient testing experiments is more urgent than ever [22, 31]. 

 

1.1.3 Developments and Challenges of the Testing Stage 

As introduced in the previous section 1.1.2, the testing stage is the stage that 

carries out series of experiments to obtain more knowledge of the biology 

projects (such as synthetic promoters, enzymes, or networks) and check 

whether the designed parts perform as expected. Figure 1-3 shows the four 

considerations of the techniques used at this stage, and also the main 

directions of improvements in recent years [32-34]. 

Efficiency is one of the most focused aspects of the techniques. A reason is 

that to further explore the potential of synthetic bioproducts, researchers are 

considering more complex models with more variables, which leads to an 

exponential increase in the requirement of experimental data [33, 35]. 

Benefiting from the developments in molecular engineering and automation 

systems, some high-throughput methods (such as flow-cytometry [25, 36] and 

microdroplet technology [37-39]) have become widely adopted and well-

established experimental techniques. These methods allow quick observation 
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of cells in multiple channels [40, 41], so that researchers could gain information 

of the entire cell population within few seconds. Furthermore, automated 

microplate readers [42, 43] and microfluidic devices [44-46] allow parallel 

experiments, which also increases the efficiency of the testing stage. Moreover, 

many newly developed experimental devices enable measurements with 

higher sampling frequency and more complex, precise, and dynamic control of 

extracellular media [47-49]. Correspondingly, how to find the optimal 

experimental design in the enlarged feasible design space is also an 

interesting topic in this field  [50-52]. 

Figure 1-3. Main considerations and recent directions of 
improvements for the techniques used at the testing stage [32-34]. 

As shown in Figure 1-3, there are also other considerations except for the 

efficiency of the testing experiments. For example, the automation of 

experiments is a very popular direction in both the academic field and the 

related market [53-56]. The versatility is another practical aspect. For end-

users, the design of experimental systems needs to balance the forward-

looking and the compatibility with current equipment, and ideally also suitable 

for future projects [57-59]. The last aspect is affordability. As mentioned 

previously, the cost of testing has been generally decreased in the last decade 

[3, 7, 19]. However, the multi-purpose automatic experimental platforms are 

still generally considered too expensive to be widely available [32, 60]. 
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Considering the majority of this aspect is beyond the scope of this thesis [61-

64], it will not be expanded in detail here. 

Overall, the recent developments in the techniques used in the testing stage 

have dramatically increased the experiment efficiency. These developments 

also increased the importance of optimal experimental design and experiment 

automation to a new level. However, to what extent would end users expect to 

benefit from adopting particular new experimental techniques (which could be 

costly for purchasing and training) is rarely investigated in detail  [13, 25]. It is 

one of the concerns researchers have when deciding the experimental plan for 

the testing stage. 

 

1.1.4 Model Calibration in Systems Biology 

Although this thesis aims to optimise the efficiency and robustness of 

experiments for calibrating the models of synthetic networks, most of the 

conclusions can also be applied to the modelling of endogenous networks in 

cells without synthetic parts, which is a common procedure of researches in 

systems biology [65].  

In a highly-cited viewpoint article [13], experts of synthetic biology, including 

Prof. Weiss and Prof. Elowitz, elaborated the complementarity and 

considerable overlap between this research and systems biology. 

Mathematical modelling is an effective tool in both fields, but the objectives are 

different. For synthetic biology, the models are calibrated for guiding the design 

of synthetic networks; for systems biology, the models are helpful to 

understand the biological mechanisms of the networks and make predictions 

of their behaviour [2, 13]. Because of this, successful attempts for optimising 

the model calibration experiments may provide references for both of the 

research fields. This view has been proven by many previous cases [66-70]. 
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1.2 Previous Attempts to Improve the Efficiency of 
Test Phase 

As introduced in the section above, the test phase aims to carry out 

experiments on the synthetic cells and obtain calibrated models to describe 

the behaviours of these organisms. Many researchers hold a view that the 

procedure can be split into the wet-lab part (experiments on cells) and dry-lab 

part (experimental design and processing of experimental data) [71-77]. 

Correspondingly, previous works on achieving a more efficient test phase can 

also be generally classified into two groups: improving the experimental 

techniques (wet-lab) [77], and improving the experimental design and model 

calibration (dry-lab) [72]. 

 

1.2.1 Attempts in Experimental Techniques 

Experimental techniques decide the types of stimuli can be given to cells, and 

so as the type and accuracy of data that can be obtained from experiments. 

The two commonly adopted devices for observing synthetic cells’ behaviours 

at the cellular level are flow cytometers and fluorescence microscopes [78]. 

In the last few decades, flow cytometry has been one of the most potent and 

broadly-adopted techniques to extract cells’ information in biological and 

medical experiments [25, 36, 79]. In a flow-cytometer (Figure 1-4), cells are 

suspended in media and flow though the measuring position (commonly 

referred to as the interrogation point or laser intercept) one by one. laser light 

beam illuminates each cell and the light scatter and excited fluorescence 

emissions are quantitively measured by corresponded detectors. The signal 

intensity can be used to derive the features of cells, including the size, the 

complexity of inner structures, and the quantity of fluorescence as reporter of 

certain molecules [78]. With the developments in hardware and reagents, flow 

cytometry experienced an “explosion” in the number of colour channels [79]. 
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In some recent experiments, flow cytometry can measure up to 28 fluorescent 

channels in one experiment and obtain single-cell-level data [40, 41]. 

Figure 1-4. Illustration of the mechanism of a flow cytometer. 

An illustration of fluorescence microscopy is shown in Figure 1-5. Unlike flow-

cytometers that measure the signal intensities, the output of fluorescence 

microscopes are images, which leads to relatively lower throughput (the 

number of processed cells for each sample) [78]. However, since it does not 

need to resuspend the cells, microscopy has the potential of continuous 

observation of certain cells. Another emerging experimental technique known 

as microfluidics furtherly extends the advantage of microscopy. By 

manipulating media flows on microfluidic chips with sizes of a few 𝑐𝑚2, this 

technique allows continuous monitoring of the cells under more complex and 

dynamic stimuli [45, 80-82]. (Details of these experimental techniques would 

be discussed in details in chapter 2). 

The different mechanisms of traditional flow-cytometry and microscopy with 

microfluidics affect the experiments in many aspects, including the accuracy 

of observation and the stress applied to cells during the cell growth and 

measurement [83]. Therefore, although microfluidics experiments have a 

theoretical advantage by allowing more complex and dynamic stimuli, it 

remains as a question that whether its advantages could significantly improve 



Chapter 1 

9 

the efficiency for model calibration in practices. In the last decade, there have 

been many previous studies for different purposes that involved experiments 

with both flow-cytometry and microscopy (without microfluidics) [25, 83-86]. 

These cases generally support the view that which of the experimental 

techniques is appropriate depends on the types of application, and the 

difference in calibrated models can be due to the choice of the technique. As 

emphasised by Prof. Barteneva and Prof. Smolke, comparing these 

techniques and the corresponding calibrated models is valuable to understand 

the result differences between experiment platforms [13, 25]. 

Figure 1-5. Illustration of the mechanism of fluorescence microscopy 
with microfluidics. 

 

1.2.2 Attempts in Model Calibration and Experimental Design 

Algorithms of model calibration and experimental design is another aspect that 

affects the efficiency of experiments. Model calibration refers to the process 

that looks for the model parameter set that minimises the difference between 

model predictions and experimental data [51, 52]. For non-linear models (a 

typical case in biological and chemical researches [51, 87, 88]), the calibration 

is generally considered as non-linear programming (NLP) problems [89, 90]. 
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There are a few representative algorithms to solve these NLP problems, such 

as simulated annealing [91, 92], particle swarm [93, 94], evolutionary 

algorithms [95, 96] and scatter-search-based algorithms [89, 90, 97]. 

Improving the efficiency and robustness of solvers for these problems is a 

typical topic for experts in applied mathematics rather than bioengineers [98-

100]. It is also important to point out that theoretically, no algorithm can 

guarantee to solve general NLP problems within a finite time [101]. Moreover, 

which of these algorithms can find the globally optimal solution with the fastest 

convergence vary with the NLP problems [52]. 

The optimisation of experimental designs (OED) is to increase the model 

accuracy and parameter identifiability without increasing the cost of 

experiments (e.g. experiment time and resources) [51, 52]. As shown in Table 

1-1, the related algorithms kept developing with the growth in computing power 

and the complexity of the models to calibrate. In this table, the optimal 

experimental designs based on the Fisher information matrix (FIM) are proven 

to be suitable for guiding the experiment calibration of non-linear models [87, 

102]. However, the cost of FIM-based OED in the computing power/time is 

considerable with large models with increasing numbers of parameters to 

estimate [89, 102, 103]. How to reduce the computational cost for the FIM-

based OED while maintaining the estimation accuracies of these parameters 

is an interesting and valuable question that remains to investigate. 

Table 1-1. Common algorithms to design the experiments for model calibration. 
(The algorithms are generally ordered from simple to complex of the 
calculation) 

Algorithm Name Related References 

one factor at a time (OFAT) Czitrom (1999) [104] 

central composite design (CCD) Agar et al. (2014) [105] 

box-behnken design (BBD) Ferreira et al. (2007) [106] 

fractional factorial design Jaynes et al. (2013) [107] 

Taguchi’s design of experiment Agar et al. (2014) [105] 

Fisher information matrix-based OED Rodriguez et al. (2006) [51] 

Bayesian OED Huan et al. (2013) [108]  
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1.3 AIM and Approaches 

1.3.1 Overall Aim and Chapter Division 

As introduced in previous sections, the costly and time-consuming 

experiments at the testing phase have become a bottleneck that slows down 

the DBT cycle of synthetic biology production [29, 30]. To address this problem, 

this thesis explores the approaches to improve the efficiency of experiments 

for model calibration and examine these solutions with a developed automatic 

experimental platform and a model of a synthetic inducible promoter in yeast. 

Moreover, the calibration of a mathematical model of a synthetic inducible 

promoter in S. cerevisiae (yeast) is carried out as the benchmarking. The work 

can be divided into three aspects, and chapter 2-4 provide the corresponded 

details: the experimental technique, the optimisation of experimental design, 

and automatic experiment abnormality screening. 

 

1.3.2 Microfluidic Experiments on Developed Automatic Platform 

The work on the experimental technique aspect is validating the benefit of 

microfluidic experiments compared to the classic flow-cytometry experiments 

for model calibration. As introduced in section 1.2, although microfluidic 

devices allow more dynamic stimulus, to what extent this can benefit the 

calibration accuracy has not been thoroughly investigated. In chapter 2, a 

series of in-vivo experiments on the yeast cells with an embedded inducible 

promoter is carried out on a developed microfluidic experimental platform. The 

experimental data and data from flow-cytometry experiments in a previous 

research project by Gnügge et al. [109] is used for model calibration and cross-

validation. The statistical analysis of the comparison will show whether 

microfluidic experiments lead to more accurate calibrated models with the 

same experimental time. 
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1.3.3 Optimal Experimental Design with Parameter Clustering 

For the aspect of optimal experimental design (OED), chapter 3 explores an 

approach that carries out the OED based on parameter clustering analysis and 

visualisation (PCAV) to achieve more efficient experimental designs. These 

methods cut the experiment into a series of sub-experiments. Only a subset of 

parameters is focused in each OED, so the computing complexity of the OED 

for each sub-experiment is reduced. 

Moreover, this thesis proposes a parameter clustering algorithm based on the 

Fisher information matrix (FIMPC) for the first time. The accuracy of model 

calibration base on the experiments optimised with parameter clustering and 

the previous OED approaches and compared and analysed. 

 

1.3.4 Automatic Experiment Abnormality Screening System 

The work in chapter 4 is about developing an automatic experiment 

abnormality screening (AEAS) system supported by convolutional neural 

networks (CNNs). It does not come from the previous division of wet-lab and 

dry-lab, but from the practice of wet-lab experiments of the previous aspects. 

The works in chapter 2 came across a few different abnormal experimental 

conditions, which causes invalid experimental data and slows down the 

research progress. In the past, the checking of these conditions is carried out 

with a manual screening of all the experimental images. However, it would not 

be practical for the potential mass parallel microfluidic experiments. 

An AEAS system with convolutional neural networks (CNNs) is developed and 

validated. Moreover, some image augmentation methods and training 

strategies are researched. The experiences can be a reference for the 

development of image-based AEAS systems for other experimental platforms 

and engineering practices.
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Chapter 2:  Improving the Accuracy and 

Automation of Model Calibration Experiments 

with Microfluidic Technique 

Microfluidics (MF) as an emerging experimental technique allows higher 

sampling frequencies and more dynamic stimuli compared to flow-cytometry 

(FC), a classic and broadly adopted experimental method. On the other hand, 

FC as a mature experiment technique can observe 10+ times more cells at 

each sampling point with more robust quantitation. Although a quantitative 

comparison between these two techniques is very helpful for understanding 

the differences in results and also for guiding the choice of technique for future 

studies, this point has not been investigated in many studies. In this chapter, 

a series of MF experiments are carried out on a developed automated 

experimental platform. By calibrating the model with both MF experimental 

data and FC data, the work in this chapter quantitively validates the advantage 

of MF experiments for model calibration with an orthogonal promoter model as 

a benchmark. Results suggest that compared to traditional flow-cytometry 

experiments, microfluidic experiments lead to models that give better 

predictions in stimulus different from the experimental designs. 

 

2.1 Introduction 

2.1.1 Flow Cytometry and Fluorescence Microscopy in Biology 

In the last 30 years, flow cytometry has been one of the most powerful and 

broadly adopted technologies to extract cells’ information in biological and 

medical experiments [25, 36, 79]. It is an experimental technique that allows 

rapid and simultaneous acquisition of multiple fluorescence channel over 

thousands of cells. As shown in Figure 1-1, suspended sample cells flow 
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through the device one by one and irradiated with a beam of light (for most 

cases, laser). The obtained light-scattering features contain information of size, 

granularity, and very importantly, the concentration of fluorescent-labelled 

molecules [110]. With the developments in hardware, reagents, and data 

processes theories, flow cytometry experienced an “explosion” in the number 

of colour channels [79]. In some recent experiments, flow cytometry can 

measure up to 28 colours [40, 41, 111, 112]. 

Figure 2-1. Illustration of a traditional flow cytometer. 
The intensity of forward scatter (FSC) light is proportional to cells’ 
size, side scatters (SSC) is proportional to cell’s internal structural 
complexity, photomultiplier tubes (PMTs) measure the intensity of 

fluorescence lights of different channels. 

In some more recent studies, experimental technologies based on microscope 

images instead of intensity data of light beams, such as high-throughput 

microscopy [113, 114] and imaging flow cytometry [25], also achieve the 

single-cell-level data acquisition. Depending on the hardware settings, 

experimental data is based on images of ten to thousands of cells. One of 

these methods’ advantages is that they allow the time-lapse analysis of 

individual cells(observation with cell tracking) as they remain in multi-well 

plates or on slides during the experiments [113]. 
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2.1.2 Microfluidic Experimental Technique 

Microfluidics is an emerging experimental technique that shifted from 

phenomenological studies to medical and biotechnological applications in 

recent years [45]. In the early stages of biopharmaceutical research, traditional 

experimental equipment such as shake flasks and bench-scale bioreactors are 

commonly adopted [115, 116]. These approaches lead to laborious and 

expensive experiments and cannot support accurate control of complex 

dynamic stimuli [80-82]. In contrast, typical microfluidic devices are of a 

few  𝑐𝑚3  in size, which processes or manipulates cell media in network 

channels with microliters or femtoliters diameters in volume (Figure 2-2) [117, 

118]. This technology not only saves the resources for experiments, but also 

allows more highly complex and rapid control of the cellular microenvironment 

[119, 120]. 

For decades, many previous researchers developed microfluidic experiment 

method and demonstrated its potential [45, 119, 121-124], such as the early 

attempts of miniaturising the bioreactors [62, 116] and microfluidic input 

multiplexor systems [125]. Nowadays, microfluidic devices can guide individual 

cells into desired locations, and then apply accurate and dynamic stimulus 

while continuously monitoring the cells’ behaviours [126, 127]. 

Figure 2-2. A microfluidic chemostat for experiments [128]. 
Cells and the media are loaded from the ports which connect to the 

media sources via tubing. 



Chapter 2 

16 

In 2011, Ferry et al. introduced a microfluidic chip design that allows 24-72-

hour-long experiments on yeast cells [124]. This chip is also the design used 

in the work of this thesis. The chip (Figure 2-3), which is called MFD005a in 

the original paper, is designed to grow yeast cells in a monolayer in the 

chamber (the grey area). The extracellular environment is controlled by the 

mixing ratio between two media resources. Ferry et al. improved the mixing 

junction and proposed the dial-a-wave (DAW) junction (the green cashed circle 

in Figure 2-3). Compared to the traditional design (called T-junction [121, 124]), 

the DAW junction has two extra channels to the waste port, allowing a more 

reliable mixture for mixing ratios close to 0% or 100%.More details about how 

this chip design works are given in section 0. 

Furthermore, Ferry et al. have also shown a chip design that is theoretically 

capable of carrying out parallel experiments (Figure 2-4). However, it is 

challenging to balance the pressures in the channels for these parallel 

experiments. Moreover, as mentioned in their paper, lens movement between 

chambers during the experiment may generate bubbles in the microscopy oil, 

resulting in focusing problems and blurry images [124]. This problem will also 

be discussed in chapter 4 about the experiment abnormality screening system. 

In other words, microfluidic technology has the potential to achieve massive 

parallel experiments. However, there are some issues to solve in quality 

control and other aspects to fully develop this potential. 

Figure 2-3. Microfluidic chip MFD005a’s architecture [124]. 
Blue lines are the channels of the chip; the expanded nodes with 

numbers are the ports connecting to the media supply; the orange 
area is the cell chamber; green dashed region is the DAW junction. 
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Figure 2-4. Microfluidic chip for eight parallel experiments [124]. 
The light blue parts are similar to the design in Figure 2-3, and the 
corresponded port 4 and 3 for each experiment are connected to 

reduce the number of required media sources. 

Although microfluidics is an emerging technique that has its unique advantage, 

there are also aspects that can be improved, such as image-based cell 

segmentation [129]. Cell segmentation is one of the key steps that decide the 

accuracy of the quantification. But different from flow-cytometry which has 

well-proven and adopted method for similar requirement [36, 41, 78], the 

generic algorithms or tools for image-based cell segmentation is still a 
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developing project, and most of the current tools (such as WEKA [130], and 

CDeep3M [131]) work with hand-tailored features for each study case [129-

134]. As shown in  

Table 2-1, there is no direct answer to the question “Flow-cytometry and 

microfluidic microscopy, which of them works better for model calibration”, 

which is important for the researchers considering upgrading experiment 

systems or building an experiment platform from scratch. 

Table 2-1. Comparison of the advantages and disadvantages of the two 

experimental techniques to investigate. 

 

2.1.3 Attempts of Automated Experiments 

Apart from the data acquisition and bioreactor designs, another critical aspect 

of bioengineering experiments’ efficiency is the level of automation [135]. 

Recent attempts in related fields also reflect the demand for automated and 

integrated experimental technology in both industry and academic field [53, 

135]. Moreover, the epidemic of COVID-19 also highlights the benefit of 

automated experiments under social distancing constraints and lockdowns. 
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The general vision of an automated experiment platform is a system that 

minimises human labours and only involves people at the beginning and end 

of experiments. However, as the famous saying, “Rome was not built in one 

day,” the automated platform is achieved by automating the experiment 

procedures parts by parts. Although almost all the current automated platforms 

are closely integrated with different experimental hardware such as flow 

cytometer [135-137], microfluidic devices [116, 138, 139], or other mini-

bioreactor systems like Chi.Bio [140-142], there is a common pattern that can 

be found within these systems as shown in Figure 2-5. This pattern also guided 

the development of the platform used in this thesis (section 2.2.4). Table 2-2 

compares the automation level of some recent studies in related fields and this 

work. It can be seen that more and more experimental procedures are 

automated with the development of tools for automatic control. Although 

previous studies have shown that the potential of automated microfluidic 

experiments [118, 124], the automation level of microfluidic experiments in 

practice is generally lower than flow-cytometry experiments. It is likely because 

flow-cytometry presents for a longer time and is more familied by researchers. 

Compared to related studies in Table 2-2, the work in this thesis rises the 

automation level of microfluidic experiments. 
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Figure 2-5. The common pattern of model calibration experiments.
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Table 2-2. Automation level of some recent highly-cited model calibration studies in related fields and the work in this thesis. 

The studies are sorted from old to new. Green and Blue correspond to the two experimental techniques to compare in this 
thesis. Solid/hollow dots are automated/manual procedures, and N/A means this study does not need this procedure. The 
device calibration procedure in this table only refers to some related calibration work of the main device, not all the calibrations 
of the device.

Researcher (Year) [ref] 
Experiment 

Object 

Main 
Experiment 

Device 

Automated Procedures 

Device 
Calibration* 

Input Design for 
Model Calibration 

Sampling Measuring 
Model 

Calibration 

Takahashi et al. (2012) [143] mouse cells plate-reader ○ ○ ○ ● ○ 

Liu et al. (2012) [144] 
Zebrafish 
Embryo 

fluorescence 
imaging 

○ ○ ○ ● ● 

Huang et al. (2015) [145] S. cerevisiae microfluidics ○ ○ ○ ○ ○ 

Cornaglia et al. (2016) [146] C. elegans microfluidics ○ ○ ● ● ● 

Borujeni et al. (2016) [147] E. coli flow-cytometry ○ ○ ○ ● ○ 

Zhang et al. (2017) [148] Human cells microfluidics ● ○ N/A ● ● 

Nandania et al. (2018) [149] E. coli flow-cytometry ● ○ ○ ● ● 

Harrigan et al. (2018) [136] S. cerevisiae flow-cytometry ○ ● ● ● ● 

Beal et al. (2019) [150] 
multi-
purpose 

flow-cytometry ● ○ ● ● ● 

Fedorec et al. (2020) [151] E. coli flow-cytometry ○ ○ ● ● ○ 

Bertaux et al. (2020) [135] S. cerevisiae flow-cytometry ○ ● ● ● ● 

Burger et al. (2020) [53] Chemicals 
gas 
chromatograph
y 

● ● ● ● ● 

Soffer et al. (2021) [152] E. coli microfluidics ○ ○ N/A ● ○ 

This thesis S. cerevisiae microfluidics ● ● N/A ● ● 
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2.1.4 Experimental Subject: orthogonal induced promoter 

The comparison between flow cytometry and microfluidic experiment requires 

comparable data that corresponds to both of the experimental techniques. 

Selecting a benchmarking subject that has been investigated with one of these 

techniques would save almost half of the time for in-vivo experiments. An ideal 

selection should also try to control the uncertainties in related aspects which 

may interfere or even bias the comparison results. For example, if the model 

structure for the subject is inaccurate, or the model parameters depend on 

other factors which are not included in the model, the credibility of the 

comparison of model calibrations would be undermined. 

For the considerations above, a synthetic orthogonal promoter (Figure 2-6) in 

a yeast (Saccharomyces cerevisiae) strain is selected as the benchmark to 

address the benefit of microfluidic experiments for model calibration. This 

yeast strain is constructed by Gnügge et al. which is labelled as LacI-NLS 

(yRG500) in their original paper [109] and developed based on the strain 

BY4741. Gnügge and colleagues engineered an endogenous promoter 

sequence with heterologous DNA from Escherichia coli and established a 

network that regulates the expression of Citrine reporter with the concentration 

of isopropyl-β-D-1-thiogalactopyranoside (IPTG). The regulation path and 

mechanisms with the Lac operator in E. coli has been well studied since the 

1990s [109, 153, 154]. Moreover, this promoter established an orthogonal 

regulation of Citrine expression, compared to networks synthesised with 

homologous DNA sequences, this network avoids the unwanted potential 

regulation from and onto other genes [109, 155, 156]. 
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Figure 2-6. The orthogonal promoter designed by Gnügge et al. [109]. 

As shown in Figure 2-6, the promoter is constructed by placing operators 

(tetO)2 and (lacO)2 up-and-down-stream of the TATA box of homologous 

promoter CYC1 [157]. Proteins tTA, LacI, and Lac12 are expressed at a 

constant level with ACT1 promoter in yeast, which is not shown in the figure. 

These DNA sequences are integrated into the yeast genome. The 

corresponding mathematical model used in this study is introduced in section 

2.2.1. 

 

2.1.5 Novelty of this Study 

For the first time, this work carries out in-vivo experiments to compare the 

model calibration accuracy from flow-cytometry and microfluidic experiments 

with an orthogonal inducible promoter. Traditional flow-cytometry is a well-

proven and effective experiment technique for calibrating biological models. In 

comparison, Microfluidics is a relatively new and emerging technology that has 

the potential of less resource usage, dynamic stimuli, and continuous 

observation. This study performs microfluidic experiments to calibrate an 

orthogonal promoter model and verify if the experimental platform can lead to 

comparable model prediction accuracies as the ones calibrated with flow-

cytometry experiments. Barteneva et al. commented that this type of 
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verification work helps overcome ambiguities in model calibration associated 

with different experimental techniques [25]. 

This work raises the microfluidic experiments' automation level by developing 

a control platform that integrates most of the experiment procedures, including 

the optimal input design and model calibration procedures. Moreover, the 

platform also supports remote control of the experimental device. 

 

2.2 Methods 

2.2.1 Mathematical Model to Calibrate 

As introduced in section 2.1.4, the experiments aim to calibrate a model 

describing the behaviour of an orthogonal inducible promoter in yeast cells 

(Figure 2-6). The model selected in this work is an ordinary differential equation 

(ODE) model from previous work [27]. As shown in Eq. 2-1, the model has 

three states which correspond to the concentrations of three different 

molecules: Citrine mRNA, immature folded Citrine protein, and matured Citrine 

protein which is fluorescent. The [𝐼𝑃𝑇𝐺] in brown is the input; the [𝐶𝑖𝑡𝑓𝑙𝑢𝑜] in 

green is the observable; the characters in red are model parameters. 

 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] = 𝛼1 + 𝑉𝑚1

[𝐼𝑃𝑇𝐺]ℎ1

[𝐼𝑃𝑇𝐺]ℎ1 + (𝐾𝑚1)ℎ1
− 𝑑1[𝐶𝑖𝑡𝑚𝑅𝑁𝐴]

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃] = 𝛼2[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] − (𝑑2 + 𝐾𝑓)[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃]

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑓𝑙𝑢𝑜] = 𝐾𝑓[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃] − 𝑑2[𝐶𝑖𝑡𝑓𝑙𝑢𝑜]

 Eq. 2-1 

In Eq. 2-1, the induction mechanism is modelled with a Hill function. 𝛼1 is the 

basal transcription factor; 𝑉𝑚1 is the maximal induced transcriptional rate; ℎ1 

is the Hill coefficient;  𝐾𝑚1  is the Michaelis Menten coefficient (the 

concentration corresponds to half of the maximal induction level);  𝛼2 is the 

translation rate; 𝐾𝑓 is the maturation rate; 𝑑1 and 𝑑2 are the degradation rate 
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for mRNA and protein. Figure 2-7 illustrates the reactions involved in this 

model. The parameter units, calibrated values based on Gnügge et al.’s 

experiments and the feasible ranges for calibrations are given in Table 2-3. 

Figure 2-7. Illustration of the reactions involved in the model, and 
how the input IPTG affects the observed fluorescence signal. 

Table 2-3. Feasible ranges and best fits (based on flow-cytometry experiments) 
of model parameters. 

Symbol 
Physical Meanings 

(unit) 
Best Fit 
[27, 109] 

Feasible 
Range 

Ref. 

𝜶𝟏 
basal transcription factor 
(A.U./min) 

0.0164 
3.88e-5 to 
0.495 

[158] 

𝜶𝟐 
translation rate of Citrine mRNA 
(min-1) 

6.64 
0.243 to 
6.81 

[27] 

𝑽𝒎𝟏 
maximal induced transcriptional rate 
(A.U./min) 

0.292 
0.0388 to 
0.495 

[159] 

𝑲𝒎𝟏 
Michaelis-Menten coefficient of 
inducible promoter 
(𝜇𝑀) 

5.14 
2.00 to 
10.0 

[109] 

𝒉𝟏 
Hill coefficient of inducible promoter 
(1) 

1.72 
0.500 to 
4.90 

[27] 

𝒅𝟏 
mRNA degradation rate 
(min-1) 

0.220 
7.70e-3 to 
0.230 

[160] 

𝒅𝟐 
Citrine protein degradation rate 
(min-1) 

5.75e-3 
5.98e-5 to 
0.245 

[161] 

𝑲𝒇 
maturation rate of Citrine 
(min-1) 

0.0216 
0.0120 to 
0.0217 

[162] 
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In practice, the observation data is derived based on the signal intensity in the 

corresponding fluorescence channel. With different experimental equipment, 

the same amount of Citrine proteins may lead to different signal intensities. In 

other words, the microfluidic experiments carried out in this study and the flow-

cytometry experiments would have different observation units. Therefore, the 

observed signal intensity can be expressed as Eq. 2-2: 

 
𝑦𝐹𝐶 = 𝑠𝑐𝑎𝑙𝐹𝐶 ∗ [𝐶𝑖𝑡𝑓𝑙𝑢𝑜]

𝑦𝑀𝐹 = 𝑠𝑐𝑎𝑙𝑀𝐹 ∗ [𝐶𝑖𝑡𝑓𝑙𝑢𝑜]
  Eq. 2-2 

where 𝑦𝐹𝐶  and 𝑦𝑀𝐹  are the intensities of observed signals in flow-cytometry 

and microfluidic experiments, 𝑠𝑐𝑎𝑙𝐹𝐶 and 𝑠𝑐𝑎𝑙𝑀𝐹 are the corresponding scaling 

factors. 

Including the scaling factors, there are nine parameters in the model. However, 

not all these parameters can be calibrated at the same time because some of 

the parameter groups are structurally unidentifiable. In other words, the model 

predicted signal intensity 𝑦 would be identical with some different value sets of 

these parameters. Figure 2-8 gives details of the two transformations that 

would generate exactly the same model predictions. It means that in the 

calibration, two parameters from two out of three groups must be 

fixed: {𝛼1, 𝑉𝑚1}, {𝛼2}, {𝑠𝑐𝑎𝑙}. 

Figure 2-8. The two transformations that remain the model-predicted 
signal intensity 𝑦 unchanged. 

It can be seen that if the concentration of mRNA ([𝐶𝑖𝑡𝑚𝑅𝑁𝐴]) can be measured 

with a fixed scaling factor [163, 164], the identifiability problem could be solved. 

At the moment, to address this problem, the scaling factors and 𝛼2 are fixed 

during the calibration. The scaling factors are fixed as 1, i.e., 𝑦 = [𝐶𝑖𝑡𝑓𝑙𝑢𝑜], and 

[𝐶𝑖𝑡𝑓𝑙𝑢𝑜]  shall be directly noted as the measured output value in different 
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arbitrary units for flow-cytometry and microfluidic experiments. The 𝛼2 is fixed 

to a value derived from a model by Gnügge et al. where this value is identifiable 

[109]. The reason why  𝛼2  is fixed rather than  𝛼1  or  𝑉𝑚1  is because 𝛼2 

describes the translation of the mRNA of Citrine, and this procedure is unlikely 

to be significantly affected by the IPTG input and gene modification of the 

promoter (which is the main difference in this network compared to previous 

related studies). 

The model-predicted dose-response curve (Figure 2-9) and dynamic 

observations (Figure 2-10) are plotted as to provide a more intuitive 

understanding of how these parameters affect the model predictions. The 

dynamic simulation is when cells start from the steady-state, which 

corresponds to 0 𝜇𝑀 IPTG and then switch to an IPTG concentration randomly 

chosen between 0.1 − 1000 𝜇𝑀  in the log-scale every 3 hours. In the 

figures,  𝜃∗  is the best-fitted parameter value according to Gnügge et al.’s 

experiments [109]. The parameter values are increased/decreased by 10% 

and doubled/halved to see the difference in observation. 

For the dose-response curves, it can be seen that ℎ1 and 𝐾𝑚1 affect the shape 

and horizontal shifts, and the other parameters contribute to the magnitudes 

of the observation. Dynamic curves show that parameters giving similar effects 

on the dose-response curve may have different effects on cells’ dynamic 

behaviour (such as 𝑑1 and 𝑑2). The patterns of how parameters contribute to 

model predictions will also be reflected in the parameter clustering in chapter 

3.
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Figure 2-9. Model-predicted steady observation with varying one 
parameter at once.



Chapter 2 

29 

Figure 2-10. Model-predicted dynamic observation under a 
randomized stimulus, with varying one parameter at once. 

 

2.2.2 Structural Identifiability Analysis of Model Parameters 

As mentioned in the previous section 2.2.1, there would be structural 

identifiability issues when fitting all the model parameters at the same time, in 

other words, there are multiple parameter value sets that could provide the 

same model predictions. A very important point to mention is that one of the 
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identifiability problems involves tree parameters (𝛼1, 𝑉𝑚1, and 𝛼2), and this 

problem is difficult to find with many analysis approaches. 

The analysis of parameter structural identifiability is often necessary for 

mathematical modelling, and the development in algorithms is a widely 

discussed aspect in related fields because most of the current approaches are 

typically computationally intensive or have limited applicability [165, 166]. Most 

of these approaches can be classified into three groups: sensitivity-based 

approach [167, 168], objective-function-based approach [165, 169, 170], and 

parameter-fitting-based approach [171-173]. The discussion of these three 

approaches are provided as follows: 

Sensitivity-based approaches mainly reflect two considerations: a. if the 

observation does not change with a model parameter (the corresponded 

sensitivity is zero or negligible), then it is impossible to estimate that parameter 

according to the observation; b. the sensitivity matrix of the observation 

corresponding to variances in different parameters could provide information 

about the identifiability with its rank [167, 168, 174]. In this case, 30 in-silico 

experiments with randomised stimuli (same as the experiment setting in 

section 3.2.5) are used to analyse the identifiability as randomised stimuli are 

unlikely to introduce extra identifiability problem in this case. As shown in 

Figure 2-11, the three unidentifiable parameters are not the least sensitive 

parameters, and the sensitivity vectors for every experiment are with full rank 

(eight as the number of parameters). At this stage, sensitivity-based analysis 

(at least without further process) can hardly find the identifiability problem with 

the parameter set 𝛼1, 𝑉𝑚1, and 𝛼2. Moreover, the Fisher information matrix (a 

mathematical tool for quantifying the informativeness of experimental designs, 

as introduced in section 3.1.2, [175, 176]) based on sensitivity matrix can find 

the rank lost and point out the unidentifiable parameter set. 

Objective-function-based approaches are the methods that work with the 

objective function for model fitting. The mechanism is that if the objective 
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function achieves the optimal value with multiple parameter sets, there would 

be a problem with the identifiability [170]. A typical method is that in each trial, 

select a subset of parameters as “free” parameters and fix the others, and then 

analyse the objective function’s behaviour as a function of these free 

parameters. If the objective function achieves its optimum at different points, 

the identifiability problem can be found. Although theoretically this approach 

can find the unidentifiable parameter set in this case, the corresponded search 

is costly in computing. With more free parameters, both the possible 

combinations and the complexity of each trial increase exponentially [165, 169], 

not to mention the number of model parameters is also increasing nowadays. 

Therefore in practice, if there is no concern of the identifiability for particular 

parameter sets, most of the researchers would not expand the search to three 

free parameters or more [165, 177]. 

 

Figure 2-11. Sensitivity ranking of the parameters. 
𝑟𝑑𝑚𝑎𝑏𝑠 is the averaged absolute relative sensitivity of all the 

observations corresponding to parameter changes, 𝑟𝑑𝑚𝑒𝑎𝑛 is the 
averaged relative sensitivity, red circles labels the unidentifiable 

parameters. 
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The parameter-fitting-based approach is the third category for identifiability 

analysis. This approach runs parameter estimation for several (usually 

hundreds) times with stochastic solvers. Because of the stochasticity, the 

estimated results would not be exactly the same and will form a distribution. If 

this distribution separates along a particular line, plane, or hyperplane, it 

suggests a problem of identifiability [171-173]. In this case, 125 trials of PE are 

used for identifiability analysis in this study (Figure 2-12). Similar to a previous 

study [166], this approach does not always provide the correct result. For 

example, this approach suggests the identifiability problems with 𝛼1 vs 𝑉𝑚1 

and 𝐾𝑓 vs 𝑑1, which can be rejected by manual double-checking of the model 

The correlation between 𝛼1  and 𝑉𝑚1  is because the ratio between these 

parameters can be more accurately estimated compared to their overall scale, 

but it is not the case that these two parameters are not identifiable. But the 

problem with the three truly unidentifiable parameters is not highlighted with 

this analysis. 

Figure 2-12. Scatter plot matrix of the parameter estimation trials. 
Unidentifiable parameters are marked with orange rectangles. 
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The parameter clustering algorithm introduced in the next chapter (section 3.2) 

is found to be an approach with great potential to find the unidentifiable 

parameters. It groups the parameters according to the informativeness for 

estimating each parameter corresponds to different experimental designs. 

Parameters having identifiability issues will remain poorly identifiable with all 

the designs, which is different from other parameters. In the FIM-based 

clustering approach, the three unidentifiable parameters are always clustered 

in a common group. The related results are given in section 3.3.3. 

 

2.2.3 Comparison between Flow-Cytometry and Microfluidics 

The work presented in this chapter aims to validate the microfluidic 

experiments and compare its model calibration accuracy with a classic 

approach (flow cytometer in this case). 

Before comparing the microfluidic and flow-cytometry experiments, it is 

necessary to ensure the microfluidic device does not introduce too much stress 

to cells [178-180], and the cell conditions are similar in these experiments. As 

one of the commonly adopted indications of the stress and toxicity [181-184], 

the growth rates of yeast cells in the microfluidic device and the environment 

for flow-cytometry experiments are statistically analysed and compard. 

Moreover, it is necessary to examine the repeatability of microfluidic 

experiments, in other words, whether the experiments could obtain stable 

results in replicates.  

About the comparison of prediction accuracy, the most direct method could be 

as follows: 

step 1: Carry out model calibration base on all the experimental data available 

and obtain the corresponded parameter estimation (PE) result (the 

best estimation of the actual parameter set); 
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step 2: Calibrate the model with only microfluidic or flow-cytometer-based 

experimental data of the same experimental time; 

step 3: Carry out the validation by comparing the experimental data from one 

experimental data set to the model prediction based on the other data 

set. The more efficient experiment set should be able to predict the 

other data set with acceptable accuracy. 

However, there is a problem with step 1. Although for both microfluidic and 

flow-cytometer based experiments, there is data from 400+ hour experiment 

times (Table 2-4), the microfluidic experiments allow significantly higher 

sampling frequency, so the numbers of samples of the same experiment time 

are different. As a result, if the parameter values are estimated with all the 

experimental data, the cost function would favour one experimental method 

with a larger data size (which side to favour depends on the weighting based 

on experiment numbers, total durations, or the number of sample points). It 

may not be a severe problem in some studies that assume the informativeness 

difference between experiment systems is negligible. However, it is a problem 

in this thesis. Because whether the informativeness difference is negligible for 

microfluidics and flow-cytometry experiments is one of the main questions to 

answer in this chapter. 

Table 2-4. Data size of the microfluidic and flow-cytometry experiments. 

 microfluidics flow-cytometry Data size Ratio 

No. Experiments 18 24 3:4 

Total Duration 432 hours 1152 hours 3:8 

No. Sample Times 5184 120 216:5 

Therefore, the final methodology is adopted as follows: 

step 1: Calibrate the model with only microfluidic or flow-cytometer-based 

experimental data corresponds to the same total experimental 

duration (288 hours); 

step 2: Use the calibrated models to predict the experiments that are not used 

for calibration (144 hours). 
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step 3: Validate the models by comparing the experimental data to model 

predictions. A good network model should provide accurate model 

predictions for the experiments on the same experimental device and 

also for the data on the other device. 

step 4: Repeat step 1-3 for several times (60 times in the practice of this thesis) 

with random selections of experiments for calibration and validation, 

and apply statistical analysis of the accuracy difference. 

 

2.2.4 Microfluidic Experimental Platform 

Figure 2-13. The workflow of the microfluidic experimental platform.  

The microfluidic experiments are carried out on our automated experimental 

platform. Figure 2-13 shows that the experimental platform is constructed with 

four hardware parts: the computer, hydrostatic pressure actuation system (for 

controlling the input concentration), the microfluidic chip, and the digital 

microscope. Figure 2-14 are two photos of the equipment. The details of the 

hardware in given in Table 2-5. 
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Figure 2-14. Photo of hardware devices of the platform. 
Because of the limited space in the lab room, the actuators cannot 

be included together with the other equipment.  

Table 2-5. Details of Experiment Platform Devices. 

Device Details 

Computer OS: Windows 7 
Involved Software: MATLAB, MicroMnager 

Microscope Nikon TI2 

Camera Andor iXonUltra 888 

Objective Lens Nikon 40x oil lens 

Spectra Lumencor SPECTRA light engine 
Sulforhodamine channel: Green 
Citrine channel: Teal 

Filter Block Sulforhodamine channel: TxRed 
Citrine channel: 69308 

Actuation System 2* IAI Linear actuator: fast speed, 800mm travel 
length 
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Figure 2-15 shows the architecture of the platform. Modelling and calculations 

are mainly supported by the AMIGO2 toolbox [174], the control of actuation 

hardware are completed with the MODBUS interface supported by MATLAB 

Instrument Control Toolbox™, the micromanager supports control and data 

exchange with the microscope [185]. Moreover, two graphical user interfaces 

for controlling this system are developed for both MATLAB and Python. 

Figure 2-15. Architecture of the Experimental Platform. 

The protocol for carrying out the experiment (Appendix A) and the design of 

the graphical user interface (Appendix B) are appended at the end of thesis. 

 

2.2.5 Design of the Microfluidic Device  

As introduced in section 2.1.2, the microfluidic device used in is project is the 

chip MFD0005a designed by Ferry et al. [124]. Figure 2-16 shows the detailed 

design of this chip. The media for each port is given in Table 2-6. To make 

hundreds of microfluidic chips for this study, a master board is purchased and 
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so as the IPTG powder and glass slides. The protocol of making the 

microfluidic chips in the lab is given in Appendix C. 

Figure 2-16. Detailed design of microfluidic chip MFD0005a [124]. 

In Figure 2-16, lines in blue are channels with a height of 10𝜇𝑚 for the media 

flow. The orange area is the cell chamber which has a lower height of 3.5𝜇𝑚. 

This area is only tall enough for one single yeast cell to “squeeze-in” so that 

the cells would grow in monolayer. There are five ports on the chip. Ports 1 

and 2 are the two input media ports; port 3 is the waste port; port 4 is used to 

adjust the flow from port 5 where cells are loaded to the chip.  

Table 2-6. Details of the media for each port. 

Port ID Content 

1 Input 1: SC media + 100𝜇𝑀 IPTG + 1𝜇𝑔/𝑚𝑙 Sulforhodamine (dye) 

2 Input 2: SC media 

3 Waste: SC media 

4 Flow Control: SC media 

5 Cell Loading: SC media + Cells (loading) / SC media (experiment) 
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During the experiment, the port 5 is connected to a media source without cells 

and the media flow is from ports 1&2 to ports 3,4, and 5. When loading the 

cells, port 5 will be connected to a syringe with cells suspended in media, and 

the flow is from ports 4,5,1, and 2 to port 3, so that the cells will be loaded to 

the chamber. 

The dial-a-wave (DAW) junction is a joint that convert hydrostatic pressure 

different of port 1&2 into a corresponding mixing ratio. The port with higher 

pressure (by changing the heights of the media sources bound to the linear 

actuators) will provide more media flow into the chip, which would eventually 

increase/decrease the concentration of IPTG and florescent dye in the 

chamber. The design if DAW junction is proposed by Ferry et al. [124]. 

Different from the traditional T junction, a DAW junction has two extra output 

channels which link to the waste port. This design solves the back-flow 

problem between the two input ports and allows more accurate and stable 

control of the mixing ratio as the input to the cells. 

Staggered Herringbone Mixers is a region that has a specially designed 

channel ceil. This design introduces rotational force to the media when the 

media flows in it. With these mixers, the media from port 1 and port 2 will be 

mixed much more evenly by reaching the cell chamber, so that the 

concentration of the stimuli (IPTG in this study) will be the same for all the cells. 

 

2.2.6 Processes of Microfluidic Experiment 

Similar to flow-cytometry [186] and other biological experiments [126], 

microfluidic experiments involve multiple processes to carry out. Figure 2-17 

is the flow chart of the experiment processes. Compared to the guidance 

provided by Ferry et al. [124], the modified platform in this study achieves a 

higher automation level by integrating the control of multiple experiment 

procedures to the uniform control panel: such as the DAW junction calibration, 

cell loading, experimental control. Moreover, from practices in wetting, it is 
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found that using two syringes for wetting instead of one can speed up the 

process. The protocol is provided in Appendix A. 

Figure 2-17. Flow chart of the processes for microfluidic 
experiments in this study. 
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2.2.7 Processing of Experimental Images 

During the experiment, the digital microscope will take three images 

corresponds to the three channels: Differential Interference Contrast (DIC), 

Sulforhodamine, and Citrine channel. The DIC channel is used to distinguish 

and identify the cells. The Sulforhodamine channel is used to confirm the 

mixing ratio of the two input media sources because Sulforhodamine is added 

to one source. The Citrine channel can tell the output signal intensity. The 

processing of these images mainly involves three steps: cell segmentation, 

signal compensation, and signal readout. 

Cell segmentation is only based on the DIC image and relies on the CellStar 

toolbox (MATLAB version) [187]. Although this toolbox supports both 

segmentation and tracking (S&T), the downstream algorithm for parameter 

estimation is not designed for single-cell tracking observations, so the cell-

tracking is not used in this project. Figure 2-18 is a brief graphical explanation 

of the CellStar algorithm given by the developer team. 

Figure 2-18. Segmentation pipeline of the algorithm [187]. 
a-e. generate the background/foreground/cell content masks and 

clean image as the preparation of segmentation; f-h. find the seed of 
a cell (redpoint) and then compute the edge (red line) along with the 

concentric rays, there is a constrain parameter to improve the 
accuracy of the edge detection; k-i. remove the identified cell from 
the image and repeat step 2 until there are no more cells on the 

image. 
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In this project, the background image is the average of the first ten DIC images 

with some manual modifications to remove the cell pixels. It is also why the 

device movement causes problems and needs to be identified as early as 

possible to avoid additional time and resource loss (see chapter 4 for details 

of the fault diagnosis). The first ten images’ cells are also manually marked as 

the ground truth for calibrating the constrain parameter for the automated cell 

segmentation on later images. 

Signal compensation is involved in the data processing because the signal 

crossover between Sulforhodamine and Citrine is not negligible from the raw 

data. Although the selection of Sulforhodamine as the input signal already 

consider the separation of the excitation/emission wavelengths with Citrine, 

the overlapping of the signals still above 5% in practice. To solve this problem, 

the signal crossover is quantified and extracted from the raw data. Figure 2-19 

shows a diagrammatic representation of the fluorescence signal crossover. 

The compensation that corresponds to this representation is also known as 

hardware compensation [188]. 

Figure 2-19. Diagram of the fluorescence signal crossover. 
For example, the Sulforhodamine causing 1 unit signal intensity in 

the Sulforhodamine channel, would cause 𝑘𝑆𝐶 unit of signal increase 
in Citrine channel. 

The corresponded mathematical expression of Figure 2-19 is as follows: 

[
𝑂𝐶𝑖𝑡𝑟𝑖𝑛𝑒
𝑂𝑆𝑢𝑙𝑓

] = [
1 𝑘𝑆𝐶
𝑘𝐶𝑆 1

] × [
𝑆𝐶𝑖𝑡𝑟𝑖𝑛𝑒
𝑆𝑆𝑢𝑙𝑓

] + [
𝑂𝐶𝑖𝑡𝑟𝑖𝑛𝑒
0

𝑂𝑆𝑢𝑙𝑓
0 ]            (𝐸𝑞. 2 − 3) 
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[
𝑆𝐶𝑖𝑡𝑟𝑖𝑛𝑒
𝑆𝑆𝑢𝑙𝑓

] = [
1 𝑘𝑆𝐶
𝑘𝐶𝑆 1

]
−1

× [
𝑂𝐶𝑖𝑡𝑟𝑖𝑛𝑒 − 𝑂𝐶𝑖𝑡𝑟𝑖𝑛𝑒

0

𝑂𝑆𝑢𝑙𝑓 − 𝑂𝑆𝑢𝑙𝑓
0 ]           (𝐸𝑞. 2 − 4) 

where 𝑆 represents the true fluorescence signal, 𝑂 represents the observed 

signal, 𝑂0 represents the background signal. 

The crossover coefficients k's values are possible to estimate according to the 

fluorescence spectra, the excitation/emission filter settings, and exposure 

times [189]. However, this method is complicated and not very accurate 

because it involves many uncontrollable factors of the light source, observed 

sample, lenses and other devices. Meanwhile, the experiments in this study 

offer an alternative and more accurate way to calculate these values. For the 

pixels away from yeast cells, it is reasonable to consider that there is no true 

Citrine signal; for the cell pixels at the beginning of experiments, it is 

reasonable to consider there is no true Sulforhodamine signal. In other words, 

these two groups of pixels should form two straight lines, and their slopes and 

intersection could be used to evaluate the compensation parameters (Figure 

2-20). It is supported by images from experiments (Figure 2-21). Figure 2-22 

shows an example of compensation for a step experiment. After compensation, 

the Citrine signal intensity remains around 0 and does not change with the 

IPTG Concentration (Sulforhodamine concentration) anymore. 
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Figure 2-20. Illustration of the expected distributions of the two pixel 
groups. 

Figure 2-21. Two pixel groups from the experiment images shown in 
circles and dots. 

Figure 2-22. Comparing the Citrine in the background in a step 
experiment. 

OCitrine

OSulf

SSulf

SCitrine

O0
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The signal readout is the last step that quantifies the signal intensity. The 

chamber cells are stuck between the floor and ceil, so they share the same 

“height”. Therefore, each cell’s Citrine concentration is proportional to the 

Citrine intensity increase of the cell compared to the background. 

 

2.2.8 ANOVA analysis 

To investigate microfluidic experiments’ repeatability, each experimental 

design is carried out at least three times. It is reasonable to expect slightly 

different measurements in these replicates, but a mathematical tool is required 

to tell the acceptable limits of this difference. Suppose the difference between 

replicates is beyond this limit. In that case, it suggests a repeatability problem 

that the experimental results might be significantly biased by some of the non-

repeatable experimental aspects (such as the selection of cell colonies, 

background light intensities, and operational uncertainties in media 

preparations). 

The one-way analysis of variance (one-way ANOVA) F-test is adopted in this 

study to quantitively judge whether the measurements from replicates differ 

from each other. The T-test is not used because of the familywise error [190, 

191].  

The principle behind the F-test in this research is that for the sampled images 

at the same time point in all the replicates, the observed intensity distributions 

of cells should be the same. The corresponding F-score is the ratio of the 

between-replicate variability and the within-replicate variability, which is 

expressed as follows: 

𝐹𝑡 =
𝑀𝑆𝑀

𝑡

𝑀𝑆𝑅
𝑡                                                (𝐸𝑞. 2 − 5) 
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where 𝑀𝑆𝑀
𝑡  is the model mean of squares at sampling time 𝑡, and 𝑀𝑆𝑅

𝑡  is the 

residual mean of squares at sampling time 𝑡. They are defined as: 

𝑀𝑆𝑀
𝑡 =

∑ 𝑛𝑖
𝑡(𝑦̅𝑖

𝑡 − 𝑦̅𝑎𝑙𝑙
𝑡 )𝑘

𝑖=1

𝑘 − 1
                                   (𝐸𝑞. 2 − 6) 

𝑀𝑆𝑅
𝑡 =

∑ (𝑛𝑖
𝑡 − 1)𝜎𝑖

𝑡2𝑘
𝑖=1

(∑ 𝑛𝑖
𝑡𝑘

𝑖=1 ) − 𝑘
                                      (𝐸𝑞. 2 − 7) 

where 𝑖 is the index of the replicate, 𝑛𝑖
𝑡  is the number of observed cells in 

the 𝑖𝑡ℎ replicate at time 𝑡, 𝑘 is the number of replicates (3 in this study). 

The calculated F-scores are compared to the critical values given by the F-

distribution: 

𝑄𝐹0.95
𝑡 = 𝐹0.95 (𝑘 − 1, (∑ 𝑛𝑖

𝑡
𝑘

𝑖=1
) − 𝑘)                 (𝐸𝑞. 2 − 8) 

If the F-score 𝐹𝑡 is smaller than 𝑄𝐹0.95, it means the intensity distributions from 

three replicates at the sampling time point are statistically different, suggesting 

a problem of repeatability. 

 

2.2.9 Parameter Estimation 

The parameter estimation (PE) is a procedure that searches for the feasible 

parameter value set that minimises the difference between the model 

prediction and experimental observation. The corresponded cost function to 

minimise is as follows: 

𝑐𝑜𝑠𝑡𝑢(𝜃) = √
1

𝑁
∑(

𝑦𝑖 − 𝑦̂𝑢,𝑖(𝜃)

𝜎𝑖
)

2

                              (𝐸𝑞. 2 − 9) 
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where 𝑢 is the stimuli pattern, 𝑁 is the number of observations, 𝑦𝑖 and 𝜎𝑖 are 

the mean and standard deviation of the observation value at the 𝑖𝑡ℎ sampling 

time, 𝑦̂ is the model prediction. 

Similar to many other biological models, the ODE model used in this project is 

non-linear and does not guarantee its convexity. Therefore, a global solver is 

required for both the PE and OED procedures. As shown in Table 2-7, the 

solvers for this type of problem are commonly divided into deterministic and 

stochastic [101, 192-195]. In recent years, there have been advances in both 

of the algorithm groups [194, 196], and at the moment there is a widely held 

view that deterministic approaches are generally more computationally 

intensive and may require certain assumptions of the mathematical problems 

to solve (which may not be guaranteed in general OED models) [90, 197-199]. 

Table 2-7. Table of typical global searching algorithms for solving nonlinear 

nonconvex optimisation problems. 

Deterministic Stochastic 

αBB [200-202], 

BARON [203], 
LindoGLOBAL [204, 205], 
Convex Solvers+Relaxation [196, 206]. 

Genetic Algorithms [207, 208], 
Differential Evolution [209, 210], 
Particle Swarm Optimization [211, 212], 
Scatter Search [90, 213]. 

Moreover, some recent studies obtained outstanding results by adopting 

hybrid approaches of stochastic global solver+deterministic local solver [214-

216]. These methods benefit from the advantages of both the solvers: 

stochastic global solver leads to a higher chance of finding the global optimum 

with limited evaluations, and deterministic local solver is more efficient for 

improving the accuracy of the final answer. 

In this task, an enhanced version of scatter search (eSS [192]) is adopted as 

the global solver, and the Nelder-Mead simplex algorithm [217] is used as the 

local solver to furtherly increase the accuracy. The eSS algorithm shows 

outstanding robustness and efficiency in a previous benchmarking study by 
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Egea et al. [192], and this approach has shown to be efficient in a previous 

study on the same model [27].  

 

2.2.10 Experimental design 

Flow-cytometry experiments were performed by Gnügge et al. [109]. Yeast 

cells were grown overnight either without IPTG or of 1000𝜇𝑀 IPTG, and then 

moved to another IPTG concentration media once the experiment starts. Cells 

were sampled and loaded to the flow-cytometer to read the Citrine channel 

intensity every 12 hours till the end of 48-hour-long experiments. The IPTG 

concentrations used in flow-cytometry experiments are given in Table 2-8. 

Table 2-8. Table of concentrations used in the flow-cytometry experiments 

Stage IPTG concentrations (𝝁𝑴) 

Cell Preparation 0/1000 

During 
Experiment 

0 2.5 5 7.5 10 15 20 25 35 50 100 1000 

The microfluidic platform allows for more frequent sampling and more complex 

stimuli. However, the duration would be shorter because the cells would fill the 

chamber after 24 hours and cells in the middle will have limited access to 

nutrient (get unhealthy). The DIC images are taken every 2.5 mins, and the 

fluorescence images are taken every 5 mins. 

The experimental designs are given in Figure 2-23. All the experimental 

designs start with a 3-hour-long period without IPTG to confirm cells are at a 

steady initial state. For random stimuli, the IPTG concentration is randomly 

selected from 0.1 to 1000 𝜇𝑀 on a log scale. 
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The experimental designs are referred from classical experimental designs 

from a previous study on the same model [27]. Random, Step-7.5 and 

PulsesX-1000 are the experimental designs included in the original paper. 

However, practices show that the pulsing frequency in PulsesX-1000 is a bit 

high to observe the corresponding oscillated expression level for lower IPTG 

concentrations (the expression level would remain at the level of averaged 

IPTG concentration with minor changes to the pulses). Therefore, the pulsing 

frequency for the pulse experiments of lower IPTG concentrations is reduced 

from 3ℎ−1 to 5ℎ−1. 

Figure 2-23. Experimental designs for the microfluidic experiments. 
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2.3 Results 

2.3.1 Cell growth condition 

As mentioned in section 2.2.3, it is vital to ensure that the microfluidic device 

does not introduce too much stress to cells and is comparable with flow-

cytometry experiments. As previous studies have shown [181-184], when cells 

are under stress, the reactions involved in this model would be affected and 

so as the growth rate of cells. In this study, the growth rate in the cell chamber 

in microfluidic devices is compared to the growth rate in the incubator which is 

very similar to the environment in flow-cytometry experiments from Gnügge et 

al. [109]. The main difference is the container they used were glass tubes and 

plastic vial tubes were used in this study, which should not introduce a 

significant difference. 

Figure 2-24. OD600 readings of incubated cells from three colonies. 
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According to the OD600 measurements (proportional to the number of cells in 

a unit volume, ), the cells’ doubling time in the incubator at 30 degrees 

temperature without IPTG is 126.0 min on average with a standard deviation 

of 17.2 min.  

 
Figure 2-25. Cell counts of all the microfluidic experiments. 

Figure 2-25 shows the count of cells in view during the microfluidic experiments. 

After 12 hours (720 min), the growth in number significantly drops, and cell 

count remains constant. The reason is not that the cells stop growing, but 

because the cells fill the sampling field, the newly budded cells push some of 

the cells out of the camera view. 

Bootstrapping algorithm is adopted to calculate the doubling time in 

microfluidic devices. For every experiment, the doubling time is estimated base 

on cell counts at 15 pairs of time points randomly selected from 180 min to 600 

min. After statistical analysis, the doubling time in microfluidic chips is 111.21 

min on average with a standard deviation of 34.4 min. As shown in Figure 2-26, 

the t-test shows that the average doubling time in microfluidic chips is not 

statistically different from the doubling time in the incubator. 
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Figure 2-26. Comparison of the growth rate in incubator vs 
microfluidic chip. Both of the sampled distributions pass the 

Kolmogorov-Smirnov normality test. 

 

2.3.2 Experimental Data and ANOVA of Replicates 

The experimental data and analysis of variance (ANOVA) results are shown in 

Figure 2-27. The F-scores from the ANOVA are less than 30% of the 0.95 

critical values. It means that the readouts in three replicates are not statistically 

different; the within-replicate variability between cells can explain more than 

95% of the variance in the reading. Figure 2-28 shows the mean and standard 

deviation of observed experimental data at each observation time point. 
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Figure 2-27. The experimental data (left) and ANOVA results (right). 
The data of three replicates are shown in blue, red, and yellow with 

mean and std. of signal intensity of all the observed cells. 

Figure 2-28. The experimental data. 
Solid lines are the mean signal intensity and the coloured areas 

shows the standard deviation. 
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2.3.3 Cross-Validation of the Calibrated Model 

As discussed in section 2.2.3, for both flow-cytometry and microfluidic 

experiments, data of 288 experiment hours are used for model calibration. 

Data from 144 experiment hours are used for validation (three-fold validation). 

Because there are six experimental designs for microfluidic experiments, there 

are 15 different ways to separate the experimental data. For flow-cytometry 

experiments, 50 out of 41,783,280 possible separation ways are randomly 

selected for cross-validation. 

The scores of the fitting are evaluated in the same way as the cost function for 

parameter estimation (Eq. 2-9), which is introduced in section 2.2.9. This value 

is always non-negative, and a smaller value means the model prediction is 

closer to the observation, in other words, more accurate: 

𝑐𝑜𝑠𝑡𝑢(𝜃) = √
1

𝑁
∑(

𝑦𝑖 − 𝑦̂𝑢,𝑖(𝜃)

𝜎𝑖
)

2

                              (𝐸𝑞. 2 − 9) 

The scores for cross-validation are shown in Figure 2-29. The notations give 

the calibration set first and then the validation set. For example, MF-FC means 

calibrate the model with microfluidic fluidic experiments and validating the 

model with flow-cytometry experiments.  

Figure 2-29 shows that the models calibrated with flow-cytometry (FC) data 

perform well on other FC experiments. However, they perform much worse in 

the validation with microfluidic (MF) experiments (the median of score 

increases to 14.89 times higher with 𝑝 < 10−23). On the other hand, the scores 

do not increase for models calibrated with MF experiments. Moreover, the MF-

based models do not perform significantly worse than FC-based models in the 

validations with FC-experiments (𝑝 > 0.1). The average scores for FC based 

validation are generally smaller, which could be due to a simpler experimental 



Chapter 2 

55 

design in FC experiments (one step experiments). Thus, the response of the 

model states and observations are simpler and easier to be predicted. 

Figure 2-29. The comparison of validation scores for all the trials. 
Smaller scores stand for more accurate model predictions. The 

significance levels (𝑝 values) come from one-sided t-tests, and all of 
the four score groups pass the Kolmogorov-Smirnov normality test. 

From this benchmarking experiment, microfluidic experiments lead to models 

with better universality for predicting cell behaviours. Comparing between 

models calibrated by FC and models calibrated by MF, the later are more likely 

to give more accurate predictions of the yeast strains’ Citrine expressions 

when the circuit is subjected to a new experimental condition. 
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2.4 Discussion 

2.4.1 Experimental Results 

Analysis of the cell growth from section 2.3.1 shows that the cells’ growth rates 

in microfluidic chip MFD005a with all the experimental designs are not 

significantly different from the rate during the incubation. It suggests that the 

IPTG stimuli (change in chemical environment) and microfluidic chip (change 

in the physical environment) do not introduce too much stress that disturbs 

yeast cells’ growth. Moreover, since the incubation environment is very similar 

to the environment in flow-cytometry experiments, it is reasonable to expect 

cells would have comparable experimental data in both types of experiments. 

The ANOVA analysis in section 2.3.2 shows that more than 95% of the 

expression level differences among the replicates of experiments can be 

explained by the with-in replicate variance, i.e., the variance between cells 

from the same trial. In other words, for all the experimental designs, the 

observations in the three microfluidic replicates are not statistically different. 

This analysis shows that the developed microfluidic experimental platform can 

achieve experiments on this yeast strain with satisfying repeatability. 

The cross-validations in section 2.3.3 show that with the data from the same 

experimental time (288 hours), the models calibrated with microfluidic data 

perform better in the validation with microfluidic experiments with different 

experimental designs, and perform as well as flow-cytometry-based models in 

the validation on flow-cytometry experiments. Moreover, the opposite is not 

true: The models calibrated with flow-cytometry experiments give significantly 

worse scores in the validation with microfluidic experiments. 

The work of this chapter shows that although microfluidic microscopy is yet a 

relatively new experiment technique, compared to flow-cytometry which is 

more sophisticated with higher throughput, microfluidic experiments achieve 

higher informativeness for calibrating the benchmarking inducible promoter. 
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As they lead to models that give better predictions in stimulus different from 

the experimental designs. The advantage with more complex dynamic stimuli 

and more frequent cell-level observations of microfluidics could be the cause 

of this difference. 

 

2.4.2 Aspects Could be Improved in Future Research 

There are aspects that can be improved. For microfluidic experiments in this 

study: 

⚫ The selections of fluorescence channels and filters can be improved. 

Although the signal separation of the input reporter and expressed 

fluorescent protein is considered in the early stage, recent studies 

introduced better options for the input reporter (such as Cy5 as shown in 

Figure 2-30), which can furtherly reduce the signal cross-over. 

Figure 2-30. Comparing the excitation (dashed) and emission (solid) 
spectra of the involved fluorescence. 

It can be seen that compared to Sulforhodamine, Cy5 has a 
significantly less cross-over with Citrine. 

Citrine 
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⚫ The cell chamber design in the microfluidic chip can be improved. The 

current design of the cell chamber allows cells grown in monolayer, but 

because of this design, when cells fill the chamber and experiment last 

longer than 48 hours, some of the cells in the chamber will start dying (it 

can tell as the dying cells have significantly more complex observable 

structures in them). Some better designs (Figure 2-31 shows an example) 

which separate the cells and guarantee better nutrition supply may solve 

this problem and allow longer experiment durations [218]. 

⚫ The input mixing junction can be improved. Although the DAW-junction 

generates more stable flow around 0% and 100% mixing ratios compared 

to the T-junction, it is still difficult to control the mixing ratio with an 

accuracy better than 3% in practice (it is not bad considering the 5% 

accuracy in Ferry’s work [219]). Considering that many bioreactions 

interested in the dose-response with inputs vary in log scale [220, 221], 

this accuracy may limit the potential application. The input multiplexor 

system designed by Thorsen et al. [125] shows an option that may improve 

concentration control accuracy (Figure 2-32). 

Figure 2-31. A microfluidic design that allows longer experiment 
durations than the current experiment [218]. 
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Figure 2-32. A design of microfluidic multiplexor [125]. 
Blue and cyan lines are channels for input media, red lines are 

pressure driven control lines with valves (wide parts) formed at the 
intersection with media channels. By controlling the pressure in the 
control lines (red), valves will block some of the channels and only 

allow media from certain source flow into the cell chamber. 
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Chapter 3:  Model-Based Optimal Experimental 

Design with Parameter Clustering 

Previous case studies show that model-based optimal experimental design 

(MBOED) guided by the Fisher information matrix could optimise the biological 

experiments to increase the accuracy of model calibration. However, the time 

cost of the optimisation procedure rises dramatically with the increasing sizes 

and complexities of the models that need to calibrate. This chapter addresses 

this problem by introducing the automatic parameter clustering analysis and 

visualisation (PCAV) and narrowing down the focused parameters in each sub-

optimisation task. Two clustering-based MBOED approaches are compared to 

previous methods and validated with in-silico benchmark experiments on the 

orthogonal promoter model. The analysis shows that both of the proposed 

clustering-based OED le to significantly more accurate parameter estimations 

than the traditional off-line OED method. 

 

3.1 Introduction 

3.1.1 Experimental Design as an Optimisation Problem 

As introduced in chapter 1, model calibration is a procedure that updates the 

parameter values of a model based on experimental data so that the error of 

model predictions caused by parameter uncertainty is minimised [222]. 

Suppose the experimental data purely reflects the output of a model with a 

unique and identifiable parameter set, and there is no noise. In that case, the 

model calibration should capture this parameter set and give the model 

predictions exactly equal to observations. However, it is impossible to achieve 

such ideal results in practice, and the noisy data leads to estimations with less 

accuracy.  
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In practice, the effect of noise is usually corrected by carrying out multiple 

experiments that follow the law of large numbers [223]. Generally speaking, 

with more experimental data, the estimation of the identifiable parameters 

would be more accurate (narrower confidence interval). However, practically it 

is impossible to expect an infinite amount of data for calibrating a given model. 

Moreover, it has been previously shown that not all the experiments are equally 

informative for model calibration [224-227]. Therefore, optimising the 

experimental designs before carrying them out in wet-lab is a procedure that 

could improve the accuracy of parameter estimation with the same amount of 

experimental data [50-52]. 

The design of an experiment involves details of multiple aspects, such as the 

selection of stimuli and observations, stimulation patterns, the detailed settings 

of experimental equipment, sampling time, and the data processing methods. 

Among all of these aspects, the optimisation of the stimulation patterns, known 

as the optimal input design (OID), is one of the most widely-applied OED 

branches [228-230]. OID is commonly adopted because it does not involve any 

significant modifications to the experimental equipment, which could be costly; 

the only change is the input values of the experiment. Therefore, this chapter 

aims at improving the detailed design of experiments by implementing OID, 

with the MPLac model from the previous chapter used as a benchmark. 

With a differential equation model, the optimal input design problem can be 

formulated as follows, in an abstract expression as follows: 

where 𝜙 is a scaler (single-objective optimisation) or vector (multi-objective 

optimisation) that quantifies the estimation accuracy corresponding to an input 

arg max 
𝑈

𝜙(𝑈, 𝑦̂0, 𝜃) 

 
Subject to: 

𝑦(𝑡0) = 𝑦̂0 
𝑑𝑦

𝑑𝑡
(𝑦, 𝑡) = 𝑓𝑀𝑜𝑑𝑒𝑙 (𝑦, 𝜃, 𝑈(𝑡)) 

𝑈𝑚𝑖𝑛 ≤ 𝑈(𝑡) ≤ 𝑈𝑚𝑎𝑥 
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design 𝑈; 𝑦̂0 is the estimation of the initial states of the network; 𝜃 is the best 

estimation of the parameter values before carrying out more 

experiments; 𝑓𝑀𝑜𝑑𝑒𝑙 is the mathematical model that gives the prediction of time 

derivatives of the states according to the current network states, parameter 

values, and input values; 𝑈𝑚𝑖𝑛 and 𝑈𝑚𝑎𝑥 are the boundaries for the input value. 

Figure 3-1. Optimal experimental design for two model parameters. 

The choice of optimality  𝜙 is an interesting and complex topic, particularly 

when there are multiple parameters to fit. If there is only one parameter, there 

is a rather direct option: the inversion of expected variance of the estimation. 

However, for the cases with multiple parameters to fit, because of the physical 

meanings of the parameters, the input design 𝑈 that minimise the variance of 

one parameter is usually different to the best design for another parameter. In 

other words, there would be trade-offs between the accuracies of parameter 

estimations. This situation leads to a Pareto set of experiments (Figure 1-1) 

[175], that for every experiment in this set, there is no experiment outcompeting 

it in the accuracy of every parameter. Because wet-lab experiments cannot 

carry out every Pareto-optimal design in parallels like a quantum computer and 

only one or a few experiments can be carried out. Usually, the chosen 
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optimality 𝜙 is a scaler criterion that quantifies the overall precision so that one 

design of the Pareto set would be considered the “optimal” one. The selections 

of this criterion 𝜙 would be discussed in the following section. 

 

3.1.2 Current OED Optimality and the Limits 

When introducing the optimality for model calibration, it is necessary to 

mention the Fisher information matrix (FIM). It is one of the most commonly 

adopted mathematical tools for defining informativeness metrics [176]. This 

matrix is the Hessian matrix of the log-likelihood function of the observable, 

with respect to variances in parameter values (Eq. 3-1) [231]: 

 𝐹𝐼𝑀(𝜃, 𝑈) ≡ 𝐸 (
𝜕𝑙𝑜𝑔𝑙(𝜃, 𝑈)

𝜕𝜃
⋅
𝜕𝑙𝑜𝑔𝑙(𝜃, 𝑈)

𝜕𝜃𝑇
|𝜃) Eq. 3-1 

where, 𝜃 is the parameter vector, and 𝑙𝑜𝑔ℓ is the log-likelihood function of the 

observable.  

This matrix is widely adopted because of the Cramér-Rao inequality (Eq. 3-2), 

that the inverse of FIM gives the lower variance bound of the estimation of 

parameters [176]: 

 𝑉𝑎𝑟𝜃(𝑈) ≥ 𝐹𝐼𝑀(𝜃, 𝑈)−1 Eq. 3-2 

The evaluation of the FIM directly from its definition can be a time-consuming 

task because it involves calculating the estimations corresponds to the a-priori 

estimation distribution of all the parameters. In practice, if the distribution of 

observable follows a multivariate normal distribution (which is a commonly-

adopted assumption), the FIM can be formulated into another form that is 

easier to calculate (Eq. 3-3) [176]: 

 𝐹𝐼𝑀𝑖,𝑗 (𝜃, 𝑈) = (
𝜕𝑦(𝜃, 𝑈)

𝜕𝜃𝑖
)

𝑇

𝜎−1 (
𝜕𝑦(𝜃, 𝑈)

𝜕𝜃𝑗
) Eq. 3-3 

where, 𝜎 is the covariance matrix of the observable. 
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In practice, there are multiple parameters to calibrate most of the time. The 

endogenous correlations between these parameters affect the estimation 

accuracy, and this effect will reflect on the off-diagonal elements and the 

Eigenvalues of the FIM. Figure 3-2 illustrates how the FIM’s Eigenvalues 

describe the estimation accuracy. 

Figure 3-2. Illustration of how Eigenvalues 𝜆 reflect PE accuracy. 
This figure shows an example of estimating two parameters 𝜃1 

and 𝜃2. According to the current best knowledge about the 
experimental noise and the model to calibrate, the parameter 

estimation results base on experiments is expected to fall in the red 
ellipse (confidence interval) with confidence level 𝛼, 𝑘𝛼 is a value 

depends on the confidence level, (𝜃1
∗, 𝜃2

∗) is the current best 
estimate of the parameter values. 

Minimising the estimation variances for all the parameters (mathematically 

equivalent to maximising all the Eigenvalues of the FIM), as mentioned in 

section 3.1.1, will lead to a Pareto set. The most common solution to achieve 

one unique solution instead of a solution set, is to define an optimality criterion 

(scaler function 𝜙 in section 3.1.1) that quantifies the overall accuracy for all 

the parameters for fitting. A few criteria were adopted in previous studies for 

FIM-based OED [176, 232, 233]. However, as shown in Table 3-1, these 

criteria have their limits under non-ideal scenarios. There are also some 

Confidence Interval (P=1-α)

θ1

θ2

kαλ2

-0.5

kαλ1
-0.5

(θ1*,θ2*)



Chapter 3 

65 

variants of these criteria that do not change the judgements about sub-ideal 

scenarios [234], such as Q-optimality, which introduces the quadratic terms of 

the FIM [235, 236], and P-optimality, which apply different weights or 

probabilities to the sample points [233, 237]. With the increasing size and 

complexity of synthetic biological networks, this limit becomes more significant 

and inevitable [238]. 
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Table 3-1. OED criterion definitions and their ideal/non-ideal scenarios with illustrative examples. 

Criteria Definition Ideal Scenario Non-Ideal Scenario 

D-Optimality arg max det(𝐹𝐼𝑀) 

≡ arg max∏ 𝜆𝑖
𝑖

 

All the Eigenvalues increase after optimisation. 

 

Some of Eigenvalues are still small or even 
smaller while the criteria gets better because 
the other Eigenvalues significantly increase. 

A-Optimality arg max tr(𝐹𝐼𝑀) 

≡ arg max∑ 𝜆𝑖
𝑖

 

E-Optimality arg max 𝜆𝑚𝑖𝑛 The difference between the minimum and 
maximum Eigenvalues reduces, but the 
Eigenvalues generally reduce. 

Modified 
E-Optimality 

arg max
𝜆𝑚𝑖𝑛
𝜆𝑚𝑎𝑥

 
Difference between the minimum and 
maximum Eigenvalues reduces. “Hopefully”, 
the Eigenvalues generally increase. 
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3.1.3 Off/On-Line and Clustered OED 

Depending on how the FIM-based OED is used in experimental procedures, 

there are two typical OED approaches in previous studies: off-line and on-line 

OED (left and middle of Figure 3-3). 

Off-line OED is one of the most classic approaches to adopting the optimal 

experimental design. In this approach, all the experimental designs are 

optimised and finalised before carrying them out. 

The disadvantage of off-line OED is that when the initial parameter estimations 

are not close enough to the true parameter set, the optimised designs could 

be significantly different from the design corresponding to the model with the 

true parameter values. Thus, the informativeness will also be less than the 

expectation. To address this problem, on-line OED separates the experiment 

into several sub-experiments. Between these sub-experiments, the model 

would be calibrated and the experimental design of the next experiment will be 

optimised based on the model with updated parameter values. With this 

approach, since the second sub-experiment, OED would infer based on a 

model that is closer to the actual experiment object compared to the off-line 

OED, so the optimised experiments shall be more informative. The benefit of 

on-line OED has been proved with in-silico experiments on the same 

benchmark (the orthogonal inducible promoter) in previous works [27]. 

In the current off-line and on-line OED approaches, all the sub-experiments 

are designed to optimise the accuracy of all the interested parameters. It will 

lead to the problem of the accuracy trade-off between these parameters, which 

is introduced in section 3.1.2. In this thesis, a new approach (cluster-based 

OED) is introduced to address this problem. As shown in Figure 3-3 right, 

before optimising and starting the sub-experiments, a process of parameter 

clustering would be carried out. It can base on in-silico experiments with either 

random stimuli (most informative stimuli for linear models) or optimised 
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experiments with small evaluation numbers (shallow-search OED). The aim is 

to find suitable parameters to be grouped in the same cluster and be optimised 

in one of the sub-experiments. Then a deep-search OED would be carried out 

for each sub-experiment to finalise the experimental design. The detailed 

algorithms for cluster-based OED would be introduced in the method section 

of this chapter. The comparison of these three approaches for implementing 

OED in model calibration experiments is shown in Table 3-2. In the clustered 

OED approach, the concept of the epoch is introduced as inspired by the term 

in machine learning [239, 240]. An epoch refers to a set of sub-experiments 

that all the parameters are focused on once and once in these experiments. 

Table 3-2. Comparison of off/on-line OED and cluster-based OED. 

Types of 
OED 

Highlights Applicable Situations 

Off-Line 
OED 

1. “Once for all” OED procedure. No 
need to wait between 
experiments; 

2. Easier to arrange the 
experiments with fixed designs; 

3. Support parallel experiments. 

1. Cannot run OED during 
the experiment (not 
allowed by the equipment 
or time schedule); 

2. Relatively accurate initial 
guess with negligible 
accuracy trade-off. 

On-Line 
OED 

1. Improve the experimental 
designs after every experiment 
based on observed data; 

2. Support iterative experiments. 

1. Can run OED during the 
experiments; 

2. Models with inaccurate 
initial parameter guesses; 

3. The accuracy trade-off 
between parameters is not 
very significant. 

Clustered 
OED 

1. Improve the experimental 
designs after every epoch based 
on observed data (an epoch 
corresponds to a set of sub-
experiments that each parameter 
are focused in one and only one 
of these sub-experiments); 

2. Support iterative and parallel 
experiments; 

3. Provide parameter clustering 
information; 

4. Balance the experimental cost 
and the trade-off between 
parameter accuracies. 

1. Models with inaccurate 
initial parameter guesses; 

2. Models with a large 
number of parameters to 
calibrate; 

3. The accuracy trade-off 
between parameters is 
significant. 
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Figure 3-3. Flow charts of the off-line OED (left), on-line OED (middle), and cluster-based OED (right). 
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It may worth mentioning that there have been many studies adopted parameter 

clustering to guide the model calibration [167, 241-244]. However, these 

clustering approaches are designed to simplify the OED by reducing the 

number of parameters to fit accordingly, which are not suitable for the case 

when the interested parameters are already decided because of the aim of 

researches. 

 

3.1.4 Application of Parameter Clustering in Previous Study 

There are two methods for parameter clustering in this chapter: sensitivity-

based clustering and FIM-based clustering. Some previous studies adopted 

the sensitivity-based approach, but few studies investigated the FIM-based 

clustering. 

A very representative example showing the power of parameter clustering is a 

model calibration study by Chu et al. [238]. In this study, a signal transduction 

pathway for hepatocytes stimulated by Interleukin-6 is modelled and calibrated 

(Figure 3-4). It is a model established based on three sub-models [245-247] 

(shown in different colours) and involves 66 nonlinear ordinary differential 

equations, and 115 parameters (including 70 fixed parameters).  

In Chu’s study, the experimental data from previous flow-cytometry 

experiments [245, 248] is informative to calibration 8 parameters (the rank of 

FIM is 8). It means that they need to choose the 8 parameters from 45 

(215,553,195 possible combinations) to calibrate to achieve the best fitting 

result. By applying the sensitivity-based clustering (Figure 3-5), they find that 

the 45 parameters form 11 clusters, and the parameters from the same cluster 

have a similar sensitivity pattern. It means that if two calibrated parameters are 

chosen from the same cluster, the calibration will lose a rank and leads to wildly 

inaccurate parameter estimations. Base on the clustering, the parameter 

selection is simplified to selecting 8 parameters from 11 (combination number 

drops from 215,553,195 to 165), which is much easier to solve. 
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Figure 3-4. Pathway modelled in Chu et al.’s study [238]. 
The input Interleukin-6 ins shown in orange, and the observable (the 

molecule that is fluorescence-labelled and measured in the 
experiments) is shown in green. 
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Figure 3-5. Hierarchical clustering base on cosine distances 
between the sensitivity vectors of 45 parameters [238]. 

 

3.1.5 Novelty of the Chapter 

Previous works in optimal experimental design (OED) and parameter 

clustering has shown impressive achievements in related biological studies 

[238] that OED can help the researcher find the most efficient stimuli patterns 

for model calibration. Moreover, parameter clustering can find the parameters 

sharing similar identifiability patterns, leading to identifiability problems. These 

achievements point to a question: can the model calibration experiments be 

improved by applying the OEDs based on parameter clusters? 

The work of this chapter is carried out to answer this question. Two clustered-

OED approaches are proposed and compared to traditional experimental 

design (random stimuli), and two typical OED approaches. Comparing the PE 

results based on these experiments will show how significant clustered-OED 

can improve the experiment’s informativeness. 
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3.2 Methods 

3.2.1 Deep/Shallow-Search OED 

Almost all the OED problems in biology are non-linear [249-251] and could not 

guarantee to find the globally optimal solution within a limited number of 

evaluations [101, 252-254]. The most apparent difference between 

deep/shallow search OED, is on the search depth, i.e., the number of 

evaluations before finalising the design. As mentioned previously, in most of 

the MBOED cases, it is theoretically impossible to guarantee the global-

optimality of the best solution within a limited time. Meanwhile, it is evident that 

for most global searching algorithms such as eSS and DE, the longer time or 

more evaluations are involved, the more likely it is to obtain better solutions or 

the globally optimal solution. 

Moreover, the deep/shallow search OED is also different in the purpose of the 

search: The deep-search OED is searching for a final experimental design that 

can be directly used in an experiment. In contrast, the shallow-search OED 

reveals the OED task’s inner properties, i.e., which subsets of the parameters 

are suitable to be optimised together for the informativeness in one experiment. 

Therefore, the deep-search OED needs to be deep enough to find the optimal 

solution with relatively high accuracy. In contrast, shallow-search OED does 

not need to provide accurate solutions but need to find which of the parameter 

subsets can be optimised together within a small number of evaluations. 

It is also important to point out that the convergence speed of OED depends 

on the initial guess and the first few searching iterations in practice [52, 89, 

255]. Suppose some of the early samples in a searching trial reach the region 

around the globally optimal solution. In that case, the trial is much more likely 

to find the globally optimal solution than the other trials. Oppositely, suppose 

a trial misses the region around globally optimal solution at the early search 

stage. In that case, it is more likely to get trapped in a locally optimal point and 

spend the rest of the calculations searching for the exact values of this locally 
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optimal solution. From this point of view, shallow-search OEDs also provide 

information about “the OED of which parameter cluster is a simpler problem 

and is more likely to be solved with-in limited number of evaluations” (Figure 

3-6). 

In summary, the differences between deep/shallow-search OED can be 

expressed in Table 3-3. 

Table 3-3. Comparison of deep/shallow-search OED. 

Aspects Deep-Search OED Shallow-Search OED 

Purpose 
Find an exact experimental 
design that can be finally 
used in an experiment 

Obtain evidence for 
anslysing the inner 
properties of the OED task 

Maximum 
Calculating 
Time 

Longer 
(4 h in practice) 

Shorter 
(2 min in practice) 

Maximum 
Number 
Of Evaluations 

More 
(50,000 in practice) 

Less 
(500 in practice) 
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Figure 3-6. Illustration of the benefit of parameter clustering for optimal experimental design (OED). 
In this plot, the space of feasible experimental design is simplified to show in one dimension (horizontal axis). The 

OED solver must have sample points in the red regions to approach the global optimum. In other words, a larger red 
region means the solver is more likely to find the globally optimal solution (faster with higher robustness). Compared 

to the OED for all the parameters (middle), parameter clustering (left) can find the parameters suitable to be 
optimised together and disentangle the optimality trade-offs between clusters, which cannot be achieved by random 

parameter grouping. As suggested by the red regions, parameter clustering also leads to more robust OED.
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3.2.2 Parameter Clustering based on Sensitivity Information 

⚫ Sensitivity Information 

This approach is based on the sensitivity of the model-predicted observable 

values corresponding to changes in each parameter value. The aim is to find 

the parameters which share similar stimuli-sensitivity function. 

There are three commonly adopted metrics for describing the sensitivity 

information in experiments [174]: mean squared sensitivity (𝑑𝑚𝑠𝑞𝑟 ), mean 

absolute sensitivity (𝑑𝑚𝑎𝑏𝑠), and mean sensitivity (𝑑𝑚𝑒𝑎𝑛). Their definitions are 

shown in Eq. 3-4: 

𝑑𝑚𝑠𝑞𝑟,𝑖
𝑗

= √
1

𝑁𝑠
𝑗
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                                        (3 − 4) 

In Eq. 3-3, 𝑗 is the experiment index, 𝑖 is the parameter index, 𝑁𝑠
𝑗
 is the number 

of sampling times, 𝑠 is the index of sampling time, and 
𝑑𝑦𝑠

𝑗

𝑑𝜃𝑖
 is the derivative of 

the model prediction of the observable  𝑦 at the specified sampling index  𝑠 

corresponds to a small value change in the corresponded parameter 𝜃𝑖. 

Both  𝑑𝑚𝑠𝑞𝑟  and  𝑑𝑚𝑎𝑏𝑠  always give non-negative values, and higher 

magnitudes represent the more sensitive observable corresponding to the 

changes in the model parameter. The difference is that  𝑑𝑚𝑠𝑞𝑟  gives more 

weight to the more sensitive observations, whereas 𝑑𝑚𝑎𝑏𝑠 gives even weight 

to all the sampled observations. Unlike the other two options, 𝑑𝑚𝑒𝑎𝑛 tells the 
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magnitude of sensitivity by its absolute value and shows whether the 

observable changes in the same direction with the parameter by its sign 

(position means the observable increases with a higher parameter value, and 

vice versa.). 

𝑑𝑚𝑠𝑞𝑟 is chosen in this project because the direction of change does not matter 

the informativeness, and 𝑑𝑚𝑠𝑞𝑟 gives more weights to the sample points with 

higher sensitivity levels. 

⚫ Metric of Distances between Sensitivity Vectors 

Thus, the vectors of sensitivity for model parameter  𝜃𝑖  in  𝑁𝑗  number of 

experiments can be obtained in the form as 𝑉𝑖 = [𝑑𝑚𝑠𝑞𝑟,𝑖
1 , 𝑑𝑚𝑠𝑞𝑟,𝑖

2 , … , 𝑑
𝑚𝑠𝑞𝑟,𝑖

𝑁𝑗 ]. 

Considering two parameters 𝜃𝛼 & 𝜃𝛽 and corresponding sensitivity vectors 𝑉𝛼 

and 𝑉𝛽, the level of dissimilarity can be quantified by cosine distance (Eq. 3-5) 

[256]: 

𝑑𝑐𝑜𝑠𝑖𝑛𝑒(𝑉𝛼, 𝑉𝛽) = 1 −
𝑉𝛼𝑉𝛽

𝑇

√𝑉𝛼𝑉𝛼𝑇𝑉𝛽𝑉𝛽
𝑇

                                             (3 − 5) 

The relationship between the cosine distance and correlation can be 

expressed as Eq.3-6: 

𝑑𝑐𝑜𝑠𝑖𝑛𝑒(𝑉𝛼, 𝑉𝛽) = 1 − 𝑐𝑜𝑟𝑟([𝑉𝛼, −𝑉𝛼], [𝑉𝛽, −𝑉𝛽])                             (3 − 6) 

Eq.3-6 also shows that the scaling of the sensitivity (or the units for the 

parameters) does not change the cosine distance. Most of the other distance 

metrics (such as Euclidean distance, city block distance, and Minkowski 

distance) do not have such property. They will give non-zero distances for two 

vectors in the same direction but with different magnitudes. 
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⚫ Selection of Clustering Algorithm 

There are multiple clustering algorithms for the parameter clustering task in 

this thesis [257, 258]. The three groups of algorithms that are most commonly 

adopted are k-means [259, 260], DBSCAN [261], and hierarchical [262]. Table 

3-4 compares some of the related features of these methods. 

Table 3-4. Comparison of three clustering methods [257, 263].  

Algorithms Specified Cluster Number 
Outlier 

Detection 
Selected 

K-Means Required No No 

DBSCAN Not required Yes No 

Hierarchical 
Can work with or without a 
specified cluster number 

No Yes 

For this project, hierarchical clustering is in use because the other two are not 

ideal considering the purpose of the clustering and the physical meaning of 

sensitivity vectors. K-means is not chosen because practice in this task founds 

that the clustering results depends on the initial state and not as robust as the 

hierarchical algorithm [257, 263]. This is also supported by a previous 

parameter clustering case study with a biological model by Chu et al. [238]. 

DBSCAN is not chosen either because it considers that some of the vectors 

are misleading outliers that should not be included in any cluster. However, in 

this project, each of the objects for clustering corresponds to one parameter. 

It means that none of the objects should be considered outliers, which is 

against the primary hypothesis for DBSCAN clustering [261]. Moreover, a 

significant advantage of the hierarchical algorithm is that it also provides the 

connections between parameters within each cluster, and this information 

does not change with the cluster number. The corresponding dendrogram for 

visualising the results of hierarchical algorithm Figure 2-13(Figure 3-11) can 

show this information, which cannot be obtained in the other two algorithm 

families. 
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Hierarchical clustering has many variations in the methods calculating the 

distances between sub-clusters [257, 264]. As shown in Table 3-5, there are 

seven methods available in the build-in function in MATLAB, and they are also 

the most commonly used ones. In two previous researches [257, 265], 

UPGMA is selected because of its robustness and compatibility with non-

Euclidian distances. The other methods are also computed with the PLac 

model based on in-silico experiments of both random and shallow-search OED. 

All the algorithms except the “single” method give the same clustering result. 

Table 3-5. Seven MATLAB build-in methods for computing cluster distances. 

Method Description 
Euclidean 

distances only 
Selected 

Average 
(UPGMA) 

Unweighted average distance 
between cluster elements 

No Yes 

Weighted 
(WPGMA) 

Weighted average distance with 
a recursive distance definition 

No No 

Centroid 
(UPGMC) 

Distance between centroids of 
clusters 

Yes No 

Median 
(WPGMC) 

Distance between weighted 
centres of mass for clusters 

Yes No 

Ward 
Inner squared distance 
(minimize the variance in 
clusters) 

Yes No 

Complete 
Farthest distance between 
cluster elements 

No No 

Single 
Shortest distance between 
cluster elements 

No No 

⚫ Optimal Clustering Number 

The hierarchical clustering algorithm generates a tree of clustered objects. By 

applying different distance thresholds, this tree can easily generate the cluster 

results corresponding to any feasible clustering numbers (Figure 3-5 is an 

example). However, for the study in this chapter, the physical meaning of this 

clustering results decides that there is an optimal cluster number. When the 

clustering number is too low, there would be too many parameters in one 

cluster, which cannot solve the key problem of the trade-off between 

estimation accuracies of parameters. When the clustering number is too high, 
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the algorithm will focus on tiny and detailed differences between parameters. 

This will lead to more sub-experiments and ignore some of the critical 

connections between related parameters, which leads to poor-identifiability. 

Four commonly adopted criteria can be used to find the optimal clustering 

number (Table 3-6): gap criterion, silhouette values, Calinski-Harabasz index, 

and Davies-Bouldin index. Only the Gap and Silhouette measures are used in 

this study because only these two can work with non-Euclidean distances (e.g., 

the cosine distance in this project). 

Table 3-6. Four commonly adopted criteria to evaluate the clustering number. 

Method Description 
Euclidean 

distances only 

Gap 
Search for the “elbow” location of the cluster 
number-error measurement function. 

No 

Silhouette 
Measure of how similar a point is to the 
other points in the same cluster, compared 
to points in other clusters. 

No 

Calinski-
Harabasz 

The ratio of between-cluster variance vs. 
within-cluster variance, also known as 
variance ratio criterion (VRC) 

Yes 

Davies-
Bouldin 

Ratio of within-cluster and between-cluster 
distances. 

Yes 

 

3.2.3 Parameter Clustering base on Fisher Information Matrices 

This approach is based on the Fisher information matrices (FIMs) of the 

experiments. Compared to sensitivity vectors, FIMs provide more information 

about the accuracy for estimating multiple parameters [87, 232, 234]. The 

clustering procedure is equivalent to solving a non-linear optimisation problem. 

The task is looking for the optimal clustering result so that the patterns of 

informativeness for fitting parameter clusters for different experimental designs 

have maximally differed. As illustrated in Figure 3-6, if one parameter element 

is included in a wrong cluster, it will “contaminate” the informativeness pattern 
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of this cluster and make it more similar to the pattern for the cluster that the 

element should belong to. 

From the description above, the clustering procedure seems to involve 

complex and repeated evaluations of the FIM for estimating different 

parameter clusters, but in fact, it can be obtained with a simple calculation that 

does not need to repeat. For each experiment, a “full” FIM can be calculated 

for the case of fitting all the parameters. As introduced in section 3.1.2, FIM is 

an 𝑛𝜃 × 𝑛𝜃  matrix where 𝑛𝜃  is the number of parameters to fit. FIM has an 

important property that for the case of fitting a subset of parameters with the 

same experimental design, the new FIM is exactly the corresponding part of 

the “Full” FIM (Figure 3-7). Therefore, the FIM for all the parameters contains 

the estimation accuracy information to fit any subgroups of the parameters. 

Figure 3-7. The “Full” FIM (left) can easily generate the FIMs for 
fitting subsets of parameters (right). 

For a specific parameter clustering result, the determinant of the FIM (i.e., D-

optimality) can be calculated for each parameter subset in every experimental 

design. This defines the vectors of the informativeness in a similar form as the 

sensitivity vectors in section 3.2.2: 𝑉𝑖 = [𝐷𝑖
1, 𝐷𝑖

2, … , 𝐷
𝑖

𝑁𝑗], where 𝑖 is the index of 

parameter cluster (not the index of a parameter), 𝐷𝑖
1 is the D-optimality for 

fitting the 𝑖𝑡ℎ parameter cluster with the 1𝑠𝑡 experimental design, 𝑁𝑗 is the total 

number of experimental designs. The task is to maximise a criterion that 

quantifies the difference between the informativeness vectors for different 

parameter clusters by adjusting the parameter clustering. 



Chapter 3 

82 

To the best of my understanding, there are no previous researches that cluster 

the parameters according to the FIM metrics. The previous section introduced 

a few commonly used clustering evaluation criteria. However, they are all 

based on the within-to-between cluster distances, which does not work for the 

FIM based clustering. There is only one vector for one cluster, so there is no 

“within-cluster distance” or information about the variance within the cluster. 

Therefore, in this task, the smallest cosine distance between informativeness 

vectors is chosen as the criterion, and this value should be as large as possible. 

A few other options have also been tried: determination coefficients (instead 

of cosine distance) and averaged between-cluster distance (instead of the 

smallest distance). The results show that the selected method is more robust 

and better balances informativeness and clustering complexity. 

 

3.2.4 Comparison of Sensitivity-based and FIM-based Clustering 

As introduced in the two previous sections, both of the approaches are 

designed for finding the best clustering results to guide the deep-search OED 

according to in-silico experimental data with random stimuli or shallow-search 

OEDs (the definitions of deep/shallow-search OED are given in Table 3-3). 

Table 3-7 is a table listing the main differences between these two methods. 

The computational complexity of these two approaches is not significantly 

different. In the practice of this case study, there are no fundamental 

differences in the clustering results, and the difference may be clearer to see 

with larger and more complex models. 

Table 3-7. Comparison of sensitivity/FIM-based clustering. 

Aspects 
Sensitivity-Based 

clustering 
FIM-Based clustering 

Data 
references 

Vectors of output-parameter 
sensitivities correspond to 
every experimental design 

Fisher information matrix based 
on all the experimental designs 

Results Hierarchical clustering Only clustering results 
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+ Dendrogram 

Advantages 
Also provide connection info 
between with-in parameters 

More detailed consideration for 
estimating multiple parameters 

3.2.5 In-Silico Experiments for Model Inference 

The analysis of this chapter is based on in-silico experiments. It is because 

comparing the informativeness of different experimental designs involves 

massive experimental data, and it is not practical to carry out such many 

experiments in the lab in 1-2 years (the in-silico experiments in the study of 

this chapter corresponds to a total experimental time long than 900 days). 

Before carrying out the in-silico experiments, a set of 30 randomised initial 

parameter estimations are generated. The initial values are within the 

parameter feasible regions, and follow even distributions in log scale. 

The generated estimation set would be used in each OED approach and 

develop the corresponded experimental design. The cluster number will decide 

the number of sub-experiments, and the random stimuli and off/on-line OED 

would carry out with the same number of sub-experiments. Similar to the in-

vivo experiments’ schedule with random stimuli in chapter 2, each sub-

experiment lasts 24 hours with 8 steps (3 hours for each step). The input (IPTG 

concentration) varies from 0 to 100 𝜇𝑀. The model with the best parameter set 

from chapter 2 flow-cytometer experiments is used to create the in-silico 

experiments to make the “true parameter values” known for the comparison. 

Finally, the parameter estimation (PE) procedure would be carried out for all 

the trials. 

 

3.3 Results 

3.3.1 Results of Parameter Clustering 
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As mentioned in the section 3.2.2 and 3.2.3, there are two approaches for 

parameter clustering: sensitivity-based and FIM-based. Every parameter 

clustering involves 30 trials with random stimuli and 30 trials with shallow-

search OED. 

Figure 3-8  compares the observable mean squared sensitivity in experiments 

with both random stimuli and shallow-search OED with the true parameter 

value set. Moreover, Wilcoxon rank-sum tests (equivalent to Mann-Whitney U-

tests) show that the shallow-search OEDs lead to significantly higher medians 

of averaged sensitivities in both parameter cluster 1 (𝑝 = 3.16 × 10−5) and 

cluster 2 (𝑝 = 1.70 × 10−3). 

Figure 3-8. Comparing the observable mean squared sensitivity in 
experiments with both random stimuli and shallow-search OED. 

The significance levels come from one-sided Mann-Whitney U-tests 
because the distribution for random-stimuli experiments do not pass 

the Kolmogorov-Smirnov normality test. 
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The clustering results from random stimuli + shallow-search OED are shown 

as follows (cluster 1 in blue, cluster 2 in red, inputs in brown, and observable 

in green): 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] = 𝛼1 + 𝑉𝑚1

[𝐼𝑃𝑇𝐺]ℎ1

[𝐼𝑃𝑇𝐺]ℎ1 + (𝐾𝑚1)ℎ1
− 𝑑1[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃] = 𝛼2[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] − (𝑑2 + 𝐾𝑓)[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃] 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑓𝑙𝑢𝑜] = 𝐾𝑓[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] − 𝑑2[𝐶𝑖𝑡𝑓𝑙𝑢𝑜] 

Figure 3-9. Parameter clustering results of random stimuli vs OED. 
Parameters are coloured by clusters. 

From Figure 3-8 and Figure 3-9 it can be seen that: 

1. Although there are some overlapping, the shallow-search OEDs generally 

achieve higher sensitivity levels than the random stimulus. 
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2. The magnitude of improvement in parameter cluster 1 (the median is 

almost 200% higher) is significantly larger than in cluster 2 (the median is 

less than 10% higher). 

3. Notably, the parameters from cluster 2 corresponds to the promoted 

transcription, and have direct and unique contributions to the dose-

response curve of this model (Figure 2-9). And random stimuli have 

already achieved relatively high sensitivity for cluster 2 parameters. 

The results suggest that with a relatively small cost in time and calculation 

(shallow-search OED), the experimental designs can be optimised to achieve 

significantly higher sensitivity levels for the model parameters. 

Since the shallow-search OEDs have significantly higher sensitivity level 

compared to the designs with random stimuli, the parameter clustering for 

deep-search OED will only use the data from shallow-search OED as the 

reference for further parameter clustering. This decision is to avoid the 

distraction from the informativeness differences between the random stimulus 

and shallow-search OEDs, which is not directly helpful to investigate the 

endogenous correlations between parameters. 

Figure 3-10. Criteria evaluations for the optimal clustering numbers 
based on shallow-search OEDs with 60 trials. 

A number is better if the score is statistically lower than the others, 
for two cluster number not statistically different, the smaller number 

is better. 



Chapter 3 

87 

As introduced in the method section, two criterion and two clustering methods 

are considered to find the best clustering number (Figure 3-10). For robustness, 

the evaluations repeated for 60 times with bootstrap that chooses 15 

experimental designs from 30 shallow-search OEDs. All the four combinations 

suggest the best clustering number is 2. The pattern of scores seems to mainly 

depend on the criterion (Gap/Silhouette scores). Moreover, it is not surprising 

to see that K-means introduces more variance to the evaluation. Unlike the 

Hierarchical clustering, which gives an affirmatory result for a given data set, 

the results of K-means clustering also depend on the initial randomised guess 

(although the used algorithm has already been improved in the robustness 

against this problem [260]). Therefore, the cluster number is decided to be two 

as suggested. 

Figure 3-11. Dendrogram and heatmap of the clustering results 
based on shallow-search OED. 

The clustering results from the shallow-search OED only (Figure 3-11). 

Brighter colours in the heatmap mean that the parameter vector directions, i.e., 

the sensitivity-stimuli pattern are more different. The clustering result is the 
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same as the clustering among random and shallow-search OED (cluster 1 in 

blue, cluster 2 in red, inputs in brown, and observable in green): 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] = 𝛼1 + 𝑉𝑚1

[𝐼𝑃𝑇𝐺]ℎ1

[𝐼𝑃𝑇𝐺]ℎ1 + (𝐾𝑚1)ℎ1
− 𝑑1[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃] = 𝛼2[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] − (𝑑2 + 𝐾𝑓)[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃] 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑓𝑙𝑢𝑜] = 𝐾𝑓[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] − 𝑑2[𝐶𝑖𝑡𝑓𝑙𝑢𝑜] 

The FIM based clustering results are different from the sensitivity-based one. 

ℎ1 and 𝐾𝑚1 are separated into two individual clusters, the other parameters 

are in one common cluster as shown below: (cluster 1 in blue, cluster 2 in red, 

cluster 3 in grey, inputs in brown, and observable in green): 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] = 𝛼1 + 𝑉𝑚1

[𝐼𝑃𝑇𝐺]ℎ1

[𝐼𝑃𝑇𝐺]ℎ1 + (𝐾𝑚1)ℎ1
− 𝑑1[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃] = 𝛼2[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] − (𝑑2 + 𝐾𝑓)[𝐶𝑖𝑡𝑓𝑜𝑙𝑑𝑒𝑑𝑃] 

𝑑

𝑑𝑡
[𝐶𝑖𝑡𝑓𝑙𝑢𝑜] = 𝐾𝑓[𝐶𝑖𝑡𝑚𝑅𝑁𝐴] − 𝑑2[𝐶𝑖𝑡𝑓𝑙𝑢𝑜] 
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Figure 3-12. Results of FIM-based parameter clustering. 
Parameters are coloured by clusters. 

 

3.3.2 Parameter Clustering with Different Parameter Value Sets 

Figure 3-13 and Figure 3-14 show the shallow-OED-based clustering results 

of the 30 randomised initial guesses. The results suggest that the clustering 

depends on the parameter values, but some common patterns remain the 

same in most of the trials. 
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Figure 3-13. Cluster numbers of randomised initial guesses. 

 

Figure 3-14. Clustering results with randomised initial guesses. 
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From Figure 3-13 and Figure 3-14, it can be seen that: 

1. Both of the sensitivity-based and FIM-based clustering results show their 

robustness against inaccurate initial guess to an extent. Almost all the 

connections between parameters remain in 75% of the trials; 

2. For sensitivity-based ones, there is a cluster of 4 elements in almost all the 

results and ℎ1tends to be separated into an individual cluster; 

3. FIM-based clustering gives a slightly different pattern that 5 parameters 

are closely related, but these parameters are not always in the same 

cluster; 

4. Summing up the sensitivity-based and FIM-based results:  ℎ1  is in an 

individual cluster for most of the cases. 𝐾𝑚1 is clustered into a separate 

cluster in about 25% of the trials. 𝛼1 is clustered as a unique cluster in more 

than 25% of the sensitivity-based results, but FIM-based analysis suggests 

that 𝛼1 is more connected with the other parameters. 

 

3.3.3 Clustering with an Unidentifiable Parameter 

As mentioned in previous section 2.2.1, there would be an identifiability 

issue when estimating all the model parameters at the same time. To be 

precise,  𝛼2  and the overall scale for 𝛼1  and  𝑉𝑚1  are structurally 

unidentifiable. However, because of the relatively complex entanglement 

of these three parameters, the classic pairwise search cannot find this 

problem [27] (because three parameters must change together with a 

particular pattern to achieve identical model predictions). And sensitivity-

based clustering does not find this problem either (Figure 3-15 and Figure 

3-16) because this approach works with cosine distances between 

sensitivity vectors for each parameter, which can be considered as a 

pairwise method. On the other hand, the FIM-based method considers the 

overall accuracy for each parameter cluster and this approach shows the 

potential of solving this type of problem. The FIM-based clustering always 

put the unidentifiable parameters together no matter what values they have. 



Chapter 3 

92 

Figure 3-15. Dendrogram of the sensitivity-based clustering results. 
Red circles mark the parameters of identifiability issues. It can be 
seen that the sensitivity-based method cannot find the connection 

between these special parameters. 

Figure 3-16. Comparison of clustering results with varied parameter values. 
FIM-based clustering always put the unidentifiable parameters in a 

common cluster, not matter how their values change. 
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3.3.4 Experiments with Random Stimuli vs Off-Line OED  

Figure 3-17. Comparison of the PE accuracy based on random and 
off-line OED experiments. 

p values stand for one-way t-test results (normal distributions), p* 
value is for one-sided Mann-Whitney U-tests. The random and off-
line cases for N=3 do not pass Kolmogorov-Smirnov normality test. 

Similar to the definition from Bandiera et al.[27], the mean relative error is 

defined as follows: 

𝜀𝑗 =
1

𝑁𝑝
∑|log10

𝑝𝑖
𝑗

𝑝𝑖
∗|

𝑁𝑃

𝑖=1

                                                     (3 − 7) 

where 𝑗 is the trial index, 𝑁𝑝 is the total number of calibrated parameters (7 in 

this case), 𝑖 is the parameter index, 𝑝𝑖
∗ is the true parameter value, and 𝑝𝑖

𝑗
 is 

the estimated parameter value in the 𝑗𝑡ℎ trial. 

Since the number of sub-experiments depends on the clustering result, there 

are 29 trials with 2 sub-experiments (N=2), 9 trials with 3 experiments (N=3), 

and 4 trials with 4 experiments (N=4). 
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Figure 3-17 shows that for all the three sub-experiment numbers, off-line OED 

gives a smaller mean relative error of the estimation than random stimuli-

based estimations. 

 

3.3.5 Off-Line OED vs On-Line OED 

The numbers of experiments are the same as the comparison in section 3.3.3 

and. For the cases with all the three sub-experiment numbers, on-line OEDs 

give smaller mean relative errors of the estimation compared to off-line OEDs. 

 

Figure 3-18. Comparison of the PE accuracy based on off-line and 
on-line OED experiments. 

p values stand for one-way t-test results (normal distributions), p* 
value is for one-sided Mann-Whitney U-tests. The off-line case for 

N=4 does not pass Kolmogorov-Smirnov normality test. 
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3.3.6 On-Line OED vs OED with Parameter Clustering 
Figure 3-19. Comparison of the PE accuracy with off/on-line OED 

and sensitivity-base-clustered OED. 
p values stand for one-way t-test results (normal distributions), p* 

value is for one-sided Mann-Whitney U-tests. 

 

Figure 3-20. Comparison of the PE accuracy with off/on-line OED 
and FIM-base-clustered OED. 

p values stand for one-way t-test results. All the distributions pass 
the Kolmogorov-Smirnov normality test. 

As shown in Figure 3-19, for the sensitivity-base-clustered OED, there are 24 

trials with 2 sub-experiments (N=2), 2 trials with 3 experiments (N=3), and 4 
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trials with 4 experiments (N=4). The clustered-OED are not worse than the off-

line OED and therefore better than the traditional experimental design (random 

stimuli). However, because the parameter values do not update between the 

sub-experiments, the PE accuracy from clustered-OED is not as high as the 

on-line OED. 

As shown in Figure 3-20, for the FIM-base-clustered OED, there are 22 trials 

with 2 sub-experiments (N=2) and 8 trials with 3 experiments (N=3). The 

clustered-OED are slightly better than the off-line OED and therefore also 

better than the traditional experimental design (random stimuli). Similar to the 

sensitivity-based ones, because the parameter values do not update between 

the sub-experiments, the PE accuracy from clustered-OED is not as high as 

the on-line OED. 

 

3.4 Discussions 

3.4.1 Parameter Clustering with Different Experimental Designs  

Figure 3-8 shows that even with shall-search OED (the calculation takes less 

than 2 min), the optimised experiments would significantly improve some 

parameters' sensitivity. 

This plot also shows that for some model parameters which have decisive 

effects on the model behaviours (such as the Hill-coefficient of the dose-

response curve), random stimuli can already give relatively high sensitivity to 

the parameters. It is worthy to recall that previous theories and experiments 

have shown that random stimuli are the best experimental design to calibrate 

a linear model [266-268]. 

Figure 3-10 shows that the clustering number's optimality mainly depends on 

the criterion (Gap/Silhouette scores) but not the clustering algorithm 
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(Hierarchical/K-means algorithms). Since K-means takes more time to 

calculate and is less robust, Hierarchical clustering seems to be a better option 

for this type of tasks. 

Another advantage of the Hierarchical algorithm compared to K-means is that 

Hierarchical clustering can give plot like Figure 3-11, which helps researchers 

visualise the sensitivity connections between parameters. 

Another message from section 3.3.1 is that the FIM-based clustering and 

sensitivity-based clustering may give different results. However, the results are 

not entirely irrelevant, and differences could be caused by the other way of 

evaluating the similarity between in-cluster parameters. 

 

3.4.2 Parameter Clustering with Different Parameter Value Sets 

The optimal cluster number could vary on the initial estimation of the 

parameters (Figure 3-13) and the clustering results (Figure 3-14). However, 

most of the connections remain the same in most of the initial estimations. 

For every a-prior probability distribution or value set of the model parameters, 

by definition, there would be one corresponded clustering result. As shown in 

this case study, the clustering result may vary with the parameter values. By 

applying the Monte Carlo method and varying the parameter values (in the 

feasible range), researchers could investigate how robust the connections are 

between the parameters. A modified version of the arc diagram (Figure 3-14) 

is particularly designed for visualising this information: Thicker arcs stand for 

more robust connections, and bigger joints highlight the parameters which are 

less “sociable”. 

Moreover, for the sensitivity-based clustering, benefiting from the hierarchical 

clustering, the dendrogram (Figure 3-11) can also show how strong the 
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connections are. This diagram can be generated base on one parameter value 

set. In this case study, the dendrogram and arc diagram indeed confirm each 

other. 

 

3.4.3 Experiments with Random Stimuli and OEDs 

Figure 3-17 to Figure 3-20 show the PE accuracy based on random stimuli and 

different OED approaches. Overall, the OED experiments give significantly 

better estimations compared to the traditional random stimuli. On-line OED 

outcompetes the off-line OED and clustered OED. It could because it is the 

only approach that updates the parameters during the experiments. 

FIM-base-clustered OED shows better performance than the off-line OED, and 

sensitivity-base-clustered OED is also better than the off-line OED but not as 

significant as the FIM-based one. It could be explained as the FIM-based 

approach consider the correlation between parameters in a more structural 

way. 

 

3.4.4 Extending the Parameter Clustering to Larger Models 

The work in this chapter shows the parameter clustering on a non-linear model 

with seven parameters. The parameters are generally clustered into “linear” 

and “non-linear” parts. How the proposed methods perform for larger models 

with more parameters is an interesting and valuable question to investigate in 

future works, it is also a tool for researchers to explore the mechanisms of 

biological networks. Yet to the best of the author's knowledge, this problem 

was not focused in most of the previous studies which involved parameter 

clustering (such as the example mentioned in section 3.1.4). 
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For larger models, it is reasonable to expect there would be more parameter 

clusters other than just the “linear” and “non-linear” groups. For example, 

larger biological models usually involve reactions with faster and slower 

reaction rates, and the most efficient stimuli corresponding to these reactions 

have different frequencies. So the parameters for faster and slower reactions 

may be clustered into different groups. Moreover, both the sensitivity-based 

and FIM-based approaches could work with given cluster numbers. 

Researchers may also analyse the models by running the clustering with a pre-

decided cluster number. 
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Chapter 4:  Automatic Experiment Abnormality 

Screening based on Experimental Images 

During the lab-work for the microfluidic experiments in chapter 2, some 

abnormal experimental conditions appeared in the middle of experiments and 

caused numbers of invalid experimental data. This chapter develops and 

validates an automatic experiment abnormality screening (AEAS) system 

supported by convolutional neural networks (CNNs). The system learns the 

features of six abnormal experiment conditions from images taken in the actual 

microfluidic experiments and achieves seconds-level identification with the 

desired accuracy. Moreover, the proposed levelled-training method is helpful 

to increase the chance of convergence for deep networks. 

 

4.1 Introduction 

4.1.1 Requirement of Automatic Abnormality Diagnosis 

During the lab-work for the microfluidic experiments in chapter 2, some 

abnormal experimental conditions appeared in the middle of experiments 

several times and caused numbers of invalid experimental data. The 

conditions can be classified into six groups: high bleed-through, device 

movement, collapsed chamber, bubbles in the oil, blurry images, and dark 

images. The details of these conditions are given in the method section 

(section 4.2.1). 

Like previous microfluidic experiments [219, 269], the identification of 

abnormal conditions is completed by visual check of hundreds of microscope 

images by the end of the experiment. Although this method is the simplest (for 

setting up) and, to the best of our knowledge, the only existing approach that 
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can identify all different abnormal conditions in one test [270, 271], it cannot 

identify and stop the experiment when the condition appears to prevent the 

waste of time. The accuracy of condition identification with bare-eye-checking 

is also sub-ideal for some inconspicuous features (particularly in some cases 

of device movement and chamber collapse). Moreover, it involves laborious 

efforts from skilled experts and would be impractical for mass parallel 

microfluidic experiments. Therefore, to achieve a more efficient and reliable 

parallel microfluidic experiment system, it is of great value to develop an 

automatic experiment abnormality screening (AEAS) system. 

 

4.1.2 Related Work in Biological Experiments 

As mentioned above, there are not yet automated screening system for 

abnormal experimental conditions for microfluidics [271]. The previous study 

on biological experiments focused on two related topics: fault screening for 

microfluidic biochips, and standardisation and quality control (QC) systems of 

biological experiments. 

The automated screening of faults in biochips has been a popular topic in the 

last decade in the field of microfluidic manufacturing [270, 272-278]. However, 

these studies focus on the flow-based chips (Figure 4-1) and digital microfluidic 

chips (Figure 4-2) rather than the continuous-flow chips (Figure 4-3), which is 

the category of chip used in this experiment. Because of the different 

mechanism, the testing techniques of the chips are completely different. For 

the flow-based microfluidic chips, air pressure is applied in control channels to 

adjust the media flow in the flow channels. Hence the testing is to screen the 

channel blockages and leakage by applying pressure in one port and measure 

the pressure readings in related channels [270, 274, 275]. For the digital 

microfluidic chips, electrical flows are applied to the chip to move the media 

droplets by electrowetting on dielectric (EWOD), so the testing is to check the 

faults on the chip by traversing the test droplet between array cells of the chip 



Chapter 4 

102 

and tracking its location [276-278]. Moreover, these automated testing 

systems are mainly for off-line tests that only screen the faults in the device, 

not the abnormal conditions during experiments. Therefore, although these 

studies are related topics, they cannot provide an efficient reference for the 

work in this chapter. 

Figure 4-1. An example of flow-based biochips (a) and the structure 
design of control valve (b) [275, 279]. 

Flow channels are shown in green and control channels are in 
yellow and red. 

Figure 4-2. Oblique drawing of a digital microfluidic device and its 
cross section [278]. 

Figure 4-3. An example of continuous-flow microfluidic chips (a) and 
its channel design (b) [280]. 
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In biology, the diagnosis of abnormal experimental condition has been 

considered an essential aspect of the standardisation and quality control (QC) 

systems of experiments [281, 282]. In the last decade, many groups focused 

on the QC of liquid chromatography (LC) tandem mass spectrometry (MS) 

experiments [283-286]. It is because carrying out an LC-MS experiment is 

generally an intricate process [285], and this experimental technique is 

adopted in the Human Proteome Project (HPP) and studies of cancer to 

identify, quantify, and characterize the human proteome [286-290]. These 

works on fault diagnosis are mainly based on either the spike-in method (spike 

some prepared benchmarks in the middle of samples to test) or experts’ 

checking or statistic-tests of manually-extracted features [285, 291, 292]. The 

considerations of these methods are shown in Table 4-1. 

Table 4-1. Considerations of current diagnosis methods in biological 
experiments as a reference. 

Diagnosis method Consideration 

Spike-in Method 
Add benchmark samples in the middle of 
testing samples, validate the experiment 
with the readings of benchmarks 

Cannot adopt because the chip 
works with one sample in each 
experiment 

Experts’ Manual Checking 
Check the raw data or manually 
designed features 

Cannot adopt because labour-
intensity is exactly the issue to 
solve in this chapter 

Statistical Analysis of Manually 
Designed Features 
Manually design the features to extract 
and apply statistical analysis 

Not ideal because extracting and 
validating the image features for 
all the diagnosis cases could be 
an intensive work 

Although for different reasons, these three methods for diagnosis abnormal 

experimental conditions cannot be directly applied to the work in this thesis, a 

concept from the third method, i.e., applying statistical theory to analyse the 

features from the experimental output, shows a promising route. For feature 

extraction and inferring of 2D images, some recent studies in machine learning 

have shown some successful applications and great potential. These studies 

would be introduced in the section below. 
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4.1.3 Image-Based Inferring Networks in Machine Learning 

In the last decade, the performance record of image recognition has been 

continuously redefined because of the rapid development in machine learning 

(ML) [293]. Figure 4-4 shows how ML gets adopted in this kind of task and 

takes on more functions after achieving significant benefits (from left to right). 

Figure 4-4. Stages of the application of machine learning in image 
recognition tasks [294]. 
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In Figure 4-4, grey blocks are the functions supported by machine learning. In 

the early stages (classic machine learning), some shallow machine learning 

algorithms were used to infer image recognition based on manually extracted 

features. Two representative methods are support vector machines (SVM) 

[295, 296] and artificial neural networks (ANN) [297, 298]. Although these 

shallow machine learning approaches prove their value for image recognition 

[297, 299], many studies pointed out that the representation of the data, i.e., 

the features extraction, limits further performance improvements [293, 300]. 

Some later works attempted to introduce multisensory data fusion algorithms 

based on machine learning (representation learning) to image recognition 

[301-303]. However, for diagnosis tasks that involve abstract and transferable 

features with complex properties such as shift-invariancy, deeper neural 

networks (deep learning) are required to achieve acceptable performance 

[304-306]. 

Deeper networks are constructed by multiple layers that carry out relatively 

more straightforward processes. The layers closer to the input layer (shallow 

layers) will handle simple features, while the layers closer to the output layer 

(deep layers) can capture more complex and abstract features. There are 

several variants of deep learning network structures that are specialised for 

different types of input format and purposes. For example, recurrent neural 

networks (RNN) pass some of the signals from deep layers back to shallow 

layers. This mechanism simulates the “memory” effect and helps context-

depend tasks like natural language processing and fault diagnosis based on 

continuous-time data [307]. Convolutional neural networks (CNN) is 

specialised for tasks with 2D and 3D input data because these networks have 

convolutional layers that can effectively extract the features from these images 

[298, 308]. 

The value of deep learning in the field of abnormality screening tasks has been 

proved in many industrial applications [306, 309-312]. As shown in Figure 4-4, 

compared to classic machine learning approaches such as classic SVM, one 



Chapter 4 

106 

of its biggest advantages is that the screening systems can work in on-line in 

the end-to-end form without any pre-processing [312]. The CNNs in particular, 

is shown to be one of the best options for image-based anomaly diagnosis for 

their efficiency and state-of-the-art accuracy [313-315]. 

Based on the background search above, the finally decided approach is to 

develop the automatic experiment abnormality screening (AEAS) system 

supported by convolutional neural networks (CNN) to analyse the images 

taken during the experiment. 

 

4.1.4 Novelty of the Chapter 

Previous works in microfluidics show the great potential of mass-parallel 

experiments with this practicality [219]. The real-time fault diagnosis system 

would be vital to make these experiments efficient because early detections 

can save valuable time and cost. On the other hand, recent development in 

the convolutional neural network proved its power in smart image processing. 

So far, there are not yet works investigating how well CNNs can be used for 

fault diagnosis in microfluidic experiments or other image-based microscopy 

experiments. 

It would be the first time applying CNNs for the real-time fault diagnosis tasks 

of an experimental platform. In this chapter, three CNNs are trained for fault 

diagnosis base on experimental images. Their accuracies are validated with 

image data from real experiments. Moreover, this chapter also presents and 

practically tests the effectiveness of several improvements in a few aspects, 

including image pre-processing, network training, and network visualisation. 

This work provides an example with valuable experiences of the application of 

CNN-based abnormality screening in bioengineering experiments. 
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4.2 Methods 

4.2.1 Details of Appeared Abnormal Experimental Conditions 

As introduced in section 4.1.1, t six abnormal conditions appeared in the 

microfluidic experiments in chapter 2 multiple times. The details are given 

below (notice “rerunning the experiment” in the following paragraphs stands 

for restarting from the very beginning step, i.e., redo the media/cells 

preparation for the experiment and use a new microfluidic chip): 

1. High Bleed-Through  

⚫ Reason: The signal bleed-through from input fluorescence 

(Sulforhodamine) to the output fluorescence channel (Citrine) was so 

strong that it significantly affects the accurate reading of the output 

signal. (Figure 4-5) 

⚫ Feature: Signal bleed-through is very strong, and the Sulforhodamine 

signal can be observed in the Citrine channel. The Citrine signal is 

non-zero even in the background pixels of the cell chamber. 

⚫ Solution: Signal compensation can partially solve this problem. The 

preferred solution is reducing the input-reporter concentration and 

rerunning the experiment. 

Figure 4-5. Illustration of the high bleed-through problem. 
For normal experiments (right), the background light (orange lights) 
signal should become negligible after passing the filter; when there 

is too much fluorescent dye in the media (left), the passed 
background signal would be strong enough to affect the reading of 

the signal (calculated as cell signal minus background signal). 
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2. Device Movement 

⚫ Reason: The microfluidic chip is fixed to the microscope stage frame 

before the start of experiments. The stress in the fixing tape will be 

gradually released in the first few hours of the experiment. If the 

stress is very imbalanced, the device may move with a small distance. 

In extreme cases, the chamber may completely move out of the 

microscope view. (Figure 4-13) 

⚫ Feature: The location of the device will move during the experiment. 

⚫ Solution: A classic approach is the alignment of images, and it does 

not work with extreme cases that most of the cell chamber area 

moves out of the view (severe data loss and contamination). The 

solution is rerunning the experiment with a device appropriately fixed. 

Figure 4-6. Illustration of the device movement problem. 
Stress in the fixing tape will be gradually released during the 

experiment; Fixing the device like the right-hand side is helpful to 
reduce the chance of device movement. 

3. Collapsed Chamber 

⚫ Reason: Usually, cells cannot get into a collapsed chamber. However, 

if the device gets applied with unexpected pressure from above, they 

may get trapped in the collapsed chamber. (Figure 4-7) 

⚫ Feature: The feature is not easy (but possible) to check with bare 

eyes. There would be a very faint border between the collapsed 

region and normal regions in the chamber. As the experiment running, 

cells cannot grow into the collapsed regions, and the cells that get 

trapped will die as running out of nutrients. 
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⚫ Solution: If the collapse can be noticed before starting the experiment, 

it may get solved by applying a gentle positive pulse from the waste 

port. If it is noticed during the experiment, there are no better solutions 

other than rerunning the experiment. 

Figure 4-7. Illustration of the collapsed chamber problem. 
When cells get trapped in collapsed part of the chamber, they would 

have very limited resources and no space for budding. 

4. Bubbles in Oil 

⚫ Reason: Occasionally, there might be air bubbles in the oil between 

the oil lens and the device. It usually happens when the oil is not 

adequate, and the device moved around during the preparation (to 

take images of multiple positions). (Figure 4-8) 

⚫ Feature: The region affected by bubbles will be significantly darker 

than the other regions and out of focus. 

⚫ Solution: If this problem is identified before starting the experiment, 

clearing the lens and adding the oil should solve it. If it happens during 

the experiment, there are no better solutions except rerunning the 

experiment. 

Figure 4-8. Illustration of the bubbles in oil problem. 
When there are bubbles in immersion oil (left) and moved right 

under the chamber, there would be focusing problems. 
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5. Blurry Images 

⚫ Reason: There is a small chance that the Nikon Perfect Focus 

System (PFS) [316] does not work as expected, and thus the images 

taken are out of focus. (Figure 4-9) 

⚫ Feature: The images would be blurry because they are taken out of 

the focus. 

⚫ Solution: Restarting the perfect-focusing-system may solve the 

problem, but sometimes it does not help. Probably rerunning the 

experiment is the only solution if the restarting could not solve the 

problem. 

Figure 4-9. Illustration of the blurry Images problem. 
The focal plane should be at the middle of cells (right); when it is 

above or below this hight, the images taken would be out of focus. 

6. Dark Images 

⚫ Reason: There are mainly two causes of this problem: Because of 

the physical limits of the computer, imaging action may be triggered 

slightly later than the scheduled time, to catch-up with the schedule, 

the time for exposure will get reduced and results in a darker image; 

Another case is when taking images of multiple channels, there is a 

tiny chance that the exposure starts before the filters get in position, 

it will also shorten the actual exposure time and leads to darker 

images. (Figure 4-10) 

⚫ Feature: The images would be significantly darker than the average 

level. 

⚫ Solution: Labelling these images and removing them in later 

processes is a solution. However, if there are too many dark images, 

the experiment would lose so much information that it will be no 
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longer comparable to other experiments of the same duration. 

Rerunning the experiment would be the only solution. Moreover, 

adding longer pauses between imaging actions is helpful to prevent 

this problem. 

Figure 4-10. Illustration of the dark images problem. 
If the exposure starts when the filter block has not yet arrived in 

position (left), the images would be significantly darker than what it 
should be. 

 

4.2.2 Experimental Images Used for Network Training 

The amount of available data of each category is listed in Table 4-2, and this 

would be the data source for the training and validation of CNNs. Notice that 

the data size for normal experiments does not match with all the experiments 

in chapter 2. It is because previous works [317] have shown the negative effect 

of imbalanced data sizes for categories. In other words, significantly more data 

of only one category is not necessarily beneficial. Moreover, this study also 

used a pre-processing method for CNN training called “image augmentation” 

to balance the sample sizes of different categories (details of this method and 

other pre-processing steps are explained in section 4.2.3). 

It is essential to determine which images should be given to the network 

(network input) as evidence for abnormality screening. The most direct option 
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is to use the most updated images of all the channels (DIC, Sulforhodamine, 

and Citrine as introduced in chapter 2) at the sampling time. 

Table 4-2. Data on different fault categories for CNN training. 

Category No. Experiments 
No. Sampling 
Time Points 

Normal 5 1,218 

High Bleed-Through 4 131 

Device Movement 5 445 

Collapsed Chamber 3 156 

Bubbles in Oil 3 136 

Blurry Images 3 30 

Dark Images 3 25 

However, only the latest images of the three channels are not enough to 

identify all the abnormal conditions. One of the most prominent examples is 

the case of device movement. The device movement is usually slow, and the 

DIC images are not blurry at all the sampling times; however, when checking 

these DIC images as a time sequence, it would be obvious to see that the 

device gradually moved. It means that the information of the previous images 

should also be given to the network. Therefore, the mean and standard 

deviations (std.) for each channel are also provided as input images. They are 

also chosen because both the mean and standard deviation are non-negative 

and have the maximum limit in values. It is a beneficial property for faster and 

more robust CNN training [318, 319]. Thus, the decision is to use images of 

3*3=9 channels as the input of the diagnosis network, i.e., latest/mean/std 

images of the DIC/Sulforhodamine/Citrine channel (as shown in Figure 4-11) 

shows an example of how these images help identify the abnormal condition. 

Notice that the shape of the device can be seen in the std image of the DIC 

channel (mid-left) because the location of the device moved during the 

experiment. In experiments without problems, the corresponded image should 

not show the device’s shapes but only show some small “flowers” because of 

cell growth.
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Figure 4-11. Example of input images for the diagnosis network (normal condition and device movement). 
Notice that when the device moves, the shape of the device can be clearly seen in the std. image of the DIC channel 

(red rectangles), which is not the case in a normal experimental condition.
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4.2.3 Pre-processing of the Experimental Images 

Image pre-processing is the stage that modifies the image data before the start 

of network training. The image pre-processing in this project involves two 

aspects: augmentation and normalisation. These two procedures are of 

different purpose and are different in methodology, and they shall be 

introduced one by one in the following paragraphs. 

Image augmentation is adding new samples by artificially modifying the 

original image samples [320]. Many previous works have proved that 

augmentation is an efficient way to improve network accuracy and 

generalisation, and also reduce overfitting [321, 322]. Furthermore, 

augmentation is also a convenient, practical and commonly-adopted 

procedure to enhance the data sets with limited size and difficulty 

accumulating new samples. This limit is prevalent in many similar tasks, such 

as training the networks of fault diagnosis or data analysis of clinical trials [323]. 

Classic augmentations include multiple transformations, e.g., shifting, resizing, 

cropping, rotating, flipping, and distorting [320, 324, 325]. Some of these 

transformations are not suitable for this task. For example, resizing was mainly 

for making the network recognise objects of different sizes (like cars and 

apples, which naturally have varying sizes because of the visual angle or inner 

property), but in this case, the used lens and chip design are fixed so the 

images of the chamber are impossible to appear with a different size. The 

detailed reasoning and decisions are shown in Table 4-3. The final decision is 

to adopt the 0/90/180/270-degree-rotations and flipping the images. In this way, 

each 9-channel-image of a sampling point can generate seven more 

augmented images, and the data size increases to 8 times larger. As shown 

in Figure 4-12, shifting and rotating is reasonable to add, but these methods 

work better with more image data for this purpose, which could be considered 

in future works. 
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Normalisation is another pre-processing procedure. In machine learning, it is 

initially introduced to ensure all the input values are in a comparable numerical 

scale, so that each sample for training contribute almost equally to the loss 

function (the function that evaluates how well the trained network performs). It 

is helpful to achieve better training performance [318]. However, this project 

adopted this method mainly for another purpose, i.e. reducing the size of the 

input data (or dimensionality reduction [326, 327]). As mentioned in section 

4.1.1, microfluidic experiments have great potential for massive parallel 

experiments. These experiments would lead to the transmission and 

processes of massive high-resolution images, which is a practical challenge in 

the industry [326]. 

Table 4-3. Reasoning of the augmentation methods selection. 
Green ones are the adopted methods. 

Transform Details Reasoning Decision 

Shifting moving around the 
entire image 

no data to fill the space 
after moving 

not adopted 

Resizing zoom in/out of the 
image 

the microfluidic chip size 
does not change 

not adopted 

Cropping cut a subset of the 
image as the input 

cropping may miss the 
evidence on images 
(e.g., collapsed 
chamber) 

not adopted 

Rotating rotate the image 
with a random angle 

the microfluidic chip only 
bound to the glass with 
specific rotations 
(0/90/180/270 degrees) 
+ should let the network 
“know” the direction of 
the chip does not matter 

only with 
0/90/180/270 
degrees 

Flipping flip the image up-
down or left-right 

shape of the chamber 
region is symmetric 

adopted. 

Distorting uneven elastic 
distortions of the 
image 

the shape of microfluidic 
chips is fixed 

not adopted. 
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Figure 4-12. Illustration of four additional images for image augmentation. 
Because of the complex shape of the chip and the unpredictiable 

layout of cells, it is impossible to automatically predict and generate 
the extended images for some certain augmentation methods 

(shifting and rotating). 

The core of dimensionality reduction is cut down the data size without omitting 

important information of the abnormal conditions [327]. In this project, the 

normalisation combines the latest/mean/std images into one, and thus reduce 

the total channel number from 9 to 3. The detailed expression of the 

normalisation for each pixel is given in Eq. 4-3. It is a variation of the ‘z-score’ 

normalisation [328]. 

𝑌𝑡,𝑛𝑜𝑟𝑚 =

{
 
 

 
 
𝑌𝑚𝑎𝑥    (𝑌𝑡 ≥ 𝑌𝑚𝑒𝑎𝑛 + 3 ⋅ 𝜎𝑌)

(
𝑌𝑡 − 𝑌𝑚𝑒𝑎𝑛
6 ⋅ 𝜎𝑌

+
1

2
)𝑌𝑚𝑎𝑥 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

0 (𝑌𝑡 ≤ 𝑌𝑚𝑒𝑎𝑛 − 3 ⋅ 𝜎𝑌)

               (4 − 1) 

where  𝑌𝑡,𝑛𝑜𝑟𝑚  is the normalised value,  𝑌𝑡  is the pixel intensity of the latest 

image,  𝑌𝑚𝑒𝑎𝑛  is the averaged intensity of the same pixel since the first 

experimental image, 𝜎𝑌 is the standard deviation of the intensity since the first 

image, 𝑌𝑚𝑎𝑥 is the numerical value of the maximum intensity (since the data is 

stored as uint16 integers, 𝑌𝑚𝑎𝑥 = 2
16 − 1 = 65535). 
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The normalised images have three channels instead of nine so they can be 

shown as a coloured picture by mapping DIC to Red, Sulforhodamine to Green, 

and Citrine to Blue (Figure 4-13). 

Figure 4-13. Example of normalised input images. 
These images correspond to the two samples in Figure 4-11 (a is for 
normal condition and b is for device movement). Notice the shape of 
the device can be seen in b but not in a. The purple shapes suggest 

that the cells are growing as expected in the device. 

 

4.2.4 General Structure and Layers of CNNs 

Convolutional neural networks are a category of artificial neural networks that 

is specialised for image processing. Similar to other artificial neural networks, 

CNNs are constructed in layers. The data passes from the input layer, then 

goes through a stack of layers that processes the information, and finally 

reaches the output layer that provides the final recognition result. 

Table 4-4 shows the commonly adopted layers in CNN structures categorised 

by the different purposes of the layer. It is essential to point out that recent 

studies in machine learning (such as works on attention models [329], dropout 

layers [330], and capsule networks [331]) keep extending this list. 

 

b a 
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Table 4-4. Table of commonly adopted CNN layers [332]. 

Layer Category Purpose 
Layer used in this Project 
(MATLAB Deep Learning 

Toolbox) 

Input Layer read the input data imageInputLayer 

Convolution 
Layer 

carry out convolutional 
calculations 

convolution2dLayer 

Activation Layer activate/deactivate the 
effect of certain pixels to 
the next layer 

reluLayer 

Normalisation 
Layer 

normalise the data to 
reduce the sensitivity to 
network initialisation 

batchNormalisationLayer 

Pooling Layer reduce the data size 
(down-sampling) 

maxPooling2dLayer 

Fully-Connected 
Layer 

summarise all the data 
from the previous layer 

fullyConnectedLayer 

Output Layer summarise the data and 
give the final output 

softmaxLayer 

In 2020 Wang et al. developed the famous CNN Explainer that can visualise 

how CNN transforms the input images into classification predictions [333]. 

Figure 4-14 is an example with a picture of a ladybug. The input image on the 

left is 64*64 pixels in size. It contains three channels (red, green and blue). 

The intensity information of these channels is processed through different 

layers from left to right and finally reach the output layer with a classification 

that gives the final result. 
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Figure 4-14. Example of a CNN identifying a picture of a ladybug [333]. 
The names at the top shows the types of these layers. 
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Wang et al.’s example CNN covers most layer types in Table 4-4, and they 

also provide impressive visual explanations for these layers (Figure 4-15). 

Figure 4-15. Visual explanations of the layers in example CNN 
[333]. 

The detailed functions of these layers, including the ones which are not 

included in Wang et al.’s paper [333], are given in Table 4-5. 

Table 4-5. Table of detailed functions of adopted CNN layers. 

Layer Name 
Input/Output 

Format 
Detailed Functions 

Convolution 
2D (3*3) 

local image stacks 
to scalar 𝑦 = ∑ ∑(

 

𝑥𝑖
⊙
 
 𝑤𝑖

)

𝑁𝑥

𝑖=1𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

+ 𝛽 

ReLu scalar 
to scalar 

𝑦 = 𝑚𝑎𝑥(0, 𝑥) 

Max Pooling 
(2*2) 

local image 
to scalar 𝑦 = 𝑚𝑎𝑥 ( 𝑥) 

Soft Max scalar array 
to scalar array 

𝑦𝑖 =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗
𝑁𝑥
𝑗=1

 

Batch 
Normalisation 

scalar 
to scalar 

𝑦 = 𝛾
𝑥 − 𝑥̅

𝜎𝑥
+ 𝛽 

Fully-
Connected 
Layer 

scalar array 
to scalar 𝑦 =∑𝑥𝑖𝑤𝑖

𝑁𝑥

𝑖=1

+ 𝛽 
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In Table 4-5, 𝑥 are the input signals from neurons of the previous layer, 𝑤 is 

the weight matrix or array, 𝛽 is the offset, 𝑖 and 𝑗 are the neuron indexes, 𝛾 is 

the scaling factor, 𝑥̅ and 𝜎𝑥 are the mean and standard deviation of the input 

during the training, ⊙ represents the component-wise multiplication. 

 

4.2.5 Selected CNN Architectures 

Some of the previous practical attempts of CNN-based abnormality screening 

have shown that even shallow CNNs can achieve a satisfying diagnostic 

accuracy [311, 326, 334]. Therefore, this project focused on three networks as 

follows: 

1. Simple-DLN 

Simple-DLN is short for the simple deep learning network. This network is 

introduced in MathWorks’ online training course [335, 336] and the user 

guide for MATLAB Neural network toolbox [337] as a typical example of 

CNN for image classification. In the original example, the network was 

designed for greyscale images of hand-written characters of 0-9 (i.e. the 

MNIST database [338]). It is also chosen in some highly-cited literature 

studies for solving relatively simple image processing tasks and illustrate 

the mechanism of CNN [339, 340]. This network is chosen because it is 

one of the smallest but still very representative convolutional learning 

networks which is designed for classification tasks of comparable difficulty 

as the problem to solve in this project. 

2. Tiny-VGG 

Tiny-VGG is short for the tiny Visual Geometry Group network. This 

network is a simplified variation of the original VGG network family [341]. 

It is designed for identifying ten different everyday items based on 

coloured images [333]. Moreover, this network structure is adopted in a 

study to identify 10 different abnormal working conditions of a rotor-
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bearing system based on thermal images and achieved state-of-the-art 

accuracy [311], which is worthy of reference considering the similarity of 

the task. 

3. VGG-11 

VGG-11 stands for Visual Geometry Group network with 11 layers. This 

network comes from the original paper for the VGG family [341] and is 

designed to identify 1,000 different items based on coloured images. 

Although it is the smallest VGG network in the original paper, the number 

of parameters is about 1,000 times of the two previous networks. 

Moreover, this network almost meets the calculation power limit of a 

computer not particularly designed for CNN training (i.e., no AI computing 

sticks, multiple high-performance GPUs, or computer clusters). The 

purpose of choosing this network is to use it as an example and see 

whether adopting deeper networks is worthy for practical condition 

diagnosis, as for many researchers managing the computing devices for 

training deeper networks would be costly and time-consuming. 

Figure 4-16 shows the selected CNNs (left) and the detailed configuration 

designs (right). The grey rectangles in the VGG-11 layout stands for repeating 

the corresponding layer unit. Similar to the notations in Simonyan et al.’s work 

[341], the convolutional layers are denoted as “conv<filter size>-< neuron 

number>”, the maxpooling layers are denoted as “maxpool<pool size>”, the 

fully connected layers are denoted as “FC-< neuron number>”, and batch-

norm and ReLu layers are not shown for brevity. 

Figure 4-17 compares the size of selected CNNs with popular pre-trained 

CNNs available [342]. Notice that these networks are designed for smaller 

input images (331*331*3 channels at most, the images in this task is 

512*512*3 or 9 channels), so if the network is adjusted for this task, their sizes 

would be larger. It can be seen that Simple-DLN and Tiny-VGG are 

significantly smaller than the popular networks, and VGG-11 is the smallest in 

the VGG family. 
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Figure 4-16. Layout (left) and configurations (right) of the selected CNNs.

Name Simple-DLN Tiny-VGG VGG-11

Number of

Parameters

(3/9 channels)

72,583/

73,015

22,263/

22,695

59,596,875/

59,606,475

conv3-8 conv3-8 conv5-64

maxpool2 conv3-8 maxpool4

conv5-16 maxpool5 conv3-128

maxpool4 conv3-8 maxpool2

conv7-32 conv3-8 conv3-256

maxpool4 maxpool5 conv3-256

maxpool2

conv3-512

conv3-512

maxpool2

conv3-512

conv3-512

maxpool2

FC-4096

FC-4096

Layers

soft-max

FC-7

Input (512x512x3 / 512x512x9)

ConvNet Configuration Details
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Figure 4-17. Comparing the size of the chosen networks with popular pre-
trained CNNs [342]. 

 

4.2.6 Algorithm for Network Training 

The algorithm used for training the network, i.e. tuning the network parameters, 

is known as the Stochastic Gradient Descent with Momentum (SGDM), an 

improved variation of the classic backpropagation algorithm [336]. The SGDM 

algorithm introduced a term for momentum, and this can reduce the oscillation 

along the searching path of steepest descent towards the optimum. Moreover, 

since not all the networks have a pre-trained version (and the pre-trained 

networks are for different input image sizes), the training for all the trials starts 

with randomised parameter values rather than pre-trained values, so that the 

final accuracies are comparable. 
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Like most of the CNN training tasks, the images are divided into two groups: 

the training and validation groups. The training group is only used to tune the 

network parameters and is not for the validation (the procedure that uses the 

network to identify some images and calculate the ratio of correct results), and 

the validation group is used oppositely. During the training, the training images 

would be given to the network in batches and calculate the loss and gradient 

for adjusting the parameter values. Every image for training will be given to the 

network once and only once in an epoch, then the order of the images will be 

shuffled before the next epoch to speed up the training and minimize the effect 

of the presentation order to the network. Every five epochs, the validation 

images will be given to the network and classified. The validation during the 

training is used to check the overfitting. When the network is overfitting to the 

training group, the performance will only improve with time on the training 

images but not the validation images 

Figure 4-18 shows a progress plot of a typical training (3-channel Simple-DLN). 

The final validation accuracy is different from the last validation point during 

the training because the batch normalisation layers operate differently during 

the training and final validation [343]. The wite-grey stripes correspond to the 

30 epochs. 
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Figure 4-18. Progress plot of a network training with 3-channel Simple-DLN. 
The wite-grey stripes correspond to the 30 epochs. The detailed trainng settings (which is the same for all the training) are 

shown on the right. A sign of overtraining is the accuracy for the training set remains higher than the validation set.
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As mentioned in section 4.2.1, the numbers of images for different 

experimental conditions are not the same. According to the previous works 

done by Hensman et al. [317], the imbalanced training data will significantly 

reduce the performance of the final network. Therefore, the number of images 

for each case is set to be 200 because the smallest data set case (dark images) 

has 25 original images which correspond to 25*8=200 images after 

augmentation. About the division of the training and validation set, the initial 

plan without levelled training (see section 4.2.7 for details) was to set the 

training-validation ratio as 150:50 (4-fold training). Practices show that 30 

epochs (or 30*150*7=31,500 images) seem to be a proper length of the 

training that balances the final performance and the overfitting.  

 

4.2.7 Levelled Training for VGG-11 

The practice shows that almost all the training trials of Simple-DLN and Tiny-

VGG achieve 80%+ accuracy. However, when training the VGG-11, the 

network shows a meagre chance of convergence, and all the trials give 1/7 

accuracy (completely random or constant output). It is understandable as 

VGG-11 has about 1,000 times more parameters than the other two networks 

(although VGG-11 is still one of the smallest deep learning networks in 

computer science), which is a very typical situation of over-parameterisation 

[344, 345]. Generally speaking, deeper networks have a higher degree of 

freedom and can learn more complex features. However, it is also a more 

difficult task to capture the same critical features in a bigger feature space. 

In recent machine learning studies, there are mainly four categories of 

techniques for solving the difficulties caused by over-parameterisation: 

parameter pruning and quantisation, knowledge distillation, low-rank 

factorisation, and transferred or compact convolutional filters [344]. However, 

except for a subset of the last category known as transfer learning, the other 

methods involve a significant change in the network structure, which is beyond 

the scope of this investigation [346]. Nevertheless, there are no pre-trained 
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parameter sets for the networks used in this study, as they are still relatively 

shallow and previous studies on this aspect focused on deeper networks such 

as VGG-16/19 and Res-Net to maximise the reward of the pre-training process 

[347, 348]. More importantly, as mentioned in section 4.2.5, the accuracy 

comparison between networks is one valuable work in this chapter and using 

a pre-trained network would break the fairness of comparison. Therefore, 

transfer learning is not an option for this study.  

For this task, a new approach is carried out, which is named “levelled-training” 

(Figure 4-19). It is straightforward to carry out and does not involve any 

modifications of the network. In the early epochs of training, only a subset of 

training data is given to the network. As expected, the network will learn both 

the “true” features and some features that only work in the smaller training data 

set (It is also the fundamental reason for over-fitting [349-351]). Then in later 

epochs, the entire training data set shall be given to the network, so that the 

network will learn which of the learned features are “true” features and which 

can be only used for “cheating” on the sub data set. This method reduces the 

difficulty of the training task because it increases the number of features that 

“works”. Before using this method, the networks with an initial setting far from 

the optimal values are likely to pace randomly because all the neighbouring 

value sets perform almost equally bad (a case of gradient vanishing problem 

[352-354]). After adopting the “levelled-training”, this situation is less likely to 

happen. Also, as shown in Figure 4-19, this method introduces extra “cheating” 

features for the network to learn, which only works on the tiny training data set. 

Therefore, become a double-edged sword: when the feature space is large 

(bigger networks), “levelled-training” can speed up the convergence, when the 

feature space is small (small networks), “levelled-training” may distract the 

feature learning. 

In this task, the three training settings are shown in Table 4-6. Training setting 

1 is the one without “levelled training”. All the settings have the same total 
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number of images for training, which corresponds to the same number of 

evaluations. 

Figure 4-19. Illustration of the “Levelled-training”. 
Depends on the network depth, this approach is a double-edged 

sword: when the feature space is small (shallow networks shown at 
the top), “levelled-training” may distract the feature learning; when 
the feature space is large (deeper networks, shown at the bottom), 
“levelled-training” can speed up the convergence by broaden the 

valid feature space. 

Table 4-6. Three different settings of the levelled-training. 

Training Setting Setting 1 Setting 2 Setting 3 

Low-Level Training 
(60 images/ category) 

0 epoch 
0 images 

25 epochs 
10,500 images 

50 epochs 
21,000 images 

High-Level Training 
(150 images/category) 

30 epochs 
31,500 images 

20 epochs 
21,000 images 

10 epochs 
10,500 images 

Apart from the purpose of improving convergence, levelled training also 

corresponds to a practical situation. In the beginning, an engineer may notice 

the abnormal working condition, but there is not much data for training as the 

samples of abnormal conditions are very limited. Later as time goes, there 

might be more data available. This study will also answer how would this 

affects network training and the final accuracy. 
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4.2.8 Visualisation of the Extracted Features in CNNs 

For a long time, the visualisation (or visual explanation) of the learned features 

of CNNs is a challenging but important task [347, 355]. It is of great value 

because it is constructive to understand which of the features are captured by 

the network so that users can check whether the network focuses on 

reasonable aspects of the graphical information. It is also helpful to find 

whether unexpected features (such as background colours) mislead the CNN 

training. The theories and methods for visualisation developed rapidly in recent 

years. Till the time of writing this thesis, there are mainly four popular method 

classes in this field. The detailed reasoning is given as follows: 

1. Activation Map 

Activation maps display the activation levels of a specific CNN layer. It can 

tell how different layer neurons focus on different features (Figure 4-20) 

[356, 357]. This method is adopted in this project, and the results show 

that it is helpful to illustrate the interested features captured by the trained 

networks. 

 

Figure 4-20. Activation map example provided by MathWorks [358]. 
This map shows that two neurons of CNN focus on the presents of 

opened human eyes. 
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2. Class Activation Mapping (CAM) and Gradient-Weighted CAM 

The CAM graphs show how different image areas contribute to the 

activation of the final answer [359]. In other words, which part of the input 

image make the CNN decide the output. In this project, the Gradient-

Weighted CAM (as a generalisation of CAM [355]) is adopted. The method 

is helpful for feature explanation and is even more helpful when the 

decision is incorrect (Figure 4-21). 

Figure 4-21. CAM of a CNN processing an image of a cup [360]. 
This image of a cup is recognised as a buckle because the network 

pays more attention to the watch on the arm. 

3. Feature Map / Deep Dream Image 

Feature maps are generated images that could lead to similar CNN 

activation responses at a specific layer compared to a specific input image 

[361, 362]. Figure 4-22 shows an example of a VGG-19 network. They 

are also called Deep dream images because for deeper (closer to the 

output layer) layers, the feature maps are usually crowded with rescaled 

and relocated features, which could be kind of “bizarre”. 
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This method is not adopted in this project because the channel of these 

maps corresponds to the input channel number, so it only works best with 

the 3-channel-input networks. Nevertheless, different from Figure 4-22, in 

this work, the three channels are not RGB but for 

DIC/Sulforhodamine/Citrine, which is not very intuitive. Moreover, the 

network in this project is trained to work with images with any four 

directions of the microfluidic chip. As a result, the features are symmetric, 

relocated, and overlapped. The feature maps in this project only show a 

few features like the shape of the chamber (relocated and not clear at all) 

but nothing else. 

Figure 4-22. Example of feature maps of a VGG-19 network [362]. 
Lower rows correspond to deeper layers. 

4. Occlusion Sensitivity Map 

When generating these maps, the input image is partially covered with 

occluding mask. According to how the output changes with these masks, 

the map can show which parts of the picture are the more critical or 

informative for the final classification [363]. 
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This method is not adopted in this project because practices in this study 

find that the occluding masks affect not only the fault diagnosis but also 

the understanding of the device orientation. The central area is always 

considered “very important” in most sample cases because it contributes 

least to the orientation judgment and is only informative for abnormality 

diagnosis. Oppositely, the area which actually contributes most to the 

diagnosis is not highlighted. 

 

4.3 Results 

4.3.1 Results of the Network Training 

The tables below show the accuracy of trained networks. There are ten trials 

for each training setting. Two channel numbers correspond to two different 

image-pre-processing methods given in section 4.2.3, i.e., with/without 

normalisation. Three training methods stand for three ratios of the low/high-

level training as introduced in section 4.2.7 (method 1 do not have low-level 

trainings and method 3 give the highest time ratio to the low-level training) 

Chance of convergence is the percentage of trials with validation accuracy 

larger than 14.29% (1 out of 7, i.e., constant or completely random output).  
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Table 4-7. Results of the CNN training. 

Method 1 Method 2 Method 3 Method 1 Method 2 Method 3

Accuracy
(mean±std)

96.80±3.76 96.74±1.69 92.86±4.25 99.34±0.57 98.17±1.95 98.37±1.20

Best Trial 99.14 98.57 98.29 100 100 100
Chance of

Convergence
100% 100% 100% 100% 100% 100%

Accuracy
(mean±std)

87.37±5.92 87.29±4.06 84.49±3.40 97.57±1.46 96.13±3.77 97.94±2.16

Best Trial 96.00 93.71 89.14 99.71 99.14 100
Chance of

Convergence
90% 60% 100% 100% 90% 100%

Accuracy
(mean±std)

88.14±3.86 79.22±14.31 70.16±4.78 - 55.57±6.14 -

Best Trial 92.00 93.71 75.14 - 61.71 -
Chance of

Convergence
30% 70% 90% 0% 20% 0%

VGG-11

Network Features
3 Channels (With Normalisation) 9 Channels (Without Normalisation)

Simple-DLN

Tiny-VGG
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Table 4-8. Wilcoxon-rank-sum-tests of the median validation accuracies. 

Comparison Simple-DLN Tiny-VGG 

3-channels 
vs 
9-channels 

Method 1 
9-channels better 
(p*<0.01) 

9-channels better 
(p*<1e-4) 

Method 2 
9-channels better 
(p*<0.05) 

9-channels better 
(p*<0.01) 

Method 3 
9-channels better 
(p*<0.01) 

9-channels better 
(p*<0.001) 

Between 
Methods 
(3-channels) 

Method 1 vs 2 
not significantly 
different (p*>0.1) 

not significantly 
different (p*>0.1) 

Method 1 vs 3 
method 3 worse 
(p*<0.01) 

not significantly 
different (p*>0.1) 

Method 2 vs 3 
method 3 worse 
(p*<0.05) 

not significantly 
different (p*>0.1) 

Between 
Methods 
(9-channels) 

Method 1 vs 2 
not significantly 
different (p*>0.1) 

not significantly 
different (p*>0.1) 

Method 1 vs 3 
not significantly 
different (p*>0.1) 

not significantly 
different (p*>0.1) 

Method 2 vs 3 
not significantly 
different (p*>0.1) 

not significantly 
different (p*>0.1) 

There are six different network configurations in Table 4-7 (training methods 

do not change the network configuration), and only Simple-DLN (9 channel 

ver.) and Tiny-VGG (9 channel ver.) achieved 100% accuracy for the validation 

set. Table 4-8 shows that although the normalisation reduced the bandwidth 

for abnormality screening to 1/3, it also leads to information loss and reduces 

the screening accuracy. 

To investigate the performances of the other four networks that did not achieve 

100% accuracy, and understand what mistakes these networks are making, 

the validation results of the best networks of these four configurations are 

shown in Sanky charts from Figure 4-23 to Figure 4-26. 

Figure 4-23 shows that the best simple-DLN (3 channel ver.) is too strict for 

the standard of normal experiments, and confuses some blurry images with 

moving images. The confusion makes some sense, as for 3-channel cases, 

both the moving device and blurry images will lead to blurriness in the image, 

the difference is in the direction of blurriness. Figure 4-24 and Figure 4-25 

suggest these two networks have an unacceptable level of both type I and type 
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II errors for normal experiments. The results in Figure 4-26 is the worst, and 

the network makes many severe mistakes in the diagnosis. Although VGG-11 

for 9 channels has the largest number of learnable parameters, over-

parameterisation seems to cause severe problems in this case. 

Figure 4-23. Sanky charts of validation results for the best Simple-
DLN (3 channel ver.). 

This plot shows how the validation images of true categories (left) 
are identified by the network (right). 

 

Figure 4-24. Sanky charts of validation results for the best Tiny-
VGG (3 channel ver.). 

This plot shows how the validation images of true categories (left) 
are identified by the network (right). 
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Figure 4-25. Sanky charts of validation results for the best VGG11 
(3 channel ver.). 

This plot shows how the validation images of true categories (left) 
are identified by the network (right). 

 

Figure 4-26. Sanky charts of validation results for the best VGG11 
(9 channel ver.). 

This plot shows how the validation images of true categories (left) 
are identified by the network (right). 
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4.3.2 Comparison of Different Training Methods 

Figure 4-27. Convergence curves of the CNN training with three 
training methods. 

method 1 do not have low-level trainings and method 3 give the 
highest time ratio to the low-level training. 
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As listed in Table 4-6, three training methods differ in the ratio of low/high-level 

training. High-level training means training the network with all the images from 

the training set (150 images per category) in every epoch; low-level training 

means using a fixed subset of the training images (60 images per category) 

for the CNN training. Method 1 trains the network with high-level all the time 

(classic method), method 2 and 3 starts with low-level training and switches to 

high-level at 1/3 or 2/3 of the entire training session as marked with dashed 

lines in Figure 4-27. 

In most cases, low-level training leads to faster convergence at the beginning 

(red and yellow lines are lower than blue lines), but very soon, convergence 

slows down until switching to high-level training. A clear drop at the training 

level switch can be seen in some network configurations, particularly simple-

DLN (3 channel ver.) and tiny-VGG (3 channel ver.). 

For VGG-11, a network with 1,000 times more parameters than the other two, 

levelled training seems to increase convergence chance. The comparison 

between methods 2 and 3 suggests that the switching time is also an 

interesting aspect to investigate. The meagre chance of convergence with 9-

channel inputs shows that these deeper networks may need different training 

strategies than shallower networks, e.g., loading pre-trained networks or 

training with much more training data. 

 

4.3.3 Visualisation of the CNNs 

Gradient-weighted CAM and activation maps of the best networks of the six 

configurations are given in Figure 4-28 to Figure 4-30. One sample image is 

randomly selected from each category to generate these plots. 

As introduced in section 4.2.8, GW-CAM represents the network's overall 

attention, so there can only be one GW-CAM for one input image. Activation 
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maps show how different channels (or neurons) of a layer get activated by the 

input (remember that the core mechanism that backups the CNNs is the 

inference base on the neurons activated for different image features). The 

selected neurons are the eight neurons of the largest variances in activation 

with different image inputs. Here the activation maps are generated for the last 

ReLu layer to capture the most complex features with minimum resolution lost.  

Figure 4-28. Visualisation results of the best simple-DLN networks. 
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Figure 4-29. Visualisation results of the best tiny-VGG networks.  

From the figures, it can be seen that there are some channels/neurons gives 

very similar activation maps. In other words, they focus on identical features. 

This suggests that network pruning (a procedure removing these replicated 

neurons) could be applied to reduce the network size while remaining the 

accuracy. 
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For VGG-11, the layer is the second last ReLu because the resolution of the 

last ReLu is too low (8 by 8 pixels). 

Figure 4-30. Visualisation results of the best VGG-11 networks. 

The information density of these graphs is very high. Combining with the 

figures in section 4.3.1, experts can obtain lots of information to guide the 

network’s configuration, training, and application. 
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In all of these figures, some channels capture similar features. It suggests that 

pruning can be applied to reduce the network size without losing accuracy [364, 

365], and an optimised network may only need 3-5 channels (neurons) in the 

last layers. GWCAMs show that the networks can easily identify the yeast cells 

and pay attention to the colony’s borders. 

In Figure 4-28, to identify blurry images, 3-channel simple-DLN tends to look 

for a particular pattern of the blurred empty chamber (channel 6 to 8). However, 

when the chamber is almost full, this feature would disappear. It might be why 

some blurry images are identified as devise movement problems in Figure 

4-23. 

Figure 4-29, shows that the activation maps of the normal experiment for 3-

channel tiny-VGG have some common styles to some failures, such as device 

movement. In other words, the 3-channel network does not capture unique 

features for normal experiments, so the error level is high in Figure 4-24. Also, 

for device movement, the 3-channel network seems to rely on sub-ideal 

features compared to the 9-channel network. Nevertheless, it might because 

the training was not long enough, supported by Figure 4-27. 

In Figure 4-30, for both 3-channel and 9-channel networks, it seems that only 

two to three channels provide the majority of evidence for the inference. 

Furthermore, the features in the 9-channel network are blurrier than the 3-

channel ones. It may explain why the 9-channel network performs worse than 

the 3-channel network. 
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4.4 Discussion 

4.4.1 Comparison of Channels and Networks 

From Table 4-7 in section 4.3.1, although simple-DLN has the smallest 

parameter number, it shows the best performance, with 99.14% accuracy for 

3-channel inputs and 100% accuracy for 9-channel inputs. 

From Table 4-8, the performance of two smaller networks (simple-DLN and 

tiny-VGG) is significantly better with 9-channel inputs compared to 3-channel 

ones. It is understandable because image pre-processing (the procedure that 

reduces the channel number, section 4.2.3) with the cost of losing some 

information. 

The deeper network (VGG-11) shows different behaviour and performs better 

with 3-channel images. VGG-11 also performs the worst in both accuracy and 

chance of convergence. A possible reason is the over-parameterisation [366-

368]. In other words, the entire feature space for VGG is too large that the 

difficulty of finding specific valid features is higher than shallower networks. 

 

4.4.2 Comparison of training Methods 

According to Figure 4-27 in section 4.3.2, low-level training (training with a 

smaller data set) may speed up the convergence and increase the chance of 

convergence. Nevertheless, high-level training is also necessary to furtherly 

increase validation accuracy. 

As mentioned in section 4.2.7, the introduction of low-level training is not only 

for improving the convergence but also for investigating how the limited 

training data at an early stage affects the final accuracy. According to Table 

4-8, the levelled training does not significantly reduce the validation accuracy, 

except in method 3 cases with Simple-DLN. In other words, if training the 
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network needs time, and there are expected to be more data available for 

training, starting the low-level training while waiting for the new data may be a 

wise choice, as it will save time while maintaining the accuracy. As long as the 

high-level training (training with all the data) takes a high enough share of the 

entire training time, the final accuracy should be not significantly worse than 

using high-level training all the time. Although, the exact necessary share for 

high-level training still needs further investigation. 

 

4.4.3 Visualisation of CNN 

The visualisation practices in section 4.4.3, the combination of activation map, 

gradient-weighted class activation mapping (GW-CAM), and the Sanky charts 

of validation results show extraordinary power to explain the network and guide 

the configuration, training, and application of the network. This combination is 

particularly helpful for the trainer to know why the network makes mistakes and 

how to adjust the training. 

The activation map shows the interested features for each neuron of a layer to 

understand if there are any missing or misleading features in the network. 

Moreover, suppose the network is confused with two image categories. In that 

case, the network may capture sub-optimal features for one of the categories, 

and the activation map of these two categories would be very similar. The 

activation map could give hints of the features to adjust the images for training 

to let the network pick up with better features. 

GW-CAM is helpful when there are too many neurons in a layer, as GW-CAM 

shows one overall attention map of the CNN, which plays a similar role as the 

activation map. In practice, having both the activation map and GW-CAM 

together is better because activation maps give detailed features, and GW-

CAM helps check if there are some cross-neuron features. 
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4.4.4 Future Works with More Advanced Networks 

The work in this thesis verifies the application of CNN for increasing the 

automation level of anomaly screening for microfluidic experiments, and it is 

yet at the early stage of exploration. As introduced, machine learning is an 

attractive and active field and there are new theories and network mechanisms 

proposed every year. It is very exciting to investigate how these results can 

improve the accuracy and efficiency in this task: Residual neural networks may 

lead to better generalization ability and accuracy while remaining a small 

memory usage [369, 370]. According to the visualised mapping of current 

networks, network pruning is an approach that can remove the repetitive 

neurons and reduce the network size without losing classification accuracy  

[364, 365]. Moreover, the hybrid CNN–SVM approach has shown state-of-the-

art accuracy in image-based anomaly detection tasks [371-374]. 

 

4.5 Chapter Summary 

4.5.1 Fault Diagnosis 

This chapter's work shows that CNN can be used in microfluidic experiments 

and diagnose six faults that once appeared in practices. Even shallow CNNs 

with less than 23,000 parameters could achieve very high validation accuracy 

(achieve 100% for multiple times in the trials). Analysis with visualisation 

suggests the network can be furtherly pruned to smaller sizes without accuracy 

lost. The CNNs of this size can be trained and run on a computer without high-

end GPU or computing clusters. In comparison, most of the pre-trained CNNs 

in the field of computer science have 1,200,000-150,000,000 parameters [341, 

375]. With this work, mass-application of parallel microfluidic experiments can 

be carried out with a higher automation level and better control of abnormal 

experimental conditions. 
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Among the three CNNs introduced in section 4.2.5, after the same amount of 

training with the random initialisation, simple-DLN shows the best performance; 

tiny-VGG gives slightly worse accuracy, probably because of the over-

parameterisation VGG-11 performances the worse. 

Image pre-processing reduces the input channel number from 9 to 3. By 

reducing the data size or bandwidth, but this procedure reduces the validation 

accuracy. 

 

4.5.2 Training the CNN 

Levelled training is introduced in this chapter. This training method divides the 

CNN training into two sub-parts: low-level training, which only uses a subset 

of training images; and high-level training, which uses all the images. Results 

show that this method increases the convergence speed and the chance of 

convergence (particularly for deeper networks like VGG-11). Moreover, for the 

long-time CNN training with limited initial accessibility of all the data (a practical 

situation in the industry), with this method, the training can start earlier without 

waiting for all the data set, and the final accuracy is not significantly worse than 

training with full data set all the time. Moreover, the minimum share for the 

high-level training to maintain the final accuracy is a question to answer in 

future works. 

Considering the connection between CNNs and the human brain's neural 

networks, levelled training results are also consistent with human learning. It 

is easier to start with simpler tasks in education and a small number of 

questions and then move to more complicated tasks. Learning with all kinds of 

tasks since the beginning leads to a heavier cognitive load and usually results 

in a slower learning speed [376]. On the other hand, keeping practising with a 

small number of simple tasks is also not efficient to further develop the skills 

[377]. 
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This study also shows that the combination of activation map, gradient-

weighted class activation mapping (GW-CAM), and the Sanky charts of 

validation results helps explain the network and guide the configuration, 

training, and application of the network. This combination is particularly helpful 

to understand the mechanism of the incorrect diagnosis and infer the 

adjustments for the training. 
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Chapter 5:  Conclusions and Perspectives 

This thesis explores, practices, and examines several methods to improve the 

efficiency of model calibration experiments for synthetic biological products in 

the three aspects: experimental technique, optimal experimental design (OED), 

and automatic experiment abnormality screening (AEAS). In this thesis, a 

model of an orthogonal inducible promoter in S. cerevisiae is used as a 

benchmark. A series of microfluidic experiments are carried out on this cell 

strain to support the research. 

 

5.1 Conclusions 

⚫ Adopting microfluidics experimental technology is helpful to 

improve the efficiency of model calibration. The comparisons on the 

benchmarking model suggest that with the same experiment duration, 

microfluidic experiments lead to models that provide more accurate 

behaviour predictions of never-encountered stimuli patterns than those 

derived from flow-cytometry experiments. 

⚫ The study confirmed the benefit of current optimal experimental 

design (OED) approaches for model calibration. Compared to 

randomised input designs, current OED approaches lead to more accurate 

estimations of model parameters. 

⚫ Parameter clustering reduces the computational cost of the OED and 

improves the current off-line OED approach. OED with clustering leads 

to equally or even more informative experiments than the classic off-line 

OED (optimise all the experiments at the very beginning). However, it is 

not as informative as the on-line OED (an approach that optimises every 
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sub-experiment before carrying them out). Clustered-OED may be a better 

solution when the parameter estimation and OED are not physically 

allowed to carry out during the experiment. 

⚫ The developed automatic experiment abnormality screening (AEAS) 

system with convolutional neural networks (CNNs) can diagnosis 

abnormal experimental conditions with the desired accuracy. This 

thesis’ work shows that CNN can be used in microfluidic experiments and 

diagnosis the six abnormal conditions in seconds with the desired 

accuracy. The trained networks achieve 100% accuracy multiple times in 

the validation. 

⚫ AEAS system with CNNs of small size can already achieve very high 

diagnostic accuracy. Practices show that even shallow CNNs with less 

than 23,000 parameters could achieve very high validation accuracy 

(achieve 100% for multiple times in the trials). 

 

5.2 Judgement of the Results 

⚫ Comparison between flow-cytometry and microfluidic microscopy. 

The work in this thesis compared the current microfluidic microscopy 

experiments and flow-cytometry experiments for calibrating a 

benchmarking model. Although in this study microfluidics shows higher 

informativeness for model calibration, it is very important to point out that 

there are improvements published every year for both of the techniques. 

So this work should not be considered as a certain and definite comparison, 

but rather an example of comparing different experimental techniques and 

to provide evidence for deciding experimental designs and understanding 

the difference between results with the other technique. 
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⚫ Optimal experimental design with parameter clustering. This study 

explored a new approach to guide the optimal experimental design with 

the clustering of model parameters. Different from previous studies, this 

approach does not decide which parameters to fix/fit, but leave this point 

with researchers (which is a practical need) and decide which parameter 

set to focus on in each sub-experiment. Although the work in this thesis 

shows the advantage of this approach, the work is based on in-silico 

experiments and a relatively small model. To achieve a more solid 

understanding of this approach, it would be needed to validate this work 

with in-vivo experiments and with larger models. How the parameter 

clustering would be like for complex models is a very interesting and 

valuable point to investigate. 

⚫ Automatic experiment abnormality screening based on experimental 

images. This work explores the possibility of increasing the automation 

level with convolutional neural networks. Although the networks achieve 

state-of-the-art accuracy, because of the practical limits, the sample size 

is very small compared to the database for more general purposes. 

Moreover, recent developments in the related field may also achieve 

accurate diagnosis with smaller networks. How to generate a better 

training data set with limited resources, and would network achieve better 

performance with more recent designs are the questions to answer in the 

future. 

 

5.3 Future Perspectives 

⚫ Wet-lab validations of the on-line OED approach would be very 

helpful to confirm its benefit in model calibration. The study based on 

in-silico experiments suggests that on-line OED would lead to the most 

accurate parameter estimations. Wet-lab experimental data would be 

strong evidence to validate this conclusion. 
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⚫ Furtherly improve the structure of the CNNs for abnormality 

screening applications. Machine learning is a very active research field. 

Many newly proposed techniques have the potential of furtherly improving 

the accuracy and performance of the network, such as residual neural 

networks and network Pruning.
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Appendices 

Appendix A:  Protocol of Microfluidic Experiments 

Outline of the protocol: 

This protocol describes the procedures of an in-vivo experiment for model 

inferencing, on genetically modified yeast strain (YST_526) in a microfluidic 

device (MFD0005a) with a fluorescence microscope (Nikon Ti2-E). The 

experiment is supported by a MATLAB/Python experimental platform 

developed by our group. 

Media preparation 

6*50ml Test Sample Vial Tube 

Tube 
No. 

Use 
Total 

Volume 
SC 

Media 
Glucose 

20% 
IPTG 

100𝝁M 
Sulforhodamine 

1mg/ml 

1 
Syringe 1 10ml 8.89ml 1ml 

(2%) 
100𝜇l  
(1𝜇M) 

10𝜇l (1𝜇g/ml) 

2 
Syringe 2-5 40ml 36ml 4ml 

(2%) 
  

3 

Cells 
Overnight, OD 
check, and Re-
diluted Cells 

30ml 27ml 3ml 
(2%) 

  

All these media need to be filtered with 0.22μm filter. 

Cell preparation 

- Move the media from tube 3 to 4*50ml vial tubes, 5 ml each, and 1 ml 

to an Eppendorf. 

- Use a P200 pipette pick a colony of average size (not too big) from the 

petri dish and re-suspend it in the Eppendorf. Then transport 60ul to 

one of the tubes. Prepare another one with 1 whole colony into another 

tube. 

- Place the two 50ml tubes in the incubator at temperature 30.0 degree, 

250RPM, grow overnight. 
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- Measure the OD of the culture. Then dilute them to OD=0.075 in the 

other 2 tubes. 

- Put the two tubes with diluted culture into the incubator. 

- Calculate the time to wait based on the following data (OD for the mid-

exponential phase is 0.3): 

Time (min) OD 

0 0.075 

110 0.100 

190 0.150 

290 0.300 

- Finally measure and take note of the OD of the culture in 50ml and load 

the one closer to 0.3 to syringe 6. 

Syringes’ preparation 

- Prepare 6 25G needles and 6 lengths of tubing1 (4x (1 arm) and 2x (2 

arms)).  

- For each length of tubing, connect one extremity to the 25G needle. 

- Connect 6 x 50ml syringes to the prepared tubing. Upon connection, fill 

and empty the syringe with air 3 times, to ensure all debris will be 

removed from the tubing. Label the syringes with sequential numbers 

from 1 to 6 (1 and 2 with the longer tubing) and anchor the connection 

pin on a side (at the height of 10 ml, to prevent backflow), using 

autoclave tape. 

- For each syringe (1-5), remove the piston and, using a p1000 (or P200), 

load 1 ml of fluid (according to the table below) at the bottom of it (make 

contact with the inside of the leur stub adapter). This reduces the 

formation of bubbles that would prevent the flow of fluid in the tubing. 

Using a 10 ml stripette, load the residual 9 ml of the same fluid (let it run 

on the syringes wall before reaching the bottom).  

- Cover each syringe with parafilm and, using the tip of scissors, create 

a hall on it.  
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Syringe 
No. 

Content 

1 

SC media 
2% Glucose 
1mM IPTG 
1ug/ml Sulforhodamine B 

8.89ml SC media 
1ml 20% Glucose 
100μl IPTG 
10μl Sulforhodamine B 

2 
SC media 
2% Glucose 
0 IPTG 

9ml SC media 
1ml 20% Glucose 

3 
SC media 
2% Glucose 

9ml SC media 
1ml 20% Glucose 

4 
SC media 
2% Glucose 

9ml SC media 
1ml 20% Glucose 

5 
SC media 
2% Glucose 

4.5ml SC media 
0.5ml 20% Glucose 

6 cells with PLac + IPTG 5ml cells with PLac + IPTG 

Gently move the syringes to the microscopy room and attach them: 1 and 2 to 

the actuators (2 should be higher than 1 and both higher than all other 

syringes); 4 and 5 (23 cm from the height of the stage) and 3 (18 cm from the 

height of the stage).2 

- For each syringe (1-5), detach the connection pin and watch the fluid 

flow through the microbore tubing line to the exit point at the leur stub. 

Double check that no bubbles are present. 

Wetting the chip 

- Prepare a syringe for 

wetting. Connect a 5 ml 

syringe to a short length of 

tubing (using a 25G needle 

as for the others). Fill and 

empty the syringe with air 

for 3 times to remove 

potential debris from the 

tubing. Fill the syringe with 

media. Let media flow in 

the line, to remove all air 

bubbles. 
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- Place the device in the lid of a petri dish (acting as a chip holder), 

eventually securing it with tapes on two sides. 

- Connect the syringe to port 5 and apply a gentle pressure (too much 

pressure will lift the chip off the coverslip). When droplets form, move 

the connector to port 4. Repeat the procedure for 3, 1, 2, until there are 

no more air bubbles in the chip. Use a Kim wipe to remove excess of 

media on the surface of the chip. 

- Wash the hands with ethanol before wetting the device, and avoid 

touching any kind of paper to avoid bringing fibres into the device. 

- Wetting the device is better in the order as follows: 

- Brief wetting: 5,4,1,2,3. (4 and 3 with more pressure and longer time); 

- Remove air bubbles in 1&2. (for small bubbles, try gently suck the 

bubbles out and push the media in very slowly, the bubbles may not 

return back to the chip); 

- Remove air bubbles near port 3. Then check if there are any bubbles 

from port 3 to port 4 (which includes the chamber), push to remove any 

bubbles; 

- Remove air bubbles near port 4, and check again if there are any 

bubbles in any place except in port 5. 

- Remove air bubbles near port 5. 

- Double-check all the places. 

Connecting syringes 

- If possible, operate at the height of the stage.  

- Check for the absence of air bubbles on the line, hence connect syringe 

5 to its port.  

- Connect syringe 4, 1, 2 and 3.  

- At 10x magnification, examine the chip for absence of air bubbles and 

debris in the chamber and in the channels and in the ports. Check that 

the chamber and the channels are not collapsed (they would look 

darker). Check the junction is properly made. In this way, you are 

verifying that the chip is properly wet.  
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Calibration 

- Bond the device to the frame. and put the chip under 40x oil lens 

- Adjust the storiette mixing ratio on the “flow control” panel, the syringe 

1, 2 should move to the corresponded heights based on the default 

setting. Adjust the syringes to the heights that the entire input channel 

is filled by the media from syringe 1 by snapping fluorescence images 

of the DAW junction.  

- Click the “calibration” button on the “flow control” panel. The software 

will start carrying out the calibration procedure (about 20 min). 

- The first 30 sec of the calibration is mainly for analysis the images and 

mark the region of interest (then input channel). There would be a figure 

displayed, which shows the result of alignment. If the region is not 

correct (very unlikely), user should stop the calibration (Press Ctrl+C in 

the main window of MATLAB), slightly adjust the position and/or focus, 

and try again. 

- During the calibration, the syringes would generate triangle input and 

oscillate for 3 times. A series of fluorescence images would be taken. 

- After the calibration, the result of calibration would be displayed as a 

plot of fitted function and the data points (mixing ratio vs. height of the 

syringe 1 above the stage), and another figure showing the absolute 

error of the fitted function. The result of calibration will also be saved to 

the current folder, so that user may check or load these results in the 

future. 

- The calibrated result would be directly applied to the current platform. 

Loading cells 

- Adjust the mixing ratio to achieve the initial concentration for the 

experiment 

- Prepare the cell syringe and attach it higher than 4 and 5.  

- Disconnect the temporary cell syringe (5) and plug in the actual cell 

syringe (6).  
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(To avoid damages to the chip, you may want to build a small stage to 

rest the device when it is off the microscope. To do that, take a petri 

dish lid, cover its top with a few layers of tissue, make it flat and 

spray ethanol onto it before putting the device on.) 

- Move syringe number 4 to an upper position (still below cells).  

- Observe the cell loading, flickering the tube to increase cells flow.  

- When you are satisfied with the number of cells in the trap, adjust the 

syringes to the running position. You should slowly bring syringe 4 to 

the level of the others (be gentle or you will lose cells from the trap). 

Bring cells to the same height, disconnect cells from port 5 and connect 

again syringe 5.  

- Verify the absence of air bubbles in the ports (especially port 5). 

Carrying out the experiment 

- Move the stage to the position of the DAW junction and the chamber; 

mark these positions by clicking “Mark point” button on the “point visiting” 

panel. 

- Adjust the exposure time for the images of different channels, if the 

exposure time is set to 0, the software would not take the corresponded 

images for that position. 

- Click the “load input design” button on the “Flow control” panel and 

select the file of the experimental design we want to carry out. The input 

patter should be shown in the figure above the button. 

- Setup the frequency and duration of sampling, it will also decide how 

long the experiment going to last. 

- Click the “start acquisition” and check the contents on the checklist 

displayed to start the experiment. The images would be saved to the 

folder shown at the top of the software. 
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Dispose the equipment 

- Double check the experiment is finished and the software is running 

properly. 

- Wet the tissue on the device holder made with a petri dish lid. 

- Switch off the auto focusing system and lower the lens to the minimum 

height. 

- Release the upper part of the microscope, gently unscrew the inner 

stage and move the stage to the holder. 

- Unplug the tubes on the device, and fix the free ends back to the 

corresponding syringes. 

- Gently remove the device from the stage, try not to break the glass part. 

If the glass breaks, collect the glass pieces by a piece of tape with extra 

caution. Chuck the device and glass into the sharp bin. 

- Clean the lens with dry tissue and then again with tissue wetted by 

ethanol. Wipe the stages of the microscope with ethanol as well. 

- Put the syringes on the tube rack and move to the sink. 

- For the syringes without cells, turn on the tap and pour the media into 

the sink. 

- Add Virkon solution to the syringe with cells; update the label with date. 

Dispose the media with cells after 2+hs. 

- To dispose the syringes with needles, firstly double check there are no 

media in the syringe then cut the connected tube with scissors and DO 

NOT take off the needles. Chuck the syringes with needles together into 

the sharp bin, and chuck the tubing into the bio waste bag. 
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Appendix B:  Mock-Up Design of the Platform GUI 

Mock-up design is used to guide the development of the graphical user 

interface (GUI). In this project, this work is done with Balsamiq Wireframes 

toolkit. The advantage of this toolkit is that it is completely online, and so the 

developer would not need to install any software and users can access and 

edit it on any computer with internet. This design refers to the design of a 

control platform made by Dr. Ivan Clark which corresponds to Tag 1. 

Screenshot of the online editing page: 

Tag 1: Tab for carrying out a designed experiment. 
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Tag 2: Tab for the list of models and calibration with old experimental data. 

Tag 3: Tab for model calibration and corresponding OED. 

Tag 4: Tab for model selection and corresponding OED. 
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Tag 5: Tab for the field directories and settings. 

 
Screenshot of an early-stage GUI demo in MATLAB (corresponds to Tag 5): 
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Screenshot of the Python-version GUI (corresponds to Tag 1): 

The Python version is developed together with Juozas Pazera. 
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Appendix C:  Protocol of Making the Microfluidic Chips 

Mixing the PDMS 

- In preparation for this stage, obtain a pair of nitrile disposable gloves, a 

disposable plastic knife/tip and a disposable paper (or plastic) cup. 

- PDMS should be mixed in a 1:9 ratio of curing agent and PDMS base. 

The PDMS base is much more viscous than the curing agent. The way 

to calculate the mass we need is shown below, we measure the 

diameter 𝑑 of the ROI for PDMS pouring within the wafer: 

𝑀 = 𝜌𝑉 = 𝜌 ∙
𝜋

4
𝑑2ℎ ≈

19

44
𝑑2, 

where the density of the mixture is  𝜌 = 1.1𝑔/𝑐𝑚3 , the thickness of the 

device is ℎ = 0.5𝑐𝑚. 

- So, the mass for PDMS base is about 
171

440
𝑑2, the mass for the agent is 

about 
19

440
𝑑2 (mass in g and diameter in cm). 

- On a scale, slowly pour the PDMS base in the cup. Then add the curing 

agent. 

- Take the cup off the scale and begin to stir the PDMS mixture using the 

disposable plastic knife. Stir the mixture until it turns white and foamy 

for approximately 3 minutes (make sure they are well mixed, but try not 

to touch the cup too hard). 

Pouring PDMS 

- Slowly pour the mixture on the master, selecting a point without features. 

Given the viscosity of the PDMS, you might have to use a spatula to get 

all of it onto the wafer. 

- Degas it again if needed (remember to keep it flat!). 

Degassing the PDMS 

Note: A degassing step can be performed before pouring the mixture on 

the master 

- Degas either before or after pouring PDMS on the wafer. 
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- Put the covered wafer in a degassing desiccator. Check that the valve 

is open and apply vacuum for 10-15 min. This should allow the bubbles 

to move to the surface and pop. Hence close the valve, turn off the 

vacuum and slowly open the valve.  

- You may repeat the procedure multiple times, but avoid applying 

vacuum for more than 15 min.  

- If a few bubbles will still be present, you may try to pop them with a 

sharp needle, or remove it with an airgun. Be cautious as the airgun 

might remove PDMS from the devices. 

Curing 

- While keeping the wafer as flat as possible, place it in the oven at 65°C 

for 3 hours. 

Removing the PDMS layer 

- Take the wafer out of the oven and let it cool down to room temperature. 

- Using a sterile blade, cut the PDMS following the perimeter of old PDMS 

the master (be careful not to damage the master!). Given the 

consistency of PDMS, you do not need to go all the way through the 

thickness of PDMS, the depth is proper when you can see air goes into 

the cut. 

- Gently remove the PDMS from the master and place it on a clean petri 

dish with the features upwards. 

- Cover the top with tapes, and cut the device with a razor blade. 

- Punch the holes on the chip, and cover the side with features with tapes 

again. 

Bond the Device 

- Turn on the plasma cleaner in advance.  

- Perform two cycles of vacuum, plasma and pressure release before 

processing any device.   
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- Prepare a piece of clean cover glass (clean it with lens wipes). Remove 

the cover tape of one microfluidics device and remove dust using tape. 

- Place the glass and the device (channels upwards!) in the chamber. 

- Turn on the vacuum pump. After 45s, turn the plasma cleaner to the 

HIGH level for 30s, adjust the valve to get the maximum brightness of 

the plasma in the chamber. 

- Turn the plasma cleaner to OFF level, and turn off the vacuum pump. 

- Let the air into the chamber very slowly. 

- Open the chamber and bond the device; remember to leave the device 

falling onto the coverslip from a 30-45° degree angle. 

- If not sure if the device is properly bounded, try gently pushing the 

corner of the device. If there is a sign of bad bonding. If the device is 

not properly bonded, try repeating the procedure.  

- Put the bonded device into the oven at 60-65°C for around 15 min. 
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