

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Design and Implementation of a Telemetry

Platform for High-Performance Computing

Environments

Ole Christian Weidner

Doctor of Philosophy

Artificial Intelligence Applications Institute

School of Informatics

University of Edinburgh

2021

Abstract
A new generation of high-performance and distributed computing applications and

services rely on adaptive and dynamic architectures and execution strategies to run

efficiently, resiliently, and at scale in today’s HPC environments. These architectures

require insights into their execution behaviour and the state of their execution envi-

ronment at various levels of detail, in order to make context-aware decisions. HPC

telemetry provides this information. It describes the continuous stream of time series

and event data that is generated on HPC systems by the hardware, operating systems,

services, runtime systems, and applications. Current HPC ecosystems do not provide

the conceptual models, infrastructure, and interfaces to collect, store, analyse, and in-

tegrate telemetry in a structured and efficient way. Consequently, applications and

services largely depend on one-off solutions and custom-built technologies to achieve

these goals; introducing significant development overheads that inhibit portability and

mobility. To facilitate a broader mix of applications, more efficient application devel-

opment, and swift adoption of adaptive architectures in production, a comprehensive

framework for telemetry management and analysis must be provided as part of future

HPC ecosystem designs.

This thesis provides the blueprint for such a framework: it proposes a new approach

to telemetry management in HPC: the Telemetry Platform concept. Departing from the

observation that telemetry data and the corresponding analysis, and integration pat-

terns on modern multi-tenant HPC systems have a lot of similarities to the patterns

observed in large-scale data analytics or “Big Data” platforms, the telemetry platform

concept takes the data platform paradigm and architectural approach and applies them

to HPC telemetry. The result is the blueprint for a system that provides services for

storing, searching, analysing, and integrating telemetry data in HPC applications and

other HPC system services. It allows users to create and share telemetry data-driven

insights using everything from simple time-series analysis to complex statistical and

machine learning models while at the same time hiding many of the inherent com-

plexities of data management such as data transport, clean-up, storage, cataloguing,

access management, and providing appropriate and scalable analytics and integration

capabilities.

The main contributions of this research are (1) the application of the data platform

concept to HPC telemetry data management and usage; (2) a graph-based, time-variant

telemetry data model that captures structures and properties of platform and applica-

tions and in which telemetry data can be organized; (3) an architecture blueprint and

iii

prototype of a concrete implementation and integration architecture of the telemetry

platform; and (4) a proposal for decoupled HPC application architectures, separating

telemetry data management, and feedback-control-loop logic from the core applica-

tion code. First experimental results with the prototype implementation suggest that

the telemetry platform paradigm can reduce overhead and redundancy in the devel-

opment of telemetry-based application architectures, and lower the barrier for HPC

systems research and the provisioning of new, innovative HPC system services.

iv

Lay Summary

High-Performance Computing (HPC) describes the theory and practice of building

and operating computer systems and programs that are thousands of times larger and

faster than personal computers. HPC helps to answer many important science ques-

tions across many disciplines, such as physics, biology, climate sciences, and medicine.

HPC systems and programs can easily fail due to their extreme size and complexity.

Failures, such as HPC programs crashing without producing any results, are generally

expensive because of the computing resources, and, ultimately the electrical energy

they waste. To avoid failure, HPC software developers try to build so-called resiliency

mechanisms into their programs that allow them to detect potential failures ahead of

time and either mitigate them or exit the program gracefully.

Many of these mechanisms rely on information on the past and current state of

the HPC system, its hardware, and the programs that run on it. This information is

called HPC telemetry. Software developers face two main problems when working

with HPC telemetry: (1) telemetry is difficult and time-consuming to access as the

majority of HPC systems do not expose it directly to their users, and (2) telemetry is

difficult to process and analyse at the scale of modern HPC systems and programs. As

a consequence, many HPC programs, especially the ones with limited development

resources available, cannot invest into resiliency mechanisms.

In this work, we propose a system that can help software developers and users to

integrate HPC telemetry more easily and efficiently in their applications. We call this

system a Telemetry Platform. Telemetry platforms can collect and store the telemetry

data that is generated during the operation of an HPC system in a large database. The

database is organized in a way that the data can easily be accessed, understood and

analysed by all users of the system. Telemetry platforms are different from other,

similar systems in that they also provide the building blocks that allow HPC application

developers to easily integrate telemetry with their program logic. These integrations,

also called feedback loops, are important to realize automatic resiliency mechanisms

at a low level of complexity and effort.

To verify the telemetry platform idea, we build and evaluate a prototype called

SEASTAR and show how it can be used to efficiently collect and process telemetry data

and to build feedback loops based on the analysis of this data. This helps us understand

how we can build better, more user-friendly and resource-efficient HPC environments

in the future.

v

Acknowledgements

First and foremost I am extremely grateful to my supervisors, Professor Malcolm

Atkinson at the University of Edinburgh, Professor Rosa Filgueira at Heriot-Watt Uni-

versity, and Professor Adam Barker at the University of St. Andrews for their direction,

invaluable advice, and most of all patience during my ten years of PhD study. In par-

ticular, I would like to thank Professor Atkinson for his tireless encouragement and

empathy that kept me going through the many challenging phases a part-time PhD

brings with it. I would also like to thank my former research groups at Louisiana

State University and Rutgers University, New Jersey, Professor Shantenu Jha, Profes-

sor Hartmut Kaiser, Andre Merzky, and Professor Matteo Turilli. It was those forma-

tive years I spent with them as a distributed systems researcher and software engineer

that has laid the groundwork for this work. I would like to thank Amazon Webser-

vices Inc. for their generous contribution through their AWS in Education Research

Grant. Without it, the practical realization of this work would not have been possible.

Similarly, I would like to thank the Edinburgh Parallel Computing Centre, Professor

Mark Parsons in particular, for granting me access to their HPC clusters and workload

manager statistics database to carry out my preliminary investigations. I would like to

thank Professor Dr H. Ibrahim Uzun, who kindly granted me access to a vacant office

at the Agricultural Faculty at Akdeniz Üniversitesi, Antalya, Turkey, where I wrote the

bulk part of this thesis in Spring 2020. I also have to thank Yeter Yurdakan for the

constant supply of tea and pastries during that time. Finally, I must express my infinite

gratitude to my partner Nil. Without her tremendous understanding, encouragement

support, and sparring, it would have been impossible for me to complete this research.

vi

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Ole Christian Weidner)

vii

Dedicated to Nil and Leon

viii

Table of Contents

1 Introduction 1

1.1 Motivation and Research Question 3

1.2 Research Outline . 6

1.2.1 Approach and Methodology 7

1.2.2 Scope and Limitations . 8

1.3 Novelty and Contributions . 9

1.4 Publications . 11

1.4.1 Principal Contributions . 11

1.4.2 Supporting Contributions . 12

1.5 Thesis Structure . 14

1.6 Summary . 16

2 Background and Rationale 17

2.1 HPC Telemetry . 17

2.1.1 System Telemetry . 18

2.1.2 Application Telemetry . 26

2.2 Application Areas . 31

2.2.1 System Operations . 32

2.2.2 Adaptive Application Architectures 39

2.2.3 Application Development 42

2.3 Current Challenges . 46

2.4 Summary . 49

3 Telemetry Platform 51

3.1 Data Platforms . 52

3.1.1 Data Science and Analysis Workflow 52

3.1.2 Application to HPC Telemetry 54

ix

3.1.3 Requirements . 56

3.2 Opportunities . 62

3.2.1 HPC Systems Research . 62

3.2.2 Decoupled Application Architectures 63

3.2.3 Resiliency and Optimization 65

3.2.4 Machine-Learning Approaches 66

3.3 Related Work . 67

3.4 Summary . 71

4 Telemetry Data Model 73
4.1 Design Concepts . 73

4.1.1 Graphs as Semantic Structure 75

4.1.2 Abstract and Concrete Model 75

4.2 Abstract Graph Model . 76

4.2.1 Anatomy Sub-Graphs . 78

4.2.2 Allocations . 81

4.2.3 Time-Variance . 81

4.2.4 Embedding Telemetry Data 82

4.3 Concrete Example . 86

4.3.1 Platform Anatomy . 87

4.3.2 Application Anatomy . 88

4.3.3 Allocations . 89

4.4 Database Design . 90

4.4.1 Graph Database . 91

4.4.2 Time-Series Database . 96

4.5 Summary . 98

5 Implementation and Evaluation 99
5.1 Requirements and Constraints . 99

5.1.1 Non-Functional Requirements 100

5.1.2 Implementability in a Research Context 101

5.2 The SEASTAR Architecture . 102

5.2.1 Telemetry Ingestion . 103

5.2.2 Data Storage and Management 108

5.2.3 Processing and Querying . 113

5.2.4 Analysis Workspaces . 115

x

5.2.5 Application Sidekicks . 117

5.3 Test Bed and Prototype . 118

5.3.1 Virtual HPC Cluster . 119

5.3.2 SEASTAR Prototype . 120

5.3.3 SEASTAR Programming Library 128

5.3.4 Workload Manager Integration 130

5.4 Use-Case Demonstration . 134

5.4.1 ML-Based Application Anomaly Detection 134

5.4.2 Interpretation of Results . 144

5.5 Cost-Benefit Analysis . 145

5.6 Summary . 149

6 Conclusion and Future Work 151
6.1 Results and Contributions . 152

6.2 Limitations and Uncertainties . 154

6.3 Proposed Future Work . 155

6.3.1 Cost-Benefit Analysis . 155

6.3.2 Telemetry Graph Interface 156

6.3.3 Decentralization and Data Locality 157

6.3.4 Application to Distributed Computing 157

6.3.5 Usability in Systems Research 158

6.3.6 Extension to Log-File Data 158

6.4 Conclusion and Reflections . 159

A Telemetry Usage Survey 161

Glossary 167

Acronyms 169

Bibliography 171

xi

List of Figures

1.1 Telemetry platform conceptual architecture 6

1.2 Iterative research design and evaluation process 8

2.1 High-level taxonomy of system telemetry 18

2.2 High-level taxonomy of application telemetry 26

2.3 Overview of system operations practice domains 32

2.4 Screenshot of the Ganglia web frontend 34

2.5 Screenshot of the Open XDMoD web portal 37

2.6 Conceptual architecture of adaptive applications 39

2.7 Runtime variations in homogeneous tasks 41

3.1 Data science and analysis workflow 53

3.2 From monolithic to decoupled application architectures 64

4.1 Telemetry graph overview . 77

4.2 Telemetry as node an edge labels . 83

4.3 Simplified Beowulf cluster architecture 86

4.4 Concrete platform anatomy vertex and edge types 87

4.5 Concrete application anatomy vertex and edge types 89

4.6 Concrete allocation edge types . 89

4.7 Heterogeneous database architecture 91

4.8 Graph database domain model . 93

4.9 Sample telemetry graph . 94

5.1 SEASTAR logical architecture . 103

5.2 Telemetry ingestion architecture . 104

5.3 Cross-component data-flow and transformation 106

5.4 Lambda architecture . 109

5.5 Data query and processing components 113

xiii

5.6 Workspaces logical architecture . 116

5.7 Screenshot of a SEASTAR JupyterLab instance 116

5.8 Application sidekicks logical architecture 117

5.9 AWS testbed overview . 119

5.10 HPC cluster AWS architecture . 120

5.11 SEASTAR prototype AWS building blocks 121

5.12 AWS MSK (Managed Streaming for Kafka) scalability 122

5.13 SEASTAR data transport and storage implementation architecture . . . 123

5.14 Telemetry data query and processing AWS implementation 124

5.15 SEASTAR workspaces implementation. 126

5.16 SEASTAR application sidekick implementation. 127

5.17 Interaction between SLURM and SEASTAR 133

5.18 Machine learning flow for anomaly detection 135

5.19 ML-based application anomaly detection service implementation . . . 136

5.20 Development workflow for the anomaly detection service. 138

5.21 JupyterLab interactive development environment for model training. . 139

5.22 F-scores for different model evaluation scenarios. 143

5.23 Analysis of job exit codes on EPCC’s Archer cluster 147

xiv

List of Tables

2.1 Operating-system level disk I/O and filesystem telemetry 24

2.2 Operating-system level network telemetry 25

2.3 Operating-system level CPU and memory telemetry 25

2.4 Operating-system level process telemetry 30

5.1 NPB class C problem sizes and parameters 142

5.2 Estimated monthly AWS cost for a real-world telemetry platform. . . 148

xv

List of Listings

1 Example output of /proc/stat . 20

2 Example output of /proc/meminfo 20

3 Example output of /proc/diskstats 21

4 Example output of /proc/net/dev 22

5 Example output of lm-sensors . 23

6 Example output of the SLURM sinfo command 24

7 Example output of /proc/[pid]/io 27

8 Example output of the Linux perf tool 27

9 Example output of the NVIDIA Data Centre GPU manager 28

10 Example output of an MPI profiling library 29

11 Full graph traversal in Cypher . 95

12 Example telemetry graph query in Cypher 95

13 Example InfluxDB measurement . 97

14 Example InfluxQL query . 97

15 Example InfluxQL query result . 97

16 SEASTAR API example - workspaces and sidekicks 129

17 SEASTAR API example - query and batch job submission 130

18 SLURM job script with SEASTAR integrations 132

xvii

Chapter 1

Introduction

“This is a much broader definition of monitoring than many take. My
definition could be summed up as the data and metadata that show the
state of our entire facility, at any instant in time, at any level of detail. And
I want a pony too.”

— William (Bill) Allcock, Argonne National Laboratory

We define telemetry as the continuous stream of operational data that is gener-

ated on High-Performance Computing (HPC) platforms by the hardware, operating

systems, services, runtime systems, and applications. Temperature and power con-

sumption readings from hardware sensors, job and process metrics, network and disk

I/O metrics, and MPI message size metrics are all examples of telemetry data gener-

ated on an HPC system. Telemetry provides insights into the current and past states of

an HPC system and the applications running on it. It also provides the foundation to

make predictions about their future behaviour.

With growing system size, the departure from traditional, tightly coupled, homo-

geneous HPC applications and the advent of a new generation of system services and

applications with more heterogeneous and dynamic properties, such as dynamic and

autonomic computing approaches, the role of telemetry is changing. On today’s large-

scale HPC systems, telemetry is not only crucial for the efficient operation of the plat-

form, but is becoming increasingly relevant for system services such as schedulers,

data-transfer services, and end-user applications to monitor and optimize their opera-

tion and to detect and diagnose system failures and trigger remedial actions.

Despite its importance for today’s applications, telemetry has only been playing a

secondary role in the design and architecture of contemporary HPC ecosystems. The

concepts and tools to collect, store and analyse telemetry data are heavily fragmented

1

2 Chapter 1. Introduction

and segregated into the system operations, parallel frameworks, and end-user applica-

tion domains with little to no cross-fertilization. There is no model, system, or pro-

gramming interface that would allow telemetry consumers across these domains to tap

into the rich stream of information generated on these systems.

This lack of a common strategy and approach to telemetry creates significant de-

velopment overheads and redundancy, and a wild-growth of localized solutions that

hamper application portability and mobility. This, in turn, impedes the development

and adoption of adaptive optimization and resilience architectures, a critical capabil-

ity, especially for exascale systems and applications. The lack of a common approach

also effectively prevents applications and experiments from “learning from each other”

through a shared repository of historic data, from which for example, tuning param-

eters from previous application runs could be derived. It also prevents platform op-

erations from gaining an in-depth understanding of the application landscape, which

would be incredibly valuable to optimize platform parameters and strategically plan

future system extensions and modifications. Lastly, the lack of systematic support for

telemetry data largely prevents the practical application of novel machine learning and

artificial intelligence-based approaches for application optimization, failure prediction

and other advanced resiliency techniques.

To tackle these issues, telemetry must play a more central role in HPC ecosystem

capability designs. Telemetry must become a first-order platform service, with the

same status as job management, data storage, or backup services. This research sets

out to fill this gap by defining a new approach to working with telemetry on HPC sys-

tems: the Telemetry Platform. We start with the observation that telemetry data and the

corresponding analysis, and integration patterns on modern multi-tenant HPC systems

look very similar to the patterns and workflows observed in large-scale data-science

and internet-of-Things (IoT) applications. This work takes the data platform architec-

ture that supports these patterns and workflows and applies it to HPC telemetry. The

result is a telemetry platform that provides services for storing, searching, understand-

ing, analysing, and integrating telemetry data in HPC applications and system services.

This work lays out a blueprint for the next evolutionary step in telemetry manage-

ment and usage. It builds upon and extends the concepts and ideas of existing HPC

monitoring solutions that have been traditionally focusing on systems operations use

cases and have been slow to incorporate the requirements and use cases of a growing

and diverse application landscape and the new and unique challenges of upcoming ex-

ascale HPC applications. It is important to understand that this approach does not aim

1.1. Motivation and Research Question 3

to replace existing monitoring and telemetry solutions, but rather builds on them and

integrates them into a framework that provides telemetry management and usage func-

tionality to application users, developers, systems researchers, and platform operators

alike.

1.1 Motivation and Research Question

In order to cope with the growing size, and complexity of HPC systems and applica-

tions, new techniques for optimization and resilience are being developed at a steady

pace. Many, if not all of these techniques require access to information about the en-

vironment in which they execute in order to make decisions about future application

configurations and runtime trajectories. While great progress has been made in the ar-

eas of adaptive, autonomous, and resilient applications, adoption of these patterns and

techniques has remained difficult due to several challenges with telemetry management

capabilities on HPC systems. These may manifest as:

(i) Availability: telemetry is collected by monitoring systems, schedulers and other

system services to support the HPC operations teams, but the data is not made

available to a broader audience.

(ii) Accessibility: telemetry is not available in machine-readable formats or the for-

mats diverge between different platforms and services. The same holds for the

interfaces exposing telemetry data which can range from Application program-

ming interface (API) endpoints to flat-file downloads from a website.

(iii) Integration: for many use cases, telemetry or insights derived from telemetry

analysis need to be integrated back into applications and services as input for

optimization and resilience functions. No common approaches and patterns exist

for this integration.

(iv) Structure and Semantics: telemetry is often difficult if not impossible to in-

terpret without having an implicit understanding of the semantic context and the

structure of the HPC system and application that was generating it. Little effort

has been put into defining a framework for this.

(v) Processing and Analysis: telemetry data volumes can quickly become very

large at scale which requires advanced technology and infrastructure for pro-

cessing and analysis. This can often not be done within the scope of an HPC

4 Chapter 1. Introduction

application itself. However, facilities for analysing telemetry at scale and in

real-time are not available to application users and developers.

As a consequence, we see a proliferation of application- and platform-specific ap-

proaches to telemetry management and usage. Due to the inherent complexity of han-

dling telemetry, especially at scale, a lot of effort has to be invested by application

developers to integrate telemetry into their applications. This can take focus away

from the core mission and purpose of the application and creates a significant redun-

dancy as the wheel is being reinvented over and over again. Another consequence of

the complexity is, that only large projects with enough resources and technical exper-

tise can afford to implement telemetry-based optimization and resilience patterns. For

a lot of smaller projects, this remains infeasible, which effectively creates a two-class

system in which some applications become highly efficient HPC system tenants with

a near-optimal return on investment (billed CPU hours), while others, the long tail, are

often forced to remain in a suboptimal space. Similarly, systems research and the de-

velopment and evaluation of novel resilience and optimization patterns and techniques

are confined to a small group of researchers with unrestricted access to telemetry which

often goes hand-in-hand with elevated privileges on HPC systems.

Supporting the long tail of applications by making telemetry more accessible is

one of the main opportunities that lie within this work. If more applications can bene-

fit from telemetry-driven optimization and resilience patterns, both, the efficiency and

ultimately the scientific productivity of the individual applications can be increased.

This would lead to an overall efficiency increase for HPC systems by reducing un-

productive utilization of resources that are caused by hardware and software failures,

human error, suboptimal resource usage, and inadequate adaptation to new architec-

tures.

We address the challenges above to lower the barrier for wider adoption of exist-

ing HPC telemetry usage patterns. It will stimulate research into novel resilience and

optimization patterns which will ultimately lead to more productive utilization of HPC

systems. We propose the following approach:

(i) Develop an open, extensible telemetry data model that provides a structural and

semantic context for the organization of application and platform telemetry.

(ii) Apply the data platform approach to HPC telemetry and design and build a soft-

ware platform that addresses the accessibility, availability, and integration chal-

lenges.

1.1. Motivation and Research Question 5

(iii) Provide an integrated and scalable data analytics and machine learning environ-

ment that allows for descriptive, predictive, and prescriptive analysis of teleme-

try and encourages decoupling it from core HPC application logic.

(iv) Enable a collaborative ecosystem in which telemetry data and derived patterns

and services can be shared.

We call this solution a telemetry platform. Figure 1.1 provides a high-level overview

of the approach which draws heavily on the idea of data platforms that can be found

across many industries and large research projects where a central data repository, or

data lake, allows business or research teams to develop and share new insights and

actions using everything from simple time seriesanalysis to complex statistical and

machine learning methods. Data platforms centralize and hide many of the inher-

ent complexities of data management and usage from users, for example, data inges-

tion, clean-up, storage, cataloguing, access management, and providing appropriate

and scalable analytics resources. Given the volume, velocity, and variety of teleme-

try on a large-scale HPC system and the diverse user groups and use cases, the data

platform model appears as an appropriate approach for handling telemetry on HPC

systems. Consequently, this thesis aims to answer the following research question:

How can the data platform paradigm be effectively applied to telemetry man-

agement and usage on HPC systems so that it aids a more efficient development

and research workflow, and lowers the barrier for adoption of optimization and

resilience techniques in applications and enables novel systems research while

remaining feasible to be supported by HPC platform operators?

In order to answer this research question, the requirements and characteristics of HPC

telemetry must be thoroughly understood from the perspective of HPC system opera-

tors, application developers and users, and system researchers. This thesis thus seeks to

provide a comprehensive definition of HPC telemetry and an overview of use cases and

application areas. It is the first work on HPC telemetry addressing existing challenges

through a platform paradigm. Thus, it extends existing research in systems monitoring,

telemetry data formats, models, ontologies, integration patterns, and analysis with an

overarching platform framework.

6 Chapter 1. Introduction

System

telemetry

HPC Cluster
Telemetry

Data

Application

telemetry

Descriptive Predictive

Prescriptive

Te
le

m
et

ry
An

al
ys

is

Applications

St
or

ag
e

&
Pr

oc
es

si
ng

Access & Query

Figure 1.1: An HPC telemetry platform (right) provides storage, access, analytics, and

integration capabilities for telemetry data. It provides an integrated environment for

telemetry management and usage and enables decoupled application architectures.

1.2 Research Outline

As our point of departure, we look at the diverse viewpoints and requirements of three,

largely distinct communities in the HPC ecosystem: platform providers and opera-

tors, application developers and users, and HPC researchers. We posit that moving

away from insular monitoring and telemetry solutions and towards a more homoge-

neous system and data repository that is seamlessly integrated with the HPC system,

not only benefits the individual communities but also generates further synergetic ef-

fects between them. We argue that a telemetry platform should not only provide the

raw computing and storage resources but also provide the capabilities and services that

help operators, application users, and researchers use these resources most efficiently

and cost-effectively. A rich repository of telemetry data is the foundation for any opti-

mization and hence must become part of the core HPC system. This research provides

the high-performance computing community with guidance and a better understanding

of:

1. The spectrum of telemetry use cases in HPC operations, applications, and re-

search and how all three communities can mutually benefit from a plurality of

data in a homogeneous telemetry platform.

2. How to design and implement a data model that can capture telemetry together

with its semantic context and the time-variant structure of HPC systems and

applications.

3. How to design, implement and operate a scalable data platform as a service and

how to integrate it with existing HPC systems.

1.2. Research Outline 7

4. How to approach optimization and resiliency implementations in HPC appli-

cations and how to create a more open and sharing research and engineering

ecosystem around a telemetry platform.

At the time of this research, a comprehensive telemetry management system that spans

both, system and application space does not exist, even though the number of applica-

tions and services that require access to telemetry to operate efficiently is increasing.

This makes this research important and timely.

1.2.1 Approach and Methodology

To explore the overarching research question “How to design a telemetry platform and

how it can be integrated with existing HPC systems and applications”, this research

adopts a combined qualitative and quantitative research methodology that consists of

five steps: (1) use case and requirement analysis; (2) information-model design and

validation; (3) conceptual design and architecture of the system; (4) system implemen-

tation and integration; and (5) experiments and use case validation. As with every sys-

tem design, the process is not linear but circular: evaluation results are used to refine

system definition and design, implementation and integration scenarios are adapted.

While this thesis presents the results linearly, many iterations were done throughout

the course of this research in order to arrive at the conclusion presented (figure 1.2).

The detailed approach of the five steps is as follows:

1. To understand how to design and build a telemetry platform, we need to under-

stand how telemetry is used on today’s HPC systems. Therefore, we conduct a

use case study of how telemetry is used across platform operations, application

development and operation, adaptive and autonomous system design, federated

HPC, and systems research. This gives us both, an in-depth understanding of

the state of telemetry management and a set of requirements for designing a data

model, telemetry service and interface, and an integration architecture.

2. With the use cases and requirements defined, we can design the telemetry data

model. We split the model design process into two parts: first, we define an

abstract, formal model that can capture the structure and semantics of any HPC

system and application architecture. Then we take the formal definition and

define a concrete instantiation of the model, aimed at a typical HPC context, but

with a use case and scope-specific architecture, focus, and level of detail in mind.

8 Chapter 1. Introduction

3. With the use cases and requirements defined, we can also define the concep-

tual design and architecture of the telemetry platform. Conceptual means that

we discuss components, interfaces and their interactions on an implementation-

independent level. We decouple the concept of a telemetry platform from its im-

plementation, i.e., the solution space for its functional- from the solution space

for its non-functional requirements as the latter potentially change with the im-

plementation context while the former will not.

4. To test the applicability of the telemetry platform concept, we apply the concep-

tual design and architecture in practice. We define and set up an implementation

context that resembles a typical HPC environment. With this testbed in place,

we develop a prototype implementation we call SEASTAR.

5. To demonstrate the capabilities of SEASTAR in practice, we implement an exist-

ing application that uses machine learning on telemetry data to detect execution

anomalies during its execution.

Initial
concepts

Results
presented

Model definition

Platform design & evaluation

Figure 1.2: As opposed to its linear presentation in this thesis, the model definition and

system-design process follows a much more iterative process in practice.

1.2.2 Scope and Limitations

The main goal of this research is to lay out an end-to-end concept for telemetry man-

agement and usage on HPC systems, and a clear path for the design, implementation,

and integration of it. It does not provide full, production-ready implementation of the

proposed telemetry platform as this would be beyond a feasible scope. Instead, this

work proposes a conceptual architecture and a specific proof-of-concept prototype im-

plementation of it aiming at a specific implementation context. Both can be used as

1.3. Novelty and Contributions 9

blueprints and inspiration to build such a system in a production environment. Sim-

ilarly, we do not provide a comprehensive experimental evaluation and validation of

the data platform concepts. However, an evaluation of the central components along

with a discussion of the known properties of the architectural decisions builds initial

confidence in the feasibility of the platform and approach and provides a predictor for

the scalability, cost and ease of integration of the overall approach.

While this research presents a technical solution to our understanding of the teleme-

try problem, we are very much aware of another, more structural, non-technical prob-

lem that our work cannot address. [Allcock et al., 2011] summarizes it quite poignantly:

Despite everything said above, the real solution to the problem [the chal-
lenges in HPC monitoring] is sociological. We need champions who are
willing to invest time and effort into driving this. An active community
needs to be formed. That community needs to make itself heard, convince
funders that there is work here worthy of programmatic funding. Present
vendors with a set of directions and requirements gained through commu-
nity consensus. Without that, we will simply continue to talk about what
works and what does not and continue to use home-grown, fragmented,
sub-optimal, human resource-intensive solutions.

We hope that the results of our research will continue to stimulate and contribute to

this ongoing debate and help the community to make a strong point for the future

development of telemetry platforms as integral parts of the HPC ecosystem and user

and developer experience.

1.3 Novelty and Contributions

This research contributes to the fields of high-performance and distributed computing,

particularly to the fields of HPC system and application architecture as well as system

and application monitoring. The main contributions are:

1. Telemetry Platform Paradigm
Our main contribution to the field of HPC monitoring and telemetry manage-

ment is an application of the data platform concept to HPC telemetry and its use

cases. While existing telemetry and monitoring solutions focus on collecting

telemetry data, our approach focuses on the usability of telemetry and makes

analysis an integral part of the overall system instead of locating it externally.

This makes the telemetry platform approach a conceptually novel approach to

10 Chapter 1. Introduction

handling telemetry on HPC systems and distinguishes our solutions, from other,

existing approaches. Furthermore, our approach caters to platform operators,

application developers and users, and researchers alike. This cross-domain ap-

proach has not been taken on by existing research which generally focuses more

narrowly on specific user groups or use cases.

2. Telemetry Information Model
A novel telemetry data model that addresses several existing challenges of work-

ing with telemetry data by providing a time-variant structural framework, the

telemetry graph, in which telemetry data can be organized and localized in a

standardized way. To our knowledge, capturing the dynamic structure of and in-

teraction between HPC platform and application components together with the

telemetry data they generate has not been proposed and implemented before.

3. Telemetry Platform Architecture
A blueprint and prototype of a concrete implementation and integration archi-

tecture of the telemetry platform paradigm and telemetry data model. Based

on existing state-of-the-art data platform implementations, we illustrate, how a

telemetry platform can be realized using a combination of open-source software

components and public cloud building blocks and services. This presents a novel

approach, and we have not come across solutions that use this approach for stor-

ing and managing HPC telemetry data.

4. Decoupled Application Architectures
A proposal for decoupled HPC application architectures, separating telemetry

data management and logic from the core application code. We illustrate how

this architecture pattern allows lower-complexity application code and enables

the reusability of resilience and optimization capabilities that would otherwise

often be tightly coupled to a specific application. We show by example how a

machine learning-based, application anomaly detection service can be realized

using a decoupled architecture approach. To our knowledge, this research is the

first to formalize decoupled application architectures specifically in a telemetry-

driven HPC application context.

1.4. Publications 11

A few smaller contributions are made at the periphery. These include a use cases sur-

vey and requirements gathering for HPC telemetry usage along with an analysis of

challenges and opportunities. To our knowledge, this has not been done systemati-

cally in existing research. Furthermore, the implementation discussion provides some

valuable insights into designing, building and integrating HPC system services in the

Amazon Web Service (AWS) public cloud, a topic that has not been widely published

about.

1.4 Publications

The publications listed in this section are either a direct outcome of our research or have

motivated and contributed to the thought process around HPC telemetry platforms.

1.4.1 Principal Contributions

(i) (2017) O. Weidner, M. Atkinson, and A. Barker. Seastar: A Comprehensive

Framework for Telemetry Data in HPC Environments. Proceedings of the 7th

International Workshop on Runtime and Operating Systems for Supercomput-

ers (ROSS 2017) held in conjunction with the 26th International Symposium

on High Performance Distributed Computing (HPDC 2017), Washington D.C.,

USA.

This conference paper lays out our concept of a telemetry platform service. It in-

troduces Seastar, a conceptual model and a software framework to collect, store,

analyse, and exploit streams of telemetry data generated by HPC systems and

their applications. It shows how such a system can be integrated with HPC sys-

tem architectures and how it enables the swift adoption of common application

execution strategies.

(ii) (2016) O. Weidner, M. Atkinson, R. Filgueira Vicente, and A. Barker. Rethink-

ing High Performance Computing Platforms: Challenges, Opportunities and

Recommendations. Proceedings of the 7th International Workshop on Data In-

tensive Distributed Computing (DIDC 2016) held in conjunction with the 25th

International Symposium on High Performance Distributed Computing (HPDC

2016), Kyoto, Japan.

12 Chapter 1. Introduction

This conference paper takes a critical look at the dominant HPC ecosystem

model and describe the challenges it creates for 2nd generation applications be-

cause of its asymmetric resource view, interfaces and software deployment poli-

cies. It makes recommendations for an extended, more symmetric and application-

centric HPC ecosystem model that adds decentralized deployment, introspec-

tion, bidirectional control and information flow and more comprehensive re-

source scheduling. It describes an early prototype of a non-disruptive imple-

mentation of a more symmetric telemetry and platform API based on Linux Con-

tainers (LXC) 1.

1.4.2 Supporting Contributions

(i) (2016) V. Balasubramanian, A. Treikalis, O. Weidner, S. Jha. Ensemble Toolkit:

Scalable and Flexible Execution of Ensembles of Tasks, 45th International Con-

ference on Parallel Processing (ICPP 2016), pp. 458 – 463, Philadelphia, PA,

USA. 2016

This conference paper explores the execution of workflow task ensembles on

modern HPC systems using overlay scheduling techniques. Working with tens

of thousands of concurrent tasks on large-scale infrastructure requires sophisti-

cated telemetry collection approaches, both to analyse and evaluate the exper-

iments as well as to guide the execution of the overlay scheduling framework

itself. The research conducted in the paper influenced this thesis as it raised

the (painful) awareness of the complete absence of any systematic support for

telemetry management on very large HPC systems in the Top500 list.

(ii) (2015) A. Merzky, O. Weidner, and S. Jha. SAGA: A Standardized Access Layer

to Heterogeneous Distributed Computing Infrastructure. SoftwareX, Volumes

1–2, Pages 3-8, ISSN 2352-7110. 2015

This journal paper disseminates close to ten years of conceptual and practical

work on programming interfaces and standards for heterogeneous distributed

computing infrastructure. This work has been hugely influential on our research

as it has provided us with an in-depth understanding of how standardized in-

1After its publication, this paper was picked up by HPCWire, a popular news and information re-
source covering HPC-related topics [HPCWire, 2017] and subsequently highlighted on the Communi-
cations of the ACM (CACM) Tech News blog [CACM, 2017].

1.4. Publications 13

terfaces and abstractions can unlock productivity and cross-fertilization across

different scientific domains. In many ways, our work on telemetry platforms is a

continuation of this journey.

(iii) (2013) B. Radak, M. Romanus, E. Gallicchio, T. Lee, O. Weidner, N. Deng, P.

He, W. Dai, D. York, R. Levy, S. Jha. A Framework for Flexible and Scalable

Replica-Exchange on Production Distributed CI. XSEDE ’13 Proceedings of

the Conference on Extreme Science and Engineering Discovery Environment:

Gateway to Discovery, ISBN: 978-1-4503-2170-9, 2013

Similar to ((i)) this HPC software engineering paper contributed to our research

as it also raised the awareness of the absence of systematic support for telemetry

management on mainstream HPC systems.

(iv) (2012) A. Luckow, M. Santcroos, O. Weidner, A. Merzky, S. Maddineni, and S.

Jha. Towards a Common Model for Pilot-Jobs. Proceedings of the 21st ACM

International Symposium on High-Performance Parallel and Distributed Com-

puting (HPDC 2012), Pages 123-124 New York, NY, USA.

This conference paper introduces a well-defined, conceptual model for a dis-

tributed computing abstraction. It provides a minimal but complete model of

Pilot-Jobs (the P∗Model), establishes the generality of the model by mapping it

to existing Pilot-Job systems, and demonstrates its practical applicability across

multiple HPC systems via the Pilot-API. This approach is very similar to and

has influenced the model and systems design approach we take in this thesis.

(v) (2012) A. Luckow, M. Santcroos, A. Merzky, O. Weidner, P. Mantha, and S.

Jha. P*: A Model of Pilot-Abstractions. IEEE 8th International Conference on

E-Science (e-Science 2012), pp. 1-10., Chicago, IL, USA.

This conference paper extends the research done in ((iv)) by further validating

the implementation of the Pilot-API by using multiple distinct Pilot-Job frame-

works concurrently across multiple HPC and distributed systems. Furthermore,

this paper explores how the P∗Model can be applied to distributed data.

14 Chapter 1. Introduction

1.5 Thesis Structure

The remaining chapters of this thesis are structured as follows:

• Chapter 2 — Background and Rationale
This chapter looks at the state of telemetry usage and management in HPC. It

identifies the main sources of telemetry data across systems and applications

and the approaches and systems that are in use today to extract and collect it.

Based on these insights it identifies the five major challenges in the field of HPC

telemetry: accessibility, availability, integration, structure and semantics, and

processing and analysis. It then moves on to a cross-cut through four important

telemetry application areas: systems operation, adaptive application architec-

tures, application development, and system research. For each area, it discusses

research and practices along with concrete examples of the application and tools

used.

• Chapter 3 — Telemetry Platform
This chapter introduces the data platform paradigm, an approach and concep-

tual architecture that has been shown to enable the efficient management and

exploitation of large volumes of continuously generated data across many in-

dustries and research applications. It then set the scene for the main hypothesis

of this thesis by discussing how the data platform paradigm can be applied to

HPC telemetry and the opportunities that emerge from this in the areas of HPC

systems research, decoupled and reusable architectures, resiliency and optimiza-

tion, and application and service architectures that build on machine learning

techniques. The second half of chapter 3 provides a requirement analysis for a

telemetry platform and presents a conceptual design that covers usage modes,

data models, interfaces and integration with HPC systems. The conceptual de-

sign serves as the base for the prototype implementation presented in Chapter 5.

• Chapter 4 — Telemetry Data Model
This chapter introduces a telemetry data model that is based on a time-variant

labelled multigraph to represent the evolving and changing structure of HPC

platform, applications, and the relationships between the two. It discusses the

high-level design concepts and provides a formal definition of the telemetry data

model and how the requirements defined in chapter 3 are reflected in them. The

second half of chapter 4 discusses routes for implementing the data model and

1.5. Thesis Structure 15

presents a hybrid database design combining and spreading the data across a

graph- and a time-series-database.

• Chapter 5 — Implementation and Evaluation
This chapter discusses SEASTAR, a prototype implementation of the telemetry

platform concept and its integration with an HPC cluster. It starts by describing

the SEASTAR telemetry platform, which is built around the telemetry graph im-

plementation introduced in the previous chapter and realizes telemetry platform

capabilities at scale. SEASTAR is built on the AWS public cloud which we use

both for SEASTAR and the HPC cluster testbed that we have built to explore the

integration between telemetry platforms and HPC clusters. The second part of

chapter 5 focuses on the details of this development environment and integra-

tion. In the last part of the chapter, we re-visit and implement a use case from

chapter 2, an application advisory service that uses machine learning techniques

to detect runtime anomalies.

• Chapter 6 — Conclusion and Future Work
In the last chapter, we summarize our work and contributions and reflect on our

first experiences with the telemetry platform prototype. We discuss current short-

comings and limitations of our approach and identify areas of future research.

16 Chapter 1. Introduction

1.6 Summary

We have started this chapter with a short introduction to HPC telemetry, telemetry

management, and analytics. We have then looked at the role of telemetry on HPC

systems from four viewpoints: system operator, application user, application engineer,

and systems researcher and highlighted the strategic importance of telemetry to all

four groups of users, particularly in the context of growing HPC system and appli-

cation size and complexity. We have briefly introduced the challenges observed with

telemetry management on existing HPC systems and how they can hamper produc-

tivity and performance. We have then moved on to introduce our research statement

which aims to address the identified challenges by applying the data platform concept

to HPC telemetry and introducing telemetry platforms as an essential component of

HPC environments. Lastly, we have described our five-step research approach and

methodology, the scope and limitations of this work, and provided an overview of our

own publications that have either, led to or were the direct results of this research.

In the next chapter, we will look at the state of telemetry usage and management

in HPC. We will discuss the current challenges in more detail and formally introduce

the telemetry platform concept along with the benefits that we expect will arise from

its adoption.

Chapter 2

Background and Rationale

In this chapter, we discuss the state, application areas and current challenges of teleme-

try in high-performance computing and motivate the telemetry platform paradigm as

a way to address them. We begin the chapter with an introduction to the two main

categories of telemetry that occur in HPC systems: system telemetry and applica-

tion telemetry, each illustrated with practical examples. Next, we provide a cross-cut

through three important telemetry application areas: systems operation, adaptive ap-

plication architectures, and application development. For each area, we provide a brief

introduction of research and practices along with concrete examples of the applica-

tions and tools used. We analyse them to understand how they extract, collect and

use telemetry. Based on these insights, we identify five major challenges in the field

of HPC telemetry: accessibility, availability, integration, structure and semantics, and

processing and analysis.

2.1 HPC Telemetry

We define telemetry as the continuous stream of time seriesand event data that is gen-

erated on HPC systems by the hardware, operating systems, services, runtime systems,

and applications. Telemetry is generated continuously during the operation of an HPC

system. Temperature and power consumption readings from hardware sensors, job and

process metrics, network and disk I/O metrics, and Message Passing Interface (MPI)

message size metrics are all examples of telemetry data generated on an HPC system.

Telemetry provides insights into the current and past states of an HPC system and the

applications running on it. It also provides the foundation to make predictions about

their future behaviour. We distinguish between two distinct sources of telemetry: sys-

17

18 Chapter 2. Background and Rationale

System telemetry

CPU and
memory

Disks and
filesystems Network Hardware

sensors
System
services

Operating System Interfaces

External Interfaces

IN
TE

RF
AC

ES
C
AT

EG
O
RI
ES

Figure 2.1: A high-level taxonomy for system telemetry that distinguishes between five

different functional areas and between operating-system and external interfaces as

telemetry sources.

tem telemetry, and application telemetry. System telemetry is continuously generated

during the normal operation of an HPC system by a variety of components: the op-

erating systems commanding the compute-, storage-, networking- and utility-nodes,

environmental sensors that monitor power consumption, temperature, and other exter-

nal factors, and HPC system services such as job queueing and object storage systems.

Combined, we call these sources system telemetry. In contrast to that lies application

telemetry. We define application telemetry as the information that is generated during

the execution of applications. This includes information about an application’s system

resource allocation and interaction as well as telemetry information generated by the

application itself, such as internal performance metrics of an adaptive algorithm. Next,

we provide an overview of system and application telemetry and their sources.

2.1.1 System Telemetry

We use the simple taxonomy shown in figure 2.1 to structure the system telemetry

space into five functional areas: CPU and memory telemetry, disk and filesystem

telemetry, network telemetry, hardware sensor telemetry, and system services teleme-

try. Telemetry can be sourced either directly from operating-system interfaces, or via

other, external interfaces. The dominant source of system telemetry is the operating-

system controlling the individual nodes of an HPC system. Depending on the size of

an HPC cluster, the number of compute nodes can range from tens to tens of thousands

of nodes.

Operating systems continuously collect telemetry about the state of the hardware

they run on and the processes they are running. This information is critical for operating-

2.1. HPC Telemetry 19

system functions such as scheduling, error handling and performance optimization.

Telemetry provided by the operating-system is generally ephemeral. Beyond basic ag-

gregated statistics, it is usually not possible to query the state of a process or operating-

system metric at a previous instant in time. If the data is not captured and made per-

sistent, it is lost. Operating systems can provide multiple interfaces to telemetry, typ-

ically a kernel-level programming interface and one or more higher-level user-space

interfaces and tools. On Linux, one common user-space interface to operating-system

telemetry is the Process Filesystem (ProcFS) [Faulkner and Gomes, 1991]. ProcFS

is a hierarchically structured virtual file system (typically mounted at /proc) that ex-

ports data about the state of the operating-system, including system- and process-level

telemetry about memory, CPUs, disks, and file systems. In this section we use ProcFS

as a guide for exploring the different telemetry metrics available on the operating-

system-level. Other UNIX and non-UNIX operating systems provide similar or equiv-

alent facilities. [Juve et al., 2015] provides a good overview of operating-system-level

telemetry sources and the tools to extract them.

In our taxonomy we summarize other sources of telemetry that are not under direct

control or exposed by the operating-system as external interfaces. External interfaces

can be anything from flat files containing data points to API endpoints. The telemetry

of external hardware components such as network equipment is usually accessible via

external interfaces, so is the telemetry of hardware sensors like external climate and

power consumption sensors. System services, such as batch schedulers or database

servers are another category of system telemetry sources that expose data via external

interfaces.

CPU and Memory Telemetry

CPU telemetry contains node-level metrics about the individual processor cores, num-

ber of context switches, and the time the cores have spent in user, nice, system (kernel),

idle, iowait, irq, and softirq modes. Listing 1 shows an example of how these metrics

are exposed through the /proc/stat interface. The meaning of the columns are as

follows, from left to right, (1) normal processes executing in user mode, (2) niced

processes executing in user mode, (3) processes executing in kernel mode, (4) idle,

(5) waiting for I/O to complete, (6) servicing interrupts, and (7) servicing softirqs.

These metrics can be used to understand the overall load on compute nodes and how

much time the individual CPU cores spend in user and in kernel mode, which can be

an important indicator for how efficiently application processes are executed. High-

20 Chapter 2. Background and Rationale

level information about the type of CPUs and their properties are available through the

/proc/cpuinfo interface.

cpu 2255 34 2290 22625563 6290 127 456

cpu0 1132 34 1441 11311718 3675 127 438

cpu1 1123 0 849 11313845 2614 0 18

intr 114930548 113199788 3 0 5 263 0 4 [...]

ctxt 1990473

btime 1062191376

[...]

Listing 1: Example output (truncated) of /proc/stat showing a snapshot of CPU time

spent in user, nice, system, idle, iowait, irq, and softirq modes.

Similarly, memory telemetry provides information on a node’s memory usage. The

/proc/meminfo interface (listing 2) provides insights into how much memory is cur-

rently available, free, buffered, and cached. Additional information about page sizes,

and counts, free and purgeable pages, swap I/O are available through other interfaces.

Memory metrics are an important component of system telemetry as they provide valu-

able insights into the memory pressure a node is experiencing during operation. Ta-

ble 2.3 at the end of this section provides an overview of common CPU and memory

metrics available via operating-system interfaces.

MemTotal: 5564912 kB

MemFree: 4109724 kB

MemAvailable: 4759432 kB

Buffers: 205200 kB

Cached: 642992 kB

Hugepagesize: 2048 kB

[...]

Listing 2: Example output (truncated) of /proc/meminfo showing a snapshot of total,

free, and available node memory.

Disk and Filesystem Telemetry

Disk I/O and filesystem telemetry provide insights into system-wide I/O statistics, the

utilization and performance of a node’s local and remote filesystems and physical hard

disks. Table 2.1 at the end of this section provides an overview of common Disk I/O

2.1. HPC Telemetry 21

and filesystem metrics available via operating-system interfaces. Listing 3 shows an

example of per-disk I/O statistics available through the /proc/diskstats interface.

The meaning of the columns are as follows, from left to right, (1) major number, (2)

minor number, (3) device name, (4) reads completed successfully, (5) reads merged,

(6) sectors read, (7) time spent reading (ms), (8) writes completed, (9) writes merged,

(10) sectors written (11) time spent writing (ms), (12) I/Os currently in progress, (13)

time spent doing I/Os (ms), and (14) weighted time spent doing I/Os (ms)

8 0 sda 174 0 10666 284 0 0 0 0 0 236 284

8 1 sda1 103 0 8306 188 0 0 0 0 0 172 188

8 16 sdb 30896 64 1152590 15168 12027747 2049451 352088760 25764004 0 [...]

8 17 sdb1 298 0 10756 76 199 0 749016 80 0 120 156

8 18 sdb2 4 0 8 0 0 0 0 0 0 0 0

8 21 sdb5 30528 64 1138578 15084 11870547 2049451 351339744 25692816 0 [...]

252 0 dm-0 30377 0 1130498 15040 13933233 0 351339744 27855208 0 [...]

252 1 dm-1 137 0 6528 24 0 0 0 0 0 12 24

Listing 3: Example output (truncated) of /proc/diskstats showing a snapshot of per-

disk I/O operations currently in progress, completed reads and writes, and time spent

reading and writing.

Network Telemetry

Network telemetry plays a particularly important role in high-performance computing

as the majority of parallel, tightly-coupled applications, such as applications based on

MPI [Gropp et al., 1996] and OpenMP [Dagum and Menon, 1998], rely heavily on

efficient network communication. Furthermore, since most HPC systems use shared

network filesystems to make data available across nodes, network telemetry provides

valuable insights into and help to understand file I/O performance on these shared

filesystems. For example, telemetry of a completely saturated network interface can

help explain why the read/write performance of a specific application process stays

below the average. Network telemetry can be extracted from two main sources: on the

node-level from the operating-system and on the network-level from network hardware

components like switches and interconnect technologies. Table 2.2 gives an overview

of some common network metrics, available on node-level. Listing 4 gives an example

of common node-level network metrics exposed via the /proc/net/dev interface,

such as bytes and packets sent and received, and various transmission error counters.

22 Chapter 2. Background and Rationale

Inter-| Receive

face |bytes packets errs drop fifo frame compressed multicast

lo: 584717770 1024626 0 0 0 0 0

enp3s0: 76479726 193811 0 0 0 0 0

| Transmit

|bytes packets errs drop fifo colls carrier compressed

0 584717770 1024626 0 0 0 0 0 0

0 99226362 137064 0 0 0 0 0 0

Listing 4: Example output of /proc/net/dev showing a snapshot of per-interface net-

work I/O statistics such as packet read/write operations, errors, and dropped packages.

Network telemetry is used by HPC system operators to identify and mitigate net-

work congestions that can occur due to faulty hardware and software, but also due to

unexpected, problematic application resource usage patterns. HPC applications use

network telemetry in many ways. In [Jha et al., 2007b] for example, we use wide-area

and intra-cluster network telemetry to decide where to place workloads that require

large bandwidth to stage-in large data volumes prior to execution. In another exam-

ple, [Filgueira et al., 2010] use intra-node network telemetry to decide when to apply

an MPI compression algorithm.

Hardware Sensor Telemetry

Hardware sensors provide metrics about the physical operation environment of an HPC

system, such as temperature and power consumption. Most hardware components of

typical HPC nodes have multiple environmental sensors built in: modern hard disks,

mainboards, CPUs, and GPUs are typically equipped with one or more temperature

and voltage sensors. These metrics are used in node-internal feedback loops to control

cooling facilities such as CPU and chassis fans, and, if a critical temperature threshold

has been exceeded, shut down or throttle hardware components to prevent them from

terminal failure. Most telemetry from internal hardware sensors is available through

operating-system (kernel) interfaces and made available through user-space tools and

libraries, such as the lm-sensors packages [Lysoněk, 2019]. Listing 5 shows a sample

output.

Beyond node-level sensors, many HPC systems and data centres deploy external

thermal and power consumption sensors. These sensors are often used for energy-

2.1. HPC Telemetry 23

coretemp-isa-0000

Adapter: ISA adapter

Core 0: +41.0°C (high = +78.0°C, crit = +100.0°C)

coretemp-isa-0001

Adapter: ISA adapter

Core 1: +41.0°C (high = +78.0°C, crit = +100.0°C)

w83627dhg-isa-0290

Adapter: ISA adapter

Vcore: +1.10 V (min = +0.00 V, max = +1.74 V)

in1: +1.60 V (min = +1.68 V, max = +1.44 V) ALARM

AVCC: +3.30 V (min = +2.98 V, max = +3.63 V)

VCC: +3.28 V (min = +2.98 V, max = +3.63 V)

temp1: +36.0°C (high = +63.0°C, hyst = +55.0°C)

temp2: +39.5°C (high = +80.0°C, hyst = +75.0°C)

temp3: +119.0°C (high = +80.0°C, hyst = +75.0°C)

Listing 5: Example output (truncated) of the lm-sensors command-line tool listing

current temperature and voltage levels for various system components.

optimization techniques, such as turning on/off machines, power-aware consolidation

algorithms, and machine learning techniques to deal with uncertainty while maximiz-

ing performance [Barroso and Hölzle, 2007, Bianchini and Rajamony, 2004, Berral

et al., 2010].

System Services

The last category of system telemetry sources are HPC system services. These can

include workload managers, databases, network attached storage, object stores, and

hypervisor and container orchestrators. Each of these services expose a unique set of

metrics that can help users to understand and interpret the systems state and behaviour.

System service telemetry is generally exposed to service-specific APIs, libraries

and command-line tools. The SLURM workload manager [Yoo et al., 2003] for ex-

ample, provides a number of different command line tools that provide insights into

the state of HPC cluster nodes and jobs. The sinfo command for example returns

the status of all HPC cluster nodes and partitions (listing 6). Similarly, the sacct and

the squeue commands provide detailed information about the status of job and queues.

HPC system operators often collect this information in order to compile usage statistics

which in turn serve as the foundation for usage optimization. If for example, queues

24 Chapter 2. Background and Rationale

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

debug* up 6:00:00 24 idle a1a-u2-c10-b8,a1a-u2-c11-b[2-8],...

small up 1-00:00:00 24 idle a1a-u2-c10-b8,a1a-u2-c11-b[2-8],...

medium up 7-00:00:00 24 idle a1a-u2-c10-b8,a1a-u2-c11-b[2-8],...

large up 365-00:00: 22 idle a1a-u2-c10-b8,a1a-u2-c11-b[2-8],...

gpu up 365-00:00: 1 down* gpu01

gpu up 365-00:00: 4 idle gpu[02-05]

infiniband up 365-00:00: 2 idle bc02bl[03,12]

Listing 6: Example output (truncated) of the SLURM sinfo command-line tool showing

the current status of all HPC cluster nodes and partitions.

Metric Description

disk total total space available on device.

disk used used space on device.

disk free free space available on device.

disk io read count number of reads.

disk io write count number of writes

disk io read bytes number of bytes read.

disk io write bytes number of bytes written.

read io time time spent reading from disk.

write io time time spent writing to disk.

busy io time time spent doing actual I/Os.

Table 2.1: Overview of common operating-system level I/O and filesystem telemetry.

for certain job sizes and durations are consistently underutilized, an operator might

choose to adjust its size or configuration accordingly. Continuously collecting sched-

uler information is vital for that. However, not only system operators use scheduler

telemetry, but also adaptive applications extract and use this information. In [Bala-

subramanian et al., 2016] for example, we use queue status and statistics to adaptively

schedule workloads across multiple HPC clusters.

2.1. HPC Telemetry 25

Metric Description

net io bytes sent number of bytes sent

net io bytes recv number of bytes received

net io packets sent number of packets sent

net io packets recv number of packets received

net io errin total number of errors while receiving

net io errout total number of errors while sending

net io dropin total number of incoming packets which were dropped

net io dropout total number of outgoing packets which were dropped

Table 2.2: Overview of common operating-system level network telemetry.

Metric Description

load 1 the average system load over the last 1 minutes.

load 5 the average system load over the last 1 minutes.

load 15 the average system load over the last 1 minutes.

cpu count number of CPUs.

cpu core count number of cores per CPU.

cpu freq max maximum CPU frequency.

cpu freq min minimum CPU frequency.

cpu times user time spent by normal processes executing in user mode.

cpu times system time spent by processes executing in kernel mode.

cpu times system time spent doing nothing.

cpu times nice time spent by prioritized processes executing in user mode.

cpu times iowait time spent waiting for I/O to complete.

cpu times irq time spent for servicing hardware interrupts.

cpu times softirq time spent for servicing software interrupts.

cpu times steal time spent by virtualized operating systems.

cpu ctx switches number of context switches (voluntary + involuntary) since boot.

cpu interrupts number of interrupts since boot.

cpu softinterrupts number of software interrupts since boot.

cpu syscalls number of system calls since boot.

mem total total physical memory.

mem available the memory that can be given instantly to processes.

mem used memory used.

mem free memory not being used and that is readily available.

mem active memory currently in use or very recently used.

mem inactive memory that is marked as not used.

mem buffers cache e.g., for file system metadata.

mem cached memory allocated to other caches.

mem shared memory that may be simultaneously accessed by multiple processes.

Table 2.3: Overview of common operating-system level CPU and memory telemetry.

26 Chapter 2. Background and Rationale

2.1.2 Application Telemetry

In contrast to system telemetry, we define application telemetry as the information that

is generated during the execution of applications on an HPC cluster. This includes in-

formation about an application’s system resource allocation and interaction as well as

telemetry information generated by the application itself, such as internal performance

metrics of an adaptive algorithm. We use the high-level taxonomy from Figure 2.2

to structure this space: process-level telemetry is sourced from the operating-system,

while job-level telemetry and telemetry generated by runtime systems and program-

ming frameworks is accessible via external interfaces. Lastly, application-specific

telemetry is generated by the application directly.

Application telemetry

Process Job Runtimes &
frameworks

Application-
specific

Operating system External interfaces Application

IN
TE

RF
AC

ES
C
AT

EG
O
RI
ES

Figure 2.2: A high-level taxonomy for application telemetry. We distinguish between

four different functional areas and between operating-system and external interfaces

as telemetry sources.

Process-Level Telemetry

Just like system telemetry, process-level telemetry can be extracted via the Procfs vir-

tual filesystem. The information available in procfs varies widely among UNIX sys-

tems, but on many systems, including Linux, it provides a directory for each process

containing files for different types of information about the process. /proc/[pid]/stat

for example contains CPU usage information (utime, stime) and current memory usage

and /proc/[pid]/io (listing 7), contains information about the number of bytes read

and written by the process. Table 2.4 at the end of this section gives an overview of

some common process metrics.

Another type of process telemetry are hardware performance counters. They can

provide more detailed insights into the resources used by a process. Performance coun-

ters track the number of hardware operations performed by a CPU core in special-

2.1. HPC Telemetry 27

rchar: 5975377879

wchar: 72

syscr: 41988384

syscw: 8

read_bytes: 3948544

write_bytes: 48341413888

cancelled_write_bytes: 0

Listing 7: Example output (truncated) of /proc/[pid]/io showing a snapshot of bytes

read and written by the process.

purpose registers. The types of available counters differs widely between different

systems, hardware platforms, and CPUs, but typically there are counters for cycles, in-

structions, floating-point operations, cache hits, cache misses, branches, loads, stores,

and many other CPU operations. PAPI [Browne et al., 2000] is a cross-platform pop-

ular library for querying performance counters, and the Linux perf tools (listing 8)

records performance counters at the process level.

5,099 cache-misses # 0.005 M/sec (scaled from 66.58%)

235,384 cache-references # 0.246 M/sec (scaled from 66.56%)

9,281,660 branch-misses # 3.858 % (scaled from 33.50%)

240,609,766 branches # 251.559 M/sec (scaled from 33.66%)

1,403,561,257 instructions # 0.679 IPC (scaled from 50.23%)

2,066,201,729 cycles # 2160.227 M/sec (scaled from 66.67%)

217 page-faults # 0.000 M/sec

3 CPU-migrations # 0.000 M/sec

83 context-switches # 0.000 M/sec

956.474238 task-clock-msecs # 0.999 CPUs

[...]

Listing 8: Example output (truncated) of the Linux perf tool showing hardware counter

statistics such as cache-misses and context switches for a process

Job-Level Telemetry

Job-level telemetry consists of the data collected by HPC workload managers dur-

ing the executing of a job. Typical job-level metrics include job start and stop time,

execution time, allocated nodes, cores and memory. Listing 9 shows example job-

level telemetry provided by a SLURM workload manager that was integrated with the

28 Chapter 2. Background and Rationale

NVIDIA Data Centre GPU Manager (DCGM) 1 which provides additional information

about the job’s GPU usage.

|----- Execution Stats ------------+---|

| Start Time | Tue Apr 9 20:55:39 2019 |

| End Time | Tue Apr 9 21:44:38 2019 |

| Total Execution Time (sec) | 2938.68 |

| No. of Processes | 8 |

+----- Performance Stats ----------+---+

| Energy Consumed (Joules) | 4088486 |

| Power Usage (Watts) | Avg: 1380.84, Max: N/A, Min: N/A |

| Max GPU Memory Used (bytes) | 16467886080 |

| Clocks and PCIe Performance | Available per GPU in verbose mode |

+----- Event Stats ----------------+---+

| Single Bit ECC Errors | 0 |

| Double Bit ECC Errors | 0 |

| PCIe Replay Warnings | Not Specified |

| Critical XID Errors | 0 |

+----- Slowdown Stats -------------+---+

Listing 9: Example output (truncated) of job-level GPU performance information pro-

vided by the NVIDIA Data Centre GPU manager and SLURM job manager.

Runtime System and Programming Framework Telemetry

The third category of application telemetry is runtime system and programming frame-

work telemetry. Every programming language and API invoked stand-alone program-

ming frameworks such as POSIX threads [Nichols et al., 1996] or MPI have some

form of a runtime system. Runtime system behaviour can be defined as behaviour not

directly attributable to the program itself. For example, the runtime system of the C

programming language, among others, manages the processor stack and create space

for local variables, while the runtime system of an MPI library, among others, manages

communication and coordination between distributed processes.

Many runtime systems provide access to telemetry via library functions. The

JAVA Virtual Machine (JVM) for example provides continuous statics on internal

threads, garbage collection, and memory usage. Another example of software frame-

work telemetry is the resource utilization statistics data generated by MPI. These can

1https://developer.nvidia.com/dcgm

2.1. HPC Telemetry 29

Total job time 2.203333e+02 sec

Total MPI processes 128

Wtime resolution is 8.000000e-07 sec

activity on process rank 0

comm_rank calls 1 time 8.800002e-06

get_count calls 0 time 0.000000e+00

ibsend calls 0 time 0.000000e+00

probe calls 0 time 0.000000e+00

irecv calls 22039 time 9.76185e-01 datacnt 23474032 avg datacnt 1065

send calls 0 time 0.000000e+00

ssend calls 0 time 0.000000e+00

isend calls 22039 time 2.950286e+00

wait calls 0 time 0.00000e+00 avg datacnt 0

waitall calls 11045 time 7.73805e+01 # of Reqs 44078 avg data cnt 137944

barrier calls 680 time 5.133110e+00

alltoall calls 0 time 0.0e+00 avg datacnt 0

alltoallv calls 0 time 0.000000e+00

reduce calls 0 time 0.000000e+00

allreduce calls 4658 time 2.072872e+01

bcast calls 680 time 6.915840e-02

...

Listing 10: Example output (truncated) for a single rank of an MPI program that was run

on 128 processors, using a user-created profiling library that performs call counts and

timings of common MPI calls

for example be used to determine potential performance problems caused by lack of

MPI message buffers and other MPI internal resources. MPI provides access to this

statistics via standard library functions that are accessible either directly by applica-

tions (listing 10) or via other MPI profiling frameworks and tools such as mpiP [Vetter

and Chambreau, 2014].

Application-Specific Telemetry

The last category of application is application-specific telemetry. As opposed to the

other three application telemetry types which capture application telemetry from an

outside perspective and provide the same type of metrics for any application running

on an HPC system, application-specific telemetry consists of metrics defined by and

relevant to a specific application. An Adaptive Mesh Refinement (AMR) application

for example can continuously generate and emit information about grid cell density

and distribution across processes in order to understand the progression of a calcula-

30 Chapter 2. Background and Rationale

tion. This information becomes particularly valuable if it is put into the same context

with other system and application telemetry as it allows for a more holistic interpre-

tation of application behaviour and performance. A telemetry platform that allows

developers to collect and analyse application-specific telemetry within a global frame-

work of reference would significantly simply the process of generating this holistic

insight.

Metric Description

io read count Number of read operations performed.

io write count Number of write operations performed.

io read bytes The number of bytes read.

io write bytes The number of bytes written.

cpu num The CPU the process is currently running on.

cpu affinity The current CPU affinity of the process.

cpu user time Time spent in user mode.

cpu system time Time spent in kernel mode.

cpu iowait time Time spent in kernel mode.

mem rss The non-swapped physical memory a process has used.

mem vms The total amount of virtual memory used by the process.

mem shared Memory that could be potentially shared with other processes.

mem dirty The number of dirty memory pages.

mem swap Amount of memory that has been swapped out to disk.

files fd The file descriptor of an open file.

files path The absolute name of an open file.

con fd The socket file descriptor of a connection.

con family The address family of a connection.

con type The type (STREAM, DGRAM ...) of a connection.

con local address The local address of a connection.

con remote address The remote address of a connection.

con status Status of a connection.

children Subprocesses associated with a process.

Table 2.4: Overview of common operating-system level process telemetry.

2.2. Application Areas 31

2.2 Application Areas

In order to better understand how telemetry is used on HPC systems, we look at three

different application areas: HPC system operations, adaptive application architec-

tures, and application development. For each of the three application areas, we identify

a number of common research and practices and underpin them with concrete exam-

ples of tools and applications. Systems operations, for example has a more monitoring-

centric approach to HPC telemetry and concrete examples predominantly focus on a

macro-level understanding of performance and stability indicators across all system

components and applications. Examples in the application development category on

the other hand are more focused on fine-grained application-specific system telemetry,

often overlaid with custom application telemetry in order to carry out more micro-level

optimizations. In order to gain some better understanding on how telemetry is used,

we try to answer the following questions for each of the use cases:

(i) How is telemetry collected?
Which interfaces are used, and what is the software architecture that implements

the collection mechanisms?

(ii) Which telemetry is collected?
Which system and application telemetry are extracted?

(iii) How is telemetry structured?
How is telemetry data is formatted, and structured internally?

(iv) How is telemetry stored?
Is the collected data ephemeral or is it stored for later use? If so, how is data

storage implemented?

(v) How is telemetry shared?
Is the collected data accessible only from within the system or is it also shared

and accessible via external interfaces?

While the examples in this section do not aim for completeness, they provide

enough insights into telemetry usage across the different categories in order to un-

derstand common challenges. These challenges match, in different varieties and sever-

ities, the challenges we laid out in the previous chapter and hence serve as the input

for the requirement analysis that we conduct in the second part of this chapter.

32 Chapter 2. Background and Rationale

2.2.1 System Operations

The majority of HPC systems are run by dedicated teams of operations staff that are

responsible for the continuous operation and optimization of an HPC platform’s hard-

ware and software. Systems operation is often driven by a number of key objectives,

such as:

• System availability and stability

• System utilization

• User satisfaction

In order to fulfil these objectives, many HPC operations centres organize around three

core practice domains: daily operations, strategic planning and optimization, and ap-

plication and user support as shown in figure 2.3. Daily operations focus on optimizing

the availability and stability of the system and detecting and mitigating hardware and

software errors. Strategic planning and optimization looks at the long-term utilization

patterns of one or more systems and advises on future extensions or reconfiguration of

an HPC estate. Lastly, application and user support helps HPC users and developers

to develop, deploy, run, and optimize HPC application code and advises on system

particularities and best practice. In the following we will look at these three practice

domains in more detail and discuss several concrete examples in regard to their use of

telemetry.

System Operations

Daily Operations Strategic Planning &
Optimization

Application & User
Support

Figure 2.3: HPC system operations organizes around three core practices: daily oper-

ations, strategic planning and optimization, and application and user support.

Daily Operations

Monitoring systems collect, and visualize the relevant telemetry. Monitoring is a key

capability for HPC operators to ensure system stability and availability. Given the

2.2. Application Areas 33

ever-growing size of systems and the associated computational, I/O, and network de-

mands placed on them by applications, failures in large-scale systems become com-

monplace. To address node failure and to maintain the health of the system, platform

monitoring must be able to quickly identify failures so that they can be repaired either

automatically or via out-of-band means. In large-scale systems, the interplay amongst

computational nodes, network switches and links, and storage devices can be complex.

A monitoring system that captures the telemetry characterizing these interactions can

often lead to a better understanding of a system’s microscopic and macroscopic be-

haviour. As platforms continuously grow in size and complexity, bottlenecks are likely

to arise in various locations. A monitoring system can assist platform operations by

providing a global view of the system, which can be helpful in identifying performance

problems and, ultimately, assisting in capacity planning.

Monitoring tools are a critical component to ensure stable operation of an HPC sys-

tems and have evolved along with HPC systems for multiple decades. Development

has been driven mainly by the HPC system operator communities with their particular

use cases in mind which evolve around system stability, error detection and optimizing

system utilization. Most HPC monitoring tools align around similar, three compo-

nent architectures that consist of a data collection component, a database to store time

seriesdata, and a graphical front-end to visualize the data in different views. In the fol-

lowing, we will look into the details of Ganglia, a popular HPC monitoring system in.

Similar systems include Supermon [Sottile and Minnich, 2002] and NAGIOS [Joseph-

sen, 2007].

Ganglia [Massie et al., 2004] is based on a hierarchical design and data model

which can accommodate not only single HPC systems but also federations of clusters.

In order to scale, Ganglia relies only on a multicast-based listen/announce protocol

to monitor state within clusters and uses a tree of point-to-point connections amongst

representative cluster nodes to federate clusters and aggregate their state. The primary

design objective for Ganglia’s data structures and algorithms was to accommodate low

per-node overheads and high concurrency. It uses the Extensible Markup Language

(XML) format for data representation the External Data Representation (XDR) format

for portable data transport, and RRDtool [Oetiker, 2017] for data storage and visual-

ization.

Ganglia consists of two services: The Ganglia monitoring daemon (gmond) and

the Ganglia Meta Daemon (gmetad). Gmond runs on every node of a cluster and

provides monitoring by implementing the listen/announce protocol and responding to

34 Chapter 2. Background and Rationale

client requests by returning an XML representation of its monitoring data. Gmetad

provides federation of multiple clusters. A tree of TCP connections between multiple

gmetad daemons allows monitoring information for multiple clusters to be aggregated.

In addition, Ganglia provides a command-line program (gmetric) that applications can

use to publish application-specific metrics and a client-side library provides program-

matic access to a subset of Ganglia’s features. Gmond publishes two types of met-

rics, built-in metrics which capture node state and user-defined metrics which capture

arbitrary application-specific state, on a well-known multicast address. For built-in

metrics, gmond currently collects and publishes about 30 different metrics depending

on the operating system and CPU architecture it is running on through well-defined

interfaces, such as /proc, KVM 2, and kstat. Some base metrics include the number

of CPUs, CPU clock speed, CPU (user, nice, system, idle), load (1, 5, and 15 min

averages), memory (free, shared, buffered, cached, total), processes (running, total),

swap (free, total), system boot time, system clock, operating-system (name, version,

architecture), and (maximum transmission unit). User-defined application telemetry

can be arbitrary and is not predefined by the system. Telemetry is structured by adding

cluster- and node-name metadata that allows a basic understanding of the underlying

system architecture.

Figure 2.4: Screenshot of a web-based HPC monitoring dashboard generated by Gan-

glia.

2KVM (Kernel-based Virtual Machine) is a virtualization solution for Linux on x86 hardware con-
taining virtualization extensions.

2.2. Application Areas 35

Telemetry data is stored in RRDtool a fixed-size, circular buffer-based database,

designed for storing and summarizing time seriesdata. RRDtool assumes time-variable

data in intervals of a certain length. This interval is specified upon creation of an RRD

database and cannot be changed afterwards, i.e., it is fixed. RRDtool will automati-

cally interpolate any submitted data to fit its internal time-steps. The interval defines

the maximum granularity of data points. Multiple data points can be consolidated

according to a consolidation function (e.g., average, minimum, maximum) to form a

consolidated data point. Recording telemetry at a granularity beyond what is defined as

the time-step interval is not possible. Since the database is constant in size and circu-

lar, it will at some point ”wrap around”, meaning that the next insertion will overwrite

the oldest entry. Telemetry retention is therefore defined by the time-step interval and

size limit the database was created with. The main interface to Ganglia is a web-based

visualization frontend. The graphs are pre-generated by the RRDtool backend and

displayed through the frontend (figure 2.4). The gmetad service can be configured to

listen on a specific TCP port and reply with XML metric data. It can return both metric

summaries and the results for simple queries such as specifying a cluster or hostname.

However, this feature is disabled by default, which prevents programmatic access to

telemetry altogether.

Cray System Snapshot Analyser (SSA) [Duckworth et al., 2017] is a customer ser-

vice and remote diagnostics application developed by Cray Inc. and designed to sup-

port HPC cluster issue diagnosis and reduce time to resolution. SSA’s main goal is

to support Cray’s service engineers to remote-diagnose system issues via “snapshots”,

system diagnostic information, hardware and software inventories bundled and sent to

Cray’s support servers. SSA is typically used on-demand and at the request of Cray

customer service. SSA uses a client service running on a dedicated Cray management

host to extract system telemetry via Cray’s specific telemetry interfaces. The data is

then uploaded to a remote server, where it is stored and further analysed to understand

product state and configuration at a given in time, and changes in product state and

configuration over time.

Strategic Planning and Optimization

In addition to the everyday concerns of platform operations, HPC system operators

also need to consider long-term strategic planning and optimization of their system es-

tate. This includes system hardware upgrades and replacement of obsolete systems but

also hard- and software reconfiguration of existing systems to cater for changes in the

36 Chapter 2. Background and Rationale

application and user landscape. Especially the latter is important in order to maintain

a high user-satisfaction in a constantly changing and evolving use case and application

landscape. One example for system reconfiguration is job queue optimization. work-

load managers define multiple queues to which jobs can be submitted. These queues

are configured to accept jobs of certain types, typically defined by maximum runtime

and maximum number of cores allocatable. Queues can furthermore be configured

to give access to nodes with specific hardware configurations, such as Graphics Pro-

cessing Unit (GPU) and Field-Programmable Gate Array (FPGA) subsystems. Queue

configurations are initially designed with assumptions made about the expected job

workload and type of jobs submitted by the user. Over time,workload and type of

jobs can change which can lead to a situation where for example increasing numbers

of “bag-of-tasks”-style jobs or jobs with heavy disk I/O are not well-supported by a

cluster and queue configuration that assumes massively parallel, compute intensive

workloads. Many tools exist to support data centre operators with strategic insights

into application behaviour and long-term changes in job mix. Open XDMoD [Palmer

et al., 2015] for example, creates a telemetry data warehouse by ingesting the HPC

centre’s resource manager, telemetry quality-of-service metrics and job-level perfor-

mance telemetry. It provides a rich set of analysis and charting tools (figure 2.5) that

let system operators quickly display a wide variety of job accounting metrics over any

desired timeframe. It enables the comprehensive management of HPC resources, al-

lowing HPC centre personnel to ensure that the resource is operating efficiently and to

determine what type of applications are running, how efficiently they are running, and

what resources they’re consuming, all of which are important to strategic optimization

of the system.

Increasingly advanced technologies are applied to telemetry in order to classify

jobs of unknown application, characterize the job mixture, and harness the variation

in node and time dependence for further analysis. In [Gallo et al., 2015] for example,

machine learning techniques were applied to XDMoD job accounting and performance

data for application classification. The results demonstrate that community applica-

tions have characteristic signatures which can be exploited for job classification.

Another key objective for strategic planning and optimization is to improve the en-

ergy efficiency of HPC systems. Since energy is a major cost item for data-centres,

and becoming a dominating factor for the total cost of ownership (TCO) over the life-

time of an HPC system, energy efficiency has become a major research area not just

2.2. Application Areas 37

Figure 2.5: Screenshot of a chart generated by the Open XDMoD web portal showing

CPU hours delivered over a two-year period broken down by job size (number of cores).

for commercial data centres but also for HPC data centres. Examples include batch

scheduler controlled Dynamic Voltage and Frequency Scaling (DVFS) (see e.g., [Ge

et al., 2005] and [Chung-hsing Hsu and Wu-chun Feng, 2005]), and simulation and op-

timization of HPC job allocation algorithms for jointly reducing communication and

cooling costs (see e.g., [Meng et al., 2015] and [Kaplan et al., 2013]). While there

is a wide array of research in the areas of data-centre building infrastructure, system

hardware, system software, and applications, [Wilde et al., 2014] point out that current

systems often miss proper instrumentation and, therefore, do not allow for the easy

collection of required data. The Energy Efficient HPC working group [EEHPCWG,

2014] is trying to help the HPC community to define the needed HPC system and data

centre instrumentation and provide guidelines on how to measure key energy efficiency

metrics.

Application Support and Advice

One of the metrics the majority of HPC system operators are evaluated by is how

well their platforms are utilized by applications. Typically, this is a maturity journey

for platform operators, starting at optimizing for node utilization and moving over

time into optimizing for scientific output. Dedicated application support and software

analyst teams established by many of the large HPC centres are indicative of this.

Traditionally, the support and advice model is mostly request-based, i.e., if an external

38 Chapter 2. Background and Rationale

user or developer experiences issues, for example with the performance of their parallel

application, they contact the support function to ask for advice. In order to improve

the user experience on HPC systems, it is beneficial to move from a pull-based support

model (i.e., users contacting support if something goes wrong) to a proactive, push-

based support model. In the push-based support model, users of an application are

proactively notified if concerns with their applications arise. Next, we will look at

XALT, and TACC Stats, two tools that aid the user and application support and advice.

XALT [Agrawal et al., 2014] is a mechanism for following users’ jobs and envi-

ronments on an HPC cluster. It provides a census of libraries and applications and

automatically filters user issues, yielding exactly the type of job tracking information

that most computing centres need or want. XALT is designed to track the execution

information for applications that are compiled and executed on HPC clusters. XALT

allows administrators and other support staff to consider demand when prioritizing

what to install, support and maintain. Datasets, dashboards, and historical reports gen-

erated by XALT and the systems with which it interoperates will preserve institutional

knowledge and lessons learned.

TACC Stats [Agrawal et al., 2014] collects data such as core-level CPU usage,

socket-level memory usage, swapping and paging statistics, system load and process

statistics, system and block device counters, interprocess communications, filesystems

usage (NFS, Lustre ,Panasas), interconnect fabric traffic, and CPU counters and Un-

core counters (e.g. counters from the Memory Controller, Cache and NUMA Coher-

ence Agents, Power Control Unit). TACC Stats also provides a set of analysis and

reporting tools which analyse TACC Stats resource use data and report applications

with low resource use efficiency or that appeared to experience software or hardware

issues. TACC Stats is initialized at the beginning of a job and collects data at specified

intervals during job execution and once more at the end of a job. The data collected

can be used to automatically generate analyses and reports such as average cycles per

instruction (CPI),average and peak memory use, average and peak memory bandwidth

use, interconnect traffic, and more on each job and over sets of jobs grouped according

to user, application,project number, and date. These reports enable systematic iden-

tification of jobs, applications, or specific implementations of applications (such as

building on different MPI stacks) which could benefit from architectural adaptation

and performance tuning. In addition, these analyses are used for catching and flag-

ging user mistakes such as allocating multiple nodes to a single-node shared-memory

parallelized application or diagnosing system issues such as hardware and file-system

2.2. Application Areas 39

failures.

2.2.2 Adaptive Application Architectures

Adaptive application architectures can be found across all classes and types of HPC

applications, from tightly coupled parallel codes to heterogeneous, multi-component

workflows (e.g., [Atkinson et al., 2017]). They represent a class of architecture patterns

that change an application’s behaviour, composition, or interaction with its environ-

ment as a reaction to observed dynamic changes in the application itself (intrinsic) or

its environment (extrinsic) based on one or more objective functions. Common classes

of objective functions for adaptive applications architectures are error mitigation and

throughput optimization. Error mitigation functions try to shield an application from

unexpected events such as node failures, I/O degradation, but also intrinsic events such

as data staging errors or algorithmic issues. An example for throughput optimization

would be a function that increases the number of application tasks running concurrently

on a node as a reaction to environment metrics such as CPU, memory, or I/O if they

suggest underutilization. In this section, we look at two high-level adaptive architec-

ture domains: application (re-)configuration and resource management and illustrate

them with practical examples.

EnvironmentApplication
Resilient & Optimizing

Architectures

Adaptive application
reconfiguration

Adaptive
resource management

Extrinsic dynamic
behaviorIntrinsic dynamic

behavior

. . .

action action

Fe
ed

ba
ck

lo

op

Fe
ed

ba
ck

lo

op

Application logic /
algorithms

Resources

Objective
functions

observationsobservations

Figure 2.6: Adaptive application architecture patterns change an application’s be-

haviour, composition, or interaction with its environment as a reaction to observed

dynamic changes based on one or more objective functions.

40 Chapter 2. Background and Rationale

Adaptive Application (Re-)configuration

We distinguish between adaptive application configuration and adaptive application

re-configuration. The former allows an application to adapt to a new, unknown en-

vironment a priori, while the latter allows an application to change its configuration

as it executes. Examples for an adaptive application configuration are the CoMPI im-

plementation [Filgueira et al., 2011], which implements adaptive runtime compression

of MPI messages and PRO-MPI [Venkata et al., 2009], which uses profiles of past

application communication characteristics to dynamically reconfigure MPI protocol

choices. In both examples, platform telemetry is collected and used to understand and

choose configuration options for the application. A platform that would provide the

relevant historic and real-time telemetry data to the applications would in both cases

simplify the application architecture and adaption to other HPC platforms and archi-

tectures.

Adaptive Resource Management

Adaptive resource management is a set of architectural patterns that allow resource

allocations to be altered during the runtime of an application. Most existing HPC

workload managers use a static, a priori performance model. Fluctuations in the per-

formance metrics of a resource, e.g., disk or network I/O hotspots are not monitored

or acted upon. While this works well with static and homogeneous workloads, it fails

with dynamic applications. Adaptive load balancing is an architectural pattern in which

an application can re-schedule its workload within a static HPC resource allocation.

Just as adaptive (re-)configuration, application-level load balancing might be triggered

based on observed extrinsic changes in the environment or intrinsic changes in the

application. Other adaptive load-balancing approaches are not tied into a specific ap-

plication architecture. I/O aware schedulers such as [Yang et al., 2013] and [Herbein

et al., 2016] can control the status of jobs on the fly during execution based on run-time

monitoring of system state and I/O activities. We will not focus on these even though

they equally rely on telemetry. In this section, we discuss two examples of adaptive

application-level load-balancing: Charm++, a parallel object-oriented programming

language and runtime system, and our I/O-aware load-balancing application called

RADICAL Pilot.

Charm++ [Kale and Krishnan, 1993] is a C++ based parallel, message-driven,

object-oriented programming language developed at the Parallel Programming Labo-

2.2. Application Areas 41

ratory at the University of Illinois at Urbana-Champaign. Charm++ programs are de-

composed into a number of objects called chares. When a program invokes a method

on an object, the Charm++ runtime system sends a message to the invoked object,

which may reside on the local processor or a remote processor. This message then

triggers the asynchronous execution of code within the chare. Chares are mapped to

physical processors by the Charm++ adaptive runtime system. The mapping of chares

to processors is transparent to the programmer, which allows the runtime system to

dynamically change the assignment of chares to processors during program execution.

This decoupling is the foundation for capabilities such as load balancing, fault toler-

ance, and the ability to dynamically shrink and expand the set of processors used by a

Charm++ program. During the execution of the program, the runtime system collects

workload information on each physical processor in the background, and when the pro-

gram hands over the control to a load balancer, it uses this information to redistribute

the workload, and migrate the parallel objects between the processors as necessary.

RADICAL Pilot [Merzky et al., 2015b] is an application-level scheduling system

that was initially developed to circumvent the static constraints and granularity of HPC

workload managers. It works by submitting a single pilot-job or placeholder job to an

HPC workload manager and once the job becomes active, allow user applications to

schedule their jobs which are then executed via the pilot-job system within the place-

holder job. In the example shown in figure 2.7, RADICAL Pilot was used to schedule

a bag of homogeneous I/O intensive single-core jobs with a benchmarked runtime of

around 10 minutes within a larger placeholder job. However, the job throughput of

the application did not match the expectation: while the average task runtime in this

example had been benchmarked at around 10 minutes, outliers in a first run had a run-

Figure 2.7: Box plot showing the runtimes of a set of homogeneous tasks. Extreme

upper and lower values are due to I/O starvation on a subset of the executing compute

nodes.

42 Chapter 2. Background and Rationale

time of around 50 minutes, and in a second run, around 120 minutes. Each job had

to stage in a data file of 10 GB before it could start executing. While this took less

than a minute for the majority of jobs, it took an hour or more for the outliers in both

cases. To understand this behaviour, the RADICAL Pilot node agents, the component

responsible for application job execution on the individual nodes of the placeholder

allocation were instrumented to collect CPU, memory, and Disk I/O telemetry. Instru-

mentation revealed that a specific subset of nodes exhibited a significantly degraded

network filesystem I/O performance which caused the spike in data file staging time.

While the cause could not be identified with certainty, the system instrumentation was

used to continuously monitor node I/O performance and to use RADICAL Pilot’s dy-

namic scheduling capabilities to move application jobs away from nodes that exhibit

problematic behaviour and to remove the nodes from the internal resource pool.

While the Charm++ example uses adaptive load balancing to optimize for intrinsic

dynamic behaviour, the RADICAL Pilot example uses adaptive load balancing to mit-

igate extrinsic dynamic anomalies. We have discussed hardware and software failure

as one source of dynamic behaviour of the environment. Another source that is much

more common, yet often more difficult to identify is application interference. Applica-

tion interference and side effects are not unusual on multi-tenant HPC systems. [Dorier

et al., 2014] for example have shown how the interference produced by multiple appli-

cations accessing a shared parallel file system concurrently becomes a major problem

and often dramatically degrades I/O performance or even breaks data-intensive appli-

cations and, as a result, lower machine-wide efficiency.

2.2.3 Application Development

Analysis and optimization of HPC applications is a common and often repeated tasks

for application developers. Analysis and optimization can be split into two categories:

1. Intrinsic analysis and optimization of an application, i.e., its algorithms, data struc-

tures and communication patterns. 2. Extrinsic analysis and optimization of an ap-

plication that is executing on a specific HPC system, e.g., its compute and I/O perfor-

mance and the resulting runtime characteristics. Intrinsic and extrinsic analysis and

optimization are often interconnected processes. A common example is that extrinsi-

cally observed resource limitations on a specific platform might have direct impact on

the intrinsic choice of algorithms or data structure of an application. In the opposite

direction, an application’s optimized communication pattern might impact which plat-

2.2. Application Areas 43

form it can be mapped onto and how. This interconnected analysis and optimization

process is carried out iteratively throughout the evolution and lifetime of an applica-

tion, as user requirements change and applications migrate between multiple different

HPC systems.

Besides these relatively long iteration cycles, dynamic and automated analysis and

optimization which much shorter iteration cycles, such as autonomic computing, play

an increasingly important role. Especially in scenarios where the intrinsic characteris-

tics of an application can change during its runtime or where the target platform is not

known before execution has started, analysis and optimization is ideally carried out in

real time, without any user interaction, while an application is executing.

Even though we define intrinsic and intrinsic analysis and optimization as inter-

connected, their mechanics are not. Analysing application-specific algorithms, data-

structures and communication patterns requires very different information, metrics and

tools and has different objectives than the resource utilization of an application. While

the former is often highly application (or application class) specific, we argue that the

latter is not at all. Furthermore, the former is carried out entirely in the application

domain, while the latter is carried out in the platform domain. From an engineering

perspective, both should hence be independent entities and actors in a larger system

with well-defined coupling points.

We argue that operating-system processes and their behaviour are the most com-

mon denominator for all applications and their extrinsic analysis and optimization.

From a process perspective, it does not make a difference, whether the application is

a tightly-coupled GPU-accelerated MPI application or a group of uncoupled, single-

threaded Python scripts. Every resource interaction, whether it is computation, mem-

ory access, filesystem I/O, or network communication, are carried out and are observ-

able through the operating-system process abstraction and its interface. As operating-

system processes are under the control of the HPC system, it is intuitive that the plat-

form provides an interface through which the key runtime characteristics of an appli-

cation’s processes are exposed and can be accessed by the user or by the application

itself. Furthermore, it would be desirable that this interface is identical, or at least

similar, between HPC systems.

However, none of today’s HPC systems provide such interfaces or services. The

result is that applications and users that require application process data for extrinsic

analysis and optimization tend to develop hand-crafted, application specific solutions.

These solutions are either based on instrumented application code or special-purpose

44 Chapter 2. Background and Rationale

processes (“monitoring jobs”) that are executed alongside the actual application. Pro-

cess data is collected through the process control interfaces that the operating-system

provides. However, the information gathered is confined to the operating-system (usu-

ally a single node of an HPC system) and still needs to be put into the larger context of

the platform architecture and topology to understand the overall runtime profile of the

application.

Interacting with low-level operating-system primitives appears to be asymmetric:

while from a user’s perspective the application is submitted to, executed on and con-

trolled by the HPC system software (queuing system, job manager, etc), further in-

formation about this process has to be extracted and pieced together from lower level

entities. This methodology seems unnecessarily inefficient as it clutters application

logic and creates potentially redundant code throughout many HPC applications. Fur-

thermore, it is only accessible to users who have an in-depth technical understanding

of the HPC system architecture and operating-system interfaces.

The application development lifecycle is an iterative process that takes an applica-

tion from the initial concept to its implementations and refinements. In this process, an

HPC application goes through many implementations, test, measure, and refinement

iterations through which it slowly matures. Two aspects of the development work-

flow heavily rely on telemetry: test and measure, and debugging and diagnostics. Test

and measure steps are conducted to understand how, for example a new feature or al-

gorithm, behaves in different scenarios, at different scales, or on different hardware

architectures. For this, a developer typically conducts a series of experiments or “test

runs” and records the behaviour of the application. Some high-level results can be

observed on the application-level, for example runtime and workload throughput, and

do not require further insights into the application’s behaviour on the HPC system.

But to gain a better understanding of a specific behaviour or in order to pinpoint an

unexpected result, telemetry is necessary to correlate the application’s or algorithm’s

behaviour and the behaviour of the operating-system processes representing the appli-

cation. It might, for example, be important to understand memory consumption or data

I/O patterns on the system to find and mitigate bottlenecks in an otherwise conceptually

sound algorithm.

Another reason why thorough testing and measuring relies on telemetry data is sys-

tem noise. When applications are tested at scale, this often happens outside “sterile”

lab environments on large multi-tenant HPC clusters. Noise is inevitable on these sys-

tems, for example the disk I/O or network performance might be degraded or “jittery”

2.2. Application Areas 45

on a subset of nodes or cluster partition due to a data-intensive application running in

the vicinity. It is important for the developer to be aware of system noise so he or she

can account for it and interpret application measurement results correctly.

Currently, there are no comprehensive and generally available software packages

that aid the developer in extracting the relevant telemetry form HPC systems. Es-

pecially in the parallel programming world, instrumentation and performance tuning

are essential in the development process and a series of tools exist for this purpose.

However, these tools are generally narrow in scope and can only be used for parallel

applications that fall into this narrow framework. Telemetry is extracted and processed

internally, often with a focus on very low-level network communication metrics

The rest of the HPC application landscape is essential left alone with hand-crafted,

often application-specific solutions for collecting and analysing telemetry data. In

many cases, this takes up a significant amount of time and effort of the application de-

velopers, time that could better be spend elsewhere. The test and measure steps in the

application development workflow can take disproportionally long because telemetry,

the foundation for performance engineering and improvement is simply not available

to the developers. Developers often add telemetry collection logic to the application

code base, bloating it unnecessarily, and, in the worst case, creating side effects that

distort the results.

Performance Analysis and Profiling

The traditional way of conducting performance analysis and tuning for high perfor-

mance computing application has been an off-line approach with strong involvement

from the user. A variety of performance measurement, analysis, and visualization tools

have been created to help developers to tune and optimize their applications. These

tools range from source code profilers such as ompP [Fürlinger and Gerndt, 2005], to

communication and memory tracers such as PSINS [Tikir et al., 2009]. These per-

formance tools typically rely on a five-phase workflow [Wagner et al., 2017], which

consists of:

1. Measurement: Collecting a representative set of measurements, e.g., with in-

creasing core counts for a scalability-focused analysis. A set of measurements

allows us to better understand the evolution of key performance metrics and dis-

tinguish between general behaviour and behaviour specific for a certain number

of cores or a certain input.

46 Chapter 2. Background and Rationale

2. Focus of analysis: Getting an initial overview of the application behaviour, and

detecting the overall structure. Based on this, selecting the focus of analysis.

This allows developers to narrow down further analysis, make it more compa-

rable between the different measurements of the set by removing, e.g., constant

initialization time, and reducing the overall analysis effort.

3. Performance modelling: Using a performance model to determine the perfor-

mance, efficiency, and evolution of key performance indicators.

4. Detailed analysis: Focusing and prioritizing the detailed analysis based on the

outcome of the performance model. Gradually applying more advanced analysis

techniques to understand the root causes of performance issues.

5. Reporting: Recording the performance overview, analysis results and recom-

mendations and reporting them. This allows for the key elements of the perfor-

mance analysis to be accessed by other users or analysts, and to be utilized for

future analyses.

The basic purpose of application performance tools, is to help the user identify

whether their application is running efficiently on the computing resources available.

To do this, most performance tools offer instrumentation, measurement and presenta-

tion components for use in the five-phase cycle, and a few tools have begun offering

an analysis component to better assist users. Notable work in the area of performance

analysis tools include Paradyn [Miller et al., 1995], developed at the University of

Wisconsin, and KOJAK [Mohr and Wolf, 2003], developed at the Research Center

Jülich.

2.3 Current Challenges

We have identified five overarching challenges that HPC applications face when they

want to utilize HPC telemetry as part of their architecture or workflows. While point

solutions do exist for some of these challenges, none of them has been addressed holis-

tically and in an application- or platform-agnostic way. Providing solutions for these

five challenges that cater for a broad spectrum of users and use cases is the primary

motivation for this research. We experience and identified these challenges throughout

2.3. Current Challenges 47

our own work on adaptive and distributed applications 3 as well as through analysing a

cross-section of architectures of HPC applications that make use of telemetry. Further-

more, we have conducted a survey across multiple HPC centres to gain further insights

into telemetry usage and support 4. In summary, the five main challenges we have

identified are:

Challenge 1: Improve Availability

While telemetry is usually collected by monitoring systems and scheduling systems

on a continuous basis to support the HPC system operation teams, the data is usually

not made available to a broader audience such as application developers and running

applications.

Challenge 2: Deliver Accessibility

Telemetry is often not available in machine-readable formats or the formats diverge

between different platforms and services. The same holds true for the interfaces ex-

posing telemetry data which can range from API endpoints to flat-file downloads from

a website.

Challenge 3: Facilitate Integration

For many use cases, telemetry or insights derived from telemetry analysis need to be

integrated back into applications and services as input for optimization and resilience

functions. No common approaches and patterns exist for this integration.

Challenge 4: Standardize Structure and Semantics

Telemetry is often difficult if not impossible to interpret without having an implicit

understanding of the semantic context and the structure of the HPC system and ap-

plication that was generating it. Little effort has been put into defining a framework

for this. As a result, telemetry data often becomes useless outside the context it was

originally collected in.

3See for example the development work presented in, [Weidner et al., 2017], [Weidner et al., 2016a],
[Radak et al., 2013a], and [Jha et al., 2007a].

4Unfortunately, the number of responses was rather small. The survey design and results can be
found in appendix A.

48 Chapter 2. Background and Rationale

Challenge 5: Support Processing and Analysis

Telemetry data volumes can quickly become very large which requires advanced tech-

nology and infrastructure for processing and analysis. This can rarely be done within

the scope of an HPC application itself. For example, trying to find suspicious I/O

patterns in an application running across 10,000 processes is not a trivial endeavour.

However, while they are well-developed for other application domains, facilities for

analysing telemetry at scale and in real-time are not available to application users and

developers.

2.4. Summary 49

2.4 Summary

In this chapter we have looked at the state of telemetry usage and management in

HPC. We have identified the main sources of telemetry data across systems and ap-

plications and the approaches and systems that are in use today to extract and collect

it. We have concluded that telemetry is predominantly used in HPC monitoring sys-

tems, extracted and managed via standard monitoring tools, and in a few advanced

HPC application architectures, almost exclusively extracted and managed via one-off,

custom-built application-specific solutions. Based on these insights and drawing upon

related work, we identify five major challenges in the field of HPC telemetry: accessi-

bility, availability, integration, structure and semantics, and processing and analysis.

In the next chapter, we will introduce the telemetry platform concept, show how it

can address the challenges identified in this chapter, and provide new opportunities for

HPC application research, architecture, and development.

Chapter 3

Telemetry Platform

In the previous chapter, we have looked at the broad spectrum of application areas

for HPC telemetry and the current challenges that users and application developers

are experiencing. In this chapter, we introduce the data platform paradigm and its

application to HPC. We begin the chapter with an introduction to the data platform

paradigm, an approach and conceptual architecture that has been shown to enable the

efficient management and exploitation of large volumes of continuously generated data

across many industry and research applications. We then set the scene for the main

hypothesis of this thesis and discuss how the data platform paradigm can be applied

to HPC telemetry and the opportunities that emerge from this in the areas of HPC

systems research, decoupled and reusable architectures, resiliency and optimization,

and application and service architectures that build on machine learning techniques.

In the second half of this chapter, we conduct a more detailed requirement analysis

for a telemetry platform and present a conceptual design that covers usage modes, data

models, interfaces and integration with HPC platforms. The conceptual design serves

as the base for the prototype implementation we present in chapter 5. We deliberately

decouple the conceptual design of a telemetry platform from its implementation, as

the latter can potentially change drastically with the implementation context while the

former will not. Lastly, we elaborate on related work in telemetry management systems

and data models and how they relate to and complement the work presented in this

thesis.

51

52 Chapter 3. Telemetry Platform

3.1 Data Platforms

Data analysis has undergone a radical change in the last decade with the advent of

Big Data as a new paradigm in scientific research [Hey et al., 2009] and the indus-

try alike. Collecting and storing vast volumes of data with the basic premise that it

contains potential value has sparked a plethora of new and improved data processing

and analysis techniques to sift through historic and live data to extract value. These

techniques range from new programming models like MapReduce on elastic compu-

tational platforms [Dean and Ghemawat, 2010] to advancements in and wide adoption

of time series analysis and machine learning. Many commercial systems and open-

source building blocks exist that combine these techniques into a coherent technical

platform, often referred to as data platforms. The majority of today’s data platforms

are made available via a Platform-as-a-Service (PaaS) model, either provided by an

organization’s internal IT department or cloud-hosted by a third-party vendor. PaaS

service is a category of computing services that provides a platform allowing users to

develop, run, and manage applications without the complexity of building and main-

taining the infrastructure typically associated with developing and launching an app.

The original intent of PaaS was to simplify the application development process, with

the infrastructure and operations handled by the PaaS provider, saving developers from

the complexities of the infrastructure side (setting up, configuring and managing ele-

ments such as servers and databases). PaaS can improve the speed of developing an

application, and allow the developers to focus on the application itself. With PaaS,

the developer manages applications and data, while the PaaS provider manages run-

time, middleware, operating systems, virtualization, servers, storage and networking.

Data-Platform-as-a-Service (DPaaS) are characterized by predefined processes for data

ingestion, storage, discovery, and analysis that are aggregated and exposed via APIs.

Interaction with DPaaS takes place exclusively via these APIs instead of via the in-

dividual interfaces of the components comprising the platform. The constraints of

pre-defined processes make the DPaaS approach difficult to realize for data platforms

with a broad spectrum of different data, use cases, and integrations. It works well

however for narrow use cases and well-defined data.

3.1.1 Data Science and Analysis Workflow

Data platforms are the key enabler for data science and analysis at scale. Without them,

the overhead of data management, i.e., data ingestion and storage, and implementing

3.1. Data Platforms 53

Source data
ingestion

Data
processing Modeling Deployment Monitoring

Raw data Clean data Models Production
components

Monitoring
data

Experiments,
exploratory analysis,

reporting
Temporary

data
Reports

Figure 3.1: A high-level data science and analysis workflow. The boxes denote the key

processes while the icons below are the respective inputs and outputs.

data processing at scale would increase the complexity and overhead of data science

and analysis workflows by an order of magnitude. Data science describes the vari-

ous scientific methods, processes, algorithms and systems to extract knowledge and

insights from structured and unstructured data. Although data science objectives can

range widely in terms of their aims, scale, and technologies used, at a higher level of

abstraction most of them can be implemented as the workflow depicted in figure 3.1.

The boxes denote the key processes while the icons below are the respective inputs

and outputs. Depending on the objective, the focus may be on one process or another.

Some of them can be rather complex while others trivial or missing. The details of the

six steps are described below. Each step is supported by one or more data platform

capabilities:

1. Source data ingestion is concerned with collecting relevant raw data from var-

ious source systems. This data can be file-based, extracted from an API, or

consumed from a data stream. Data-platforms provide different tooling to sup-

port and automate data ingestion, such as data scheduling and pipeline services.

The ingested raw data is stored in a part of the data platform often called the data

lake (see e.g., [Miloslavskaya and Tolstoy, 2016]).

2. Data processing is concerned with turning the ingested source data into a “clean”

form, suitable for use in the subsequent modelling stage. Data processing can in-

volve changing the format of the data, applying a specific data model or schema

to the data, and filtering out or interpolating incomplete records. A plethora of

54 Chapter 3. Telemetry Platform

tools exist in the data processing space, many of them based on parallel data

processing frameworks, such as Apache Spark [Zaharia et al., 2016].

3. Modelling is concerned with using the data to build a formal model that de-

scribes the problem or question a data scientist is trying to solve. A model can be

many things, from simple statistical models to more complex supervised and un-

supervised machine learning models (see e.g., [Davison, 2003] and [Baltrušaitis

et al., 2018]).

4. Experimentation is closely related to the modelling step. Modelling and ex-

perimentation is an iterative activity to validate and improve the accuracy or

performance of the models. Data-platforms usually provide the capabilities to

build and execute models efficiently and at scale. Machine learning frameworks

like Tensorflow [Abadi et al., 2016] for example can execute model training in

parallel, taking advantage of the underlying distributed data and processing ar-

chitecture of a data platform.

5. Deployment is concerned with provisioning matured models in a production

environment, so they can be used for continuous analysis, forecasting, and pre-

diction. While not a core data platform capability, some data platform provide

integrated tools and services for model deployment based on container technolo-

gies such as Docker and Kubernetes (see e.g., [Bernstein, 2014]).

6. Monitoring is concerned with observing key parameters and performance of

the deployed models, i.e., ensuring the model is doing what we expect it to in

production. This information is fed back into the model development process

for further optimization. Common monitoring tools and frameworks, such as

Grafana [GrafanaLabs, 2020] are provided as a capability by some data plat-

forms to support this.

After this very brief introduction to data platforms, data-science and analysis work-

flows, and the relation between the two, we will now discuss how these concepts can

be applied to HPC telemetry management.

3.1.2 Application to HPC Telemetry

The main hypothesis of our work is that by applying the data platform paradigm and

architecture to HPC telemetry, we can at least partially address the main challenges that

3.1. Data Platforms 55

we have outlined in section 2.3. The rationale is that many of the telemetry-driven use

cases and architectures in HPC closely resemble those we see in other areas of “big

data”, especially in the areas of IoT and large-scale time seriesanalysis. The work-

flows of application developers and researchers are very similar to the high-level data-

science and analysis workflow outlined in the previous section. Application developers

equip their software with a multitude of sensors that continuously measure application-

specific telemetry as well as telemetry that provides insights into the environment in

which the application is operating. These can be operating-system or network metrics,

metrics extracted from the platform services, such as workload managers, or metrics

describing the progress of the simulation or computation, the application is carrying

out. The insights extracted from the collected telemetry is then used to implement

direct (autonomous) or indirect (human-in-the-loop) feedback loops to control the ap-

plication while it executes (online) and to analyse its behaviour and interaction with its

environment after the execution has finished (offline). With the steady increase of HPC

application and system size and complexity, the volume of telemetry data generated is

approaching a level that requires efficient and scalable infrastructure for storage, pro-

cessing, and analysis. Data-platforms can provide this, and, if well integrated with the

rest of the HPC ecosystem, become a commodity capability on which more efficient

research and development workflows and application architectures can build.

Applying the data platform paradigm to HPC telemetry is conceptually quite sim-

ple: a scalable data storage and processing platform that is optimized for handling

large-scale time seriesdata is built and integrated into an HPC environment. This

telemetry platform provides the capabilities required to support the six steps of the

data science and analysis workflow described in the previous section. The platform

can either be hosted on-premise or public cloud based, important is that it is acces-

sible transparently to the HPC users. The monitoring systems of the HPC platform

are configured so that they continuously deliver telemetry data to the telemetry plat-

form where it is stored within a semantic data model that reflects the structure of the

HPC platform and its applications (“digital twin”). Ad-hoc analysis of telemetry data,

e.g., for research or application development can be carried out using the integrated

data analysis tools of the telemetry platform without having to transfer the data out

first. Similarly, applications that use telemetry-driven feedback-control-loops to im-

plemented resiliency and optimization strategies can use the telemetry platform to ex-

ecute online and offline data processing and analysis tasks and provide the results back

to the executing applications via the interfaces that integrates the telemetry platform

56 Chapter 3. Telemetry Platform

with the HPC cluster.

3.1.3 Requirements

With the high-level concept of an HPC telemetry platform defined and based on the

application areas and challenges identified in chapter 2, we can now define a num-

ber of functional requirements. These requirements inform the conceptual design of

telemetry platforms. We distinguish between two types of requirements:

• must have requirements (R.F1 — R.F8) describe the basic capabilities for a

telemetry platform to cater to the most common use cases and to address the

gaps in existing solutions.

• should have requirements (R.F9 — R.F14) describe advanced capabilities that

support additional and novel use cases that go beyond basic capabilities.

The majority of requirements (R.F1 — R.F14) are defined from the perspective of

application developers and HPC researchers in an academic context. We made this

choice deliberately, as we want to focus on this specific, yet large group of users and

on the benefits and opportunities that comprehensive access to HPC telemetry gives

them. We are aware that some requirements, such as R.F2 — Open Access, R.F11 —

Shared Solutions, and R.F12 — Public Access are not generally applicable. Especially

in the commercial HPC space and in environments in which competitive, sensitive or

confidential research is carried out, these requirements can not be aligned with the

privacy and security requirements of the users. Even in more open environments, these

requirements can be challenging to satisfy. We pick this up in section 5.2.2 where we

discuss the privacy and security concerns that arise from a fully open platform and how

these can be mitigated.

Another perspective that is not represented comprehensively in the requirements

below is the perspective of the HPC resource providers and operators. For this group

of stakeholders, the potential impact on platform stability and performance, as well as

again, security and privacy are a big concern. Requirement R.F13 Usage-Based Billing

Model is currently the only requirement that comes directly from a platform operator’s

perspective and is concerned with the economic impact of a telemetry platform. We

provide some additional details on cost vs. benefit in section 5.5.

In summary, the requirements below should be read as a set of enabling require-

ments, i.e., the requirements that unlock new value for users and researchers. This is

3.1. Data Platforms 57

what this work is focusing on. As an area of future work, we propose to look into

the broader requirements of other stakeholder groups, i.e., a more comprehensive and

formal requirement analysis, and to identify potential areas of conflict and their reso-

lutions.

R.F1 Coherent Programmatic Access

A telemetry platform must allow users to access all of its capabilities and data via

well-defined, coherent and machine-readable interfaces.

One of the main use cases for a telemetry platform is the direct integration of teleme-

try data by applications. In order to achieve this efficiently, all telemetry data must be

available via a well-defined API that provides coherent syntax and semantics across all

data sources. Similar to data platforms, telemetry platforms provide additional services

that help developers to automate data processing, modelling, and analysis of telemetry

(see Figure 3.1). In order to integrate these services seamlessly into HPC applications,

these services must also be available through well-defined interfaces.

R.F2 Open Access

A telemetry platform must provide the users with open access to all application and

system telemetry.

In order to enable research and novel telemetry-based services, telemetry data must

be democratized, i.e., all data must be available to the entire user and developer com-

munity independently of the source or the producer.

R.F3 Interactive Analysis

A telemetry platform must provide user interfaces to explore and analyse telemetry

data interactively

Before telemetry-based services can be automated and integrated into HPC applica-

tions, developers often need to experiment with telemetry data in order to explore and

validate a specific algorithm or machine learning model. To enable efficient experi-

mentation, a telemetry platform must provide data-science workbenches, interactive,

graphical user interfaces with direct access to telemetry data.

58 Chapter 3. Telemetry Platform

R.F4 Coherent Semantic Data Model

A telemetry platform must organize telemetry data in a coherent semantic data model

that captures the time-variant structure, properties and state of the HPC system and

its applications.

To enable reproducibility, semantic interpretability, and cross-correlation of intra- and

inter-platform system and application telemetry, a coherent, semantic data model is

required that organizes telemetry data within a common framework of reference.

R.F5 Mutable Data Model

A telemetry platform must allow for the data model to be mutable, i.e., changeable and

extensible.

To accommodate changes in HPC systems and application architectures, the seman-

tic data model cannot be static but must permit changes and additions in structure,

properties, and state.

R.F6 Variable Data Granularity

A telemetry platform must allow users to control the granularity and sampling fre-

quency of data based on their requirements.

Requirements determining the granularity of data points in a telemetry dataset is de-

pendent on the use case. For example, an application that uses telemetry to make

long-term scheduling decisions requires a lot less granularity compared to an applica-

tion that analyses MPI communication profiles. In order to cater to a broad spectrum of

use cases, a telemetry platform should support variable, application-controllable data

granularity.

R.F7 Customized Metrics

A telemetry platform must allow users to collect their own customized metrics and em-

bed them in the coherent semantic model.

While a comprehensive set of common metrics, embedded in a coherent semantic

model should be at the core of any telemetry platform, customized metrics still play an

3.1. Data Platforms 59

important role for many use cases. Especially correlating system behaviour with appli-

cation logic requires the collection of customized application telemetry. A telemetry

platform should enable the collection of customized system and application telemetry

and interrelate them with the coherent semantic data model (see R.F4 Coherent Se-

mantic Data Model) so they can be explored and understood outside the specific use

case.

R.F8 Long-Term Persistency

A telemetry platform must provide long-term data storage capabilities to the users.

The availability of historic telemetry is important for several use cases, including com-

parative studies, long-term utilization analysis, and the application of machine learning

techniques (see section 3.2). A telemetry platform should provide mechanisms to store

and archive historic telemetry to the extent it is economically feasible.

R.F9 Scalable Data Processing

A telemetry platform must provide the users with the right tools to process and analyse

telemetry data directly on the platform.

Moving data from its storage location to a system where it can be analysed can be time

and resource consuming. Similar to data platforms, a telemetry platform must provide

users with an environment in which they can directly process and analyse telemetry

data at scale without having to move it out of the platform.

R.F10 Service Hosting

A telemetry platform should allow users to host their own application support services.

In order to reduce the complexity in HPC application design, core application capa-

bilities and auxiliary capabilities are often decoupled into separate entities (see fig-

ure 3.2) with a well-defined functional scope. While core application logic has to run

on the HPC cluster itself, auxiliary capabilities do not necessarily have to. In the case

of telemetry-based capabilities, it often makes more sense to run the capability where

the telemetry data and processing infrastructure resides, i.e., on the telemetry platform.

In order for application developers to compose the services that comprise their appli-

60 Chapter 3. Telemetry Platform

cation, a telemetry platform should provide a convenient way to host telemetry-based

support services. For example, an I/O congestion detector that continuously analyses

hardware telemetry during the runtime of an application and emits warnings via Repre-

sentational state transfer (REST) API could be configured to automatically start up on

a telemetry platform’s hosting service and expose its interface to the core application

component running on the HPC cluster.

R.F11 Shared Solutions

A telemetry platform should allow users to share their solutions with other users of the

platform.

Many resilience and optimization capabilities can be built in a generic way so that

they can become usable in more than one application. Reusability is an important

strategy to reduce redundancy across applications. A telemetry platform can enable

the development of reusable components through well-defined and coherent interfaces

to telemetry (see R.F1 Coherent Programmatic Access). To further the adoption of

reusable component, a telemetry platform should provide functionality for develop-

ers to share their solution with the rest of the HPC ecosystem, for example through a

solution marketplace approach. A solution marketplace would allow the application

developers to browse and search shared solutions and instantiate them to add a new

capability, for example, a real-time I/O congestion detector, to their own application.

R.F12 Public Access

A telemetry platform should allow users to share their analysis and the underlying data

with other users of the platform as well as to disseminate it publicly.

In order to build more confidence and enable reproducibility in systems research, sci-

entists need a way to publish and share large data sets that comprise the data points

used for the aggregated results published in a piece of scientific research. So far, data,

if shared at all, is shared outside the context in which an experiment was conducted.

Data is uploaded to university file servers or public file-sharing services. If the data

could be published and shared directly on a telemetry platform, peers could review the

data where it was produced using the provided tools and even correlate it with other

telemetry data that was collected at the same time of the experiment or any other time.

3.1. Data Platforms 61

This would be a step-change in research data management and would build additional

trust and rigour in HPC system research.

R.F13 Usage-Based Billing Model

Telemetry platform usage should integrate with the usage-based billing models of the

HPC systems it serves.

Building and continuously operating a telemetry platform can generate significant

costs for a platform provider. Depending on the use case an HPC application might

use an extraordinarily high amount of telemetry platform resources, for example, due to

high data density and velocity combined with processing-intensive analytical pipelines,

or no resources at all. A billing model that reflects the actual resource usage would

benefit both, the platform providers and the users.

R.F14 Implementation-Independent Specification

The telemetry platform, its interfaces, data model and capabilities must be described

independently of its implementation.

In order to allow for broad adoption of the telemetry platform paradigm, it is impor-

tant to keep the specification of the telemetry platform and the implementation sepa-

rate. HPC platforms come in many variants, and as a result, architectures and software

stacks can vary significantly. A telemetry platform should hence be described in terms

of its capabilities and interfaces. This will allow HPC centres and commercial vendors

to implement and integrate the platform according to their specific context, while the

applications and use cases remain portable between different implementations.

62 Chapter 3. Telemetry Platform

3.2 Opportunities

Introducing telemetry as an HPC system service can substantially change the way HPC

software is written and how applications are developed and run. It can also have a

positive impact on how HPC research is conducted and disseminated. The five oppor-

tunities we introduce in this section are the main drivers for our work.

3.2.1 HPC Systems Research

Computer science research into HPC systems and their supporting systems and ser-

vices, such as distributed filesystems or runtime systems, is one of the key drivers for

HPC system evolution. Virtually all experiments carried out on HPC systems need

to collect vast amounts of data that are then interpreted and published as part of the

scientific process. A unified telemetry management system can provide the framework

and building blocks for this scientific apparatus. Not only the collection of data but

also the long-term, immutable storage and cataloguing of results can streamline the

experimental workflow and increased the confidence in the results reported.

Especially reproducibility is still a problem in the community. A survey conducted

at the 21st International European Conference on Parallel and Distributed Comput-

ing [Hunold, 2015] revealed that the majority of the participants believe that the state

of reproducibility needs to be improved in the domain of parallel and high-performance

computing and that the majority of the results presented in papers that they receive for

review are unlikely to be reproducible. While a telemetry management system alone

will not solve this issue, it can still contribute to the solution through:

(i) Providing research-friendly environments: The development and testing of

new and experimental HPC system features and service can not be conducted

on live HPC systems. While the damage caused by unexpected application be-

haviour is usually limited to the user’s context, faulty system services can poten-

tially impact the productivity of an entire HPC user community. For this reason,

most systems research has to be conducted in isolated sandbox environments.

This presents the keen systems researcher with a problem: the isolated environ-

ments that they need to conduct exploratory research can be very difficult, com-

plex and costly to build, set up, evolve and maintain. It can require everything

from setting up hardware, to the orchestrated management of operating systems,

shared file systems and HPC services. Unless a shared testbed environment is

3.2. Opportunities 63

jointly managed and operated within a larger research group, it is very difficult

for the individual researcher to embark on such an effort alone.

(ii) Enabling reproducible and comparable results: The second problem that re-

searchers and experimental systems engineers are confronted with, is to ensure

the reproducibility, preservability and documentation of their experimental envi-

ronments. Good research practice demands that published results can be repro-

duced and build upon by peers. In the case of HPC systems research, this might

require the reproduction of an entire sandbox environment to use the tools and

apply the methods that were used in the original work. That this process is still

far away from being trivial and widely adopted was shown by a 2015 study [Ivie

and Thain, 2018] conducted across 400 ACM conference and journal papers.

The results of this study showed that only 85 papers (21.2%) provided links to

their codes. The study showed further that only the codes of 32.3% of the papers

could be recreated within 30 minutes, the codes of another 16% of the papers

could be rebuilt with extra effort, and that it was difficult or even impossible to

rebuild the codes of the remaining 51.7% papers.

3.2.2 Decoupled Application Architectures

The main value proposition of the telemetry platform approach is that it efficiently or-

ganizes all services around telemetry management and usage in a platform and exposes

its capabilities as a service. Conceptually, it proposes a separation of concern between

telemetry management functionality and other, more application-specific functionality

or domain logic. Figure 3.2 shows two different levels of decoupling: on the left-hand

side, it shows a typical monolithic application architecture (as e.g. found in [Jha et al.,

2007b]) where all the components required for telemetry management as well as re-

siliency and optimization functionality are part of the same application. This design

has four significant drawbacks to consider:

(i) It is difficult to share the telemetry collected within the application context with

other applications or users, and it requires extra effort to disseminate it as a

supporting data asset for a publication.

(ii) A lot of application complexity is encoded outside the application core logic.

This can bloat the application code significantly and add additional sources of

failure that can lead to a decrease in overall application stability and reliability.

64 Chapter 3. Telemetry Platform

(iii) Application-specific telemetry management components are often developed for

specific cluster architectures and system telemetry extraction points. This can

make it difficult to “port” the application to other systems.

(iv) If embedded in an application monolith, resiliency and optimization logic often

becomes difficult to reuse as it is usually tightly coupled with custom telemetry

management and domain logic.

Adaptive
Building Blocks

Adaptive
Building Blocks

Telemetry
Telemetry

Management

Resiliency &
Optimization

“Domain
Logic”

Analysis
Tools

Application

HPC
Telemetry

Telemetry

Telemetry
Management

HPC
Telemetry

An
al

ys
is

To
ol

s

Te
le

m
et

ry
 P

la
tfo

rm

Resiliency &
Optimization

“Domain
Logic”

Resiliency &
Optimization

Building Blocks

“Domain
Logic”

Applications

c)

b)

a)

Figure 3.2: This component diagram shows how a telemetry platform can help to de-

couple monolithic application architectures (a) into more service-oriented architectures

in which telemetry management is consumed as a service (b) and resiliency and opti-

mization buildings blocks can be reused (c).

The right side of figure 3.2 shows how a telemetry platform can help to address

these four issues by allowing more service-oriented application architectures in which

telemetry management (b) and resiliency and optimization building blocks (c) can be

integrated into an application design via loosely coupled capabilities. Especially since

the development of telemetry management, resiliency and optimization capabilities

are complex and do not contribute to the scientific advancement of an application it-

self, these capabilities are attractive candidates for consumption as a service as it will

decrease effort and cognitive load on the application developer. Instead of explicitly

postulating new, more decoupled application designs, a telemetry platform presents the

opportunity to provide the right incentives for these architectures to evolve naturally.

3.2. Opportunities 65

3.2.3 Resiliency and Optimization

With the growing complexity and scale of HPC systems, application performance vari-

ation has become a significant challenge for efficient and resilient system management.

Resilient execution covers a broad spectrum of methods and tools that are designed to

prevent HPC applications from entering an unexpected, terminal state of failure. A ter-

minal state of failure is a state in which the application has stopped execution before it

has produced its expected results and from which it cannot recover. The causes can be

manifold: application crash due to faulty platform hardware and application crash due

to application (software) bugs, but also premature termination of the application by the

scheduler can be listed. The reasons for the latter again are manifold and can range

from applications exceeding their allocations (or wall clock time) to resource retention

by the scheduler in favour of a more “urgent” application [Beckman et al., 2007].

Another consequence of the complexity is, that only large projects with enough

resources and domain-specific expertise can afford to implement telemetry-based op-

timization and resilience patterns. For many smaller projects, this remains infeasible,

which effectively creates a two-class system in which some applications become highly

efficient HPC system tenants with a near-optimal return on investment (billed CPU

hours), while others, the long tail, are often forced to remain in a suboptimal space.

Supporting the long tail of applications by making telemetry more accessible will al-

low the HPC community to move from resilience and optimization point solutions and

custom tooling to solutions that are much easier to implement, adapt, and share. If

more applications can benefit from telemetry-driven optimization and resilience pat-

terns, both, the efficiency and ultimately the scientific productivity of the individual

applications can be increased. This would lead to an overall efficiency increase for

HPC systems by reducing unproductive utilization of resources that are caused by

hardware and software failures, human error, suboptimal resource usage, and inade-

quate adaption to new architectures. In conclusion, the key improvements that our

HPC telemetry platform can bring to resilient and optimizing software architectures

can be summarized as:

(i) Lower adoption barrier: without having to consider the inherent complexity of

telemetry extraction, transport, storage, and analysis, we argue that the adoption

of advanced resilient and optimizing application architectures becomes much

easier.

(ii) Optimized data handling: with telemetry data handling managed centrally by

66 Chapter 3. Telemetry Platform

a specialized system, common pitfalls and mistakes that can lead to unexpected

and hard to diagnose side effects can be avoided effectively.

(iii) Reduced redundancy: with telemetry management services in place, redundant

implementations of telemetry management capabilities at the application level

can be reduced to a minimum. This reduces both development effort and time.

Together, these improvements help with a wider adoption of advanced architecture pat-

terns that rely on telemetry, which would in turn contribute to an overall more stable

and optimized HPC application landscape. This ultimately leads to increased scientific

application throughput and better utilization of HPC resources. In the wake of emerg-

ing exascale systems and applications, an increased range of resilient and optimizing

architectures becomes increasingly important.

3.2.4 Machine-Learning Approaches

With growing size and complexity of HPC systems, both the volume of data, and the

variation of system and application behaviour and anomalies observed in that data

will increase as well. Resiliency and optimization techniques, especially at scale, and

when developed to support a broader set of applications and use-cases, will need to

apply advanced data processing and analysis techniques to cope with the volume and

variation. As an alternative to more explicit approaches, machine learning-based (ML)

approaches are becoming increasingly popular and a novel body of work is emerg-

ing in the HPC literature that is concerned with applying ML algorithms to resiliency

and optimization problems. Especially online-approaches [Fontenla-Romero et al.,

2013], i.e., ML algorithms and architectures that can predict and classify on real-time

data can help to alleviate systemic issues around premature job termination, reduced

performance, and wasted HPC platform resources. [Tuncer et al., 2017a] for exam-

ple compares ensemble learning techniques to classify different commonly observed

anomaly types, such as memory leaks, CPU throttling due to thermal issues, and re-

source contention. In [Bhatele et al., 2015], the authors apply supervised learning

algorithms, to perform regression analysis on network and communication telemetry

in order to create models to predict the execution time of communication-heavy par-

allel applications. Another example can be found in [Kasick et al., 2010], which uses

CPU instruction-pointer samples and function-call traces to identify issues with PVFS

I/O node servers.

3.3. Related Work 67

A critical problem in automated anomaly diagnosis based on application and sys-

tem telemetry is the overwhelming volume of data collected and processed at run-

time [Ibidunmoye et al., 2015]. While ML-based approaches can significantly allevi-

ate the data processing pressure at runtime, it still requires data infrastructure support

and support for large-scale data processing for offline model training. Out of the ex-

isting research we have surveyed, only a few provide any details of the development

workflow and implementation architecture utilized. The ones that do, suggest that the

telemetry data used for model training was manually transferred from the HPC plat-

form to a separate system where the model training and analyses were conducted. Due

to these data management and infrastructure challenges, the application of ML-based

approaches remains difficult and mostly confined to research prototypes and proof-of-

concepts. Our telemetry platform provides the foundation critical to wider adoption

and application through:

• Long-term data storage: One key requirement for effectively applying ML-

based techniques is the availability of “historic” data, e.g., telemetry data from

previous HPC application runs for training of ML models. A telemetry plat-

form provides these long-term telemetry data storage capabilities along with the

facilities necessary to efficiently manage it.

• Processing at scale: The second challenge for ML-based techniques is prepar-

ing and processing telemetry data at scale as part of the model training work-

flow. Adopting the basic architecture properties of data platforms, a telemetry

platform provides scalable compute capabilities and capacity colocated with the

telemetry data. This makes complex and error-prone manual data transfers into

and out of the HPC platform as well as the need to provision external data pro-

cessing facilities redundant.

As one of the new and promising data-driven approaches in HPC application and sys-

tem resilience and optimization, we use machine learning based application anomaly

detection as the evaluation use-case for our telemetry platform prototype in chapter 6.

3.3 Related Work

The telemetry platform concept builds on the work that has been done in the area of

HPC systems monitoring. The idea that systems monitoring approaches leave out the

68 Chapter 3. Telemetry Platform

users of the system and that a subset of monitoring data in a format users can easily

interpret and utilize has been discussed in [Moore et al., 2015]. As part of an initiative

to open monitoring data to users at Los Alamos National Laboratory, the authors pro-

pose a concrete architecture combining a back-end data transport layer based on Rab-

bitMQ [Videla and Williams, 2012] and a web-based front-end interface that provides

telemetry access for users. While the motivation of their work is similar to ours, their

approach does not consider applying a holistic data platform architecture but rather

focuses on telemetry transport and presentation. A similar motivation and approach

are presented in [Thaler et al., 2020]. Here the authors present a hybrid approach to

HPC telemetry and hardware log analytics. Their approach focuses on data extraction

and transport at scale. Similar to our approach, they use Apache Kafka [Kreps et al.,

2011] as a data stream broker between the telemetry collection components (producer)

and data analysis components (consumer). Neither of the two approaches explicitly

discusses telemetry data models.

A closely related area of research and practice is data centre telemetry. Data centre

telemetry platforms try to solve a related problem, namely the collection of data that is

generated by the hardware, software, and applications in a data centre. Open standards

exist for data centre telemetry, such as OpenTelemetry [Ferreira, 2021], a collection

of tools, APIs, and SDKs to instrument, generate, collect, and export telemetry data.

Commercial vendors of monitoring and telemetry platforms, such as Datadog [Data-

dog, 2021] and AWS CloudWatch [Services, 2021] support these open standards and

provide telemetry collection and storage capabilities at extreme scales and can be pro-

visioned and consumed as a (cloud) service. In terms of their design and capabilities,

these standards and systems have the closest resemblance to what we envision as an

HPC telemetry platform. It would be conceivable to build an HPC telemetry platform

around these services and standards. The main differences between these and the ap-

proach we propose are twofold. Firstly, we propose an explicit telemetry data model

that provides explicit insights into the “physical” structure of an HPC platform, its ap-

plications, and the relationship between the two. These structures are only implicitly

discoverable in existing data centre telemetry approaches. Secondly, compared with

existing data centre telemetry approaches, we propose a much closer integration be-

tween telemetry management, analysis, and application feedback loops into a single,

coherent platform. While we don’t consider it in this work, some aspects of Open-

Telemetry, such as metric taxonomy and nomenclature could certainly be re-used or

adapted for the data models and interfaces we propose.

3.3. Related Work 69

Another category of related work worth mentioning here is (Grid) Information Ser-

vices. They are of relevance to our work as they approach telemetry from a more user-

and developer-centric viewpoint rather than from the viewpoint of a system operator.

They provide particularly interesting insights, as many initiatives for HPC system in-

formation data standards and interfaces were rooted in, and driven by the distributed

computing communities. Grids are a form of distributed computing where many net-

worked, loosely coupled computers acting together to perform very large tasks. While

many Grids in the early days consisted of very heterogeneous computing resources,

from cluster nodes to idle workstations to home computers (volunteer computing),

Grids have more and more merged into grids of HPC systems. Commonly used Grid

systems include, Globus Toolkit [Foster, 2006], Condor [Thain et al., 2003], and the

Advanced Resource Connector (ARC) [Ellert et al., 2007]. All Grid computing ap-

proaches have in common that they need to understand the state and dynamic proper-

ties of their distributed resources in order to make informed decisions about workload

placement and to mitigate failures that are omnipresent in a dynamic, distributed envi-

ronment. Pegasus [Deelman et al., 2015], a distributed workflow system, for example,

relies on process-level telemetry to schedule workflow tasks across federated HPC in-

frastructure and to provide resilience and fault-tolerance. It uses an execution wrapper,

which acts in between the remote scheduler and the executable, gathering telemetry

about the executable run-time behaviour. Another example is our development, RAD-

ICAL Pilot [Merzky et al., 2015b], a distributed task scheduling framework, which

also uses execution wrappers to collect telemetry, as well as to discover system proper-

ties like the number of cores and memory per node, that are then used to optimize the

internal task scheduler for a particular system. All these systems expose some form of

telemetry data model and interface to their users. Globus Toolkit for example provides

the Metadata Service (MDS4) [Schopf et al., 2006a], and ARC provides the ARC In-

formation System [Kónya and Johansson, 2010]. The Open Grid Forum (OGF)1 has

developed an open interface standard and data model for Grid telemetry. This standard

is for example implemented in the Simple API for Grid Applications (SAGA) [Goodale

et al., 2006] which provides the foundation for RADICAL Pilot. None of the systems

and approaches however explicitly capture system and application structure and its

temporal variance as we propose it with our telemetry graph approach.

This section provides only a small snapshot of related work. Other related work is

1https://www.ogf.org/ogf

70 Chapter 3. Telemetry Platform

mentioned wherever appropriate in the remaining chapters.

3.4. Summary 71

3.4 Summary

We have identified several opportunities in the areas of HPC application develop-

ment and platform services that would benefit from a new, more structured approach

to telemetry management, namely, improving system research workflows, increasing

portability and reusability of applications and services, a wider proliferation of resilient

and optimizing architectures, and enabling novel resiliency and optimization methods

based on machine learning and artificial intelligence. These opportunities suggest that

telemetry management needs to play a more central role in HPC system infrastructure

and services as a lot of advanced use cases rely on the availability of and easy access

to telemetry. A more overarching opportunity for rethinking telemetry management

is to build the foundation for upcoming exascale systems [Allcock et al., 2011]. The

inevitably increasing error rates of these systems as a result of scaling up, and com-

plexity that is becoming increasingly difficult to grasp and manage by human actors

put telemetry at the centre of the stage as the enabling technology for a new genera-

tion of smart adaptive and resilient systems and applications. Next, we will define a

formal telemetry data model to address some of the requirements we have listed in this

chapter.

Chapter 4

Telemetry Data Model

Our survey of related work, use cases and requirement analysis has provided us with

clear indicators that one of the important missing capabilities in the existing HPC

telemetry landscape is a data model that makes telemetry easy to organize and un-

derstand and that makes it universally interpretable and comparable. Consequently,

a data model to organize telemetry must be at the centre of any telemetry platform.

In this chapter, we introduce our telemetry data model called telemetry graph, which

is based on a time-variant labelled multigraph to represent the evolving and changing

structure of HPC system, applications, and the relationship between the two. We begin

this chapter with the high-level design concepts of the telemetry data model and how

the requirements defined in chapter 3 are reflected in them (4.1). In the next section

(4.2), we provide a formal definition of the graph model, and in section 4.2.4 we de-

scribe how telemetry is embedded and organized within it. In section 4.3 we show

by example how our abstract model definition can be instantiated for a common HPC

system architecture. Lastly in section 4.4, we present a hybrid database design based

on both a graph- and a time-series-database.

4.1 Design Concepts

The telemetry data model provides a structural and semantic framework for organiz-

ing telemetry data. It is a representation of concepts and the relationships, constraints,

rules, and operations to specify telemetry data semantics. Our aim is not to introduce

yet another platform- or application-specific model orthogonal to already existing ap-

proaches. Instead, driven by the challenges and requirements we have identified, we

set out to develop a more generic, extensible data model that is platform and applica-

73

74 Chapter 4. Telemetry Data Model

tion agnostic and can incorporate existing telemetry data sources in a common context.

In order to address current issues and to better support telemetry-driven use cases, we

have defined a number of functional and non-functional requirements for a telemetry

platform in chapter 3. While many of the requirements aim at telemetry platform capa-

bilities, several requirements are directly relevant for the design of the telemetry data

model. These are:

R.F4 Coherent Semantic Data Model: A telemetry platform must organize telemetry

data in a coherent semantic data model that captures the time-variant structure, prop-

erties and state of the HPC system and its applications.

R.F5 Mutable Data Model: A telemetry platform must allow for the data model to be

mutable, i.e., changeable and extensible.

R.F6 Variable Data Granularity: A telemetry platform must allow users to spec-

ify the granularity and sampling frequency of databased on their requirements.

R.F7 Customized Metrics: A telemetry platform must allow users to collect their

own customized metrics and embed them in the coherent semantic model.

R.F14 Implementation-Independent Specification: The telemetry platform, its in-

terfaces, data model and capabilities must be described independently of its imple-

mentation.

The first two require the data model to exhibit a flexible and extensible semantic struc-

ture, while the other two require the data model to accommodate flexible and extensible

telemetry data. From these, we derive two main design concepts for the telemetry data

model: (1) using graphs as semantic structure, and (2) a distinction between abstract

and concrete model. Graphs provide an intuitive abstraction to capture the time-variant

structure, properties and state of the HPC system and its applications, while at the same

time allowing for the model to remain changeable and extensible. Distinguishing be-

tween an abstract model definition and concrete realizations allows us to apply the

same concepts and structure to different platform and application models. In the fol-

lowing sections, we will discuss both aspects in more detail.

4.1. Design Concepts 75

4.1.1 Graphs as Semantic Structure

Ideally telemetry is represented in a semantic context that represents the structure and

properties of the HPC system and its applications at the time of its collection. This goes

back to the idea of creating a “digital twin”, i.e., a digital replica of the elements and

dynamics of HPC system and applications. In such a context, telemetry data becomes

universally understandable and interpretable.

We call those structures and their interrelationship anatomies. Anatomies are mod-

elled as time-variant graphs and provide the overarching structure for all telemetry in a

telemetry platform. We distinguish between platform anatomy, which represents struc-

ture and properties of the HPC platform, and application anatomy, which represent the

structure and properties of the applications running on it. Anatomies are composed of

a fixed set of relevant component types, but the lifetime of these components and the

relationships between them can evolve over time. Hence, we have a dynamic semantic

structure. Platform anatomy for example, could be the intra- and inter-node hardware

layout. Component types could for example be ”node”, ”CPU”, ”network interface”,

and so on. An example for application component types could be ”operating-system

processes” and ”threads”.

We call the mapping between the evolving platform and application anatomies al-

locations. An allocation can for example be the representation of a thread running on

a specific CPU core of a node. Together, anatomies and allocations form a holistic

semantic structure for platform and application telemetry.

4.1.2 Abstract and Concrete Model

In order to fulfil requirement R.F14 Implementation-Independent Specification, we dis-

tinguish between the abstract model definition and its concrete instantiations. The ab-

stract model describes the rules on how the structure and semantics of an HPC system

and application ecosystem can be realized. It does not make any specific assumptions

about the architecture of HPC systems and applications. The only assumption it makes

is that there is one type of structure describing a platform and another type of structure

describing the applications and that these two structures interact with each other when

the application is executed on the platform. A concrete model instantiates the abstract

model for a specific context. This context is defined by a specific platform and appli-

cation architecture and maps the abstract structural components to concrete ones, for

example “nodes”, “CPUs”, and “processes”. We make this distinction to avoid defin-

76 Chapter 4. Telemetry Data Model

ing a data model that is too narrow or opinionated. Splitting up the information into an

abstract model and concrete realizations also allows us to evaluate the data platform

concept with a simple model that is sufficient for this research without claiming to be

generally applicable. Ideally, if the HPC communities adopt the data platform concept,

a few common concrete models would emerge within those communities. With all the

different concrete models adhering to a common abstract model, they can exist within

the same data platform implementation.

4.2 Abstract Graph Model

We distinguish between an abstract model and concrete realizations of it. The abstract

model, which is formally introduced in this section, describes the graph model and the

relationship between vertices and edges without predefining the vertex types and edge

types. These are only defined in a concrete realization of the model of which we give

an example later in this chapter. We define the semantic structure of HPC system and

applications formally as a labelled, directed multigraph, called the telemetry graph1.

The basic definition of a telemetry graph is as follows:

T G = (V,E,s, t,ΣV ,ΣE , `V , `E) where (4.1)

V is a set of vertices, and E is a set of edges,

s : E→ V assigning to each edge its source vertex,

t : E→ V assigning to each edge its target vertex,

ΣV and ΣE are finite alphabets of the available vertex and edge labels

`V : V → ΣV a map describing the labelling of the vertices,

`E : E→ ΣE a map describing the labelling of the edges.

1Multiple multigraph definitions exist in the literature. We follow the definition found in [Diestel,
2000] and [Bollobás, 2013] where multigraphs are allowed to have loops, i.e., edges that connect a
vertex to itself. Other authors call these pseudo-graphs, reserving the term multigraph for the case with
no loops.

4.2. Abstract Graph Model 77

v2 v3 v4 v5

v1

v2 v3 v4 v5

v1

v2 v3 v4 v5

v1
v6 v7

t=
0

t=
1

t=
n

v1 v2

v4 v3

AA(0)

v1v1

3

1

2

54

TG(0) PA(0)

v1 v2

v4 v3

v1

PA(1)

v1

TG(1)

v1 v2

v4

v1

PA(n)

v1

TG(n)

AA(1)

AA(n)

3
2

54

3

1

2
5

4

1

2
3

2
3

2
3

Figure 4.1: The telemetry graph (T G) consists of the time-variant application anatomy

(AA) and platform anatomy (PA) graphs and the mapping between the two via allocation

edges. Vertex and edge colours illustrate their types and are used throughout this

chapter.

The rest of this section unfolds this definition further into the specific properties of a

telemetry graph:

• Platform anatomy (PA) and application anatomy (AA), sub-graphs of T G, which

present the platform and application components and their relationships.

• Structure edges, which capture the “physical” structure of platforms and appli-

cations.

• Interaction edges, which capture interactions between components.

• Allocation edges, which connect platform and application sub-graphs and inform

the localities of application components within a platform.

• Attributes, which further qualify the labels (`V , `E) and distinguish between Prop-

erties, Measurements, and Events.

78 Chapter 4. Telemetry Data Model

Figure 4.1 shows a simplified example of an abstract telemetry graph and its compo-

nents. An application (left) is modelled as an application anatomy (AA) sub-graph,

consisting of a number of vertices (blue), i.e., application components, (e.g., pro-

cesses or threads) and a number of structure edges (blue) and interaction edges (pur-

ple). The HPC system (right) is modelled as a platform anatomy (PA) sub-graph,

consisting of a number of vertices (violet), i.e., platform components (e.g., nodes,

CPUs, or cores), and a number of structure edges (violet) and interaction edges (or-

ange). The centre of the figure shows and overlay of both, (PA) and (AA) which

represents allocation of application to platform components (green), i.e., the com-

plete telemetry graph T G (AA interaction edges were omitted to increase legibility).

The changing structure from top to bottom (t = 0, ..., t = n) shows the time-variance of

all vertices and edges in a telemetry graph. In a concrete instantiation of this abstract

telemetry graph, we could for example identify PA vertices as CPUs and AA vertices

as processes or threads of an application. We discuss a concrete example of a model

instantiation in section 4.3. The next section defines platform and application anatomy

graphs in more detail.

4.2.1 Anatomy Sub-Graphs

Anatomy sub-graphs model the structure of HPC systems and applications. Con-

sequently, we distinguish between platform anatomy graphs (PAi) and application

anatomy graphs (AA j). Together, (PAi) and (AA j) comprise the complete telemetry

graph (T G). Under the assumption that any HPC system will run more than one job,

sequentially or in parallel, having multiple AA j, i.e., j > 1 is intuitive. We also chose

to allow multiple PAs, i.e., i > 1, to make the model applicable to federations of HPC

systems in the future. All discussions and practical examples in this work assume a

single platform, i.e., i = 1. To reflect the distinction between application and platform

anatomy graphs, we expand the definitions of V and E in equation (4.1) with a distinct

set of platform and application anatomy vertices and edges:

4.2. Abstract Graph Model 79

V = (VPAi,VAA j) where (4.2)

VPAi () is a set of platform, and VAA j () a set of application vertices.

E = (EPAi,EAA j) where

EPAi is a set of platform, and EAA j a set of application edges.

With this definition in place, we can now distinguish between vertices and edges that

belong to an application’s structure and vertices and edges that belong to an HPC

system’s structure. By “structure” we mean the representation of applications and

platforms at the operating-system and hardware levels, i.e., their composition of (dis-

tributed) processes, threads, other operating-system primitives, nodes CPUs, cores, and

so on. Next, we define two types of platform and application edges that will help us to

model structure and interaction within the anatomy sub-graphs.

Structure Edges

Structure edges are one of two edge types in the telemetry sub-graphs. They represent

the underlying logical or physical structure that organizes platform and application

components. Structure edges can only be defined between vertices of the sub-graph-

type, i.e., they can connect platform edges EPA to platform edges and application edges

EAA to application edges. They cannot connect application edges to platform edges and

vice versa. This is handled by allocation edges which are described in section 4.2.2.

To reflect the distinction between application and platform structure, we expand the

definitions of s and t in equation (4.1) with distinct mapping functions for platform

and for application structure:

s = (sStructAA,sStructPA) where (4.3)

sStructAA : EAA→ VAA assigning each application structure edge () its source VAA,

sStructPA : EPA→ VPA assigning each platform structure edge () its source VPA.

t = (tStructAA, tStructPA) where

tStructAA : EAA→ VAA assigning each application structure edge () its target VAA,

tStructPA : EPA→ VPA assigning each platform structure edge () its target VPA.

80 Chapter 4. Telemetry Data Model

With structure edges in place, we can now create a telemetry graph that can represent

the structure of an HPC system and its applications as individual sub-graphs. In order

to model the interaction between individual platform and application components, we

define interaction edges next.

Interaction Edges

Interaction edges are used to model interactions between components. Interaction

edges can be defined (1) between vertices of the same platform anatomy sub-graph, (2)

between the vertices of different platform anatomy sub-graphs (in federated systems),

(3) between vertices of the same application anatomy sub-graph, and (4) between the

vertices of different application anatomy sub-graphs. An example for (1) would be net-

work interface controller components connected via interaction edges to store network

telemetry. An example for (3) and (4) would be the operating-system processes of

an application (3) or across multiple applications (4) connected via interaction edges

to store telemetry on interprocess communication. Beyond these rules, the abstract

model does not define any concrete interaction edges. Analogous to structure edges,

we are adding interaction edges to the model definition in equation (4.1) as two distinct

mapping functions for the platform and for application interaction2:

s = (...,sInteractAA,sInteractPA) where (4.4)

sInteractAA : EAA→ VAA assigning each application interaction edge () its source VAA,

sInteractPA : EPA→ VPA assigning each platform interaction edge () its source VPA.

t = (..., tInteractAA, tInteractPA) where

tInteractAA : EAA→ VAA assigning each application interaction edge () its target VAA,

tInteractPA : EPA→ VPA assigning each platform interaction edge () its target VPA.

With interaction edges defined, we now have a complete definition for application and

platform sub-graphs that can capture both, the structure and the interaction between

application and platform vertices. However, the model does not yet allow us to de-

fine connections between application and platform sub-graphs. To solve this, we next

introduce another type of edge to the model: allocation edges.

2The use of ... in equation (4.4) denotes that this is an extension of previous definitions

4.2. Abstract Graph Model 81

4.2.2 Allocations

Allocation edges allow us to model interaction between application and platform sub-

graph vertices. Conceptually, a connection between the two means that an application

is “running on the platform”, i.e., consuming platform resources, for example, an ap-

plication process (EAA) is consuming CPU and memory resources (EAA). To reflect

that allocation edges are not part of either the PA or AA sub-graphs, we add a new set

of edges (EAlloc) and corresponding mapping functions sAlloc and tAlloc to the definition

in equation (4.1)3:

E = (...,EAllock) where (4.5)

EAllock is a set of allocation edges, and

s = (...,sAlloc) where

sAlloc : EAlloc→ VAA j assigning each allocation edge () its source VAA.

t = (..., tAlloc) where

tAlloc : EAlloc→ VPAi assigning each allocation edge () its target VPA.

With the telemetry graph model extended to allocations, we can now represent the full

telemetry graph as shown in figure 4.1: we can model the structure of applications

and platforms, the interaction between components within applications and platforms,

and, via allocations, the interaction between the two. Next, we will describe how

time variance can be added to the model, i.e., how to capture changes in structure,

interaction, and allocation over time, and how telemetry data is embedded in our graph

model.

4.2.3 Time-Variance

Both application and platform structures are not fixed but change continuously through-

out the evolution of the platform and applications. Consequently, the telemetry graph

is time-variant, i.e., the relationship between edges as well as the existence of edges

evolves with time. Platform providers might commission, decommission, or upgrade

3The use of ... in equation (4.5) denotes that this is an extension of previous definitions

82 Chapter 4. Telemetry Data Model

compute nodes, add data storage, networking, or special-purpose compute (GPUs, FP-

GAs) capabilities of an HPC system during scheduled or unscheduled maintenance

cycles. Advanced platform management systems might have the capability to change

topologies dynamically during normal operations. Hardware and software failures

might render a subset of nodes or a storage subsystem temporarily unavailable. All

these are changes in structure that are of vital importance to applications that want

to implement optimization and resilience strategies and hence must be captured in a

telemetry information model. Similarly, application structure can change across mul-

tiple design iterations or different runs (e.g., with different numbers of processes), but

also within the trajectory of a single execution4. Especially in non-monolithic, dy-

namic applications, changes in structure are quite commonplace and are a vital piece

of information to interpret telemetry data. In order to capture time-variance in the

telemetry graph, we add time index to the telemetry graph definition that describes the

graph at a given time τ:

T G(τ) = (V (τ),E(τ),s(τ), t(τ),ΣV (τ),ΣE(τ), `V (τ), `E(τ)) where (4.6)

τ is a given instant in time

The temporally ordered graph sequence T G= 〈T G(1)...T G(j)...T G(m)〉 describes the

evolution of the telemetry graph over time. A specific T G(τ) describes the platform

and application components, their structure, and interaction at time τ.

4.2.4 Embedding Telemetry Data

With the abstract model definition in place, providing a well-defined structural and

semantic context, we can now define how telemetry data is embedded into this model.

We define three types of telemetry data: properties, measurements, and events. They

are attached as labels on vertices (,), interaction edges (,) and allocation edges

() (figure 4.2). Structure edges do not have telemetry data associated with them, as

they represent the logical and physical structure of applications and platform at any

given instant in time. Properties are a single value describing a vertex or an edge in

4For examples of applications with dynamically changing structures, see e.g., [Liang et al., 2020]
and [Balasubramanian et al., 2016].

4.2. Abstract Graph Model 83

the graph. node name for example could be a property capturing the hostname of a

node. Properties are mutable, meaning that they can change over time, but the change

frequency is rather low. Measurements on the other hand are a continuous series of

data points describing the behaviour of a vertex or an edge over time. A concrete

measurement could for example be Free Memory, capturing the free memory available

on a node over time. Measurements are immutable and can not be changed — only

new data points can be added. The third type of data is event data. They describe an

event associated with a vertex or an edge. For example, a Terminated event emitted

from an application process. A single, mutable value is associated with each event.

v1

v2

v0

v1

v2

v0

AA PA

events
properties
measurements

events
properties
measurements

events
properties
measurements

events
properties
measurements

events
properties
measurements

Figure 4.2: We define three types of telemetry data: properties, measurements, and

events which can be attached as labels on vertices, and interaction and allocation

edges.

For each type, we further distinguish between model-defined and user-defined data.

Model-defined data is homogeneous across all vertices and edges of the same type.

For example, if in a concrete model we define a compute node vertex type, we could

define node name and num cpus as platform defined properties. It is then the responsi-

bility of the telemetry platform to extract the values for these properties from the HPC

system and update it across all compute node vertices. User-defined properties on the

other hand do not have to be homogeneous across all vertices and edges of the same

implementation type, only across those of a specific application anatomy graph under

control by the user. For example, a user might define a custom property called algo-

rithm on a process vertex that describes which internal algorithm variant was chosen

by that specific process, or a mesh density property on a thread vertex representing the

internal state of an HPC application.

84 Chapter 4. Telemetry Data Model

Properties

Properties represent information that stays constant throughout the lifetime of a vertex

or edge. Each element can have an arbitrary number of properties. We use graph labels

to define properties within the telemetry graph

ΣV P and ΣE P finite set of available vertex and edge properties (4.7)

`V P : V → ΣV P map describing the properties of the vertices

`E P : V → ΣE P map describing the properties of the edges

This extends the definition of the telemetry graph to:

T G = (ΣV P,ΣE P,V,E,s, t, `V P, `E P) (4.8)

A property (P) is defined by a property key (λ) and a property value (ρ), where property

value is a single scalar type:

P = (λ,ρ) (4.9)

Every concrete implementation of the telemetry graph defines a fixed set of prop-

erty types for each vertex and edge type as the system-defined properties. For exam-

ple, for a RAM vertex type, we could define total as a system-defined property type.

These properties are guaranteed to exist for every vertex or edge of the same type and

throughout the lifetime of the graph. They are continuously populated by the teleme-

try platform. An arbitrary number of user-defined property types can be defined ad

hoc. User-defined properties are not guaranteed to exist consistently across vertices

and nodes and throughout the lifetime of the graph. It is the user’s responsibility to

populate them with data.

Measurements

Measurements represent dynamic information that can be associated with any element

of the telemetry graph. Each element can have an arbitrary number of measurements.

Just like properties, measurements are defined as graph labels:

4.2. Abstract Graph Model 85

ΣV M and ΣE M finite set of available vertex and edge measurements (4.10)

`V M : V → ΣV M map describing the measurements of the vertices

`E M : V → ΣE M map describing the measurements of the edges

This extends and completes the definition of the telemetry graph to:

T G = (ΣV M,ΣV P,ΣE M,ΣE P,V,E,s, t, `V M, `E M, `V P, `E P) (4.11)

A measurement (M) is defined by a measurement key (κ) and a measurement value (σ),

where measurement value is a time-series:

M = (κ,σ) (4.12)

σ = {σt : t ∈ T} where T is the (time) index set.

Every concrete implementation of the telemetry graph defines a fixed set of mea-

surement types for each vertex and edge type as the system-defined measurements.

For example, for a RAM vertex type, we could define available, used, and free as

system-defined measurement types. These measurements are guaranteed to exist for

every vertex or edge of the same type and throughout the lifetime of the graph. They

are continuously populated by the telemetry platform. An arbitrary number of user-

defined measurement types can be defined ad hoc. User-defined measurements are not

guaranteed to exist consistently across vertices and nodes and throughout the lifetime

of the graph. It is the user’s responsibility to populate them with the data.

Events

We distinguish between three different types of events: structure events, interaction

events, and allocation events. Structure events capture the creation and destruction

of platform and application entities, such as a new node being added to an existing

cluster or a new process spawned by an application. Interaction events capture the

86 Chapter 4. Telemetry Data Model

beginning and end of an interaction between two entities, and allocation events the

beginning and end of an allocation of application to platform entities. Events consist

of a timestamp, an entity type, and event type. The timestamp defines the time at which

the event occurred. Entity type defines the (concrete) node or vertex type the event

is associated with and event type is either created or destroyed. Parent, from, and to

define the location of the new entity within the semantic structure.

Events are a key concept of the telemetry model as they capture the time-variant struc-

ture of the semantic graph. Through events, the semantic structure of platforms and

applications is linked to and extracted from telemetry data. Creation events cause the

insertion of new vertices and edges into the graph. Destruction events cause their re-

moval.

4.3 Concrete Example

In this section, we demonstrate how the telemetry data model can be applied to the

anatomy of a multi-tenant Beowulf [Becker et al., 1995] style HPC cluster architecture

that builds on compute nodes of commodity computing and networking hardware (fig-

ure 4.3). We chose this type of architecture as it is probably the single most common

system architecture found in the HPC landscape. Also, common to this architecture

and included in this example is a shared filesystem that is available across all compute

nodes and served by a central file server. On the system software architecture side, we

assume a UNIX-style operating-system [Ritchie and Thompson, 1978] implementing

a standard UNIX process model and batch workload manager managing access to the

resources. To add some of the heterogeneity that is increasingly found in HPC cluster

designs, we assume that a subset of compute nodes have GPU accelerators installed in

order to support fast vector operations.

Network Interconnect

Shared Filesystem

Storage
Server

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Compute
Node

Figure 4.3: Example of a common Beowulf -style HPC cluster architecture with a

shared filesystem and heterogeneous node configuration.

In order to get from the abstract model definition to a concrete implementation of

a telemetry model description, we need to build a semantic model of the HPC cluster

4.3. Concrete Example 87

and application components, their structure and interactions. We then define the dif-

ferent vertex and edge types for the implementation model, i.e. the structure edges and

interaction edges between the different vertex types within their respective graphs and

the allocation edges between them. For each of these elements, we also define some

sensible default properties and measures which will later be populated with telemetry

data.

4.3.1 Platform Anatomy

The platform anatomy graph aims to capture the HPC cluster components and their

structural relationships with each other. The telemetry information model does not set

any constraints in terms of what the components should be and how they are connected.

In some cases it might be sufficient to capture a platform architecture at the node level,

in some other cases, capturing details down to the intra-node bus-level architecture

might be required. If designed carefully, platform anatomy can be extended over time

and additional levels of detail can be added without having to redesign the overall

semantic structure of the graph.

CNode

CPUGPU

Core

RAM

FS
(remote)

SNode

CPUGPU RAM NIC

CNode

/
root node

FS
(local)

NIC

FS

Core

1

1..n

0..n 1..n

1
n

1
1 1

1..n 1..n

0..n

1

Figure 4.4: The vertex and edge types and their relationships defined for the platform

anatomy graph. Multiplicities are denoted in ER notation.

The same holds true for the application anatomy. With the use cases for later evaluation

in mind we define the platform anatomy vertex types as ComputeNodes (CNode), each

consisting of a set of CPUs, GPUs and Filesystems (local and remote). Each CPU ver-

tex is associated with a RAM vertex, in this implementation one RAM vertex for all CPU

88 Chapter 4. Telemetry Data Model

vertices on a node, reflecting a shared memory architecture. Furthermore, each CPU

has one or more Core vertices. Network components are modelled via NIC (Network

Interface Card) vertices which have interaction edges defined between them. These

edges are used to capture network telemetry. Lastly, we define a Filesystem (FS)

vertex type that models the UNIX mount points on a node. Filesystem edges can either

be exclusive to one node (1-to-1 relationship) or shared between multiple nodes have

an additional interaction edge with an SNode vertex which represents a storage server.

SNode is a rather high-level abstraction and probably does not cover the structure and

interaction required to model more advanced I/O and filesystem telemetry. It is how-

ever a good example of how a telemetry data model implementation can choose to

reflect different levels of complexity in different areas. At a later time, one might de-

cide to add additional vertex and edge types to model FS, SNode and their relationships

in more detail.

4.3.2 Application Anatomy

HPC applications on any system architecture typically span a wide area of categories,

ranging from tightly-coupled parallel applications to distributed workflows and service-

oriented architectures. Each class of application has its own internal logical represen-

tation, concepts and building blocks. The application anatomy does not capture these

explicitly. However, when these applications execute on a system, they all have the

same physical building blocks and representation. For a UNIX-based distributed archi-

tecture like the one we are considering in this example, these are time-variant networks

of communicating processes. Hence, we define Process as the main executable com-

ponent. We furthermore define CPUThread as components linked together by a process

and Job as the component linking together processes. To capture GPU processing, we

also define a GPUProcess vertex. For the sake of simplicity, we ignore GPU threads

in this example. Communication is modelled via Socket vertices. They correspond to

the UNIX sockets that were opened and closed over time by each thread. The same

concept is applied for FileHandles opened and closed by individual processes. Com-

munication between threads is modelled as edges between Socket vertices. This gives

us a simple application anatomy with five component types in a time-variant structure.

The data model describes application anatomy as a structure that exists independent

of the application’s execution state. In the case of this example, this means a graph of

jobs, processes and threads that changes over time. Properties describing aspects of

4.3. Concrete Example 89

Process

Thread FHandleGPU
Process

/
root node

Job

Process

Thread FHandle

Job

GPU
ProcessSocket

Socket

0..n0..n

0..n

Figure 4.5: The vertex and edge types and their relationships defined for the applica-

tion anatomy graph. Multiplicities are denoted in ER notation.

the execution of the application, i.e., the actual telemetry data such as memory or CPU

cycle consumption are not captured as part of the application anatomy graph but as part

of the mapping between application and platform anatomy. Default properties defined

on the application anatomy level are therefore very limited. However, the application

anatomy graph provides the structure in which all custom, user-defined application

telemetry is embedded.

4.3.3 Allocations

CNode

CPUGPU Core

/
PG root

FS
(local)

NIC

/
AG root

Process Thread

FHandle

Job

GPU
Process

Socket

/
root node

Figure 4.6: The allocation edge types connecting platform and application anatomy

graph vertices.

Once an application has been launched and the jobs, processes, and threads come into

“physical” existence, we can identify the allocation edge types between application and

90 Chapter 4. Telemetry Data Model

platform graphs (figure 4.6). Again, the allocation edge mapping follows the UNIX

process model. We start with defining edge types between Process and CPU and

between Thread and Core. Analogously, we define an edge type between GPUProcess

and GPU. Allocations of communication channels are modelled as edges between NIC

(Network Interface Card) and Socket. File allocations are modelled as edges between

FS (Filesystem) and FHandle (File Handle).

4.4 Database Design

Graphs are common data structures that can be implemented on top of many storage

systems, e.g., in-memory, object stores or a Relational Database Management System

(RDBMS). We choose a Graph Database (GDB) as the implementation platform as it

makes the translation from theoretical model to implementation very intuitive. Graph

databases are optimized for traversing large graphs in constant time and hence con-

tribute to the overall scalability and performance of the model implementation. While

highly optimized for working with graph structures, graph databases are not well suited

for storing and querying the large volumes of event and time seriesdata that are gener-

ated by system and application telemetry frameworks and systems. Time seriesdata has

specific characteristics such as typically arriving in time order form, data is append-

only, and queries are always over a time interval. While relational databases can store

this data, they are inefficient at processing it as they lack important optimizations such

as storing and retrieving data by time intervals. Consequently, we have chosen to

use a dedicated Time-Series Database (TSDB) as a separate storage backend for mea-

surements, i.e., time seriestelemetry, and cross-reference its content with the telemetry

graph managed by the GDB. In this, we can realize efficient graph queries and at-scale

time seriesanalysis within the same system.

Figure 4.7 shows the heterogeneous database architecture consisting of a GDB and

a TSDB cross-referencing their data. Both storage systems have their own, domain-

specific query language and interface. A Semantic Ingest Service consumes the steam

of telemetry recorded on an HPC system and splits it into events and properties to be

translated into graph structure and properties, and measurements to be translated into

time series records. The added complexity of this heterogeneous setup can be hidden

behind a Consolidated Telemetry API, which is described in more detail in chapter 5.

4.4. Database Design 91

Graph
Database

Time Series
Database

Property

Property

ts1: 1.2,1.3,1.2.2.5,6.7,1.2,3.2

ts2: 0,0,0,0,1,1,1,1,0,0,0,0,1,1

Cross-references

Domain-
specific query

interface

Domain-
specific query

interface

Consolidated Telemetry API

Semantic Structure Timeseries Data

Semantic Ingest
Service

Telemetry from HPC platform

Events
Properties

Measurements

Figure 4.7: The database design consists of two separate database systems for se-

mantic graph data and time seriesdata.

4.4.1 Graph Database

We use the Neo4j [Webber, 2012] graph database for the evaluation of the database

design. Neo4j is an ACID-compliant transactional database with native graph storage

and processing capabilities that support the labelled property graph and W3C’s RDF

graph models, and their respective query languages, the Apache TinkerPop Gremlin and

Cypher graph traversal language and the W3C standard Resource Description Frame-

work’s (RDF) SPARQL query language. We chose Neo4j for its native support for the

labelled property graph model as this provides an intuitive mapping for our teleme-

try model. In principle, any other graph database can be used to store the telemetry

graph. [Fernandes and Bernardino, 2018] provides a good overview and comparison

of graph database systems.

In Neo4j, everything is stored in the form of an edge, node, or attribute. Each node

and edge can have any number of attributes. Both nodes and edges can be labelled. La-

bels are used to narrow searches in graph queries. In graph-theoretical terms, a labelled

property graph is defined as a directed, vertex-labelled, edge-labelled multigraph with

self-edges, where edges have their own identity. Property graphs generally use the

term node to denote a vertex, and relationship to denote an edge. A property graph

defines the following elements:

1. Entity: There are two types of entities: Nodes and Relationships. An entity has

a unique, comparable identity that defines whether two entities are equal. It is

assigned a set of Properties, each of which are uniquely identified in the set by

their respective Property Keys.

92 Chapter 4. Telemetry Data Model

(a) Node: A node is the basic entity of the graph, with the unique attribute of

being able to exist in and of itself. It may be assigned a set of unique Labels

and have zero or more incoming and outgoing Relationships.

(b) Relationship: A relationship is an entity that encodes a directed connec-

tion between exactly two nodes, the source Node and the target Node. An

outgoing relationship is a directed relationship from the point of view of

its source node. An incoming relationship is a directed relationship from

the point of view of its target node. A relationship is assigned exactly one

Relationship Type.

2. Token: A token is a non-empty string of Unicode characters. There are three

types of tokens: Labels, Relationship Types, and Property Keys.

(a) Label: A label is a token that is assigned to Nodes only.

(b) Relationship Type: A relationship type is a token that is assigned to Rela-

tionships only.

(c) Property Key: A property key is a token which uniquely identifies an

Entity’s property.

3. Property: A property is a pair consisting of a Property Key and a Property Value.

A property value is a concrete, scalar type or a list of concrete, scalar types.

The mapping from the elements in our abstract model definition to the elements

of the property graph is trivial. We define the root vertex of the semantic graph as a

Node with the Label Root. Vertices of the platform and application anatomy graphs are

defined as Nodes with the Labels PAGNode and AAGNode. Structure edges between both

types are defined as Relationship with the Relationship Type STRUCTURE. Interaction

edges are defined as Relationship with the Relationship Type INTERACTION. Allocation

edges are defined as Relationship with the Relationship Type ALLOCATION. The time-

variance of all nodes and relationships is modelled via two Properties with the Property

Keys created and destroyed. We call this definition the domain model of the graph

database.

5https://neo4j.com/developer/graph-visualization/

4.4. Database Design 93

Figure 4.8: The database domain model for the concrete model realization example

from the previous section. This graph was generated automatically by the interactive

Neo4j query editor5.

Since the property graph model does not differentiate between abstract and con-

crete model, we fold the definition of the concrete model realization (in this case from

the model defined in the previous section) into the definition of the abstract model

above. The different AAG and PAG node types are added as additional Labels to

PAGNode and AAGNode Node, e.g., CNODE, CNODE, CPU, and PROCESS. Structure, in-

teraction and allocation edges are not further qualified beyond the relationship types

STRUCTURE, INTERACTION, and ALLOCATION. Further, qualifying the specific types of

structure, interaction, and allocation relationships remains a future option. Since each

relationship can only be of one relationship type, further qualification would have to

be modelled via a prefix / suffix scheme, e.g., INTERACTION SEND RECIEVE. The com-

plete domain model is shown in figure 4.8.

With the graph database domain model in place, we can now generate a dynamic

property graph from telemetry and events collected on an HPC system. The details

94 Chapter 4. Telemetry Data Model

how the graph is populated, i.e., how the data collected on a system is translated into

nodes, relations, and properties is described in section section 5.2.1. Using a graph

query language, it is now possible to explore the structure of the HPC system and its

applications.

Figure 4.9: Sample telemetry graph (truncated) consisting of one platform anatomy

(bottom right) and three application anatomy sub-graphs. Only vertices and structure

edges are shown. This graph was generated automatically by the interactive Neo4j

query editor.

Querying the Graph

For property graph traversal, Neo4j provides support for two declarative query lan-

guages: Cypher and Gremlin. Gremlin is more powerful as it gives more fine-grained

4.4. Database Design 95

control over defining the exact traversal pattern for a query, whereas in Cypher the en-

gine tries to find the best traversing solution itself. For the illustrative use cases in this

chapter, we use Cypher due to its simplicity. In Cypher, the entire telemetry graph can

be traversed with a simple query across all vertices and edges as illustrated in listing 11.

This query returns all platform- and application vertices, structure-, interaction-, and

allocation edges that are defined in the telemetry graph. The graph shown in figure 4.9

visualizes this query using a sample data set consisting of a four-node cluster and three

separate applications.

1 MATCH (n) OPTIONAL MATCH (n)-[r]-() RETURN n,r

Listing 11: Cypher query for a full telemetry graph traversal returning all platform- and

application vertices, structure-, interaction-, and allocation edges. The visual result is

shown in figure 4.9.

Similar to SQL, Cypher queries can be further specified using a WHERE clause. The

example in listing 12 shows a Cypher query that returns a subset of the telemetry

graph consisting of all operating-system processes that are currently allocated to the

compute node labelled node01.

1 MATCH (node1:CNode {hostname: "node01"})-[:ALLOCATED_TO]-(proc:Process)

2 WHERE proc.destroyed = 0

3 RETURN proc

1 {"pid":"pid-62563"}

2 {"pid":"pid-62543"}

3 {"pid":"pid-62537"}

4 {"pid":"pid-62532"}

Listing 12: Cypher query returning all active (non-destroyed) processes that are cur-

rently allocated to the compute node labelled node01. The lower part of the listing

shows the result set, i.e., the four process IDs that match the query.

96 Chapter 4. Telemetry Data Model

4.4.2 Time-Series Database

The telemetry graph domain model defined in the GDB stores the semantic structure it-

self and the properties of its entities. Since measurements are in essence time serieswe

use a dedicated TSDB for storing them. The added complexity of splitting the labels of

the telemetry graph across two different systems is offset by much more efficient query-

ing and analysing of time-series data, a critical capability of any telemetry platform.

As a database for time seriesdata, we have chosen InfluxDB 6, an open-source, highly-

available storage and retrieval platform for time seriesdata. InfluxDB is used in fields

such as operations monitoring, application metrics, Internet of things (IoT) sensor data,

and real-time analytics. We chose InfluxDB primarily due to our previous experience

with the system and for its surrounding ecosystem of tools, such as the Telegraf server

agent which we use for telemetry data ingestion in our prototype (see section 5.2.1).

Any other database system that is optimized for handling time seriesdata can in princi-

ple be used instead. Especially SaaS-based databases, such as AWS Timestream7 for

example, could provide an interesting alternative for cloud-based deployments. [Bader

et al., 2017] provides a good overview of time seriesdatabase systems.

InfluxDB’s data structure is based on the concept of points. A point has four com-

ponents: a measurement, a tagset, a fieldset, and a timestamp: The measurement pro-

vides a way to associate related points that might have different tagsets or fieldsets. The

tagset is a dictionary of key-value pairs to store metadata with a point. The fieldset is

a set of typed scalar values — the data being recorded by the point. In the example

in listing 13, the measurement is cpu frequency. The tagset is hostname=node01

and cpu id=1. The keys, hostname and cpu id, in the tagset are called tag keys.

The values, node01.seastar and 1, in the tagset are called tag values. The fieldset

is max=3500.00,min=1600.00,current=3500. The keys, max, min, and current in

the fieldset are called field keys. The values, 3500.00, 1600.00, and 3500.00, in the

fieldset are called field values.

InfluxDB provides the SQL-like InfluxQL query language 8 to query time seriesdata.

Listing 14 shows a simple conditional query of the cpu frequency measurement. The

result of the query is show in listing 15.

4.4. Database Design 97

cpu_freqency,hostname=node01,cpu_id=1 max=3500.00,min=1600.00,current=2600

cpu_freqency,hostname=node01,cpu_id=1 max=3500.00,min=1600.00,current=2600

cpu_freqency,hostname=node01,cpu_id=1 max=3500.00,min=1600.00,current=3500

Listing 13: Example of a series of InfluxDB CPU frequency measurement with two tags

(hostname, cpu id) and three field keys (min, max, current). Timestamps are omitted.

1 SELECT current FROM cpu_frequency

2 WHERE "hostname" = "node01"

3 LIMIT 3

Listing 14: Example InfluxQL query selecting the current key from the fieldset of the

cpu frequency measurement.

name: cpu_frequency

time current

2020-08-18T00:00:00Z 2600

2020-08-18T00:00:05Z 2600

2020-08-18T00:00:10Z 3500

Listing 15: The result of the query in listing 14 lists the current CPU frequencies

recorded at time.

Beyond these simple examples, InfluxQL provides a rich set of functionalities that are

specifically designed to support working with time series. This includes mathematical

functions and continuous queries. Mathematical functions provide a rich set of query

functions for aggregating, selecting, transforming, and predicting data. Examples are

the SAMPLE() function which returns a random sample of N field values using reservoir

sampling, and the HOLT WINTERS() function which returns N number of predicted

field values using the Holt-Winters [Chatfield, 1978] seasonal method. Continuous

queries are queries that run periodically in the background on real-time data and store

query results in a specified measurement. They can for example be used to shorten

query runtimes by pre-calculating expensive queries or to automatically downsample

commonly-queried, high-precision data to a lower precision.

6https://www.influxdata.com/
7https://aws.amazon.com/timestream/
8https://github.com/influxdata/influxql

98 Chapter 4. Telemetry Data Model

4.5 Summary

In this chapter, we have developed a telemetry data model that at its core supports

the temporal variability of HPC system and application structures. These topologi-

cal, temporal and spatial properties along with the also temporally variable mapping

of application structure to platform structure sets this model apart from other, existing

telemetry data models. In the next chapter, we incorporate the hybrid GDB / TSDB

database design into the larger context and components of a telemetry platform proto-

type for further evaluation.

Chapter 5

Implementation and Evaluation

In this chapter, we discuss SEASTAR, a prototype implementation of the telemetry

platform concept and its integration with an HPC cluster. The first part of this chapter

describes the telemetry platform architecture, which is built around the heterogeneous

telemetry graph implementation introduced in the previous chapter. Development and

evaluation of SEASTAR takes place in a cloud-based environment in Amazon Web

Services which we use both for SEASTAR and the HPC cluster testbed that we have

built to explore the integration between telemetry platforms and HPC clusters. The

second part of this chapter focuses on the details of this development environment and

integration. In the last part of this chapter, we demonstrate SEASTAR’s capabilities by

implementing a machine learning-based application anomaly detection service.

5.1 Requirements and Constraints

The functional requirements introduced in section 3.1.3 set very few constraints for

how a telemetry platform would be implemented in practice. It specifically states in

R.F14, that “the telemetry platform, its interfaces, data model and capabilities must

be described independently of its implementation”. The previous chapter provides the

high-level specification for the data model. The SEASTAR architecture in section 5.2

provides a conceptual description and an informal specification of the architecture of a

telemetry platform and its components. In section 5.3, we then add additional context

and constraints to narrow-down the implementation pathway for our specific imple-

mentation prototype. Firstly, we define a series of non-functional requirements like

scalability to make sure that the implementation has relevance for a real-life HPC con-

text with thousands of nodes and tens- or even hundreds of thousands of telemetry

99

100 Chapter 5. Implementation and Evaluation

signals per second flowing through the system. Secondly, we define the non-functional

requirement — or constraint — that the implementation effort has to be feasible in the

context of this work, while still being relevant enough to evaluate some of our core

concepts and research questions. While this is a difficult balance to maintain, modern

cloud technology and an abundance of ready-to-use open-source software packages

have the potential to simplify implementation complexity significantly and to keep the

prototype implementation manageable.

5.1.1 Non-Functional Requirements

In contrast to functional requirements that we defined in section 3.1.3, the non-functional

requirements introduced here specify criteria related to the operation of a telemetry

platform, rather than its specific behaviour or functions.

R.NF1 (Dynamically) Scalable

To support current and future large-scale, potentially peta- and exascale HPC systems

and applications, a telemetry platform must be scalable. This means that all platform

components must be designed from the ground up in a way that they can cope with

millions of telemetry data points per second. Ideally, a telemetry platform can scale

up and down dynamically, i.e., retain and release infrastructure resources based on

its current load in order to minimize its overall cost of operation. Scalability, i.e., the

ability to “keep up” with the scale of current and future HPC systems is the single most

important non-functional requirement determining the success of a telemetry platform.

R.NF2 Non-Invasive

To support existing HPC systems and applications, the telemetry platform must be non-

invasive, i.e., it must not require mandatory changes to platforms and applications. It

must also be possible to integrate the telemetry platform with existing system software,

including workload managers and batch schedulers.

R.NF3 (User-Defined) Responsiveness

To support real-time use cases, a telemetry platform should provide data in a time-

line manner, i.e., the delay between the generation of a data point, and the data point

becoming available in the platform should be minimal. Since provisioning data in

5.1. Requirements and Constraints 101

real-time is resource-intensive, the degree of responsiveness required would ideally be

controllable by the applications based on their requirements.

5.1.2 Implementability in a Research Context

Building a complex distributed system that scales to the extent required for ingesting,

processing, and storage of HPC telemetry from scratch can be a non-trivial effort.

One important requirement for the telemetry platform implementation was to keep

the effort manageable within the constraints of this work. At the same time, we still

want to give a direction for the architecture and technology choices for a future large-

scale production implementation of the telemetry platform concept. The two design

principles derived from this requirement are:

1. Use existing (open-source) software wherever possible. Many of the capabil-

ities needed by an HPC telemetry platform can be provided by existing software

packages. This way, building a prototype becomes more of a composition and

configuration exercise than a big software development effort.

2. Use public cloud services. Similar to using existing software components, us-

ing cloud services can significantly reduce implementation complexity of the

prototype. While HPC clusters typically do not run on public cloud resources, a

telemetry platform can still be operated outside the HPC cluster’s data centre as

long as latency and bandwidth are sufficient.

As previously discussed, an HPC telemetry platform is functionally very similar

to the large-scale data analytics and processing platforms commonly found in indus-

try IoT applications. A rich body of practitioner’s knowledge on how to build these

platforms is available online. Many of the cloud architecture and technology choices

made in this chapter were directly influenced by those. In addition, a plethora of com-

mercial vendors for data platform capabilities exist. While these might be interesting

for telemetry platform implementations in a more commercial context, they are out of

scope for this prototype. Furthermore, the majority of commercial offerings are built

around freely available open-source technologies.

102 Chapter 5. Implementation and Evaluation

5.2 The SEASTAR Architecture

SEASTAR is an architecture and prototype implementation of a telemetry platform that

builds on the heterogeneous GDB/TSDB database architecture introduced in the pre-

vious chapter. It provides a context in which we can quickly validate concepts, rather

than aiming to be a production-ready, stable reference implementation. Nonetheless,

SEASTAR provides all relevant components to run end-to-end use case evaluations.

SEASTAR follows a microservice implementation architecture approach, i.e., it pro-

vides self-contained functionality as independent services, exposed via APIs instead

of a single, monolithic service. While microservice architectures demand a certain

amount of development and engineering overhead, the benefits of this approach be-

come apparent when we want to explore scalability and composition. The modular

architecture allows us to explore the scalability individually for each of the compo-

nents with minimal interference from the overall system. From a composability per-

spective, it allows us to explore the effects of different configurations and granularities

of components easily, e.g., running one telemetry service end-point per node v.s., one

end-point for multiple nodes.

SEASTAR services are written in the Python programming language and expose

their functionality via REST APIs. In order to minimize the complexity of the im-

plementation, the design philosophy of SEASTAR is to reuse whatever capabilities are

available as open-source software. Consequently, the majority of services are just thin

wrappers around existing software. For example, we re-use the native data query and

processing services of the InfluxDB and Neo4j databases wrapped into a SEASTAR

programming framework that is aligned with SEASTAR’s “look and feel” and unified

authorization and access mechanisms.

SEASTAR consists of five logical components: ingestion, storage, processing and

querying, workspaces, and application sidekicks (figure 5.1). Each of the components

consists of one or more individual services. The telemetry ingestion component is

responsible for inserting system and application telemetry correctly into the semantic

context of the telemetry graph. The telemetry storage component manages the physical

storage and access to the telemetry graph which is accessed via the processing and

querying component. The application sidekick component provides capabilities for

building and hosting telemetry-based application support services, and the workspace

component provides capabilities for provisioning data science and visualization tools

to interactively explore and work with telemetry data. The remainder of this section

5.2. The SEASTAR Architecture 103

HPC Cluster SEASTAR Platform

Workspaces

Nodes
Data Storage

GDB TSDB

Sidekicks

Processing and Querying

WorkspacesWorkspaces

Se
m

an
tic

 In
ge

st
io

n

Pl
at

fo
rm

 S
er

vi
ce

s

M
an

ag
e

M
an

ag
e

M
an

ag
e

Query QueryResults Results

Nodes

NodesApplications

Service integration

Telemetry

Telemetry

Interactive
interaction

Al
lo

ca
te

d

“Datalake”
Storage

Figure 5.1: Logical architecture showing the functional components of the SEASTAR

platform, ingestion, storage, processing and query, application sidekicks, and

workspaces, orchestrated and managed by a set of platform core services. The two

modes of interaction with the platform are interactive via workspaces and integrated

via application sidekick services.

describes the six components that comprise the SEASTAR telemetry platform and the

services and interfaces they provide.

5.2.1 Telemetry Ingestion

The ingestion component (figure 5.2) is responsible for moving telemetry data from the

HPC cluster’s compute nodes into the semantic structure of the telemetry graph. The

basic principle is that of an Extract, Transform, Load (ETL) process, i.e., the procedure

of copying data from one or more sources into a destination system which represents

the data differently from the sources or in a different context than the sources. Here,

we extract telemetry data, transform it into graph operations and time seriesdata, and

load it into the graph and time seriesdatabases.

Three sub-components are comprising telemetry ingestion: Collection Agents that

extract telemetry from platform and applications, the Transport and Caching Layer,

and the Semantic Ingestion service which inserts the telemetry data into the logical

telemetry graph split across graph and time seriesdatabases. Next, we describe the

104 Chapter 5. Implementation and Evaluation

Node
AgentsNodesNodes

Nodes

Kafka

Applications

Al
lo

ca
te

d

InfluxDB
InfluxDB
Writer

Node
Agents

Neo4j
Writer Neo4j

Transport and
Caching

Neo4j
Writer(s)

InfluxDB
Writer(s)Cluster

Agent

Ingestion Tier

Semantic
Ingestion

AWS S3
Neo4j
WriterDatalake
Writer(s)

Storage TierHPC Cluster

Figure 5.2: The ingestion component (grey) collects telemetry data via Collection

Agents that are installed on HPC cluster nodes and writes it via a distributed event-

streaming service (Kafka) to the graph (Neo4j) and time series(InfluxDB) databases.

implementation details of the sub-components.

Collection Agents

Data is collected via two services, the Node Agents and the Cluster Agent. Node agents

are installed on each compute node of an HPC cluster and collect system and applica-

tion telemetry via standard operating-system interfaces (see section 2.1). The cluster

agent runs only on one node of the cluster, typically the head- or login-node, and col-

lects data that is not available through operating-system interfaces on compute nodes,

such as queueing system state and job allocations.

For the node agent, we use Telegraf [InfluxData, 2020a], an open-source server

agent that is capable of collecting operating-system and, via input plug-ins, application-

specific telemetry. We have chosen Telegraf based on familiarity and due to its prolif-

eration in large-scale cloud and distributed systems and infrastructure monitoring ap-

plications. Many alternatives exist. Especially the Lightweight Distributed Metric Ser-

vice (LDMS) [Agelastos et al., 2014] that was developed at Sandia National Laborato-

ries to continuously capture system and applications profiling data on supercomputers

will be an interesting alternative for a production system deployment of SEASTAR.

In addition to the standard Telegraf host-metrics plugin, we use the Procstat [Influx-

Data, 2020b] plug-in to monitor system resource usage of individual processes using

their /proc data. Procstat transmits IO, memory, CPU, and file descriptor-related mea-

5.2. The SEASTAR Architecture 105

surements. Via several output plug-ins, Telegraf can send the collected telemetry to

different targets, such as files, databases and streaming APIs. Connectivity with the

transport and caching layer is provided via the Kafka output plug-in. The plug-in uses

the standard Kafka binary line protocol over a TCP connection. The Telegraf data

structure looks as follows:

• Timestamp: Date and time associated with the fields.

• Tags: Key/Value string pairs used to identify the metric.

• Metric name: Description and namespace for the data.

• Fields: Key/Value pairs that are typed and contain the metric data.

While the Node Agents are responsible for collecting measurements about hard-

ware and applications on compute nodes, the Cluster Agent is responsible for collect-

ing the more overarching, structural information about an HPC cluster. The Cluster

Agent is designed as a standalone service written in Python that is deployed on the head

node of our testbed cluster (see section 5.3 for more details on deployment). The main

source for structural information is the command-line interface to the SLURM work-

load management software that we use in our testbed cluster. Through the SLURM

command-line, information about jobs, queues, and nodes is available. In many real-

world HPC clusters, other, often vendor-specific cluster management tools can provide

much more in-depth information, not just about compute nodes, but also about the state

and configuration of other hardware, such as interconnect and network hardware. Fu-

ture versions of the Cluster Agent can be extended to incorporate those. Alternatively,

the Cluster Agent could be realized as a Telegraf input plug-in to simplify and homog-

enize the SEASTAR architecture further. The current implementation of the Cluster

Agent utilizes the Kafka Python client library [Powers, 2020] to send its data to the

transport and caching layer.

Semantic Decomposition

The key contribution of SEASTAR is to provide an implementation architecture that

can capture both, time seriesdata, and the structural, semantic framework in which it

is embedded. In order to achieve this, the data collected by the agents must be split

up into time seriesdata, i.e., measurements and structural information, i.e., events at

collection time before the information is passed on the transport and storage layers. In

106 Chapter 5. Implementation and Evaluation

an early prototype of SEASTAR, we implemented this decomposition step centralized

as part of the Data Writer components, however, the scalability of this approach was

not satisfactory with a growing number of nodes. As a consequence, the current version

of our prototype implements semantic decomposition within the Agents to achieve

better scalability.

At collection time, the three different types of telemetry data defined in section 4.2.4

are identified in the telemetry data stream: events, properties, and measurements.

Events are further categorized as allocation, structure, and interaction. Events are col-

lected, both explicitly and implicitly. For example, a data package describing a process

memory consumption measurement might contain a new process ID (PID) tag for the

first time, which eventually translates to a “new process” structure event.

Storage

Kafka

application_events

system_events…

…
events

measurements

S3

InfluxDB

Neo4j

Semantic
Decomposition

Neo4j
Data WriterNeo4j
Data WriterNeo4j
Data Writer

Neo4j
Data WriterNeo4j
Data WriterInfluxDB
Data Writer

Neo4j
Data WriterNeo4j
Data WriterS3
Data Writer

Cypher

InfluxQL

HTTPS

Figure 5.3: This diagram shows the data-flow and transformation through the semantic

ingestion components: data streams arrive as Kafka topics, are translated into events

and measurements by the Semantic Decomposition service, that are then inserted into

Neo4j and InfluxDB via the Data Writers. A separate S3 Writer stores all events and

measurements in the telemetry data lake.

Transport and Caching

Once the data has been collected and tagged, it is sent via a TCP binary protocol to the

caching layer which consists of one or more Kafka services that relay the data further

towards the storage layer. Kafka [Kreps et al., 2011] is a scalable distributed publish-

subscribe event-streaming service. It implements the “message set” abstraction that

naturally groups messages together to reduce network roundtrip overhead. This leads

to larger network packets, larger sequential disk operations and contiguous memory

5.2. The SEASTAR Architecture 107

blocks which allows Kafka to turn a bursty stream of random writes into linear writes.

The rationale behind introducing Kafka as transport and caching layer instead of in-

gesting telemetry data directly to the storage layer is three-fold:

1. Enable Scalability: When building a telemetry platform for large-scale HPC

systems, scalability of the overall implementation is the single most important

concern from a non-functional requirement perspective. A key to enable scala-

bility is to ensure that all components of the telemetry data platform are individ-

ually scalable. To support scalable components like databases, the data transport

layer must be scalable as well. Kafka provides this scalability through clustering,

i.e., by adding additional service instances.

2. Fault-tolerance: Failure and errors are intrinsic to distributed systems and the

error rate statistically increases with the size and complexity of the system. With-

out a caching mechanism between data producers and consumers, a failure in

the semantic ingestion component or further down at the storage tier would in-

evitably lead to data loss. Kafka can be configured with large disk storage back-

ends that can buffer minutes or even hours of telemetry data and transparently

release to its consumers once they become available again.

3. Architectural flexibility: The generic publish-subscribe data-transport mecha-

nism Kafka provides allows the addition of new data sinks and sources without

having to re-architect or reconfigure the overall system. This provides great flex-

ibility for exploring and implementing alternative data-flow architectures. For

example, future use cases might require data ingestion into an alternative stor-

age system or allow HPC services to directly consume from, or contribute to the

telemetry data stream.

Kafka organizes and durably stores events in so-called topics. A topic can be seen as

folder in a filesystem, and the events are the files in that folder. Topics in Kafka are

always multi-producer and multi-consumer: a topic can have zero, one, or many pro-

ducers that write events to it, as well as zero, one, or many consumers that subscribe to

those events. Events are not deleted after consumption and a topic can be read as often

as needed. For each topic, a retention time is set that defines for how long Kafka should

retain the events. Kafka’s performance is effectively constant [Kreps et al., 2011] with

respect to data size, so storing data for a long time does not impact the performance.

Topics are partitioned, meaning a topic can be spread over a number of different Kafka

108 Chapter 5. Implementation and Evaluation

service instances. This distributed placement is important for scalability because it al-

lows client applications to both read and write the data from/to many service instances

at the same time. For this prototype implementation, we have configured two sepa-

rate Kafka topics: application events, which contain all application telemetry, and

system events, which contain all system telemetry. This allows us to split up the

semantic ingestion logic for each stream.

5.2.2 Data Storage and Management

Once the telemetry data has been collected and processed by the semantic ingestion

component, it flows into the storage layer of the telemetry platform. In the previous

chapter, we have described how time seriesare stored in a separate TSDB and cross-

referenced with the rest of the telemetry graph that is stored in a GDB. Both of these

database systems are purpose-built and can cater to real-time or near real-time data

access and query requirements. However, both databases are not designed to execute

massive and complex queries across large amounts of historical data or bulk data access

as it is required for applying machine learning techniques to telemetry data. Data

storage in these database systems is also expensive, as the data is held either directly

in memory or on fast hard disks in order to allow for short query times. In order

to address the cost aspect and to support bulk-data access use cases, we introduce a

secondary storage tier, we call the Telemetry Data Lake as shown in figure 5.4.

SEASTAR uses the Amazon Simple Storage Service (AWS S3), an inexpensive

cloud-based object store as the storage technology for the Telemetry Data Lake. The

storage units of Amazon S3 are objects which are organized into buckets. Each object

is identified by a unique, user-assigned key. Buckets and objects can be managed using

the AWS SDK or with the Amazon S3 REST API. Objects can be up to five terabytes

in size with up to two kilobytes of metadata. There are no size restrictions on buck-

ets. AWS S3 furthermore integrates directly with several large-scale data processing

services in the AWS ecosystem, such as Elastic Map Reduce (EMR) and the Athena

interactive query service, which makes it a good candidate as secondary storage for

telemetry data.

This bi-modal storage and data processing architecture is an implementation of the

Lambda architecture [Kiran et al., 2015], an architecture that is designed to handle

massive quantities of data by taking advantage of both batch and real-time-processing

methods. It aims to balance latency, throughput, and fault-tolerance by using batch

5.2. The SEASTAR Architecture 109

InfluxDB
Writer

Neo4j
WriterNeo4j
Writer(s)

InfluxDB
Writer(s)

Neo4j
WriterDatalake
Writer(s)

InfluxDBNeo4j Telemetry Data Lake
AWS S3

Query
Service

Neo4j InfluxDB

Query
Service Object Store API

Real-time / streaming access

SHORT-TERM DATA LONG-TERM DATA

Graph
model

Time-series
data

Graph
model

Time-series
data&

Processing and Querying

File-based / bulk access

Telemetry
Catalogue

Figure 5.4: SEASTAR’s bi-modal storage and data processing architecture (lambda

architecture): telemetry is replicated into two different storage backends to cater for

both, real-time streaming and bulk processing use cases.

processing (AWS S3) to provide comprehensive and accurate views of batch data,

while simultaneously using real-time processing (Neo4j, InfluxDB) to provide views

of online data. Lambda architectures depend on a data model with an append-only,

immutable data source. It is intended for ingesting and processing timestamped events

with a natural time-based ordering that are appended to existing events rather than

overwriting them. A coherent state across batch- and real-time storage and process-

ing systems is determined implicitly from the natural time-based ordering of the data.

This makes the lambda architecture a good storage and data processing architecture

for HPC telemetry data.

The storage space requirements depend on four factors: (1) the number of distinct

telemetry measures collected, (2) the sampling frequency, (3) the size of the HPC plat-

form, and (4) the data retention time. For a full set of around 400 operating-system

and process metrics on a 128-node cluster, we calculate about 4 GB of raw data in

24 hours with a 10-second collection frequency. For a large cluster such as EPCC’s

ARCHER21, a 5,848-node HPE Cray EX supercomputer, this translates to 128 GB

of raw data per day or 46 TB of raw data per year. By today’s standards, these are

rather modest storage requirements for a cloud-based object storage system, however,

increasing the sampling frequency, e.g., to 1 second will increase the data volume by

1https://www.epcc.ed.ac.uk/archer20

110 Chapter 5. Implementation and Evaluation

and order of magnitude. The numbers we report here refer to raw, i.e., uncompressed

data. Data volume can be effectively controlled and reduced by applying compression

techniques and, equally important, by smart data management processes that control

retention time, especially for user-generated telemetry and allow for dynamic and se-

lective sampling frequency control. For example, a mechanism be put in place that

would allow users to temporarily increase the sampling frequency for a specific appli-

cation run or for a subset of nodes.

Telemetry Catalogue

Analogous to the data catalogues found in many data platforms, a telemetry catalogue

allows users to search, browse, and curate (tagging and metadata management) teleme-

try data hosted in the storage layer. In order to better support computer-science re-

search data-flows, a telemetry catalogue would allow users to publish telemetry data

and make them accessible via a unique, global Digital Object Identifier (DOI). A DOI

is an alphanumeric string assigned to uniquely identify a digital object and a de-facto

standard in referencing experimental data sets in scientific publications. It is tied to a

metadata description of the object as well as to a digital location, such as a URL, where

all the details about the object are accessible. Allowing users to curate and publish data

directly from the data catalogue aims at making a practical contribution towards a more

research-friendly environment, one of the opportunities described in section 3.2.2 The

three main usage scenarios for a telemetry catalogue are:

1. Automatically catalogue the telemetry data associated with an application or ex-

periment run: while the telemetry platform collects and holds the system and

application telemetry generated during application execution, higher-level rela-

tionships between, e.g., different application runs might not be obvious, espe-

cially to other users. Metadata added via the telemetry catalogue adds a layer of

interpretability to the data.

2. Find telemetry data based on metadata information: the data catalogue allows

users to find telemetry based on terms specific to their application and their

method of working.

3. Organize and publish experiment datasets related to a published analysis.

2This concept can be expanded so that not just the data but also the code that is developed as part of
a research project can be published together as Research Objects [Bechhofer et al., 2010].

5.2. The SEASTAR Architecture 111

A data catalogue has not yet been implemented for SEASTAR, as it is less important

for evaluating the overall platform architecture. Nevertheless, as the entry point to data

discovery and curation, it is an important component for any production deployment

of a telemetry platform. Several open-source data catalogue projects can potentially

be used with SEASTAR, such as CKAN [CKAN, 2020] and Amundsen [Amundsen,

2020]. Both systems provide search and metadata management capabilities and pro-

vide plug-in mechanisms to connect them to different data sources. The difficulty

with integrating an existing data catalogue solution is that their internal data models

do not allow for an intuitive mapping and representation of a graph-based telemetry

data model. One possible solution to that would be to resolve the explicit structure,

interaction and allocation edges of the graph model into implicit, searchable metadata

tags. This would however not solve the inherent time-variance of structure, interac-

tion and allocations as constantly changing metadata tags would make the catalogue

difficult to navigate. An alternative approach is to use the system only to catalogue

static snapshots of system and application telemetry, i.e., the time seriesdata for spe-

cific experiments or application runs. Dynamic structure, interaction and allocation

events could be flattened again into a separate (virtual) table which could then be used

to reconstruct the spatial-temporal structure of platform and application if needed.

Privacy and Security

Opening up the telemetry data of an entire HPC platform to a broader audience of

users and researchers undoubtedly opens up a broad spectrum of interesting opportu-

nities. Especially machine learning-based resiliency and optimization systems would

massively benefit from completely open access to telemetry data as it would give them

much larger and more diverse training data sets to optimize their models. But while

the benefits of completely open access to telemetry are significant, it always carries a

certain risk for misuse and the associated privacy and security concerns.

Data misuse includes for example scanning telemetry data for sensitive informa-

tion, such as usernames or passwords, other application-intrinsic information, or even

personally identifiable information. Especially if the telemetry platform allows appli-

cation users and developers to register custom, application-specific telemetry data (see

section 2.1.2), it becomes very difficult to control whether sensitive data flows through

the system. Furthermore, there are many areas of science in which research is invari-

ably competitive so the exposure of information to rivals could have serious repercus-

sions on careers and funding. Many model runs depend on and generate commercial-

112 Chapter 5. Implementation and Evaluation

in-confidence data that must be protected.

Another, more sophisticated area of potential misuse are so-called side-channel

attacks [Kocher, 1996] which apply statistical methods to the information gained from

the operation of a computer system to infer protected information from other processes

or users, such as cryptographic keys. Different classes of side-channel attacks use for

example cache access data, data on the timing of computational operations, or data on

the power consumption of hardware components, such as CPUs or cryptographic co-

processors — all data that could potentially be collected and shared through a telemetry

platform.

In order to mitigate these risks without completely abandoning the idea of open ac-

cess to telemetry, we can apply threat modelling [Myagmar et al., 2005] as a structured

approach to understand the different factors that can affect the security of an applica-

tion or the overall system. Threat modelling provides and approach for identifying and

assessing application threats and vulnerabilities, and then defining countermeasures to

prevent or mitigate the effects of, threats to the system. If applied comprehensively,

threat modelling can provide a clear “line of sight” across all areas of privacy and secu-

rity concerns that justifies security efforts. The resulting threat model allows security

decisions to be made rationally, with all necessary information available.

We expect that the assessment of security concerns and subsequent mitigation ef-

forts will vary between different HPC platforms, based on parameters such as the com-

position of their user base (small and fixed vs. large and fluctuating groups) and the

confidentiality of science workloads (unrestricted vs. classified). While we leave the

creation of a detailed threat model for our telemetry platform architecture as future

work, we will provide a list of possible counter-measures for future evaluation:

• Preventing Ingestion can be used to prevent sensitive data to enter the telemetry

platform. This is the most secure but also most restrictive counter-measure.

• Access Restriction allows us to mark certain data sets that are known attack

vector candidates as restricted. Users could still get access to the data, but only

after explicitly requesting access.

• Data Obfuscation can be used to transform a sensitive data set into a non-

sensitive data set. Techniques include masking out and filtering sensitive fields,

or providing aggregates instead of individual data points.

Especially for implementing restricted access to data and possible data lineage and

5.2. The SEASTAR Architecture 113

usage monitoring, the telemetry catalogue would provide a convenient platform to au-

tomate and provide transparency around these processes.

5.2.3 Processing and Querying

The processing and query layer provides scalable access to the structure and content

of the distributed telemetry data stored across the different backends. Access to the

semantic structure of platform and applications is provided directly via Neo4j’s Cypher

graph query interface. To access time seriesdata, SEASTAR provide three different

modes: stream, query, and batch, each of them serving a specific set of use cases and

analysis workflows based on their latency, complexity, and data volume requirements

(see figure 5.5).

Data complexity / volume

La
te

nc
y

Streams

Query

Batch

(near) real-time

hours

short horizon /
simple operations

long horizon /
complex operations

Figure 5.5: Streams, query, and batch are the three modes of access to telemetry data.

Each of them serves a specific set of use cases based on their latency, complexity, and

data volume requirements

At one end of the spectrum, stream queries provide near real-time access to current

time seriesdata. The latency of stream queries is extremely low, but queries are lim-

ited to, depending on configuration, recent data and simple arithmetic and statistical

operations. Stream queries are useful for direct monitoring tasks and simple applica-

tion feedback loops that only rely on recent data. At the other end of the spectrum,

batch processing is not limited on data size or complexity of operations but has much

higher latencies in the order of minutes or even hours, depending on the volume and

complexity of operations. This makes batch processing a good choice for more com-

plex analysis tasks, such as in-depth analysis of historic telemetry data and machine

learning tasks. Queries are situated somewhere between streams and batch. Queries

114 Chapter 5. Implementation and Evaluation

are somewhat limited in terms of the data volumes and complexity of operations that

can be processed efficiently but in return provide short query latencies in the order of

seconds. This makes ad-hoc queries a good choice for use cases in which telemetry

data is used to build simple application feedback loops, such as re-configuration of

applications based on observed CPU, memory, or network consumption patterns as

described in see section 2.2.2. SEASTAR provides four dedicated interfaces:

Graph Query: The graph query interface allows exploration of the semantic structure

of platform and applications. Here we do not distinguish between different latency

and data volume access patterns as the size of the semantic graph is relatively small

compared to the time seriesdata. The telemetry graph can be queried directly via the

native GDB APIs using the Cypher graph query language [Francis et al., 2018].

Time-Series Streaming: The time seriesstreaming interface allows real-time access

to time seriesdata. This can be realized using the native TSDB APIs using its InfluxQL

query language. Native time seriesqueries are very efficient, but allow only access

to simple, precomputed operations, such as sum and average functions. Furthermore,

storing data in a TSDB becomes inefficient and expensive at a certain point, so only a

limited data horizon is available through this interface.

Time-Series Query: In order to reach further back in time, and to explore more com-

plex relationships between telemetry data, the time seriesquery interface allows access

to the full set of telemetry data stored in the telemetry data lake. Depending on the

complexity of the query and the data involved, time seriesquery execution can take

anywhere from seconds to minutes. Typically, time seriesqueries can be efficiently

applied to data volumes in the order of hundreds of megabytes.

Time-Series Batch Processing: To overcome the limitations of time seriesqueries,

the batch processing interface allows the deployment of custom processing functions

directly on the storage layer, e.g., via the Spark or MapReduce programming frame-

works. These frameworks allow for massively parallel execution and runtimes in the

order of hours or even days. Batch processing has no limitations in terms of data

volume and can be efficiently applied to data volumes in the order of gigabytes to

terabytes.

Together, these four telemetry data access modes cover a broad set of data query

and processing requirements. When implementing real-world telemetry-based work-

flows and application-support processes, architecture will often combine more than

one query and processing technology: for example, and application support service

could use real-time streaming to implement a short feedback cycle to make ad-hoc ad-

5.2. The SEASTAR Architecture 115

justments and decisions based on the currently observed data. The same application

service could in addition use batch processing to implement longer feedback cycles

that continuously re-train machine learning models that aid another aspect of applica-

tion steering and configuration.

5.2.4 Analysis Workspaces

Analysis workspaces provide the main point for interactive interaction with teleme-

try data. They provide web-based data exploration and programming environments

that are tightly integrated with the underlying storage, query and processing layers.

SEASTAR integrates two popular web-based environments that are frequently used

in data analysis and data science workflows: RStudio and JupyterLab3. Jupyter-

Lab [Granger and Grout, 2016] is a web-based interactive computational environment

supporting multiple different programming languages, such as Julia, Python and R.

JupyterLab uses the concept of a notebook document, which is a JSON document con-

taining an ordered list of input/output cells containing code, text (using Markdown),

mathematics, plots and rich media. RStudio [Allaire, 2012] is a web-based integrated

development environment (IDE) for the R programming language. Figure 5.7 shows a

side-by-side view of both environments.

Both systems are implemented as standalone HTTP servers that support multiple

concurrent users and connections. While a single, multi-core server could potentially

serve many RStudio and JupyterLab users, the unpredictable load of local computa-

tions spawned by users makes it difficult to provide predictable performance using the

single-server model. Instead, SEASTAR provides a more flexible model in which new

RStudio or JupyterLab server instances are spawned (and terminated) upon user re-

quest. This way, each user (or group of users) can have their own, dedicated server

instance without causing side effects for other users (see figure 5.6). The provision-

ing of server instances is handled by the Workspace Manager service. The workspace

manager, upon a users request, starts a preconfigured JupyterLab or RStudio container

image from the Workspace Image Registry and returns the URL of the service via an

HTTP proxy gateway back to the user. The analysis workspace containers have direct

access to the graph and time seriesquery and processing APIs via a private network

3Both systems are found commonly in research computing ecosystems. See for example [Gandrud,
2013] and [Stubbs et al., 2020].

116 Chapter 5. Implementation and Evaluation

Container

(Real-time) Processing and Querying

JupyterLab
Workspace

Container

JupyterLab
Workspace

Container

JupyterLab
Workspace

. . .

HTTP(S) Proxy Gateway

Workspace
Manager

Deploy

Configure

Workspace
Image Registry

Store Retrieve

Q
ue

ry

Re
su

lts

Q
ue

ry

Q
ue

ry

Re
su

lts

Re
su

lts

 Container Platform

Request

Figure 5.6: Workspaces are SEASTAR’s ad-hoc deployable data exploration and pro-

gramming environments. A central workspace manager starts preconfigured Jupyter-

Lab or RStudio container images from the workspace image registry.

connection.

Figure 5.7: Screenshot showing an interactive SEASTAR JupyterLab session running

in a web browser.

5.2. The SEASTAR Architecture 117

5.2.5 Application Sidekicks

One of the main contributions of this work is to outline a concept to improve and sim-

plify decoupled telemetry-driven HPC application architectures (see Section 3.2.2) and

to reduce the overall complexity of HPC application design. Requirement R.F10 Ser-

vice Hosting calls for a convenient way to host telemetry-based application support ser-

vices, i.e., decoupled services that aid the execution of HPC applications. SEASTAR’s

application sidekick provide an implementation for this concept. For example, a ma-

chine learning model that takes a snapshot of an application’s memory usage profile

as input and classifies it as requiring adjustments or not would be implemented and

deployed as an application sidekick.

 Container Platform

Container

(Real-time) Processing and Querying

Sidekick
Image

Container

Sidekick
Image

. . .

Sidekick
Manager

Deploy

Configure

Sidekick
Image Registry

Store Retrieve

Q
ue

ry

Re
su

lts

Q
ue

ry

Re
su

lts

Request

HPC Cluster

NodesNodes

NodesApplications

Al
lo

ca
te

d

HTTP(S) Proxy Gateway

Figure 5.8: Application sidekicks are SEASTAR’s implementation of application support

services. A central sidekick manager deploys, starts, and stops user-created container

images that are stored in a sidekick-image registry.

The architecture of the application sidekick service follows the pattern of the ad-

hoc analysis workspaces. It consists of a central sidekick-image Registry which persis-

tently stores the application sidekick-images, deployable application support services

that expose their functionality via an API to one or more HPC applications. A Side-

kick Manager is responsible for deploying, starting, and stopping these images upon

request as Linux Containers (LXC). This can either be a manual invocation by the user

or a programmatic request directly from an HPC application via the sidekick man-

ager’s REST API. application sidekick containers have direct access to the graph and

time-series query and processing APIs via a private network connection. The service

endpoints provided by the sidekick containers are made accessible to the HPC cluster

118 Chapter 5. Implementation and Evaluation

and the applications running on it via an HTTP proxy.

Sidekick Image Catalogue

Collaboration and enabling an ecosystem of shared components and building blocks

is an important aspect of the telemetry platform concept. Analogous to the telemetry

catalogue, a sidekick catalogue allows users to share published sidekick images with

each other. Once a version of a sidekick-image has been published to the sidekick

registry, users can optionally and along with some metadata information that describes

its purpose and scope, add it to the sidekick catalogue. This allows other users to

investigate existing application sidekick images and gives them the option to re-use or

re-purpose existing application support services instead of having to implement them

from scratch.

5.3 Test Bed and Prototype

To evaluate the feasibility of the SEASTAR architecture, and to better understand how

SEASTAR can be integrated with existing HPC systems and applications, we have built

a prototype and testbed using AWS building blocks4. The testbed consists of two

components within a single AWS Virtual Private Cloud isolated network segment (fig-

ure 5.9), a virtual HPC cluster and the SEASTAR implementation itself. We chose to

build our own HPC cluster in AWS instead of using an existing, physical HPC cluster

to reduce the complexity of our experimental setup to a level that is manageable within

the scope of this work. Especially integration of SEASTAR with HPC system software,

i.e., deploying telemetry collection agents and workload manager plug-ins would not

be feasible on a production system. The SEASTAR prototype implements the architec-

ture introduced in the previous section using. The prototype contains only a limited

amount of custom software development — the majority of proof-of-concept teleme-

try platform functionality can be provided by combining existing technology, such as

graph and time seriesdatabases, and AWS components. In this section, we describe

the implementation architecture of our testbed, describe how SEASTAR and a “typical”

HPC platform, in this case, a SLURM-based setup can be integrated, and provide some

practical usage examples of the overall system.

4This work was supported through an AWS in Education Research Grant award from Amazon Web
Services, Inc.

5.3. Test Bed and Prototype 119

Figure 5.9: The testbed consists of a virtual HPC cluster and the SEASTAR prototype,

both deployed within a single AWS Virtual Private Cloud network segment. An AWS

NAT (Network Address Translation) Gateway provides connectivity to the internet.

5.3.1 Virtual HPC Cluster

In the context of this work, two requirements drive the AWS HPC Cluster implemen-

tation. Firstly, it must be possible to easily start and stop the cluster to control the

cost of the experimental environment. And secondly, it must be possible to modify

the system software, specifically the workload manager. We have chosen CfnClus-

ter (“cloud formation cluster”), an open-source framework that deploys and maintains

high-performance computing clusters on AWS. CfnCluster facilitates both quick start

proof of concepts (POCs) and production deployments. It supports multiple work-

load managers, including SGE, Torque, and SLURM. We have chosen SLURM [Yoo

et al., 2003] as the workload manager as it provides a plugin mechanism (PrEp API —

Prologue and Epilogue API) that makes integration with SEASTAR easy to realize.

CfnCluster takes several configuration parameters, such as the AWS account ID,

the AWS region in which the cluster should be deployed, the AWS EC2 instance types

for compute and master nodes, networking and shared storage configuration. A cfn-

cluster command-line tool takes the configuration and uses the AWS Cloud Formation

APIs to bootstrap the cluster. Once bootstrapped, the command-line tool can be used

to start, stop and reconfigure the HPC cluster on demand. Since we do not aim to run

production workloads on the cluster, we chose relatively small AWS EC2 instances

for the testbed configuration: we configured 64 c5n.large compute node instances

which are designed specifically for HPC workloads due to their improved network

throughput and packet rate performance and up to 100 Gbps network bandwidth. A

single c5n.large instance provides two virtual CPU cores and 5.25 GB of memory,

therefore the entire cluster provides 128 CPU cores and a total of 336 GB of memory.

120 Chapter 5. Implementation and Evaluation

Figure 5.10: AWS deployment architecture of the HPC cluster testbed. The CfnClus-

ter framework bootstraps and controls a fleet of AWS EC2 instances configured as a

SLURM based HPC cluster.

An additional c5n.large AWS EC2 instance serves as the head node of the cluster

running SLURM 20.02.6 as the workload manager. A shared 500 GB EBS (Elastic

Block Storage) volume is mounted on the master node and shared via NFS to compute

nodes. Figure 5.10 gives an overview of the deployment architecture.

5.3.2 SEASTAR Prototype

The purpose of the SEASTAR prototype is to evaluate the feasibility of the SEASTAR

telemetry platform architecture, and to better understand how such a system can be

integrated with existing HPC systems. Using AWS building blocks allow us to do this

with little overhead: a lot of commercial data platforms are routinely implemented on

AWS and a lot of complex and difficult to deploy and manage system components, such

as data lake block storage, Linux container and Kafka clusters are available as SaaS

components. This allows us to implement a functional SEASTAR prototype by com-

bining and configuring components rather than developing them from scratch. Most of

the software development went into the SEASTAR Core Service which is orchestrating

SEASTAR’s various components, the integration with the SLURM workload manager,

which is discussed in the next section, and the SEASTAR Python library.

The implementation follows the architecture introduced in the previous section. As

shown in figure 5.11, the multi-modal storage layer which is based on AWS S3 block

storage, InfluxDB, and Neo4j is accessible via four different data query and process-

ing interfaces: the native InfluxDB and Neo4j interfaces for real-time access, as well

5.3. Test Bed and Prototype 121

Figure 5.11: SEASTAR prototype AWS building blocks.

as AWS Athena and AWS EMR (Elastic Map Reduce) for data lake query and process-

ing capabilities. AWS MSK (Managed Streaming for Kafka) provides data transport

and caching, and AWS ECS (Elastic Container Services) provide the infrastructure

for workspace and application sidekick instantiation. The remainder of this section

described the individual component implementations in more detail.

Data Transport and Storage

The Kafka-based data transport and caching subsystem described in the previous sec-

tion is implemented using AWS MSK (Managed Streaming for Kafka) (figure 5.13).

AWS MSK is a fully managed Apache Kafka service that exposes the native Apache

Kafka APIs without the overhead and complexity of managing a Kafka cluster in pro-

duction. Using a managed Kafka services instead of other, AWS-specific data stream-

ing services (e.g., AWS Kinesis) for which no equivalent open-source software exists,

retains the flexibility to deploy SEASTAR components, such as the data agents and

writers outside AWS, for example in an on-premise data centre. Like an on-premise

installation of Apache Kafka, AWS MSK deploys multiple brokers that comprise the

Kafka cluster. We have chosen to run three brokers on m5.large AWS EC2 instances.

This number is based on a data ingress and egress rate of 2 MB/s each and a data

retention time of 24 hours. Figure 5.12 provides some details on the number of bro-

kers (based on EC2 instance type) as a function of data throughput requirements. This

shows the scalability potential of the solution.

The SEASTAR storage layer consists of three distinct subsystems: the graph database,

the time seriesdatabase, and the telemetry data lake. We use AWS EC2 virtual ma-

122 Chapter 5. Implementation and Evaluation

Figure 5.12: Diagram showing the suggested number of MSK Kafka brokers (based on

EC2 instance type) as a function of data throughput requirements. With larger instance

types, high throughput can be reached with smaller numbers of brokers.

chines to host Neo4j instances in a Causal Clustering configuration. Neo4j’s causal

clustering distinguished between core servers which are responsible for the long-term

safekeeping of data and read replicas which are responsible for scaling out graph query

workloads. While the scalability and fault-tolerance provided by causal clustering are

not required for the scope of this prototype and experiments, we feel that it is still

important to include this concept into the overall architecture to illustrate the scalabil-

ity potential of the overall system. Neo4j is not an in-memory database, but multiple

layers of RAM caching help to speed up the graph queries, hence it is important to

find a good balance between instance disk I/O and memory size. AWS provides EC2

instances with locally attached NVMe SSDs to deliver high random I/O performance.

For this prototype, we deploy three c5d.2xlarge instances with 16 GB of RAM, 200

GB NVMe SSD storage, and up to 10 Gbit/s network bandwidth. Details on Neo4j

clustering and performance are discussed in [Raj, 2015] and [Holzschuher and Peinl,

2013].

For the time seriesdatabase, we use a similar setup of multiple AWS EC2 instances

that host an InfluxDB high-availability cluster. The main motivation behind a clustered

deployment is again to illustrate the scalability potential of the SEASTAR storage sub-

system. InfluxDB distinguishes between data nodes and meta nodes. The meta nodes

keep a consistent view of the metadata that describes the cluster, while data nodes are

responsible for handling all writes and queries (figure 5.13). Optimal sizing is depen-

dent on the database schema as well as on write and query load. We use the same

c5d.2xlarge AWS EC2 instance types to deploy two data nodes. The meta nodes can

run on modestly sized t3.medium AWS EC2 instances. We deploy three meta nodes as

the cluster’s consensus protocol requires a quorum to perform any operation, so there

5.3. Test Bed and Prototype 123

should always be an odd number of meta nodes.

The telemetry data lake storage is implemented on top of AWS’ S3 object store

and does not require any dedicated virtual servers. The AWS S3 web service interface

provides access to a virtually limitless data storage facility. The basic storage units

of AWS S3 are objects which are organized into so-called buckets. Each object is

identified by a unique, user-assigned key and can be up to five terabytes in size with

two kilobytes of metadata. For this prototype, we use a single AWS S3 bucket as the

telemetry data lake, although future implementations might benefit from partitioning

the data lake across multiple buckets. Data is written into S3, InfluxDB and Neo4j by

several writers that read data from the Kafka stream. The writers are implemented in

Python and use the Kafka, S3, InfluxDB, and Neo4j Python libraries to interface with

source and target systems. They are deployed as headless services on multiple AWS

EC2 instances that are wrapped in autoscaling groups which allow rule-based up- and

down-scaling of the number of instances. While we do not actively use autoscaling in

this prototype, it still illustrates how writer scalability can be achieved and matched

against the scalability of the overall telemetry data pipeline.

Figure 5.13: SEASTAR’s data transport and storage implementation consists of a multi-

modal storage layer based on AWS S3 block storage, InfluxDB, and Neo4j connected

by an AWS MSK data pipeline to the node agents.

124 Chapter 5. Implementation and Evaluation

Query and Processing

Query and processing figure 5.14 follows the storage layer architecture. Cypher graph

queries are handled directly by the Neo4j cluster. Neo4j uses the Bolt protocol, a

connection-oriented network protocol that operates over TCP and WebSocket for client-

server communication. All cypher client libraries implement the Bolt protocol trans-

parently. An AWS Application Load Balancer (ALB) routes all query traffic between

the Neo4j cluster and client libraries and can be used to centrally deploy user authen-

tication (e.g., via OAuth2 or LDAP) and rate-limiting. The performance of the graph

query interface directly depends on the configuration of the cluster which is described

in the previous section. Analogously to graph queries, time-series queries are handled

directly by the InfluxDB HTTP service endpoint exposed by the InfluxDB cluster. For

both, graph and time seriesqueries, processing and storage are integrated within the

same systems, which makes them sufficiently fast.

Figure 5.14: The SEASTAR prototype architecture provides four distinct query and pro-

cessing interfaces using AWS components and services.

Ad-hoc SQL queries and batch processing are implemented differently. The teleme-

try data lake is implemented as an object store only, which means that it does not

provide any integrated compute capacity. Moving data out of the data lake and into

dedicated processing and query platform with the necessary compute capacity to run

large-scale queries and processing workloads would be prohibitively expensive and

slow. AWS solves this by providing several solutions that integrate directly with the

S3 object storage, that do not require moving the data. Instead, compute capacity is

brought close to the data residing in S3 through intelligent placement within the AWS

5.3. Test Bed and Prototype 125

infrastructure and data centres. We chose AWS Athena for providing large-scale query

and AWS Elastic Map Reduce (EMR) for providing batch processing capabilities on

top of the telemetry data lake (figure 5.14).

AWS Athena is an interactive query service that can access data directly in AWS S3

using standard SQL query syntax. Internally, Athena uses Presto [Sethi et al., 2019],

an open-source, distributed SQL query engine and can scale automatically with the

complexity and number of parallel queries. It supports data stored in different file

formats, including the Apache Parquet columnar format which we have chosen as the

internal data format of the telemetry data lake as it is supported by a broad spectrum of

tools. Athena supports the standard Open Database Connectivity API (ODBC) which

makes it accessible to a broad spectrum of tools, programming libraries and frame-

works. Just like for the graph and time seriesquery endpoints, SEASTAR exposes the

Athena ODBC interface via an ALB to the workspace and application sidekick layer.

AWS EMR is an implementation of Apache Hadoop, a collection of open-source

software utilities that provide a software framework for distributed storage and data

processing using the MapReduce programming model. In addition to the Hadoop Dis-

tributed Filesystem (HDFS) [Shvachko et al., 2010], AWS EMR provides the EMR

File System (EMRFS), an implementation of HDFS that an Amazon EMR cluster can

use for reading and writing data directly to and from AWS S3, which makes it an ideal

candidate to provide processing capabilities on top of the telemetry data lake. Amazon

EMR is deployed as a cluster, which is a collection of nodes running on AWS EC2

instances. AWS EMR can provision hundreds or even thousands of nodes to process

data at any scale. The number of instances can be increased or decreased automati-

cally using the AWS EC2 instance auto-scaling capabilities. EMR supports multiple

distributed processing systems and frameworks on top of its MapReduce program-

ming model. For this prototype, we use EMR with Apache Spark. Spark [Zaharia

et al., 2016] utilizes in-memory caching, and optimized, distributed query execution

for batch processing, interactive queries, real-time analytics, machine learning, and

graph processing. It provides development libraries for the Java, Scala, Python and R

programming languages. Since the EMR cluster is only needed when a batch process-

ing job is submitted through the SEASTAR API, and data persistency is handled by the

AWS S3 object store, we have configured EMR as an on-demand service. This means

that the cluster nodes are deployed ad-hoc and terminated when the job has finished. In

a production implementation of SEASTAR, this model can be expanded to per-user or

user-group clusters, and usage-based cost accounting for batch processing of telemetry

126 Chapter 5. Implementation and Evaluation

data. The interface to EMR is provided via the AWS API and allows users to start and

stop the cluster and submit and control Spark jobs. Section 5.3.3 introduces a wrapper

around this interface for a more intuitive integration with the SEASTAR programming

library.

Workspace Implementation

The SEASTAR architecture suggests a Linux container-based implementation for user

workspaces in order to isolate user environments and to provide predictable perfor-

mance. AWS provides two container deployment services: Elastic Kubernetes Service

(EKS) and Elastic Container Service (ECS). For this prototype implementation, we

have chosen ECS as it allows us to run containers (via the AWS Fargate engine) with-

out managing the underlying compute infrastructure (figure 5.15).

Figure 5.15: The workspace implementation architecture uses an AWS Elastic Con-

tainer Service (ECS) cluster, preconfigured workspace images in an Elastic Container

Registry (ECR), and an Application Load Balancer (ALB) managed and controlled by

the SEASTAR workspace manager service.

The ECS/Fargate container cluster is situated within the same private network seg-

ment (VPC) as the other SEASTAR components, so it has access to all interfaces ex-

posed in the query and processing layer. We have preconfigured a workspace container

image with JupyterLab that has the SEASTAR programming library (see section 5.3.3)

and dependent libraries and ODBC drivers that are required to connect to the query and

processing interfaces installed and configured. The container image is stored in AWS

Elastic Container Registry (ECR), a managed Docker container registry that allows us

to store, manage, share, and deploy container images in AWS ECS. The workspace

5.3. Test Bed and Prototype 127

manager, a service and API written in Python is deployed on a single AWS EC2 in-

stance and manages the workspace on behalf of a user. The API functions provided

by the workspace manager allow users to deploy, start, stop, and destroy a workspace.

When a new workspace is requested, the workload manager launches the requested

workspace image (in this case JupyterLab) on ECS/Fargate, attaches the port of the

container’s web interface to a route on an application load balancer, and returns the

unique URL under which the workspace can be reached.

Application-Sidekick Implementation

The environment to deploy application sidekicks is similar to the workspace environ-

ment and builds on the same concepts and technology. Instead of the preconfigured

container images deployed in the case of workspaces, the container images deployed

as application sidekicks are developed and uploaded to the container registry by the

users. The basic mechanics here are the same: a SEASTAR sidekick manager, deployed

on a single AWS EC2 instance, controls container deployment on an ECS cluster and

routes and exposes the interfaces exposed by the containers as a unique URL through

an application load balancer (figure 5.16).

Figure 5.16: The application sidekick implementation architecture uses an AWS Elas-

tic Container Service (ECS) cluster to deploy user-created container images and an

Application Load Balancer (ALB) that exposes the sidekick interfaces to the HPC jobs.

A sidekick manager service manages and controls sidekick creation and lifecycle.

Just like interactive workspaces, application sidekicks need access to the interfaces

exposed by SEASTAR’s query and processing layer. For convenience, we built a side-

kick base image with the SEASTAR programming library and dependent libraries and

128 Chapter 5. Implementation and Evaluation

drivers installed and preconfigured. By itself, the base image does not provide any

functionality, but user-built images can inherit from it to simplify the sidekick de-

velopment process. The API functions provided by the sidekick manager extends the

workspace manager API with functions to upload sidekick container images to the con-

tainer registry. API functions to mark images as shared and to list all shared images

provide a foundation for future implementations of an application sidekick catalogue

as outlined in the previous section.

To add additional guidance and convenience for sidekick developers, future ver-

sions of SEASTAR should consider providing several specific sidekick template images

that aim towards specific use case patterns. An example for this would be a template

image providing a pre-built REST or WebSocket service that can be easily modified or

extended by the developer, without having to be concerned with the intricacies.

5.3.3 SEASTAR Programming Library

A programming library can help to make the SEASTAR data platform intuitively us-

able for users and developers by introducing high-level concepts and abstraction of

the platform in a consistent, programmatic way. This approach is sometimes called

an opinionated library as it imposes the creator’s view of concepts, abstractions and

design-patterns on the developers. While an opinionated library constrains the degrees

of freedom of how a developer can interact with the underlying system, it also reduces

cognitive load, which is desirable if a broad spectrum of users is targeted. As part of

the prototype, we have sketched out the first version of a SEASTAR programming li-

brary. The library consists of two independent interfaces: the SEASTAR platform API

and the telemetry access API. The platform API provides functionality for controlling

the user-facing capabilities of the platform. This includes:

• Telemetry asset management: management and curation of telemetry data assets,

managing metadata, allocation and control of telemetry platform resources. The

implementation of this interface integrates with the Platform Manager service.

• Workspace management: creation, destruction, and control of user workspaces.

The implementation of this interface integrates with the Workspace Manager

service (see section 5.2.4).

• Sidekick management: creation, destruction, and control of user-developed ap-

plication sidekicks. The implementation of this interface integrates with the

5.3. Test Bed and Prototype 129

Sidekick Manager service (see section 5.2.5).

Listing 16 shows example invocations of the platform API. It is targeted at program-

matic interaction with SEASTAR, either directly by the user, indirectly by a user’s HPC

job which can for example use the API to start a required sidekick service, or through

integration with other services, such as workload managers (see section 5.3.4). It can

also serve as the integration layer for a future graphical user interface or web portal.

1 from seastar import platform as p

2

3 # Connect to the Seastar platform manager

4 sp = p.PlatformClient(access_key="XXXXXXXXXXXXX", secret_key="XXXXXXXXXXXXX")

5

6 # Create and launch a new workspace

7 wsc = p.WorkspaceConfig(type="JupyterLab", num_cpus=4, memory=16)

8 ws = sp.create_workspace(wsc)

9 ws.start()

10 print("Workspace available at: " + str(ws.url)

11

12 # Re-connect to a workspace and shut it down

13 ws2 = sp.get_workspace(ws.url)

14 ws2.shutdown()

Listing 16: SEASTAR API example showing how to create and manage workspaces and

application sidekicks.

While the platform API provides access to and control of telemetry platform com-

ponents, the telemetry access API allows for the interaction with the telemetry data that

is stored in the platform. Its main function is to provide a common access layer to the

four different query and processing interfaces (see section 5.2.3). The native Python li-

braries for GraphQL, InfluxDB, AWS Athena’s ODBC interface, and the AWS library

to submit and control Spark jobs to an EMR cluster all follow different approaches.

The telemetry access API consolidates them in a lightweight abstraction layer com-

bined with a single authentication and authorization mechanism. While the native

capabilities of the interfaces are retained, it gives the users a more integrated expe-

rience of the telemetry platform. Furthermore, the telemetry access API is designed

in a way that allows integration of the query and processing APIs with the telemetry

access building blocks managed by SEASTAR: concepts like applications and jobs can

be referenced directly in the telemetry access API as it is illustrated in listing 17.

130 Chapter 5. Implementation and Evaluation

The SEASTAR programming library that we have developed as part of this pro-

totype provides the basic functionality required to experiment with the platform and

to illustrate a path towards coherent and transparent programmatic interaction with the

complexities of a distributed data platform. There are many topics for further improve-

ments and research, for example integrating graph- and time seriesqueries into a single

query interface. We discuss this further in the future work section (section 6.3).

1 from seastar import platform as p

2

3 # Connect to the Seastar platform manager

4 sp = p.PlatformClient(access_key="XXXXXXXXXXXXX", secret_key="XXXXXXXXXXXXX")

5

6 # Get a telemetry graph handle and run a Cypher query

7 tg = sp.telemetry_graph()

8 result = tg.query(

9 'MATCH (node1:CNode {hostname: "node01"})-[:ALLOCATED_TO]-(proc:Process)'

10 'WHERE proc.destroyed = 0'

11 'RETURN proc')

12 print("Result: {0}".format(result))

13

14 # Get a time seriesdatabase handle and run an InlfuxQL query

15 td = sp.timeseries_data()

16 result = td.query(

17 'SELECT current FROM cpu_frequency'

18 'WHERE "hostname" = "node01"')

19 print("Result: {0}".format(result))

20

21 # Get a handle to the EMR cluster and launch a SPARK job

22 emr = sp.emr_service()

23 job = emr.upload_job("./AnomalyTrainV01.py")

24 emr.run(type="spark", name="AnomalyTrain", job=job,

25 num_executors=5, executor_cores=5, executor_memory="20g")

Listing 17: SEASTAR API example showing how to query the telemetry graph, telemetry

time seriesdata and submitting a Spark batch processing job.

5.3.4 Workload Manager Integration

As we have seen in the previous section, the SEASTAR programming library provides

programmatic access to both telemetry platform capabilities and the telemetry data it-

self. However, interfacing via the programming library requires explicit amendment

of existing user programs, scripts and workflows. For example, in order to allocate

5.3. Test Bed and Prototype 131

telemetry platform resources, register a new application run in the data catalogue, or

starting an application sidekick service before execution would require the developers

to add SEASTAR-specific code to their application. Integrating core SEASTAR func-

tions with an HPC cluster’s workload manager provides an alternative approach, al-

lowing unmodified and even telemetry-agnostic applications to take advantage of the

capabilities of a telemetry platform.

Many, if not all multi-tenant HPC clusters are controlled by a workload manager.

A workload manager provides the mechanism through which user applications are

launched on the cluster. It has three key functions:

• Allocate exclusive and/or non-exclusive access to compute nodes to users for a

user-defined duration of time.

• Provide a job-control framework for starting, executing, and monitoring jobs on

the set of allocated nodes.

• Arbitrate contention for resources by managing a queue of pending jobs.

Like many other workload managers, the SLURM workload manager that we use on

our virtual HPC cluster is controlled via a set of command-line tools to control and

monitor jobs and job scripts that describe the application a user wants to run and its

resource requirements. SLURM job scrips resemble simple UNIX shell scripts with a

declarative preamble that contains properties such as the number of nodes, CPUs, and

memory required, and the duration for which these resources are required. SLURM

provides a flexible plugin mechanism that allows us to customize the workload man-

ager’s behaviour and extend or modify its functionality. We have developed a custom

SLURM plugin-in that allows users to declare the following SEASTAR-specific func-

tionality as part of a job script:

• Attach metadata as key-value-pairs to the telemetry data that is collected during

job execution via the SS METADATA TAGS keyword.

• Start an application sidekick service before executing the actual job via the

SS SIDEKICK keyword.

• Associate a sidekick WebSocket signal to a job command, for example SUSPEND

via the SS BIND SIGNAL.

132 Chapter 5. Implementation and Evaluation

1 #!/bin/bash

2 #SBATCH --ntasks=8

3 #SBATCH --time=01:00:00

4 #

5 #SS_METADATA_TAGS {version:"1.1", iteration:"25", project:"testbed"}

6 #SS_SIDEKICK {id:"ocw/watchdog:1.16"}

7 #SS_BIND_SIGNAL {endpoint:"ws:/ocw/watchdog:1.16/signal", \

8 # signal:"ABORT_SUGGESTED", state:"CHECKPOINT+CANCEL"}

9

10 # Start the job running using OpenMPI's "mpirun" job launcher

11 mpirun ./my_application

Listing 18: Example SLURM job script that uses SEASTAR-specific declarations in the

preamble to instantiate and integrated with an application sidekick. The application in

this example is not aware of SEASTAR – integration happens purely at the workload-

manager-level.

Listing 18 shows a SLURM script that uses SEASTAR-specific declarations in the

preamble. In this example, an application sidekick service is requested to monitor

the execution of a user’s application. In this case, the sidekick provides a single signal

ABORT SUGGESTED via a WebSocket connection. The signal is then associated with

SLURM’s checkpoint feature which is intended to save a job state to disk as a check-

point and terminate the execution. Our cluster testbed uses the Berkeley Lab Check-

point/Restart (BLCR) library [Hargrove and Duell, 2006] which is installed on the

cluster nodes. The MPI application my application that is executed in this example

is completely agnostic of the sidekick. The feedback-control-loop is established be-

tween SEASTAR and the SLURM job-control service. While this mode of integration

is limited to very simple feedback-control-loops, it allows existing HPC applications

to take advantage of telemetry-based job-control without any additional development

effort. This can help HPC providers to reduce premature job terminations and wasted

compute cycles, while at the same time increase resiliency for a broad spectrum of

existing applications.

The sequence diagram in figure 5.17 illustrates the interaction between SLURM

and SEASTAR. The SLURM plug-in interfaces with the platform API to register the

job and its metadata with the SEASTAR Platform Manager and to start and terminate

application sidekick services. SLURM’s internal plug-in APIs are used to carry out

job-control functions. The details of managing authentication and sidekick service

5.3. Test Bed and Prototype 133

:SLURM :SLURM
Plug-In

:Seastar
Platform Mngr.

:Seastar
Sidekick Mngr.

:Sidekick
Service

Submit job
description

Invoke

Authenticate

Response

Register job & metadata

Response

Launch sidekick service

Response
Startup container image

Connect Websocket
Response

Launch
job ()

Figure 5.17: Sequence diagram illustrating the interaction between SLURM, SEASTAR

and application sidekick service via a SLURM plug-in.

URLs are handled transparently within the plug-in. Job submission starts with the

users submitting a job description to SLURM which invokes the plug-in. After parsing

the job description for relevant information, the plug-in contacts the SEASTAR Plat-

form Manager to authenticate and register the job and its metadata. In the next step,

the plug-in contacts the SEASTAR Sidekick Manager to initiate the launching of the re-

quested sidekick service. The Sidekick Manager launches the corresponding container

image and returns the service access URL to the plug-in which can then establish a

WebSocket connection with the sidekick service. Once this sequence is complete and

the connection is established, SLURM launches the job. The plug-in continues to lis-

ten to the WebSocket connection for a relevant signal in the background and invokes

the SLURM job-control if a signal matches the one declared in the job description.

134 Chapter 5. Implementation and Evaluation

5.4 Use-Case Demonstration

In this section, we demonstrate how the telemetry platform concept can be applied to

different HPC application use cases. The focus of this demonstration is not to validate

and benchmark the SEASTAR prototype implementation but to explore how the teleme-

try platform concepts, implemented by SEASTAR, support a more streamlined devel-

opment workflow and support more flexible decoupled HPC system architectures, and

easier development of more generic resilience and optimization capabilities for HPC

applications. We have picked an example that we previously discussed in Section 2.2

and implemented it in our testbed: a machine learning-based application anomaly de-

tection service that can be trained to detect common application failure patterns. We

picked this particular example because it covers a broad spectrum of telemetry platform

capabilities and represents one of the key opportunities — supporting architectures uti-

lizing machine learning techniques — that we have identified in section 3.2. In this

section we provide an overview of the implementation architecture, the development

workflow, as well as the experimental setup, results, and evaluation.

5.4.1 ML-Based Application Anomaly Detection

One of the key capabilities of SEASTAR is that it enables large-scale processing on a

large corpus of historic telemetry data. Together with the application sidekick concept,

this allows for the development of machine learning-based feedback-control-loops that

use the telemetry data lake and batch processing facilities to continuously train and re-

train machine learning models on telemetry data and the sidekick services to run online

classifiers of live telemetry streams against the model. Without an integrated teleme-

try platform, this type of feedback-control-loop would be very difficult to implement

from an application developer’s perspective as the data and processing infrastructure

required is complex to set up and the shielded network environments in which HPC

systems run would make it difficult or even impossible to integrate.

As part of the evaluation of our prototype, we have chosen to implement an ex-

emplary machine learning-based application anomaly detection system to illustrate the

significant reduction in implementation complexity with a platform like SEASTAR.

Anomaly detection [Chandola et al., 2009] is the identification of rare observations

which raise suspicions by differing significantly from the majority of the data. It is

a common technique in large-scale network intrusion detection [Bhuyan et al., 2013]

and fraud detection in the financial domain [Ahmed et al., 2016]. It has been suc-

5.4. Use-Case Demonstration 135

M
od

el
 tr

ai
ni

ng
(o
ffl

in
e)

C
la

ss
ifi

ca
tio

n
(o

nl
in

e)

Training runsTraining runsTraining runs Training
data

Feature
extractionApplication training runs

ModelsModelsModels

Prediction

Model
building

Application live run

Live
data

Feature
extraction

Figure 5.18: Machine learning flow for application anomaly detection. Machine learn-

ing models built using (synthetically generated) historical telemetry data are use for

classifying runtime telemetry data.

cessfully applied both to HPC application anomaly detection [Tuncer et al., 2017b]

and HPC system hardware anomaly detection [Borghesi et al., 2019]. Our use case

is based on Borghesi’s work and adds a system and data architecture perspective that

has not been proposed previously. For the practical evaluation, we follow the experi-

mental setup and anomaly detection approach presented in [Tuncer et al., 2017b]. The

overall approach is shown in figure 5.185. We collect application telemetry through a

series of application runs, both with injected synthetic anomalies and without. Based

on the training data, we extract several statistical features and label the data with the

type of anomaly introduced. Using the labels and features, we train a non-parametric

supervised machine learning model using Decision Trees (DTs) and Random Forest

classifiers. Both methods are effective in previous work. We have chosen these two

specific classifiers as they have been reported to be of high prediction accuracy in pre-

vious work.

Implementation

The implementation (figure 5.19) consists of two main components: a Model train-

ing component that uses the batch processing facilities of the telemetry data lake to

implement model training, and a Prediction service component build as an applica-

tion sidekick service. Our implementation uses the SLURM plug-in introduced in the

5we focus on a single application in this evaluation, but the same approach and implementation can
easily be expanded to a broad spectrum of different applications.

136 Chapter 5. Implementation and Evaluation

previous section to implement the feedback-control-loop between the anomaly detec-

tion service and the applications: if the anomaly detection service suggests that an

application exhibits problematic behaviour, the application is simply terminated by the

workload manager. Much more sophisticated control loops could be implemented in

which individual applications react differently on a signal from the anomaly detection

service, but this would not add much additional value and insights to this use case as it

focuses on ML-based feedback-control-loops.

HPC Cluster

Workload Manager

SEASTAR Platform

Batch job
Service API

Nodes
Data Storage

Model
training

Workspace

Te
le

m
et

ry

In
ge

st
io

n

Nodes

NodesApplications

Model
development

Al
lo

ca
te

d

Telemetry
Data LakeTSDB

Sidekick

Prediction
service

ModelsModelsModels

Figure 5.19: Implementation of an ML-based application anomaly detection service.

The model training component implements a Decision Tree (DT) and a Random

Forest (RF) classifier. DT creates a model that predicts the value of a target variable

by learning simple decision rules, represented as a tree, inferred from the data fea-

tures. The tree can be seen as a piecewise constant approximation. RF is an ensemble

learning method that fits several decision tree classifiers on various sub-samples of the

dataset and uses averaging to improve the predictive accuracy and control over-fitting.

The model training component is implemented in Python and uses the Scikit-learn [Pe-

dregosa et al., 2011] programming framework for interactive data exploration and PyS-

park ML for full-scale, parallelized model training. Scikit-learn provides a broad spec-

trum of classification, regression and clustering algorithms, including support vector

machines, random forests, gradient boosting, and k-means. PySpark ML [Lovrić et al.,

2019] is a Python wrapper for the Spark Machine Learning Library (MLib) [Meng

5.4. Use-Case Demonstration 137

et al., 2016]. It supports a similar feature set as Scikit-learn, but can parallelize the

data processing and model training operations using the underlying Spark framework.

The trained models are written to a project-specific location in the telemetry data lake

using the training data, which is also preserved in the telemetry data lake. Teleme-

try data to be included in the training and re-training of the machine learning model

is tagged accordingly using the SEASTAR Platform Manager via the SLURM plug-in

(see section 5.3.4). A preprocessing step collects and prepares the data for the training

step. An interactive workspace can be used to develop and continuously evaluate the

models that are serialized and stored in a project-specific location in the telemetry data

lake using the Open Neural Network Exchange (ONNX) file format, an open standard

for machine learning interoperability [Foundation, 2021]. Once stored, the models can

be accessed and loaded by the prediction service.

The prediction service is the application-facing component of the anomaly detec-

tion architecture. It is implemented in Python as an application sidekick service and

exposes a WebSocket API that emits events based on the prediction outcome of on-

line telemetry data. For deployment and usage, the service code is then packaged into

a docker container and uploaded to and registered with SEASTAR’s sidekick registry.

Just as the model training component, the prediction service uses the Scikit-learn pro-

gramming framework to carry out the prediction task. Since the prediction is much

less computationally intensive, we do not need to parallelize it or run it as a SEASTAR

batch processing job. The ONNX serialization format ensures that a production ma-

chine learning model created by PySpark ML can be loaded into Scikit-learn. Once

the model has been loaded, connects to the time seriesstreaming API to gather sample

data from the application it has been set up for a preconfigured amount of time (epoch

length). Once the data has been gathered, Scikit-learn is used to predict the class of

anomaly (or healthy) of the application based on the sample set. The result of the

prediction is emitted as an event via the WebSocket API. The collection and predic-

tion step is repeated until no more application telemetry is available through the time

seriesstreaming API, i.e., the application has terminated.

Development Workflow

Important for the overall usability and developer-friendliness, and, consequentially for

the uptake of a telemetry platform is the development workflow or developer experi-

ence it provides. A development workflow ideally supports developers or researchers

along the entire application lifecycle, which means iteratively building, testing, de-

138 Chapter 5. Implementation and Evaluation

ploying, and running the software they are developing. The development workflow for

the application anomaly detection service in SEASTAR is depicted in figure 5.20.

Every new development, whether it is a simple data analysis or a complex application

support service, starts with creating a new project. A project in SEASTAR has multi-

ple purposes: firstly, it provides an exclusive storage area in the telemetry data lake

for user-created and derived datasets, and for sidekick-images in the image registry.

Secondly, it allows an HPC service provider to track and potentially bill for resource

usage. Multiple users can be members of a project, which makes it easy to collaborate,

and share resources and artefacts.

Workspace

Sidekick

Prediction
service

Prediction
service

Provisioning

Local
development

Batch job

Model
training

ProvisioningModel
training

Local
Development

Training
data

Live
data

Developer Application User

ModelsModelsModels

HPC Application

Telemetry

Figure 5.20: Development workflow for the application anomaly detection service:

workspaces play a central role for the local development and provisioning of applica-

tion sidekicks and batch jobs. Service development happens directly on the SEASTAR

platform, with access to live data. Transferring telemetry data to a local development

environment can therefore be avoided.

Once the project has been created, three main development tasks need to be accom-

plished: (1) collecting the sample data, (2) developing, building, testing, and deploying

the model training component, and (3) developing, building, testing, and deploying the

prediction service. To accomplish the first task, a series of jobs, in this case, syn-

thetic jobs, are run on the HPC cluster and tagged with the project ID and the metadata

5.4. Use-Case Demonstration 139

required to train the model. This is done by adding the required information to the

preamble of the SLURM job script (see section 5.3.4). For building the model training

component, the first step is to start a new JupyterLab workspace. The workspace gives

the developer an interactive development environment with full access to the training

data (figure 5.21). Downloading telemetry data to a local development environment

can hence be omitted.

Figure 5.21: Screenshot showing a Scikit-learn model training and evaluation session

side-by-side with an interactive terminal in a JupyterLab development workspace.

Within the workspace, we can now start building the data preparation and training

model code interactively. While the performance of a workspace is limited, it is suffi-

cient to build and train models with a subset of the data. Once the approach has been

verified, we can wrap the preparation and training steps into a PySpark job that can

run on AWS EMR. We use the SEASTAR platform manager API to launch an EMR

cluster, also from within the JupyterLab workspace. In this development workflow, the

workspace becomes the central interaction point for the developers, both for interac-

tive exploration of the telemetry data, and for controlling the compute-intensive model

training EMR jobs. The benefit of this approach is that code developed in a tightly in-

tegrated SEASTAR workspace is both shareable with other developers on the platform

but also does not require any specific environment configurations or setup instructions.

Similarly, the prediction service can also be developed locally in the workspace

140 Chapter 5. Implementation and Evaluation

and then wrapped into an application sidekick service that can be deployed via the

SEASTAR API. Interactive evaluation of the prediction methodology can be performed

directly in the workspace, using the time seriesstreaming API to feed data directly

into the Scikit-learn prediction functions. Besides the interactive Python notebooks,

a JupyterLab workspace has provided access to the underlying VM via an interactive

terminal. We can use the terminal to compile the prediction service component into a

Linux container image using the Docker command-line tools. We can then upload the

compiled image to and register it with the SEASTAR application sidekick registry from

within the workspace using the SEASTAR sidekick API.

Evaluation

The aim of this evaluation is not to validate the effectiveness of the machine learning

models, but to demonstrate the feasibility of the use case in SEASTAR. For the evalua-

tion of our approach, we follow a simplified version of the experimental methodology

described in [Tuncer et al., 2017b]. Since our experiments are carried out in a non-

production HPC testbed environment, we do not have historic application and platform

telemetry readily available. Consequently, the first step of our experimental approach

is to create synthetic training data using an application setup that is purposefully de-

signed to expose synthetic node-level anomalies. In order to simplify our experimental

setup while still generating relevant telemetry, we use five different MPI-based ap-

plications from the NAS Parallel Benchmarks (NPB) [Bailey et al., 1991] suite that

represent different computation and communication patterns:

• BT — Block Tri-diagonal solver

• CG — Conjugate Gradient, irregular memory access and communication

• FT — discrete 3D fast Fourier Transform, all-to-all communication

• LU — Lower-Upper Gauss-Seidel solver

• SP — Scalar Penta-diagonal solver

For each of the five applications, we introduce three different types of node-level

anomalies that are often experienced on production HPC systems. To generate the

anomalies we build on the HPC Performance Anomaly Suite (HPAS) [Ates et al.,

2019], which provides a set of synthetic anomalies that reproduce common root causes

5.4. Use-Case Demonstration 141

of performance variations in supercomputers, including CPU contention, cache evic-

tions, memory bandwidth interference and I/O storage server contention6. We have

chosen three different anomaly generators from the HPAS suite which are run along-

side the main NPB applications:

• Memory leak (memleak): this program simulates memory exhaustion on an HPC

node which will eventually result in the operating-system terminating the ap-

plication process. The implementation of this program allocates memory at a

configurable rate without releasing it, simulating a memory leak.

• CPU Interference (cpuif): incorrectly terminated jobs, “rogue” system pro-

cesses and concurrently running jobs (shared node tenancy) can cause CPU,

cache, and I/O interference, which can impact an application’s performance.

The implementation of this program generates random floating point numbers

and performs arithmetic operations with a configurable intensity, causing CPU

and cache performance degradation for the NPB application.

• I/O starvation (ioif): faulty network connections, degraded disk arrays, and

intense I/O operations of other processes can cause an application’s read and

write performance to degrade significantly. The implementation of this program

executes configurable filesystem operations causing reduced I/O capacity of the

node.

In order to test the anomaly detection service, we run of each of the five NPB applica-

tions ten times without any synthetic anomalies, ten times with (memleak), ten times

with (cpuif), and ten times with (ioif) running in parallel. Since some NPB applica-

tions require the number of MPI ranks to be the square of an integer or to be a power of

two, we configured the applications to use 64 MPI ranks, which map to 32 2-core nodes

in our testbed cluster. All applications were configured as NPB problem size Class C,

which is summarized in table 5.1. We repeat each configuration 10 times, each time

with a certain amount of randomness introduced to the configuration (i.e., intensity)

of the synthetic anomaly programs. This leads to a total of 2000 application runs on

our testbed cluster. Telemetry for all runs is continuously collected by SEASTAR and

tagged with the type of NPB application, the name of the anomaly program (or none),

and the (random) configuration of the anomaly program. The telemetry collection

6The HPAS suite is available online https://github.com/peaclab/hpas

142 Chapter 5. Implementation and Evaluation

Benchmark Parameter Problem Size (Class C)

BT
grid size 162 x 162 x 162

no. of iterations 200

time step 0.0001

CG
no. of rows 150000

no. of nonzeros 15

no. of iterations 75

eigenvalue shift 110

FT
grid size 512 x 512 x 512

no. of iterations 20

LU
grid size 162 x 162 x 162

no. of iterations 250

time step 2.0

SP
grid size 162 x 162 x 162

no. of iterations 400

time step 0.00067

Table 5.1: Overview of NPB class C problem sizes and parameters used for training

data generation.

agents have been configured to take samples every one second. The combined 500

hours of telemetry data with a sample frequency of 1 second resulted in 200 GB of

uncompressed raw data in the telemetry data lake. Note that only a small subset of the

data was used for feature selection.

After generating the training data, the next step is preprocessing. As suggested

in [Tuncer et al., 2017b], we remove the first and the last 30 seconds of each telemetry

time series to remove the initialization and termination phases of the applications. This

duration is specific to the NBP application used in this experiment. The preprocessing

is executed in parallel by loading the data from S3 directly into PySpark DataFrames.

Next, we use PySpark ML’s DecisionTreeClassifier and RandomForestClassifier

to train two different models for the anomaly predictor. Both, the DecisionTreeClassifier

and the RandomForestClassifier take two arrays as input: one array holding the

training samples, and one array holding the class labels for the training samples. The

preprocessing and training steps take approximately 5 minutes for DT and RF on an

EMR cluster with 4 nodes. If we add the startup time for the ad-hoc EMR cluster, the

overall execution time increases by one extra minute. Compared to the performance on

a single node, the parallelized model training adds a significant speed-up and allows

the processing of data sets that are too big to fit into a single node’s memory. This

5.4. Use-Case Demonstration 143

(a) Overall F-Score (b) F-Scores per synthetic anomaly

Figure 5.22: F-scores calculated for the decision tree and random forest methods for

each of the four different synthetic anomaly evaluation scenarios: baseline, memory

leak, CPU interference, and I/O starvation.

becomes critical if we want to scale out anomaly detection to a broader set of real-life

applications and apply it to production-size HPC environments.

With the trained models in place and loaded into the anomaly prediction side-

kick service, we run several scenarios, following the experimental protocol outlined

in [Tuncer et al., 2017b]. To qualify the robustness of the model, we compare three

different cases against a baseline case: (1) unknown anomaly patterns, (2) unknown

application configuration, and (3) unknown applications. In the baseline case, we use

application and anomaly program configurations that have also been used in the train-

ing data. For the unknown application configuration case, we change the configuration

of the NBP application but run it with a known anomaly program configuration. Lastly,

in the unknown application case, we choose an unknown NPB application and run it

with a known anomaly program configuration. The results in terms of precision and re-

call (F-score) are summarized in figure 5.22 and are very similar to the results reported

in [Tuncer et al., 2017b]. Further details on the experimental protocol and interpreta-

tion of results can be found there. 7

We run the classification step on a 100-second data sample window. This means

that we accumulate telemetry of the observed application for 100 seconds before we

7An interesting finding in [Tuncer et al., 2017b] is that the type of telemetry data available for model
training feature selection can have a significant impact on the overall accuracy and robustness of the
models. A platform like SEASTAR would provide a useful environment to explore this further.

144 Chapter 5. Implementation and Evaluation

run the Scikit-learn predict function on the DT and RF models. With a preconfigured

telemetry ingestion frequency of 1 second, this results in 100 samples. For the given

sample size, the classification step takes about 50 milliseconds on a single-threaded

sidekick container node.

5.4.2 Interpretation of Results

The results obtained from the use case evaluation has shown that an existing experi-

mental machine learning workflow can be implemented and reproduced in SEASTAR.

Furthermore, we were able to show how the SEASTAR platform aids developers to

turn an experimental workflow into a more robust, production-grade feedback-control

system that can transparently support application users. In this sense, the evaluation

presented complements existing work by adding a software architecture and engineer-

ing perspective to it. The experimental results obtained do not allow us to make any

definitive claims about the overall scalability of our prototype system. However, given

the well-documented scalability of Spark on AWS S3 and EMR8, we believe that our

proposed architecture and implementation can scale to large-scale HPC systems and

applications. We aim to verify this in future experiments.

Using machine learning techniques for understanding an application’s behaviour

and building automated optimization and mitigation processes is a very promising ap-

proach for increasing application performance and for avoiding premature job termi-

nations and wasted compute cycles. Monitoring applications and systems with estab-

lished tools and methods will be stretched to their limits with the ever-growing size and

complexity of HPC systems and applications. Hundreds or oven thousands of metrics

collected from thousands of nodes and tens of thousands of processes at frequencies

suitable for performance analysis translate to billions of data points per day, a data

volume that requires increasingly sophisticated processing and analysis approaches.

We believe that machine learning will play an important role in this, as it decouples

the data-intensive, computationally complex and resource-intensive model generation

from the online classification and prediction. With well-trained models, performance

and other issues can be detected in real-time at a very low cost.

To build and evolve these systems not just in an experimental environment, a

8See for example [Kaplunovich and Yesha, 2018] and [Gunarathne et al., 2010] and the AWS Big
Data Blog [Gvozdjak and Marques, 2019, Slawski and Kelly, 2019] for practical examples and perfor-
mance evaluations.

5.5. Cost-Benefit Analysis 145

telemetry platform like SEASTAR is crucial. It not only provides the data in a coherent,

easily accessible, and scalable way, but it also provides the infrastructure and capabili-

ties to support the entire exploration and development workflow, from experimentation

to production deployment of services. Without these capabilities, data would have to

be extracted into external data processing and analysis environments, and logic would

have to be integrated either directly into HPC system software or the applications. Not

only would this become increasingly impractical with the growing size and complex-

ity of applications, but it would also significantly slow down development iterations,

and hamper a wider adoption and sharing of telemetry-driven solutions. In summary,

we conclude that this use case evaluation has clearly shown the value and practical

importance of the telemetry platform concept.

5.5 Cost-Benefit Analysis

The use case study in the previous section provides the first set of data points and a

conversation around the potential value a telemetry data platform can bring from an

application user’s and application developer’s perspective. From an HPC platform

operator’s perspective, i.e. the perspective of the potential operator and sponsor of

a telemetry platform, it is important to understand two questions to reason about the

financial impact a telemetry platform can make on the overall operation of an HPC

platform:

• Cost: How can we estimate the total operating cost for a telemetry platform as a

function of its size and capabilities?

• Benefit: How can we financially quantify the value propositions of a telemetry

platform.

From an operator’s perspective, the benefits of operating a telemetry platform should

outweigh the cost. One approach to quantify the potential benefits of a telemetry plat-

form is to try to quantify the avoidable costs that is generated by inefficient HPC work-

load execution and can potentially be mitigated using the resiliency and optimization

capabilities provided by a telemetry platform. There are two broad categories of avoid-

able costs associated with inefficient workload execution:

• Compute costs are the costs associated with inefficient HPC resource usage. If

for example an application is not optimized for a specific hardware architecture,

146 Chapter 5. Implementation and Evaluation

or if an application terminates unexpectedly without producing any results, the

associated compute costs (often called Service Units or SUs) are costs that could

have been avoided.

• Labour costs are the costs associated with the unplanned time and labour spent

by application developers and users to manually analyse and mitigate application

and system failure modes, and manually optimize and fine-tune applications.

Combined, these two make up for the overall avoidable costs. To what extent these

costs can be avoided by providing a telemetry platform is very difficult to quantify, and

we propose a more in-depth investigation into this topic as part of our future work (see

section 6.3). However, based on the preliminary work we have done, it is fair to assume

that a non-trivial amount of avoidable cost can be associated with lack of application

resiliency and optimization, and hence are potential use cases for a telemetry platform.

We conducted a batch job exit code analysis on Archer [EPCC, 2019], a 118,080-

core Cray XC30 system at the Edinburgh Parallel Computing Centre (EPCC) 9. We

were granted access to 12 months of batch scheduler telemetry and analysed this data

for job exit codes. The results are shown in figure 5.23 and reveal that a significant

fraction of jobs (24%) exit with a non-zero exit code, half of which (12%) were termi-

nated by the scheduler due to exceeded wall-clock time. Furthermore, the data reveals

that a significant fraction of service units (40%) were charged to jobs with a non-zero

exit code, 36% of which were terminated by the scheduler. While this does not nec-

essarily mean that 24% of jobs and 40% of charged service units did not yield any

usable research results, it is still indicative of a potential resource wastage issue. It is

not possible to say whether wall-clock time was simply underestimated or whether an

unexpected behaviour of the application has caused a longer-than-expected runtime.

In either case, the applications would need some sort of resiliency mechanism to cope

with their abrupt termination.

If we assume an average provider cost per service unit (using one CPU core for an

hour) of £0.02 10, the total value of service units Archer can provide during 12 months

is £20,701,785. If we now assume that only 10% of service units were consumed

without producing any results, e.g., due to premature job termination, this would result

in more than £2,000,000 worth of service units wasted during 12 months. This of

9http://www.archer.ac.uk/
10Based on real-world HPC financial data. Details available upon request.

5.5. Cost-Benefit Analysis 147

76%

4%

4%

12%
4%

Job	Exit	Codes

0 1 137 271 Other

59%

1% 3%

36%

1%

SUs	Charged

0 1 137 271 Other

Job exit codes SUs charged

Figure 5.23: Analysis of 12 months of batch scheduler telemetry on EPCC’s Archer

cluster. The left chart shows the percentages of job exit codes (137 means that a job

was killed, 271 means that the job was terminated due to exceeded wall-clock time

limit). The chart on the right shows the percentage of service units (SUs) charged for

each exit code category.

course translates to a significant amount of electrical energy wasted and greenhouse

gasses emitted into the atmosphere. If we now make the conservative assumption

that out of these 10% wasted service units, a fraction of 10% could be avoided by

providing basic telemetry-based resiliency and optimization capabilities as proposed

in this research, we end up with the approximate amount of £200,000 annually, which

we could associate with the benefits of a telemetry platform deployed for Archer. Given

the insights provided in figure 5.23 and the fact that we have not considered labour cost

at all, the actual amount could potentially be significantly higher.

Next, we calculate a rough estimate for the cost of operating a cloud-based teleme-

try platform that can support a 4,920-node system like Archer. Based on the perfor-

mance and scalability of AWS components outlined in the previous chapter and on the

estimated data storage and transfer volumes required, we have calculated the annual

cost for the operation of a telemetry data platform. As shown in table 5.2 the estimated

monthly costs are around £12,800, which is equivalent to £154,248 annually. This

calculation assumes AWS spot-pricing. With an up-front commitment to 12 months

of resource usage, AWS grants a discount of about 30% which reduces the total an-

148 Chapter 5. Implementation and Evaluation

Service Description Monthly Cost

40 TB per month S3 data lake storage. £942

Amazon Managed Streaming for Apache Kafka (MSK) consisting of 3

m5.4xlarge Kafka broker nodes and 100 GB storage.

£4,110

Amazon EMR cluster consisting of 32 c3.2xlarge master EMR nodes, 100 %Uti-

lized/Month.

£2,452

32 general purpose t4g.xlarge EC2 instances for TSDB, GDB, and utility service

hosting.)

£2,275

AWS Fargate container platform estimated at 512 tasks or pods per day, 4 GB of

memory allocated per pod, with an average job duration 2 hours

£3,075

TOTAL £12,854

Table 5.2: Estimated monthly AWS cost for a telemetry platform supporting a 4,920-

node system.

nual cost to about £108,000. If we compare this amount with the £200,000 we have

estimated as avoidable costs, we can build a sound financial case around the return of

investment of a telemetry platform. Of course, this is a very simplistic estimate, but

we believe that it shows the general feasibility and direction in which this can be in-

vestigated further. As part of our future work, we would like to develop a cost function

that will allow us to calculate the overall cost of a telemetry platform as a function

of HPC cluster size and required telemetry platform capabilities, such as data collec-

tion frequency and storage duration, and use case categories, such as machine learning

and real-time analysis. Discovering the real impact of avoidable costs needs to be in-

vestigated through more in-depth engagement with application users and engineering

teams.

5.6. Summary 149

5.6 Summary

In this chapter we have introduced the SEASTAR platform, a prototype implementa-

tion of the conceptual telemetry platform architecture introduced in the previous chap-

ter. Inspired by existing state-of-the-art data platform implementations, we have illus-

trated, how telemetry (data) platforms can be realized using a combination of open-

source software components and public cloud building blocks and services. The cen-

tral implementation feature of SEASTAR is its multimodal data access layer that is

supported by a two-tier storage layer that covers real-time streaming, ad-hoc query,

and batch processing use cases. Our description of a concrete end-to-end implemen-

tation architecture in the public AWS cloud should allow for easy reproduction and

evolution of our prototype setup.

In addition to the platform architecture, we have also presented a simple program-

ming library to make the SEASTAR data platform intuitively usable for users and de-

velopers by introducing high-level concepts and abstraction of the platform in a consis-

tent, programmatic way. The library provides functionality for telemetry asset manage-

ment, workspace management, and application sidekick management as well as access

to telemetry data via the different access methods provided by the platform. One of

the current shortcomings of the programming library is that it only provides access

to the native interfaces of the underlying storage layer and does not provide higher-

level abstractions across graph- and time-series-data as proposed by the telemetry data

mode in chapter 4. We pick this up again in section 6.3 where we discuss future work.

We have furthermore demonstrated, how SEASTAR can be integrated with a typical

multi-tenant HPC system. For this purpose, we have built a virtual HPC testbed cluster

using Amazon Web Services EC2 virtual machines and the open-source SLURM clus-

ter manager. We have shown by example how the SLURM plug-in mechanism can be

used to transparently integrate SEASTAR capabilities in existing HPC workflows and

provide telemetry-based services to agnostic applications.

Lastly, we have experimentally evaluated SEASTAR’s usability by implementing a

machine learning-based application anomaly detection service. We were able to repro-

duce a previously conducted one-off experiment with our implementation and obtained

very similar results. The key contribution of the use case evaluation was to comple-

ment existing work by adding a software architecture and engineering perspective to it

and to show how the SEASTAR platform aids developers to turn an experimental work-

flow into a more robust, production-grade feedback-control system. As part of this

150 Chapter 5. Implementation and Evaluation

research, we had originally implemented a second use case to illustrate SEASTAR’s us-

ability. This use case was based on the application-level-scheduling example discussed

in section 2.2.2. However, since this use case illustrates the same use of components

and development workflow, we have omitted it from this section.

Chapter 6

Conclusion and Future Work

Over the last ten years, data platform technology has advanced significantly. An

ecosystem of complex and difficult to use technology that required expert system en-

gineers to build and operate has emerged into a rich landscape of mature open-source

projects, commercial vendors providing turnkey solutions, and cloud providers, offer-

ing data platform capabilities as a service. This development has enabled and made

possible the ambitions and agenda we have set out to follow in this research. Without

the commoditization of data platform technology, building a prototype for a platform

like SEASTAR would not have been feasible. Our implementation impressively shows,

how building a telemetry data platform becomes much more an exercise of configuring

services and connecting their APIs, rather than “heavy-weight” software development.

This has allowed us to focus on and explore the concepts that are important from the

usability perspective of a data platform, such as workspaces and application sidekicks.

The overall outcome of this work strikes in our opinion a good balance between a

conceptual framework and formal model for HPC telemetry data, and a concrete im-

plementation blueprint that sets a direction for future research and adoption of the data

platform concept in practice. Despite the technological advances that have made the

latter part of this work possible, presenting an end-to-end solution to the given problem

space is still an enormous task. Consequently, there are many aspects in this research

that have not been teased out fully and the evaluation still leaves some questions unan-

swered. Nevertheless, we believe that this research provides an important contribu-

tion to the field of high-performance computing platform and application architecture

by demonstrating how an often overlooked, yet crucial aspect of telemetry-driven re-

search and application design — the implementation architecture — can be supported

in practice. The results we have presented, while not comprehensive, set a promising

151

152 Chapter 6. Conclusion and Future Work

direction for future research and development of HPC telemetry platforms.

In this last chapter, we conclude our research by summarizing our key contribu-

tions, discuss the important limitations and uncertainties of our approach, and provide

an outlook on several interesting and important future research topics in this area.

6.1 Results and Contributions

This research contributes to the fields of high-performance and distributed computing,

particularly to the fields of HPC system and applications architecture. The four main

contributions of this research are as follows:

1. Telemetry Platform Paradigm
The overarching conceptual contribution of this work is the application of the

data platform concept to HPC telemetry data management and usage. While

existing telemetry and monitoring solutions focus on collecting telemetry data,

our approach focuses on the usability of telemetry and makes analysis an inte-

gral part of the overall system instead of locating it externally. This makes the

telemetry platform approach a conceptually novel approach to handling teleme-

try on HPC systems and distinguishes our solution from existing approaches.

Furthermore, our approach caters to platform operators, application developers

and users, and researchers alike. This cross-domain approach has not been taken

on by existing research which tends to focus more narrowly on specific user

groups or categories of use cases.

2. Telemetry Information Model
The second contribution of this research is a novel telemetry data model that ad-

dresses several existing challenges of working with telemetry data by providing

a time-variant structural framework, the telemetry graph, in which telemetry data

can be organized and localized in a standardized way. To our knowledge, captur-

ing the dynamic structure of and interaction between HPC platform and appli-

cation components together with the telemetry data they generate has not been

proposed and implemented before. It provides the larger high-performance- and

distributed-computing community with a new angle on telemetry representation

and a practical example of how graph-based representations of dynamic systems

and applications can be used to increase the comprehensibility and comparability

of system and application telemetry. The explicit distinction we make between

6.1. Results and Contributions 153

the abstract telemetry graph model and its concrete implementation does not only

allow for the accommodation of different HPC system architectures, but it makes

our approach generic enough to be applied to (distributed) systems beyond HPC

systems, such as grids and clouds.

3. Telemetry Platform Architecture
The third contribution of this research is the blueprint for and prototype of a

concrete implementation and integration architecture of the telemetry platform

paradigm and telemetry data model. Inspired by existing state-of-the-art data

platform implementations, we have illustrated, how a telemetry platform can be

realized using a combination of open-source software components and public

cloud building blocks and services. This presents a novel approach, and we have

not come across solutions that use this approach for storing and managing HPC

telemetry data.

4. Decoupled Application Architectures
The fourth and last contribution of this research is a proposal for decoupled HPC

application architectures, separating telemetry data management, and feedback-

control-loop logic from the core application code. We illustrate how this archi-

tecture pattern allows lower-complexity application code and enables the reusabil-

ity of resilience and optimization capabilities that would otherwise often be

tightly coupled to a specific application. We show by example how a machine

learning-based, application anomaly detection service can be realized using a

decoupled architecture approach. While it is safe to assume that variants of the

decoupled architecture patterns are in use across many HPC application and ser-

vice implementations, to our knowledge this research is the first to propose its

use specifically in a telemetry-driven application context.

We believe that together, these four unique contributions provide an interesting and

novel end-to-end approach to telemetry management and usage in high-performance

computing, a field that has been lacking progress, compared with the speed of inno-

vation in HPC (hardware) and application architectures. From concept to model, and

from telemetry platform architecture to the decoupled architecture pattern it supports,

this research motivates, touches upon and partially solves several important practi-

cal challenges in HPC telemetry: availability, accessibility, integration, standardized

structure and semantics, with better support for processing and analysis.

154 Chapter 6. Conclusion and Future Work

6.2 Limitations and Uncertainties

While we think that the broad scope of this research was necessary to investigate the

problem space in a meaningful way and illustrate the potential of our approach, it also

resulted in a number of important details not being addressed to the extent required

to build ultimate confidence in the feasibility. Especially questions about the scope in

which our approach is applicable and its scalability in production HPC environments

remain largely unanswered. In this section, we briefly describe these gaps. We propose

a number of future work topics to address these in the subsequent section.

One important question that our research does not answer in much detail is the

scope of its applicability across a broader spectrum of applications and use cases. Sec-

tion 2.2 provides a comprehensive list of application areas for a telemetry platform,

ranging from systems operation to adaptive application architectures, and application

development. However, it does not differentiate between different types of applications

and the level of granularity at which telemetry is required. For example, coarse-grained

performance profiling on the task level has vastly different requirements from fine-

grained communication profiling of a large MPI application. To better understand the

applicability and the limits of the telemetry platform concept, future research should

describe several application archetypes based on their use of telemetry, define their re-

quirements, and match these against the platform’s capabilities. We hypothesize that

we will see at least two scenarios in which the telemetry platform concept will reach

its limits:

• The duration between the time at which telemetry is generated and at which

it becomes available on the platform is too long. This could for example be the

case for extremely short and fine-grained feedback loops and generally use cases

where a few seconds of latency is not acceptable.

• Four factors contribute to the telemetry data volume generated: the number of

different measures collected, the sampling frequency at which they are collected,

(3) the size of the system, and (4) the retention time for the telemetry data. Use-

cases that require numerous metrics at a very high frequency (i.e., frequencies

below 1 second) will probably not scale well. We expect that some low-level

MPI profiling use cases will fall into this category.

We propose to do a more structured investigation — and experimentation — to develop

a better understanding of the application archetypes for which the telemetry platform

6.3. Proposed Future Work 155

concept will work well and for which it will not. This should be part of a comprehen-

sive analysis of the performance and scalability of our proposed architecture.

6.3 Proposed Future Work

In this section, we suggest several areas of future work that will help to further the

maturity of the telemetry platform concept and to answer some of the questions that

have remained unanswered in this research.

6.3.1 Cost-Benefit Analysis

Similar to the performance and scalability, the costs and benefits of a telemetry plat-

form have not been quantified sufficiently yet. The main value proposition of a teleme-

try platform is that it can enable a wide variety of optimization and resilience mecha-

nisms across the long tail of scientific applications. This in turn is expected to lead to

better utilization of HPC systems and especially to a reduction of hollow utilization,

i.e., the consumption of HPC resources without creating any usable output. On the

other hand, the deployment and continuous operation of a telemetry platform would

add additional costs to the HPC system operator’s budget. An area of future work will

be a detailed cost-benefit analysis. This can be approached in two ways:

1. Predictive analysis: based on the example of the EPCC study we have conducted

as part of this research, a more in-depth study of hollow utilization can be con-

ducted in order to quantify HPC resource waste. Combined with a model that

can estimate the proliferation of optimization and resilience mechanisms over

time (e.g., based on user surveys), the cost and benefit of a telemetry platform

can be estimated.

2. Real-world study: the alternative approach to a predictive analysis would be

establishing a real-world testbed in which a telemetry platform is provided as

part of a production HPC system offering. Cost, adoption, and impact could be

studied over an extended period in this environment.

Another aspect that would be interesting to quantify as part of a cost-benefit analysis is

the impact on the software development process. Our hypothesis is that the telemetry

platform concept can significantly decrease application development time by reducing

the cognitive load on HPC software developers and computational scientists, and by

156 Chapter 6. Conclusion and Future Work

providing reusable building blocks and services. Several approaches can be used to

better understand the expected increase in efficiency, including structured interviews

with developers and comparative studies. One could for example design a series of

experiments in which software developers are tasked to implement different types of

telemetry-based resilience and optimization patterns with and without the use of a

telemetry platform.

6.3.2 Telemetry Graph Interface

One of the current gaps in the presented architecture and implementation of the teleme-

try platform concept is the lack of reference to and exposure of the underlying teleme-

try graph model. The SEASTAR prototype exposes the native query interfaces of the

graph database, holding the telemetry graph, and of the time seriesdatabase, holding

the time seriesdata associated with the nodes and edges of the telemetry graph. Both

of these programming interfaces are completely disjoint which makes it cognitively

difficult and tedious to explore structure and time seriesdata at the same time. For ex-

ample, in order to get the network performance counter data from all compute nodes

that run processes associated with a specific application, one first needs to query the

graph database to identify the nodes:

1 MATCH (node:CNode)-[:ALLOCATED_TO]-(proc:Process)-[:BELONGS_TO]-(app:Application)

2 WHERE app.name = "MyAppIdentifier"

3 RETURN node, labels(node)

The return value of the graph query must then be used to query the time seriesdatabase

for the nodes identified via a separate API:

1 SELECT derivative(sum("value"), 1s)

2 FROM "net.bytes_sent"

3 WHERE ("cnode" = IN('nodes returned from GDB query'))

This is neither a very intuitive way to interact with the telemetry graph programmati-

cally, nor is it very efficient.

One interesting and relevant future area of research is to develop an abstraction

layer on top of the native graph and time seriesAPIs. This abstraction layer would im-

plement a “native” telemetry graph API that exposes the telemetry graph as a whole,

i.e., both the structure and the embedded telemetry, within the same query interface.

This could either be a domain-specific query language that combines both, graph query,

6.3. Proposed Future Work 157

and time seriesquery elements, or a higher-level programming framework. Such an ab-

straction layer would be the foundation for a more coherent and model-centric teleme-

try platform.

6.3.3 Decentralization and Data Locality

In its current prototype implementation, SEASTAR implements a fully centralized model

for data storage and processing. That means that platform and application telemetry

that is collected locally on compute nodes must be transported to and ingested into

the telemetry data platform before it becomes available through the different APIs.

While this works well for the use case we presented and at a moderate system and

application scale, it will become inefficient in large-scale scenarios where real-time,

high-frequency node-local data is required. In these types of scenarios, the overhead

imposed by a centralized architecture will quickly become prohibitively expensive.

In order to alleviate this potential issue, we need to investigate how decentralization

and data locality concepts can be integrated into the telemetry platform architecture.

One interesting concept to explore would be edge caching of telemetry data, i.e., en-

suring the relevant telemetry data is made readily available locally on the individual

compute nodes. Ideally, this architecture would be transparent to the applications, i.e.,

they would use the existing programming interface to access telemetry, and the plat-

form would manage data locality in the background and decide whether to fetch it

from the central databases or a local cache. With such a decentralized system archi-

tecture in place, we can then explore advanced caching topologies and strategies, such

as heuristics-based caching. A large body of research on caching exists that can be

utilized and applied in this context.

6.3.4 Application to Distributed Computing

Many of the concepts of telemetry-driven application architectures are equally rele-

vant, or even originate from the distributed computing domains like Grid and Cloud

computing. Grid computing projects and initiatives like the Globus Toolkit MDS4

metadata service [Schopf et al., 2006b] and Open Grid Forum SAGA [Goodale et al.,

2006] spearheaded the first generation of data models that describe HPC system prop-

erties and structures as they introduced on homogenous data models across different

HPC systems. Similarly, a lot of resilient application architectures were born and pop-

ularized in distributed computing, as the complex distributed Grid and Cloud environ-

158 Chapter 6. Conclusion and Future Work

ments added another dimension of possible failures. Telemetry collection and usage in

distributed computing research and application development is just as important as it

is in HPC, and the challenges are very similar: solutions tend to be part of a specific

application or a distributed framework and are not available as a general capability.

Consequently, an interesting area of future work would be to explore the applicability

of the concepts and techniques developed in this research.

6.3.5 Usability in Systems Research

One of the interesting opportunities we have pointed out in section 3.2 is HPC systems

research, but the scope of our work did not allow for further investigation. As a fu-

ture area of work, we propose to investigate how our telemetry platform concept can

contribute to a more research friendly environment and better enable reproducible and

comparable results. Part of the investigation would be a more detailed requirements

analysis and design of the collaborative capabilities of the platform, such as shared

workspaces and the telemetry catalogue. A specific focus could be on the publication

of digital assets which we have just briefly touched upon in section 5.2.2.

6.3.6 Extension to Log-File Data

Many HPC application and platform anomaly detection systems use log-files instead

of telemetry data as input for their analyses and predictions (see e.g., [Fronza et al.,

2013], [Gainaru et al., 2012], and [Heien et al., 2011]). Log-file based resilience and

optimization architectures are other important approaches that could be relevant to

support by a system like SEASTAR. Log files are by nature more unstructured than

telemetry and require different processing approaches and technologies. However, we

believe that our telemetry graph could provide a useful semantic framework for orga-

nizing log-files within the structural context in which they occur. We propose to inves-

tigate this topic further to better understand if and how the telemetry platform paradigm

can be extended to log-file data. It will be interesting to understand if telemetry and log

data can efficiently coexist within the same conceptual framework, and the potential

benefits this can bring to HPC application development.

6.4. Conclusion and Reflections 159

6.4 Conclusion and Reflections

The original idea of embarking on this research was motivated by the observations and

experience collected throughout a decade of work as an HPC application and frame-

work developer. Working with HPC hardware and software was always interesting

and rewarding due to the massive scale and the sophisticated concepts and technolo-

gies that make it possible to use systems of this scale efficiently. However, one of

the consistent negative experiences across all the different HPC research and develop-

ment projects1 was indeed about managing platform and application telemetry data.

Whether data needed to be collected and processed for debugging or optimization pur-

poses, to evaluate and document experiments, or to build feedback-control loops (e.g.,

for application-level scheduling in RADICAL-Pilot [Merzky et al., 2015a]) — the pro-

cess was always time-consuming, clunky, and error-prone. Platform facilities to extract

and collect telemetry, if existing or accessible at all, were limited to basic system mon-

itoring interfaces and tools and highly aggregated historic datasets that were usually

not fit for the task at hand. The consequence was that a growing set of “home-grown”

tooling had to be developed and customized for every new platform, to be the basis

for telemetry extraction and management. And while this was a pragmatic way for-

ward, the overhead was high, reusability low, and the experience was unsatisfactory

from a software developer’s perspective, especially in an environment that otherwise

epitomizes the technological avant-garde in hardware and software research. Identify-

ing these problems in [Weidner et al., 2016b], the resulting discussions with reviewers

and peers, and a subsequent feature in HPC Wire [HPCWire, 2017], provided enough

encouragement for an in-depth investigation into “how can we do this better?”. The

HPC telemetry platform presented in this research is our answer to that question.

Setting out to answer this question was ambitious and the result, as presented in

this thesis, shows the consequences of the broad scope that was necessary to investi-

gate the problem space holistically: some important details were not discussed at the

depth required and the experimental evaluation of the system is not comprehensive

enough to build strong confidence in the feasibility of our approach. However, it paints

in broad but concise strokes the picture of a new paradigm for integrating telemetry

with HPC application architectures, development processes and research workflows.

1Published HPC application and framework development projects included [Hossain et al., 2019],
[Merzky et al., 2015c], [Merzky et al., 2015a], [Balasubramanian et al., 2016], [Radak et al., 2013b],
[Jha et al., 2007b], [Jha et al., 2007c], and [Weidner and Bidal, 2008].

160 Chapter 6. Conclusion and Future Work

The SEASTAR prototype, while put together only roughly for evaluation, provides a

practical blueprint for implementing and integrating this paradigm in a real-world sce-

nario, using readily available cloud computing capabilities. Expanding on or rebuild-

ing SEASTAR should be a straight-forward exercise starting from the details developed

in this research.

Some aspects of the telemetry model also did not receive the focus that they de-

serve, and readers might ask themselves ”why?” after working through its formal

definition, only to end up with a superficial practical example. The key idea, which

unfortunately had to fall short in the prototype and its practical evaluation, is the se-

mantic skeleton the telemetry graph provides for telemetry. Not only does this allow

for organizing telemetry in its structural context, which makes it easily identifiable and

comparable, but it also provides a navigable digital twin of a platform and the appli-

cations running on it. This is a critical capability for self-adapting applications that

require understanding of the architecture and configuration of the platform they run

on, as well as their locality within that structure. Many existing HPC applications and

frameworks still maintain static configuration maps for known systems or require this

information to be passed as parameters at startup in order to build an internal repre-

sentation of their context. The telemetry graph makes this context discoverable for

applications at runtime, which provides great opportunities for novel adaptive applica-

tion architectures, which could have easily been turned into an additional chapter. We

hope to elaborate this further in an upcoming journal publication.

But while the list of open topics is long, we still believe strongly that this research

makes an important novel contribution towards furthering our understanding of future

HPC ecosystem designs and architectures. We hope that this research will inspire fu-

ture research and development of HPC telemetry platforms. We are confident that, if

this research concept can evolve into a commodity HPC system capability, it has the

potential to improve research transparency and collaboration, ease proliferation of ad-

vanced, telemetry-driven application architectures, and ultimately platform efficiency,

beyond what is currently feasible.

Appendix A

Telemetry Usage Survey

From the existing literature, it is difficult to distil a comprehensive picture of how

telemetry data is used across production HPC systems. In the majority of cases, ex-

perimental workflow descriptions simply assume that telemetry is available. How it is

collected and accessed remains vague at best. We set out to do a survey that explores

how telemetry data is managed and used at HPC centres and how it is made available to

the users1. Unfortunately, the response rate to our survey was very low. Only three out

of 20 selected HPC centres responded to our request, this is why we have decided not

to give it a more prominent place in our research. We suspect that the fact that we have

sent the survey to publicly available HPC centre help-desk email addresses instead of

individuals has contributed to the low number of participants. We are planning for a

second iteration with an updated set of questions that will be sent out to individuals

instead of mailing lists as part of our future work.

A.1 Survey Design

The survey consists of a catalogue of ten questions:

1. Which open-source monitoring tools are integrated with your platform? (Please

select all that apply)

2. Which vendor-specific monitoring tools are integrated with your platform? (Please

select all that apply)

3. What kind of data do you collect? (Please select all that apply)

1Survey accessible online at https://www.surveymonkey.com/r/RHRQXNW

161

162 Appendix A. Telemetry Usage Survey

4. What do you use telemetry data for? (Please select all that apply)

5. Do you provide programmatic (API) access to telemetry data for application

developers?

6. If you answered the previous question with ”Yes”, can you describe the API you

provide?

7. Are you aware of any applications on your platform that use the telemetry data

you collect/provide?

8. If you answered the previous question with ”Yes”, can you give examples of

which applications use the data and how?

9. Are you aware of any applications on your platform that collect and use telemetry

on their own?

10. Can you share the name of the HPC system for which the answers above apply

(optional)?

A.2 Results

The survey was sent out to 20 HPC centres around the globe. The selection was guided

by the November 2017 TOP500 list 2. The total number of responses was three. While

none-representative, it was still interesting that all three participants answered ques-

tion 5 — Do you provide programmatic (API) access to telemetry data for application

developers with “No”. This is consistent with our own experience with the HPC plat-

forms we have worked on. The full results are shown below.

2https://www.top500.org/lists/2017/11/

A.2. Results 163

Figure A.1: Question 1: Which open-source monitoring tools are integrated with your

platform? (Please select all that apply)

Figure A.2: Question 2: Which vendor-specific monitoring tools are integrated with

your platform? (Please select all that apply)

164 Appendix A. Telemetry Usage Survey

Figure A.3: Question 3: What kind of data do you collect? (Please select all that apply)

Figure A.4: Question 4: What do you use telemetry data for? (Please select all that

apply)

A.2. Results 165

Figure A.5: Question 5: Do you provide programmatic (API) access to telemetry data

for application developers?

Figure A.6: Question 7: Are you aware of any applications on your platform that use

the telemetry data you collect / provide?

Figure A.7: Question 9: Are you aware of any applications on your platform that collect

and use telemetry on their own?

Glossary

application anatomy

Application anatomy describes a type of subgraph of a telemetry graph that rep-

resents structure and properties of HPC applications. 75

application sidekick

Application sidekicks are a component of a telemetry platform that provides ca-

pabilities for building and hosting telemetry-based application support services.

117

application telemetry

Application telemetry describes a subset of telemetry that is generated during the

execution of applications on an HPC cluster. This includes information about an

application’s system resource allocation and interaction as well as information

generated by the application itself, such as internal performance metrics. 18

data lake

A data lake is a system that provides a repository of data stored in its natural/raw

format, usually object blobs or files. 5

platform anatomy

Platform anatomy describes a type of subgraph of a telemetry graph that repre-

sents structure and properties of the HPC system. 75

system telemetry

System telemetry describes a subset of telemetry that is generated by the op-

erating systems, commanding compute, storage, networking and utility nodes,

environmental sensors that monitor power consumption, temperature, and other

167

168 Glossary

external factors, and HPC system services such as job queueing and object stor-

age systems. 18

telemetry

Telemetry is the continuous stream of operational data that is generated on HPC

systems by the hardware, operating systems, services, runtime systems, and ap-

plications 1

telemetry graph

A telemetry graph is a labelled, directed multigraph that represents the structure

of HPC systems and applications. It provides the semantic structure in which

telemetry is organized. 76

Acronyms

AMR

Adaptive Mesh Refinement 29

API

Application programming interface 3

AWS

Amazon Web Service 11

DPaaS

Data-Platform-as-a-Service 52

ETL

Extract, Transform, Load 103

FPGA

Field-Programmable Gate Array 36

GDB

Graph Database 90

GPU

Graphics Processing Unit 36

HPC

High-Performance Computing 1

169

170 Acronyms

IoT

internet-of-Things 2

JVM

JAVA Virtual Machine 28

MPI

Message Passing Interface 17

PaaS

Platform-as-a-Service 52

ProcFS

Process Filesystem 19

RDBMS

Relational Database Management System 90

REST

Representational state transfer 60

TSDB

Time-Series Database 90

XDR

External Data Representation 33

XML

Extensible Markup Language 33

Bibliography

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J.,
Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016). Tensorflow: A sys-
tem for large-scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265–283.

[Agelastos et al., 2014] Agelastos, A., Allan, B., Brandt, J., Cassella, P., Enos, J., Ful-
lop, J., Gentile, A., Monk, S., Naksinehaboon, N., Ogden, J., Rajan, M., Show-
erman, M., Stevenson, J., Taerat, N., and Tucker, T. (2014). The lightweight dis-
tributed metric service: A scalable infrastructure for continuous monitoring of large
scale computing systems and applications. In SC ’14: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pages 154–165.

[Agrawal et al., 2014] Agrawal, K., Fahey, M. R., McLay, R. T., and James, D. (2014).
User environment tracking and problem detection with XALT.

[Ahmed et al., 2016] Ahmed, M., Mahmood, A. N., and Islam, M. R. (2016). A survey
of anomaly detection techniques in financial domain. Future Generation Computer
Systems, 55:278–288.

[Allaire, 2012] Allaire, J. (2012). Rstudio: integrated development environment for r.
Boston, MA, 770:394.

[Allcock et al., 2011] Allcock, W., Felix, E., Analysis, M. L. S., , and 2011 (2011).
Challenges of HPC monitoring. ieeexplore.ieee.org.

[Amundsen, 2020] Amundsen (2020). Amundsen, open source data discovery and
metadata engine. https://www.amundsen.io/. [Online; accessed 16-Dec-2020].

[Ates et al., 2019] Ates, E., Zhang, Y., Aksar, B., Brandt, J., Leung, V. J., Egele, M.,
and Coskun, A. K. (2019). HPAS: An HPC performance anomaly suite for re-
producing performance variations. In 48th International Conference on Parallel
Processing (ICPP 2019).

[Atkinson et al., 2017] Atkinson, M., Gesing, S., Montagnat, J., and Taylor, I. (2017).
Scientific workflows: Past, present and future. Future Generation Computer Sys-
tems, 75:216–227.

[Bader et al., 2017] Bader, A., Kopp, O., and Falkenthal, M. (2017). Survey and com-
parison of open-source time seriesdatabases. Datenbanksysteme für Business, Tech-
nologie und Web (BTW 2017)-Workshopband.

171

172 Bibliography

[Bailey et al., 1991] Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R.,
Dagum, L., Fatoohi, R., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H.,
Venkatakrishnan, V., and Weeratunga, S. (1991). The nas parallel benchmarks. The
International Journal of Supercomputing Applications, 5(3):63–73.

[Balasubramanian et al., 2016] Balasubramanian, V., Treikalis, A., Weidner, O., and
Jha, S. (2016). Ensemble toolkit: Scalable and flexible execution of ensembles of
tasks. In 2016 45th International Conference on Parallel Processing (ICPP), pages
458–463. IEEE.

[Baltrušaitis et al., 2018] Baltrušaitis, T., Ahuja, C., and Morency, L.-P. (2018). Mul-
timodal machine learning: A survey and taxonomy. IEEE transactions on pattern
analysis and machine intelligence, 41(2):423–443.

[Barroso and Hölzle, 2007] Barroso, L. A. and Hölzle, U. (2007). The case for energy-
proportional computing. Computer, 40(12):33–37.

[Bechhofer et al., 2010] Bechhofer, S., De Roure, D., Gamble, M., Goble, C., and
Buchan, I. (2010). Research objects: Towards exchange and reuse of digital knowl-
edge. Nature Precedings, pages 1–1.

[Becker et al., 1995] Becker, D. J., Sterling, T., Savarese, D., Dorband, J. E.,
Ranawak, U. A., and Packer, C. V. (1995). Beowulf: A parallel workstation for
scientific computation. In Proceedings, International Conference on Parallel Pro-
cessing, volume 95, pages 11–14.

[Beckman et al., 2007] Beckman, P., Nadella, S., Trebon, N., and Beschastnikh, I.
(2007). Spruce: A system for supporting urgent high-performance computing. In
Gaffney, P. W. and Pool, J. C. T., editors, Grid-Based Problem Solving Environ-
ments, pages 295–311, Boston, MA. Springer US.

[Bernstein, 2014] Bernstein, D. (2014). Containers and cloud: From lxc to docker to
kubernetes. IEEE Cloud Computing, 1(3):81–84.

[Berral et al., 2010] Berral, J. L., Goiri, I. n., Nou, R., Julià, F., Guitart, J., Gavaldà,
R., and Torres, J. (2010). Towards energy-aware scheduling in data centers using
machine learning. In Proceedings of the 1st International Conference on Energy-
Efficient Computing and Networking, e-Energy ’10, page 215–224, New York, NY,
USA. Association for Computing Machinery.

[Bhatele et al., 2015] Bhatele, A., Titus, A. R., Thiagarajan, J. J., Jain, N., Gamblin,
T., Bremer, P., Schulz, M., and Kale, L. V. (2015). Identifying the culprits behind
network congestion. In 2015 IEEE International Parallel and Distributed Process-
ing Symposium, pages 113–122.

[Bhuyan et al., 2013] Bhuyan, M. H., Bhattacharyya, D. K., and Kalita, J. K. (2013).
Network anomaly detection: methods, systems and tools. Ieee communications
surveys & tutorials, 16(1):303–336.

Bibliography 173

[Bianchini and Rajamony, 2004] Bianchini, R. and Rajamony, R. (2004). Power and
energy management for server systems. Computer, 37(11):68–76.

[Bollobás, 2013] Bollobás, B. (2013). Modern graph theory, volume 184. Springer
Science & Business Media.

[Borghesi et al., 2019] Borghesi, A., Libri, A., Benini, L., and Bartolini, A. (2019).
Online anomaly detection in hpc systems. In 2019 IEEE International Conference
on Artificial Intelligence Circuits and Systems (AICAS), pages 229–233. IEEE.

[Browne et al., 2000] Browne, S., Dongarra, J., Garner, N., London, K., and Mucci, P.
(2000). A scalable cross-platform infrastructure for application performance tuning
using hardware counters. In SC ’00: Proceedings of the 2000 ACM/IEEE Confer-
ence on Supercomputing, pages 42–42.

[CACM, 2017] CACM (2017). Rethinking HPC systems for ‘Second Gen’ Appli-
cations. https://cacm.acm.org/news/213986-rethinking-hpc-platforms-
for-second-gen-applications/fulltext. [Online; accessed 16-Jan-2018].

[Chandola et al., 2009] Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly
detection: A survey. ACM computing surveys (CSUR), 41(3):1–58.

[Chatfield, 1978] Chatfield, C. (1978). The holt-winters forecasting procedure. Jour-
nal of the Royal Statistical Society: Series C (Applied Statistics), 27(3):264–279.

[Chung-hsing Hsu and Wu-chun Feng, 2005] Chung-hsing Hsu and Wu-chun Feng
(2005). A power-aware run-time system for high-performance computing. In SC
’05: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, pages
1–1.

[CKAN, 2020] CKAN (2020). CKAN, the world’s leading Open Source data portal
platform. https://ckan.org/. [Online; accessed 16-Dec-2020].

[Dagum and Menon, 1998] Dagum, L. and Menon, R. (1998). Openmp: an industry
standard api for shared-memory programming. IEEE computational science and
engineering, 5(1):46–55.

[Datadog, 2021] Datadog (2021). Datadog, cloud monitoring as a service. https:
//www.datadoghq.com/. [Online; accessed 05-Sept-2021].

[Davison, 2003] Davison, A. C. (2003). Statistical models, volume 11. Cambridge
university press.

[Dean and Ghemawat, 2010] Dean, J. and Ghemawat, S. (2010). Mapreduce: a flexi-
ble data processing tool. Communications of the ACM, 53(1):72–77.

[Deelman et al., 2015] Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S.,
Maechling, P. J., Mayani, R., Chen, W., Da Silva, R. F., Livny, M., et al. (2015). Pe-
gasus, a workflow management system for science automation. Future Generation
Computer Systems, 46:17–35.

174 Bibliography

[Diestel, 2000] Diestel, R. (2000). Graduate Texts in Mathematics, Volume 173.
Springer-Verlag New York, Incorporated.

[Dorier et al., 2014] Dorier, M., Antoniu, G., Ross, R., Kimpe, D., and Ibrahim,
S. (2014). Calciom: Mitigating i/o interference in hpc systems through cross-
application coordination. In 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, pages 155–164.

[Duckworth et al., 2017] Duckworth, J., Blakeborough, J., Coryell, K., and McLeod,
S. (2017). Telemetry-enabled customer support using the cray system snap-
shot analyzer (ssa). https://cug.org/proceedings/cug2017 proceedings/
includes/files/pap124s2-file1.pdf. [Online; accessed 10-Apr-2020].

[EEHPCWG, 2014] EEHPCWG (2014). Energy Efficient High Performance Com-
puting Working Group. https://eehpcwg.llnl.gov//. [Online; accessed 10-
Apr-2020].

[Ellert et al., 2007] Ellert, M., Grønager, M., Konstantinov, A., Kónya, B., Linde-
mann, J., Livenson, I., Nielsen, J. L., Niinimäki, M., Smirnova, O., and Wäänänen,
A. (2007). Advanced resource connector middleware for lightweight computational
grids. Future Generation computer systems, 23(2):219–240.

[EPCC, 2019] EPCC (2019). Archer. http://www.archer.ac.uk/about-archer/.
[Online; accessed 03-Apr-2020].

[Faulkner and Gomes, 1991] Faulkner, R. and Gomes, R. (1991). The process file
system and process model in unix system v. In USENIX Winter.

[Fernandes and Bernardino, 2018] Fernandes, D. and Bernardino, J. (2018). Graph
databases comparison: Allegrograph, arangodb, infinitegraph, neo4j, and orientdb.
In Data, pages 373–380.

[Ferreira, 2021] Ferreira, R. (2021). Take me down to the paradise city where the
metric is green and traces are pretty. USENIX Association.

[Filgueira et al., 2010] Filgueira, R., Singh, D. E., Carretero, J., Calderón, A., and
Garcı́a, F. (2010). Adaptive-compi: Enhancing mpi-based applicationsâ perfor-
mance and scalability by using adaptive compression. International Journal of High
Performance Computing Applications.

[Filgueira et al., 2011] Filgueira, R., Singh, D. E., Carretero, J., Calderón, A., and
Garcı́a, F. (2011). Adaptive-Compi: Enhancing Mpi-Based Applications’ Perfor-
mance and Scalability by using Adaptive Compression. The International Journal
of High Performance Computing Applications, 25(1):93–114.

[Fontenla-Romero et al., 2013] Fontenla-Romero, Ó., Guijarro-Berdiñas, B.,
Martinez-Rego, D., Pérez-Sánchez, B., and Peteiro-Barral, D. (2013). Online
machine learning. In Efficiency and Scalability Methods for Computational
Intellect, pages 27–54. IGI Global.

Bibliography 175

[Foster, 2006] Foster, I. (2006). Globus toolkit version 4: Software for service-
oriented systems. Journal of computer science and technology, 21(4):513–520.

[Foundation, 2021] Foundation, T. L. (2021). Open Neural Network Exchange: The
open standard for machine learning interoperability. https://onnx.ai/. [Online;
accessed 021-Jan-2021].

[Francis et al., 2018] Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker,
T., Marsault, V., Plantikow, S., Rydberg, M., Selmer, P., and Taylor, A. (2018).
Cypher: An evolving query language for property graphs. In Proceedings of the
2018 International Conference on Management of Data, pages 1433–1445.

[Fronza et al., 2013] Fronza, I., Sillitti, A., Succi, G., Terho, M., and Vlasenko, J.
(2013). Failure prediction based on log files using random indexing and support
vector machines. Journal of Systems and Software, 86(1):2–11.

[Fürlinger and Gerndt, 2005] Fürlinger, K. and Gerndt, M. (2005). ompp: A profiling
tool for openmp. In International Workshop on OpenMP, pages 15–23. Springer.

[Gainaru et al., 2012] Gainaru, A., Cappello, F., Snir, M., and Kramer, W. (2012).
Fault prediction under the microscope: A closer look into hpc systems. In SC’12:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, pages 1–11. IEEE.

[Gallo et al., 2015] Gallo, S. M., White, J. P., DeLeon, R. L., Furlani, T. R., Ngo,
H., Patra, A. K., Jones, M. D., Palmer, J. T., Simakov, N., Sperhac, J. M., Innus,
M., Yearke, T., and Rathsam, R. (2015). Analysis of xdmod/supremm data using
machine learning techniques. In 2015 IEEE International Conference on Cluster
Computing, pages 642–649.

[Gandrud, 2013] Gandrud, C. (2013). Reproducible research with R and R studio.
CRC Press.

[Ge et al., 2005] Ge, R., Xizhou Feng, and Cameron, K. W. (2005). Performance-
constrained distributed dvs scheduling for scientific applications on power-aware
clusters. In SC ’05: Proceedings of the 2005 ACM/IEEE Conference on Supercom-
puting, pages 34–34.

[Goodale et al., 2006] Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P.,
Von Laszewski, G., Lee, C., Merzky, A., Rajic, H., and Shalf, J. (2006). Saga:
A simple api for grid applications. high-level application programming on the grid.
Computational Methods in Science and Technology, 12(1):7–20.

[GrafanaLabs, 2020] GrafanaLabs (2020). Grafana. https://grafana.com/. [On-
line; accessed 16-Jan-2018].

[Granger and Grout, 2016] Granger, B. and Grout, J. (2016). Jupyterlab: Building
blocks for interactive computing. Slides of presentation made at SciPy.

176 Bibliography

[Gropp et al., 1996] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-
performance, portable implementation of the mpi message passing interface stan-
dard. Parallel computing, 22(6):789–828.

[Gunarathne et al., 2010] Gunarathne, T., Wu, T., Qiu, J., and Fox, G. (2010). Mapre-
duce in the clouds for science. In 2010 IEEE Second International Conference on
Cloud Computing Technology and Science, pages 565–572.

[Gvozdjak and Marques, 2019] Gvozdjak, P. and Marques, J. (2019). Amazon EMR
introduces EMR runtime for Apache Spark. https://aws.amazon.com/blogs/
big-data/amazon-emr-introduces-emr-runtime-for-apache-spark/.
[Online; accessed 16-Jan-2021].

[Hargrove and Duell, 2006] Hargrove, P. H. and Duell, J. C. (2006). Berkeley lab
checkpoint/restart (blcr) for linux clusters. In Journal of Physics: Conference Se-
ries, volume 46, page 494.

[Heien et al., 2011] Heien, E., Kondo, D., Gainaru, A., LaPine, D., Kramer, B., and
Cappello, F. (2011). Modeling and tolerating heterogeneous failures in large paral-
lel systems. In Proceedings of 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’11, New York, NY, USA. As-
sociation for Computing Machinery.

[Herbein et al., 2016] Herbein, S., Ahn, D. H., Lipari, D., Scogland, T. R., Stearman,
M., Grondona, M., Garlick, J., Springmeyer, B., and Taufer, M. (2016). Scalable
i/o-aware job scheduling for burst buffer enabled hpc clusters. In Proceedings of the
25th ACM International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’16, page 69–80, New York, NY, USA. Association for Com-
puting Machinery.

[Hey et al., 2009] Hey, T., Tansley, S., Tolle, K., et al. (2009). The fourth paradigm:
data-intensive scientific discovery, volume 1. Microsoft research Redmond, WA.

[Holzschuher and Peinl, 2013] Holzschuher, F. and Peinl, R. (2013). Performance
of graph query languages: Comparison of cypher, gremlin and native access in
neo4j. In Proceedings of the Joint EDBT/ICDT 2013 Workshops, EDBT ’13, page
195–204, New York, NY, USA. Association for Computing Machinery.

[Hossain et al., 2019] Hossain, A., Jha, S., and Weidner, O. (2019). Federation and
interoperability use cases, version 1.1. Technical report.

[HPCWire, 2017] HPCWire (2017). Rethinking HPC systems for ‘Second
Gen’ Applications. https://www.hpcwire.com/2017/02/22/rethinking-hpc-
platforms-second-gen-applications/. [Online; accessed 16-Jan-2018].

[Hunold, 2015] Hunold, S. (2015). A Survey on Reproducibility in Parallel Comput-
ing. CoRR.

[Ibidunmoye et al., 2015] Ibidunmoye, O., Hernández-Rodriguez, F., and Elmroth, E.
(2015). Performance anomaly detection and bottleneck identification. ACM Com-
put. Surv., 48(1).

Bibliography 177

[InfluxData, 2020a] InfluxData (2020a). Procstat input plugin. https:
//github.com/influxdata/telegraf/tree/release-1.14/plugins/
inputs/procstat.

[InfluxData, 2020b] InfluxData (2020b). Telegraf. https://github.com/
influxdata/telegraf/tree/release-1.14/.

[Ivie and Thain, 2018] Ivie, P. and Thain, D. (2018). Reproducibility in scientific
computing. ACM Comput. Surv., 51(3).

[Jha et al., 2007a] Jha, S., Kaiser, H., El-Khamra, Y., and Weidner, O. (2007a). Design
and Implementation of Network Performance Aware Applications Using SAGA and
Cactus. eScience.

[Jha et al., 2007b] Jha, S., Kaiser, H., Khamra, Y. E., and Weidner, O. (2007b). De-
sign and implementation of network performance aware applications using saga and
cactus. In e-Science and Grid Computing, IEEE International Conference on, pages
143–150. IEEE.

[Jha et al., 2007c] Jha, S., Kaiser, H., Merzky, A., and Weidner, O. (2007c). Grid
interoperability at the application level using saga. In Third IEEE International
Conference on e-Science and Grid Computing (e-Science 2007), pages 584–591.
IEEE.

[Josephsen, 2007] Josephsen, D. (2007). Building a Monitoring Infrastructure with
Nagios. Prentice Hall PTR, USA.

[Juve et al., 2015] Juve, G., Tovar, B., d. Silva, R. F., Król, D., Thain, D., Deelman,
E., Allcock, W., and Livny, M. (2015). Practical resource monitoring for robust
high throughput computing. In 2015 IEEE International Conference on Cluster
Computing, pages 650–657.

[Kale and Krishnan, 1993] Kale, L. V. and Krishnan, S. (1993). Charm++: A portable
concurrent object oriented system based on c++. SIGPLAN Not., 28(10):91–108.

[Kaplan et al., 2013] Kaplan, F., Meng, J., and Coskun, A. K. (2013). Optimizing
communication and cooling costs in hpc data centers via intelligent job allocation.
In 2013 International Green Computing Conference Proceedings, pages 1–10.

[Kaplunovich and Yesha, 2018] Kaplunovich, A. and Yesha, Y. (2018). Consolidating
billions of taxi rides with aws emr and spark in the cloud : Tuning, analytics and
best practices. In 2018 IEEE International Conference on Big Data (Big Data),
pages 4501–4507.

[Kasick et al., 2010] Kasick, M. P., Tan, J., Gandhi, R., and Narasimhan, P. (2010).
Black-box problem diagnosis in parallel file systems. In FAST, pages 43–56.

[Kiran et al., 2015] Kiran, M., Murphy, P., Monga, I., Dugan, J., and Baveja, S. S.
(2015). Lambda architecture for cost-effective batch and speed big data processing.
In 2015 IEEE International Conference on Big Data (Big Data), pages 2785–2792.

178 Bibliography

[Kocher, 1996] Kocher, P. C. (1996). Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems. In Annual International Cryptology Confer-
ence, pages 104–113. Springer.

[Kónya and Johansson, 2010] Kónya, B. and Johansson, D. (2010). The nordugrid/arc
information system. The NorduGrid Collaboration. URL http://www. nordugrid.
org/documents/arc infosys. pdf. NORDUGRID-TECH-4.

[Kreps et al., 2011] Kreps, J., Narkhede, N., Rao, J., et al. (2011). Kafka: A dis-
tributed messaging system for log processing. In Proceedings of the NetDB, vol-
ume 11, pages 1–7.

[Liang et al., 2020] Liang, L., Filguiera, R., and Yan, Y. (2020). Adaptive optimiza-
tions for stream-based workflows. In 2020 IEEE/ACM Workflows in Support of
Large-Scale Science (WORKS), pages 33–40. IEEE.

[Lovrić et al., 2019] Lovrić, M., Molero, J. M., and Kern, R. (2019). Pyspark and
rdkit: Moving towards big data in cheminformatics. Molecular Informatics,
38(6):1800082.

[Lysoněk, 2019] Lysoněk, O. (2019). Lm sensors - Linux hardware monitoring.
https://hwmon.wiki.kernel.org/lm sensors. [Online; accessed 03-Apr-2020].

[Massie et al., 2004] Massie, M. L., Chun, B. N., and Culler, D. E. (2004). The ganglia
distributed monitoring system: design, implementation, and experience. Parallel
Computing, 30(7):817–840.

[Meng et al., 2015] Meng, J., McCauley, S., Kaplan, F., Leung, V. J., and Coskun,
A. K. (2015). Simulation and optimization of hpc job allocation for jointly reduc-
ing communication and cooling costs. Sustainable Computing: Informatics and
Systems, 6:48–57. Special Issue on Selected Papers from 2013 International Green
Computing Conference (IGCC).

[Meng et al., 2016] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S.,
Liu, D., Freeman, J., Tsai, D., Amde, M., Owen, S., et al. (2016). Mllib: Machine
learning in apache spark. The Journal of Machine Learning Research, 17(1):1235–
1241.

[Merzky et al., 2015a] Merzky, A., Santcroos, M., Turilli, M., and Jha, S. (2015a).
Executing Dynamic and Heterogeneous Workloads on Super Computers. arXiv.org.

[Merzky et al., 2015b] Merzky, A., Santcroos, M., Turilli, M., and Jha, S. (2015b).
Radical-pilot: Scalable execution of heterogeneous and dynamic workloads on su-
percomputers. CoRR, abs/1512.08194.

[Merzky et al., 2015c] Merzky, A., Weidner, O., and Jha, S. (2015c). Saga: a standard-
ized access layer to heterogeneous distributed computing infrastructure. SoftwareX,
1:3–8.

Bibliography 179

[Miller et al., 1995] Miller, B. P., Callaghan, M. D., Cargille, J. M., Hollingsworth,
J. K., Irvin, R. B., Karavanic, K. L., Kunchithapadam, K., and Newhall, T. (1995).
The paradyn parallel performance measurement tool. Computer, 28(11):37–46.

[Miloslavskaya and Tolstoy, 2016] Miloslavskaya, N. and Tolstoy, A. (2016). Big
data, fast data and data lake concepts. Procedia Computer Science, 88:300–305.

[Mohr and Wolf, 2003] Mohr, B. and Wolf, F. (2003). Kojak – a tool set for auto-
matic performance analysis of parallel programs. In Kosch, H., Böszörményi, L.,
and Hellwagner, H., editors, Euro-Par 2003 Parallel Processing, pages 1301–1304,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[Moore et al., 2015] Moore, C. L., Khalsa, P. S., Yilk, T. A., and Mason, M. (2015).
Monitoring high performance computing systems for the end user. In 2015 IEEE
International Conference on Cluster Computing, pages 714–716.

[Myagmar et al., 2005] Myagmar, S., Lee, A. J., and Yurcik, W. (2005). Threat model-
ing as a basis for security requirements. In Symposium on requirements engineering
for information security (SREIS), volume 2005, pages 1–8. Citeseer.

[Nichols et al., 1996] Nichols, B., Buttlar, D., and Farrell, J. P. (1996). Pthreads pro-
gramming. O’Reilly & Associates, Inc.

[Oetiker, 2017] Oetiker, T. (2017). RRDTool. https://oss.oetiker.ch/rrdtool/.
[Online; accessed 16-Jan-2018].

[Palmer et al., 2015] Palmer, J. T., Gallo, S. M., Furlani, T. R., Jones, M. D., DeLeon,
R. L., White, J. P., Simakov, N., Patra, A. K., Sperhac, J., Yearke, T., Rathsam, R.,
Innus, M., Cornelius, C. D., Browne, J. C., Barth, W. L., and Evans, R. T. (2015).
Open xdmod: A tool for the comprehensive management of high-performance com-
puting resources. Computing in Science Engineering, 17(4):52–62.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Van-
derplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830.

[Powers, 2020] Powers, D. (2020). Kafka python client. https://github.com/
dpkp/kafka-python.

[Radak et al., 2013a] Radak, B. K., Lee, T.-S., He, P., Romanus, M., Weidner, O., Dai,
W., Gallicchio, E., Deng, N.-J., York, D. M., Levy, R. M., and Jha, S. (2013a). A
framework for flexible and scalable replica-exchange on production distributed CI.
XSEDE, page 1.

[Radak et al., 2013b] Radak, B. K., Romanus, M., Gallicchio, E., Lee, T.-S., Weidner,
O., Deng, N.-J., He, P., Dai, W., York, D. M., Levy, R. M., et al. (2013b). A
framework for flexible and scalable replica-exchange on production distributed ci.
In Proceedings of the Conference on Extreme Science and Engineering Discovery
Environment: Gateway to Discovery, page 26. ACM.

180 Bibliography

[Raj, 2015] Raj, S. (2015). Neo4j high-performance. Packt Publishing Ltd.

[Ritchie and Thompson, 1978] Ritchie, D. M. and Thompson, K. (1978). The unix
time-sharing system. Bell System Technical Journal, 57(6):1905–1929.

[Schopf et al., 2006a] Schopf, J. M., Pearlman, L., Miller, N., Kesselman, C., Foster,
I., D’Arcy, M., and Chervenak, A. (2006a). Monitoring the grid with the globus
toolkit mds4. In Journal of Physics: Conference Series, volume 46, page 072. IOP
Publishing.

[Schopf et al., 2006b] Schopf, J. M., Pearlman, L., Miller, N., Kesselman, C., Foster,
I., D’Arcy, M., and Chervenak, A. (2006b). Monitoring the grid with the globus
toolkit mds4. Journal of Physics: Conference Series, 46(1):521.

[Services, 2021] Services, A. W. (2021). Amazon cloudwatch, application and infras-
tructure monitoring. https://aws.amazon.com/cloudwatch/. [Online; accessed
05-Sept-2021].

[Sethi et al., 2019] Sethi, R., Traverso, M., Sundstrom, D., Phillips, D., Xie, W., Sun,
Y., Yegitbasi, N., Jin, H., Hwang, E., Shingte, N., and Berner, C. (2019). Presto: Sql
on everything. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), pages 1802–1813.

[Shvachko et al., 2010] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010).
The hadoop distributed file system. In 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–10.

[Slawski and Kelly, 2019] Slawski, P. and Kelly, J. (2019). Improve Apache Spark
write performance on Apache Parquet formats with the EMRFS S3-optimized com-
mitter. https://aws.amazon.com/blogs/big-data/improve-apache-spark-
write-performance-on-apache-parquet-formats-with-the-emrfs-s3-
optimized-committer/. [Online; accessed 16-Jan-2021].

[Sottile and Minnich, 2002] Sottile, M. J. and Minnich, R. G. (2002). Supermon: a
high-speed cluster monitoring system. In Proceedings. IEEE International Confer-
ence on Cluster Computing, pages 39–46.

[Stubbs et al., 2020] Stubbs, J., Looney, J., Poindexter, M., Chalhoub, E., Zynda,
G. J., Ferlanti, E. S., Vaughn, M., Fonner, J. M., and Dahan, M. (2020). Integrating
jupyter into research computing ecosystems: Challenges and successes in architect-
ing jupyterhub for collaborative research computing ecosystems. In Practice and
Experience in Advanced Research Computing, pages 91–98.

[Thain et al., 2003] Thain, D., Tannenbaum, T., and Livny, M. (2003). Condor and the
grid. Grid computing: Making the global infrastructure a reality, pages 299–335.

[Thaler et al., 2020] Thaler, J., Shin, W., Roberts, S., Rogers, J. H., and Rosedahl, T.
(2020). Hybrid approach to hpc cluster telemetry and hardware log analytics. In
2020 IEEE High Performance Extreme Computing Conference (HPEC), pages 1–7.

Bibliography 181

[Tikir et al., 2009] Tikir, M. M., Laurenzano, M. A., Carrington, L., and Snavely, A.
(2009). Psins: An open-source event tracer and execution simulator for mpi appli-
cations. In European Conference on Parallel Processing, pages 135–148. Springer.

[Tuncer et al., 2017a] Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung,
V. J., Egele, M., and Coskun, A. K. (2017a). Diagnosing performance variations
in hpc applications using machine learning. In Kunkel, J. M., Yokota, R., Balaji,
P., and Keyes, D., editors, High Performance Computing, pages 355–373, Cham.
Springer International Publishing.

[Tuncer et al., 2017b] Tuncer, O., Ates, E., Zhang, Y., Turk, A., Brandt, J., Leung,
V. J., Egele, M., and Coskun, A. K. (2017b). Diagnosing performance variations in
hpc applications using machine learning. In International Supercomputing Confer-
ence, pages 355–373. Springer.

[Venkata et al., 2009] Venkata, M. G., Bridges, P. G., and Widener, P. M. (2009). Us-
ing application communication characteristics to drive dynamic mpi reconfigura-
tion. In 2009 IEEE International Symposium on Parallel Distributed Processing,
pages 1–6.

[Vetter and Chambreau, 2014] Vetter, J. and Chambreau, C. (2014). mpiP:
Lightweight, Scalable MPI Profiling. http://mpip.sourceforge.net/. [Online;
accessed 10-Apr-2020].

[Videla and Williams, 2012] Videla, A. and Williams, J. J. (2012). RabbitMQ in ac-
tion: distributed messaging for everyone. Manning.

[Wagner et al., 2017] Wagner, M., Mohr, S., Giménez, J., and Labarta, J. (2017). A
structured approach to performance analysis. In International Workshop on Parallel
Tools for High Performance Computing, pages 1–15. Springer.

[Webber, 2012] Webber, J. (2012). A programmatic introduction to neo4j. In Pro-
ceedings of the 3rd Annual Conference on Systems, Programming, and Applica-
tions: Software for Humanity, SPLASH ’12, page 217–218, New York, NY, USA.
Association for Computing Machinery.

[Weidner et al., 2016a] Weidner, O., Atkinson, M., Barker, A., and Filgueira Vicente,
R. (2016a). Rethinking high performance computing platforms: Challenges, oppor-
tunities and recommendations. In Proceedings of the ACM International Workshop
on Data-Intensive Distributed Computing, DIDC ’16, page 19–26, New York, NY,
USA. Association for Computing Machinery.

[Weidner et al., 2016b] Weidner, O., Atkinson, M., Barker, A., and Filgueira Vicente,
R. (2016b). Rethinking high-performance computing platforms: challenges, oppor-
tunities and recommendations. In Proceedings of the ACM International Workshop
on Data-Intensive Distributed Computing, pages 19–26. ACM.

[Weidner et al., 2017] Weidner, O., Barker, A., and Atkinson, M. (2017). Seastar: A
Comprehensive Framework for Telemetry Data in HPC Environments. In the 7th
International Workshop, pages 1–8, New York, New York, USA. ACM Press.

182 Bibliography

[Weidner and Bidal, 2008] Weidner, O. and Bidal, J.-C. (2008). Shrimp farming on
the grid. In Proceedings of the 15th ACM Mardi Gras conference: From lightweight
mash-ups to lambda grids: Understanding the spectrum of distributed computing
requirements, applications, tools, infrastructures, interoperability, and the incre-
mental adoption of key capabilities, pages 1–1.

[Wilde et al., 2014] Wilde, T., Auweter, A., and Shoukourian, H. (2014). The 4 pillar
framework for energy efficient hpc data centers. Computer Science-Research and
Development, 29(3-4):241–251.

[Yang et al., 2013] Yang, X., Zhou, Z., Wallace, S., Lan, Z., Tang, W., Coghlan, S.,
and Papka, M. E. (2013). Integrating dynamic pricing of electricity into energy
aware scheduling for hpc systems. In SC ’13: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis,
pages 1–11.

[Yoo et al., 2003] Yoo, A. B., Jette, M. A., and Grondona, M. (2003). Job Schedul-
ing Strategies for Parallel Processing: 9th International Workshop, JSSPP 2003,
Seattle, WA, USA, June 24, 2003. Revised Paper, chapter SLURM: Simple Linux
Utility for Resource Management, pages 44–60. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Zaharia et al., 2016] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M.,
Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M. J., Ghodsi, A.,
Gonzalez, J., Shenker, S., and Stoica, I. (2016). Apache spark: A unified engine for
big data processing. Communications of the ACM, 59(11):56–65.

	cover sheet.pdf
	thesis_FINAL_SUBMISSION.pdf

