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Abstract
The task of knowledge graph (KG) completion, where one is given an incomplete KG

as a list of facts, and is asked to give high scores to correct but unseen triples, has

been a well-studied problem in the NLP community. A simple but surprisingly robust

approach for solving this task emerged as learning low dimensional embeddings for

entities and relations by approximating the underlying KG directly through a scoring

function.

Knowledge graphs have a natural representation as a binary three way array, also

known as a 3rd order tensor, and certain classes of scoring functions can be character-

ized as finding a low-rank decomposition of this tensor. This dissertation extends this

characterization, and investigates the suitability of tensors for modelling both knowl-

edge graphs and related data, for learning low-rank representations of entities and rela-

tions that incorporate information from heterogeneous sources, and for reasoning with

paths and rules using the learned representations.

Specifically, we present two joint tensor decomposition models for integrating external

information in the process of learning KG embeddings. Our first model is a joint

tensor-tensor decomposition model that learns representations based on both KG facts

and type information on entities and relations. Our second model is a joint tensor-

matrix decomposition for integrating cooccurrence information between entities and

words from an entity linked corpus into knowledge graph embeddings, in order to

learn better representations for the entities that are rarely seen in the knowledge graph.

We also investigate tensors as tools for enabling multi-step reasoning using learned

embedding representations. To this end, we extend theoretical results for semiring

weighted logic programs to tensors of semirings. Our results are broadly applicable

to any area that uses dynamic programming algorithms for calculating tensor values.

Such applications include incorporating embeddings of paths and rules for knowledge

graph completion, and syntactic parsing with latent variable grammars.
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Lay Summary
Our devices are increasingly able to interact with us on our own terms. We ask ques-

tions to our phones by speaking to them, and expect them to find the answer and tell it

to us in the language we speak. Likewise when we write a question in web search, we

expect the search engine to retrieve links that match what we mean. Having access to

a large collection of general facts about the world is necessary for these applications to

perform satisfactorily. This has led to the development of large repositories of world

knowledge both in the public domain and in virtually all tech giants that offer these

applications. These collections are called knowledge graphs. They model world facts

in an interconnected way, as relations linking the entities. For example, University of

Edinburgh and Scotland may be entities in a knowledge graph, and we’d expect the

relation Located-in to connect the two.

Due to their scope and the sheer amount of information they need to capture, knowl-

edge graphs invariably have missing links. The task of guessing which links might

be missing just by looking at existing facts in a knowledge graph is called knowledge

graph completion or link prediction. An effective way of achieving this is to learn rep-

resentations of entities and relations as points in a high-dimensional space. Just as a

point in three-dimensions can be specified by giving its distance from a chosen point

as three quantities corresponding to height, length and width, a point in n dimensional

space can be specified with n values. A common name for these representations is

embeddings. Embeddings learned from knowledge graphs are used both for guessing

which links are missing, but also as representations for other machine learning tasks

that operate on the components of knowledge graphs.

Although knowledge graphs are an effective way for organizing knowledge, other types

of information are usually also available for the entities and relations they contain.

This thesis explores techniques for integrating additional information into embedding

representations for knowledge graphs. The additional information considered includes

types, such as University of Edinburgh being an organization and Scotland being a

country, and collections of text that mention the entities, such as Wikipedia. We present

novel models for learning embedding representations jointly from knowledge graphs

and text or type data, and show that these embeddings perform better at predicting

missing links compared to those learned from knowledge graphs only.

Finally, we consider rules that might apply to relations, such as: “If an entity A is
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Located-in some location B, and location B is in turn Located-in another place C, then

entity A is also Located-in C.” If we already have the facts (University of Edinburgh,

Located-in, Scotland) and (Scotland, Located-in, United Kingdom), this rule allows

us to deduce that (University of Edinburgh, Located-in, United Kingdom). To be able

to use these kinds of rules with embeddings, we develop theoretical foundations for

integrating the learned knowledge graph embeddings in the process of deducing new

links from existing ones by applying the given rules. The theoretical results presented

are also applicable for automatic processing of human language beyond the immediate

task of knowledge graph completion, and we discuss their applications to methods for

uncovering the grammatical structure of sentences.
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Chapter 1

Introduction

Knowledge graphs (KGs) are repositories of explicit world knowledge represented in

the form of a graph where the entities are vertices, and facts are labelled edges con-

necting the entities. Although there is no consensus on the precise definition of a

knowledge graph, we will use the convention from the Natural Language Processing

(NLP) community that a KG is a collection of triples in the form (entity-1, relation,

entity-2) such as (University of Edinburgh, LocatedIn, Scotland).1 The overarching

goal of KGs is to represent knowledge in a way that is unambiguous, interconnected,

extendable and usable both by humans and algorithms on a wide variety of tasks.

Examples of knowledge graphs include YAGO (Mahdisoltani et al., 2013), DBpedia

(Auer et al., 2007), NELL (Carlson et al., 2010), Freebase (Bollacker et al., 2008) and

Google Knowledge Vault (Dong et al., 2014). KGs are commonly used as resources in

knowledge based applications in NLP and beyond, such as relation extraction, question

answering and web search (see Wang et al. (2017) for a review).

Large knowledge graphs may be curated by automatically extracting knowledge from

various sources (e.g. DBpedia, YAGO), crowdsourcing (e.g. Freebase) or collaborative

manual contributions (e.g. Wikidata). Due to their scale and curation methods, KGs

often contain errors and ommissions such as missing facts or duplicate entities. Hence

it is also common to apply machine learning methods for cleaning and refining the KGs

using their existing data. Such internal tasks include knowledge graph completion,

entity resolution, and link based clustering. This thesis focuses on knowledge graph

completion, where the goal is to identify the correct facts missing from the knowledge

1An in depth discussion of the issue of defining knowledge graphs can be found in Ehrlinger and
Wöß (2016).
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Chapter 1. Introduction 2

graph.

The terms Knowledge Graph and Knowledge Base have been used interchangeably in

the literature, often employed to describe the same structures and resources. The term

Knowledge Graph highlights that the knowledge in these resources is organized as a

multi-graph, which is a graph with typed edges. When viewing a knowledge base as

a multi-graph, each entity is viewed as a node, and each relation as a type of an edge.

This type of representation has also been described as relational data, and learning

performed on it as statistical relational learning (Nickel et al., 2016a).

It is possible to view a KG as a sparse, incomplete three way binary array (i.e. a

tensor; see Section 2.1), with two of the modes corresponding to entities and one

mode corresponding to relations. An intuitive way to think about this representation

is to view each relation as defining a directed graph between the entities. Then, there

is an adjacency matrix corresponding to each relation, and stacking these adjacency

matrices gives the three way tensor representing the multi-graph.

A promising approach for tackling learning tasks on KGs is to find a low rank and

approximate decomposition of the incomplete tensor. This is essentially a hidden vari-

able view of the problem, where one hopes that the observed high dimensional multi-

relational data can be explained by global correlations of much smaller dimensions.

This also results in dense vector representations for entities and relations, commonly

referred to as embeddings, which can be used for downstream tasks.

Although embeddings are obtained primarily from the relational data contained in the

KG, a variety of relevant data complementary to the pure (entity, relation, entity)

triples is also available due to the nature and scope of contemporary KGs. This includes

type data on entities and relations, text data linked to entities, and logical rules that can

be used to derive unknown facts from known ones.

From a practical perspective, this thesis pursues the goal of integrating these types of

external data into knowledge graph embeddings using tools from tensor algebra. Our

primarily objective is to improve model performance on knowledge graph completion.

In doing so, our methods fuse information from several different sources into entity

and relation embeddings, resulting in rich representations that can easily be used for

other knowledge-based tasks. From the scientific perspective, the work we present

investigates the suitability of the tensor view of KGs and the tensor decomposition

characterization of its embeddings when the data we aim to capture extends beyond
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the KG triples. The research thesis we set out to prove is as follows:

Thesis Statement. Tensor representations provide a unified framework for mod-

elling knowledge graphs and different types of related data. Tensor methods can be

applied both for learning effective representations of entities and relations through

knowledge fusion, and for efficiently reasoning over the learned representations.

1.1 Knowledge Graph Embeddings in Wider Context

It is worth asking the question: given that knowledge graphs are already in a form

that is unambiguous and machine readable, why it is desirable to convert the factual

knowledge contained in them into embeddings at all? The standard answer is that

the two representations have complementary strengths. KG triples are well suited for

logical methods, whereas embeddings capture notions such as similarity between the

entities or the relations, and allow incremental changes to their representations. These

properties of embeddings are important because they enable the representations to be

adjusted according to some well-defined performance metric on a particular task. This

view is useful both for contextualizing the research effort dedicated to KG embeddings

within the history and current practice of AI research, and as a unifying thread for

different approaches we take throughout this thesis.

Declarative & procedural knowledge. Among different disciplines concerned with

characterizing knowledge, a common distinction is made between procedural and

declarative knowledge.2 Procedural knowledge is characterized by skillful behavior;

it is knowing how to do something regardless of the ability to articulate it, such as

riding a bike or recognising a face in a crowd. This type of knowledge is implicit

and task specific. Common machine learning systems aim to capture this type of in-

formation through training. Declarative knowledge, on the other hand, is any type of

knowledge that can be explicitly stated, such as “The Queen of England is also the

Queen of Canada” or “I have written this sentence”. Facts in knowledge graphs are

2The distinction between declarative and procedural knowledge was brought to prominence in philo-
sophical discourse by Ryle (2009) as the difference between knowing-that and knowing-how. A related
distinction exists between declarative and procedural memory in Cognitive Psychology, and a famous
case study (Scoville and Milner, 1957) has shown that a patient with brain lesions who could not form
new declarative memories could nevertheless acquire new procedural knowledge, suggesting that the
distinction is somewhat natural.
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examples of declarative knowledge. Unlike procedural knowledge, declarative knowl-

edge is task-agnostic, and can be used in a variety of different ways. The two types of

knowledge also suggest two different ways of learning. Procedural knowledge often

implies learning by doing, whereas declarative knowledge enables agents to acquire

knowledge generated or collected by others.

Knowledge representations in the history AI. In early AI research as recounted by

Nilsson (2009), declarative knowledge was considered to be knowledge explicitly en-

coded in sentences of a formal language, which took truth values according to the state

of the world. Procedural knowledge on the other hand corresponded to the programs

that achieved a specific goal. Hence the distinction between the two was intimately

tied to their representations in AI systems. Researchers focusing on pattern recognition

tasks attempted to capture procedural knowledge as weights on low level features, or

as neural nets that were sometimes implemented directly as hardware. Others viewed

the goal of AI as the “mechanization of thought processes”3, and worked on tasks that

were believed to require complex reasoning, such as playing chess, proving theorems

in geometry, or answering questions by deducing the answer from a set of given facts.

In the 80s, the focus of AI shifted to knowledge-based systems that performed rea-

soning over large collections of domain specific facts using rules provided by domain

experts. Knowledge-based systems were designed around the ability to use symbolic,

declarative knowledge as input. It was essential for their design to decouple the declar-

ative knowledge embodied by facts and rules, and the procedural knowledge embodied

by their abstract reasoning capabilities. This approach stands in sharp contrast to cur-

rent end-to-end machine learning systems that aim to obtain all the knowledge relevant

for a task by trying to do the task over and over again, and incrementally changing the

knowledge representations to bring the behaviour closer and closer to competence. In

other words, the knowledge representations that these systems can natively generate

and use are procedural. The type of tasks they have been very successful at reflects

this. These are the tasks which are so natural for humans that explicitly providing a

program to achieve them have proven to be impossible.

Translating between declarative and procedural knowledge. Because end-to-end

systems rely strongly on procedural knowledge and learning by doing, how to enable

them to use the relevant declarative knowledge that is already available is an area of

3This was the name of one of the first symposiums on AI, held in 1958.
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active research. KG embeddings are one way to bridge this divide. A common ap-

proach for translating from declarative representations to procedural ones is to try to

capture the semantic content of the symbols used to represent declarative knowledge

through a procedural task. In this spirit, knowledge graph embeddings aim to capture

the procedural knowledge of correctly predicting the missing entity in a KG triple, and

in this way convert the declarative knowledge represented by the triples in the KG into

embedding representations.

The types of additional information we aim to integrate into KG embeddings in this

thesis also consist of different forms of declarative knowledge. For integrating type in-

formation and text data we follow a similar strategy as above, and try to capture the rel-

evant knowledge by modifying the task. Specifically, we introduce auxiliary tasks and

data augmentation techiques to force embeddings to capture information from both the

KG and the other data source. For using logical rules, we flip the roles of embeddings

and the knowledge source, and consider the difficult problem of performing deduction

using embedding representations. To this end, we explore theoretical foundations for

incorporating distributed, procedural knowledge embodied by KG embeddings into

deduction methods that operate on symbolic representations of declarative knowledge.

1.2 Overview and Contributions

Chapter 2: Background. In this chapter we first introduce the technical background

necessary for work presented in later chapters. This includes fundamental concepts

in tensor algebra, and two standard forms for decomposing tensors: CP and Tucker

decompositions. We also provide a precise description of the task of knowledge graph

completion, and present the standard datasets for the task.

The rest of the chapter consists of a literature review of previous work on KG comple-

tion. We first present some important models suggested for the task in three groups:

translational models, bilinear models and neural network models. We then provide

an extensive review of KG completion models that use additional information besides

the set of triples in the KG, such as types, text, paths and rules. Finally, we present

different choices that have been employed for the training of these models, underlining

that these often have a larger impact on the success of a model than the architecture.
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Chapter 3: Incorporating Type Information in Knowledge Graph Embeddings.

Here we investigate how to modify the training of bilinear models so that implicit

or explicit type information for entities and relations can be used to improve model

performance.

We start by giving a precise characterization of the resource we aim to utilize in terms

of a type-ontology. We present a framework to use this information both as an auxiliary

task in the form of joint tensor-tensor decomposition, and for biasing the generation

of negative examples. Then we outline a procedure for generating an approximate

type-ontology from training triples in the absence of an explicit one.

For our experiments, we first re-implement three bilinear models, and analyze effects

of different training settings and hyperparameters on final performance. We then gen-

erate type-ontologies from standard datasets using the suggested procedure, and show

that our framework results in consistent improvements across different datasets and bi-

linear models even when using an approximate type-ontology. We draw from our anal-

ysis of baselines to compare the effect of our framework when training with different

hyperparameter settings, and conclude that our framework is especially beneficial with

hyperparameters that result in the smallest memory footprint, which reflects training

conditions on very large datasets. We support this claim by showing that our frame-

work indeed increases performance when run on a dataset with 1.9 million entities.

This chapter is based on findings published in:

• E. Balkır, M. Naslidnyk, D. Palfrey and A. Mittal. Using pairwise occurrence

information to improve knowledge graph completion on large-scale datasets. in

the Proceedings of EMNLP-IJCNLP. 2019.

• E. Balkır, M. Naslidnyk, D. Palfrey and A. Mittal. Improving knowledge graph

embeddings with inferred entity types. Relational Representation Learning work-

shop at NeurIPS. 2018.

Chapter 4: Learning Entity Embeddings from Knowledge Graph and Corpus. In

this chapter we present a method for learning embeddings jointly from a KG and a

text corpus with links to KG entities, with the goal of improving performance on KG

completion on entities rarely seen in training data. Our model combines the word

embedding method GloVe (Pennington et al., 2014) with the bilinear KG embedding

model DistMult (Yang et al., 2015) under the joint matrix-tensor factorization frame-
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work of Acar et al. (2013). We present two versions of our method, one that ties the

embeddings obtained from the KG and from the corpus completely, and one that pe-

nalizes their divergence.

We modify standard datasets to capture different causes for an entity to have few or

no facts in training data. We perform experiments on standard and modified datasets

to assess model performance on rare and unseen entities. We compare our models

with baseline DistMult, and also with two models that learn embeddings of words and

entities seperately before learning a mapping between the two. Our findings show

that our joint model with tied embeddings has superior performance on rare or unseen

entities compared to baselines on some of the datasets.

This chapter contains material which was written jointly with my supervisor Shay

Cohen.

Chapter 5: Tensors over Semirings for Weighted Logic Programs. This chapter

lays the theoretical foundations for using tensors as values in Weighted Logic Programs

(WLPs). WLPs facilitate representing and reasoning about dynamic programming al-

gorithms by abstracting the program structure from its value calculations. Previous

work by Goodman (1999) has shown that the same WLP specification can be used

with any set of values belonging to an algebraic structure called a semiring, and that

one can obtain dynamic programming algorithms to calculate different values of inter-

est just by changing the semiring.

We extend this work to WLPs with tensors over semiring values as weights, in or-

der to allow the same program representations to be applied to latent variable models.

We motivate our work with two applications: parsing with latent-variable context free

grammars, and integrating representations for paths and rules to KG-embedding mod-

els. Specifically, we provide precise conditions on rules and their tensor weights for

them to fulfill the relevant semiring axioms, and present the tensor formulations for

inside and outside calculations.

This chapter is based on the findings published in:

• E. Balkır, D. Gildea and S. Cohen. Tensors over Semirings for Latent-Variable

Weighted Logic Programs. in the Proceedings of International Conference on

Parsing Technologies (IWPT). 2020.
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Chapter 6: Conclusion. In this chapter we summarize the presented findings in re-

lation to our research thesis, discuss some of their limitations, and suggest some direc-

tions for future work.



Chapter 2

Background

2.1 Tensor Preliminaries and Notation

Tensors are generalizations of matrices, where each entry can be indexed by n different

indices instead of just two. An n-th order tensor is an n-way array, with n independent

indexes that specify each entry. A first order tensor is a vector, and a second order ten-

sor is a matrix. Here we will be concerned mostly with tensors of order three, although

the terminology and the methods can often be extended to higher order tensors.

Many of the essential concepts from matrix theory can be extended to the tensor case

– such as singular value decompositions – but the properties of these extensions are

surprisingly different than from the matrix case. These properties has been exploited

in various subfields of machine learning, notably in spectral learning for moment based

estimation of latent variables (Anandkumar et al., 2014). It also comes with new chal-

lenges: decomposing tensors, or even determining the rank of a tensor is in general

NP-hard (Kolda and Bader, 2009). In practice, the work relying on tensor decomposi-

tions for methods with provable guarantees either assumes that the tensor in question

belongs to a subclass where these hardness results do not apply, or provides methods

to transform the tensor to one in such a subclass.

Throughout this thesis, we will use regular lowercase letters a,b,c etc. to denote

scalars, and boldface lowercase letters v,w etc. to denote vectors and boldface up-

percase letters M,T etc. to denote matrices and tensors. vi will denote the ith entry of

the vector v, Mi, j the i jth entry of the matrix M and Ti, j,k the i jkth entry of the rank-3

tensor T. We will use the shorthand [n] for the set {k|k = 1, . . . ,n}. We will use I to

9
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(a) (b) (c)

Figure 2.1: (a) An example tensor T ∈ R3×4×2, (b) an example fibre T3,:,1 and (c) an

example slice T:,2,:.

denote the identity matrix, where Ii, j = 1 if i = j and 0 otherwise.

Formally, an n-th order tensor A ∈ Rd1×...×dn is an element of tensor the product of

n Euclidean spaces
⊗n

i=1Rdi , possibly of different dimensions di. Each of these n

Euclidean spaces will be referred as a mode of the tensor. Tensor fibres are columns

of the tensor along a particular mode, where all indexes but one are fixed. Slices are

matrix cuts of the tensor along two chosen modes. Analogous to a tensor fibre, a tensor

slice is defined by fixing all but two indices of the tensor. We will denote tensor fibers

and slices by using “:” in the corresponding mode. For example T:, j,k will denote a

tensor fiber on the first mode and T:, j,: will denote a tensor slice on the first and third

modes. Figure 2.1 shows a 3rd order tensor T, and a fibre and a slice on T.

Just as matrices can be thought of a linear maps, higher order tensors can be thought of

as multilinear maps: a tensor A∈Rd1×d2×d3 represents a bilinear map A : Rd1×Rd2→
Rd3 . One could also view the same tensor as a trilinear map A : Rd1×Rd2×Rd3 → R,

or a linear map: A : Rd1 → Rd2×d3 .

In general an n-way tensor A ∈Rd1×...×dn as a multilinear operator takes as arguments

a set of n matrices {Vi ∈ Rdi×mi}, and returns an nth order tensor A(V1, ...,Vn) ∈
Rm1×...×mn , where each entry is defined as following:

(
A(V1, ...,Vn)

)
i1,i2,...,in

:= ∑
j1,..., jn∈[d1],..,[dn]

A j1, j2,... jnV
1
j1,i1×V 2

j2,i2× ...×V n
jn,in (2.1)

This operation is referred to as tensor contraction.

A special case for tensor contraction is where all Vi are vectors. For example, consider

the contraction of a 3rd order tensor T ∈ Rd1×d2×d3 with some or all of the vectors
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u ∈ Rd1,v ∈ Rd2,w ∈ Rd3:

T(u,v,w) := ∑
j∈[d1],k∈[d2],l∈[d3]

u jvkwlTj,k,l ∈ R (2.2)

T(Id1,v,w) := ∑
k∈[d2],l∈[d3]

vkwlT:,k,l ∈ Rd1 (2.3)

T(Id1,Id2,w) := ∑
l∈[d3]

wlT:,:,l ∈ Rd1,d2 (2.4)

where Idi is the identity matrix in Rdi×di . The use of the identity matrix as one of the

arguments to be contracted allow the contraction operation to capture trilinear, bilinear

and linear maps that can be represented by the same tensor T.

In the more general case where U ∈ Rd1×d4 , V ∈ Rd2×d5 and W ∈ Rd3×d6 , the analo-

gous values T(U,V,W) ∈ Rd4×d5×d6 , T(Id1,V,W) ∈ Rd1×d5×d6 and T(Id1,Id2 ,W) ∈
Rd1×d2×d6 are:

T(U,V,W)p,q,r := ∑
j∈[d1],k∈[d2],l∈[d3]

U j,pVk,qWl,rTj,k,l (2.5)

T(Id1,V,W):,q,r := ∑
k∈[d2],l∈[d3]

Vk,qWl,rT:,k,l (2.6)

T(Id1,Id2,W):,:,r := ∑
l∈[d3]

Wl,rT:,:,l (2.7)

2.2 Tensor Decompositions

For data that naturally comes in the form of tensors, an important question is how to

approximate it as a reconstruction from smaller matrices or tensors. For real valued

matrices, Singular Value Decomposition (SVD) provides a principled way to obtain

such a representation.

Given a matrix M ∈ Rm×n, SVD finds orthonormal matrices U ∈ Rm×m and V ∈ Rn×n

and a diagonal matrix Σ∈Rm×n such that UΣV>=M, where V> denotes the transpose

of V . The diagonal elements σi,i of Σ corresponds to the singular values of M, and the

number of non-zero singular values correspond to the rank of M. The columns of

U and V correspond to the right and the left singular vector respectively. Note that

one can equivalently view the operation defined by UΣV∗ as a sum-of-outer-products

representation. Let k be the smaller of m and n. Then,

M =
k

∑
i=0

σi,iU:,i (V:,i)
> . (2.8)
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T
≈ + . . .+u1

v1

w1

uk

vk

wk

Figure 2.2: CP-decomposition of a 3rd order tensor T into k components.

The sum of outer products view makes it clear that discarding all rows and columns

with zero singular values from Σ, and the corresponding columns of singular vectors

from U and V wouldn’t affect the reconstructed matrix. This gives a low rank de-

composition of M. Discarding all but k largest singular values and the corresponding

singular vectors likewise provides the best rank-k approximation of M.

With tensors of order larger than two, it is in general not possible to have a factorization

so that the factor matrices are both minimal and have orthogonal columns. The two

standard tensor decompositions, CP-decomposition and Tucker Decomposition essen-

tially preserve one of these properties while sacrificing the other. See Kolda and Bader

(2009) for a comprehensive review of other decompositions proposed in the literature

and their applications.

2.2.1 CP-Decomposition

CP-decomposition is based on the idea of the rank of tensor. Recall that a matrix M
is rank-1 if it can be written as the outer product of two vectors: M = vw>. Likewise,

we can define a nth order tensor A to be rank-1 if it can be written in the form: A =

v1 ◦v2 ◦ ...◦vn where the generalized outer product is defined as follows:(
v1 ◦v2 ◦ ...◦vn)

i1,...,in
:= v1

i1 · v
2
i2 · ... · v

n
in. (2.9)

A tensor of order n is rank-1 if it can be written as the outer product of n vectors. The

CP-rank (or simply rank) of a tensor is the smallest number of rank-1 tensors it could

be written as the sum of:

A =
k

∑
j=1

v1, j ◦v2, j ◦ ...◦vn, j. (2.10)

The decomposition into such rank one components is known as Canonical Polyadic



Chapter 2. Background 13

≈
T

G

U
W

V

Figure 2.3: Tucker decomposition of a 3rd order tensor T into a smaller core tensor G,

and factor matrices U, V and W.

Decomposition or CANDECOMP/PARAFAC, or CP-Decomposition for short.1 An es-

sential property of CP-decomposition is that unlike the matrix case where without

orthonormality restrictions on left and right singular vectors, there are infinitely many

such decompositions, CP-decomposition is unique in general, up to scaling and per-

mutation. Tensor rank might also exceed the dimensions of the tensor. Again unlike

the matrix case, obtaining CP-decomposition for general tensors is NP-hard, and so is

determining the rank of a tensor (Hillar and Lim, 2013; Sidiropoulos et al., 2017).

Another difference between matrices and higher order tensors is that, the best rank-k

approximation for matrices is given by leading k factors of its SVD, but this is not the

case for tensors. There are cases where the best rank-k approximation does not even

exist, i.e. any given rank-k approximation can be improved upon to approximate the

tensor slightly better. These are referred to as CP-degeneracies (Comon et al., 2009).

Despite this, the CP-decomposition is often used to find a low-rank and approximate

representation of a tensor akin to the truncated SVD. This is achieved by finding k

factors which provide a good enough approximation to the tensor T, where k is smaller

than the true CP-rank. An illustration of an approximate CP-decomposition is given in

Figure 2.2.

2.2.2 Tucker Decomposition

Tucker decomposition is a different method of decomposing a tensor than the CP-

decomposition. The main idea is to decompose a tensor of order n into a core tensor G
1The two different names of the decomposition, even though they were independently discovered in

different scientific communities, conveniently happen to share the same initials.
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of order n, and n factor matrices. For a 3rd order tensor T this would be of the form:

T = ∑
p,q,r

Gp,q,r
(
U:,p ◦V:,q ◦W:,r

)
, (2.11)

where T ∈ RI×J×K , G ∈ RP,Q,R, U ∈ RI,P, V ∈ RJ,Q and W ∈ RK,R, and p,q,r ranges

over P,Q,R respectively. The illustration of this decomposition is given in Figure 2.3.

Note that a trivial Tucker decomposition would be to assign U,V,W = I and G =

T. Hence, a desired Tucker decomposition seeks G such that it is either a smaller

dimension than the full tensor T, or that it is sparse.

Unlike the CP-decomposition, Tucker decomposition is non-unique. This allows, for

a given Tucker decomposition with a core tensor G and factor matrices U,V,W, to

find an invertible matrix M such that UM would be orthonormal, and then absorb

the inverse M−1 in the core tensor G so that (G(M−1),UM,V,W) is still a Tucker

decomposition of the full tensor T. Continuing in this fashion, it is possible to find a

Tucker decomposition with orthonormal factorization matrices.

It is possible to think of CP-decomposition as a special type of Tucker decomposition,

where the core tensor G is potentially larger than the full tensor T, but has non-zero

values only on the diagonal:

Gi, j,k =

λi if i = j = k

0 otherwise ,
(2.12)

where λi is the scalar value in Equation 2.10. This means intuitively that only the the

interactions of the matching columns of the factor matrices contribute to the values in

the full tensor.

It is also possible to view Tucker as a special type of CP-decomposition if we allow

the CP-decomposition to be non-minimal, and allow the factor matrices of the CP-

decomposition to have repeated rows. For a Tucker decomposition with core tensor

G∈Rn×m×o, and factor matrices U∈Rl×n, V∈Rk×m and W∈R j×o, we can construct

the factor matrices A∈Rl×(n·m·o), B∈Rk×(n·m·o) and C∈Rl×(n·m·o) of the correspond-

ing CP-decomposition by assigning A,B and C to be the repeating of the columns of

U,V and W respectively. Then, each potential interaction between the columns of U,V
and W can be expressed as a CP type outer product, the corresponding entry in the core

tensor G becoming the scalar weight λi in the CP-decomposition.
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2.2.3 Joint Decompositions

Sometimes data naturally occurs in the form of multiple matrices or tensors from dif-

ferent sources, where one or more modes from different data tensors correspond to the

same underlying objects. For example, Chapter 3 of this thesis explores the case where

one tensor represents the knowledge graph, and the other represents the type relation-

ships within the triples. Chapter 4 similarly considers the knowledge graph tensor

coupled with a word-word co-occurrence matrix. In such cases, it is desirable to find

a joint decomposition of the data tensors so that the objects that are shared amongst

different tensors obtain the same latent representation.

For data matrices that are coupled in one mode, Singh and Gordon (2008) present

Collective Matrix Factorization (CMF) to jointly decompose the two datasets in the

context of relational learning. Specifically for two matrices X ∈ Rd1,d2 and Y ∈ Rd1,d3

that are coupled in their first mode, CMF finds factor matrices U ∈ Rd1,d4 , V ∈ Rd2,d4

and W ∈ Rd3,d4 such that the reconstruction error for both are minimized:

min
U,V,W

||X−UV>||22 + ||Y−UW>||22 (2.13)

Acar et al. (2013) present Coupled Matrix and Tensor Factorization (CMTF) that ex-

tend CMF to tensors of order larger than 2. Given a tensor T and a matrix M that

are coupled in the first mode, the goal of CMTF is to find lower dimensional matri-

ces A,B,C and V such that A,B and C provide an approximate CP-decomposition for

T, and the product of A and V> is an approximation of M. This can be achieved by

minimizing the reconstruction loss:

min
A,B,C,A

||T−A◦B◦C||22 + ||M−AV>||22, (2.14)

Although the original CMTF framework uses the Euclidean norm, it is possible to

replace this with other norms. It is also straightforward to extend the formulation to

tensors of higher orders, or to more than two tensors.

2.3 Knowledge Graph Completion

Formally, a knowledge graph (KG) is a tuple G = (E ,R ,F ) where E is the set of

entities such as Tom Cruise, Hawaii or 1984 (book), R is the set of relations such as

LocatedIn or StarredIn, and F ⊂ (E ×R ×E) is the set of facts. These are triples
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that express the relations that hold between the entities. The task of knowledge graph

(KG) completion (also referred to as link prediction) operates from the assumption

that many of the large knowledge graphs are incomplete, especially with regards to

triples. KG completion methods aim to learn effective ways to assign scores to possible

triples so that the facts that should be added to F receive higher scores than the other

candidates.

2.3.1 Evaluation Protocol

Due to the absence of triples in KGs that are known to be false, the evaluation of KG

completion models is framed as a ranking task (Bordes et al., 2013). The model is

evaluated on previously unseen triples from the KG as follows: for each test triple,

either the head or the tail entity is replaced with every entity in the knowledge graph,

and for each of these triples a score is obtained by the model being tested. Then these

triples are sorted from the highest to lowest scored. Bordes et al. (2013) initially report

the mean rank (MR) of the correct triples, and the proportion of the entities ranked

in the first 10, which they refer to as hits@10. Later works report mean reciprocal

rank either in addition to, or instead of MR because MR could be disproportionately

affected by a few low ranked triples, whereas taking the inverse of the rank before

averaging eliminates this issue. Later works also report hits@1 and hits@3.

When generating the list of triples to be ranked and compared against a correct triple,

some of triples that are in the KG could be among those that are generated and labelled

as incorrect. To avoid penalising the model for ranking these correct triples above the

test triple in question, Bordes et al. (2013) remove from the list any triples that appear

either in training, validation or the test set. They call this version of their protocol

filtered, and the protocol without this step raw. Later works often only report results

on the filtered setting.

2.3.2 Datasets

Two datasets, WN18 and FB15K were introduced in Bordes et al. (2013) together with

the evaluation protocol outlined above in Section 2.3.1:

• WN18 is a subset of WordNet (Miller, 1995), a hand constructed word ontology

consisting of synsets which correspond to word senses, and lexical relationships

between synsets such as hyponymy (is-a relationships) and meronymy (part-of
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relationships). This dataset contains 40,943 entities, 18 relations and 151,442

triples in total.

• FB15K is a subset of Freebase (Bollacker et al., 2008), a very large, crowd

sourced knowledge graph that contains general facts about the world.2 FB15K

is chosen from entities and relationships that also exist in Wikilinks database

and have at least 100 mentions in Freebase. It contains 14,951 entities, 1,345

relations and 592,213 triples in total.

It has been noted by Toutanova et al. (2015) and Dettmers et al. (2018) that WN18 and

FB15K suffer from test leakage where for most test instances (e1,r,e2), the training

set has the inverse relation (e2,r′,e1). This reduces the task largely to memorizing

the relevant pairs in the training data. Dettmers et al. (2018) show that a simple rule

based model that first learns whether r1 is the reverse of r2 by assessing if for triples

(e1,r1,e2), there is the reverse triple (e2,r2,e1) in training data with high frequency

and vice versa, and then during test time ranks triples based only on this information,

beats all the state of the art models on FB15K and WN18 datasets at the time. The

following datasets are constructed to avoid this kind of data leakage:

• FB15K-237 (Toutanova et al., 2015) is a subset of Freebase that is derived from

FB15K by first choosing the most frequent 401 relations, and then filtering out

reverse and near-duplicate relations, resulting in 237 relations.

• WN18RR (Dettmers et al., 2018) is a subset of WordNet, derived from WN18

dataset by removing the reverse relations from the dataset. It contains 93,003

triples, 40,943 entities and 11 relations, although most of the relations are hy-

ponymy/hypernymy relations.

• YAGO3-10 (Dettmers et al., 2018) is a dataset constructed from YAGO (Mahdis-

oltani et al., 2013), which is a KG automatically generated from WordNet, Wikipedia

and Wikidata. YAGO3-10 includes only the entities in YAGO that have more

than 10 relations. It has a total of 123,182 entities and 37 relations.
2Freebase has been officially shut down in 2016 after most of its data was migrated to Wikidata

(Pellissier Tanon et al., 2016).



Chapter 2. Background 18

2.4 Knowledge Graph Embeddings

In the last few years, numerous models have been suggested for the task of KG comple-

tion. Most of these works focus on learning low dimensional embeddings for entities

and relations by optimizing a scoring function that scores correct triples above incor-

rect ones. These models can be roughly categorized into three different groups based

on their scoring functions: translational models, bilinear models and neural network

models. We review some of the prominent models from each of these categories below.

2.4.1 Translational Models

The basic idea of translational models is to represent the relation as an operation in the

vector space that translates the embedding of the head entity to the embedding of the

tail entity.

TransE (Bordes et al., 2013). This method is one of the earliest models for link

prediction, and the simplest translational model that all other models in this subsection

has built upon. It aims to learn embeddings of entities and relations in the same vector

space Rk, where for a correct (h,r, t) pair, h+ r is close to t. This is achieved by a

distance function d(h+ r, t) where d is either the L1 or the L2 distance.

TransE is simple to implement and easy to scale, so there has been a number of methods

that build on the basic idea to improve on it one way or another. Among them are

TransH (Wang et al., 2014b), TransR (Lin et al., 2015b), TransD (Ji et al., 2015),

TranSparse (Ji et al., 2016) and STransE (Nguyen et al., 2016). See (Nguyen, 2020)

for a comprehensive review. We describe some of these models below.

TransH (Wang et al., 2014b). This model is motivated by the shortcoming of TransE

of modelling reflexive (e.g. neighborOf), one-to-many (e.g. leadActorIn), many-

to-one (e.g. bornIn) and many-to-many (e.g. descendantOf) relations. The authors

observe that if the embeddings satisfy the constraint imposed by TransE perfectly

for all correct triples, then for a reflexive relation r, embedding for r needs to be 0,

and the embeddings for the head entity h and tail entity t need to be equal to each

other for all correct triples (h,r, t). Likewise for a one-to-many relation r, if the triples

{(h,r, t i)}i=1...n are all correct, then TransE forces that ti = tj for all i, j ∈ [n].

TransH solves this issue by projecting the head and the tail entity to a relation specific
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hyperplane before applying the translational scoring function of TransE. It learns two

embeddings wr and dr for each relation by optimizing the scoring function:

s(h,r, t) = ||(h−wr
>hwr)+dr− (t−wr

>twr)||22 (2.15)

For v−wr
>vwr to be the projection of v onto the hyperplane defined by wr it needs to

be that ||wr||= 1. A further constraint that needs to be imposed is that dr corresponds

to a translation within the hyperplane defined by wr. TransH integrates these latter

constraints as a soft constraint in its optimization procedure, and enforces the former

by projecting wr onto the unit ball after every update.

TransR (Lin et al., 2015b). This model further improves TransH by learning a full

projection matrix Mr for each relation r by optimizing the scoring function

s(h,r, t) = ||hMr + r− tMr||22 (2.16)

The geometric intuition behind TransR is to learn an entity space and separate relation

spaces for each relation. Learning the matrices Mr correspond to learning mappings

from the entity space to the space of relation r. Even though TransR improves model

performance on the KG completion task, it increases the model parameters signifi-

cantly compared to TransE and TransH.

KG2E (He et al., 2015) This work argues that representing entities and relations as

points in embedding space ignores the inherent uncertainty of these objects, and pro-

poses a method that represents entities and relations as Gaussian distributions instead.

In this framework each entity and relation is represented by a mean vector µ and a

covariance matrix Σ that together define the associated distribution.

Let H ∼N (µh,Σh) be the Gaussian embedding corresponding to the head entity, and

let R and T be the analogously defined embeddings of the relation and the tail entity

respectively. KG2E extends the translational requirement to Gaussian distributions as

follows: given a triple (h,r, t) the model first calculates a combined entity distribution

H −T = Pe ∼ N (µh− µt ,Σh +Σt). The scoring function is then defined as the KL-

divergence between the relation embedding R and the combined entity distribution Pe.

The authors report that using an asymmetric measure such as KL-divergence provides

improvement over symmetric measures such as expected-likelihood.
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ManifoldE. (Xiao et al., 2016) This is another extension of TransE that addresses the

limitations in expressiveness of point based embeddings. The model represents entities

as points, but relations are represented as manifolds. The geometric intuition for Man-

ifoldE is that for a given head entity h and a tail entity t, the set of correct relations ri

for the pair would lie in a manifold within the embedding space. The authors consider

two families of manifolds, spheres and hyperplanes. They further enrich these with

a number of kernels to enlarge the space of possible shapes for manifold representa-

tions. They report that the method is particularly good at hits@1, which corresponds

to predicting the correct entity among all possible ones.

RotatE (Sun et al., 2019). This work models relations as rotations in the complex

vector space that go from the embedding of the head entity h to the embedding of the

tail entity t. More specifically, let h,r, t ∈ Cd be d-dimensional vector embeddings for

the entities and relation in the complex space, and ||r|| = 1. The scoring function for

RotatE is defined as:

s(h,r, t) = ||h◦ r− t||. (2.17)

Despite the simplicity of the idea, the authors show that RotatE is fully expressive and

performs well on benchmarks. Furthermore, they introduce a self-adversarial sam-

pling procedure for generating negative triples during training. This procedure depends

on the current parameters of the model, and gives more weight to the incorrect triples

that the model scores highly.

2.4.2 Bilinear Models

Bilinear models are the class that has the strongest links to tensor decompositions.

Below, we survey a few prominent models in this category.

RESCAL (Nickel, 2013). A notable example of a tensor decomposition algorithm

that is designed for knowledge bases is RESCAL. It is a special case of Tucker decom-

position of a tensor. Recall that Tucker decomposition for a tensor T finds three factor

matrices A, B, and C, and a low dimensional core tensor G such that

T = ∑
l,m,n

Gl,m,n
(
A:,l ◦B:,m ◦C:,n

)
, (2.18)



Chapter 2. Background 21

where ◦ is the generalized outer product operator. RESCAL is a Tucker decomposition

with the additional constraints: C = I and A = B:

T = ∑
l,m,n

Gl,m,n
(
A:,l ◦A:,m ◦ I:,n

)
. (2.19)

The justification of the first constraint is that in RESCAL, one views the nth slice of the

core tensor as the latent representation of the relation, and the factor matrix A defines

the embeddings of the entities. The constraint A = B ensures that an entity has the

same embedding representation regardless of whether it appears as the subject or the

object in the triple. The authors argue that this results in more effective information

propagation during the decomposition, and leads to better experimental results.

The original algorithm for RESCAL is based on the Alternating Least Squares (ALS)

algorithm, adapted specifically for the structure in RESCAL. Later in Nickel et al.

(2016b) the authors report that by training the factorization with Stochastic Gradient

Descent together with AdaGrad (Duchi et al., 2001) obtains significant improvements

on the performance of the model.

In both cases, the RESCAL factorization is cast as an optimization problem of finding

the entity embedding matrix A and the relation tensor R that minimizes the following

loss function:

||X−A◦R◦A||2 +λA||A||2 +λR||R||2 (2.20)

Here the first term measures how well the approximated decomposition fits the adja-

cency tensor X, λA and λR are regularization terms.

Semantic Matching Energy Model (SME) (Bordes et al., 2014) this model first

combines embeddings h,r for the head entity h and the relation r, and the embed-

dings r, t of the tail entity h and r separately. Then as the second step the combined

representation of (h,r) and (r, t) are matched via an energy function. While the model

leaves open the possibility of complex matching functions between the representations

of the two pairs, the experiments only consider the simple dot-product between the two

embeddings.

SME has both linear and bilinear versions, which dictates how (h,r) and (r, t) are

combined. The equations for SME-linear are as follows:
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hr = W1h+W2r+b1 (2.21)

tr = W3t+W4r+b2 (2.22)

s(h,r, t) = hr
>tr (2.23)

Where the matrices W1,W2,W3,W4 and the vectors b1,b2 are the model-wide param-

eters to be learned.

SME-linear models the interaction of the triple as the sum of pairwise interactions.

SME-bilinear however models three-way interaction all at once by letting the model-

wide parameters W1 and W2 to be rank-3 tensors:

hr = W1 (r,h,I)+b1 (2.24)

tr = W2 (r, t,I)+b2 (2.25)

s(h,r, t) = hr
>tr (2.26)

Where W(a,b,I) is tensor contraction as defined in Equation 2.4.

DistMult (Yang et al., 2015). This model simplifies RESCAL to avoid overfitting by

constraining relation matrices to be diagonal. It can equivalently be thought of as a

CP-decomposition of the adjacency tensor where like RESCAL, the first and the third

component matrices are constrained to be equal to each other.

The model optimizes a bilinear scoring function:

s(h,r, t) = h>Diag(r) t. (2.27)

where the h, t are the vector embeddings for the head and tail entities and Diag(r) is

a diagonal matrix embedding for the relation. The original implementation optimizes

a margin based ranking loss with AdaGrad. However, later implementations improve

performance significantly by using either binary cross entropy loss or negative log

likelihood (NLL) loss. We describe these loss functions in detail in Section 2.6.2.

HolE (Nickel et al., 2016b). This work presents a model named Holographic Embed-

dings (HolE) which uses circular correlations to create compositional representations.
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The motivation behind this model is to find a good middle ground between the ex-

pressiveness of a fully bilinear model such as RESCAL where all possible interactions

between the different dimensions of the embeddings are modelled explicitly, and sim-

plicity of distance models such as TransE. The scoring function for HolE is defined as:

s(h,r, t) = σ

(
r>(h? t)

)
, (2.28)

where ? : Rd×Rd → Rd is the circular correlation operator defined as:

[a?b]k =
d−1

∑
i=0

aib(k+i)mod(d). (2.29)

The intuition behind holographic embeddings is that it is a compressed version of

the tensor product, where each component corresponds to the sum of a section of all

pairwise interactions. Circular correlation can be computed efficiently via fast Fourier

transform (FFT):

a?b = F −1
(

F (a) ·F (b)
)
, (2.30)

where F is the FFT and F −1 its inverse, x is the complex conjugate of x, and · denotes

the entrywise Hadamard product. It has later been shown by Trouillon and Nickel

(2017) that HolE is equivalent to ComplEx.

ComplEx (Trouillon et al., 2016). This model is closely related to DistMult, however

it embeds the entities and relations in the complex vector space Cn rather than R.

The objective is to be able to account for anti-symmetric relations (e.g. parentOf )

by exploiting the fact that the Hermitian dot product, which is the generalization of

the regular dot product to the complex field, is anti-linear in the imaginary part of its

inputs. The authors observe that the simple tensor product in the complex case is thus

enough to model anti-symmetric relationships that DistMult struggles to capture.

The scoring function for the model is:

s(h,r, t) = Re
(

h>Diag(r) t
)
, (2.31)

where Re(x) denotes the real part of x ∈Cn, and like the scoring function of DistMult,

Diag(r) is a diagonal matrix with r on its diagonal.

Lacroix et al. (2018) introduce a novel regularization term based on tensor nuclear p-

norm to ComplEx, and together with a data agumentation technique of adding reverse

triples to the training set, beat the state-of-the-art at the time on several datasets.



Chapter 2. Background 24

ANALOGY (Liu et al., 2017) This model is motivated by the goal to find the appro-

priate restrictions on relation matrices to capture analogical inference. The authors

argue that the class of normal matrices M = {M|MM∗ = M∗M}, where M∗ is the

conjugate transpose of M, is the appropriate class for this, since it subsumes several

classes which were shown to be important for modeling relations such as symmetric

and anti-symmetric matrices, rotation matrices and circulant matrices. ANALOGY

is a bilinear model akin to RESCAL, where the relation matrices are constrained to

be normal. The authors then reformulate the constraint as learning a block diagonal

matrix, hence allowing the model to be optimized via SGD.

SimplE (Kazemi and Poole, 2018) Earlier works such as Schlichtkrull et al. (2018)

implement CP-decomposition as a baseline model where the same entity has different

embeddings in head and tail positions, and show that not tying the weights for head

and tail entities reduces the performance of the model greatly. SimplE uses data aug-

mentation to overcome this limitation of CP-decomposition by enriching the training

set with reverse relations. For each relation r, a reverse relation r−1 is added to the

set of relations, and for each triple (h,r, t), the corresponding reverse triple (t,r−1,h)

is added to the training set. Each entity e hence has two corresponding embeddings: a

head embedding he and a tail embedding te. The score for a triple (e,r, f ) is defined as

the average of the CP-reconstruction for (e,r, f ) and ( f ,r−1e):

s(e,r, f ) =
1
2

(
he
>Diag(r)tf +hf

>Diag(r−1)te

)
. (2.32)

The data augmentation technique of adding the reverse triples to the training set has

also been suggested by Lacroix et al. (2018), and subsequently used in a number of

models, including TuckER.

TuckER (Balazevic et al., 2019). This is a KG embedding model that is based on

Tucker decomposition of the binary adjacency tensor:

T = ∑
i, j,k

(
Zi, j,k

(
E:,i ◦R:, j ◦E:,k

))
. (2.33)

The model learns vector embeddings of entities and relations via the factor matrices E
and R. In addition to the vector embeddings, it learns a 3rd order core tensor Z, which

consists of shared parameters for the entity and relation representations. Scoring a

triple (h,r, t) is achieved by contracting the embeddings h,r, t with the core tensor Z:

s(h,r, t) = Z(h,r, t). (2.34)
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The authors show that DistMult, ComplEx and SimplE are special cases of TuckER.

2.4.3 Neural Models

In this section we review some of the influential models suggested for KG completion

that have hidden layers and nonlinearities in their formulations.

Neural Tensor Network (NTN) (Socher et al., 2013). This work modifies a standard

feed-forward neural architecture for relational data by adding a bilinear tensor layer.

In NTN, each entity has its corresponding vector embedding e ∈Rd , and each relation

r has parameters associated with a network: a linear transformation defined by a matrix

Vr ∈ Rk×2d , a bilinear transformation defined by a 3rd order tensor Wr ∈ Rd×d×k, a

bias vector br ∈ Rk and another vector ur ∈ Rk defining the parameters of the final

layer. The scoring function for a triple is:

s(h,r, t) = ur
>tanh

(
Wr(h,r,I)+Vr

(
h
t

)
+br

)
(2.35)

Notice that with Vr, the two entities can only interact indirectly through the nonlinear-

ity. The addition of the bilinear form Wr(h,r,I) allows NTN to also model three-way

interactions directly.

This work is also the first one to use pre-trained word vectors to initialize the entity

embeddings. For entities with multi-word labels, the authors take the average of the

corresponding word embeddings. They argue that this allows them to share statistical

information between related entities, e.g. tiger and Bengal tiger.

ConvE (Dettmers et al., 2018) This model could be understood as an encoder-decoder

framework, where the encoder part uses a 2D convolutional layer to combine represen-

tations for the head entity h and the relation r. It achieves this by first reshaping the

vectors to form 2D matrices, then applying a convolutional operation on their con-

catenation. The output of the convolution is then re-flattened into a vector and passed

through a linear layer. For decoding, the inner product of the output of the encoder

and the embedding of the tail entity gives the score for the triple. Formally, the scoring

function is defined as follows:

s(h,r, t) = f (vec( f ([g(h);g(t)]∗ω))W)t, (2.36)
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Where f is the pointwise nonlinearity, g is the function that reshapes the embeddings

from 1D vectors to 2D matrices, and ∗ is the convolution operator with the filter ω.

A number of works (Nguyen et al., 2018; Balažević et al., 2019; Vashishth et al., 2020)

propose convolutional architectures that improve on that of ConvE.

R-GCN (Schlichtkrull et al., 2018). Relational Graph Convolutional Neural Network

extends Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) for graphs

with labelled edges.

The idea behind GCNs is to create a multi-layer neural network where each layer

reflects the structure of the underlying graph, with convolutional filters spanning the

direct neighbors of each node. At each layer, the network calculates the representation

of a given node by combining the parameters of the node and its neighbors at the

previous layer. Hence, at the n-th layer, each node representation contains information

about nodes n removed from it.

R-GCN adds relation specific linear transformations to the basic GCN architecture. To

avoid adding too many parameters via these transformations, the model constrains the

corresponding matrices to either be block-diagonal, or low rank. For KG completion,

R-GCN is used as the encoder part of an encoder-decoder framework, with DistMult

as the decoder.

Other models that use Graph Convolutional Networks include Shang et al. (2019),

Nathani et al. (2019) and Vashishth et al. (2020).

2.5 Using Auxiliary Information for Knowledge Graph

Completion

Although the task of KG completion has been formulated as finding missing triples

based only on the existing knowledge in the KG, the success of embedding methods

motivated researchers to combine KG completion models with other modes of data

that are often available for KGs. In this section we review these works grouped by the

types of data they use. We focus on embedding models, although we also present some

earlier works that have had significant impact on approaches that integrate information

beyond triples from the KG into the embeddings.
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2.5.1 Models that Use Information from Text

There has been a number of models proposed in the literature to integrate textual

knowledge in knowledge graph embeddings. Early models for KG embeddings used

word embeddings as initialization (Socher et al., 2013), although the effectiveness of

this strategy has been questioned (Yang et al., 2015). Later models used mentions in

a corpus, mentions where two of the entities appear in the same sentence, and entity

descriptions as text sources.

Wang et al. (2014a) present the first model in the literature for learning word embed-

dings and knowledge graph embeddings jointly. Their model consists of three parts:

the knowledge model, the text model and the alignment model. For knowledge model

they use TransE, and for text model they use word2vec (Mikolov et al., 2013). They use

two different methods for aligning text with the KG. The first method uses Wikipedia

anchors to replace the mention of the word with its entity identifier from the KG. The

second method uses entity names to extend the KG: for each triple (h,r, t), they add

triples (wh,r,wt), (wh,r, t) and (h,r,wt) to the KG for each word wh and wt that cor-

responds to the head entity h and the tail entity t respectively. Zhong et al. (2015)

present an improvement on this model by using entity descriptions for the alignment

model rather than entity names or Wikipedia anchors. Their alignment model treats

the description as the context for the entity, and encourages the model to embed the

entity and the words that appear in its description close together.

Xie et al. (2016a) propose DKRL, a model that integrates entity descriptions in KG

embeddings. Their model jointly optimizes two representations of each entity e: the

structure-based representation eS and the description-based representation eD. They

use the scoring function of TransE for both increasing the scores of correct triples

compared to the incorrect ones, and to discourage eS and eD from diverging. They

also experiment with two different encoding functions for obtaining eD from the de-

scription text: a continuous bag of words (CBOW) model and a convolutional neural

network (CNN) encoder. They report improved performance with the CNN encoder

over both CBOW encoder and baseline TransE. Several extensions of the DKRL model

have been proposed, such as integrating relation descriptions (He et al., 2019), and re-

placing the CNN encoder with an LSTM network (Wu et al., 2016). Other models

(Xu et al., 2017; Zhou et al., 2019) suggest the use of gating mechanisms to com-

bine the description based representation eD with the structure based representation eS

for a unified embedding. Xiao et al. (2017) takes a different approach, applying non-
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negative matrix factorization (NMF) on entity descriptions and using these to project

entity embeddings to triple specific topic subspaces.

A competing paradigm for integrating textual knowledge into knowledge graph em-

beddings has roots in using KGs to provide distant supervision for relation extraction

(Bunescu and Mooney, 2007; Mintz et al., 2009). The main idea for this is that if two

entities occur together in a sentence, then it can be assumed that the sentence expresses

a relation that holds between these two entities in the KG. Riedel et al. (2013) uses this

intuition to extend the KG with triples that correspond to entities and surface patterns

that were observed in text, and applies collective matrix factorization to learn embed-

dings for entity pairs and relations from a KG and text corpus jointly. While the early

works using the occurrences of entity-pairs in text focus on the information extraction

task, Toutanova and Chen (2015) adapt this approach to KG completion by modulat-

ing the effect of the triples that were extracted from text on the final representation.

They demonstrate that augmenting the KG with textual mentions can improve the per-

formance of KG embedding models, and provide a large textual co-occurrance dataset

for FB15K and FB15K-237 which consists of dependency parsed sentences extracted

from ClueWeb09 where two entities co-occur. Toutanova et al. (2015) add a CNN en-

coder to this approach in order to generate compositional representations of the textual

mentions using their dependency structure. An et al. (2018) present a BiLSTM model

with attention, which matches each triple with its potential mentions in text, and uses

the encoding of these mentions to enrich the relation embedding. They also use en-

tity descriptions to enrich the entity embeddings, hence combining two separate text

sources in their final model. Han et al. (2018) propose a similar approach using a CNN

architecture with attention to jointly learn entity and relation representations from KG

and text without the use of dependency parses for the relation mentions.

Although many of the neural network architectures described above use pretrained em-

beddings when encoding the section of text that is to be integrated into the KG embed-

dings, some models differ in their approach as they aim to integrate word embedding

information in the KG embeddings without the use of any non-linearities. Among

those is TEKE (Wang and Li, 2016) which uses cooccurrences of entities and words

in text to augment the KG embeddings. It constructs context embeddings of entities by

taking the weighted average of embeddings of its context words in corpora, and learns

a mapping matrix to combine the context embedding with the KG embedding. It also

constructs context embeddings for pairs of entities by finding the overlapping context
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words for the two entities and taking the weighted average of this set. The context

embeddings for pairs are then used to learn a mapping matrix for the relation in the

triple.

Veira et al. (2019) similarly presents two models, one for using entity descriptions and

one for using corpus cooccurrences. The first is a model that uses entity descriptions

to augment the entity embeddings. It learns a weighted sum of the word embeddings

in the entity description, and combines this with the entity embedding learned from

the KG after applying a linear transformation. The second model uses cooccurrences

in corpora to fine-tune the word2vec embedding of the entity, while learning a map-

ping matrix to combine this with the entity embedding learned from the KG. Yao et al.

(2019) proposes a method to utilize contextualized embeddings in KG completion.

The proposed model fine-tunes pre-trained BERT (Devlin et al., 2019) for scoring a

triple using the descriptions or names of the the entities. Hosseini et al. (2019) adopt

a different approach, and utilize information from a text corpus for KG completion by

first constructing an entailment graph using word co-occurrences with relation men-

tions, then using the resulting entailment graph to improve link prediction on a KG

constructed from assertions in raw text. Although their method uses textual informa-

tion, it is also a technique for integrating logical constraints in the form of implications

between relations.

2.5.2 Models that Use Entity Type Information

Modern knowledge graphs often differ from other highly structured knowledge repre-

sentations such as frames in that they don’t impose strict type hierarchies to categorize

entities. Nevertheless, entities that occur in KGs tend to fall intuitively in different

classes. For example, the majority of the entities that occur in YAGO3-10 are either

people, locations or organizations. Most relations likewise have implicit constraints

on them as to which entity types can appear as the head or the tail. For example, the

relation playsFor in YAGO3-10 appears with people as its head, and organizations as

its tail entities.

Chang et al. (2014) integrate type information into RESCAL by only considering en-

tries corresponding to triples where the types of the entities match the type constraints

of the relation during tensor factorization, with the aim of making the technique more

scalable to large scale datasets. Likewise, Krompaβ et al. (2015) suggest adding type

constraints to RESCAL and TransE by considering only the candidate triples where
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the head and the tail entity types match that of the relation during the training phase.

Xie et al. (2016b) extend TransR to include type specific projection matrices, and use

the type hierarchy to calculate the values for these projections. They also sample type-

consistent negative samples with higher probability. Zhang et al. (2018) generalize

this approach by suggesting two auxilliary losses: entity-type cost and relation-type

cost which could be used to enrich any embedding model. The intuition behind their

framework is that the suggested losses encourage the model to embed entities in areas

of the embedding space that mirror the structure of the type hierarchy.

Garcia-Durán et al. (2016) present TATEC, a model that combines bigram and trigram

interactions. They interpret the bigram terms as implicitly characterising type compat-

ibility between the entities and the relation, and similarity between the head and the

tail entity. The trigram interaction is modelled by RESCAL, and the bigram is mod-

elled by three inner product terms, one between head entity h and the relation r, one

between the tail entity t and r, and the last one between the two entities h and t. Jain

et al. (2018a) present JointDM and JointComplex. These could be viewed as a sim-

plification of TATEC where the relation representation for the trigram term is either

DistMult or ComplEx, and the bigram term that captures the similarity between the

head and the tail entity is discarded.

2.5.3 Models that Use Relation Paths

A prominent method for KG completion that does not rely on learning embeddings of

entities and relations is the Path Ranking Algorithm (PRA) (Lao et al., 2011). PRA

calculates the score for a candidate triple (h,r, t) by estimating the random walk prob-

abilities of different paths between h and t and combining these values via a logistic

regression model based on the relation r. Specifically, the model makes use of path-

constrained random walks where, given an edge labelled path P = r1, ...rn and a start

entity h, a path constrained random walk wh,P gives a distribution over all entities e,

which captures the probability of ending up in e if a random walk starts at h and follows

the path P, choosing uniformly at random whenever there is more than one edge with

the correct label at step t. The algorithm uses the values wh,P for a number of paths P

as features for logistic regression, which learns to weight each feature proportional to

how informative it is given the relation r.

Several works suggested different ways of integrating path information through ran-

dom walk probabilities into KG embeddings, usually by providing an operation that
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combines the embeddings of the relations in the path and maps them to the same vec-

tor space as the relation embeddings. Lin et al. (2015a) augment TransE to use path

information by adding an auxiliary path loss to the main model. This loss term is

summed over paths between the head and the tail entities, and considers both the PRA-

style random-walk score of the given path between h and t and the informativeness of

the path for the relation r. As the composition operation for obtaining path embed-

dings, they consider addition, multiplication and a RNN. Guu et al. (2015) investigate

which operations for composing relation embeddings are suitable for which model, ar-

guing that matrix multiplication is appropriate for RESCAL and DistMult, and vector

addition is the correct choice for TransE. Neelakantan et al. (2015) present an RNN ar-

chitecture that learns to compose relation representations, and show that this approach

is effective in a zero-shot scenario. Toutanova et al. (2016) present a dynamic program-

ming algorithm to efficiently incorporate all paths of a bounded length for RESCAL

and DistMult. Other models such as that of Das et al. (2017) tackle the issue of the

high computational cost of enumerating and scoring paths by instead learning how to

navigate within the KG to arrive at the answer. Their model uses neural reinforcement

learning (RL) to find predictive paths from the query entity to the answer entity. Lin

et al. (2018) and Godin et al. (2019) present improvements on this model by addressing

some of the technical challenges of the RL framework.

2.5.4 Models that Use Logical Rules

Both applying given rules to a knowledge base to deduce new facts, and learning

logical rules from data has a long history in AI research. In the context of modern

knowledge graphs, one approach that has been employed in large projects such as

NELL(Carlson et al., 2010) is to mine logical rules from the given facts in the KG, and

then to apply these rules for inferring new correct facts from the known ones. These

methods mostly employ Inductive Logic Programming (ILP) to learn Horn clauses that

best describe the data. Example systems include First Order Inductive Learner (FOIL)

(Quinlan, 1990) and variants (Landwehr et al., 2007, 2010), AIME (Galárraga et al.,

2013), and AIME+ (Galárraga et al., 2015).

If one wants to learn logical rules and apply these to reason over KGs that are incom-

plete or contain errors, it is essential that the rules and the deduction procedure allows

for modelling uncertainty. Most rule mining systems intended for use in KGs pro-

vide probabilities with the mined rules that reflect how reliable the rule is. A number
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of frameworks have been proposed to reason with probabilistic rules. These include

probabilistic Datalog (Fuhr, 2000), Markov Logic Networks (Richardson and Domin-

gos, 2006), ProbLog (De Raedt et al., 2007), Probabilistic Similarity Logic (Bröcheler

et al., 2010) and ProPRR (Wang et al., 2015b).

The main advantage of rule-based systems such as those listed above is that they are

interpretable. The rules they learn often offer high precision but low recall. The com-

putational costs for both rule mining and probabilistic deduction have also been pro-

hibitive for large scale KGs, although a considerable amount of research effort has been

dedicated to improve the scalability of these approaches. Embedding methods on the

other hand provide high coverage with moderate precision, are easily scalable, but lack

interpretability. The complementary strengths of the two approaches have motivated a

number of works that attempt to integrate them.

Earliest works combine logical and embedding approaches by using one to reduce the

search space of the other. Wang et al. (2015a) suggests a method that uses Integer Lin-

ear Programming (ILP) to impose logical constraints on the candidate facts obtained

via embedding methods. Wei et al. (2015) similarly generates candidate facts via em-

bedding models first, then uses Markov Logic Networks to perform inferences on the

much smaller set of facts.

Guo et al. (2016) presents KALE, a model that jointly embeds triples and logical rules

by combining TransE with a scoring function for grounded formulas based on t-norm

fuzzy logic. Wang and Cohen (2016) present a method to learn embeddings of logical

rules by applying matrix factorization on binary matrices obtained via proof graphs

generated by ProPPR, and use these embeddings to guide proof search during test-time.

Guo et al. (2018) consider a KG together with a set of Horn clauses with confidence

intervals such as those extracted from rule mining systems. They iteratively predict soft

labels, which are values between 0 and 1, for unseen triples based on the application

of the given Horn clauses, then refine the knowledge graph embeddings by adding

the triples with the soft labels to the training examples. Zhang et al. (2019a) similarly

present a method that iteratively learns embeddings, logical rules from the embeddings,

and then extends the KG by the learned rules. Other works have suggested using

logical rules for imposing constraints on KG embeddings during training (Minervini

et al., 2017; Ding et al., 2018; Wang et al., 2018a), or for regularization via adversarial

examples (Minervini et al., 2017). Neuro-symbolic approaches that learn to reason

using logic-like structures have also been applied to the KG completion task. These
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include TensorLog (Cohen et al., 2020; Yang et al., 2017), Neural Theorem Provers

(Rocktäschel and Riedel, 2017) and Lifted Relational Neural Networks (Sourek et al.,

2018).

2.5.5 Models that use Other Auxiliary Data

Integrating auxiliary information into KG embeddings besides text, paths, logical rules

and types have also been explored in KG completion literature. For instance, Xie et al.

(2017) presents a model that intergrates images associated with the entities to KG

embeddings. Wu and Wang (2018) explores combining KG information with numeric

attributes. Other works (Pezeshkpour et al., 2018; Mousselly-Sergieh et al., 2018;

Wang et al., 2019) combine image data with other types of auxiliary information such

as text and numeric attributes for general multimodal KG embeddings. There has also

been works on enriching domain specific knowledge graphs with relevant auxiliary

information, such as geographic location (Qiu et al., 2019; Mai et al., 2020).

A related area of research that has recently gained more attention from the community

is temporal knowledge graph completion (Garcia-Duran et al., 2018; Goel et al., 2020;

Jain et al., 2020). Even though this setting could be seen as a special case of enriching

the representations with numeric attibutes, it goes beyond integrating auxiliary infor-

mation, and changes the task: in temporal KG completion, each triple is associated

with a time interval, and the goal is either to correctly predict the missing entity given

the relation, the other entity and the time interval, or to predict the time interval given

the triple.

2.6 Training Choices

The majority of the recent work in knowledge graph embeddings has focused on model

architecture. The parametrization, however, is only one component of a framework

that learns embeddings for KG completion. In fact, often a new architecture is intro-

duced together with one or more improvements to the training procedure, and it is not

always easy to disentangle the effect of these different components on the reported

performance.

Reported results in subsequent implementations of DistMult and ComplEx serve well

as an illustration of the magnitude of the effect training choices and implementa-
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tion details have on performance. For DistMult, the original implementation of Yang

et al. (2015) obtains an MRR of 0.36 on FB15K. Later implementations report 0.555

(Toutanova and Chen, 2015), 0.654 (Trouillon et al., 2016), and 0.798 (Kadlec et al.,

2017). Likewise, the performance of ComplEx jumps from 0.692 MRR on FB15K in

the original implementation, to 0.86 (Lacroix et al., 2018).

In this section we review some of the training strategies that have been found to have

a large effect on the success of the models. For an extensive analysis and comparison

of these and other strategies, see Ruffinelli et al. (2020) and Ali et al. (2020).

2.6.1 Negative Training Triples

A standard difficulty with large knowledge graphs is that they contain only facts that

are believed to be true. Hence it is possible to interpret the missing triples in several

different ways. Closed world assumption posits that any triple that is not included in

the KG is false. This is in contrast with the open world assumption where any missing

triple is deemed unknown rather than incorrect.

Even though the open world assumption is justified by the size and the incompleteness

of the KGs that are often the target of KG completion approaches, most methods re-

quire examples of incorrect triples for training. A compromise between the open and

the closed world assumptions is the locally closed world assumption (Nickel et al.,

2016a). In this approach, the KG is assumed to be locally complete in the sense that if

a triple (h,r, t) is observed in data, it can be assumed that (h,r, t ′) and (h′,r, t) are in-

correct if they aren’t in the training data already; however the model doesn’t make any

assumptions about a triple (h′,r′, t ′) if neither (h′,r′, ·) nor (·,r′, t ′) is observed in the

KG. This approach motivates the negative sampling strategy first introduced in Bordes

et al. (2013) where a corrupted triple is generated by replacing the head or the tail en-

tity of a training triple with a randomly chosen entity. Efficient implementations of this

strategy can accidentally generate correct triples and label them as false. To reduce the

change of this happening, Wang et al. (2014b) introduce Bernoulli negative sampling.

This strategy adjusts the probability of corrupting the head or the tail depending on

whether the relation is a 1-to-1, 1-to-many, many-to-1 or many-to-many.

Although the standard strategy for obtaining corrupted triples is still uniform sampling,

several works have focused on improving the scores of KG completion models by more

sophisticated methods to generate negative triples. Among those are works that use
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Generative Adversarial Networks (GANs) (Cai and Wang, 2018; Wang et al., 2018b),

and those that pick more informative samples based on the current state of the model

(Qin et al., 2019; Zhang et al., 2019b; Sun et al., 2019).

Instead of refining the choice of sampled negatives, 1-to-all setting was used by Lacroix

et al. (2018) to score all possible entities at once for a query (h,r,?) or (?,r, t), consid-

ering all but the candidate entity as incorrect choices. Dettmers et al. (2018) similarly

suggested using K-to-all scoring where each batch consists of a fiber of the adjacency

tensor corresponding to (h,r, ·) or (·,r, t), and the triple is labelled correct if it is in the

training set and false otherwise. Even though this was introduced as a way of speeding

up the training, it proved to be effective at increasing the performance of the models as

well. See Kotnis and Nastase (2017) for an in-depth analysis of different strategies for

negative sampling.

2.6.2 Loss Functions

A number of different loss functions have been suggested for training KG embeddings.

RESCAL was initially implemented with L2 loss between the original adjacency tensor

and the one reconstructed from the learned parameters. L2 loss directly corresponds

to standard tensor decomposition models, and allows RESCAL to be optimized via

the Alternating Least Squares (ALS) algorithm. The scalability of ALS means that

negative sampling strategies are not necessary, and made it possible for the initial im-

plementation to obtain embeddings for large-scale knowledge graphs for the first time

(Nickel et al., 2012). A weakness of this approach from the point of view of the KG

completion task is that the optimized objective does not correlate very well with the

ranking task. Intuitively, reconstructing the binary adjacency tensor is too strong a

requirement if the goal is merely to find low rank decomposition of a “score” tensor

where the entries corresponding to 1s in the adjacency tensor are larger than those

corresponding to 0s.

This is the observation that motivated Bouchard et al. (2015) to argue that standard

tensor rank is not the right notion for KG completion. The tensor decomposition mod-

els should instead aim to find a representation with low sign-rank.3 Even though it is

difficult to optimize for sign-rank directly, the authors argue that binary cross entropy

loss (BCE) and hinge loss are approximations of the desired objective.

3As a motivating example, they show that even though the identity matrix has full rank in the regular
sense, it has a sign-rank of 2 regardless of its dimensions.



Chapter 2. Background 36

Binary cross entropy loss treats the problem as a binary classification problem. When

labels yd = {1,−1} are provided for original and corrupted triples respectively, BCE

loss for a triple d is calculated as follows:

LBCE(d) = log(1+ exp(−yd · s(d))). (2.37)

BCE is used in the original implementations of ComplEx (Trouillon et al., 2016) and

HolE (Nickel et al., 2016b).

The first models that directly optimize for the ranking task, including the initial im-

plementations of TransE (Bordes et al., 2013) and DistMult (Yang et al., 2015), use a

pairwise margin loss between the training triple, and a corrupted version of the triple

where the head or the tail entity has been replaced by another entity.

Let D = {di|di = (h,r, t)i} be the set of correct triples in the training set and for di =

(h,r, t), let D′i = {d′i |d′i = (h,r, t ′) or d′i = (h′,r, t)} be the set of corrupted triples for

di. Let s(d) denote the score of the model for the triple d. The margin based ranking

criterion is defined as follows:

Lmargin = ∑
di∈D

∑
d′j∈D′i

[γ+ s(di)− s(d′j)]+ (2.38)

Where γ > 0 is the margin hyperparameter and [x]+ = x if x > 0, and 0 otherwise. In

words, the loss function is 0 if the correct pair is scored at least γ smaller than the

corrupted pair, and increases linearly as the scores deviates from this case.

A downside of this loss compared to others is that the ratio of correct to corrupted

triples the model sees during training is 1 by design: if the number of corrupted triples

per one training triple is n, the model will see n copies of the training triple, each

paired with one corrupted triple. This means that increasing the number of corrupted

triples per training triple is equivalent to training with more epochs with the ratio set

to 1. This is a disadvantage as this ratio seems to be an important hyperparameter in

all other losses.

Toutanova and Chen (2015) introduce the use of Negative Log Likelihood (NLL) of

softmax as a loss function that scores one correct triple against a number of corrupted

triples at once. NLL of softmax loss treats the problem similar to a multi-class classi-

fication problem, where for each triple in the training set, the model needs to correctly

choose the correct triple over all the corrupted triples. Let di be a triple from the train-

ing set, and set D′i denote the set of corrupted triples obtained by corrupting the head
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or the tail of di. NLL of softmax is defined as follows:

LNLL(di) =− log

 exp(s(di))

exp(s(di))+∑d′j∈D′i
exp(s(d′j))

 . (2.39)

This loss is used in a number of works that re-implement baselines to achieve results

competitive with the state-of-the-art at the time they were published (Kadlec et al.,

2017; Lacroix et al., 2018).

2.6.3 Regularization

The choice of regularizer often depends on the choice of loss function and the archi-

tecture. The L2 regularizer is common for models that directly learn embeddings,

especially if the loss function is binary cross entropy (Trouillon et al., 2016; Nickel

et al., 2016b). However, Lacroix et al. (2018) argue that an L3 norm based on the ten-

sor nuclear p-norm is more appropriate for the task. When margin-based ranking loss

is used, it is common to constrain the L2 norm of the entity embeddings to 1 in order

to avoid the case where the model increases the norms of the embeddings to trivially

minimize the loss (Bordes et al., 2013; Yang et al., 2015). This done by projecting the

embeddings on to the unit sphere after every gradient step. A number of models also

employ dropout in hidden layers to prevent overfitting (Dettmers et al., 2018; Balazevic

et al., 2019).



Chapter 3

Incorporating Entity Types in

Knowledge Graph Embeddings

3.1 Introduction

A common type of additional information that can be obtained about entities and re-

lations in a knowledge graph is the types of the entities, and the type restrictions on

the relations. For example, one would expect a common type of entity in a knowl-

edge graph to be person, and that a relation isCitizenOf would only have entities

of this type as its head. We refer to such information on entities and relations of a

KG as a type-ontology, and explore how to utilize such information for improving KG

embedding models.

The main contribution presented in this chapter is a training framework that improves

the performance of a number of standard bilinear models for KG completion. We name

our framework JoBi, short for Joint Biased Training. Our approach can be seen as a

joint tensor-tensor decomposition of the adjacency tensor of the knowledge graph and a

type tensor constructed from a type-ontology. Our framework can utilize external type

information from a given type-ontology if it is explicitly provided, or can generate an

approximate type-ontology implicitly from the KG data if no explicit type information

is available. We focus on the second scenario and show that even in the absence of ex-

plicit type information, using heuristically generated labels improves the performance

of a number of bilinear models.

Even though the literature on KG completion has focused mostly on model archi-

38
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tectures training choices and hyperparameters have a very large impact on the final

performance (see Section 2.6 for details). We re-implement several bilinear models

and present a detailed analysis on the effects of training with different hyperparame-

ter settings and loss functions. Our findings confirm that the hyperparameter settings

for obtaining competitive results with these models require a large memory footprint,

which becomes prohibitive for very large KGs. We compare the effects of different

hyperparameter choices on the baseline models and on our joint framework, and show

that the latter is more robust to different hyperparameter choices, especially those that

reflect the training conditions of learning embeddings for very large KGs.

3.2 Modelling Type Information for Knowledge Graphs

The core motivation behind our framework JoBi is the observation that there are two

distinct types of false triples. Consider the two triples ( Lyon, isCapitalOf, Ger-

many) and (Lyon, isCapitalOf, George Orwell). Even though both these triples ex-

press facts that we know to be incorrect, we argue that there is a qualitative difference

between the two. Both the head and the tail entities in the first triple obey the implicit

semantic type restrictions the relation has for its arguments, but this is not the case

for the second one: a triple with the relation isCapitalOf does not make much sense

when its tail entity corresponds to a person.

3.2.1 Type-Consistency

Formally we consider the scenario where for a KG G = (E ,R ,F ) with the set of

entities E , set of relations R and set of facts F , we are given a type-ontology O =

(T ,TE ,Thead,Ttail) where T is the set of type labels, TE : E 7→ P (T ) is a function that

assigns a set of type labels to each entity, and Thead,Ttail : R 7→ T are functions that

map each relation to the required type label for its head and tail entity respectively. An

example KG with all components (E ,R ,F ) and the associated O =(T ,TE ,Thead,Ttail)

is given in Figure 3.1.

We will call a candidate triple (h,r, t) type-consistent if the set of type labels associated

with h include the restriction on the head of r, and the type labels associated with t

include the restriction on the tail of r. Formally, this is defined as follows:

Definition 1. Given a knowledge graph (E ,R ,F ) and a type-ontology O = (T , TE ,
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E = {Joe Biden, Emmanuel Macron, United States o f America, France}

R = {isPresidentOf, metWith}

F =



(Joe Biden, isPresidentOf, United States o f America),

(Emmanuel Macron, isPresidentOf, France),

(Joe Biden, metWith, Emmanuel Macron),

(Emmanuel Macron, metWith, Joe Biden)


TE(Joe Biden) = {person, politician}

TE(Emmanuel Macron) = {person, politician}

TE(United States o f America) = {geographic area, administrative region, country}

TE(France) = {geographic area, administrative region, country}

Thead(isPresidentOf) = politician Thead(metWith) = person

Ttail(isPresidentOf) = administrative region Ttail(metWith) = person

Figure 3.1: An example knowledge graph G = (E ,R ,F ) where E is the set of entities,

R is the set of relations, F is the set of facts, together with a type ontology O =

(T ,TE ,Thead,Ttail) for G .
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Thead, Ttail), a triple (h,r, t) ∈ (E ×R ×E) is type-consistent with respect to O if

Thead(r) ∈ TE(h) and Ttail(r) ∈ TE(t).

Given the types and type restrictions in the KG in Figure 3.1, both the triples (Joe Biden,

isPresidentOf, United States of America) and (Joe Biden, isPresidentOf, France)

are type-consistent, while (France, isPresidentOf, Joe Biden) or (France, hasMet,

Joe Biden) are not. Note that being type-consistent in this sense can be considered a

prerequisite for correctness.

3.2.2 Joint Framework

In this section we present our joint framework JoBi, which produces improved embed-

dings for KG completion by augmenting the training procedure using type-consistency

labels.

Parametrization. Our framework operates on two identically parametrized bilinear

models, where the entity embeddings of the two are tied. During training, these two

models receive the same batches of triples as inputs, however the supervision provided

for the input triples differ between the two. The first model receives the standard

supervision for KG completion models: the original triple from the training set is

labelled with 1 and the corrupted triples are labelled 0. We refer to this part of the

overall model as the the fact module. The second model is trained to predict whether

the given triple is type-consistent or not. This done by using a type-ontology O that

is either provided, or constructed from the training data. The corrupted triples are

labelled with 1 if they are type-consistent with respect to O, and 0 otherwise. We refer

to this part of the model as the type module.

The scoring functions stype and sfact for the two modules are defined as follows when

the joint framework is operating on DistMult:

sfact(h,r, t) = h>diag(rfact)t, stype(h,r, t) = h>diag(rtype)t (3.1)

If the base model is ComplEx, the scoring functions are defined as:

sfact(h,r, t) = Re
(

h>diag(rfact)t
)
, stype(h,r, t) = Re

(
h>diag(rtype)t

)
, (3.2)

and for SimplE they are defined as:

sfact(h,r, t) =
1
2

(
h>headdiag(rfact)ttail + t>headdiag(rfact−1)htail

)
(3.3)

stype(h,r, t) =
1
2

(
h>headdiag(rtype)ttail + t>headdiag(rtype−1)htail

)
(3.4)



Chapter 3. Incorporating Entity Types in Knowledge Graph Embeddings 42

The reason why we tie the weights of the entity embeddings, but let the embeddings

for the relations be optimized separately is largely parameter efficiency: the number of

relations in standard KGs are often magnitudes less than the number of entities, hence

doubling the number of embeddings for relations is a negligible increase in the total

number of training parameters. During training, we optimize the two modules jointly,

but use only sfact to score candidate triples during test time. Therefore the addition of

the type module has no effect on the number of final parameters of the trained model.

Joint training as tensor decomposition. Recall that bilinear models can be thought

of as finding a low-rank decomposition of the adjacency tensor G. For example, Dist-

Mult can be written as optimizing the following equation:

min
E,R

∥∥∥∥∥σ

(
n

∑
i=0

E:,i ◦R:,i ◦E:,i

)
−G

∥∥∥∥∥ (3.5)

where E and R are matrices corresponding to entity and relation embeddings, ◦ is the

generalized outer product as defined in Equation 2.9, σ is a non-linearity depending

on the loss function used, n is the number of fibres i ranges over, and the expression is

minimized with respect to the tensor Frobenius norm.

Likewise, our joint framework can be expressed as joint tensor-tensor decomposition

which finds low-rank factors for both the adjacency tensor G and the type tensor T
defined by the type-ontology O = (T ,TE ,Thead,Ttail):

Ti, j,k =

1, if Thead(r j) ∈ TE(ei) and Ttail(r j) ∈ TE(ek)

0, otherwise.
(3.6)

When our base model is DistMult, our framework aims to find low rank matrices

E,Rfact,Rtype by optimizing the following equation:

min
E,Rfact,Rtype

(∥∥∥σ1

( d

∑
i=0

E:,i ◦Rfact
:,i ◦E:,i

)
−G

∥∥∥+α

∥∥∥σ2

( d

∑
i=0

E:,i ◦Rtype
:,i ◦E:,i

)
−T

∥∥∥) ,

(3.7)

where σ1 and σ2 may be different non-linearities due to different loss functions for the

two models, and 0 < α≤ 1 is a scalar term that weights down the reconstruction error

from T compared to that of G. Our joint framework with ComplEx and SimplE can

also be analogously expressed as a joint tensor-tensor decomposition by replacing the

factor matrices in the above expression with those that correspond to the appropriate

model.
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Generating corrupted triples. During training, we generate negative examples by

corrupting the positive ones following the Locally Closed World Assumption. For each

training triple k = (h,r, t), we construct a set of corrupted triples corr(k) by first flip-

ping a fair coin to determine whether to corrupt the head or the tail entity. Then, we

pick an entity e′ ∈ E and add the triple (e′,r, t) or (h,r,e′) to corr(k) depending on the

outcome of the coin flip.

In order to make training more challenging for the model, we sample e′ ∈ E so that

corr(k) is biased towards triples that are type-consistent with respect to the type-

ontology O = (T ,TE ,Thead,Ttail). With probability p, our sampling procedure chooses

e′ uniformly at random from entities that would result in type-consistent triples. These

are the entities {e′ |Thead(r) ∈ TE(e′)} if the result of the coin flip is heads, and

{e′ |Ttail(r) ∈ TE(e′)} if it is tails. With probability 1− p, we sample e′ uniformly

at random from all of E as usual.

Labelling corrupted triples. After we generate the set of corrupted triples corr(k)

for a given training triple k =(h,r, t), we generate the type-consistency labels for triples

in corr(k) according to the type-ontology O = (T ,TE ,Thead,Ttail). Since for each triple

(h′,r, t ′) ∈ corr(k), either h′ = h or t ′ = t, the task reduces to checking if the corrupted

entity matches the type-restriction on its position for the relation r. Specifically, the

labels of corrupted triples in k′ ∈ corr(k) are calculated as follows:

if k′ = (e′,r, t) then ytype(k′) =

1 if Thead(r) ∈ TE(e′)

0 otherwise
(3.8)

if k′ = (h,r,e′) then ytype(k′) =

1 if Ttail(r) ∈ TE(e′)

0 otherwise
(3.9)

Calculating the loss. For sfact, the task is to differentiate the correct triple k from

all its corrupted versions k′ ∈ corr(k). We accomplish this by applying softmax over

scores of all the candidates and then calculating the loss as the negative log likelihood

(NLL) of the true triple:

Lfact(k) =− log

(
exp(sfact(k))

exp(sfact(k))+∑k′∈corr(k) exp(sfact(k′))

)
(3.10)

For stype, we evaluate the score for each triple k′ ∈ {k}∪ corr(k) individually, based
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on the the type-consistency labels ytype(k′). We calculate the loss as the binary cross

entropy between the output and the type-consistency label:

Ltype(k) =
1
N ∑

k′∈{k}∪corr(k)

(
−ytype(k′) logstype(k′)− (1− ytype(k′)) log(1− stype(k′))

)
,

(3.11)

where N = |corr(k)|+ 1. We combine the two losses via weighted addition and a

tunable hyperparameter α:

L = Lfact +αLtype (3.12)

3.2.3 Generating type-consistency labels from KG triples

In addition to the KG triples from the training data, our framework requires access to a

decision procedure for determining whether a given candidate triple is type-consistent.

This is straightforward if an explicit type-ontology is provided. In the absence of such

additional information, we generate labels heuristically by labelling a candidate triple

(h,r, t) type-consistent if there exists triples (h′,r, t) and (h,r, t ′) in the training data.

This is achieved by constructing a surrogate ontology O ′ = (T ′,T ′E ,T ′head,T
′

tail) by the

following procedure:

For each r ∈ R :

• add two new labels lhead
r and ltail

r to the set of type labels T ,

• let Thead(r) = lhead
r , and Ttail(r) = ltail

r .

For each (h,r, t) ∈ F :

• add the type label lhead
r to the set TE(h),

• add the type label ltail
r to the set TE(t).

The following lemma shows that the set of triples labelled type-consistent by the on-

tology constructed by the procedure above would be a subset the triples that are type-

consistent according to the true underlying type-ontology.

Lemma 3.2.1. For a KG (E ,R ,F ) and a corresponding ontology O, if all triples in

F are type-consistent with respect to O, then candidate triple (h,r, t) is type-consistent

with respect to the surrogate type-ontology O ′ only if it is type-consistent with respect

to O.
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Dataset # entities # relations # training triples

FB15K 14,951 1,345 483,142

FB15K-237 14,541 237 272,115

WN18RR 40,943 11 93,003

YAGO3-10 123,182 37 1,079,040

FB1.9M 1,892,241 3,247 19,323,513

Table 3.1: Statistics of datasets used in experiments.

Proof. If a candidate triple (h,r, t) is type-consistent with respect to O ′, then T ′head(r) =

lhead
r ∈ T ′E(h) and T ′tail(r) = ltail

r ∈ T ′E(t). This means that there exists triples (h,r, t ′),

(h′,r, t) ∈ F . Since triples in F are type-consistent with respect to O by the assump-

tion, it must be that Thead(r) ∈ TE(h) and Ttail(r) ∈ TE(t), which proves that (h,r, t) is

type-consistent with respect to O.

3.3 Experiments

In this section, we present empirical evaluation of our framework JoBi on the task of

knowledge graph completion. We first re-implement three bilinear models: DistMult,

ComplEx and SimplE, and provide a detailed analysis of the effects of different loss

functions and hyperparameter settings. We then present the performance of JoBi com-

pared to that of the baselines. We focus on implementations that could scale to very

large KGs. Hence, we evaluate our models with training settings that don’t require

excessively large memory usage. We show that training with JoBi not only improves

the performance on all baseline models, but also makes models more robust to hyper-

parameter choices required for a small memory footprint.

Datasets. We perform baseline experiments on standard datasets FB15K-237

(Toutanova et al., 2015), YAGO3-10 and WN18RR (Dettmers et al., 2018). For eval-

uating JoBi, we use FB15K (Bordes et al., 2013), FB15K-237, YAGO3-10 and a new

large-scale dataset FB1.9M containing a subset of Freebase which we construced from

FB3M (Xu and Barbosa, 2018).1 Statistics for these datasets can be found in Table 3.1.
1We do not perform experiments on WordNet derived datasets WN18 or WN18RR because mod-

elling a type-ontology wouldn’t provide any information – all entities are synsets and almost all can
occur as an object or subject to all the possible relations.
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Evaluation. We evaluate all models by ranking the model score for each test triple

against the model score for all its head or tail corrupted versions. We report the mean

reciprocal rank (MRR) of the correct triple as well as average hits@n for n = 1,3,10,

where hits@n is 1 if the score for the correct triple is ranked in the top n, and 0 other-

wise.

Specifically, for each triple (h,r, t) in the test set, we construct two queries: (h,r,?)

and (?,r, t). For the query (h,r,?) we obtain and sort the model scores s(h,r, t ′) for

all t ′ ∈ E and retrieve the rank of the correct triple amongst the corrupted ones. For

the query (?,r, t) we similarly rank s(h,r, t) against s(h′,r, t) for all h′ ∈ E . To avoid

penalizing the model for ranking another correct triple above the given test triple, we

employ filtered evaluation suggested by Bordes et al. (2013), and remove any triple k

from the set of corrupted triples before performing the ranking if k appears in training,

validation or test set.

3.3.1 Re-implementation of Baselines

We re-implement three bilinear models: DistMult, ComplEx and SimplE, and investi-

gate the effects of the choice of loss function, the size of the embeddings, the number

of sampled negatives, and the size of training batches on the performance of these

models.

Both for embedding sizes and the number of generated negatives examples, setting the

hyperparameter values much larger than those contained in our grid has been shown to

improve results. For embedding sizes, Kadlec et al. (2017) and Lacroix et al. (2018)

report results that were state-of-the-art at the time of publishing with 2000 and 4000

dimensional embeddings. Likewise for generated negatives, it has been shown that

state of the art results can be reached with 1-to-all scoring, where each training triple

is scored with its head or tail entity replaced with all the entities in the KG at once

(Joulin et al., 2017; Dettmers et al., 2018; Lacroix et al., 2018). These settings however

cannot scale to very large KGs which might contain magnitudes more entities than the

standard benchmarks. Because our focus is on scalability, we restrict our experiments

to a maximum of 200 dimensional embeddings and to sampled negatives.

Experiment design We re-implement all the models in PyTorch, where the imple-

mentation of different models share everything except the parametrization of the scor-

ing function to ensure that any difference in performance is due to nothing but the
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models themselves. We test all models with three different loss functions: max-margin

loss, logistic loss (also called binary cross-entropy loss) and negative-log-likelihood of

softmax (also called cross-entropy loss). For all datasets, models and loss functions

we perform grid search on:

• Number of generated negatives per training triple nneg = {1,5,25,100,500}

• Embedding dimensions d = {50,100,200}

• Batch size b = {25,100,500,1000}

We report best mean reciprocal rank (MRR) on the validation set of each dataset, model

and loss-function. We also illustrate the effects of different parameter choices by plot-

ting the best MRR for each model and dataset when fixing one hyperparameter value

at a time.

3.3.1.1 Implementation Details

For all runs, we initialize embeddings with Xavier initialization (Glorot and Bengio,

2010), and use Adam optimizer (Duchi et al., 2001) for adjusting learning rate through-

out training. We set the initial learning rate to 0.01 since different settings for this

hyperparemeter did not make a significant difference in our preliminary experiments.

For each training triple k = (h,r, t), we generate nneg number of corrupted triples by

sampling e′1, . . . ,e
′
nneg
∈ E uniformly at random. For each e′i we construct a corrupted

triple by replacing the head or tail entity of k with equal probability, creating corr(k)

so that each k′i ∈ corr(k) = (ei,r, t) or (h,r,ei).

For all losses, the loss corresponding to a batch is calculated as the mean of the losses

for each triple, which is calculated with the model score s(k) for each training triple k,

and scores s(k′i) for the corrupted triples k′i ∈ corr(k).

We calculate max-margin loss value for a triple k as follows:

Lmargin(k) = ∑
k′∈corr(k)

max[1+ s(k)− s(k′),0] (3.13)

We set the margin to be 1 following previous work, and project the embeddings back

to the unit sphere after every gradient update.

For log-loss, we label the correct triples with 1 and the corrupted triples with -1. We
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FB15K-237 WN18RR YAGO3-10

margin log softmax margin log softmax margin log softmax

DistMult 0.185 0.19 0.281 0.406 0.406 0.417 0.093 0.449 0.402

ComplEx 0.198 0.203 0.288 0.423 0.411 0.442 0.101 0.444 0.429

SimplE 0.191 0.212 0.276 0.426 0.415 0.437 0.096 0.47 0.415

Table 3.2: Best MRR of three bilinear models on the validation set of three datasets

with different loss functions

then use the Pytorch implementation of log-loss which calculates the following:

Llog(k) = ∑
k′∈{k}∪corr(k)

log(1+ exp(−yk′× s(k′))) (3.14)

Where y′k is the label assigned to the triple k′.

For the implementation of NLL of softmax, we use the PyTorch implementation of cross

entropy loss that implements a softmax layer and a NLL calculation. For a training

triple k the loss is calculated as follows:

Lso f tmax(k) =− log
exp(s(k))

exp(s(k))+∑k′∈corr(k) exp(s(k′))
(3.15)

We use early stopping by evaluating the model on the validation set every five epochs,

and stop the training when the performance on the validation set decreases. We use

the filtered setting both for early stopping and for reporting the results. That is, when

ranking the correct triple for early stopping, we remove a corrupted triple from the

candidate set if it appears in training or validation set. When we report results on the

test set, we add the test set to known triples after the training is completed.

3.3.1.2 Baseline Results and Discussion

In Table 3.2 we present the best MRR on validation set that the models achieved with

different loss functions. The first thing to note here is that changing the loss function

seems to have a greater effect on the results than changing the parametrization from

one bilinear model to another. The best choice for the loss functions seems to depend

on dataset rather than the model, with NLL of softmax performing slightly better in

WN18RR and significantly better in FB15K-237 than the other two. Log-loss performs

slightly better in YAGO3-10, but significantly worse in FB15K-237 compared to soft-

max. Max-margin loss seems to be trailing behind on all datasets, but is notably bad in
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(a) Batch size vs. MRR

(b) Embedding size vs. MRR

(c) Negatives ratio vs. MRR

Figure 3.2: Analysis of how MRR changes with different choices of hyperparameters.

We fix one hyperparameter value at a time and report results with the best settings of

other hyperparameters.

YAGO3-10. It is also interesting to note that the difference between the performance

of the different losses are much more pronounced for FB15K-237 and YAGO3-10 than

for WN18RR. This might be due to WN18RR being derived from a lexical resource

rather than a general knowledge graph like the other two, and hence having a different

graph topology.

We present detailed graphs of how different hyperparameter settings affect the perfor-

mance of ComplEx on different datasets in Figure 3.2. In Figure 3.2a it can be seen

that larger batch sizes tend to have a positive effect on performance except for log-

loss on FB15K-237, although the extent of this changes with dataset and loss function

used. The effect of changing embedding size can be seen in Figure 3.2b, and it can
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be observed that performance increases with the embedding size. The widest variance

in performance is due to different values of the number of generated negatives per

positive example during training (Figure 3.2c), with performance improving with in-

creased number of negatives on all dataset except WN18RR, where the performance of

log-loss drops more sharply than the performance of softmax. Note that margin-loss is

not included in this comparison since it is inherently 1-1 positive to negative example.

These results show that hyperparameter settings that seem to work the best are also the

ones that have the largest memory footprint.

3.3.2 Experiments with Joint Framework

In this section we analyze the effects of using our joint framework JoBi with DistMult,

ComplEx and SimplE on three standard datasets FB15K, FB15K-237 and YAGO3-10,

and an additional very large dataset FB1.9M we that construct by iteratively removing

from FB3M all entities that occur less than 5 times until no such entities remain. For

all datasets we construct a corresponding type-ontology directly from the training set,

with the method described in Section 3.2.3. The statistics for these datasets can be

found in Table 3.1

For analysis and ablation studies we focus on YAGO3-10 since it is 10 times larger

than FB15K or FB15K-237, so we expect it to better reflect how the performance of

the models scale.

Baselines We use our re-implementations of DistMult, ComplEx and SimplE as our

primary baselines. We also compare our results with the results reported in Jain et al.

(2018b) for their model TypeComplex, which is designed to improve on ComplEx by

using implicit type information within a KG. TypeComplex does this by amending the

scoring function of ComplEx by additional parameters to capture the type compati-

bility between the entity-relation tuples within the triple. It learns two embeddings

ue ∈ Ck and ae ∈ Cd for each entity e ∈ E and three embeddings vr,wr ∈ Ck and

br ∈ Cd for each relation r ∈ R . The scoring function for TypeComplex is defined as:

sc(h,r, t) = Re
(

a>h diag(br)at

)
(3.16)

s(h,r, t) = σ
(
sc(h,r, t)

)
·σ
(

u>h vr

)
·σ
(

u>t wr

)
, (3.17)

where a is the complex conjugate of a.
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3.3.2.1 Implementation Details

We optimize all models with stochastic gradient descent using Adam (Kingma and Ba,

2015), and perform early stopping with hits@10 on the validation set, where evaluation

is performed every five epochs. For all our experiments, we fix the initial learning rate

to 0.001. For experiments on FB15K, FB15K-237 and YAGO3-10, we perform a grid

search over batch sizes: {500,1000}, negative ratios nneg : {50,100}, pair-loss weight

α : {0.5,1} where applicable, and fix embedding size to 200 and biased sampling

probability p to 0.3. We choose the hyperparameters that give the highest hits@10 on

the validation set, and use these hyperparameters to report the final results on the test

set. For FB1.9M, we use the best hyperparameters from YAGO3-10. Due to memory

constraints, we set the embedding size to 100.

For most of our experiments, we choose to use ComplEx as the base for our model

(JoBi ComplEx), since this configuration consistently outperformed others in prelim-

inary experiments. To test the effect of our techniques on different bilinear models, we

report results with DistMult (JoBi DistMult) and SimplE (JoBi SimplE) on FB15K-

237. We also run experiments for explicit comparison of our model with TypeComplex

and report it in Table 3.6.

3.3.3 Discussion

It could be seen in Table 3.3 that JoBi ComplEx outperforms both ComplEx and Dist-

Mult on all three standard datasets, on all the metrics we consider. For Hits@1, JoBi

Complex outperforms baseline ComplEx by 4% on FB15K-237, 6.4% on FB15K and

5.6% on YAGO3-10.

Moreover, results in Table 3.3 demonstrate that JoBi improves performance on Dist-

Mult and SimplE. It should be noted that on FB15K-237, all JoBi models outperform

all the baseline models, regardless of the base model used.

Lastly, results on FB1.9M (Table 3.4) demonstrate that JoBi improves performance on

this very large dataset, where it is not possible to perform softmax over the entire set

of entities, or have very large embedding sizes due to memory constraints.

Although one epoch for JoBi takes slightly longer than the baseline, JoBi converges

in fewer epochs, resulting in shorter running time overall. We report running times on

FB1.9M in Table 3.5.
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FB15K-237 h@1 h@3 h@10 MRR

SimplE 0.160 0.268 0.430 0.248

DistMult 0.158 0.271 0.432 0.247

ComplEx 0.159 0.275 0.441 0.25

JoBi SimplE 0.188 0.301 0.461 0.277

JoBi DistMult 0.205 0.316 0.466 0.29

JoBi ComplEx 0.199 0.319 0.479 0.29

FB15K h@1 h@3 h@10 MRR

DistMult 0.587 0.785 0.867 0.697

ComplEx 0.617 0.803 0.874 0.72

JoBi ComplEx 0.681 0.824 0.883 0.761

YAGO3-10 h@1 h@3 h@10 MRR

DistMult 0.252 0.407 0.568 0.357

ComplEx 0.277 0.44 0.589 0.383

JoBi ComplEx 0.333 0.477 0.617 0.428

Table 3.3: Performance on different datasets against baselines, where h@k denotes

hits at k. Results are reported on test sets with the best parameters found in grid

search for each model.

ComplEx h@1 h@3 h@10 MRR

Baseline 0.424 0.598 0.721 0.530

JoBi 0.452 0.615 0.726 0.550

Table 3.4: Performance on the large-scale FB1.9M dataset, measured against the best

performing baseline.

# epochs training time

ComplEx 70 5 days 5 hours 8 minutes

JoBi ComplEx 30 4 days 19 minutes

Table 3.5: Runtimes of ComplEx and JoBi Complex on FB1.9M.

Comparison with TypeComplex For results of TypeComplex, Jain et al. (2018a) use

a wider set of negative ratios in their grid search than we do. To isolate the effects of the

different models from hyperparameter choices, we set the negative ratio for our model
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FB15K-237 h@1 h@3 h@10 MRR

ComplEx 0.209 0.347 0.535 0.314

TypeComplex 0.296 - 0.575 0.389
JoBi ComplEx 0.276 0.416 0.587 0.377

FB15K h@1 h@3 h@10 MRR

ComplEx 0.630 0.818 0.895 0.734

TypeComplex 0.663 - 0.885 0.754

JoBi ComplEx 0.702 0.847 0.906 0.782

YAGO3-10 h@1 h@3 h@10 MRR

ComplEx 0.412 0.587 0.701 0.516

TypeComplex 0.516 - 0.702 0.587

JoBi ComplEx 0.507 0.647 0.742 0.591

Table 3.6: Comparison with TypeComplex where the scores are calculated ranking only

the tail entities. Results for TypeComplex are taken from Jain et al. (2018a). h@k

denotes hits at k.

.

to be 400 to match the setting on their best performing models. We keep the other

hyperparameters the same as the best performing models for the previous experiments.

Jain et al. (2018a) use a modified version of the ranking evaluation procedure to report

their results, where they only rank the tail entity against all other entities. To be able to

compare our model to theirs, we also report the performance of our framework on this

modified metric. The results for these experiments can be found in Table 3.6.

Our model generally outperforms TypeComplex by a large margin on hits@10. It also

outperforms TypeComplex on MRR by a moderate margin except on FB15K-237, the

smallest dataset. On the other hand, TypeComplex outperforms our model on hits@1

in two out of the three datasets. In fact for FB15K, TypeComplex does worse on

hits@10 compared to the baseline model. This suggests that TypeComplex may be

compromising on hits@k where k is larger to improve the hits@1 metric, which might

be undesirable depending on the application.

Qualitative analysis. We analyze correct predictions made by JoBi ComplEx but not

regular ComplEx. Among relations in YAGO3-10, a major performance gain can be

observed for hasGender. The improvement comes solely from tail-entity predictions,
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h@1 h@3 h@10 MRR

Baseline 0.277 0.44 0.589 0.383

BiasedNeg 0.276 0.427 0.568 0.375

Joint 0.287 0.447 0.601 0.392

JoBi 0.333 0.477 0.617 0.428

Table 3.7: Results of ablation study on ComplEx model.

with hits@1 increasing from 0.22 to 0.86. Furthermore, we found that the errors made

by ComplEx are exactly of the kind that can be mitigated by enforcing plausibility:

ComplEx predicts an object that is not a gender (e.g. a sports team or a person) 65%

of the time; JoBi makes such an obvious mistake only 2% of the time.

3.3.4 Ablation Studies

We compare joint training without biased sampling (Joint) and biased sampling with-

out joint training (BiasedNeg) to the full JoBi model on YAGO3-10. We optimize

hyperparameters by grid search over batch sizes: {200,500,1000}, negative ratios

nneg : {50,100}, biased sampling probability p : {0.1,0.2,0.3} and pair-loss weight

α : {0.25,0.5} where applicable.

Discussion. In Table 3.7 it can be seen that Joint on its own gives a slight perfor-

mance boost over the baseline, and BiasedNeg performs slightly under the baseline

on all measures. However, combining our two techniques in JoBi gives 5.6% points

improvement on hits@1. This suggests that biased negative sampling increases the

efficacy of joint training greatly, but is not very effective on its own.

The reason behind BiasedNeg performing worse on its own but better with Joint could

be the choice of binary cross entropy loss for the pair module. We speculate that as

the negative ratio increases, the ratio of negative to positive examples for this mod-

ule becomes more skewed. Biasing the negative triples in the training alleviates this

problem by making the classes more balanced, and allows the joint training to be more

effective.
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Figure 3.3: Performances on YAGO3-10 with different batch sizes
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Figure 3.4: Performances on YAGO3-10 with different negative ratios
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3.3.5 Robustness to Hyperparameter Settings

We also conduct experiments to isolate the effect of our techniques on varying batch

sizes and negative ratios. For these experiments, we keep everything but the batch size

constant (nneg = 25, α = 0.5, p = 0.3) and plot the change in hits@10 as the batch

size varies in {25,50,100,200,500,1000}. For demonstrating the effects of varying

negative ratios, we keep everything but nneg constant (batch size = 200, α = 0.5, p =

0.3) and plot hits@10 as nneg takes values in {5,10,25,50,100,200}.

Discussion. The results for this experiment are presented in Figures 3.3 and 3.4.

These show that JoBi not only consistently performs the best over the entire range

of parameters, but also delivers a performance improvement that is especially large

when the batch size or the negative ratio is small. This setting was designed to reflect

the training conditions on very large datasets. It can be seen that BiasedNeg is more

robust to low values of negative ratios, and both BiasedNeg and Joint alone show less

deterioration in performance as the batch size decreases. When these two methods are

combined in JoBi, the training becomes more robust to different choices on both these

parameters.

3.3.6 Limitations of Experimental Design

As presented in Section 2.6, training choices have a large effect on final performance

of KG completion models, which can make it difficult to determine whether the in-

crease in scores is due to the main contributions presented in a paper or other slight

differences in how the models are trained. For this reason, we re-implement all of the

baseline models we consider and present an in-depth analysis of different loss functions

and hyperparameter settings. From these experiments we conclude that NLL of soft-

max is the best choice of loss function, and analyze the effect of our Joint framework

on hyperparameters in this context. However, an important detail in the implemen-

tation of softmax loss is whether softmax is applied to predictions from a mixed set

of head-corrupted and tail-corrupted triples, or whether it is applied separately to each

type of corrupted triple separately and losses are combined afterwards. Our implemen-

tation features the former, whereas the latter more closely resembles the evaluation and

is likely to result in better scores. Hence it is possible that changing this in the experi-

mental setting would negate some of the benefits obtained by joint training with biased

sampling reported in this work.
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3.4 Related Work

Using pair occurrences for embedding models has been considered before, both as

explicit model choices and as negative sampling strategies. Chang et al. (2014) and

Krompaβ et al. (2015) use pair occurrences to constrain the set of triples to be used in

the optimization procedure. For methods that rely on SGD with contrastive training,

this translates to a special case of our biased sampling method where p = 1. Garcia-

Durán et al. (2016) present TATEC, a model that combines bigram and trigram interac-

tions. The trigram model uses a full matrix representation for relations, and hence has

many more parameters compared to our model. Jain et al. (2018a) present JointDM

and JointComplex, which could be viewed as a simplification of TATEC. Unlike our

model, both of these methods use the bigram terms both in training and evaluation, do

not share any of the embeddings between two models, and do not provide supervision

based on pair occurrences in the data.



Chapter 4

Learning Entity Embeddings from

Knowledge Graph and Corpus

4.1 Introduction

The standard datasets and evaluation frameworks for knowledge graph completion as-

sume that the query triples come from the same distribution as the underlying KG,

which translates to the assumption that the more the system knows about an entity,

the more likely it is to get queried. This down-weighting of importance for rare enti-

ties might not always correspond to scenarios in real-life applications: one can easily

imagine that the less you know about an entity, the more likely you are to query it. In

this chapter, we aim to address this issue and to identify a method for improving the

accuracy of knowledge graph completion algorithms on entities rarely or never seen in

training data, while leveraging large amounts of unlabeled data from an entity-linked

corpus.

We use the framework coupled matrix tensor factorization (CMTF; Acar et al. 2013)

to embed words from a corpus and entities from a knowledge graph in the same space.

This allows us to leverage easily available, abundant textual data to provide additional

context to the entity embeddings. This is especially helpful in the case of rare or out-

of-vocabulary KG entities because the model can still leverage the distances between

the entities according to the unlabeled data, where they might be less rare, to make

predictions for the KG completion task. For example, seeing that Switzerland, Austria

and Liechtenstein frequently occur in similar contexts in the unlabeled data, where the

58
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latter does not occur in the knowledge graph, might assist inferring from a fact in the

KG such as (Austria,Borders,Switzerland), that (Liechtenstein,Borders,Switzerland)

holds as well.

The two components in our use of CMTF corresponds to DistMult for the knowl-

edge graph completion and GloVe for word embeddings. Both of these models are

amenable to our formulation, as they can be viewed as performing tensor and matrix

factorizations. We propose two ways to exploit the CMTF framework with these two

models: through the addition of hard constraints to tie the embeddings learned from

the knowledge graph and the embeddings learned through their occurrence in the text

and through soft constraints, which let the two diverge to some extent. Figure 4.1

schematically presents the way we tie the embeddings from the knowledge graph and

the embeddings from unlabeled text.

For our experiments, we use the standard knowledge graph completion datasets cou-

pled with a corpus from English Wikipedia. For FB15K, FB15K-237 and YAGO3-10,

we link the KG to the corpus using two different methods, with one yielding many

more links per entity than the other. This allows us to analyze the effects of the link

frequency on the suggested models.

In addition to evaluating our methods on datasets with the original training-validation-

test set splits, we also report results on modified versions of these datasets where most

or all the triples containing some portion of the entities are removed from the training

set. This is done in order to evaluate the model performance on few and zero-shot

settings.

For modified datasets, we make the distinction between evaluating on entities with

very few known facts (rare), and evaluating on entities with no known facts (zero-

shot). For both these versions we make the further distinction between original and

artificial settings. This distinction aims to capture two different possible sources for

having little or no data about a given entity. In the original setting, there is the implicit

assumption that each link in the underlying, complete KG has equal probability of

getting sampled in the training data. The intuition is that rare entities in this setting

have less data because they intrinsically have less number of correct facts associated

with them. In the artificial setting, the entities the model is evaluated on are rare in the

training set not due to their rarity in the underlying KG, but rather due to an imbalance

in the sampling procedure. In other words, the KG defined by the training set knows
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Figure 4.1: A diagram describing CMTF in the context of our work. The tensor T
denotes the knowledge graph which needs to be completed, with the dimensions cor-

responding to entities (t and h) and relations (r). The entity dimensions are shared with

a co-occurrence matrix M (with a dimension for c, the context of a word) that also in-

cludes common words (and as such, the co-occurrence matrix has a larger dimension

than the entity dimension).

less about these entities than others.

Our results show that there is a significant gap in performance for all models between

original and artificial versions. Furthermore, some of our models work better than the

baseline on one version but not the other. In practical applications we expect both of

these causes to play some part in the rarity of some entities in KGs, and that the KG

can resemble the original or the artificial setting more depending on the way it was

constructed and is being utilized.

4.2 Background and Notation

The main framework under which we operate is that of coupled matrix and tensor

factorizations (CMTF; Acar et al. 2013), which is introduced in Section 2.2.3. This

is a framework for data fusion, where two or more datasets that can be represented as

matrices or tensors are coupled in one of the modes and factorized jointly. The factors

of the coupled mode then uncover latent structure that both the datasets share.

The work of Acar et al. (2013) contrasts the use of an Alternating Least Square (ALS)

algorithm to a gradient-update method to find the joint factorization. Their finding

shows that the ALS algorithm, in which each factor is optimized in a coordinate-

descent style, does not perform as well as the gradient-based method. As such, we
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choose to use Stochastic Gradient Descent (SGD) with Adam for our optimization

based on automatic differentation with TensorFlow.

4.2.1 GloVe Word Embeddings

Word embeddings are low-dimensional, dense vectors that capture the meaning of each

word in terms of its similarity to other words in the vocabulary. This means that in

a good embedding representation, two words that have similar meanings should be

represented by points that are close to one another in the embedding space.

GloVe (Pennington et al., 2014) is a model for learning word embeddings that operates

on the co-occurrence matrix. This is a sparse matrix X ∈ Rd×d where d is the size

of the vocabulary. X is obtained from a corpus, and the entry Xi, j contains the count

of the ith word and the jth word occurring in the same context. GloVe considers the

context of a word to be n tokens before and after the word within a sentence, where

n is a hyperparameter that ranges from 2 to 10. It also discounts the co-occurrence

according to the distance between the two tokens, where if the words i and j occur d

tokens apart, this contributes 1/d to the total count Xi, j.

GloVe uses a weighted least squares objective to factorize the logarithm of the co-

occurrence matrix. It is closely related to an earlier factorization model Latent Seman-

tic Analysis (Deerwester et al., 1990), however GloVe employs a weighting scheme

that downweights the rare co-occurrances without causing the frequent co-occurrences

to overwhelm the final representation. For an entry x in the co-occurrence matrix, the

weighting is achieved with the following function:

f (x) =

(x/xmax)
α if x < xmax

1 otherwise
(4.1)

,

Where xmax and α are hyperparameters.

GloVe learns a focal embedding w and a context embedding w̃ for each word, which

correspond to the columns of the left and the right factor matrices. It also learns a focal

and a context bias b and b̃ for each word to ensure that the factorization is symmetric

with respect to context and focal embeddings. The loss function w.r.t the cooccurrence



Chapter 4. Learning Entity Embeddings from Knowledge Graph and Corpus 62

Xi, j, the focal word wi and the context word w̃ j is given by:

`GloVe(Xi j,wi, w̃ j) = f
(
Xi j
)(

wi
>w̃j +bi + b̃ j− logXi j

)2
(4.2)

.

4.3 Our Joint Model

Our main model couples together the matrix factorization that GloVe performs on the

co-occurrence table from unlabeled text and the tensor factorization that DistMult per-

forms on the adjacency tensor of the KG. While this overall coupling falls under the

framework of CMTF, we deviate from the literature that uses L2 loss to minimize the

reconstruction error and instead use softmax over sampled negatives when calculating

the loss for DistMult:

`DistMult(h,r, t) =− log
(

exp(s(h,r, t))
∑t ′ exp(s(h,r, t ′))+∑h′ exp(s(h′,r, t))

)
(4.3)

and then define the objective function

LDistMult =
1
n1

n1

∑
i=1

`DistMult(h(i),r(i), t(i)), (4.4)

where the set {(h(i),r(i), t(i)) | i ∈ [n1]} composes our knowledge graph training set.

Note that the parameters controlled by this objective are the relation and entity embed-

dings.

The key idea of our model is to pair tensor factorization for learning entity and relation

embeddings from a knowledge graph, with matrix factorization to learn embeddings

of the words corresponding to these entities from a corpus. We choose to use GloVe

as the matrix factorization method for word embeddings. Hence, the loss from the co-

occurrence matrix is defined by Equation 4.2.1 The final objective LGloVe is an average

of the loss function across all pairs of tokens i and j where Xi j > 1.

Since DistMult could be cast as a tensor factorization model, and GloVe explicitly fac-

torizes the log co-occurrence matrix, it is possible to couple these heterogeneous data

sources using the CMTF framework. We try two ways of coupling the two sources.

1We set α = 3/4 and xmax = 100 as the hyperparameters to the weighting function, as in the original
GloVe model.
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In the hard constraint version of our model, we simply constrain the embeddings of

entities obtained through factorizing the KG tensor, and the embeddings of the corre-

sponding words in the corpus, to be equal. The objective in this case is the weighted

addition of the GloVe objective in Eq. 4.2 and the DistMult objective in Eq. 4.3:

Lhard = LGloVe +λLDistMult (4.5)

The hard constraint version of our model does not allow the embeddings from the

unlabeled text and the embeddings for the entities to deviate at all – they share the

same space. However, such a constraint might be overly prohibitive. As such, we

introduce a soft constraint version of our factorization where we allow the embeddings

of entities for the corpus and for the KG to diverge, while adding a regularization-like

term that penalizes their divergence. The loss for the soft constraint version is:

Lsoft = LGloVe +λ1LDistMult +λ2

N

∑
i=1
‖ei−wi‖2 (4.6)

We note that the training sets for the KG triples and the unlabeled text need to be

aligned with respect to the entities, as described in Figure 4.1. Otherwise, there is

no way to enable sharing in the embedding spaces of the two objectives through the

entity mentions in each. This means we need to use an entity linker on the unlabeled

text, so that we can identify mentions of entities in the corpus. Our approach to that is

described in Section 4.4.3.

4.3.1 Learning

We optimize the objectives in Eq. 4.5 and Eq. 4.6 by using mini-batch Stochastic

Gradient Descent with Adam (Kingma and Ba, 2015). Two important issues were

needed to be resolved during such optimization, both related to imbalances in the data.

The first imbalance is between the amount of text and the number of available facts

during training in the knowledge graph. The second is an imbalance between the

number of mentions of entities in the unlabeled text and mentions of general content

words. We detail below our approach to these imbalances.

Scheduling training between text and knowledge graph In preliminary experi-

ments, we discovered that the two objectives LDistMult and LGloVe are imbalanced with
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respect to their underlying number of examples (there is more unlabeled text than KG

facts). Even when each GloVe batch is set to have several magnitudes more examples

than a DistMult batch, this causes the training to run through many DistMult epochs

for each GloVe epoch, and causes the training of DistMult to be finished before a single

epoch of the training set for GloVe could be completed.

In order to balance the two objectives, we use scheduling during training. At each step

of the algorithm, we flip a biased coin to decide whether to process a minibatch from

the corpus or the knowledge graph, where the probability for taking an optimization

step on the corpus data decreases as the training progresses. This allows a continuous

transition from pre-training to fine-tuning. More specifically, let t be the number of

mini-batches processed so far. Then the probability p(t) of processing a mini-batch

from the KG is calculated as p(t) = 1− exp(αt). This is different than the original

formulation of CMTF optimization (Acar et al., 2013), in which the coupled matrix

and tensor are optimized all-at-once, will full batch gradient descent.

Upsampling Entity Examples We also discovered that entity occurrences in the cor-

pus are relatively rare compared to the overall vocabulary. This again created an im-

balance in the GloVe objective for datasets that use the entity annotations, this time

between entities and common words. Since the KG objective focuses on entities, in

these datasets we upsample entities when creating minibatches: if a co-occurrence pair

includes an entity, we increase the chance that it will be included in a given minibatch

five-fold compared to word-word co-occurrences.

4.4 Experiments

4.4.1 Baseline Models

As a strong baseline, we consider a linear regression model inspired by cross-lingual

embeddings. This model learns GloVe and DistMult embeddings seperately, and then

learns a linear mapping between the two.

For training the linear regression, we first train GloVe and DistMult seperately. After

this, we divide the set of all entities that occur both in the KG and corpus into training

and validation sets (90% and 10%). We train a linear regression model on the training

set using gradient descent with Adam and with early stopping on validation set. Let
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FB15K-237 FB15K WN18RR YAGO3-10

Frequency cutoff 15 21 2 9

number of rare entities 1450 1495 4056 12313

Table 4.1: Frequency cutoff of rare entities, and the number of rare entities in the training

set for each dataset

eg denote the DistMult embedding for the entity e, ew the GloVe embedding and f the

learned mapping from GloVe embedding space to DistMult embedding space. We use

f in two ways:

1. Hard threshold: For all rare or unseen entities e in the knowledge graph dataset,

we replace eg with f (ew).

2. Soft threshold: For each entity e in the KG dataset, we take the weighted aver-

age of eg and f (ew), where the weight is controlled by a logistic function depen-

dent on the frequency of the entity in the dataset, giving most of the weight to eg

when e is frequent in the KG, less weight if it is rare.

e = µeg +(1−µ) f (ew) (4.7)

µ = (1+ exp(−k freqKG(e)− x0))
−1 (4.8)

Where we set x0 to be the largest frequency in the rarest 10% of the entities, and

k = 7
x0

so that µ≈ 0.001 when freqKG(e) = 0 and µ = 0.5 when freqKG(e) = x0.

During test time, the embeddings for entities are updated and the evaluation is done by

applying the scoring function to updated embeddings and ranking them as standard.

4.4.2 Datasets

For our experiments, we use the datasets FB15K (Bordes et al., 2013), FB15K-237

(Toutanova and Chen, 2015), YAGO3-10 and WN18RR (Dettmers et al., 2018). All but

FB15K have been constructed to avoid test set leakage observed in previous standard

datasets, where for most of the the triples in the test, a reverse triple expressing the

same fact can be found in the training set.

Since our model focuses on rare entities, we construct modified datasets to capture

the performance of each model on rare or unseen entities. More specifically, we are

interested in the cases where the rare or unseen entity is queried. Therefore, for every
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triple (h,r, t) in the evaluation set, if h is a rare or unseen entity then we consider the

performance of the model on the query (h,r,?), and if t is a rare or unseen, we likewise

consider the performance on (?,r, t).

4.4.2.1 Motivation

We construct our modified datasets to evaluate our model both on entities that are ob-

served rarely in the original training sets, and also on entities that occur frequently on

the original training set, but have been mostly or completely removed from the mod-

ified dataset. The former corresponds to rare-original and zero-shot original settings,

and the latter corresponds to rare-artificial and zero-shot-artificial settings.

The training/validation/test splits of the original datasets are performed by uniform

sampling: a triple (h,r, t) has the same probability of being added to the test set re-

gardless of the properties of h, r or t. If we consider the combination of all the train-

ing, validation and test triples of a dataset to define a complete KG, then we can say

that all entities are missing approximately the same proportion of the correct facts

associated with them in the training set. So in this sense, the uniform split of train-

ing/validation/test sets evaluates models on the scenario where the model is equally

knowledgeable, or equally ignorant about all entities.

Rare-original setting does not modify this scenario of uniformly missing triples, but

evaluates the model performance on entities which have relatively little correct facts

associated with them in the complete KG. Zero-shot original setting modifies this as-

sumption minimally by removing the rare entities from the training set completely, and

evaluates the model on its performance on these entities. In this scenario, the model

is uniformly ignorant about all entities except those that have very few correct facts in

the complete KG, for which it knows nothing about.

Rare-artificial considers a different scenario where the model is much more ignorant

about a subset of entities than all others. These entities e′ ∈ E ′ ⊂ E have many correct

facts associated with them in the complete KG, but have varying probabilities pe′ for

a fact associated with them to be missing from the training set, where pe′ � pe for

e /∈ E ′. The model is then evaluated on these entities it is much less knowledgeable

about compared to others. Zero-shot artificial takes this scenario to an extreme, and

evaluates the performance of the model on entities that have many facts associated with

them in the complete KG, but which the model knows nothing about.
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4.4.2.2 Construction

While constructing our moditified datasets, we take rare entities to be the bottom 10%

when all entities are ordered according to their frequency. The four modified versions

of each original dataset is described below:

Rare-original For this dataset, we leave the training and validation sets as they were,

and train the model on the training set with early stopping on the validation set. As

results on rare entities we report mean reciprocal rank of all queries (hrare,r,?) and

(?,r, trare) where (hrare,r, t) and (h,r, trare) are the triples in the validation set where

either the head entity or the tail entity has occurred rarely in the training set.

Rare-artificial For this dataset we leave the validation set as is, but modify the train-

ing and test sets with the following procedure:

We first split the entities into two sets: frequent entities and rare entities, with rare

entities spanning the least frequent 10% of the original training set. We then randomly

select n entities from the frequent set, where n is the number of the original rare entities

that fall into the least 10%. The selected entities are then pruned from the training

set so that their frequency distribution mirrors the original rare entities. We do this

by matching one rare entity with one selected frequent entity and removing all but k

triples of this entity from the training set, where k is the frequency of the rare entity it

has been matched with.

We train the model on the modified training set with early stopping on the original

validation set. We then report results on the triples we have removed from the training

set.

Zero-shot-original For this dataset we remove all rare entities from the training set,

and report results on the triples that have been removed.

Zero-shot-artificial For this dataset we randomly choose 10% of the entities and

remove all triples corresponding to them from the training set. We report the results on

the removed triples.
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FB15K FB15K-237 WN18RR YAGO3-10

train eval train eval train eval train eval

Rare
original

483142 418 272115 213 86835 170 1079040 38

Zero-shot
original

475877 7265 268202 3913 82795 4040 1058353 20687

Rare
artificial

387020 96122 219816 52299 71363 15472 886405 192635

Zero-shot
artificial

386363 96779 205973 66142 69469 17366 852198 226842

Table 4.2: Number of triples in training and evaluation sets on all the modified datasets

FB15K FB15K-237 YAGO3-10

rare all rare all rare all

mean frequency
in corpus

FACC 20 43 25 44 7 51

anchors 2361 2590 2361 2590 193 331

ratio of entities
linked

FACC 0.52 0.45 0.54 0.45 0.10 0.09

anchors 0.91 0.93 0.91 0.93 0.95 0.77

Table 4.3: Statistics of linking KG datasets to the corpus. Mean frequency in the corpus

and % of entities linked is reported on the entire training set (all) and the least frequent

10% of the entities (rare) for each dataset, and for linking performed based on FACC

annotations, and with Wikipedia anchors.

4.4.3 Linking Datasets to Corpus

We use three different methods to obtain a corpus where the entities are linked to

the KG completion datasets. For FB15K, FB15K-237 and YAGO3-10, we try two

different linking methods on similar corpora. For the first method (FACC), we use

the FACC annotations (Gabrilovich et al., 2013) for obtaining entity linking for the

English Wikipedia section of ClueWeb09 (Callan et al., 2009). For the second method,

we use an entity-linking procedure based on the code of Yamada et al. (2020) that

uses Wikipedia anchors to detect mentions of entities in a recent dump of English

Wikipedia. The comparison of the resulting linking statistics from the two methods

can be found in Table 4.3. We link WN18RR to the English Wikipedia section of

ClueWeb09 after POS-tagging in order to aid the heuristic matching of the corpus

tokens with WordNet synsets. We describe all our methods in detail in Appendix A.
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4.4.4 Implementation Details

As the vocabulary for the co-occurrence table, we take the most frequent 100,000

words, plus any entity annotations if it occurred more than 5 times. We consider a

window of size 10 for counting co-occurrences, and weight the co-occurrences by 1/i

if the target and the context word occurred i positions apart. We initialize GloVe with

pre-trained embeddings.2

We tune all hyperparameters on FB15K-237. For embedding dimension and number of

negatives per positive example, we perform gridsearch on DistMult only, with the grid:

negatives: [50, 100, 200] and embedding dimension: [50, 100, 200] and use the same

parameters on our joint model for fair comparison. We use Adam optimizer to dynami-

cally adjust the learning rate, and fix the initial learning rate to be 0.01. For scheduling,

we experimentally set α to be 5×10−4 so that the training goes through approximately

30 epochs of GloVe objective before DistMult converges. We experimentally set the

DistMult batch size to be 2000 and GloVe batch size to be 80000. This setting allows

the joint training to fit in the memory of a regular GPU, and partially mitigates the

issues arising by the imbalanced dataset sizes. For the soft-constraint experiments, we

perform a gridsearch for the optimal λ2 with the grid: [5, 1, 0.5, 0.1].

4.5 Results and Discussion

DistMult on modified datasets. We first present the results of DistMult on rare en-

tities in Table 4.4, where no external information from an entity linked corpus is used.

As expected, scores on the original rare entities is much higher than when some enti-

ties are rarefied from the training set artificially and at random. The model does better

overall than on rare entities in WN18RR and YAGO3-10 as expected. On FB15K the

model performs drastically better on the original rare entities from the validation set

than the entire test set. The difference is especially salient at hits@1 where, when it

is a rare entity the model is queried against, it returns the other entity correctly 68%

of the time, which is about 10% higher than its performance on the original test set.

The same effect can be observed on FB15K-237, albeit to a lesser extent. Recall that

FB15K contains many triples (h,r, t) in the validation and test sets where (t,r−1,h)

is observed in the training set, and FB15K-237 was constructed to fix this problem.

The surprisingly accurate predictions of DistMult on rarely seen entities suggest that

2http://nlp.stanford.edu/data/glove.6B.zip
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FB15K-237 MRR h@1 h@3 h@10

Original 0.288 0.203 0.315 0.459

Rare-original 0.317 0.233 0.345 0.466

Rare-artificial 0.173 0.117 0.191 0.283

FB15K MRR h@1 h@3 h@10

Original 0.690 0.583 0.770 0.866

Rare-original 0.745 0.680 0.814 0.837

Rare-artificial 0.199 0.140 0.218 0.311

WN18RR MRR h@1 h@3 h@10

Original 0.415 0.388 0.428 0.462

Rare-original 0.224 0.188 0.238 0.304

Rare-artificial 0.073 0.065 0.077 0.087

YAGO3-10 MRR h@1 h@3 h@10

Original 0.320 0.215 0.373 0.531

Rare-original 0.223 0.143 0.286 0.357

Rare-artificial 0.059 0.043 0.058 0.088

Table 4.4: Results of DistMult on rare entities

FB15K might have other similar issues that were not completely fixed in FB15K-237.

Performance of Joint and Linear Mapping models. The performance of DistMult,

linear regression model with hard mapping (LR-H) and soft mapping (LR-S), and

joint model with hard constraint (Joint-H) and soft constraint (Joint-S) on the original

FB15K, FB15K-237 and YAGO3-10 datasets can be found in Table 4.5. The results

using linking obtained by Wikipedia anchors (Anchor linking) and by FACC annota-

tions (FACC linking) are presented separately. All models using anchor links perform

poorer or comparable to baseline DistMult on FB15K and FB15K-237, however Joint

models show less deterioration in performance than the LR models. Surprisingly for

YAGO3-10, LR models show slight a improvement over DistMult when using FACC

links.

The results on rare-original versions of the same datasets are presented in Table 4.6.

With anchor linking, the Joint models are performing better than or comparable to

DistMult, while LR models have slightly worse performance on FB15K and YAGO3-

10, and are slightly better on FB15K-237 than DistMult. Of the two Joint models,
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Original datasets

FB15K FB15K-237 YAGO3-10

MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10

DistMult 0.690 0.583 0.866 0.288 0.203 0.459 0.320 0.215 0.531
A

nc
ho

r
lin

ks LR-H 0.600 0.492 0.785 0.271 0.192 0.431 0.276 0.186 0.454

LR-S 0.602 0.493 0.793 0.276 0.196 0.438 0.291 0.200 0.468

Joint-H 0.630 0.502 0.850 0.295 0.210 0.469 0.286 0.185 0.489

Joint-S 0.661 0.545 0.857 0.290 0.204 0.461 0.254 0.160 0.444

FA
C

C
lin

ks LR-H 0.596 0.492 0.776 0.249 0.171 0.409 0.344 0.248 0.535

LR-S 0.607 0.502 0.787 0.256 0.179 0.419 0.346 0.249 0.537

Joint-H 0.664 0.548 0.858 0.288 0.205 0.459 0.185 0.111 0.332

Joint-S 0.669 0.556 0.861 0.290 0.204 0.463 0.249 0.155 0.440

Table 4.5: Mean reciprocal rank (MRR), hits@1 and hits@10 obtained on the original

datasets for DistMult, linear regression models with hard mapping (LR-H) and soft map-

ping (LR-S), and joint models with hard constraint (Joint-H) and soft constraint (Joint-

S). Performance of linear regression and joint models are reported both with Wikipedia

links based on hyperlink anchors, and entity linking provided in the FACC dataset.

mean reciprocal rank (MRR) for Joint-H is 10 points above DistMult, suggesting that

it is particularly suitable for enriching embeddings of rare entities in this dataset. With

FACC linking, LR models demonstrate drastically lower performance, but Joint models

are comparable to DistMult, and Joint-H shows significant improvement on FB15K-

237 even with the sparse linking that FACC provides.

On rare-artificial datasets (also shown in Table 4.6), Joint-H is consistently perform-

ing better than other models. However in this setup LR models also offer modest

improvements on FB15K and FB15K-237, and the difference between Joint and LR

models are significantly less than what is observed in the rare-original datasets. With

FACC linking however, we observe the same pattern where the LR models perform

below baseline DistMult, but Joint models perform comparably, with Joint-H showing

1.3% improvement in MRR for FB15K-237.

The performance of the models on zero-shot-original and zero-shot-artificial datasets

in Table 4.7 reflect the pattern observed on the rare versions. With anchor links, Joint-H

does significantly better than all other models on zero-shot-original versions of FB15K

and FB15K-237, however for the zero-shot-artificial setting it does only slightly better
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Rare-original datasets

FB15K FB15K-237 YAGO3-10

MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10

DistMult 0.745 0.680 0.848 0.297 0.233 0.431 0.249 0.171 0.366

A
nc

ho
r

lin
ks LR-H 0.631 0.56 0.739 0.308 0.245 0.456 0.157 0.119 0.262

LR-S 0.661 0.605 0.757 0.316 0.263 0.453 0.147 0.095 0.238

Joint-H 0.734 0.649 0.871 0.395 0.319 0.552 0.233 0.167 0.333

Joint-S 0.750 0.683 0.846 0.295 0.207 0.461 0.192 0.119 0.285

FA
C

C
lin

ks LR-H 0.085 0.057 0.120 0.074 0.052 0.108 0.000 0.000 0.000

LR-S 0.092 0.066 0.127 0.083 0.060 0.125 0.000 0.000 0.000

Joint-H 0.738 0.669 0.844 0.347 0.280 0.478 0.226 0.146 0.341

Joint-S 0.735 0.662 0.848 0.294 0.224 0.453 0.244 0.195 0.341

Rare-artificial datasets

FB15K FB15K-237 YAGO3-10

MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10

DistMult 0.177 0.124 0.277 0.181 0.121 0.297 0.058 0.043 0.086

A
nc

ho
r

lin
ks LR-H 0.204 0.144 0.319 0.186 0.124 0.306 0.042 0.027 0.068

LR-S 0.202 0.143 0.318 0.185 0.127 0.303 0.039 0.025 0.064

Joint-H 0.219 0.149 0.352 0.199 0.131 0.331 0.074 0.051 0.117

Joint-S 0.199 0.141 0.313 0.171 0.113 0.289 0.059 0.042 0.09

FA
C

C
lin

ks LR-H 0.054 0.035 0.089 0.069 0.049 0.104 0.004 0.003 0.007

LR-S 0.053 0.034 0.088 0.063 0.042 0.100 0.038 0.028 0.056

Joint-H 0.177 0.124 0.276 0.194 0.131 0.315 0.068 0.048 0.106

Joint-S 0.173 0.122 0.271 0.182 0.121 0.299 0.082 0.057 0.131

Table 4.6: Results on the rare entities in the original datasets (Rare-original), and

where some entities were picked at random and rarefied in the training set (Rare-

artificial). Mean reciprocal rank (MRR), hits@1 and hits@10 on rare entities in is

reported for DistMult, linear regression models with hard mapping (LR-H) and soft map-

ping (LR-S), and joint models with hard constraint (Joint-H) and soft constraint (Joint-

S). Performance of linear regression and joint models are reported both with Wikipedia

links based on hyperlink anchors, and entity linking provided in the FACC dataset.
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Zero-shot original datasets

FB15K FB15K-237 YAGO3-10

MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10

DistMult 0.006 0.001 0.008 0.056 0.046 0.074 0.000 0.000 0.000

A
nc

ho
r

lin
ks LR-H 0.030 0.015 0.054 0.149 0.108 0.227 0.081 0.059 0.124

LR-S 0.028 0.015 0.051 0.160 0.116 0.240 0.087 0.067 0.127

Joint-H 0.132 0.098 0.198 0.292 0.237 0.402 0.014 0.006 0.025

Joint-S 0.068 0.054 0.093 0.160 0.116 0.240 0.000 0.000 0.000

FA
C

C
lin

ks LR-H 0.089 0.070 0.115 0.123 0.110 0.146 0.007 0.001 0.024

LR-S 0.108 0.074 0.156 0.130 0.114 0.158 0.009 0.001 0.024

Joint-H 0.019 0.005 0.051 0.111 0.091 0.144 0.000 0.000 0.000

Joint-S 0.009 0.004 0.014 0.038 0.025 0.063 0.000 0.000 0.000

Zero-shot artificial datasets

FB15K FB15K-237 YAGO3-10

MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10

DistMult 0.016 0.0009 0.028 0.014 0.009 0.021 0 0 0.001

A
nc

ho
r

lin
ks LR-H 0.023 0.013 0.04 0.134 0.086 0.228 0.018 0.011 0.03

LR-S 0.026 0.015 0.044 0.136 0.087 0.232 0.018 0.01 0.032

Joint-H 0.085 0.057 0.136 0.119 0.075 0.2 0.008 0.004 0.016

Joint-S 0.004 0.001 0.009 0.014 0.009 0.024 0 0 0.001

FA
C

C
lin

ks LR-H 0.061 0.042 0.097 0.066 0.048 0.100 0.002 0.001 0.003

LR-S 0.062 0.042 0.099 0.064 0.045 0.102 0.002 0.001 0.003

Joint-H 0.023 0.013 0.037 0.059 0.039 0.095 0.001 0.000 0.001

Joint-S 0.016 0.012 0.022 0.022 0.013 0.039 0.009 0.008 0.011

Table 4.7: Results on the modified datasets where the original rare entities (zero-shot-

original) or randomly chosen frequent entities (zero-shot-artificial) were completely

removed from the training set. Mean reciprocal rank (MRR), hits@1 and hits@10 on

removed triples are reported for DistMult, linear regression models with hard mapping

(LR-H) and soft mapping (LR-S), and joint models with hard constraint (Joint-H) and

soft constraint (Joint-S). Performance of linear regression and joint models are reported

both with Wikipedia links based on hyperlink anchors, and entity linking provided in the

FACC dataset.
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WN18RR

Original Rare-original Rare-artificial

MRR h@1 h@10 MRR h@1 h@10 MRR h@1 h@10

DistMult 0.423 0.396 0.472 0.224 0.188 0.304 0.073 0.065 0.087

LR-H 0.271 0.257 0.292 0.029 0.028 0.028 0.002 0.002 0.003

LR-S 0.347 0.318 0.405 0.029 0.028 0.028 0.008 0.004 0.015

Joint-H 0.402 0.379 0.441 0.179 0.122 0.26 0.069 0.065 0.087

Joint-S 0.27 0.174 0.437 0.223 0.188 0.293 0.073 0.065 0.088

Zero-shot original Zero-shot artificial

MRR h@1 h@10 MRR h@1 h@10

DistMult 0.002 0 0.004 0.001 0 0.002

LR-H 0.009 0.004 0.016 0.005 0.003 0.007

LR-S 0.003 0.001 0.005 0.001 0 0.002

Joint-H 0.008 0.002 0.019 0.01 0.004 0.02

Joint-S 0.004 0.003 0.005 0.001 0 0.002

Table 4.8: Results on modified WN18RR datasets.

on FB15K compared to the LR models, and lags behind them on FB15K-237. This

suggests that Joint models might be more suitable for modelling the situation captured

by the original settings, where rare entities have a few facts in the underlying complete

KG. For YAGO3-10, while LR models seems to do slightly better than Joint for both

zero-shot settings, performance is low for all models, and it is unclear whether the

difference is significant. A surprising observation is that with the sparse FACC link-

ing, LR models perform better than Joint models, and obtain higher scores on FB15K

compared to LR results with anchor linking.

We present results on all versions of WN18RR separately in Table 4.8. All models

are doing comparable or worse than DistMult on original and both the rare versions,

and do not seem to perform notably better than chance on the zero-shot settings. This

suggests that the semantic content GloVe embeddings capture from our POS-tagged

corpus is different enough from the information needed to predict WordNet relations

such as hyponym and hypernym that integrating this information interferes with link

prediction.
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Figure 4.2: Difference between MRR of Joint-H and DistMult grouped by the frequency

of the query entity in the KG and in the corpus on FB15K-237 with anchor linking.

Values higher than 0 (red) mean Joint-H is performing better, and lower (blue) mean

DistMult is performing better.

Effects of the interaction between corpus and KG frequency on Joint model. As

further analysis, in Figure 4.2 we visualize the difference in performance between Dist-

Mult and Joint-H for entities grouped by both their frequency in the KG training set,

and in the corpus for the original FB15K-237 with anchor linking. We can observe that

the Joint-H improves performance on entities that are in the top one-third for frequency

in the corpus, but in bottom one-third for frequency in the KG data. Likewise, it shows

worse performance on entities which are infrequent in the corpus. It is interesting

that the main difference in performance is observed on entities that are infrequent in

the KG. This shows that Joint-H is largely successful at adjusting the effect of corpus

information on entity representations based on the scarcity of facts for that entity. It

however also suggests that the model can be improved by better taking into account

the frequency of the entity in the corpus.

4.6 Conclusion and Future Work

In this chapter, we cast the task of learning embeddings that contain information both

from the knowledge graph and an entity-linked corpus as a joint matrix-tensor factor-
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ization model, and show that this can improve performance on rare entities in knowl-

edge graph completion. Our experiments feature DistMult as the baseline bilinear

model, however our framework is applicable for any parametrization that admits the

interpretation of a tensor decomposition. Specifically, TuckER (Balazevic et al., 2019)

provide a simple bilinear scoring function that achieves state-of-the-art results on stan-

dard datasets. Whether our joint training framework also provides performance im-

provements on rare-entities when the KG component is modelled by other bilinear

models such as TuckER is worth exploring in future work.



Chapter 5

Tensors over Semirings for Weighted

Logic Programs

While research on knowledge graphs in the Natural Language Processing community

has focused mostly on learning low-dimensional embeddings for entities and relations

with heavy emphasis on link prediction, in other fields, most notably Semantic Web

and Databases, there has also been significant research effort on efficient ways to per-

form reasoning over knowledge graphs.

One prominent approach to deduction in knowledge bases is Datalog, which is a logic

programming paradigm modelled after Prolog, and developed specifically for imple-

menting deductive databases. This type of database consists of a set of ground facts

similar to the triples in knowledge graphs, together with a set of deduction rules. A

given candidate fact is deemed correct by the database if it can be derived from the

ground facts by applying the deduction rules.

There has been work on unifying deduction in logic programming with KG embed-

dings. For example, Rocktäschel and Riedel (2017) modify the unification process

employed by Prolog for proof search to take into account embedding representations

of entities and relations, and develop a neural model that concurrently learns KG em-

beddings and mines logical rules. Mei et al. (2020) add embedding representations

to Datalog programs in order to integrate learning with logical reasoning in temporal

knowledge bases.

Techniques from logic programming have also been incorporated into NLP, especially

in parsing through the parsing as deduction (Pereira and Warren, 1983) paradigm

77
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which uses the framework of logical deduction to abstract over implementation details

of parsing algorithms. In this view, production rules correspond to axioms, a string is

analogous to a theorem and a correct parse is analogous to a proof. Hence, proof search

techniques from logic programming have found applications as tools for inferring new

facts from known ones in deductive databases, for integrating logical deduction in KG

embedding models, and for implementing grammatical parsing algorithms in NLP.

The nature of parsing natural language, however, differs from that of deduction in

knowledge bases in an important aspect. Both for automatic deduction and for parsing

in NLP, there might be many correct proofs/parses for a given input theorem/string.

For deduction, any valid proof tree is enough to prove a theorem. However when

parsing natural language sentences, the goal is often to pick the parse tree that matches

human judgement among many valid ones. This difference motivates probabilistic

grammar formalisms and probabilistic logic programs, where a rule has an associated

probability value, and the probability of a parse/proof tree can be decomposed into the

probabilities of its constituent rules.

Weighted grammars and weighted logic programs (WLPs) relax the requirement that

the values associated with the rules must be probabilities. In a WLP, the axiom weights

can take values from any set that can be cast as a general algebraic structure called a

semiring. As in probabilistic logic programs, WLP proofs are assigned weights by

combining the weights of the axioms used in the proof, and the weight of a theorem

is in turn calculated by combining the weights of all its possible proof paths. The

combinatorial nature of this procedure makes weighted logic programs highly suitable

for specifying dynamic programming algorithms.

Goodman (1999) presents an elegant abstraction for specifying and computing parser

values based on WLP where the values could be drawn from any complete semir-

ing. This generalizes the case of Boolean decision problems, probabilistic grammars

with Viterbi search and other quantities of interest such as the best derivation or the

set of all possible derivations. With semiring weights, it is guaranteed that dynamic

programming algorithms can be used to correctly calculate important quantities aggre-

gated over sub-trees, such as the inside and outside values, regardless of the particular

semiring chosen.

In this chapter we further generalize the WLP framework so that weights can take val-

ues which are tensors with semiring entries, while fully maintaining the guarantees for
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the efficient calculation of the quantities of interest. Tensor WLPs are applicable both

for reasoning on knowledge graph embeddings, and for latent variable parsing. Al-

though we discuss both in our exposition, in the development of our theory we closely

follow the work of Goodman (1999) on semiring parsing. Hence our theoretical results

are geared more towards characterizing tensor WLPs in the context of parsing. Nev-

ertheless, this work also provides a sound foundation for integrating logical reasoning

within embedding frameworks for knowledge graphs, which we discuss in the context

of our motivation applications.

5.1 Motivating Applications

We present two motivating examples for our extension: parsing latent variable gram-

mars, and calculating the aggregate value of paths between two entities in a knowledge

graph. Both of these employ dynamic programming algorithms that operate on tensor

weights, and casting them as tensor WLPs enables useful abstractions.

5.1.1 Dynamic Programs for Latent Variable Parsing

Latent variable models have been an important component in the NLP toolbox. The

central assumption in latent variable models is that the correlations between observed

variables in the training data could be explained by unobserved, hidden variables. La-

tent variables have been used with grammars such as Probabilistic Context-Free Gram-

mars (PCFGs), where each node in the parse tree is represented using a vector of latent

state probabilities that further extend the expressiveness of the grammar (Matsuzaki

et al., 2005).

In a PCFG, the weight for the rule A→ BC, is p(A→ BC |A): the probability that

the production rule A→ BC is applied given that the current non-terminal is A. La-

tent Variable Probabilistic Context-Free Grammars (L-PCFGs) as presented by Cohen

et al. (2014) allow the non-terminals in this rule to be decorated with latent states

hA
i ,h

B
j ,h

C
k where i ∈ [dA], j ∈ [dB],k ∈ [dC] range over the number of hidden variables

for A,B and C respectively, so that independent probability values can be assigned to

p
(

A(hA
i )→ B(hB

j )C(hC
k )
∣∣∣A(hA

i )
)

for all i, j,k. This can be more succinctly expressed

by assigning a three-way tensor T ∈ [0,1]dA×dB×dC of probability values as the weight

for A→ BC, where

Ti, j,k = p
(

A(hA
i )→ B(hB

j )C(hC
k )
∣∣∣A(hA

i )
)
.
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More generally, probabilities associated with rules containing n non-terminals can be

expressed as tensors of order-n.

The approach of adding latent variables to formal grammars has proven to be a fruitful

one: in the context of PCFG parsing, Matsuzaki et al. (2005) show that L-PCFGs per-

form on par with models hand-annotated with linguistically motivated features. Cohen

et al. (2013) report that on the Penn Treebank dataset, L-PCFGs trained with either EM

or a spectral algorithm provide a 20% increase in F1 over PCFGs without latent states.

Gebhardt (2018) shows that the benefits of latent variables are not limited to PCFGs

by successfully enriching both Linear Context-Free Rewriting Systems and Hybrid

Grammars with latent variables, and demonstrates their applicability on discontinuous

constituent parsing.

The advantage of expressing parsing algorithms as WLPs is that the structure of the

dynamic programming algorithm is disentangled from the particular calculations for

obtaining the values of chart items. In Figure 5.1 we present a procedural formulation

of probabilistic CKY, a standard parsing algorithm that calculates the total probability

mass a PCFG assigns to a string. As a running example, consider the grammar with

the rules, and the associated probabilities:

p(S→ A A) = p1

p(A→ A A) = p2

p(A→ a) = p3,

and a string aaa. CKY starts by assigning the chart items chart[1,A,2], chart[2,A,3],

chart[3,A,4] all the probability p3, since rule 3 is the only one that can generate the

terminal a. Then it calculates chart[1,A,3] and chart[2,A,4] as p2× p3× p3 from

these values using the update rule on lines 11 and 12 in Figure 5.1. Finally, the goal

item chart[1,S,4] that corresponds to the probability of the start symbol S spanning the

entire string can be calculated as:

p1× chart[1,A,2]× chart[2,A,4]

+ p1× chart[1,A,3]× chart[3,A,4].

Note that the two summands in this expression correspond to the two possible deriva-

tions of aaa using the grammar rules. The first summand calculates the probability

given by the right branching derivation tree where the rule A→ a is applied before
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Input: A CFG 〈N,Σ,R ,S〉 in Chomsky normal form, a function ω : R 7→ [0,1]

where ω(A→ x) = p(A→ x|A) and ω(A→ BC) = p(A→ BC|A) for all

A,B,C ∈ N and x ∈ Σ, and a string α1α2 . . .αn where αi ∈ Σ

Output: p(α1α2 . . .αn)

1 chart← zeros(n, |N|,n+1)

2 for i← 1 to n do
3 for (A→ αi) ∈ R do
4 chart[i,A, i+1]← ω(A→ αi)

5 end

6 end
7 for l← 2 to n do
8 for s← 1 to n-l+1 do
9 for t← 1 to l+1 do

10 for (A→ BC) ∈ R do
11 chart[s,A,s+ l]← chart[s,A,s+ l]+

12 ω(A→ BC)× chart[s,B,s+ t]× chart[s+ t,C,s+ l]

13 end

14 end

15 end

16 end
17 return chart[1,S,n+1]

Figure 5.1: PROBABILISTIC CKY (INSIDE) calculates the probability a PCFG as-

signs to a string
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Input: A CFG 〈N,Σ,R ,S〉 in Chomsky normal form,

a set of latent variables H = {h1,h2, . . . ,hm},
a mapping ω where ω(A→ x) ∈ [0,1]dA and ω(A→ x)i = p(A(hi)→ x|A(hi)),

ω(A→ BC) ∈ [0,1]dA×dB×dC and

ω(A→ BC)i, j,k = p(A(hi)→ B(h j)C(hk)|A(hi)),

ω(S) ∈ [0,1]dS and ω(S)i = p(S(hi) is root),

and a string α1α2 . . .αn for αi ∈ Σ

Output: p(α1α2 . . .αn|hi) for i ∈ [m]

1 for A ∈ N do
2 chart(A)← zeros(n,n+1,dA)

3 end
4 for i← 1 to n do
5 for (A→ αi) ∈ R do
6 chart(A)[i, i+1, :]← ω(A→ αi)

7 end

8 end
9 for l← 2 to n do

10 for s← 1 to n-l+1 do
11 for t← 1 to l+1 do
12 for (A→ BC) ∈ R do
13 chart(A)[s,s+ l, :]← chart(A)[s,s+ l, :] +

14 ω(A→ BC)
(

I, chart(B)[s,s+ t, :], chart(C)[s+ t,s+ l, :]
)

15 end

16 end

17 end

18 end
19 return ω(S)>chart(S)[1,n+1, :]

Figure 5.2: INSIDE ALGORITHM FOR L-PCFGS to calculate the probability of a

string for each hidden variable of the start symbol S.
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A→ AA, while the second one corresponds to the probability given the the left branch-

ing derivation tree where the rule A→ AA is applied first.

The inside algorithm for L-PCFGs is presented in Figure 5.2. To see how it differs from

CKY, consider the same string and the grammar rules as the previous example, but with

the rules associated with distributions over latent states rather than probabilities:

w(S→ A A) = w1 ∈ [0,1]dS,dA,dA

w(A→ A A) = w2 ∈ [0,1]dA,dA,dA

w(A→ a) = w3 ∈ [0,1]dA.

The algorithm initializes the chart items in the same order, assigning chart(A)[1,2, :],

chart(A)[2,3, :] and chart(A)[3,4, :] the vector w3. It then traverses the chart items as

CKY does, the only difference being the calculation of the values. For chart(A)[1,3, :]

and chart(A)[2,4, :] this translates to the tensor contraction w2(I,w3,w3), which is a

vector in [0,1]dA . For chart(S)[1,4, :] the value is given by:

w1(I,chart(A)[1,2, :],chart(A)[2,4, :])

+w1(I,chart(A)[1,3, :],chart(A)[3,4, :]).

Considering the almost identical structure of these two algorithms, one would expect

that it is also possible to unify them by abstracting over the calculation of the values.

However, semiring WLPs do not extend to latent variable models because latent vari-

ables are often represented as vectors, matrices and higher-order tensors, and these

taken together no longer form a semiring. This is because in the semiring framework,

values for deduction items and rules must all come from the same set, and the semiring

operations must be defined over all pairs of values from this set. This does not allow

for letting different grammar nonterminals be represented by vectors of different sizes.

More importantly, it does not allow for the value of a rule to be a tensor whose di-

mensionality depends on the arity of the rule, as is generally the case in latent variable

frameworks.

In this chapter, we start with a broad interpretation of latent variables as tensors over

an arbitrary semiring. While a set of tensors over semirings is no longer a semiring, we

prove that if the tensors have certain matching dimensions for the grammar rules they

are assigned to, then they fulfill all the desirable properties relevant for the semiring

parsing framework. This paves the way to use WLPs with latent variables, naturally
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improving the expressivity of the statistical model represented by the underlying WLP.

Introducing a semiring framework like ours makes it easier to seamlessly incorporate

latent variables into any execution model for dynamic programming algorithms (or

software such as Dyna (Eisner et al., 2005) and other Prolog-like/WLP-like solvers).

We focus on CFG parsing, however the same latent variable techniques can be ap-

plied to any weighted deduction system, including systems for parsing TAG, CCG and

LCFRS, and systems for Machine Translation (Lopez, 2009). The methods we present

for inside and outside computations can be used to learn latent refinements of a speci-

fied grammar for any of these tasks with EM (Dempster et al., 1977; Matsuzaki et al.,

2005), or used as a backbone to create spectral learning algorithms (Hsu et al., 2012;

Bailly et al., 2009; Cohen et al., 2014).

5.1.2 Path Representations in Knowledge Graphs

There is a wealth of work exploring the effectiveness of using path information for

knowledge graph completion (see Section 2.5.3 for a review). Many of these models

estimate probabilities associated with random walks on the graph to use as features.

Others define embeddings of paths from the embeddings of the component relations

and entities, and use these as regularizers (Lin et al., 2015b), or to score additional

(entity, path, entity) triples during training (Guu et al., 2015). Compared to models

that treat triples as isolated training instances, this approach provides richer structure

for the model. However, it also comes with the added cost of calculating over possible

paths, which are potentially exponential in the size of the edges.

The model suggested by Toutanova et al. (2016) is of particular interest because it

uses a dynamic programming algorithm to calculate the aggregate representation of all

paths up to a certain length between the entities in a KG, and uses it to extend a bilinear

scoring function. The representation Φ(π) of a path π : r1r2 . . .rn consisting of the

relations ri is defined as the matrix multiplication of the embeddings of its components,

scaled by a scalar weight we corresponding to the intermediate entity at each step.

Φ(π) = R1tanh(we1)R2tanh(we2) . . .Rntanh(wen). (5.1)

Based on this path representation, the desired value associated with all possible paths

π between entities h and t is defined as follows:

F(h, t) = ∑
π

w|π|p(t|h,π)Φ(π), (5.2)
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where w|π| is a parameter that weights the contribution of π based on its length. The

scoring function for a triple (h,r, t) is then defined as:

s(h,r, t) = h>Rt+ vec(F(h, t))>vec(R) (5.3)

The algorithm for calculating Fl(h, t), the aggregate representation for all paths of

length l between entities h and t, is presented in Figure 5.3. Note that the structure of

Input: A KG (E ,R ,F ), embeddings R ∈ Rd×d for r ∈ R , scalar weights wr for

r ∈ R , set of neighbors Ne for e ∈ E and maximum path length L.

Output: F(h, t) for all h, t ∈ E
1 for h, t ∈ E do
2 F1(h, t)← 0
3 end
4 for (h,r, t) ∈ F do
5 F1(h, t)← F1(h, t)+ tanh(wr)p(t|h,r)R
6 end
7 for l = 2 to L do
8 for h,r ∈ E do
9 Fl(h, t)← 0 for e ∈ Nh do

10 Fl(h, t)← Fl(h, t)+F1(h,e)Fl−1(e, t)

11 end

12 end

13 end
14 return F(h, t) for all h, t ∈ E

Figure 5.3: PATH-SUM calculates the aggregate path representation Fl(h, t) for all

length-l paths between h and t

the algorithm corresponds to a forward calculation for a hidden Markov model (HMM).

Unlike in the previous example for L-PCFGs, here the chart values are all matrices

R ∈Rd×d with the same dimensions. This means that they admit characterization both

as semirings, and as tensors over semirings. However, casting the algorithm as a WLP

with tensor weights enables interesting extensions to the estimated values, which aren’t

possible with semiring WLPs. For example, a tensor WLP would allow chart items to
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be matrices in Rd1×d2 where d1 6= d2, or for the combination of F1(s,e) and Fl(e, t) to

be modulated by additional multilinear parameters.

Further extensions that integrate logical rules in bilinear embeddings are also possible

with tensor WLPs. Recent work by Niu et al. (2020) mines rules of the form R1→ R2

and R1 R2→ R3 with the rule mining tool AIME+ (Galárraga et al., 2015), and defines

a scoring function that only takes into account the paths that can be generated by the

application of the rules. While their model is based on TransE, it can be adapted to

bilinear models by observing that these rules define a context free grammar. It is then

possible to replace the tensor WLP for the forward algorithm corresponding to Algo-

rithm 5.3 with a tensor WLP for an inside algorithm to calculate the aggregate value

of all derivable paths between entities h and t given the rules. These demonstrate some

ways in which the theory we develop here can be used in KG embedding applications.

However for the rest of the chapter, we focus on theoretical properties of tensor WLPs,

and leave exploring their applications for future work.

5.2 Main Results Takeaway

We present a strict generalization of semiring weighted logic programming, with a

particular focus on parser descriptions in WLP for context-free grammars. Throughout,

we utilize the correspondence between axioms and grammar rules, deductive proofs

and grammar derivations, and derived theorems and strings.

We assume that axioms/grammar rules come equipped with weights in the form of

tensors over semiring values. The main issue with going from semirings to tensors

over semiring values is that these weights need to be well defined in that any valid

derivation should correspond to a sequence of well defined semiring operations. For

CFGs, we give a straightforward condition that ensures this is the case. This essentially

boils down to making sure that each non-terminal corresponds to a fixed vector space

dimension. For example, if A corresponds to a space Sd1 , B to Sd2 and C to Sd3 , then a

rule A→ B C would have a tensor weight in Sd2×d3×d1 .

As long as the weights are well defined, the standard definitions for the value of a

grammar derivation and a string according to a semiring weighted grammar extend

to the case of tensors of semirings. WLPs provide the means to declaratively specify

dynamic programming algorithms to obtain these values of interest. In line with Sikkel

(1998) and Goodman (1999) we present precise conditions for when a tensor WLP
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describes a correct parser.

The value of the WLP formulation of parsing algorithms is that it provides a unified

fashion in which dynamic programming algorithms can be extracted from the program

description. This relies on the ability of a WLP to decompose the value of a proof

to a combination of the values of the sub-proofs. Specifically, given a derivation tree,

a WLP description automatically provides algorithms for calculating the inside and

outside values. We provide analogous algorithms for calculating the inside and out-

side values for tensor WLPs. Our outside formulation addresses the non-commutative

nature of tensors themselves, and could be extended to cases where the underlying

semiring is non-commutative using the techniques presented by Goodman (1998).

5.3 Related Work

Parsing as deduction (Pereira and Warren, 1983) is an established framework that al-

lows a number of parsing algorithms to be written as declarative rules and deductive

systems (Shieber et al., 1995), and their correctness to be rigorously stated (Sikkel,

1998). Goodman (1999) extends this framework to arbitrary semirings and shows

that various different values of interest can be computed using the same algorithm,

by changing the semiring. This has led to the development of Dyna, a toolkit for

declaratively specifying weighted logic programs, allowing concise implementation of

a number of NLP algorithms (Eisner et al., 2005).

The semiring characterization of possible values to assign to WLPs gave rise to the

formulation of a number of novel semirings. One novel semiring of interest for pur-

poses of learning parameters is the generalized entropy semiring (Cohen et al., 2008)

which can be used to calculate the KL-divergence between the distribution of deriva-

tions induced by two weighted logic programs. Other two semirings of interest are

expectation and variance semirings introduced by Eisner (2002) and Li and Eisner

(2009). These utilize the algebraic structure to efficiently track quantities needed by

the expectation-maximization algorithm for parameter estimation. Their framework

allows working with parameters in the form of vectors in Rn for a fixed n, coupled

with a scalar in R≥0. The semiring value of a path is roughly calculated by the multi-

plication of the scalars and (appropriately weighted) addition of the vectors. This is in

contrast with our framework where weights could be tensors of arbitrary order rather

than only vectors, and the values of paths are calculated via tensor multiplication.
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Finally, Gimpel and Smith (2009) extended the semiring framework to a more general

algebraic structure with the purpose of incorporating non-local features. Their exten-

sion comes at the cost that the new algebraic structure does not obey all the semiring

axioms. Our framework differs from theirs in that under reasonable conditions, tensors

of semirings do behave fully like regular semirings.

5.4 Background and Notation

Our formalism could be used to enrich any WLP that implements a dynamic pro-

gramming algorithm, but for simplicity, we follow Goodman (1999) and focus our

presentation on parsers with a context-free backbone.1

5.4.1 Context-free Grammars

Formally, a Context-Free Grammar (CFG) is a 4-tuple 〈N,Σ,R ,S〉. The set N consists

of non-terminal symbols which will be denoted by uppercase letters A,B etc., and

S is a non-terminal that is the special start symbol. The set Σ consists of terminal

symbols, which will be denoted by lowercase letters a,b etc. R is the set of rules of

the form A→ α consisting of one non-terminal on the left hand side (lhs), and a string

α ∈ (N ∪Σ)∗ on the right hand side (rhs). We will use α⇒ β if β could be derived

from α with the application of one grammar rule. We will say that a sentence σ ∈ Σ+

could be derived from the non-terminal A if σ could be generated by starting with A

and repeatedly applying rules in R until the right hand side contains only terminals,

and denote this as A ∗
=⇒ σ. We will denote the language that a grammar G defines by

L(G) = {σ|S ∗=⇒ σ}.

CFG derivations can naturally be represented as trees. We will use the notation 〈r :

T1 . . .Tk〉 to represent a tree that has the node r as its root and T1, . . . ,Tk as its direct

subtrees. We will use DG to denote the set of all derivation trees that can be constructed

with the grammar G, and DG(σ) to denote all valid derivation trees that generate the

sentence σ in G.
1Note that given a grammar G in a formalism F and a string α, it is possible to construct a CFG gram-

mar c(G,w) from G and α (Nederhof, 2003). This construction is possible even for range concatenation
grammars (Boullier, 2000) which span all languages that could be parsed in poly-time.
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5.4.2 Semirings

A semiring is an algebraic structure similar to a ring, except that it does not require

additive inverses.

Definition 2. A semiring is a set S together with two operations + and ×, where

+ is commutative, associative and has an identity element 0. The operation of × is

associative, has an identity element 1 and distributes over +.

The set of non-negative integers together with the usual×,+,0,1 is a semiring, and so

are probability values in [0,1]. Booleans {TRUE, FALSE} also form a semiring with

× := ∨, + := ∧, 0 := FALSE and 1 := TRUE.

There are a few less common semirings that provide useful values in parsing. The

Viterbi semiring calculates the probability of the best derivation. It has values in

[0,1], + := max and ×,0,1 as standard. The Derivation forest, Viterbi derivation

and Viterbi n-best semirings calculate the set of all derivations, the best derivation and

the n-best derivations respectively. Unlike the previous examples, the × operation of

these semirings is not commutative. In general, if the× operation in a semiring is com-

mutative, we refer to it as a commutative semiring, and otherwise it is referred to as

non-commutative. For precise definitions and detailed descriptions of these semirings

see Goodman (1999).

5.4.3 Weighted Logic Programming

A logic program consists of axioms and inference rules that could be applied iteratively

to prove theorems. Inference rules are expressed in the form A1...Ak
B where A1 . . .Ak

are antecedents from which B can be concluded. Axioms are inference rules with no

antecedents.

One way to express dynamic programming algorithms such as CKY is as logic pro-

grams. This approach takes the point of view of parsing as deduction: terms consist

of grammar rules and items in the form of [i,A, j] that correspond to the intermediate

entries in the chart. Grammar rules are taken to be axioms, and the description of the

parser is given as a set of inference rules. These can have both grammar rules and items

as antecedents and an item as the conclusion. A logic program in this form includes

a special designated goal item that stands for a successful parse. In CKY this would

correspond to the chart item [0,S,n+1] where S is the start symbol from the CFG and
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n is the length of the string to be parsed.

Continuing with the example of CKY, consider the procedural description for how

to obtain a chart item from smaller chart items if we have the rule A→ B C in the

grammar:

chart[i,A, j]← chart[i,A, j] ∨ (chart[i,B,k] ∧ chart[k,C, j]).

The corresponding inference rule in a logic program would be:

A→ B C [i,B,k] [k,C, j]
[i,A, j]

.

Note that in the inference rule above, A→ B C is a rule template with free variables

A,B,C. In general, the terms in inference rules can contain free variables, however

for a logic program to describe a valid dynamic programming algorithm, every free

variable in the conclusion of an inference rule must appear in its antecedents as well.

The apparent discrepancy of the term chart[i,A, j] appearing twice in the procedural

description but just once in the inference rule is that in a logic program, once we derive

[i,A, j], it is retained in the set of items we know to be true, whereas in the procedural

description this must be stated explicitly within the calculation.

A weighted logic program is a logic program where terms are assigned values from a

semiring. When paired with semiring operations, inference rules provide the descrip-

tion of how to compute the value of the conclusion given the values of the antecedents.

The result of an application of a particular inference rule is the semiring multiplication

of all the antecedents. The value of a term B is then calculated as the semiring sum of

values obtained from inference rules that have B as their conclusion. As an example,

consider the path-sum algorithm given in Figure 5.3. The line that corresponds to the

calculation of the representation of a path of length l from the length of paths l−1 is:

Fl(h, t)← Fl(h, t)+F1(h,e)Fl−1(e, t)

The corresponding inference rule in the WLP would be:

F1(h,e) Fl−1(e, t)
Fl(h, t)

.

Notice that even though the procedural description for CKY uses Boolean operations

and the procedural description for path-sum uses addition and multiplication, this dis-

tinction is no longer apparent in their respective logic program descriptions. In the
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following section, we present how this abstraction can be formalized using the lan-

guage of semirings.

5.4.4 Semiring Parsing

In the context of parsing, Goodman (1999) presents a framework where a grammar G

comes equipped with a function w that maps each rule in G to a semiring value. Then, a

grammar derivation string E consisting of the successive applications of rules e1, . . . ,en

is defined to have the value VG(E) = ∏
n
i=1 w(ei), and the value of a sentence σ ∈ L(G)

is defined as the sum VG = ∑
k
j=1VG(E j) where E1,E2, . . . ,Ek are the derivations of σ

in G.

A parser specification is given in the form of a weighted logic program, referred to

as an item-based description. The description includes the form of the intermediate

items, the designated goal item and the inference rules, and takes as input a PCFG and

a string to be parsed. From these, the value of a derivation D is calculated recursively

as follows:

V (D) =

w(D) if D is a rule

∏
k
i=1V (Di) if D = 〈b : D1, . . . ,Dk〉,

(5.4)

where ∏ is the semiring product.

Let inner(x) represent the set of all derivation trees headed by the item x. Then the

value of x is:

V (x) = ∑
D∈inner(x)

V (D), (5.5)

where ∑ is the semiring addition. The value of a sentence is then equal to inner(goal),

where goal is the designated goal item in the logic program.

One of the main contributions of Goodman (1999) is to provide conditions that char-

acterize when and item-based description defines a correct parser. A semiring parser

is said to be correct if the value of an input string according to the grammar equals the

value of the string according to the parser. Given the definitions for these values, the

conditions of correctness for an item based description is as follows:

Theorem 5.4.1. (Goodman 1999, Theorem 1; informal) An item-based description I

is correct if for every grammar G there exists a one-to-one correspondence between

the set of grammar derivations and the set of item derivations, and these derivations

have the the same value regardless of the weight function used.
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One caveat with calculating based on item-based derivations is that there is an ordering

of items: we cannot compute the value of an item unless the values of all its children

are computed already. For this, Goodman (1999) assumes that each item is assigned

to a bucket so that if an item b depends on a, then bucket(a) ≤ bucket(b). If a bucket

depends on itself, then it is considered a special looping bucket.2 For all the formulas

we present in our exposition in this chapter we assume that the items belong to non-

looping buckets. The formulas for looping buckets are provided in Appendix B.

For an item x, calculating its value might require summing over exponentially many

derivation trees. To address this, it is possible to provide a general formula that effi-

ciently computes the inner value for an item (Goodman 1999, Theorem 2):

V (x) = ∑
a1,...,aks.t. a1,...,ak

x

k

∏
i=1

V (ai). (5.6)

The other important value associated with an item x is its outside value Z(x), which is

the sum of values of derivation trees, modified so that x is removed with all its subtrees.

This value is complementary to the inside values V (x) (Goodman 1999, Theorem 4):

V (x)×Z(x) = ∑
D a derivation

V (D)C(D,x). (5.7)

where C(D,x) is the count of the occurrences of item x in derivation D.

Z(x) can likewise be calculated using a recursive formula if the values are from a

commutative semiring (Goodman 1999, Theorem 5):

Z(x) = ∑
j,a1,...,ak,b s.t.
a1...ak

b and x=a j

Z(b)×
j−1

∏
i=1

V (ai)×
k

∏
i= j+1

V (ai). (5.8)

5.4.5 Tensor Notation

We use the term tensor to refer to an n-dimensional array of semiring values. We use

S to denote a semiring and A,B etc. to denote tensors. The element A ∈ Sa1×a2×...×an

will denote that A is an nth order tensor of values drawn from S, with the ith order

having dimension ai. As usual, the semiring entry with index k1, . . . ,kn will be denoted

with subscripts Ak1,...,kn .

2Looping buckets can happen in practice even when there is no trivial derivation rules e.g. A→ A
in the input grammar. For an explicit example with a small CFG and the Earley parser see Goodman
(1998, p. 28)
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5.5 Tensor Weighted Logic Programs

In this section we present a framework that generalizes that of Goodman (1999), and

is able to capture tensors over semirings as weights. Note that this includes scalars as

a special case.

5.5.1 Semiring Operations

The main reason why tensors over semirings are not semirings is that with tensor

weights,⊕ and⊗ become partially defined – not all elements can naturally be added or

multiplied to any other element anymore. We refer to these structures as partial semir-

ings. With some reasonable constraints, we show that ⊕ and ⊗ obey the semiring

axioms in cases that are relevant for the semiring parsing framework.

Let S be the chosen underlying semiring, +,× to be the semiring operations and 0,1 be

the additive and multiplicative identity of the semiring respectively. The set of possible

weights are defined as {Sd1×...×dn} for n ∈ N, and di ∈ N for all i ≤ n. ⊕ is a partial

addition that is defined on two tensors A,B ∈ Sd1×...×dn as long as the dimensions of

each of their orders match. Then, the addition is defined component-wise:

(A⊕B)i1,...,in := Ai1,...,in +Bi1,...,in. (5.9)

The additive identity is now a class of tensors, one for each unique list of tensor di-

mensions. The additive identity for any A ∈ Sd1×...×dn is the tensor Z ∈ Sd1×...×dn with

0 in every entry.

Multiplication is defined as the contraction of an index between two tensors. Specif-

ically, we consider the family ⊗[k;l] which contracts the kth order of the first tensor

with the lth order of the second tensor. This is only defined if the two indices to be

contracted have the same dimension, as follows:(
A⊗[k;l] B

)
i1,...,ik−1, j1,..., jl−1,
jl+1,..., jm,ik+1,...,in

:= ∑
ik, jl

δ(ik, jl)Ai1,...,in×B j1,..., jm, (5.10)

where δ is the identity function that is equal to 1 if ik = jl and 0 otherwise. Note that

the indices of B which are not contracted go in between the indices of A, replacing

the contracted index of A. We will use ⊗ j as a shorthand of ⊗[ j;1], and in cases where

j = l = 1, we will omit the subscript on ⊗ altogether.

More generally, we will allow multiplication operations that contract multiple consecu-

tive dimensions. A⊗r
[k;l] B will denote contracting order k of A with order l of B, order
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k+1 of A with order l +1 of B and so forth until order k+ r−1 of A and l + r−1 of

B. Formally:

(
A⊗r

[k;l] B
)

i1,...,ik−1, j1,..., jl−1,
jl+r,..., jm,ik+r,...,in

:= ∑
ik,...,ik+r−1
jl ,..., jl+r−1

(
r−1

∏
p=0

δ
(
ik+p, jl+p

))
Ai1,...,inB j1,..., jm.

(5.11)

We will use the notation A⊗∗B as a shorthand for A⊗rank(A) B if rank(A)< rank(B)
and A⊗rank(B) B otherwise.

To make the presentation clearer, we will also use the notation X ⊗ [A1,A2, . . . ,Ak] to

denote contraction of A1 with the first order of X , A2 with the second and so forth. In

other words X⊗ [A1, . . . ,An] is equivalent to X⊗n An⊗n−1 An−1 . . .⊗1 A1.

The multiplicative identity for A ∈ Sd1×...×dn and ⊗k is the identity matrix I ∈ Sdk×dk

where the diagonal entries are the multiplicative identity from the underlying semiring,

and the non-diagonals are the additive identity. For A ∈ Sd1×...×dn and ⊗r
k the multi-

plicative identity is a rank-2r tensor I ∈ Sdk×...×dk+r−1×dk×...×dk+r−1 and is defined as

follows:

Id1,...,dr =

n
2

∏
i=0

δ

(
di,d r

2+i

)
. (5.12)

Lastly, as the higher order analogue of the transpose operator, we will define a permu-

tation operator Aπ where π = [π1,π2, . . . ,πr] is a permutation of [1 . . .r] and r is the

order of A. The πith order of Aπ is equal to the ith order of A.

The key property of semirings for purposes of efficient calculation of item values is the

distributive property. This property also holds for tensors over semirings.

Lemma 5.5.1. For any k, l, ⊗[k;l] distributes over ⊕.

A proof can be found in Appendix A.

5.5.2 Grammar Derivations

For a grammar G with a function w that provides a mapping from rules to tensor

weights, we will define a value of a derivation via the derivation tree:

Definition 3. Given a grammar G and a weight function w, the value of a derivation



Chapter 5. Tensors over Semirings for Weighted Logic Programs 95

Tensor dimensions of grammar rules:

w(S→ AA) ∈ SA×A×S w(A→ AA) ∈ SA×A×A w(A→ a) ∈ SA

Grammar derivation tree:

w(S→ AA)/SS

w(A→ a)/SA w(A→ AA)/SA

w(A→ a)/SA w(A→ a)/SA

The value of the tree is given by the equation:

w(S→AA)⊗ (w(A→ a),(w(A→ AA)⊗ (w(A→ a),w(A→ a))))

Grammar derivation string:

S S→AA
====⇒
SA×A×S

AA A→a
===⇒
SA×S

aA A→AA
====⇒
SA×A×S

aAA A→a
===⇒
SA×S

aaA A→a
===⇒
SS

aaa

The value of the string is given by the equation:

w(S→ AA)⊗w(A→ a)⊗ (A→ AA)⊗ (A→ a)⊗ (A→ a)

Figure 5.4: Example derivation for the string “aaa”. We illustrate the initial dimensions

of the tensor values for the rules and also show the intermediate tensor dimensions

during the calculation of the value of the grammar tree and the grammar string.
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tree T is:

V w
G (T ) =

w(r) if T = 〈r〉

w(r)⊗ [V w
G (T1), . . . ,V w

G (Tk)] if T = 〈r : T1, . . . ,Tk〉
.

Note that there is no guarantee that this equation is defined for any arbitrary w. We

will call a weight function w well defined for a grammar G if for all valid derivation

trees T in G, V w
G (T ) is defined. For CFGs there is a straightforward method to ensure

that w is well defined:

Lemma 5.5.2. A weight function w for a given CFG is well defined if there exist

consistent dimensions di for each nonterminal Ai such that for all grammar rules

R : An→ α1A1α2 . . .αn−2An−1αn, w(R) ∈ Sd1×...×dn .

Proof is given together with Lemma 5.5.3.

Given a grammar derivation tree T , let the list of derivation rules E : R1,R2, . . . ,Rn ap-

pearing in T ordered via depth-first, left-to-right manner be referred to as a grammar
derivation string.

Definition 4. Given a CFG with tensor weights w, the value of a grammar derivation
string is defined as:

V w
G (E) =

⊗
i

w(Ri),

where the application of ⊗ proceeds from left to right as is standard.

For semirings, since the bracketing does not affect the final value of an expression, it

is straightforward to show that the value of a grammar derivation tree corresponds to

that of a grammar derivation string. With tensors over semirings this might fail with

an arbitrary formalism F , and in general we require the value of a derivation to be

calculated with the bracketing induced by the derivation tree. However, for the special

case of CFGs, the value of the grammar derivation tree and the value of its correspond-

ing grammar derivation string are always equal. This means that for the computation

of the value of the derivation, it is possible to replace the bracketing induced by the

derivation tree by left-to-right bracketing without affecting the final value. Figure 5.4

demonstrates the calculation of the value of the tree and the string for the same deriva-

tion together with how the tensor dimensions of the intermediate results evolve with

each step of the calculation.
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Lemma 5.5.3. Given a CFG G and a weight function w that fulfills the condition in

Lemma 5.5.2, then w is well defined and V w
G (T ) =V w

G (E) for any grammar derivation

tree T and corresponding grammar derivation string E.

Proof. We will proceed by induction on the derivation tree. If T consists of only one

rule r, then V w
G (T ) = V w

G (E). Furthermore, r does not have any non-terminals on its

rhs, so V w
G (T ) ∈ Sd0 with Sd0 corresponding to the lhs non-terminal in r.

Otherwise, T has a labeled node r and the subtrees T1, . . . ,Tk. Notice that if A0 ∈
Sd1×...×dn×d0 , A1 ∈ Sd2 ,. . . , An ∈ Sdn , then A0⊗ [A1, . . . ,An] = A0⊗A1⊗ . . .⊗An due

to all arguments within [. . .] being rank-1.

Because w fulfills the condition in Lemma 5.5.2, w(r) ∈ Sd1×...×dk×d0 for some di

where Sd0 is the space corresponding to the non-terminal on the lhs of r, and Sdi is the

space corresponding to the ith non-terminal appearing in the rhs of r for i = 1, . . . ,k.

Then to complete the proof, it suffices to show that V w
G (Ti)∈ Sdi for all subtrees Ti. This

already holds for the base case. For each Ti : 〈ri : T ′1, ..,T
′

k 〉, if w(ri)∈ Sdi
1×...×di

k×di
0 then

by induction V w
G (Ti) ∈ Sdi

0 , where Sdi
0 is the space corresponding to the non-terminal

in the lhs of Ri. For the derivation to be valid, this non-terminal needs to match the ith

non-terminal in the rhs of R, hence Sdi
0 = Sdi

5.5.3 Path Values

Similar to grammar derivation values, we can calculate the tensor values for paths in a

knowledge graph where the edges are associated with the tensor weight of the relation:

Definition 5. Let P = 〈r0,r1, . . . ,rn〉 be a path that connects two entities in a given

KG, and w(r) be the function mapping each relation to its tensor embedding. Then,

the value of the path P is:

V w
KG(P) =

w(r) if P = 〈r〉

w(r)⊗V w
KG(Q) if P = 〈r,Q〉

.

This means that for a path P = 〈r0,r1, . . . ,rn〉, the value of the path is given by r0⊗
r1⊗ . . .⊗ rn.

Comparing Definition 5 above with Definition 3, it is clear that the value of a path is

a special case of the value of a grammar derivation. Lemma 5.5.2 translates to the KG
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w(A→ wi)

[i,A, j]

w(A→ BC) [i,B,k] [k,C, j]
[i,A, j]

Figure 5.5: Item-based description for CKY

w(r) (h,r, t)
F1(h, t)

F1(h,e) Fl−1(e, t)
Fl(h, t)

Figure 5.6: Item-based description for the path-sum algorithm

case as follows:

Corollary 5.5.3.1. A weight function w for a given KG is well defined if there exists

consistent dimensions de for each entity e such that for all triples (h,r, t) in the KG,

w(r) ∈ Sdt×dh

Note that this condition allows considerable freedom on how to represent relations.

In particular, if one is given an ontology over the entities as explored in Chapter 3,

it is possible to learn embeddings for different types of entities in vector spaces of

different dimensions. As long as the embedding dimensions of the relations agree with

the embedding spaces for their head and tail types, it is possible to calculate the path

representations.

5.5.4 Item-based Descriptions

Item-based descriptions, when used for describing parsers, consist of a set of deduc-

tion rules of the form
T1 . . .Tk

Q
P1 . . .Pj where upper case letters could either be grammar

rule templates (e.g. if T1 : A→ B C then any non-terminals from the grammar can be

substituted for A,B,C) or for items. T1 . . .Tk are referred to as antecedents, Q as the

conclusion and P1 . . .Pj are side conditions that the parser requires to execute the rule,

but doesn’t use the values of. Items correspond to chart elements in procedural descrip-

tions of parsers, and are placeholders for intermediate results which can be combined

to obtain the final result. The item-based description also provides a special goal item
which is variable-free, and does not occur as a condition of any other inference rules.
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[1,S,4]/SS

w(S→ AA)/SA×A×S [1,A,2]/SA

w(A→ a)

[2,A,4]/SA

w(A→ AA)/SA×A×A [2,A,3]/SA

w(A→ a)

[3,A,4]/SA

w(A→ a)

Figure 5.7: Item derivation corresponding to the derivation given in Figure 5.4 using the

item-based description of CKY in Figure 5.5.

Definition 6. Given a grammar G and an item-based description I, a valid item deriva-
tion tree is defined as follows:

• For all r ∈ G, 〈r〉 is an item derivation tree.

• If Da1, . . . ,Dak and Dc1, . . . ,Dc j are derivation trees headed by a1, . . . ,ak and

c1, . . . ,c j respectively, and a1...ak
b c1, . . . ,c j is the instantiation of a deduction rule

in I, then 〈b : Da1, . . . ,Dak〉 is also an item derivation tree.

innerσ(x) denotes the set of all trees headed by x that occur in parses for σ. Formally,

D ∈ innerσ(x) if D is headed by x and is a subtree of some D′ ∈ DI(G)(σ), where

DI(G)(σ) is the set of all valid item-derivation trees for σ. The value of a derivation

tree is calculated similarly to that of a grammar tree:

V w
I(G)(D) =

w(D) if D is a rule

V w
I(G)(D1)⊗ [V w

I(G)(D2), . . . ,V w
I(G)(Dn)] if D = 〈b : D1, . . . ,Dn〉

.

Notice that unlike the definition for semiring WLPs given in 5.4.4, the first antecedent

in the inference rule has a special role in the calculation. Intuitively, our framework

treats the value of the first antecedent as a function, and the trailing ones as the argu-

ments. The interaction between the trailing antecedents is thus moderated through the

value of the first antecedent, which corresponds to the requirement that the children

nodes be independent of each other given the parent node. The special role of the

first antecedent also requires that the tensor weights have dimensions that enable the
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calculation defined by any given derivation tree:

Definition 7. If for any σ ∈ L(G) and any T,T ′ ∈ innerσ(x), V w
I(G)(T ) and V w

I(G)(T
′)

are defined and dim(V w
I(G)(T )) = dim(V w

I(G)(T
′)), then the weights w are well defined.

For any of our following theorems to hold, we require that the given weights are well

defined.

Given an item-based derivation I, a grammar G, a well defined weight function w and

a target sentence σ, the value of an item x is defined to be the sum of all its possible

derivations. Formally:

V w
I(G)(x,σ) =

⊕
D∈innerσ(x)

V w
I(G)(D).

Definition 8. For a given grammar G and item-based description I, the value of a

sentence σ is equal to the value of the goal item which spans σ:

V w
I(G)(σ) =V w

I(G)(goal,σ).

Definition 9. An item-based description is correct if for all grammars G, complete

semirings S, well defined weight functions w and sentences σ, V w
I(G)(σ) =V w

G (σ).

Now we are ready to state the equivalent theorem to Theorem 5.4.1. Let us introduce

a special symbol ⊥ and extend V w
G and V w

I(G) to any weight function w so that if w is

not-well defined for G, then V w
G (σ) =⊥ and likewise for V w

I(G).

Theorem 5.5.4. An item-based description I is correct if

• For every grammar G, the mapping g : DI(G)→DG that maps d′ ∈DI(G) to the

corresponding d ∈DG is a bijection with an inverse function f .

• For any complete semiring S and weight function w, g and f preserve the values

assigned to a derivation:

V w
G (d) =V w

I(G)( f (d)) and V w
I(G)(d

′) =V w
G (g(d′)).

Proof proceeds similarly to that in Goodman (1999) and can be found in Appendix A.

5.6 Efficient Calculation of Inside and Outside Values

In the following, we will omit the sentence σ from innerσ(x) and refer to this as

inner(x). Let inner(a1,..,ak
x ) be the set of derivation trees where the root note is x,
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and the direct children of x are a1, . . . ,ak.

5.6.1 Inside Calculations

For efficient computation of and item value V (x), we will assume that there is a partial

order b on the items so that if the item y depends on x, then b(x)≤ b(y). Given such a

partial order the calculation of V (x) can be performed as follows:

Theorem 5.6.1.

V (x) =
⊕

[a1,...,ak]

s.t. a1,..,ak
x

V (a1)⊗ [V (a2), . . . ,V (ak)] .

The proof uses the distributive property and follows that of Goodman (1999). It can be

found in Appendix B.

In the context of L-PCFG parsing, this formulation combined with the item based

description in Figure 5.5 corresponds to the procedural algorithm given in Figure 5.2.

To demonstrate, consider the inside calculation using the parser description for our

running example with the grammar in Figure 5.4 and the string aaa. The partial order

in this case is that [i,A, j] ≤ [i′,B, j′] if i ≤ i′ and j ≤ j′. The inside value for the goal

item [1,S,4] is then calculated as follows:

V ([1,S,4]) =w(S→ AA)⊗
[
V ([1,A,2]),V ([2,A,4])

]
⊕w(S→ AA)⊗

[
V ([1,A,3]),V ([3,A,4])

]
,

V ([1,A,3]) =w(A→ AA)⊗
[
V ([1,A,2]),V ([2,A,3])

]
V ([2,A,4]) =w(A→ AA)⊗

[
V ([2,A,3]),V ([3,A,4])

]
V ([1,A,2]) =V ([2,A,3]) =V ([3,A,4]) = w(A→ a).

Now, by iteratively calculating the intermediate item values and performing the ap-

propriate substitutions, we can see that the full expression for the goal item can be

obtained without calculating the value of each intermediate item multiple times:

V ([1,S,4]) =w(S→ AA)⊗
[
w(A→ a),w(A→ AA)⊗ [w(A→ a),w(A→ a)]

]
⊕w(S→ AA)⊗

[
w(A→ AA)⊗ [w(A→ a),w(A→ a)],w(A→ a)

]
.

Inference over paths in the KG is can likewise be captured with the inside calcu-

lation using the item-based description in Figure 5.6. Consider a KG with entities

{e1,e2,e3,e4} and relations {r1,r2,r3,r4}:
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e2

e1 e3

e4

r2

r3

r1

r1 r4

r3

Assume that we would like to calculate the path-sum of all paths of length 3 from

e1 to e3. Using the item-based description in Figure 5.6, this would be equivalent to

calculating the inside value for the goal item L3(e1,e3)
3:

F3(e1,e3) =F1(e1,e2)⊗F2(e2,e3)⊕F1(e1,e4)⊗F2(e4,e3)

F2(e2,e3) =F1(e2,e4)⊗F1(e4,e3)

F2(e4,e3) =F1(e4,e2)⊗F1(e2,e3)

F1(e1,e2) =F1(e1,e4) = w(r1)

F1(e2,e4) =F1(e4,e2) = w(r3)

F1(e2,e3) =w(r2)

F1(e4,e4) =w(r4)

Substituting the intermediate items with their corresponding weights, we get the value

for the goal item:

F3(e1,e3) = (w(r1)⊗w(r3)⊗w(r4))⊕ (w(r1)⊗w(r3)⊗w(r2))

As in the previous example, we can see that the two summands correspond to the two

paths between e1 and e3 that are of length 3.

Inside calculation with tensors of values from the Viterbi semiring. For the exam-

ples above, we did not explicitly specify from which semiring the tensor entries were

taken from. For KGs, the standard semiring would be R, and w(r) would be matrix

embeddings with various constraints, as explored in previous chapters. However, it is

also instructive to consider how the calculation would be realized if the semiring is a

different one, and semiring operations correspond to something other than the regular

matrix addition and multiplication.

3We omit the weight term tanh(wr)p(t|h,r) in the item description to simplify the presentation.
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One of the semirings Goodman (1999) considers is the Viterbi-derivation semiring,

which allows the inside calculation to capture the derivation tree with the highest

probability together with its probability weight. This semiring is a product of two

semirings. The first one is the Viterbi semiring Vit with values in [0,1], addition as the

⊕ operator and max as the ⊗ operator. The other one is the derivation-forest semir-

ing Deriv, which has as elements sets of derivation trees, set union as the ⊕ operator

and pairwise concatenation as the ⊗ operator. For the Viterbi algorithm for L-PCFGs,

tensors with entries in (Vit,Deriv) capture the correct calculations.

Similarly, it is possible to define a semiring for KG paths, Str. The elements of this

semiring are sets of KG paths, 0 corresponds to the empty set /0 and 1 is the set with

the empty path {〈〉}. ⊕ is defined as the set union, and⊗ is the pairwise concatenation

of the paths in each set. Then the Viterbi algorithm for inference over KG paths can be

captured using weights from (Str,Vit). When there are tensor embeddings associated

with the KG, the algorithm can be simply extended likewise, by using tensors with

weights from this semiring.

5.6.2 Outside Calculations

For the notion of a value of a derivation to extend to outside trees, we will have to

do some modifications. This is because an outside tree will have one subtree 〈b :

A1, . . . ,An〉, such that V (A1)⊗ [V (A2), . . . ,V (An)] will potentially not be defined since

one of the subtrees Ak will be missing. Note that the missing Ak will be headed by

an item. We will say the a tree T ∈ outer(x) if T can be obtained by taking a tree T ′

headed by the goal item and removing any of its subtrees headed by the item x. Outer

value Z(Tk) is defined recursively as follows:

If Tk is headed by the goal item then Z(Tk) = IdS . Else, it has a direct parent tree T such

that T = 〈b : T1, . . . ,Tk, . . . ,Tn〉. In this case,

Z(Tk) =
(

V (T1)⊗k
[
ITk×dS ,V (Tk+1), . . . ,V (Tn)

])π

⊗ [V (T2), . . . ,V (Tk−1)]⊗∗ Z(T ),

where ITk×dS is the identity tensor for the space Sd1×...×di×dS , Tk ∈ Sd1×...×di , and ds

is the dimension assigned for the terminal symbol S. The permutation π is defined as

follows:

[1,2, . . . , i, j+1, j+2, . . . ,n, i+1, i+2, . . . , j],

where i = k+ rank(Tk)−1 and j = k+2× rank(Tk)+1
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To understand the function of π it is useful to consider the dimensions of the term

before and after it is applied. Let the term V (T0)⊗k
[
ITk×dS ,V (Tk+1), . . . ,V (Tn)

]
have

dimensions:

e1× . . .× ek−1,d1× . . .×di×dS

× ek×d1× . . .×di×dS×d′n× . . .×d′m.

Here e1, . . . ,ek−1 are the dimensions that will be contracted with V (T1), . . . ,V (Tk−1)

with the second multiplication operation, and d′n, . . . ,d
′
m are the dimensions that were

either introduced by the contraction with V (Tk+1), . . . ,V (Tn) or were trailing dimen-

sions from V (T1). The result of the contraction with ITk×dS are the dimensions in the

middle: d1, . . . ,di,dS,ek,d1, . . . ,di,dS. Unlike the original definition of I there is one

dimension ek missing from the beginning of the sequence since it got used up during

the contraction operation. What the permutation does is to move one section of the

dimensions introduced by I to the very end. The dimensions become:

e1× . . .× ek−1,d1× . . .×di×

d′n× . . .×d′m×dS× ek×d1× . . .×di×dS.

Note that this has no effect on the next contraction with V (T1), . . . ,V (Tk−1) since the

first k−1 orders are left in place. However, changing the order of the orders allow the

last contraction with Z(T ) to be well defined.

Lemma 5.6.2. Let V and Z be defined on a commutative semiring S and let O ∈
outerσ(x) and T ∈ innerσ(x). If combining O and T in the obvious way results in the

complete derivation D,

V (D) =V (T )⊗∗ Z(O).

Proof. (Sketch) We proceed by induction on the parse tree. Base case is where x =

goal, T = D and O is empty. Then V (T ) =V (D) and Z(O) = IS. V (D)⊗∗ IS =V (D)

by the definition of IS which proves the statement.

Otherwise T has a parent tree Tp = 〈y : T1, . . . ,Tn〉 where T = Tk. Furthermore, Tp ∈
innerσ(y), Op ∈ outerσ(y) and by the induction hypothesis V (D) =V (Tp)⊗∗ Z(Op).

Since Tp ∈ innerσ(y) we know that

V (Tp) =V (T1)⊗ [V (T2), . . . ,V (Tm)] ,

V (D) = (V (T1)⊗ [V (T2), . . . ,V (Tm)])⊗∗ Z(Op).
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The proof progresses by calculating the value for [V (D)]i based on the above term and

shows that this is equal to the value of [V (T )⊗∗ Z(O)]i. Full proof can be found in

Appendix B.

In the general case, Goodman (1999) defines the reverse value of x as the sum of all its

outer trees.

Z(x) =
⊕

T∈outer(x)

Z(T ).

We will see that for a well defined weight function w, any D ∈ outerσ(x) will be as-

signed a value with dimensions d1× . . .×dn×dS where dS is the dimension assigned

to the start symbol S, and d1, . . . ,dn are the dimensions for innerσ(x).

Lemma 5.6.3. Let C(D,x) represent the number of times x occurs in a derivation D.

Then,

V (x)⊗∗ Z(x) =
⊕

D∈D(σ)

V (D)C(D,x).

Proof.

V (x)⊗∗ Z(x) =
⊕

T∈inner(x)

V (T )⊗∗
⊕

O∈outer(x)

Z(O)

=
⊕

T∈inner(x)

⊕
O∈outer(x)

V (T )⊗∗ Z(O).

By Lemma 5.6.2, Z(O)⊗∗V (T ) = V (D). For an item x, any O ∈ outer(x) and T ∈
inner(x) can be combined to form a successful derivation tree containing x, and thus

the number C(D,x) corresponds exactly to the number of derivation trees containing x.

Hence,

V (x)⊗∗ Z(X) =
⊕

T∈inner(x)
O∈outer(x)

V (T )⊗∗ Z(O)

=
⊕

D∈D(σ)

V (D)C(D,x).

Now we are ready to state how to calculate the outside value of an item. Following

Goodman (1999) we will extend the notation for the set of outer trees and introduce

outer
(
k, a1...an

b

)
⊆ outer(ak) to mean the subset of the outer trees in outer(ak) where

ak has parent b and the siblings ai. In other words, this is the set of all outer trees where

the rule from which ak is removed is
a1 . . .an

b
.
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Theorem 5.6.4. If x is the goal item, then Z(x) = Is. Else,

Z(x) =
⊕

j,a1,..,ak,b s.t. a1...ak
b and x=a j

(V (a1)⊗k [Iak ,V (ak+1), ...,V (an)])
π

⊗ [V (a2), . . . ,V (ak−1)]⊗∗ Z(b).

Proof. (sketch) Z(x) =
⊕

D∈outer(x)Z(D). Either x is a goal item, in which case Z(x) =

IS.

Otherwise the outer trees outer(x) could be written as the union of outer trees

outer
(
k, a1...an

b

)
for each rule a1...an

b where ak = x for some k. Hence:

Z(x) =
⊕

j,a1,..,ak,b s.t.
a1...ak

b and x=a j

⊕
D∈outer(k, a1...an

b )

Z(D).

Using the distributive property of the partial semiring, the inside part of the equation

becomes:

⊕
D∈outer(k, a1...an

b )

Z(D) =(V (a1)⊗k [Iak ,V (ak+1), . . . ,V (an)])
π

⊗ [V (a2), . . . ,V (ak−1)]⊗∗ Z(b).

Replacing the inner part of the previous equation with this term gives the desired equal-

ity.

5.7 Conclusion and Future Directions

In this chapter we extend semiring-WLPs to tensor WLPs, where the weights of a logic

program are allowed to be tensors of semirings. We provide some results that connect

tensor weighted grammars to WLPs that describe parsers, and the general forms of the

inside and outside calculations that provide the means to extract dynamic program-

ming algorithms from tensor weighted logic programs. These results are applicable

in developing algorithms for knowledge graph reasoning with embedding weights, as

well as syntactic parsing.

Generalizing semiring weights to multi-indexed sets of semiring values is one way to

incorporate tensor weights into the WLP framework, which we have pursued here. An-

other theoretical abstraction applicable in this setting would be to use category theory
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as done in Clark et al. (2008) and Coecke et al. (2010) to model compositionality of

tensor representations for the meanings of words into the meaning of a sentence.

In the categorical view of WLP, a grammar specification would define a particular cat-

egory, and a weight assignment to rules corresponds to a functor between this category

and the category of vector spaces and (multi)linear maps. This view is more abstract

than the work presented here, and has associated advantages and disadvantages. The

main advantage is that the categorical view automatically handles tensors of different

arity and the related restrictions on their composition. The disadvantage is that it is

further removed from calculations of the values of interest, and hence would likely not

provide as clear a connection to dynamic programming algorithms. Nevertheless, the

alternative characterization of tensor WLPs as categories and functors between them

is an interesting area for further research.



Chapter 6

Conclusion

In this thesis, we explore tensor methods for integrating external information and

knowledge graph facts into unified representations. In order to summarize our find-

ings in relation to the overarching motivation of this dissertation, we repeat our thesis

statement below:

Thesis Statement. Tensor representations provide a unified framework for mod-

elling knowledge graphs and different types of related data. Tensor methods can be

applied both for learning effective representations of entities and relations through

knowledge fusion, and for efficiently reasoning over the learned representations.

In Chapter 2, we present the connection between tensors, knowledge graphs and the

task of knowledge graph completion. Specifically, we show that KGs have a natural

representation as high-dimensional, sparse, binary tensors, and bilinear models for KG

completion learn embeddings that correspond to a dense, low-dimensional, real-valued

decomposition of this tensor.

In Chapters 3 and 4, we show that both information about the types of entities, and

cooccurrence information from an entity linked corpus can be effectively represented

as a matrix or tensor related to the adjacency tensor of the knowledge graph. Viewing

both the KG and the related data as tensors enables us to characterize the enriched em-

beddings we aim to obtain as the components of a joint matrix-tensor or tensor-tensor

decomposition. We provide joint training algorithms that achieve this objective, and

assess their effectiveness in improving the model performance on the KG completion

tasks through experiments on standard datasets. These two chapters provide support

108
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for our claim that tensor methods can be used to obtain effective embeddings through

knowledge fusion of a KG and related data.

In Chapter 5 we address the remaining part of our thesis statement, and show that

tensors in general, and knowledge graph embeddings in particular, are suitable struc-

tures to be used as weights in logical deduction. We develop the theory for extending

semiring weighted logic programs to tensors over semirings, and show that tensor val-

ues allow efficient calculation of aggregate representations of possible deduction trees.

The theoretical findings presented support our claim that tensors can be integrated into

logical reasoning approaches on knowledge graphs.

Limitations. The work presented in this thesis has some limitations that suggest av-

enues of future work. We list some of these below:

• The embedding learning techniques presented in Chapter 3 and 4 are evaluated

only on knowledge graph completion, which is the same task the representations

are trained on. The true value of an embedding representation obtained from

multiple related data sources would be its broader applicability, and hence eval-

uating the effectiveness of these embeddings on downstream tasks, and compar-

ing them with other techniques for graph embeddings would provide evidence

of whether our methods are effective beyond KG completion.

• Our focus on tensor methods means that the methods we explore for knowledge

fusion are limited to multi-linear functions. While this provides simple, effective

and efficient algorithms for learning and scoring embeddings and fulfills the re-

quirements for the WLP framework, it is possible that non-linear approximations

are more suitable for some cases. Deep, highly non-linear transformer archi-

tectures largely superseded the fast and shallow models for word embeddings,

and it is possible that similarly complex architectures would provide better em-

beddings for knowledge graphs with external information compared to tensor

methods. It is especially worth exploring how joint training compares to deep

learning techniques for knowledge transfer.

• The tensor-WLP framework we present in Chapter 5 provides the theoretical ba-

sis for performing reasoning using embeddings for entities, relations, and rules.

However the implementation of such a system is left for future work, and some

related practical issues remain. For example, tensor weights for rules often end
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up as higher-order tensors. This means that a naive implementation is likely to

result in prohibitively many parameters both for inference calculations and pa-

rameter estimation. Finding an appropriate restriction on the embeddings to limit

the number of free parameters is one of the tasks that need to be accomplished in

order to enable implementing tensor-WLPs for reasoning with knowledge graph

embeddings. Tensor decomposition methods are a promising direction for find-

ing low-dimensional approximations of these tensors, and to make the inference

calculations computationally tractable.



Appendix A

Entity-Linking for Experiments in

Chapter 4

English Wikipedia from ClueWeb09 with FACC annotations. We use the English

Wikipedia section of ClueWeb09 Callan et al. (2009) and use FACC Freebase ID anno-

tations

(Gabrilovich et al., 2013) to link the corpus with FB15K, FB15K-237 and YAGO3-10.

Linking FB15K and FB15K-237 is straightforward since entities are represented with

Freebase IDs both in the dataset and in the annotations. For YAGO3-10 we convert the

YAGO IDs into Freebase IDs with the following heuristic:

The majority of entities in YAGO3-10 are derived from Wikipedia, in which case their

YAGO IDs are the same as their Wikipedia identifier. We query the Wikidata API

using this identifier, and use the Freebase ID to link the entity to corpus if the ID is

found in the Wikidata entry. There is also a small number of entities in YAGO3-10 that

are from WordNet. We convert these to their common noun forms if they are single

word nouns, and link them with the occurrences of this noun from the corpus. If the

name of the entity is multiple words we treat them as entities that do not have links to

the corpus.

POS-tagged English Wikipedia from ClueWeb09. Entities in WN18RR correspond

to synsets of WordNet. To link these to the English Wikipedia section of ClueWeb09,

we first POS tag the corpus using the NLTK library (Bird, 2006). Since each entity

consists of a ‘sense’ and that the corpus is not sense-disambiguated, we link the words

to synsets heuristically. Synset labels consist of a string that has one or more words,

111
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the POS tag, and a sense ID. We only link the entities that have sense ID 1 (this tends to

correspond to the first sense in which the word is used) and have single word strings,

in which case we link the synset with its corresponding word. The simple linking

procedure results in about half of the entities to be linked to corpus occurrences.

Wikipedia with entity annotations from hyperlinks To generate this corpus, we use

the latest English Wikipedia dump, and use the hyperlinks within Wikipedia to guide

the entity linking for FB15K, FB15K-237 and YAGO3-10. Our code is adapted from

Yamada et al. (2020) and works as follows:

For a given Wikipedia page, any text that is hyperlinked to another Wikipedia page is

considered to refer to the entity of that page, and the text is replaced with the Wikipedia

ID for the page. For detecting mentions that are not hyperlinked, the algorithm first

collects all pairs of hyperlinks and the hyperlinked tokens throughout the Wikipedia

dump.1 Then for each page, the algorithm constructs a set of candidate entities. These

are either the entity of the page or any of the entities that appear in it as hyperlinks.

Then a token t is replaced with the ID for one of the candidate entities e if e is the only

entity in the candidate set that t has ever been hyperlinked to.

Linking the entity annotations generated this way to YAGO3-10 is straightforward

since both the corpus and the KG dataset use Wikipedia IDs as entity labels. We link

FB15K and FB15K-237 datasets by querying Wikidata for Wikipedia IDs given the

Freebase IDs.

1A pair of entity and text (e, t) is added to the collection if the ratio of the number of times t appears
linked to any entity to its overall occurrence count is no less than 0.2, and the ratio of the number of
times t is linked to e to the total number of times t is linked to an entity is no less than 0.01
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Proofs of Theorems in Chapter 5

Lemma 5.5.1. For any k, l, ⊗[k;l] distributes over ⊕

Proof. We will proceed by showing that:

A⊗[k;l] (B⊕C) = (A⊗[k;l] B)⊕ (A⊗[k;l]C)

Firstly, note that for the left hand side of the equation to be defined, B and C needs to

be of matching ranks, and that B⊕C will be the same rank as both B and C. Therefore,

if the left hand side is well defined then both A⊗[k;l] B and A⊗[k;l]C is defined and has

matching ranks. So the right hand side is defined if and only if the left hand side is

defined as well.

[A⊗[ j;k](B⊕C)]i1,...,ik−1, j1,..., jl−1, jl+1,..., jm,ik+1,...,in

= ∑
ik, jl

δ(ik, jl)Ai1,...,in× (B⊕C) j1,..., jm

= ∑
ik, jl

δ(ik, jl)Ai1,...,in× (B j1,..., jm +C j1,..., jm)

= ∑
ik, jl

δ(ik, jl)(Ai1,...,in×B j1,..., jm)+δ(ik, jl)(Ai1,...,in×C j1,..., jm)

= [(A⊗[k;l] B)⊕ (A⊗[k;l]C)]i1,...,ik−1, j1,..., jl−1, jl+1,..., jm,ik+1,...,in

Theorem 5.4.1. An item-based description I is correct if

113
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• For every grammar G, the mapping g : DI(G)→DG that maps d′ ∈DI(G) to the

corresponding d ∈DG is a bijection with an inverse function f .

• For any complete semiring S and weight function w, g and f preserve the values

assigned to a derivation:

V w
G (d) =V w

I(G)( f (d)) and V w
I(G)(d

′) =V w
G (g(d′))

Proof.

V w
I(G)(α) =V w

I(G)(goal,α) =
⊕

D∈innerα(goal)

V w
I(G)(D) =

⊕
D∈DI(G)(α)

V w
G (g(D))

Observe that D ∈ DI(G)(α) iff g(D) ∈ DG(α) since the rules that appear in the leaves

of D, applied from left to right, determines the grammar derivation tree g(D) uniquely

via g, and vice versa. Hence,

V w
I(G)(α) =

⊕
g(D)∈DG(α)

V w
G (g(D)) =V w

G (α)

Theorem 5.6.1.

V (x) =
⊕

[a1,...,ak]

s.t. a1,..,ak
x

V (a1)⊗ [V (a2), . . . ,V (ak)]

Proof. Recall that by definition, V (x) =
⊕

D∈inner(x)V (D). For any item derivation D,

D is either an axiom or there is some a1, . . . ,ak,b s.t. D ∈ inner(a1...ak
b ). If D is an

axiom, then inner(D) is just a single rule a, and so V (D) = V (a). Else, for each rule
a1...ak

x ⊕
D∈inner( a1...ak

x )

V (D) =
⊕

Da1∈inner(a1),...,

Dak∈inner(ak)

V (Da1)⊗ [V (Da2), . . . ,V (Dak)]

=

 ⊕
Da1∈inner(a1)

V (Da1)

⊗
 ⊕

Da2∈inner(a2),...,

Dak∈inner(ak)

k⊗
i=2

V (Dai)


=

 ⊕
Da1∈inner(a1)

V (Da1)

⊗
 ⊕

Da2∈inner(a2)

V (Da2), . . . ,
⊕

Dak∈inner(ak)

V (Dak)


=V (a1)⊗ [V (a2), . . . ,V (ak)]
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Where the last step holds due to the distributive property of the partial semiring.

Since the set inner(x) =
⋃

i Di where Di ∈ inner(a1...ak
x ) for all inference rules a1...ak

x ,

we can write the summation over D ∈ inner(x) as:

V (x) =
⊕

D∈inner(x)

V (D)

=
⊕

[a1,...,ak]

s.t. a1,..,ak
x

⊕
D∈inner( a1...ak

x )

V (D)

=
⊕

[a1,...,ak]

s.t. a1,..,ak
x

V (a1)⊗ [V (a2),V (a3), . . . ,V (ak)]

Where the last line is obtained by replacing the inner part of the expression with the

equality obtained from the previous part of the proof.

Lemma 5.6.2. Let V and Z be defined on a commutative semiring S and let O ∈
outerα(x) and T ∈ innerα(x). If combining O and T in the obvious way results in the

complete derivation D then

V (D) =V (T )⊗∗ Z(O)

Proof. To simplify notation of the indices, let i stand for a list of indices i1, . . . , in
for some n. We will also use di to denote a list di

1, . . .d
i
ni

and d to denote d1, . . . ,dn.

δ(i, j) = ∏
n
k=1 δ(ik, jk).

We will proceed by induction on the parse tree. Base case is where x= goal, T =D and

O is empty. Then V (T ) = V (D) and Z(O) = IS. V (D)⊗∗ IS = V (D) by the definition

of IS which proves the statement.

Otherwise T has a parent tree Tp = 〈y : T1, . . . ,Tn〉 where T = Tk. Furthermore, Tp ∈
innerα(y), Op ∈ outerα(y) and by induction hypothesis V (D) =V (Tp)⊗∗ Z(Op).

Since Tp ∈ innerα(y) we know that

V (Tp) =V (T1)⊗ [V (T2), . . . ,V (Tm)]

So

V (D) = (V (T1)⊗ [V (T2), . . . ,V (Tm)])⊗∗ Z(Op)

The proof progresses by calculating the value for [V (D)]i based on the above term and

shows that this is equal to the value of [V (T )⊗∗ Z(O)]i.
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Let:

V (T1) ∈ Se,f V (Ti) ∈ Sei,di

Z(Op) ∈ Sd,f,s V (D) ∈ Ss

Then:

V [(Tp)]d,f = [V (T1)⊗ (V (T2), . . . ,V (Tm))]d,f

= ∑
e,e′

V (T1)e,f×
m

∏
i=2

δ(ei,e′i)V (Ti)e′i,di

[V (D)]s = [V (Tp)⊗∗ Z(Op)]s =

∑
e,e′,d,d′f,f′

V (T1)e,f×

(
m

∏
i=2

δ(ei,e′i)V (Ti)ei,di

)
×δ(d,d′)δ(f, f′)Z(Op)d,f,s

Now we will proceed to prove that this term is equal to V (Tk)⊗∗ Z(O). Let ITk ∈
Se′k,d

k,s,ek,dk,s. We will calculate the value of the outside term in sections. Let

A =V (T1)⊗k (ITk ,V (Tk+1), . . . ,V (Tn)) .

Then,

Ae1,...,ek−1,dk,s,êk,d̂k,ŝ,dk+1,...,dn,f =

Aπ

e1,...,ek−1,dk,dk+1,...,dn,f,s,êk,d̂k,ŝ
=

∑
ek,...,en
e′k,...,e

′
n

V (T1)e,f×δ(ek,e′k)δ(d
k, d̂k)δ(s, ŝ)×

m

∏
i=k+1

δ(ei,e′i)V (Ti)e′i,di

[Aπ⊗ (V (T2), . . . ,V (Tk−1))]d,f,s,êk,d̂k,ŝ =

∑
e,e′

V (T1)e,f×
n

∏
i=2
i 6=k

V (Ti)e′i,di×δ(e,e′)×δ(ek, êk)×δ(dk, d̂k)×δ(s, ŝ)

[Z(O)]êk,d̂k,ŝ = ∑
e,e′,d,d′
f,f′,s,s′

V (T1)e,f×
n

∏
i=2
i 6=k

V (Ti)e′i,di×Z(Op)d′,f′,s′

×δ(e,e′)×δ(ek, êk)×δ(dk, d̂k)×δ(s, ŝ)

×δ(d,d′)×δ(f, f′)×δ(s,s′)
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[V (Tk)⊗∗ Z(O)]ŝ =

∑
e,e′,d,d′
f,f′,s,s′

êk,d̂k,e′′k ,d
k′′

V (Tk)e′′k ,dk′′ ×V (T1)e,f×
n

∏
i=2
i6=k

V (Ti)e′i,di×Z(Op)d′,f′,s′

×δ(e,e′)×δ(ek, êk)×δ(dk, d̂k)×δ(s, ŝ)

×δ(d,d′)×δ(f, f′)×δ(s,s′)×δ(e′′k , êk)×δ(dk′′ , d̂k)

= ∑
e,e′,d,d′f,f′

V (T1)e,f×
m

∏
i=2

V (Ti)ei,di×Z(Op)d,f,ŝ

×δ(e,e′)×δ(d,d′)×δ(f, f′)

Which completes the proof. The last simplification step is obtained by replacing êk

and e′′k with ek, d̂k and dk′′ with dk and s and s′ with ŝ since these need to be equal for

any term to contribute to the final sum. The commutativity of S then allows V (Tk)ek,dk

to be moved to its place in the sequence.

Theorem 5.6.4. If x is the goal item, then Z(x) = Is. Else,

Z(x) =
⊕

j,a1,..,ak,b s.t.
a1...ak

b and x=a j

(V (a1)⊗k [Iak ,V (ak+1), . . . ,V (an)])
π

⊗(V (a2), . . . ,V (ak−1))⊗∗ Z(b)

Proof. by definition Z(x) =
⊕

D∈outer(x)Z(D). Either x is a goal item, in which case

Z(x) = Z() = IS.

Otherwise the outer trees outer(x) could be written as the union of outer trees outer
(
k, a1...an

b

)
for each rule a1...an

b where ak = x for some k. Hence:

Z(x) =
⊕

j,a1,..,ak,b s.t.
a1...ak

b and x=a j

⊕
D∈outer(k, a1...an

b )

Z(D)

For the inner part of this equation we have:
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⊕
D∈outer(k, a1...an

b )

Z(D) =

⊕
Db∈outer(b)

⊕
Da1∈inner(a1),...,

Dak−1∈inner(ak−1)

⊕
Dak+1∈inner(ak+1),...,

Dan∈inner(an)(
V (Da1)⊗k

[
IDak×dS ,V (Dak+1), . . . ,V (Dan)

])π

⊗
(
V (Da2), . . . ,V (Dak−1)

)
⊗∗ Z(Db)

Since ⊕ distributes over ⊗, this can rewritten as

⊕
D∈outer(k, a1...an

b )

Z(D) =

 ⊕
Da1∈

inner(a1)

V (Da1)⊗k

IDak
,

⊕
Dak+1∈

inner(ak+1)

V
(
Dak+1

)
, . . . ,

⊕
Dan∈

inner(an)

V (Dan)




π

⊗

 ⊕
Da2∈inner(a2)

V (Da2), . . . ,
⊕

Dak−1∈inner(ak−1)

V (Dak−1)


⊗∗

⊕
Db∈outer(b)

Z(Db)

And since V (ai) and Z(Db) are defined as the summation of their inner and outer trees

respectively

⊕
D∈outer(k, a1...an

b )

Z(D) =

(V (a1)⊗k [Iak ,V (ak+1), . . . ,V (an)])
π⊗ (V (a2), . . . ,V (ak−1))⊗∗ Z(b)

Replacing the inner part of the previous equation with this term gives us the desired

equality, completing the proof.



Appendix C

Inside and Outside Calculations for

Looping Buckets

In computing the inside and outside values with an item-based description, we assume

a pre-computed ordering over items in the form of buckets. For items x and y, we

write bucket(x) ≤ bucket(y) if the value of y depends on the value of x. So far we

have assumed that items could be simply sorted so that no item directly or indirectly

depends on itself, and given the inside and outside formulas accordingly. In this section

we give the equivalent formulas for items in looping buckets. Items in a looping bucket

depend on each other and computing their values might require an infinite sum. Our

presentation and proofs both follow that of Goodman (1998).

For an item x in a looping bucket B, let the generation of a derivation tree x to be the

maximum number of items in B that could appear in a single path from the root to a

leaf. This intuitively provides an ordering for processing a potentially infinite number

of trees by starting from generation 0 and incrementally adding larger and larger trees.

We will denote the set of inner trees of x with generation at most g with inner≤(x,B)

Adding up the values of all inner trees of x that have generation at most g then gives

us an approximation for the true inner value of x, and the approximation gets better as

g gets larger. Formally, we define a g generation value for an item x in bucket B as:

V≤g(x,B) =
⊕

D∈inner≤g(x,B)

V (D)

For ω-continuous semirings, the infinite sum is equal to the supremum of the partial

119
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sums (Kuich 1997, 613), hence (Goodman 1999, 589):

V (x) =
⊕

D∈inner(x)

V (D) = sup
g

V≤g(x,B)

Fortunately, tensors of semirings of set dimensions are ω-continuous as long as the

underlying semiring is ω-continuous. We give the necessary definitions to establish

this property:

Definition 10. (Kuich 1997, 611) A semiring is naturally ordered if there is a partial

ordering v such that xv y iff there is a z s.t. x⊕ z = y.

Definition 11. (Kuich 1997, 612) A naturally ordered complete semiring is ω-continuous

if for any sequence x1,x2, . . . and for any constant y, if for all n,
⊕

0≤i≤n xi v y then⊕
i xi v y

Notice that for the set of tensors in Sd where d is an arbitrary list of positive inte-

gers, if the underlying semiring has a natural ordering then this could be extended

straightforwardly to Sd by the following rule: X v Y iff Xi v Yi for all indices i. It

is straightforward to check that if the underlying semiring is ω-continuous, then Sd is

ω-continuous as well.

Goodman (1999) gives a formula for V≤g(x,B) in order to compute or approximate the

supremum. Below we give the analogous formula for partial semirings:

Theorem B.1. For items x in a looping bucket B and the generation g≥ 1

V≤g(x,B) =
⊕

[a1,...,ak]

s.t. a1,..,ak
x

Kg(a1,B)⊗ [Kg(a2,B), . . . ,Kg(ak,B)]

Where

Kg(a,B) =

V (a) if a /∈ B

V≤g−1(a,B) if a ∈ B
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Proof.

V≤g(x,B) =
⊕

D∈inner≤g(x,B)

V (D)

=
⊕

[a1,...,ak]

s.t. a1,..,ak
x

⊕
Da1∈inner≤g−1(a1,B),...,

Dak∈inner≤g−1(ak,B)

V (〈x : Da1, . . .Dak〉)

=
⊕

[a1,...,ak]

s.t. a1,..,ak
x

⊕
Da1∈inner≤g−1(a1,B),...,

Dak∈inner≤g−1(ak,B)

V (Da1)⊗ [V (Da2), . . . ,V (Dak)]

=
⊕

[a1,...,ak]

s.t. a1,..,ak
x

⊕
Da1∈inner≤g−1(a1,B)

V (Da1)

⊗

 ⊕
Da2∈inner≤g−1(a2,B)

V (Da2), . . . ,
⊕

Dak∈inner≤g−1(ak,B)

V (Dak)


=

⊕
[a1,...,ak]

s.t. a1,..,ak
x

V≤g−1(a1,B)⊗ [V≤g−1(a2,B), . . . ,V≤g−1(ak,B)]

Note that if ai is not in the bucket B then V≤g−1(ai,B) =V (ai), hence V≤g−1(ai,B) can

be replaced with Kg(ai,B), completing the proof.

We will follow a similar strategy for computing the outside values of items that belong

to a looping bucket. The only difference is the slight difference in the definition of the

generation of of the tree. If D ∈ outer(x) where x belongs to a looping bucket B, then

the generation of D is maximum number of items that could appear in a single path

from the root to x, where x is included in the count. Let

Z≤g(x,B) =
⊕

D∈outer≤g(x,B)

Z(D)

Theorem B.2. For items x in a looping bucket B and the generation g≥ 1

Z≤g(x,B) =
⊕

j,a1,..,ak,b s.t.
a1...ak

b and x=a j

(V (a1)⊗k [Iak ,V (ak+1), . . . ,V (an)])
π

⊗ [(V (a1), . . . ,V (ak−1)]⊗∗Hg(b,B)
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Where π is defined as in Theorem 5.6.4 and

Hg(b,B) =

Z(b) if b /∈ B

Z≤g−1(b,B) if b ∈ B

Proof.

Z≤g(x,B) =
⊕

D∈outer≤g(x,B)

Z(D)

=
⊕

j,a1,..,ak,b s.t.
a1...ak

b and x=a j

⊕
D∈outer≤g−1(k, a1...an

b )

Z(D)

=
⊕

j,a1,..,ak,b s.t.
a1...ak

b and x=a j

⊕
Db∈outer≤g−1(b)

⊕
Da1∈inner(a1),...,

Dak−1∈inner(ak−1)

⊕
Dak+1∈inner(ak+1),...,

Dan∈inner(an)(
V (Da1)⊗k

[
IDak×dS ,V (Dak+1), . . . ,V (Dan)

])π

⊗
(
V (Da2), . . . ,V (Dak−1)

)
⊗∗ Z≤g(Db,B)

=
⊕

j,a1,..,ak,b s.t.
a1...ak

b and x=a j

 ⊕
Da1∈

inner(a1)

V (Da1)⊗k

IDak
,
⊕

Dak+1∈
inner(ak+1)

V (Dak+1), . . . ,
⊕
Dan∈

inner(an)

V (Dan)




π

⊗

 ⊕
Da2∈inner(a2)

V (Da2), . . . ,
⊕

Dak−1∈inner(ak−1)

V (Dak−1)


⊗∗

⊕
Db∈outer≤g−1(b)

Z≤g−1(Db,B)

=
⊕

j,a1,..,ak,b s.t.
a1...ak

b and x=a j

(V (a1)⊗k [Iak ,V (ak+1), . . . ,V (an)])
π

⊗ [(V (a2), . . . ,V (ak−1)]⊗∗ Z≤g−1(b,B)

Like the inner case, note that for an item b not in the looping bucket b, Z≤g−1(b,B) =

Z(b), hence we can replace Z≤g−1(b,B) with Hg(b,B), completing the proof.
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Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume

Bouchard. 2016. Complex embeddings for simple link prediction. In Proceedings

of The 33rd International Conference on Machine Learning, pages 2071–2080.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, and Partha Taluk-

dar. 2020. InteractE: Improving convolution-based knowledge graph embeddings

by increasing feature interactions. In Proceedings of the Thirty-Fourth AAAI Con-

ference on Artificial Intelligence, volume 34, pages 3009–3016.

Neil Veira, Brian Keng, Kanchana Padmanabhan, and Andreas G Veneris. 2019. Unsu-

pervised embedding enhancements of knowledge graphs using textual associations.

In Proceedings of the Twenty-Eighth International Joint Conference on Artificial

Intelligence, pages 5218–5225.

Mengya Wang, Erhu Rong, Hankui Zhuo, and Huiling Zhu. 2018a. Embedding knowl-

edge graphs based on transitivity and asymmetry of rules. In Pacific-Asia Confer-

ence on Knowledge Discovery and Data Mining, pages 141–153.

Peifeng Wang, Shuangyin Li, and Rong Pan. 2018b. Incorporating GAN for negative

sampling in knowledge representation learning. In Proceedings of the Thirty-Second

AAAI Conference on Artificial Intelligence, volume 32.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph embed-

ding: A survey of approaches and applications. IEEE Transactions on Knowledge

and Data Engineering, 29(12):2724–2743.

Quan Wang, Bin Wang, and Li Guo. 2015a. Knowledge base completion using embed-

dings and rules. In Proceedings of the Twenty-Fourth International Joint Conference

on Artificial Intelligence, pages 1859–1865.

William Yang Wang and William W Cohen. 2016. Learning first-order logic embed-

dings via matrix factorization. In Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence, pages 2132–2138.

William Yang Wang, Kathryn Mazaitis, Ni Lao, and William W Cohen. 2015b. Ef-

ficient inference and learning in a large knowledge base. Machine Learning,

100(1):101–126.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014a. Knowledge graph

https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.1109/TKDE.2017.2754499
https://pdfs.semanticscholar.org/f108/973a380bddeed5cd4eac95670194db667441.pdf


Bibliography 138

and text jointly embedding. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing, pages 1591–1601.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014b. Knowledge graph

embedding by translating on hyperplanes. In Proceedings of theTwenty-Eighth AAAI

Conference on Artificial Intelligence, pages 1112–1119.

Zhigang Wang and Juanzi Li. 2016. Text-enhanced representation learning for knowl-

edge graph. In Proceedings of the Twenty-Fifth International Joint Conference on

Artificial Intelligence, pages 1293–1299.

Zikang Wang, Linjing Li, Qiudan Li, and Daniel Zeng. 2019. Multimodal data en-

hanced representation learning for knowledge graphs. In Proceedings of the 2019

International Joint Conference on Neural Networks, pages 1–8.

Zhuoyu Wei, Jun Zhao, Kang Liu, Zhenyu Qi, Zhengya Sun, and Guanhua Tian. 2015.

Large-scale knowledge base completion: Inferring via grounding network sampling

over selected instances. In Proceedings of the Twenty-Fourth International ACM

Conference on Information and Knowledge Management, pages 1331–1340.

Jiawei Wu, Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016. Knowledge repre-

sentation via joint learning of sequential text and knowledge graphs. arXiv preprint

arXiv:1609.07075.

Yanrong Wu and Zhichun Wang. 2018. Knowledge graph embedding with numeric at-

tributes of entities. In Proceedings of The Third Workshop on Representation Learn-

ing for NLP, pages 132–136.

Han Xiao, Minlie Huang, Lian Meng, and Xiaoyan Zhu. 2017. Ssp: semantic space

projection for knowledge graph embedding with text descriptions. In Proceedings

of the Thirty-First AAAI Conference on Artificial Intelligence, pages 3104–3110.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016. From one point to a manifold:

knowledge graph embedding for precise link prediction. In Proceedings of the

Twenty-Fifth International Joint Conference on Artificial Intelligence, pages 1315–

1321.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. 2016a. Represen-

tation learning of knowledge graphs with entity descriptions. In Proceedings of the

Thirtieth AAAI Conference on Artificial Intelligence, volume 30, pages 2659–2665.

https://pdfs.semanticscholar.org/f108/973a380bddeed5cd4eac95670194db667441.pdf
https://pdfs.semanticscholar.org/f108/973a380bddeed5cd4eac95670194db667441.pdf
https://pdfs.semanticscholar.org/2a3f/862199883ceff5e3c74126f0c80770653e05.pdf
https://pdfs.semanticscholar.org/2a3f/862199883ceff5e3c74126f0c80770653e05.pdf
https://www.ijcai.org/Proceedings/16/Papers/187.pdf
https://www.ijcai.org/Proceedings/16/Papers/187.pdf


Bibliography 139

Ruobing Xie, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. 2017. Image-embodied

knowledge representation learning. In Proceedings of the Twenty-Sixth International

Joint Conference on Artificial Intelligence, pages 3140–3146.

Ruobing Xie, Zhiyuan Liu, and Maosong Sun. 2016b. Representation learning of

knowledge graphs with hierarchical types. In Proceedings of the Twenty-Fifth Inter-

national Joint Conference on Artificial Intelligence, pages 2965–2971.

Jiacheng Xu, Xipeng Qiu, Kan Chen, and Xuanjing Huang. 2017. Knowledge graph

representation with jointly structural and textual encoding. In Proceedings of the

Twenty-Sixth International Joint Conference on Artificial Intelligence, pages 1318–

1324.

Peng Xu and Denilson Barbosa. 2018. Investigations on knowledge base embedding

for relation prediction and extraction. arXiv preprint arXiv:1802.02114.

Ikuya Yamada, Akari Asai, Jin Sakuma, Hiroyuki Shindo, Hideaki Takeda, Yoshiyasu

Takefuji, and Yuji Matsumoto. 2020. Wikipedia2vec: An efficient toolkit for learn-

ing and visualizing the embeddings of words and entities from wikipedia. In Pro-

ceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-

cessing: System Demonstrations, pages 23–30.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Embed-

ding entities and relations for learning and inference in knowledge bases. In 3rd

International Conference on Learning Representations, Conference Track Proceed-

ings.

Fan Yang, Zhilin Yang, and William W Cohen. 2017. Differentiable learning of log-

ical rules for knowledge base reasoning. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, pages 2316–2325.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-BERT: BERT for knowledge

graph completion. arXiv preprint arXiv:1909.03193.

Richong Zhang, Fanshuang Kong, Chenyue Wang, and Yongyi Mao. 2018. Embedding

of hierarchically typed knowledge bases. In Proceedings of the Thirty-Second AAAI

Conference on Artificial Intelligence, volume 32, pages 2046–2053.

Wen Zhang, Jiaoyan Chen, Bibek Paudel, Hai Zhu, Liang Wang, Wei Zhang, Abraham

Bernstein, and Huajun Chen. 2019a. Iteratively learning embeddings and rules for

https://doi.org/10.24963/ijcai.2017/438
https://doi.org/10.24963/ijcai.2017/438
http://arxiv.org/abs/1412.6575
http://arxiv.org/abs/1412.6575
https://doi.org/10.1145/3308558.3313612


Bibliography 140

knowledge graph reasoning. In Proceedings of the 2019 World Wide Web Confer-

ence, pages 2366–2377.

Yongqi Zhang, Quanming Yao, Yingxia Shao, and Lei Chen. 2019b. NSCaching:

simple and efficient negative sampling for knowledge graph embedding. In IEEE

Thirty-Fifth International Conference on Data Engineering, pages 614–625.

Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. 2015. Align-

ing knowledge and text embeddings by entity descriptions. In Proceedings of the

2015 Conference on Empirical Methods in Natural Language Processing, pages

267–272.

W Zhou, S Wang, and C Jiang. 2019. Knowledge graph embedding with interactive

guidance from entity descriptions. IEEE Access, 7:156686–156693.

https://doi.org/10.1145/3308558.3313612
https://doi.org/10.1145/3308558.3313612
https://doi.org/10.1109/ACCESS.2019.2950015
https://doi.org/10.1109/ACCESS.2019.2950015

	Introduction
	Knowledge Graph Embeddings in Wider Context
	Overview and Contributions

	Background
	Tensor Preliminaries and Notation
	Tensor Decompositions
	CP-Decomposition
	Tucker Decomposition
	Joint Decompositions

	Knowledge Graph Completion
	Evaluation Protocol
	Datasets

	Knowledge Graph Embeddings
	Translational Models
	Bilinear Models
	Neural Models

	Using Auxiliary Information for Knowledge Graph Completion
	Models that Use Information from Text
	Models that Use Entity Type Information
	Models that Use Relation Paths
	Models that Use Logical Rules
	Models that use Other Auxiliary Data

	Training Choices
	Negative Training Triples
	Loss Functions
	Regularization


	Incorporating Entity Types in Knowledge Graph Embeddings
	Introduction
	Modelling Type Information for Knowledge Graphs
	Type-Consistency
	Joint Framework
	Generating type-consistency labels from KG triples

	Experiments
	Re-implementation of Baselines
	Experiments with Joint Framework
	Discussion
	Ablation Studies
	Robustness to Hyperparameter Settings
	Limitations of Experimental Design

	Related Work

	Learning Entity Embeddings from Knowledge Graph and Corpus
	Introduction
	Background and Notation
	GloVe Word Embeddings

	Our Joint Model
	Learning

	Experiments
	Baseline Models
	Datasets
	Linking Datasets to Corpus
	Implementation Details

	Results and Discussion
	Conclusion and Future Work

	Tensors over Semirings for Weighted Logic Programs
	Motivating Applications
	Dynamic Programs for Latent Variable Parsing
	Path Representations in Knowledge Graphs

	Main Results Takeaway
	Related Work
	Background and Notation
	Context-free Grammars
	Semirings
	Weighted Logic Programming
	Semiring Parsing
	Tensor Notation

	Tensor Weighted Logic Programs
	Semiring Operations
	Grammar Derivations
	Path Values
	Item-based Descriptions

	Efficient Calculation of Inside and Outside Values
	Inside Calculations
	Outside Calculations

	Conclusion and Future Directions

	Conclusion
	Entity-Linking for Experiments in Chapter 4
	Proofs of Theorems in Chapter 5
	Inside and Outside Calculations for Looping Buckets
	Bibliography

