

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Probabilistic Type Inference for the

Construction of Data Dictionaries

Taha Yusuf Ceritli

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

The University of Edinburgh

2021

Abstract

The data understanding stage plays a central role in the entire process of data analytics,

as it allows the analyst to gain familiarity with the data, identify data quality issues,

and discover initial insights into the data before further analysis (Chapman et al., 2000).

These tasks become easier in the presence of well-documented background informa-

tion such as a data dictionary, which is defined as “a centralized repository of informa-

tion about data such as meaning, relationships to other data, origin, usage, and format”

(McDaniel, 1994). However, data dictionaries are often missing or incomplete.

In this thesis we focus on inference of data types (both syntactic and semantic),

and develop probabilistic approaches that enable the automatic construction of a data

dictionary for a given dataset. Unlike existing rule-based methods, our proposed meth-

ods allow us to express uncertainty in a principled way and can provide accurate type

predictions even for messy datasets with missing and anomalous values.

The thesis makes the following contributions: First, we present ptype - a prob-

abilistic generative model that uses Probabilistic Finite-State Machines (PFSMs) to

represent data types. By detecting missing and anomalous data, ptype infers syntactic

data types accurately and improves over the performance of existing approaches for

type inference. Moreover, it offers the advantage of generating weighted predictions

when a column of messy data is consistent with more than one type assignment, in

contrast to more familiar finite-state machines (e.g., regular expressions).

Secondly, we propose ptype-cat which is an extension of ptype for a better detec-

tion of the categorical type. ptype treats non-Boolean categorical variables as either

integers or strings. By combining the output of ptype and additional features that

can indicate whether a column represents a categorical variable or not, ptype-cat can

correctly detect the general categorical type (including non-Boolean variables). In

addition, we adapt ptype to the task of identifying the values associated with the cor-

responding categorical variable.

Finally, we present ptype-semantics to demonstrate how ptype can be enriched

by semantic information. In this regard, we focus on dimension and unit inference,

which are respectively the task of identifying the dimension of a data column and the

task of identifying the units of its entries. Syntactic type inference methods including

ptype do not address these tasks. However, ptype-semantic can extract extra semantic

information (such as dimension and unit) about data columns and treat them as either

floats or integers rather than strings.

i

Lay Summary
A fundamental problem in data analytics is to understand the basics properties of a

given dataset. Storing such information in a separate document such as a data dictio-

nary, which is defined by McDaniel (1994) as “a centralized repository of information

about data such as meaning, relationships to other data, origin, usage, and format”, can

help to re-use a dataset. Although these documents are often missing or incomplete in

practice, they can be automatically created based on the data itself.

In this thesis, we focus on predicting the data type (such as categorial, date, float,

integer and string) for each column of a dataset. Relying on both the syntax and the

semantics, our models can provide accurate type predictions even in the presence of

missing and anomalous data. Note that missing data refers to the absence of a value

in a data entry which can be represented by special codes such as NA and null, while

anomalous data refers to the presence of an inconsistent data value such as Error in a

column of integers.

We first present ptype - a probabilistic model of a data column which potentially

consist of missing and anomalous data entries. We represent each data type in a prob-

abilistic manner and propose a model that can provide weighted predictions for a col-

umn of data consistent with more than one type, in contrast to non-probabilistic ap-

proaches. Our experiments show that ptype improves over the performance of existing

type inference methods.

A limitation of ptype is that it treats categorical variables with more than two pos-

sible values as either integers or strings (e.g., ptype would treat the blood type of a

person encoded by A, B, AB or O as string rather than categorical). We address this

limitation by combining its output with additional features that can indicate whether

a column represents a categorical variable or not, and running a separate classifier to

distinguish between the categorical type and the integer/string types. In addition, we

adapt ptype to the task of identifying the values associated with the corresponding

categorical variable.

The two methods described above rely on the syntax of the entries of a data col-

umn for type inference; however, they do not consider the semantic information about

a data column. We demonstrate how ptype can be enriched semantically by incorpo-

rating information from external sources such as a knowledge graph. In particular, we

tackle dimension and unit inference, which are respectively the task of identifying the

dimension (e.g., length and volume) of a data column and the task of identifying the

units (e.g., metres and litres) of its entries.

ii

Acknowledgements

I would not be able to complete this dissertation without the support of many col-

leagues and friends.

First of all I would like to thank my supervisor, Chris Williams, who has been a

source of inspiration and guidance for me. I feel privileged to be supported with his

wisdom and dedication in the research, which did not only stimulate the progress in

this thesis but also will stay as an inspiration for me going forward as a researcher.

I am also grateful to James Geddes for his collaboration and support throughout my

studies. It has always been a pleasure to receive feedback from James. I would also

like to thank Charles Sutton and Ewan Klein for providing valuable feedback during

my yearly review meetings, which helped to shape this thesis. Finally, I thank Roly

Perera for his collaboration on software development, which did not only enhanced the

quality of my existing code but also improved my understanding.

I owe the Alan Turing Institute a debt of gratitude for funding my studies and host-

ing me. I am also grateful to the School of Informatics at the University of Edinburgh

for supporting me with a stimulating research environment.

Thanks also to Alfredo, Deniz, Julien and Gerrit for their friendships; Gülce,

Nadin, Nezihe, Selin and many more, who have created wonderful memories over

the past few years. Finally, I would like to express my dearest gratitudes to my fam-

ily for their endless support throughout my entire life. I am deeply thankful for their

unconditional love.

iii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Taha Yusuf Ceritli)

iv

To my grandmother Gülen

v

Table of Contents

1 Introduction 1
1.1 Outline of the thesis . 3

2 Background 5
2.1 Data Dictionary . 5

2.2 Syntactic Type Inference . 7

2.3 Semantic Type Inference . 11

3 Syntactic Type Inference 13
3.1 Introduction . 13

3.2 Methodology . 14

3.2.1 Probabilistic Finite-State Machines 14

3.2.2 The Proposed Model . 17

3.2.3 Inference . 18

3.2.4 Training of the Model . 19

3.3 Experiments . 21

3.3.1 Experimental Setup . 21

3.3.2 Quantitative Results . 23

3.3.3 Qualitative Results . 29

3.4 Summary . 34

4 Inferring the Type and Values of Categorical Variables 35
4.1 Introduction . 35

4.2 Methodology . 37

4.2.1 Probabilistic Type Inference for Categorical Variables 38

4.2.2 Identification of Categorical Values 39

4.2.3 Using Meta-data for Inference 39

4.3 Experiments . 41

vi

4.3.1 Experimental Setup . 41

4.3.2 Experimental Results . 46

4.4 Discussion . 55

5 Bringing Semantics into Type Inference 56
5.1 Introduction . 56

5.2 Methodology . 58

5.2.1 Representing Units . 59

5.2.2 The Proposed Model . 60

5.2.3 Inference . 62

5.3 Related Work . 64

5.3.1 Semantic Web Technologies 65

5.3.2 Regular Expressions . 66

5.3.3 Machine Learning . 66

5.4 Experiments . 68

5.4.1 Experimental Setup . 68

5.4.2 Results . 70

5.5 Discussion . 77

6 Conclusions and Future Work 79
6.1 Summary of the Contributions . 79

6.2 Future Work . 81

6.2.1 Identifying the Ordinal and Nominal Types 81

6.2.2 Using Header Information to Aid Inference 81

6.2.3 Using Numeric Values for Unit Inference 82

6.2.4 Enhancing User Interactions 83

A Appendix for ptype 85
A.1 PFSMs for Data Types . 85

A.1.1 Integers . 85

A.1.2 Floats . 85

A.1.3 Strings . 86

A.1.4 Booleans . 86

A.1.5 Dates . 86

A.1.6 Missing . 86

A.1.7 Anomaly . 87

vii

A.2 Data Sets . 87

A.3 Derivations for the Training . 92

A.3.1 Derivative of Lc . 93

A.3.2 Derivative of L f . 95

A.4 The Outputs of the PADS Library 96

A.5 Scalability of the Methods . 99

B Appendix for ptype-cat 100

C Appendix for ptype-semantics 109
C.1 Additional Information about Our Knowledge Graph 109

C.2 Brief Description of the Datasets . 109

C.3 Regular Expressions for Parsing Unit Symbols 110

C.4 Derivations for Inference . 111

C.4.1 Column Type . 111

C.4.2 Row Label . 111

C.4.3 Row Unit . 112

C.4.4 Column Unit . 112

Bibliography 113

viii

List of Figures

2.1 Normal, missing, and anomalous values are denoted by green, yellow,

and red, respectively. 7

3.1 Graphical representation of a PFSM with states θ = {q0,q1,q2} and

alphabet Σ = {+,-,0,1, . . . ,9} where p denotes 1−Pstop
10 16

3.2 Fraction of the non-type entries in a dataset, calculated by aggregating

over its columns. Note that ‘overall’ denotes the fraction after aggre-

gating over the datasets. 23

3.3 Normalized confusion matrices for (a) F#, (b) messytables, (c) ptype,

(d) reader, (e) Trifacta, and (f) hypoparsr plotted as Hinton diagrams,

where the area of a square is proportional to the magnitude of the entry. 25

3.4 The time in seconds taken to infer a column type with ptype, as a

function of the number of unique data entries U in the column. Also

shown is the line c0 + c1U , where c0 is a small constant. 27

3.5 AUC(ptype) - AUC(Trifacta) plotted for each test dataset. 28

3.6 ROC curves plotted for some of the test datasets. 29

3.7 Annotating a subset of a T2D data set using ptype as normal, missing,

and anomalous entries, denoted by green, yellow, and red, respectively. 30

4.1 Overview figure. 36

4.2 A dataset and a section of the corresponding ARFF file. 37

4.3 A graphical representation of the re-distribution step where we split

the probability mass for the integer type between the integer and cate-

gorical types. 39

4.4 PR curves for the methods. 46

4.5 Hinton plots of the normalized confusion matrices. 47

4.6 PR curves for the methods. 51

4.7 Hinton plots of the normalized confusion matrices. 52

ix

4.8 PR curves for the methods. 54

5.1 A motivating real-world example that represents our pipeline. a) shows

the samples of a raw dataset. b) indicates the intermediate steps re-

quired to transform the column. c) denotes the final data column ob-

tained by applying the transformations. 57

5.2 Normalized confusion matrices for (a) Quantulum, (b) S-NER and (c)

ptype-semantics plotted as Hinton diagrams, where the area of a square

is proportional to the magnitude of the entry. 72

5.3 Runtime violin plots denote the time in seconds taken to infer dimen-

sions per column. The dot, box, and whiskers respectively denote the

median, interquartile range, and 95% confidence interval. 73

6.1 The probability density functions of the numeric values 83

A.1 A fragment of the PADS output for a given dataset. 98

x

List of Tables

2.1 A summary of the rule-based type inference methods. Here, the pres-

ence of a 4 sign indicates whether a method considers the correspond-

ing issue. 8

3.1 Histogram of the column types observed in the training and the test

data sets. 22

3.2 Performance of the methods using the Jaccard index and overall accu-

racy, for the types Boolean, Date, Float, Integer and String. 24

3.3 Performance of the methods using the Jaccard index and overall accu-

racy, for the types Date, Logical, Numeric and Text. 26

3.4 The percentages of FPs, FNs, and TPs for Trifacta and ptype on type/non-

type detection. 29

4.1 Data types and their synonyms found in our data dictionaries. 41

4.2 Performance of the methods using the overall accuracy and per-class

Jaccard index, for the Categorical, Date, Float, Integer and String types. 46

4.3 Performance of the models on inference of categorical values. 49

4.4 Performance of the methods using the overall accuracy and per-class

Jaccard index, for the Categorical, Date, Float, Integer and String types.

We highlight the best score in each row by making the highest score

bold. 51

4.5 Performance of the methods using Overall Accuracy and average of

Jaccard index per column. 54

5.1 Two elements of the unit dictionary. Note that URIs begin with https:

//en.wikipedia.org/. 59

5.2 A summary of the notation used by ptype-semantics. 60

xi

https://en.wikipedia.org/
https://en.wikipedia.org/

5.3 Size of the datasets used and the number of units and unit symbols in

each data column. 69

5.4 Performance of the methods for dimension inference using the Jaccard

index and overall accuracy, for the dimensions Currency, Data storage,

Length, Mass and Volume. We highlight the best score in each row by

making the highest score bold. 71

5.5 Accuracy of the methods on unit identification. We highlight the best

score in each row by making the highest score bold. 74

5.6 The t-statistics and p-values obtained by applying a paired t-test on the

differences of the accuracies, i.e., Accuracy(ptype-semantics) - Accu-

racy(competitor method). 75

5.7 Accuracies of the methods on handling unit canonicalization problems

per data column. 77

A.1 Information about the data sets used. 91

A.2 A sample test dataset. 97

A.3 Size of the test datasets and the times in seconds it takes to infer col-

umn types per column (on average), where U denotes the number of

unique data entries in a dataset. 99

B.1 Summaries per fold. 107

B.2 Summaries per fold. 108

xii

Chapter 1

Introduction

Data analytics refers to the process of generating useful insights from raw datasets. The

CRoss-Industry Standard Process for Data Mining (CRISP-DM) methodology formal-

izes this process and describes the stages that the analyst typically goes through in a

data analytics project, such as “data collection”, “data understanding”, “data cleaning”

and “data modeling” (Chapman et al., 2000). The phase to which the machine learning

community draws attention the most is perhaps the data modeling stage where the goal

is to develop a statistical model to address an analytical task. These efforts are crucial

to obtain a good solution to the problem of interest; however, the modeling step is only

a small part of the whole process. In practice, most of the efforts is rather spent on the

concept of data wrangling, which refers to the task of understanding, interpreting and

preparing a raw data set, and turning it into a usable format (see Nazábal et al. (2020)

for a detailed analysis of the challenges in a data analytics project). Going back to the

categorization proposed by Chapman et al. (2000), data wrangling is mainly carried

out during the “data understanding” and “data cleaning” stages. It often leads to a

frustrating and time-consuming process for large data sets, and even possibly for some

small-sized ones (Dasu and Johnson, 2003).

In the data understanding stage, the aim is to gain familiarity with the data, identify

data quality issues, and discover initial insights into the data before further analysis

(Chapman et al., 2000). Therefore, it plays a central role in the entire process of data

analytics. These tasks become challenging when well-documented prior information

such as a data dictionary, which is defined as “a centralized repository of information

about data such as meaning, relationships to other data, origin, usage, and format”

(McDaniel, 1994), is not available. Given the abundance of datasets without data dic-

tionaries, a common but ad-hoc solution to this problem is to manually inspect a given

1

Chapter 1. Introduction 2

dataset to understand its basic properties, such as what the dataset is about, what each

data column represents and how missing data is encoded. The need to apply such man-

ual efforts is perhaps one of the reasons why so much time is spent on data wrangling.

To accelerate “data understanding”, we can make use of data-driven approaches

that can detect the basic properties of a given dataset based on the data itself, e.g.,

identifying syntactic types of the data columns such as integer and date (Petricek et al.,

2016; Döhmen et al., 2017; Lindenberg, 2017; Fisher and Gruber, 2005; Wickham

et al., 2017; Stochastic Solutions, 2018; Trifacta, 2018), identifying semantic entity

types of the data columns such as country (Chen et al., 2019b) and identifying missing

data encodings (Qahtan et al., 2018). Note that there is no consensus on the content

and format of data dictionaries; however, a core component commonly reported in data

dictionaries is the data type which specifies the type of values in a data column. The

data type (syntactic and semantic) is one of the fundamental properties of a data column

that needs to be understood before further analysis, including the data modeling stage.

Existing approaches provide a limited capability for type inference, which, in turn,

slows down the data understanding stage. There are three main reasons for these lim-

itations (see Chapter 2 for a detailed discussion.). First, most methods are rule-based,

taking into account heuristics to identify data types. Therefore, their capabilities are

restricted to the cases covered by these heuristics. Second, existing methods are not

robust against missing and anomalous data, which is commonly found in raw datasets.

Consequently, they fail to identify the data types in the presence of such data. Third,

most previous works do not comprehensively consider the categorical type. While

most methods can annotate the Boolean variables with the categorical type, they do

not take into account the non-Boolean variables where there are more than two pos-

sible values encoded by integers or strings, e.g., the Blood type of people where the

possible values are A, B, AB and 0. As a result, the analyst needs to inspect the data

to identify the data types and then perform the necessary corrections on the data type

predictions obtained by using existing methods.

In this thesis, I consider three type inference problems and investigate systematic

approaches to these problems. The goal here is to develop probabilistic methods that

can perform better in the presence of missing and anomalous data than existing ap-

proaches, most of which are rule-based. The main contributions of this thesis can be

summarized as follows:

Syntactic type inference: Syntactic type inference is typically carried out by using

Finite-State Machines (FSMs), such as regular expressions, that either accept or reject

Chapter 1. Introduction 3

a given data value (Petricek et al., 2016; Döhmen et al., 2017; Lindenberg, 2017; Fisher

and Gruber, 2005; Wickham et al., 2017; Stochastic Solutions, 2018; Trifacta, 2018).

In contrast, we use Probabilistic Finite-State Machines (PFSMs) that assign proba-

bilities to different values and therefore offer the advantage of generating weighted

predictions when a column of messy data is consistent with more than one type assign-

ment. Moreover, PFSMs provide a more adaptive solution than FSMs as they can be

trained with data.

Inferring the type and values of categorical variables: Existing methods anno-

tate non-Boolean categorical variables either as integer or string rather than categori-

cal. To eliminate the need to manually transform such data into categorical, OpenML1,

Weka2 and Majoor and Vanschoren (2018) use heuristics (see Chapter 2 for a detailed

discussion). Here, I present ptype-cat - a probabilistic model that can identify the

general categorical type (including non-Boolean variables) and the corresponding cat-

egorical values better than the existing solutions.

Semantic type inference: In addition to the syntactic types described above, the

semantic types such as country can provide further insights into the data. The analyst

can extract such information by employing entity type inference methods; however,

the existing approaches do not tackle the problem of understanding how measurements

are encoded in quantitative data columns. Here, I address the task of identifying the

dimension (e.g., length, mass and volume) of a data column and the units of all its

entries so that they all are expressed in the same units.

1.1 Outline of the thesis

The remainder of this document is structured as follows:

Chapter 2 introduces three type inference problems and presents an overview of

existing methods that address these problems.

Chapter 3 describes the probabilistic model ptype that has been built for the syn-

tactic type inference task. We propose a generative model that uses PFSMs to represent

data types. The proposed model can be used to identify the data type for each column

of a dataset robustly in the presence of missing and anomalous values. Our experi-

ments demonstrate the benefits of our model in handling messy raw datasets over the

1The code is available at https://github.com/openml/ARFF-tools/blob/master/csv-to-
arff.py [Accessed on 09/11/2020]

2The details are at https://waikato.github.io/weka-wiki/formats_and_processing/
converting_csv_to_arff/[Accessed on 05/12/2020].

https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/

Chapter 1. Introduction 4

existing approaches. The work presented in this chapter has been published in Ceritli

et al. (2020).

Chapter 4 gives the details of ptype-cat which extends ptype to identify the gen-

eral categorical data type, including non-Boolean variables. Besides, we identify the

possible values of each categorical variable by using ptype. Combining these methods,

we automate the construction of data dictionaries in the well-known Attribute Relation

File Format and provide enhanced type inference capability for Pandas DataFrames.

Our extensive experiments show that our method achieves better results than existing

applicable solutions.

Chapter 5 demonstrates how semantic type inference can be carried out by com-

bining knowledge graphs and probabilistic models. Particularly, we address the task of

explaining how measurements are encoded in quantitative data columns. We evaluate

the proposed model on several real-world datasets and show that its performance is

better than the applicable related works.

Chapter 6 summarises the results presented in the thesis and discusses directions

for future work.

Chapter 2

Background

In this chapter, we describe the concept of a data dictionary (Sec. 2.1) and introduce

three problems: (i) syntactic type inference, (ii) identification of categorical values

(both in Sec. 2.2) and (iii) semantic type inference (Sec. 2.3). Addressing these tasks

can assist in constructing the data dictionary for a given dataset by providing data type-

related information about data columns. In addition, we discuss existing methods that

can help to automate each of these tasks.

2.1 Data Dictionary

A data dictionary (a.k.a. metadata or schema) is typically used to provide background

information about a dataset, such as the data type of each column, data values used to

encode missing data and data values that should be treated as anomalous. However,

data dictionaries are often incomplete or incorrect as constructing a data dictionary for

a given dataset can be a tedious task, and the process is prone to human errors. Below,

we review the following three components of data dictionaries: data type, missing data

and anomalous data. Note that Castelijns et al. (2020) use these three components to

evaluate and describe the data quality in a formal framework.

Data Type

Each column of a dataset can be ascribed to a data type. These types can be basic

data types (such as Boolean, date, float, integer and string) or more complex data types

(such as the general categorical type, IP-address, email-address and phone number).

Identifying the data types can help the analyst to decide how the data is going to be

5

Chapter 2. Background 6

processed by providing insight into the data. For example, the analyst may want to ap-

ply one-hot encoding on categorical variables as a data preprocessing step. Similarly,

different likelihood models may be chosen for continuous and categorical variables

(see Sec. 2.2 for a detailed discussion). Therefore, data type is one of the core compo-

nents of data dictionaries. However, accurate type inference in the presence of missing

and anomalous data remains a challenge.

Missing Data

Missing data is a significant part of data dictionaries as it can inform the analysts how

the absence of data values is represented. Identifying missing data can become difficult

without the help of data dictionaries as there are many ways to encode missing data.

Perhaps the most natural option is to leave missing data entries empty, although it is a

common practice to use special data values (e.g., NA) known as missing data encodings

to represent missing data. It becomes even more challenging to identify missing data

when non-standard missing data encodings are used. In such cases, we can rely on data

types to detect missing data, e.g., checking whether the data type of each data value is

the same as the data type of the whole column. However, relying on data types would

not help when missing data is encoded by the same type as the column type (e.g., -1

or -99 in a column of the integer type). Pearson (2006) refers to such problems as the

problem of disguised missing data, and further shows how interpreting missing data

as valid values can mislead the statistical analysis. Density-based outlier detection

methods can be used to detect disguised missing data (Qahtan et al., 2018).

Anomalous Data

Poor data quality does not only result from the absence of data but also from the pres-

ence of anomalous data. Chandola et al. (2009) define an anomaly as “a pattern that

does not conform to expected normal behavior”. In our context, anomalies refer to

unexpected or invalid entries for a given column, which might be a consequence of the

data collection procedure, e.g. error and warning messages generated by servers or the

use of open-ended entries while collecting data.

It is a less common practice to specify anomalous values than missing data in data

dictionaries. Therefore, it becomes a vital task to detect and deal with anomalous

data. The challenge then is mostly due to the difficulty of distinguishing normal and

anomalous data. One may need to consider separate strategies to model anomalies for

Chapter 2. Background 7

different data types. For example, syntactic approaches can help to detect anomalies

in date columns (e.g., detecting Error in a date column where the date values are

represented using the ISO-8601 format), whereas numerical anomalies can be detected

using statistical models rather than syntactic approaches.

2.2 Syntactic Type Inference

In syntactic type inference, the goal is to determine the type of a column based on

the syntax of the data values in its entries. Numerous studies have attempted to tackle

syntactic type inference. However, these methods provide a limited capability to detect

missing and anomalous data, resulting in incorrect column type predictions as shown

in Fig. 2.1 where data columns are labelled with the string type unless missing and

anomalous data are detected.

Figure 2.1: Normal, missing, and anomalous values are denoted by green, yellow, and

red, respectively.

We categorize syntactic type inference methods into two groups: (i) rule-based

approaches and (ii) probabilistic approaches, which are discussed in detail below.

Rule-based Approaches

Table 2.1 presents an overview of the capabilities of existing rule-based syntactic type

inference methods. As per the table, they all address the detection of basic types and

Chapter 2. Background 8

missing data, although only a limited number of missing data encodings is supported.

However, they do not generally consider the detection of non-Boolean categorical vari-

ables, complex types and anomalous data.

Method Basic Types Non-Boolean Categorical Complex Types Missing Data Anomalies

Bot 4 4 4

F# 4 4 4

hypoparsr 4 4

messytables 4 4

OpenML 4 4 4

readr 4 4

TDDA 4 4

Trifacta 4 4 4 4

Weka 4 4 4

Table 2.1: A summary of the rule-based type inference methods. Here, the presence of

a 4 sign indicates whether a method considers the corresponding issue.

Most existing rule-based methods, including F# (Petricek et al., 2016), hypoparsr

(Döhmen et al., 2017), messytables (Lindenberg, 2017), PADS (Fisher and Gruber,

2005), readr (Wickham et al., 2017), Test-Driven Data Analysis (TDDA, Stochastic

Solutions 2018) and Trifacta (Trifacta, 2018) combine regular expressions with cer-

tain rules for type inference. For example, Trifacta (2018) and its preceding versions

(Raman and Hellerstein, 2001; Kandel et al., 2011; Guo et al., 2011) apply validation

functions to a sample of data to infer types, e.g., assign the one validated for more

than half of the non-missing entries as the column type, where a data value is val-

idated using regular expressions (Kandel et al., 2011). When multiple types satisfy

this criterion, the more specific one is chosen as the column type, e.g., an integer is

assumed to be more specific than a float. Trifacta supports a comprehensive set of data

types and provides an automatic discrepancy detector to detect errors in data (Raman

and Hellerstein, 2001). However, in our experience, its performance on type inference

can be limited on messy datasets (see Sec. 3.3.2 for our experimental results for type

inference).

Fisher and Gruber (2005) and Fisher et al. (2008) have developed data descrip-

tion languages for processing ad hoc data sources (PADS) which enables generating a

human-readable description of a dataset based on data types inferred using regular ex-

pressions. However, their focus is on learning regular expressions to describe a dataset,

rather than classifying the data columns into known types.

Chapter 2. Background 9

Test-Driven Data Analytics (TDDA, Stochastic Solutions 2018) uses the Pandas

CSV reader to read the data into a data frame. It then uses the Pandas dtypes attributes1,

to determine the data type of the columns. However, this leads to a poor type detection

performance since the Pandas reader is not robust against missing data and anomalies,

where only empty string, NaN, and NULL are treated as missing data unless the user

specifies differently.

Petricek et al. (2016) propose another use of regular expressions with F#, where

types, referred as shapes, are inferred based on a set of preferred shape relations. Such

relations are used to resolve ambiguous cases where a data value fits multiple types.

This procedure allows integrating inferred types into the process of coding, which can

be useful to interact with data. However, it does not address the problems of missing

and anomalous data comprehensively, where only three encodings of missing data, NA,

#NA, and :, are supported. This may lead to poor performance on type inference when

missing data is encoded differently, or there are anomalies such as error messages.

A number of software packages in R and Python can also infer data types. messyta-

bles (Lindenberg, 2017) determines the most probable type for a column by weighting

the number of successful conversions of its elements to each type. This can potentially

help to cope with certain data errors; however, it might be difficult to find an effective

configuration of the weights for a good performance. Moreover, it can not handle the

disguised missing data values, e.g., -1 in a column of type integer, which can be mis-

leading for the analysis. Döhmen et al. (2017) propose a CSV parser named hypoparsr

that treats type inference as a parsing step. It takes into account a wide range of missing

data encodings; however, it does not address anomalies, leading to poor performance

on type inference (see Sec. 3.3.2 for our experimental results for type inference). readr

(Wickham et al., 2017) is an R package to read tabular data, such as CSV and TSV

files. However, in contrast to hypoparsr, a limited set of values are considered as miss-

ing data, unless the user specifies otherwise. Furthermore, it employs a heuristic search

procedure using a set of matching criteria for type inference. The details regarding the

criteria are given in Wickham and Grolemund (2016). The search continues until one

criterion is satisfied, which can be applied successfully in certain scenarios. Whenever

such conditions do not hold, the column type is assigned to string.

The methods discussed above support various data types including the Boolean

type, which can be seen as a subtype of the categorical type; however, they do not

consider non-Boolean categorical variables where there are more than two categor-

1obtained with the function pandas_tdda_type().

Chapter 2. Background 10

ical values. Consequently, they treat such columns as either integers or strings rather

than categoricals. A limited number of works can identify the general categorical type

(including the non-Boolean variables). Bot (Majoor and Vanschoren, 2018) reads the

data by using the Pandas.read_csv() function and applies a set of heuristics to map the

inferred data types to the types of categorical, date, float, integer and string. For exam-

ple, if the Pandas.read_csv() function infers the type of a data column as integer and

the data entries has two unique values, the column is labelled as categorical. Similarly,

a data column initially labelled with the integer type is treated as a categorical variable

when one of the following conditions is satisfied: (i) if the number of unique values

is less than 11 and (ii) if the number of unique values is between 10 and a pre-defined

value and the average of absolute distances between integers is lower than the average

of integers. Bot uses similar heuristics to identify categorical variables where the pos-

sible values are encoded by strings. These heuristics would help to identify categorical

variables in certain scenarios. However, we consider a more flexible solution based on

a trained machine learning model in Chapter 4.

An alternative approach to Bot is to use the file conversion techniques that convert

Comma-separated values (CSV) files to the Attribute Relation File Format (ARFF)2.

For example, csv2arff3 is used in OpenML to identify ARFF data types (date, nominal,

numeric and string) and categorical values. Note that nominal is the ARFF term used

to refer to categorical. It uses the Pandas library to parse a data file and employs a

rule-based approach that is similar to Bot (e.g., a data column is labelled with the

integer type if (i) all the data values are either missing data indicators or integers and

(ii) the number of unique values except those detected as missing are higher than 10).

Therefore, this method offers limited capability compared to a trained probabilistic

model. Additionally, it does not distinguish between the float and integer types, as

such columns are labelled with the ARFF numeric type. Weka4 provides another rule-

based approach for CSV to ARFF conversion. For example, a data column is labelled

as numeric if all the data values except those detected as missing can be converted

to floating-point numbers. Note that it can only detect missing data encoded by the

question mark symbol ?, unless the user specifies differently. This conversion method

suffers from similar issues as OpenML’s converter.

2The details are available at https://waikato.github.io/weka-wiki/formats and processing/arff stable/
[Accessed on 05/12/2020]

3The code is available at https://github.com/openml/ARFF-tools/blob/master/csv-to-
arff.py [Accessed on 09/11/2020]

4The details are at https://waikato.github.io/weka-wiki/formats_and_processing/
converting_csv_to_arff/[Accessed on 05/12/2020].

https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/

Chapter 2. Background 11

Following the detection of categorical variables, CSV to ARFF conversion methods

typically carry out identification of categorical values, where the goal is to identify the

categorical values of a categorical variable. For example, OpenML’s csv2arff first

identifies missing data using the isnan() functions of the NumPy and math packages.

Once this has been done, the remaining values are identified as the categorical values.

Although these functions can help to handle standard missing data encodings, they do

not handle anomalous data. The rule-based approach used in Weka suffers from similar

issues as OpenML’s converter.

Probabilistic Approaches

A few number of studies tackle type inference from a probabilistic perspective. Valera

and Ghahramani (2017) and Vergari et al. (2019) propose probabilistic models for dis-

covering statistical types including the categorical type. However, both models are

tackling very different problems than the one that we address in Chapters 3 and 4.

Valera and Ghahramani (2017) assume that the data contains only numerical values

and that it does not have any missing data and anomalies. Given this they address

the problem of making fine-grained distinctions between different types of continu-

ous variables (real-valued data, positive real-valued data, and interval data) and dis-

crete variables (categorical data, ordinal data, and count data). Similarly, Vergari et al.

(2019) assume that each entry of a data column contains a numerical value or an ex-

plicit missing data indicator. The authors tackle missing data imputation rather than

missing data detection and attempt to detect numerical outliers, but do not detect string

anomalies in a column.

Eduardo et al. (2020) tackle detection and repair of cell-level outliers. The authors

propose a deep generative model for tabular data consisting of numeric and categorical

features. The idea is to extend Variational Autoencoder by introducing an additional

component to the observation model per feature, which accounts for the corruptions in

the data. Although this approach has been shown useful to detect and repair numerical

outliers, it does not address how to handle string anomalies (e.g., error messages).

2.3 Semantic Type Inference

In semantic type inference, the goal is to go beyond the syntactic types and provide fur-

ther insights into the data. A growing body of literature (Limaye et al., 2010; Zwickl-

Chapter 2. Background 12

bauer et al., 2013; Chen et al., 2019a) has investigated the use of knowledge graphs

(KGs) for semantic type inference, where the task is to annotate each column of a

dataset with an entity class in a KG. Limaye et al. (2010) propose a log-linear model

based method to annotate a table in terms of the semantic column types, cell entities,

and column relations, given an ontology of relevant information. For example, given a

table that contains information about actors such as names and ages, the task is to find

semantic column types of actor and age, the entities each row refers to, and the depen-

dent relationship between two columns, i.e., one column denotes the age of an actor

whose name is given in the other column. Zwicklbauer et al. (2013) focus only on

semantic column type inference rather than solving the three tasks mentioned above

collectively. The authors employ cell-to-entity matching and determine the column

type through a majority voting on the annotated cell entities. A more sophisticated

approach is proposed by Chen et al. (2019a) where a neural network is combined with

KG lookups. The scope of the annotations of these methods are typically wider than

the annotations considered by syntactic type inference methods. However, they are

limited by the extent of the information held in the KG.

Chapter 3

Syntactic Type Inference

In the remainder of this chapter, we first motivate our work on syntactic type inference

(Section 3.1). Then, we describe Probabilistic Finite-State Machines (PFSMs) and

introduce our model (Section 3.2). Finally, we present the experiments and the results

(Section 3.3), which is followed by a summary of our work and a discussion of the

possible future research directions (Section 3.4).

3.1 Introduction

As we describe in Sec. 2.1, the goal in syntactic type inference is to infer the data

type (e.g., date, float, integer and string) for each column in a table of data. Numerous

studies have attempted to tackle the syntactic type inference task, including wrangling

tools (Raman and Hellerstein, 2001; Kandel et al., 2011; Guo et al., 2011; Trifacta,

2018; Fisher and Gruber, 2005; Fisher et al., 2008), software packages (Petricek et al.,

2016; Lindenberg, 2017; Stochastic Solutions, 2018; Döhmen et al., 2017; Wickham

et al., 2017) and probabilistic approaches (Valera and Ghahramani, 2017; Vergari et al.,

2019; Limaye et al., 2010) (see Sec. 2.2 for a detailed discussion of these methods).

However, often they do not work very well in the presence of missing and anomalous

data, which are commonly found in raw data sets due to the lack of a well-organized

data collection procedure.

Consider the toy example given in Figure 2.1 (Sec. 2.2) which consists of three

data columns with missing data encoded by NA, -1 and Null and anomalous data val-

ued Error and &%&. Such values make the type inference task challenging for the

existing approaches, and need to be detected before further analysis. See Sec. 2.1 for

an overview of missing and anomalous data.

13

Chapter 3. Syntactic Type Inference 14

Up to now, too little attention has been paid to the aforementioned problems by the

data mining community. To this end, we introduce ptype, a probabilistic type inference

method that can accurately infer the data type for a column of data even in the presence

of missing and anomalous data. The proposed model is built upon PFSMs that are used

to model known data types, missing and anomalous data. In contrast to the standard

use of regular expressions, PFSMs have the advantage of generating weighted posterior

predictions even when a column of data is consistent with more than one type model.

Our method is shown to generally outperform existing type inference approaches for

inferring data types, and also allows us to identify missing and anomalous data entries.

3.2 Methodology

This section consists of four parts. Sec. 3.2.1 gives background information on PFSMs

used to model regular data types, missing data, and anomalies. Sec. 3.2.2 introduces

our model that uses a mixture of PFSMs. Lastly, Sec. 3.2.3 and Sec. 3.2.4 describe

respectively inference in and training of this model.

The data type, missing data, and anomalies can be defined in broad terms as fol-

lows: The data type is the common characteristic that is expected to be shared by

entries in a column, such as integers, strings, IP addresses, dates, etc., while miss-

ing data denotes an absence of a data value which can be encoded in various ways, and

anomalies refer to values whose types differ from the given column type or the missing

type.

In order to model above types, we have developed PFSMs that can generate values

from the corresponding domains. This, in turn, allows us to calculate the probability

of a given data value being generated by a particular PFSM. We then combine these

PFSMs in our model such that a data column x can be annotated via probabilistic

inference in the proposed model, i.e., given a column of data, we can infer column

type, and rows with missing and anomalous values.

3.2.1 Probabilistic Finite-State Machines

Finite-State Machines (FSMs) are a class of mathematical models used to represent

systems consisting of a finite number of internal states. The idea is to model a system

by defining its states (including initial and final states), transitions between the states,

and external inputs/outputs. FSMs have a long history going back at least to

Chapter 3. Syntactic Type Inference 15

Rabin and Scott (1959) and Gill (1962). A more recent overview of FSMs is given by

Hopcroft et al. (2001).

In this study, we are interested in a special type of FSMs called Probabilistic Finite-

State Machines (PFSMs) in which transitions between states occur with respect to

probability distributions (Paz, 1971; Rabin, 1963). Vidal et al. (2005) discuss various

PFSMs in detail. Following a similar notation, we define a PFSM as a tuple

A = (θ,Σ,δ, I,F,T), where θ is a finite set of states, Σ is a set of observed symbols (a

given subset of characters in our case), δ⊆ θ×Σ×θ is a set of transitions among states

with respect to observed symbols, I : θ→ [0,1] is the initial-state probabilities, F : θ→
[0,1] is the final-state probabilities, and T : δ→ (0,1] is the transition probabilities for

the elements of δ. During each possible transition between states, a symbol is emitted.

We denote such an event by a triple (q,α,q′), which corresponds to a transition from a

state q∈ θ to a state q′ ∈ θ emitting a symbol α∈Σ. Note that δ and T store respectively

all the possible triples and their corresponding probabilities.

A PFSM has to satisfy certain conditions. First, the sum of the initial-state prob-

abilities has to be equal to 1. Secondly, at each state q, it can either transition to

another state q′ ∈ θ and emit a symbol α ∈ Σ, or stop at state q without emitting any

symbol. This can be expressed mathematically as F(q)+∑α∈Σ,q′∈θ T (q,α,q′) = 1 for

each state q, where T (q,α,q′) represents the probability of a triple (q,α,q′), and F(q)

denotes the final-state probability of state q. Based on the definition given above, a

PFSM can generate a set of strings, denoted by Σ∗.1 For each string s ∈ Σ∗, we can

calculate a probability that represents how likely it is for a given PFSM to generate the

corresponding string.

Note that PFSMs resemble Hidden Markov Models (HMMs) except that we now

have the final state probabilities. Recall that each state in an HMM has a probability

distribution over the possible states that it can transition to. In PFSMs, each state also

takes into account the probability of being a final state. Hence, the probability distribu-

tion is not only defined over the possible transitions to next states; it also includes the

case of the current state being a final state. On the other hand, emissions are carried

out similarly in PFSMs and HMMs: the observations are generated conditioned on the

hidden states in HMMs; an observation is emitted through a transition in PFSMs since

each transition is associated with a symbol. A detailed analysis of the link between

PFSMs and HMMs can be found in Dupont et al. (2005).

One can develop PFSMs to represent types described previously and calculate the

1Σ∗ denotes the set of strings a PFSM can generate by emitting multiple symbols.

Chapter 3. Syntactic Type Inference 16

probabilities for each observed data value. We now explain the corresponding PFSMs

in detail.

Representing Types with PFSMs

Here, we show how a PFSM can be used to model a data type. We divide types into two

groups: (i) primitive types consisting of integers, floats, Booleans and strings, and (ii)

complex types such as IP addresses, email addresses, phone numbers, dates, postcodes,

genders and URLs. The details regarding the implementation of the corresponding

PFSMs can be found in Appendix A.1.

Consider integer numbers whose domain is {−∞,∞}. We can represent the cor-

responding PFSM as in the diagram given in Figure 3.1. The machine has two initial

states, namely q0 and q1, and one final state q2. Here, q0 and q1 respectively allow us

to represent integer numbers with a sign (plus or minus), or without any sign.2 The

machine eventually transitions to the state q2, which stops with a stopping probability

F(q2) = Pstop. Otherwise, it transitions to itself by emitting a digit with an equal prob-

ability, (1−Pstop)/10. Similarly, we can develop a PFSM to represent each one of the

other column types.

q0

start

q1

start

q2

0.5(+)

0.5(−)

0.1(0)

. . .
0.1(9)

p(0)

p(9)

. . .

Figure 3.1: Graphical representation of a PFSM with states θ = {q0,q1,q2} and alpha-

bet Σ = {+,-,0,1, . . . ,9} where p denotes 1−Pstop
10 .

The PFSM for missing values can be developed by using a pre-defined set of codes

such as {-1,-9,-99,NA,NULL,N/A,-, . . .}. It assigns non-zero probabilities to each

element in this set. Note that the corresponding PFSM already supports a wide range

of codes; however, it can be easily extended by the user to incorporate other known

missing data encodings, leading to semi-automated operation.

In order to model anomalies, we adapt the idea of X-factor proposed by Quinn

et al. (2009). We define a machine with the widest domain among all the PFSMs that
2The transitions from state q1 allow the emission of a zero, which means that numbers like −007

can be emitted. If this is not desired, one can adjust the PFSM in Figure 3.1 to not emit a leading 0.

Chapter 3. Syntactic Type Inference 17

supports all possible characters. This choice of PFSM lets the probabilistic model

become more robust against anomalies since it assigns probabilities to data values that

do not belong to any of the PFSMs representing the data types. Note that as this PFSM

covers a wider domain, it will assign lower probabilities to known data types than the

specific models.

Constructing PFSMs for complex types might require more human engineering

than the other types. We reduce this need by building such PFSMs automatically from

corresponding regular expressions. We first convert regular expressions to FSMs by

using the greenery library3 (see the function named to_fsm()). We then build their

probabilistic variants, where the parameters are assigned equal probabilities. Note that

these parameters can be updated with the training.

3.2.2 The Proposed Model

We propose a new probabilistic mixture model with a noisy observation model, al-

lowing us to detect missing and anomalous data entries. Our model first generates a

column type from a set of possible regular data types. This is followed by a “defi-

ciency” process that can potentially change the data type of each row. Consequently,

each row might have a different type rather than the generated column type. The ob-

servation model then generates a data value for each entry according to its type. We

now introduce our notation to represent this process.

We assume that a column of data x = {xi}N
i=1 has been read in, where each xi

denotes the characters in the ith row. We propose a generative model with a set of latent

variables t ∈ {1,2, ...,K} and z = {zi}N
i=1, where t and zi respectively denote the data

type of a column and its ith row. Here, N is the number of rows in a data column, and K

is the number of possible data types for a column. We also use the additional missing

and anomaly types, denoted by m and a respectively, and described above. Note that

zi can be of type m or a alongside a regular data type, i.e., zi ∈ {1,2, ...,K,m,a}. This

noisy observation model allows a type inference procedure robustified for missing and

anomalous data values.
3The library is available at https://github.com/qntm/greenery [Accessed on 09/02/2021].

https://github.com/qntm/greenery

Chapter 3. Syntactic Type Inference 18

Hence the model has the following generative process:

column type t ∼ U(1,K),

row type zi =

t with probability πt

t ,

m with probability πm
t ,

a with probability πa
t ,

row value xi ∼ p(xi|zi),

where Π and p(xi|zi) are respectively the model parameter and the observation model.

U denotes a discrete Uniform distribution. Here πt
t + πm

t + πa
t = 1 for each column

type t. Since entries are often expected to be of a regular data type rather than missing

or anomaly types, we favour regular types during inference by using lower coefficients

for missing and anomaly types, i.e., πm
t < πt

t and πa
t < πt

t . These weight parameters

Π are assumed to be fixed and known. Even though one can also learn the weights,

which can help us adapt the model to how noisy data is, this may not be vital as

long as the coefficients of the regular types are larger than the others. Note that the

model might treat clean data entries as missing or anomalous when the corresponding

coefficients are larger than the coefficients of the regular type, as this would encourage

the probabilities assigned by the missing or anomaly type (e.g., apple might be treated

as an anomaly rather than a string).

We use a uniform distribution for column types as in most cases we do not have

any prior information regarding the type of a column that would allow us to favour a

particular one. To represent the conditional distribution p(xi|zi), we have developed

PFSMs as described above.

3.2.3 Inference

Given a data column x, our initial goal is to infer the column type t, which is cast to the

problem of calculating the posterior distribution of t given x, denoted by p(t|x). Then,

we assume that each row can be of three types: (i) the same as the column type, (ii)

the missing type, and (iii) the anomaly type. In order to identify missing or anomalous

data entries, we calculate the posterior probabilities of each row type, namely p(zi|t,x).
In this section, we now briefly discuss the corresponding calculations.

Assuming that entries of a data column are conditionally independent given t, we

Chapter 3. Syntactic Type Inference 19

can obtain the posterior distribution of column type t as follows:

p(t = k|x) ∝ p(t = k)
N

∏
i=1

(
π

k
k p(xi|zi = k)+π

m
k p(xi|zi = m)+π

a
k p(xi|zi = a)

)
, (3.1)

which can be used to estimate the column type t, since the one with maximum

posterior probability is the most likely data type corresponding to the column x.

As per equation 3.1, the model estimates the column type by considering all the

data rows, i.e., having missing data or anomalies does not confuse the type inference.

Note that such entries would have similar likelihoods for each column type, which

allows the model to choose the dominant data type for regular entries.

Following the inference of column type, we can also identify entries of x which

are more likely to be missing or anomalies rather than the inferred type. For this, we

compare the posterior probabilities of each row type zi given t = k and xi, namely

p(zi = j|t = k,xi), which can be written as:

p(zi = j|t = k,xi) =
π

j
k p(xi|zi = j)

∑`∈{k,m,a}π`
k p(xi|zi = `)

. (3.2)

Complexity Analysis

The computational bottleneck in the inference is the calculation of p(x|t = k) for each

type k, which is the calculation of the probability assigned for a data column x by the

kth PFSM. Note that this can be carried out by taking into account the counts of the

unique data entries, for efficiency. Denoting the uth unique data value by xu, we need

to consider the complexity of calculating p(xu|t = k) which can be done via the PFSM

Forward algorithm. Each iteration of the algorithm has the complexity of O(H2
k) where

Hk is the number of hidden states in the kth PFSM. As the number of iterations equals

to the length of xu denoted by Lu, the overall complexity of the inference becomes

O(UKH2L), where U is the number of unique data entries, K is the number of types, L

is the maximum length of data values, and H is the maximum number of hidden states

in the PFSMs.

3.2.4 Training of the Model

The aim of the training is to tune the probabilities assigned by the PFSMs so that col-

umn types are inferred accurately. Given a set of columns and their annotated column

Chapter 3. Syntactic Type Inference 20

types, the task is to find the parameters of the PFSMs (i.e., the initial-state, the transi-

tion, and the final-state probabilities) that allow the “correct” machine to give higher

probabilities to the observed entries. This is crucial as multiple PFSMs can assign

non-zero probabilities for certain strings, e.g., 1, True, etc.

We employ a discriminative training procedure on our generative model, as done in

discriminative training of HMMs (Bahl et al., 1986; Jiang, 2010; Brown, 1987; Nádas

et al., 1988; Williams and Hinton, 1991). This is shown to be generally superior to

maximum likelihood estimations (Jiang, 2010) since a discriminative criterion is more

consistent with the task being optimized. Moreover, it allows us to update not only the

parameters of the “correct” PFSM but also the parameters of the other PFSMs given a

column of data and its type, which in turn helps the correct one to generate the highest

probability.

We choose ∑
M
j=1 log p(t j|x j) as the objective function to maximize, where x j and

t j respectively denote the jth column of a given data matrix X and its type, and M

is the number of columns. We then apply Conjugate Gradient algorithm to find the

parameters that maximize this objective function (please see Appendix A.3 for detailed

derivations of the gradients).

We study different parameter settings for our model. We first explore tuning the

parameters by hand to incorporate certain preferences over the types, e.g., Boolean

over integer for 1. Then, we learn the parameters via the discriminative training de-

scribed above where the parameters are initialized at the hand-crafted values. Note

that due to the absence of explicit labels for the missing and anomaly types, these are

not updated from the hand-crafted parameters. We have also employed the training by

initializing the parameters uniformly. However, we do not report these results as they

are not competitive with the others.

As the PFSMs are generative models, it would be possible to train them unsuper-

vised, to maximize ∑i, j log p(x j
i), where p(xi

j) is defined as a mixture model over all

types (including missing and anomaly) for the ith row and jth column. The component

PFSMs could then be updated using the Expectation-Maximization (EM) algorithm.

However, such training would be unlikely to give as good classification performance

as supervised training.

Chapter 3. Syntactic Type Inference 21

3.3 Experiments

In this section, we first in Sec. 3.3.1 describe the datasets and evaluation metrics used,

and then in Sec. 3.3.2 compare ptype with competitor methods on two tasks: (i) column

type inference, and (ii) type/non-type inference. Note that type/non-type inference

refers to the task of identifying missing data and anomalies which are collectively

labeled as non-type. Therefore, the task is to correctly classify each entry as either type

or non-type. Lastly, we present a qualitative evaluation of our method on challenging

cases in Sec. 3.3.3. The goal of our experiments is to evaluate (i) the robustness of

the methods against missing data and anomalies for column type inference and (ii) the

effectiveness of type/non-type inference. These are evaluated both quantitatively (Sec.

3.3.2) and qualitatively (Sec. 3.3.3). We release our implementation of the proposed

method at https://github.com/alan-turing-institute/ptype.

3.3.1 Experimental Setup

We have trained ptype on 25, and tested on 43 data sets obtained from various sources

including UCI ML4, data.gov.uk, ukdataservice.ac.uk, and data.gov. The data

types were annotated by hand for these sets. We also annotated each dataset in terms of

missing data and anomalies, by using the available meta-data, and checking the unique

values.

On column type inference, we compare our method with F# (Petricek et al., 2016),

hypoparsr (Döhmen et al., 2017), messytables (Lindenberg, 2017), readr (Wickham

et al., 2017), TDDA (Stochastic Solutions, 2018) and Trifacta (2018). Note that some

of the related works are not directly applicable to this task, and these are not included

in these experiments. For example, we are not able to use Raman and Hellerstein

(2001), Kandel et al. (2011) and Guo et al. (2011) as they are not available anymore.

However, we use their latest version Trifacta in our experiments. We also exclude

the PADS library (Fisher and Gruber, 2005; Fisher et al., 2008), since it does not

necessarily produce columns and their types (see Appendix A.4 for an example). The

methods proposed by Valera and Ghahramani (2017) and Vergari et al. (2019) are also

not applicable to this task. First, they do not consider data types of Boolean, string,

date. Secondly, they only address integer and float columns that do not contain any

non-numerical missing data or anomalies, which are commonly found in real-world

datasets. Note that Vergari et al. (2019) do not address missing data detection but

4https://archive.ics.uci.edu/ml/datasets.html

https://github.com/alan-turing-institute/ptype
data.gov.uk
ukdataservice.ac.uk
data.gov
https://archive.ics.uci.edu/ml/datasets.html

Chapter 3. Syntactic Type Inference 22

missing data imputation, and can only handle numerical outliers but not non-numerical

outliers, whereas Valera and Ghahramani (2017) do not address these questions at all.

Lastly, we exclude the method presented by Limaye et al. (2010) as their goal is to

infer semantic entity types rather than syntactic data types.

On type/non-type inference, we compare our method with Trifacta only, as it is the

leading competitor method on column type inference, and the others do not address

this task comprehensively.

Data Sets

We have conducted experiments on the data sets chosen according to two criteria: (i)

coverage of the data types, and (ii) data quality. We consider five common column

types in our experiments: Boolean, date, float, integer, and string. Table 3.1 presents

the distribution of the column types found in our data sets. Any other columns not

conforming to the supported data types are omitted from the evaluations. Secondly,

we have selected messy data sets in order to evaluate the robustness against missing

data and anomalies. As per Fig. 3.2, the fraction of the non-type entries in the test

datasets can be as large as 0.56, while the average fraction is 0.11. Note that available

data sets, their descriptions and the corresponding annotations can be accessed via

https://goo.gl/v298ER.

Column Type

Boolean Date Float Integer String Total

Training 75 49 99 257 309 789

Test 43 40 53 240 234 610

Table 3.1: Histogram of the column types observed in the training and the test data

sets.

Evaluation Metrics

For column type inference, we first evaluate the overall accuracy of the methods on

type inference by using the accuracy. However, this may not be informative enough due

to the imbalanced data sets. Note that the task of type inference can be seen as a multi-

class classification problem, where each column is classified into one of the possible

column types. In order to measure the performance separately for each type, we follow

https://goo.gl/v298ER

Chapter 3. Syntactic Type Inference 23

ac
cid

en
ts
_2
01

5
ac
cid

en
t2
01

6
au
to

ca
su
al
tie

s_
20

15
ce
ns
us
_in

co
m
e_
kd
d

ed
f_
st
oc
ks

el
ni
no

in
sp
ec
tio

n_
ou
tc
om

es
in
te
l_l
ab

m
in
y_
ve
nd
or

sc
ho
ol
_c
ha
ra
ct
er
ist
ics

sc
ho
ol
_s
es
sio

ns
su
rv
ey

ve
hi
cle

s_
20

15
da
ta
_g
ov
_3
23

_1
da
ta
_g
ov
_3
56

_1
da
ta
_g
ov
_3
39

7_
1

da
ta
_g
ov
_5
13

4_
1

da
ta
_g
ov
_1
00

12
_1

da
ta
_g
ov
_1
01

51
_1

da
ta
_g
ov
_1
22

52
_1

da
ta
_g
ov
_1
68

34
_1

da
ta
_g
ov
_1
83

86
_1

m
as
s_
1

m
as
s_
2

m
as
s_
5

m
as
s_
6

21
32

98
09

_0
_5
52

6.
.

24
03

67
79

_0
_5
60

8.
.

24
14

22
65

_0
_4
57

7.
.

26
27

03
72

_1
_3
77

4.
.

28
08

60
84

_0
_3
12

7.
.

28
15

40
36

_0
_9
09

0.
.

28
64

67
74

_0
_3
25

6.
.

29
88

63
25

_0
_1
44

8.
.

34
89

96
92

_0
_6
53

0.
.

40
53

40
06

_0
_4
61

7.
.

41
48

01
66

_0
_6
68

1.
.

44
00

55
78

_0
_5
40

0.
.

44
20

67
74

_0
_3
81

0.
.

47
70

96
81

_0
_4
43

7.
.

78
89

16
39

_0
_3
29

9.
.

84
68

80
6_
0_
43

82
4.
.

Dataset Name

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac
tio

n

Fraction of the Non-type Entries

Figure 3.2: Fraction of the non-type entries in a dataset, calculated by aggregating over

its columns. Note that ‘overall’ denotes the fraction after aggregating over the datasets.

a one-vs-rest approach. In such cases a common choice of metric is the Jaccard index

J (see e.g., Hand et al. (2001, sec 2.3)) defined as TP/(TP+FP+FN), where TP, FP,

and FN respectively denote the number of True Positives, False Positives and False

Negatives. (Note that one-vs-rest is an asymmetric labelling, so True Negatives are not

meaningful in this case.)

To measure the performance on type/non-type inference, we report Area Under

Curve (AUC) of Receiver Operating Characteristic (ROC) curves, as well as the per-

centages of TPs, FPs, and FNs. Note that here we denote non-type and type entries as

Positive and Negative respectively.

3.3.2 Quantitative Results

We present quantitative results on two tasks: (i) column type inference, and (ii) type/non-

type detection. In column type inference, we evaluate the performance of the methods

on detecting data types of columns and investigate their scalability. Then, in type/non-

type detection we evaluate their capability of detecting missing data and anomalies.

Column Type Inference

We present the performance of the methods in Table 3.2, which indicates that our

method performs better than the others for all types, except for the date type where it is

slightly worse than Trifacta. These improvements are generally due to the robustness

of our method against missing data and anomalies. In the table ptype denotes the

Chapter 3. Syntactic Type Inference 24

discriminatively trained model, and ptype-hc the version with hand-crafted parameters.

Notice that the discriminative training improves the performance, specifically for

Boolean and integer types. This shows that the corresponding confusions can be re-

duced by finding more optimal parameter values, which can be difficult otherwise.

Note that the training has a slightly negative effect on float and string types, but it still

performs better than the other methods. These changes can be explained by the fact

that the cost function aims at decreasing the overall error over columns rather than con-

sidering individual performances, as we were concerned with the overall performance.

However, one could modify the cost function to treat individual performances sepa-

rately. A natural approach then would be to use different weights per type in the cost

function, e.g., assigning weights based on the class distribution as in the cost-efficient

learning.

Method

F# messytables readr TDDA Trifacta ptype-hc ptype

Overall
0.73 0.72 0.69 0.61 0.90 0.92 0.93

Accuracy

Boolean 0.55 0.56 0.00 0.00 0.49 0.75 0.83

Date 0.35 0.17 0.10 0.00 0.68 0.67 0.67

Float 0.60 0.57 0.59 0.42 0.87 0.93 0.91

Integer 0.55 0.55 0.57 0.46 0.88 0.85 0.88

String 0.61 0.61 0.58 0.51 0.83 0.90 0.89

Table 3.2: Performance of the methods using the Jaccard index and overall accuracy,

for the types Boolean, Date, Float, Integer and String.

Figure 3.3 shows normalized confusion matrices for the methods, normalized so

that a column sums to 1. This shows that all the methods tend to infer other column

types as string even if they are not. However, ptype has few of such confusions, espe-

cially when the true type is Boolean or float.

It is noticeable from Table 3.2 that dates are difficult to infer accurately. Detailed

inspection shows that this is due to non-standard formats used to denote dates. We

could improve the PFSM for dates in ptype to include such formats, but we have not

done so, to avoid optimizing on test datasets. The performance of Trifacta on dates can

be explained by the engineering power behind the tool and indicates its capability to

represent non-standard formats using validation functions.

Chapter 3. Syntactic Type Inference 25

(a) F# (b) messytables (c) readr

(d) Trifacta (e) ptype (f) hypoparsr

Figure 3.3: Normalized confusion matrices for (a) F#, (b) messytables, (c) ptype, (d)

reader, (e) Trifacta, and (f) hypoparsr plotted as Hinton diagrams, where the area of a

square is proportional to the magnitude of the entry.

To determine whether the column type predictions of ptype and Trifacta are sig-

nificantly different, we apply the McNemar’s test (see e.g., Dietterich 1998), which

assumes that the two methods should have the same error rate under the null hypoth-

esis. We compute the test statistic (|n01−n10| − 1)2)/(n01 + n10), where n01 and n10

denote the number of test columns misclassified by only Trifacta, and by only ptype re-

spectively. In our case, n01 and n10 are respectively equal to 19 and 6, which results in

a statistic of 5.76. If the null hypothesis is correct, then the probability that this statis-

tic is greater than 3.84 is less than 0.05 (Dietterich, 1998). Thus this result provides

evidence to reject the null hypothesis, and confirms that the methods are statistically

significantly different from each other.

The large performance gap for Booleans suggests that our method handles confu-

sions with integers and strings better. Analysis shows that such confusions occur re-

spectively in the presence of {0,1}, and {Yes,No}.5 We further note that F#, messyta-

bles, and readr perform similarly, especially on floats, integers, and strings; which is

5We assume that a data column where the entries are valued as Yes or No is more likely to be a
Boolean column than a string. We have also confirmed these cases with the corresponding metadata
whenever available, and have carefully annotated our datasets in terms of data types.

Chapter 3. Syntactic Type Inference 26

most likely explained by the fact that they employ similar heuristics.

Since hypoparsr names column types differently, except for the date type, we need

to rename the annotations and re-evaluate the methods in order to compare them with

hypoparsr. It refers to Boolean and string respectively as logical and text. Moreover,

integer and float are grouped into a single type called numeric. The resulting evalu-

ations, which are reported in Table 3.3, shows a similar trend to as before in that our

method performs better. However, we see some variations, which result from the fact

that we now evaluate on a smaller number of data sets since hypoparsr, which is said

to be designed for small sized files, was able to parse only 33 out of the 43 test data

sets.6 This left us 358 columns including 29 date, 21 logical, 159 numeric, and 149

text. Lastly, we observe that hypoparsr results in many confusions by inferring the type

as integer whereas the true type is text. Such cases mostly occur when the data values

consist of a combination of numeric and text, e.g., ID and address columns.

Method

F# hypoparsr messytables readr TDDA Trifacta ptype-hc ptype

Overall
0.65 0.66 0.65 0.63 0.60 0.88 0.96 0.95

Accuracy

Date 0.31 0.31 0.17 0.07 0.00 0.62 0.66 0.66

Logical 0.27 0.00 0.29 0.00 0.00 0.14 0.88 0.88

Numeric 0.43 0.52 0.43 0.45 0.39 0.88 0.94 0.93

Text 0.56 0.54 0.57 0.55 0.52 0.80 0.94 0.93

Table 3.3: Performance of the methods using the Jaccard index and overall accuracy,

for the types Date, Logical, Numeric and Text.

Next, we discuss the scalability of our method.

Scalability

We describe the complexity of the inference in our model in Section 3.2.3. Here, we

demonstrate its scaling by measuring the time it takes to infer the column types for

each test dataset.

Recall that we do not take into account pre-processing steps to calculate the com-

plexity of the inference as we assume that the data has already been read in, and the

6This was using the default settings, but Till Döhmen (pers. comm.) advised against changing the
limit.

Chapter 3. Syntactic Type Inference 27

unique values have already been detected. Therefore, the complexity is O(UKH2L),

where U is the number of unique data entries, K is the number of data types, H is

the maximum number of hidden states in the PFSMs, and L is the maximum length of

data values. Notice that the complexity depends on data through U and L, and does

not necessarily increase with the number of rows. In fact, it grows linearly with the

number of unique values assuming L is constant. As shown in Fig. 3.4, the runtime for

ptype is upper bounded by a line c0 + c1U , where c0 is a small constant. The runtime

thus scales linearly with the number of unique data entries U , handling around 10K

unique values per second. The variations can be explained by changes in L.

We also report the size of the datasets and the times the methods take in Appendix

A.5. We have observed similar performance with messytables, whereas readr and

TDDA seem much faster even though they do not only predict the data types but also

parse a given dataset (averaging the times reported in Table A.3 per dataset, we ob-

tain 0.46 seconds for ptype, 0.37 seconds for messytables, 0.02 seconds for readr and

0.0002 seconds for TDDA). On the other hand, hypoparsr takes 18.23 seconds on aver-

age, which is much longer compared to the others. Lastly, we measure the processing

times for Trifacta via command line. We have observed that Trifacta takes 0.99 sec-

onds which indicates that it is faster than hypoparsr, but slower than the other methods

(on average).

0 20 k 40 k 60 k 80 k 100 k 120 k 140 k
U

0

5

10

15

20

tim
e 
(s
ec

s.)

Figure 3.4: The time in seconds taken to infer a column type with ptype, as a function

of the number of unique data entries U in the column. Also shown is the line c0 + c1U ,

where c0 is a small constant.

Type/Non-type Inference

Trifacta labels each entry in a data table either as type or non-type, whereas our model

presents a probability distribution over the two labels. One could apply a threshold

on these probabilities in order to assign a label to each entry. Here, we demonstrate

Chapter 3. Syntactic Type Inference 28

how the methods behave under different thresholds. We aggregate the entries of each

dataset over its columns, and compute the ROC curve for each method.

Figure 3.5 presents the difference AUC(ptype) - AUC(Trifacta) per dataset. Note

that we exclude five datasets as the corresponding AUCs are undefined due to the def-

inition of True Positive Rate (T P
T P+FN). This becomes undefined since the denominator

becomes zero when both TP and FN are equal to zero, which occurs naturally when a

dataset does not contain any missing data and anomalies. The average of AUCs of the

remaining datasets are respectively 0.77 and 0.93 for Trifacta and ptype. To compare

these two sets of AUCs, we apply a paired t-test, which results in the t-statistic of 4.59

and p-value of 0.00005. These results reject the null hypothesis that the means are

equal, and confirm that they are significantly different.

Figure 3.5: AUC(ptype) - AUC(Trifacta) plotted for each test dataset.

Figure 3.6 denotes the ROC curves plotted for some of the test datasets. Notice

that Trifacta produces only one point for each dataset regardless of the threshold used,

whereas ptype provides a more flexible solution. For example, Trifacta leads to a TPR

of 0.57 and a FPR of 0.05 on the mass_6 dataset. However, with ptype we can obtain a

much higher True Positive Rate in exchange for a slightly reduced False Positive Rate.

Lastly, we compare Trifacta and ptype in terms of percentages of TPs, FPs, and

FNs which are presented in Table 3.4, where the labels for ptype are generated by

applying a threshold of 0.5 on the posterior distributions. Note that here we aggregate

the predictions over the datasets. As per the table, ptype results in a higher number of

FPs than Trifacta, but Trifacta produces a higher number of FNs and a lower number

of TPs than ptype. Note that here we denote non-type and type entries as Positive and

Negative respectively. This indicates that ptype is more likely to identify non-types

(TPs) than Trifacta, but it can also label type entries as non-types (FPs) more often.

Chapter 3. Syntactic Type Inference 29

Figure 3.6: ROC curves plotted for some of the test datasets.

However, the overall performance of ptype is better than Trifacta, as we have also

observed in the AUCs.

Method FPs FNs TPs

Trifacta 0.67 3.96 1.57

ptype 1.13 0.20 5.34

Table 3.4: The percentages of FPs, FNs, and TPs for Trifacta and ptype on type/non-

type detection.

3.3.3 Qualitative Results

We now give some examples of predicting missing and anomalous data.

Missing Data: We support an extensive range of values that are used to denote

missing data. Note that multiple such encodings can be detected at the same time.

Consider a T2Dv2 dataset7 where missing entries are denoted by encodings such as

NULL and n/a. Our method can successfully annotate such entries as shown in Figure

3.7.

Next, we show how our model approaches unseen missing data encodings which

are not explicitly considered as missing data in our model, but can be handled with the

anomaly type. For example, “Time of Incident” column of Reported Taser 2015 data

734899692_0_6530393048033763438.csv

Chapter 3. Syntactic Type Inference 30

Figure 3.7: Annotating a subset of a T2D data set using ptype as normal, missing,

and anomalous entries, denoted by green, yellow, and red, respectively.

set is expected to contain date values. However, some entries have the value Unknown.

Thanks to the PFSM for anomaly type, our model detects such encodings as anomalies

as long as the “correct” column type is not string, resulting in a better type inference

performance.

Another advantage of ptype is that it can detect missing data even if their types fit

the column type. Consider an integer-typed column Stake in the Rodents data set where

-99 is used to denote missing entries. Our method flags those entries as missing instead

of treating them as regular integers since the missing type accepts -99. Similarly,

we are able to detect string-valued missing data in string-typed columns. When the

column type, however, is not string, our model may result in a number of false alarms

by flagging normal entries as missing data. For example, integer values of -1, -99, etc.

can also represent normal data instances. We could investigate this using methods as

in Qahtan et al. (2018), and develop missing data models specific to each data type, in

order to improve this issue.

Lastly, we compare ptype and Trifacta, the leading competitor method, to give

insight into Table 3.4 in terms of how they handle missing data. Consider the “Sub-

stantial_growth_of_knowledge_skills” column of the mass_6 dataset which consists of

floating-point numbers. However, most of the 3148 entries are non-types, i.e., empty

entries, -, N/A, and NA which occur 780, 470, 1063, and 424 times respectively. Such

non-type entries are labeled correctly by ptype, whereas Trifacta can only classify the

empty entries correctly as non-type. The remainder of the non-type entries are consid-

ered to be valid type entries, since they conform with the column type which is inferred

as string by Trifacta. Note that this confusion is high likely due to the low number of

floats in the column. Consequently, Trifacta results in a higher percentage of FNs and

a lower percentage of TPs than ptype, as shown in Table 3.4.

Anomalies: As mentioned earlier, we can also use ptype to detect anomalies. Our

model flags such entries automatically since the anomaly model covers a wide range

of values including those that are not supported by the column type.

Chapter 3. Syntactic Type Inference 31

Figure 3.7 shows the capability of detecting anomalies when the column type is

string. As we do not have the character & in the alphabet of the PFSM for strings, the

anomaly machine allows us to detect the anomalies in the “country” column. Similarly,

the characters “refer to euro” are not supported by the PFSM for integers, letting

us detect the corresponding entry as anomalous. Moreover, we can separately detect

the anomalous and missing data as in the “selling rate” column.

Interestingly, we notice that the question mark character ? is used to express the

doubt about the collected data in the HES data set, where a data entry contains the

value of 6?. We can also see that missing data encodings not incorporated to our

missing data model such as NOT AVAILABLE, ?? (double question marks), and -, are

detected as anomalies. Note that the user can easily let our model treat such values

as missing data rather than anomalies by including them in the known missing data

encoding list.

Next, we illustrate the extent of cases in which ptype results in FPs and compare

it with Trifacta. For example, the “CAUSE_NAME” column in the data_gov_323_1

dataset consists of data values such as Cancer, Stroke, and Suicide etc. Here, ptype

and Trifacta infer the column type as string, and label such entries correctly as type en-

tries. However, Alzheimer’s disease and Parkinson’s disease are misclassified

as non-types by ptype (1,860 FPs out of 13,260 entries) as our string model does not

support the apostrophe. To handle this, we could include ’ in the corresponding alpha-

bet, but we also find it helpful to detect “true” non-type entries having that character.

We believe that such cases should be left to users with domain knowledge as they can

easily extend the alphabet of the string type.

We now discuss some other aspects of our model, such as ambiguities that can

occur, and how they can be handled; and failure cases which can be difficult to avoid.

The Limitations of Our Work

Ambiguous Cases: In certain cases, the posterior probability distribution over types is

not heavily weighted on a particular type. For example, consider a column of data

that contains values of NULL and 1. This could fit multiple PFSMs as 1 can either be

an integer, a float, a string, or a Boolean value. However, we have assumed that 0

and 1 are more likely to be indicators of Booleans and have thus tuned the parameters

of the corresponding machine such that the probabilities associated with 0 and 1 are

slightly higher than the ones assigned by the other machines. This leads to a posterior

probability distribution with values of 0.29, 0.26, and 0.44 respectively for integers,

Chapter 3. Syntactic Type Inference 32

floats, and Booleans. One can also exploit the probabilistic nature of our model to treat

such ambiguous cases differently. Instead of directly taking the type with the highest

posterior probability as the column type, one can detect such ambiguities, and then

exploit user feedback to improve the decision.

A uniformly distributed posterior distribution over types is observed when all of

the entries of a column are assigned zero probabilities by the PFSMs of the regular

data types. This is not surprising as we only support a limited set of characters in the

regular machines, i.e., the widest alphabet among the regular data types, which is of

the string type, consists of the letters, digits, and a set of punctuations. For example,

“per capitagdp (us$)[51]” column of a T2D data set8 has values such as $2949.57.

Similarly, the 23rd column of the fuel data set contains values such as “(3.0L) ”.

Note that the anomaly type still assigns positive probabilities to these entries, as its

alphabet includes all the possible characters. However, when its weight πa
t is the same

regardless of the type, the corresponding posterior probabilities become equal. We

leave such cases with high uncertainty for the user to handle as they can often be

resolved by extending the alphabet of the string type.

Failure Cases: We now present two cases for which ptype-hc fails to infer the col-

umn types correctly. For example, consider a column (“BsmtHalfBath” of Housing

Price data set) which denotes the number of half bathrooms in the basement of houses,

consisting of the values in {0,1,2}. In this case, ptype-hc puts higher posterior prob-

ability on the Boolean type whereas the actual type is integer. This may not be sur-

prising, considering the fact that 0 and 1 have higher probabilities of being a Boolean,

and 2, occurring only twice out of 1460 entires, is treated as an anomaly. However,

ptype is able to correct this failure thanks to the discriminative training. Note that the

competitor methods fail in this case.

After the evaluations, we have discovered a set of cases we have not considered

in the beginning. For example, several Boolean columns of the Census Income KDD

data set have leading whitespace as in “ No”, “ Yes”. Our model infers the types of

these Boolean columns as string since such whitespace is not considered in the Boolean

type. In order to avoid optimizing the model on the test sets, we have not addressed

such cases. However, they can easily be handled by updating the corresponding PFSMs

to include the whitespace. Note that the other methods also detect the column types as

string in these cases.

There are cases of non-standard dates we do not currently handle. For example,

824036779_0_5608105867560183058.csv

Chapter 3. Syntactic Type Inference 33

dates are sometimes divided into multiple columns as day, month, and year. Our model

detects day and month columns separately as integers. One could develop a model that

checks for this pattern, making use of constraints on valid day, month and year values.

User Interactions for ptype

Above we discuss the limitations of our model and how they can be handled through

user feedback. Our implementation of ptype supports a number of user interactions.

These are summarized below (see the demonstrations at

https://github.com/alan-turing-institute/ptype/blob/develop/notebooks).

First, we address the issue of obtaining incorrect column type predictions. In such

cases, our implementation allows the user to select an alternative type for a column.

Note that selecting a new column type may also change the row type predictions, as

row type inference is carried out conditioned on the column type.

Secondly, we consider the problems of having incorrect missing data predictions,

such as treating normal data values as missing and treating missing data as valid. These

issues occur due to a mismatch between the list of known missing data encodings

supported by the PFSM for the missing type and the list of values used to encode

missing data in a dataset. To handle such issues, we let the user modify the missing

data encoding list by adding a new encoding or removing an existing one. Note that the

list can either be modified for a specific column or all the columns at the same time. A

similar mechanism is also provided for handling incorrect anomalous data predictions.

Thirdly we provide a capability to extend the alphabet of the PFSM for the string

type. The user may need this capability when the default alphabet does not include a

specific character, e.g., the character of $ in the “per capitagdp (us$)[51]" column of a

T2D dataset containing values such as $2949.57 (see the discussion in the limitations

of our work above).

It is possible to extend the user interactions discussed above. For example, we can

determine the columns of a dataset that ptype is unsure about based on the posterior

probability distributions and suggest the user to check the assigned predictions only

for those columns. Similarly, one can rank data columns based on uncertainties and

let the user correct predictions in an order, which can assist the user in reviewing the

predictions especially when the number of columns is high.

https://github.com/alan-turing-institute/ptype/blob/develop/notebooks

Chapter 3. Syntactic Type Inference 34

3.4 Summary

We have presented ptype, a probabilistic model for column type inference that can ro-

bustly detect the type of each column in a given data table, and label non-type entries

in each column. The proposed model is built on PFSMs to represent regular data types

(e.g., integers, strings, dates, Booleans, etc.), missing and anomaly types. An advan-

tage of PFSMs over regular expressions is their ability to generate weighted posterior

predictions even when a column of data is consistent with more than one type model.

We have also presented a discriminative training procedure which helps to improve

column type inference. Our experiments have demonstrated that we generally achieve

better results than competitor methods on messy data sets.

Possible directions for future work include extending the supported data types, such

as non-Boolean categorical data which would be treated either as integer or string by

ptype (addressed in Chapter 4), etc.; developing subtypes, e.g., for Booleans expecting

either True and False, or yes and no; and improving anomaly detection for string-

typed data by addressing semantic and syntactic errors.

Chapter 4

Inferring the Type and Values of

Categorical Variables

In this chapter, we first describe our motivation in this work (Sec. 4.1) and the proposed

methodology (Sec. 4.2). Then, we present the related experiments (Sec. 4.3), which is

followed by a discussion of our work and its potential extensions (Sec. 4.4).

4.1 Introduction

In Chapter 3, we consider five main data types, namely Boolean, date, float, integer and

string, and propose a probabilistic model that can be used to annotate a data column

with one of these types based on the syntax of its data entries. This approach provides

limited support for the categorical type as non-Boolean categorical variables are treated

either as integers or strings rather than categoricals. For example, the “Class Name”

and “Rating” columns 1 in Fig. 4.1 are two examples of non-Boolean categorical vari-

able and would be respectively annotated with the string and integer types by syntactic

type inference methods including ptype. Therefore, the user needs to transform these

data columns into categorical manually, which can be tedious and time-consuming. In

this work, we present a probabilistic method called ptype-cat that can detect the gen-

eral categorical type (including non-Boolean variables). In addition, we identify the

values associated with the corresponding categorical variable by adapting ptype. By

combining these two methods, we propose an alternative approach that can eliminate

the need for manual work.
1The data is subsampled from the Women’s Clothing E-Commerce dataset, which is publicly avail-

able at https://www.kaggle.com/nicapotato/womens-ecommerce-clothing-reviews.

35

https://www.kaggle.com/nicapotato/womens-ecommerce-clothing-reviews

Chapter 4. Inferring the Type and Values of Categorical Variables 36

Class Name Review Text Age Rating
Jackets This beauty … 37 5
Dresses I’ll start by … 29 3

Pants I took these … 47 4
… … … …

Class Name String

Review Text String

Age Integer

Rating Integer

Class Name Categorical - Jackets, Dresses, …

Review Text String

Age Integer

Rating Categorical - 1, 2, 3, 4 and 5

1

Figure 4.1: Overview figure.

A problem for the identification of the categorical type from the data in a column

is that the values may be encoded in different ways. For the “Class Name” column

these are encoded as strings, but the values might also be encoded as integers as in the

“Rating” column, e.g., 1, 2, 3, 4 and 5. However, in both cases, the limited number of

possible values taken on by a categorical variable is the key to its identification. Note

that the “Rating” column is an ordinal variable that is treated as a categorical variable

in this work, as we include the ordinal type within the general categorical type.

Inferring the type and values of categorical variables proves useful in many cases

by eliminating the need for manual work. For example, it provides enhanced type infer-

ence capability for existing libraries such as the Pandas library, which attempts to infer

the data type for each column of a dataset when parsing the data into a DataFrame

object. Although the Pandas library provides an extensive set of functions to load,

manipulate and save tabular datasets, it can detect only Boolean variables as cate-

gorical and treats non-Boolean categorical variables as either integers or strings (e.g.,

the Pandas.read_csv function would respectively label the “Class Name" and “Rat-

ing" columns given in Fig. 4.1 as object and int64). In such cases, the user needs to

manually change the inferred types and then specify the categorical values for each cat-

egorical variable (referred to as categories in the Pandas library). Similarly, it enables

automatic construction of data dictionaries in the well-known Attribute Relation File

Format (ARFF), which has been used notably to describe OpenML datasets including

the UCI datasets (see Fig. 4.2 for an example).

To the best of our knowledge, these issues are not addressed by any existing work

in the literature, except Bot (proposed by Majoor and Vanschoren, 2018), OpenML

and Weka which tackle type inference based on heuristics such as labeling a column as

categorical when the number of unique values is lower than a threshold (see Chapter

2.2 for a detailed discussion). In this thesis, we use machine learning rather than

Chapter 4. Inferring the Type and Values of Categorical Variables 37

Class Name Review Text Age Rating
Jackets This beauty … 37 5
Dresses I’ll start by … 29 3

Pants I took these … 47 4
… … … …

…

@ATTRIBUTE Class Name {Jackets, Dresses, …}

@ATTRIBUTE Review Text STRING

@ATTRIBUTE Age NUMERIC

@ATTRIBUTE Rating {1,2,3,4,5}

…

1

Figure 4.2: A dataset and a section of the corresponding ARFF file.

heuristics to infer the type of a data column, and show that our probabilistic approach

can be more flexible than hard-choices made with heuristics. By taking into account

both the syntax of the entries in a data column and the features that can indicate whether

the column represents a categorical variable or not, the proposed method can detect

the general categorical type. Moreover, we define inference of categorical values as

the task of identifying the possible values a categorical variable can take on. We

address this task by adapting ptype which can robustly determine the possible values

of a categorical variable by identifying missing data and anomalies in a data column.

Therefore, the proposed method and ptype can be used together to infer the type and

values of categorical variables. Our contributions are as follows:

• We propose a predictor that can identify the data type (categorical, date, float, in-

teger and string) for each column of a dataset, taking into account the predictions

of ptype and additional features (Section 4.2).

• We address the inference of categorical values by adapting ptype (Section 4.2).

• We show that our methods outperform the existing methods using a large number

of datasets (Section 4.3).

• We investigate the use of meta-data for inferring the type and values of categor-

ical variables (Section 4.3).

4.2 Methodology

In this section, we first introduce our probabilistic method ptype-cat (Sec. 4.2.1) and

then describe the use of ptype to identify categorical values (Sec. 4.2.2). Lastly, we

describe how we use meta-data for these tasks (Sec. 4.2.3).

Chapter 4. Inferring the Type and Values of Categorical Variables 38

4.2.1 Probabilistic Type Inference for Categorical Variables

Our goal here is to obtain the posterior probability distribution of column type over

the categorical, date, float, integer and string types, which is achieved in two steps.

Initially, assuming that a column of data x = {xi}N
i=1 has been read in where each xi

denotes the characters in the ith row and N is the number of rows in a data column, we

calculate the posterior probability distribution p(t|x) of column type t over the date,

float, integer and string types by running a modified form of ptype that excludes the

Boolean type. If a data column is labelled with the date or float type according to

this posterior probability distribution, we assume that the posterior probability for the

categorical type is zero and use the distribution as it is. Otherwise, if a data column

is labelled with the integer or string type, we employ a separate binary classifier to

determine the posterior probability for the categorical type, where the initial posterior

probabilities for the four types are treated as features. The resulting method is called

ptype-cat.

Note that we discard the Boolean feature used in the default setting of ptype as it

leads to a limited capability to detect the categorical type. Instead, we propose four

new features to characterize the categorical type. Two of our proposed features are

the number of unique values in a data column and the uniqueness ratio, which are

respectively denoted by U and R where R is defined as U/N. We extract the same

features by taking into account the “clean” entries of a data column rather than all

the data entries. Note that the clean entries refer to the data entries which are neither

missing nor anomalous. These features are respectively denoted by Uc and Rc, where

Rc is defined as Uc/Nc. Therefore, we obtain 8 features after combining ptype features

with ours. These features are used by our separate binary classifier, which we describe

next.

When a data column is labelled with the integer or string type, we determine the

posterior probability for the categorical type by re-distributing the probability mass for

the integer or string type according to a trained model, e.g., if the data type is initially

inferred as integer, we divide the posterior probability for the integer type between the

integer and categorical types according to a trained model as shown in Fig. 4.3.

To train the binary classifier for categorical/not-categorical classification, we use

data columns annotated as integer, string and categorical. Mapping the integer and

string labels to not-categorical, we train a binary Logistic Regression via 5-fold nested

cross-validation, where we estimate its hyperparameters through grid-search. Note that

Chapter 4. Inferring the Type and Values of Categorical Variables 39

0.0
0.2
0.7
0.1

Date
Float
Integer
String

0.5
0.0
0.2
0.2
0.1

Categorical
Date
Float
Integer
String

Figure 4.3: A graphical representation of the re-distribution step where we split the

probability mass for the integer type between the integer and categorical types.

the hyperparameter of Logistic Regression and the corresponding range of values used

in the grid-search are reported in Sec. 4.3.1.

We now introduce our notation for ptype-cat. In addition to the notation used for

ptype, we let x̃ = {x̃d}8
d=1 denote the features extracted from x. Note that we obtain 8

features by combining p(t|x) with U , R, Uc and Rc. Additionally, we denote the final

data type of x by ỹ. Therefore, the type inference task becomes a supervised learning

problem where we train a separate classifier C using the set of {x̃ j, ỹ j}M
j=1. Here, j and

M respectively denote the jth data column and the total number of data columns.

4.2.2 Identification of Categorical Values

The task here is to infer the possible values a given categorical data column can take

on. A naive approach would be to treat all the unique values in a column as the cor-

responding categorical values. However, this method, which we call Unique, would

fail when the data contains missing and anomalous values, as such values would be la-

beled as valid categorical values rather than being discarded. To address this problem,

we employ ptype which labels the entries of a data column that are not missing and

anomalous as “clean”. We treat these clean entries as the categorical values of a data

column. ptype can be used to calculate the corresponding posterior probability of row

type being “clean” for each unique entry, which is denoted by p(z = t|t = k,xu) where

xu denotes the uth unique data value and k denotes the kth column type.

4.2.3 Using Meta-data for Inference

As an alternative approach to the methods described above, we have investigated

whether the meta-data can help to address the inference tasks. We consider datasets

for which meta-data are available, and extract a text sequence for each data column of

a dataset. Below we describe how we use these text sequences for type inference and

Chapter 4. Inferring the Type and Values of Categorical Variables 40

identification of categorical values.

Using meta-data for type inference: We cast the type inference task as a sequence

classification task where the goal is to label each text sequence with a type. For ex-

ample, the meta-data of the Eucalyptus dataset contains the following sequence for the

DBH column:

“12. DBH - best diameter base height (cm) - real”

Our goal here is to classify this sequence as float. Note that we could treat this prob-

lem as a tagging task and use a Named Entity Recognition (NER) approach; however,

the data types are sometimes described by their synonyms or related terms (e.g., “real”

is a synonym of the float type). Moreover, the data types may not be explicitly men-

tioned in the sequence. Therefore, type inference would be challenging for an NER

based method. Instead, we employ the following sequence classification methods:

Keyword Search, Bidirectional Long Short Term Memory (Graves and Schmidhuber,

2005) and RoBERTa (Liu et al., 2019), which are briefly described below:

• Keyword Search (KS): We construct a dictionary of type synonyms (e.g., binary

is a synonym of the categorical type) from the training data (Table 4.1 presents a

collection of synonyms found in our text sequences). Then we count the occur-

rences of synonyms per type in a test sequence, normalize these counts so that

their sum is 1, and use these as the predicted scores of the KS method.

• Bidirectional Long Short Term Memory (Bi-LSTM): We use the well-known

Bi-LSTM model for our text sequence classification task. Additionally, we com-

bined Bi-LSTM with an attention mechanism to weight the contributions of each

word to the classification decision. However, the results obtained by Bi-LSTM

with an attention mechanism are omitted as they are not comparable with Bi-

LSTM’s results.

• RoBERTa: We use the-state-of-art method RoBERTa, which extends BERT

(Devlin et al., 2019). BERT is a bi-directional transformer that outperforms Bi-

LSTM and Bi-LSTM-Attention. We fine-tune the pre-trained RoBERTa model

with our datasets for type inference.

Using meta-data for Identification of Categorical Values: The task of identifying

categorical values can also be addressed using meta-data. Consider the sequence be-

low that describes the Standard of Living Index column of the Contraceptive Method

Choice dataset:

Chapter 4. Inferring the Type and Values of Categorical Variables 41

type synonyms

categorical

binary, boolean, boolean-valued,

categorical, discrete, enum, enumerated

list, list/logical, logical, nominal, ordinal

date date, date/time, time

float
continuous, float, number, numeric, numerical,

numeric real, percentage, real

integer int, integer, positive integer

string char, character, string, text

Table 4.1: Data types and their synonyms found in our data dictionaries.

“8. Standard-of-living index (categorical) 1 =low, 2 , 3 , 4 =high”

Here, the goal is to identify the categorical values of 1, 2, 3 and 4 which are high-

lighted by the pink color. This task is more suitable for an NER-like approach rather

than a sequence classification approach. We assume that patterns in these sequences

can indicate the presence of categorical values, particularly the pattern where a cat-

egorical value precedes another one with a separator (such as comma) in between.

Therefore, we adapt Bi-LSTM and RoBERTa to this task.

4.3 Experiments

In this section, we first describe our experimental setup (Sec. 4.3.1) and then present

quantitative results on type inference and identification of categorical values (Sec.

4.3.2).

4.3.1 Experimental Setup

We describe the datasets, evaluation metrics and methods used in our experiments

below:

Chapter 4. Inferring the Type and Values of Categorical Variables 42

Datasets

For type inference, we have used 86 datasets obtained from various sources such as

Kaggle2, OpenML3 (randomly selected through the API) and UCI4. We have anno-

tated each dataset in terms of data types and categorical values by hand, based on the

available meta-data and the unique values in each data column. These datasets are

briefly described in Appendix B. The data files, their sources and our annotations can

be accessed via https://bit.ly/2Ra2Vu7. The datasets are split using 5-fold nested

cross-validation, which is summarized in Algorithm 1. Once the datasets are split, we

collect their columns in the corresponding folds. Note that we split at the dataset level

in order to avoid bias in test data. Our datasets contain a total number of 2989 columns

(900 categorical, 49 date, 1462 float, 513 integer and 65 string). The counts of data

types in each fold can be found in Appendix B. For the identification of categorical val-

ues task, we are interested in the 900 categorical data columns. Although 690 columns

contain fewer than 6 unique categorical values, the number of categorical values in

a column is between 1 and 80 (the data column with 80 categorical values, which is

obtained from the CleanEHR dataset5, denotes the reason for a patient’s admission

following the ICNARC Coding Method6).

Meta-data is available for 47 datasets out of 86. This leaves us with a total num-

ber of 897 text sequences (424 categorical, 33 date, 201 float, 214 integer and 25

string) extracted from meta-data. Additionally, we use all text sequences of cate-

gorical variables for identifying categorical values (these 424 sequences are obtained

from 35 datasets out of 47). Note that all categorical values are explicitly mentioned

in a total number of 183 sequences. The available sequences can be accessed via

https://bit.ly/2Ra2Vu7.

Evaluation Metrics

We use different sets of metrics for type inference and identification of categorical val-

ues. For type inference, we use the metrics which are used to evaluate ptype in Chapter

3, namely overall accuracy and the Jaccard index. See Section 3.3.1 for a detailed de-

2https://www.kaggle.com/datasets [Accessed on 18/11/2020]
3https://https://www.openml.org/search?type=data [Accessed on 18/11/2020]
4https://archive.ics.uci.edu/ml/datasets.php [Accessed on 18/11/2020]
5The data is accessible via https://github.com/ropensci/cleanEHR/tree/master/data [Ac-

cessed on 04/12/2020].
6The details are available at https://www.icnarc.org/Our-Audit/Audits/Cmp/Resources/

Icm-Icnarc-Coding-Method[Accessed on 04/12/2020].

https://bit.ly/2Ra2Vu7
https://bit.ly/2Ra2Vu7
https://www.kaggle.com/datasets
https://https://www.openml.org/search?type=data
https://archive.ics.uci.edu/ml/datasets.php
https://github.com/ropensci/cleanEHR/tree/master/data
https://www.icnarc.org/Our-Audit/Audits/Cmp/Resources/Icm-Icnarc-Coding-Method
https://www.icnarc.org/Our-Audit/Audits/Cmp/Resources/Icm-Icnarc-Coding-Method

Chapter 4. Inferring the Type and Values of Categorical Variables 43

Data : X

Model : M

Parameters: P, K

for i = 1 to K do
Split X into X training

i , X test
i

for j = 1 to K do
Split X training

i into X training
i j , X test

i j

foreach p ∈ P do
Train M on X training

i j

Calculate Error Etest
i jp

end

end
Calculate Average Error Etest

ip

Select p∗ where Etest
ip is minimum

Train M∗ on X training
i

Calculate Error Etest
i

end
Calculate Average Error Etest

Algorithm 1: K-Fold Nested Cross-Validation

scription of these metrics and how they are used for type inference. Additionally, we

plot the Precision Recall (PR) curve for each method and report the Average Precision

(AP) of each curve. These curves are obtained by micro-averaging over folds, meaning

that the output probabilities of a method are concatenated across five outer folds of the

nested cross-validation, and across the samples in each fold.

For identification of categorical values, we first evaluate the methods using overall

accuracy. The accuracy is 1 when the set of annotated categorical values is equal to

the set of predicted categorical values and 0 otherwise. In order to take into account

the partial matches between two sets, we calculate the Jaccard index per data column

J(A,B) defined as |A∩B|/|A∪B|, where A and B respectively denote the sets of anno-

tated and predicted categorical values. Then we report their average over columns.

Methods

Type Inference: On type inference, we compare ptype-cat with Bot, OpenML and

Weka. For Bot (Majoor and Vanschoren, 2018), we use the original implementation at

Chapter 4. Inferring the Type and Values of Categorical Variables 44

https://github.com/openml/ARFF-tools/blob/master/1030843_TheDataEncodingBot.

ipynb. Note that by default Bot considers only a subsample of a data column for com-

putational efficiency. Here, we feed all the entries into the method in order to eliminate

any bias. Additionally, we treat the pre-defined threshold for the number of unique

values, which is 100 by default, as a hyperparameter. We use two different hyperpa-

rameters for the integer and string types to allow a wider search space since the lower

thresholds are respectively 10 and 25. We estimate these parameters via nested cross-

validation using a grid-search over the intervals of {10, 20, . . . , 120} and {25, 35, . . . ,

125}.

For ptype-cat, we use Logistic Regression with an L2 penalty with the regulariza-

tion strength parameter selected in the interval of {10−4, . . . , 104}.

As we discuss in Chapter 2, the CSV to ARFF conversion methods used in OpenML

and Weka are not directly applicable to our task. However, we adapt these methods by

using ptype. We use ptype’s prediction when a data column is labelled with the ARFF

label numeric to classify the column either as float or integer. For OpenML’s csv2arff

method7, we use the original implementation at https://github.com/openml/ARFF-

tools/blob/master/csv-to-arff.py and treat the number of unique values as a

hyperparameter. Although its default value is 10, we estimate this parameter via nested

cross-validation using a grid-search over the interval of {10, 20, . . . , 120}. For Weka’s

method, we use the original implementation at https://waikato.github.io/weka-

wiki/formats_and_processing/converting_csv_to_arff/ which does not have

any hyperparameters.

Identification of Categorical Values: The methods adapted from OpenML and Weka

can also be used for the identification of categorical values. Similarly, we adapt Bot to

this task with a simple modification. Bot discards the data values that occur less than a

threshold and does not treat them as categorical values. Here, we treat this threshold as

a hyperparameter and estimate it via nested cross-validation using a grid-search over

the interval of {5, 10, 20, . . . , 80}. In addition, we construct a baseline called Unique

for inferring categorical values. Unique treats all unique values in a column as cate-

gorical values and is compared with ptype to demonstrate how much we can improve

by eliminating missing and anomalous data.

Meta-data for Inference: We use Bi-LSTM and RoBERTa for inferring types and

categorical values from meta-data. Additionally, we use KS for inferring types from
7OpenML provides this type inference methodology for dataset owners; however, Joaquin Van-

schoren (pers. comm.) informed us that many datasets on OpenML have been manually annotated
by dataset authors.

https://github.com/openml/ARFF-tools/blob/master/1030843_TheDataEncodingBot.ipynb
https://github.com/openml/ARFF-tools/blob/master/1030843_TheDataEncodingBot.ipynb
https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://github.com/openml/ARFF-tools/blob/master/csv-to-arff.py
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/
https://waikato.github.io/weka-wiki/formats_and_processing/converting_csv_to_arff/

Chapter 4. Inferring the Type and Values of Categorical Variables 45

meta-data. These are described in Sec. 4.2.3.

We implement Bi-LSTM using Keras. We use 100-dimensional pre-trained word

vectors from GloVe to initialize our word embeddings. Embeddings for words which

are not included in GloVe are randomly initialized to the same vector where each entry

is sampled uniformly from the interval of [0,1) and re-trained. The dropout rate is

set to 0.4. We use Adam for parameter optimization with a learning rate of 10−3

and a batch size of 32. The number of hidden nodes of an LSTM layer is treated as

a hyperparameter and is estimated via the nested cross-validation with a grid-search

over the values of {10, 20, 40, 80}.

For RoBERTa, we set the number of training epochs to 4, use batch size of 8 and

estimate the learning rate with a grid-search over the values of {5 · 10−5, 4 · 10−5,

3 ·10−5, 2 ·10−5}. The remaining parameters are set to the default parameters8.

Combining data and meta-data: Finally, we investigate whether we can improve

the performance by combining multiple classifiers that are trained on data and meta-

data. The idea is to fuse information from these two different sources and check

whether they can be complementary to each other, i.e., we ask whether we can rely on

a meta-data based classifier when a data based classifier is misleading and vice versa.

For example, ptype-cat and RoBERTa produce two separate probability distributions

over the column type for each data column, based on its entries and the corresponding

text sequence in its meta-data, respectively. We combine these probability distributions

and use the resulting distribution for type inference. Note that we apply a similar step

on identification of categorical values where we combine two probability values that

denote whether a data value is a categorical value or not.

There are various strategies that can be used to combine classifiers such as the sum

and product rules (see Kittler et al. (1998) for a detailed discussion and comparison

of different combination strategies). Here, we calculate the weighted average of the

probabilities of the data and meta-data based classifiers per type. The weights are cho-

sen from the interval of (0,1) such that their sum is equal to 1. We select 100 pairs

of weights and report the results obtained by the pair that leads to the highest over-

all accuracy on test data. This allows us to report the best performance improvement

possible as we obtain the upper bound performance. We have also chosen the weights

based on the performance on training data; however, this did not lead to any overall

improvement over the performance of best performing single model. This issue indi-
8available at https://github.com/ThilinaRajapakse/simpletransformers#default-

settings and https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-
config.json.

https://github.com/ThilinaRajapakse/simpletransformers#default-settings
https://github.com/ThilinaRajapakse/simpletransformers#default-settings
https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-config.json
https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-config.json

Chapter 4. Inferring the Type and Values of Categorical Variables 46

cates a mismatch between the patterns in our training and test datasets, which may be

resolved by extending the datasets used in our evaluations.

4.3.2 Experimental Results

Here, we present our experimental results for type inference and identification of cate-

gorical values (both using the data and meta-data).

Type Inference

Table 4.2 presents the performance of the methods in terms of overall accuracy and Jac-

card index. These results indicate that ptype-cat consistently outperforms the competi-

tor methods, except for the float type where it performs very similarly to Weka. These

improvements are generally thanks to the flexibility of our probabilistic approach, i.e.,

we train a probabilistic model to learn the relationship between data features and types,

whereas the others employ certain heuristics to identify types (see Chapter 2 for a de-

tailed discussion). Note that we obtain the hyperparameters of Bot as 10 and 25 respec-

tively for the integer and string types and OpenML’s unique values hyperparameter as

10 across test folds.

Fig. 4.4 presents the PR curves obtained by the methods, which indicates a similar

trend as above in that ptype-cat performs better than the other methods. Note that the

competitor methods provide only either 0 or 1 as a score for each data type. In contrast,

ptype-cat generates more fine-grained scores valued between 0 and 1.

Method

Bot OpenML Weka ptype-cat

Overall
0.84 0.88 0.79 0.93

Accuracy

Categorical 0.68 0.81 0.43 0.85
Date 0.08 0.00 0.00 0.51
Float 0.83 0.95 0.97 0.97
Integer 0.64 0.59 0.49 0.70
String 0.29 0.20 0.06 0.52

Table 4.2: Performance of the methods using the

overall accuracy and per-class Jaccard index, for the

Categorical, Date, Float, Integer and String types. Figure 4.4: PR curves for the methods.

Fig. 4.5 presents the normalized confusion matrices for the methods, normalized

so that each column sums to 1. All methods lead to confusions by classifying columns

Chapter 4. Inferring the Type and Values of Categorical Variables 47

as categorical rather than as integer or string. These failures are not surprising to some

extent since categorical values are either encoded by integers or strings. However,

ptype-cat has fewer such confusions than the others.

(a) Bot. (b) OpenML.

(c) Weka. (d) ptype-cat.

Figure 4.5: Hinton plots of the normalized confusion matrices.

ptype-cat performs better than the competitor methods for the date type, which can

be explained by several reasons. The main reason for Bot is that it does not support date

formats with time information. Instead, data columns in such formats are treated either

as categorical or string, depending on the number of unique values. Additionally, Bot

does not consider textual dates such as months and 4-digit formatted years, and results

in misclassifications of categorical since the number of unique values is typically low.

Weka considers the time information; however, it supports only the ISO-8601 format of

“yyyy-MM-ddTHH:mm:ss", unless the user specifies differently. Our method supports

a more extensive set of formats including certain non-standard date formats thanks to

the features obtained from ptype. OpenML completely discards the date type.

Compared to OpenML, our method correctly classifies an additional 141 data columns

(62 categorical, 27 date, 39 float, 8 integer and 5 string). The main difference is that

ptype-cat correctly classifies 51 categorical columns which are misclassified as integer

by OpenML. There are two main reasons to explain this difference. First, OpenML

predicts the data type as integer when the number of unique values is higher than 10

Chapter 4. Inferring the Type and Values of Categorical Variables 48

(e.g., most columns of the Poker Hand dataset contain 13 categorical values encoded

by integers). Secondly, OpenML does not properly handle missing data when the cat-

egorical values are encoded by strings. To correctly label such columns, it requires

all the entries to be converted to string by using the Python’s isistance function which

fails when the Pandas library detects missing data and encodes them as np.nan. For

example, OpenML initially labels the “HCMEST” column of the cleanEHR dataset

(which contains values Y, N and NULL) as numeric rather than categorical. A forced

choice between integer and float in ptype then results in equal posterior probabilities

for these two types, as ptype must set its row latent variables to “anomaly" to explain

the non-NULL data.

To determine whether the column type predictions of ptype and OpenML are sig-

nificantly different, we apply the McNemar’s test (see e.g., Dietterich 1998), which

assumes that the two methods should have the same error rate under the null hypothe-

sis. We compute the test statistic (|n01−n10|)2)/(n01+n10), where n01 and n10 denote

the number of test columns misclassified by only OpenML, and by only ptype respec-

tively. In our case, n01 and n10 are respectively equal to 185 and 44, which results in

a statistic of 85.6. If the null hypothesis is correct, then the probability that this statis-

tic is greater than 3.84 is less than 0.05 (Dietterich, 1998). Thus this result provides

evidence to reject the null hypothesis and confirms that the methods are statistically

significantly different from each other.

Unlike the other methods, Bot misclassifies a high number of categorical variables

as floats. These failures occur when the Pandas library fails to parse a given dataset cor-

rectly. For example, the “Active Sport” column of the Young People Survey dataset—a

categorical variable which ranks how active a young person is from 1 to 5—is labelled

with the float type by the Pandas library and consequently all integers are converted to

their floating-point representations (e.g., 1.0 to 5.0). Therefore, Bot is fed with these

floating-point numbers rather than integers resulting in confusions.

A common pattern in failure cases of all methods is that the assumption about the

number of unique values does not always hold, i.e., there can be data columns of type

integer or string with a low number of unique values. Consider the “State” column of

the Geoplaces dataset which contains data values such as Morelos, S.L.P. and San

Luis Potosi. The data column contains only 13 unique values out of 130 entries,

which causes the methods to misclassify it as categorical (note that this data column is

assumed to be of type string rather than categorical since the data is collected as free

text). OpenML handles such cases slightly better than the others based on the heuristics

Chapter 4. Inferring the Type and Values of Categorical Variables 49

used. However, its overall performance for the string type is poor as it classifies quite

a high number of columns as integer rather than string due to the presence of missing

data.

Finally, we inspect the coefficients of the Logistic Regression classifiers to under-

stand which features contribute to the categorical/non-categorical decision the most.

We observe that the coefficients of Uc have the highest values. This is respectively

followed by U and R. These observations indicate that the classifiers use our proposed

features to detect the categorical type. Note that there is a strong positive correlation

between the coefficients of U and Uc, i.e., the corresponding Pearson’s correlation co-

efficient is 0.99. On the other hand, we observe a less notable correlation between the

coefficients of U and R with the Pearson’s correlation coefficient of 0.17.

Identification of Categorical Values

Table 4.3 presents the performance of the methods on identification of categorical val-

ues. These results indicate that ptype-cat outperforms the competitor methods in terms

of both metrics, whereas the leading competitor method is OpenML. We also observe

that Unique performs better than Bot and WEKA, which produce similar results. Note

that we obtain the hyperparameters of Bot as 5 across test folds.

Method
Bot OpenML Weka Unique ptype-cat

Overall Accuracy 0.33 0.83 0.38 0.64 0.90
Average Jaccard 0.40 0.87 0.42 0.87 0.92

Table 4.3: Performance of the models on inference of categorical values.

The accuracies indicate that OpenML identifies all categorical values correctly for

a higher number of data columns than Unique. The difference in their overall accu-

racies results from the inability of Unique to detect missing data. For example, the

“Chemox” column of the CleanEHR dataset has three unique values: 0, 1 and NULL.

Here, the annotated categorical values are 0 and 1, and NULL encodes missing data.

While OpenML correctly labels 0 and 1 as the categorical values, Unique treats NULL

as another categorical value. On the other hand, the Average Jaccard score denotes

that they provide similar coverage of categorical values per column. The main reason

is that only a few data values are misclassified per column by Unique, which does not

lead to large gaps in their performances.

Chapter 4. Inferring the Type and Values of Categorical Variables 50

Bot obtains the worst performance, which is not surprising as it relies on the num-

ber of occurrences of data values for detecting categorical values. Using the number of

occurrences can become misleading for Bot. For example, it treats missing or anoma-

lous data observed more than a pre-defined threshold in the data as categorical values.

Similarly, it cannot identify categorical values that occur less than the same threshold.

Weka performs slightly better than Bot; however, its performance is still poor com-

pared to the remaining methods. This is mainly because when it misclassifies a cat-

egorical variable, it generates an empty list for the corresponding categorical values,

which causes both the accuracy and the Jaccard index to be zero.

In addition to the Average Jaccard score, we test whether methods produce sta-

tistically different Jaccard indices per column. We apply a paired t-test on the list of

Jaccard indices obtained by Unique and ptype-cat (in the same order). Similarly, we

obtain the p-values by OpenML-ptype-cat, Bot-ptype-cat and Weka-ptype-cat compar-

isions. We find that all the p-values are lower than 0.001. These results reject the null

hypothesis that the means are equal and confirm that they are significantly different.

Meta-data for Inference

Meta-data for Type Inference: Table 4.4 presents the performance of KS, Bi-LSTM,

RoBERTa and ptype-cat on type inference. Additionally, we evaluate RoBERTa +

ptype-cat which is the method obtained by combining the predictions of RoBERTa and

ptype-cat. Note that the first three approaches rely on the meta-data for type inference,

whereas ptype-cat relies on the corresponding column data, i.e., we re-evaluate ptype-

cat on the data columns for which text sequences are extracted from meta-data. How-

ever, RoBERTa + ptype-cat uses the information both in the data and meta-data. As per

the table, RoBERTa leads to a better overall performance than KS and Bi-LSTM; how-

ever, ptype-cat consistently outperforms these three competitor methods. These results

indicate that ptype-cat allows us to infer types accurately from data without looking

at meta-data. Moreover, the results show that the performance obtained by ptype-cat

can be slightly improved overall by combining its predictions with RoBERTa’s predic-

tions. Note that the performance of RoBERTa + ptype-cat denotes the best possible

performance that can be obtained by combining these classifiers.

Fig. 4.6 presents the PR curves obtained by the methods, which indicates a similar

trend as above in that combining RoBERTa and ptype-cat performs better than the

other methods.

Fig. 4.7 presents the normalized confusion matrices for the methods, normalized

Chapter 4. Inferring the Type and Values of Categorical Variables 51

Method

KS Bi-LSTM RoBERTa ptype-cat RoBERTa + ptype-cat

Overall
0.50 0.62 0.68 0.90 0.92

Accuracy

Categorical 0.40 0.58 0.71 0.86 0.89
Date 0.42 0.11 0.11 0.59 0.59
Float 0.53 0.35 0.39 0.92 0.92
Integer 0.23 0.42 0.42 0.73 0.79
String 0.12 0.08 0.04 0.27 0.23

Table 4.4: Performance of the methods using the overall accuracy and per-class Jac-

card index, for the Categorical, Date, Float, Integer and String types. We highlight the

best score in each row by making the highest score bold.

Figure 4.6: PR curves for the methods.

so that each column sums to 1. Below we discuss the common patterns in these nor-

malized confusion matrices.

All methods lead to confusions by misclassifying numerical columns, e.g., classi-

fying a column as float rather than integer. These failures are understandable to some

extent since the corresponding text sequences are likely to share a similar context.

However, ptype-cat has fewer such confusions than the others, as it uses the data val-

ues themselves rather than the text sequences. For example, the “lOBlank” column of

the JM1 dataset9 is described by the “15. lOBlank : numeric % Halstead’s count of

9The dataset is collected for software defect prediction and is available at http://promise.site.
uottawa.ca/SERepository/datasets-page.html [accessed on 04/03/2021]

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html

Chapter 4. Inferring the Type and Values of Categorical Variables 52

(a) Keyword Search. (b) Bi-LSTM.

(c) RoBERTa. (d) ptype-cat. (e) RoBERTa + ptype-cat.

Figure 4.7: Hinton plots of the normalized confusion matrices.

blank lines” sequence in the meta-data. Here, only ptype-cat correctly identifies the

type as integer, whereas the competitor methods classify the sequence as float. Sim-

ilarly, the “Duration” column of the Bank Marketing dataset is described by the “12

- duration: last contact duration, in seconds (numeric)” sequence in the meta-data.

Here, KS, Bi-LSTM and RoBERTa classify this sequence as float, whereas ptype-cat

correctly identifies its type as integer.

Fig. 4.7 indicates that ptype-cat can identify the categorical type better than the

competitor methods. Consider the “Study Time”10 column of the Student Alcohol

Consumption dataset and the corresponding sequence of “studytime - weekly study

time (numeric: 1 - 10 hours)”. Here, ptype-cat can correctly detect the type based on

the features extracted from the data column itself (the column consists of 395 entries

with 4 unique values. However, all the competitor methods fail, i.e., Bi-LSTM labels

this sequence with the float type, whereas RoBERTa label it with the integer type and

KS cannot assign any type. Note that KS fails because there is no explicit mention

of any type in this sequence that it is familiar with, including “numeric” which is

not observed in the training set for the corresponding nested cross-validation fold.

10We assume that the column denotes an ordinal variable as it consists of the unique values of 1, 2,
3 and 4 which have a natural order among themselves. Note that the ordinal type is included within the
general categorical type in this work.

Chapter 4. Inferring the Type and Values of Categorical Variables 53

Although Bi-LSTM and RoBERTa do not rely on the presence of explicit mentions,

the patterns in the sequence are perhaps too rare in the training data or too complex for

the methods to capture enough information about the categorical type.

We observe that the date and string types are challenging to identify by using the

meta-data, which can be explained by several reasons. First, the syntax of the values

in a data column may be a more direct indicator of its type than the textual descrip-

tions of a column. Secondly, the date and string types are rare classes in our datasets.

Therefore, there may not be enough examples for the training to be effective for these

types.

Lastly, we compare the predictions of ptype-cat and RoBERTa + ptype-cat. We

obtain RoBERTa + ptype-cat by using the weights of 0.33 and 0.67 for RoBERTa and

ptype-cat, respectively. We observe that RoBERTa + ptype-cat identifies the types

of an additional number of 19 columns (11 categorical and 8 integer). However, it

also misclassifies one more column of type string than ptype-cat. A detailed inspec-

tion of their predictions shows that ptype-cat treats several columns as integer rather

than categorical with low confidence. For example, the “Course_instructor” column of

the TAE dataset, which denotes the IDs of course instructors, consists of 151 entries

where there are 25 unique categorical values. ptype-cat labels this column with the

integer type because the corresponding posterior probability values for the categorical

and integer types are respectively 0.34 and 0.66. However, RoBERTa is confident that

the column is of type categorical with a posterior probability value of 0.97. There-

fore, we obtain the correct label, which is categorical, by combining these two models

(weighted averaging the prediction scores let us obtain the posterior probability values

of 0.55 and 0.45 for the categorical and integer types, respectively).

Meta-data for Identification of Categorical Values: Table 4.5 presents the perfor-

mance of Bi-LSTM, RoBERTa and ptype-cat on identification of categorical values.

Note that the first two approaches rely only on the meta-data for inference, whereas

ptype-cat relies on the corresponding data, i.e., we re-evaluate ptype-cat on the data

columns for which text sequences are extracted from meta-data. On the other hand,

RoBERTa + ptype-cat uses both the data and meta-data, where the weights of RoBERTa

and ptype-cat are respectively found to be 0.01 and 0.99 via a grid-search as discussed

in Sec. 4.3.1. As per the table, RoBERTa leads to a better overall performance than Bi-

LSTM; however, ptype-cat consistently outperforms the competitor methods. These

results indicate that ptype-cat allows us to infer categorical values accurately from

data without looking at meta-data.

Chapter 4. Inferring the Type and Values of Categorical Variables 54

Method
Bi-LSTM RoBERTa ptype-cat RoBERTa + ptype-cat

Overall Accuracy 0.04 0.27 0.78 0.78
Average Jaccard 0.10 0.35 0.81 0.81

Table 4.5: Performance of the methods using Overall Accuracy and average of Jaccard

index per column.

Figure 4.8 denotes the PR curves obtained by the methods, which indicate a sim-

ilar pattern as above in that ptype-cat performs better than Bi-LSTM and RoBERTa.

However, we now observe slight improvement in the AUC by combining RoBERTa

and ptype-cat. This slightly improvement shows that we are slightly more confident

about our predictions, although the predicted labels stay the same. Note that the per-

formance of RoBERTa + ptype-cat corresponds to the best possible performance that

can be obtained by combining these models.

Figure 4.8: PR curves for the methods.

Note that our goal here is to identify the categorical values observed in the data.

However, Bi-LSTM and RoBERTa cannot identify the categorical values that are not

explicitly mentioned in meta-data. Therefore, the poor performances obtained by us-

ing Bi-LSTM and RoBERTa may not be surprising as only 183 sequences out of 424

contain all categorical values. For example, for the “protocol_type" column of the

KDDCup99 dataset, we are given the sequence of “protocol_type type of the protocol,

e.g., tcp, udp, etc. discrete". Here, Bi-LSTM does not identify any categorical values,

whereas RoBERTa correctly labels tcp and udp as categorical values. However, the

Chapter 4. Inferring the Type and Values of Categorical Variables 55

data column contains an additional categorical value of icmp. ptype-cat is the only

method that could identify all three categorical values in this example.

4.4 Discussion

Above, we address the data type problem which tackles the classification of a data

column into categorical, date, float, integer or string. Our method takes into account

both the syntax of the data entries and the additional features that can indicate whether

a data column is of categorical type or not. Additionally, we adapt ptype to the task

of identifying the possible values a categorical variable can take on. We demonstrate

improved accuracy for these tasks over competitor methods, which rely on heuristics.

Moreover, we investigate the use of meta-data for inferring the type and values of cat-

egorical variables and show that, although relying on meta-data only does not perform

as well as our model, it can help to slightly improve the performance of our model for

type inference when combined.

As a next step, we plan to improve the impact of our work in practice by producing

a software tool based on ptype-cat, that can be used by the practitioners. In this regard,

we are going to train a final version of the proposed model by using all the available

datasets and incorporate this trained model into the Python package of ptype. Note

that the ptype package already supports a number of user interactions as we discuss

in Chapter 3.3.3; however, ptype-cat may bring additional challenges, such as the de-

sign of user-interactions where the main goal is to let the user modify the incorrect

annotations of our model for type and categorical values.

Finally, it may be useful to distinguish ordinal and nominal variables in certain

scenarios rather than treating them as categoricals as in ptype-cat. This can be ac-

complished by feeding ptype-cat with new features extracted from categorical values

themselves. For example, Hernández-Lobato et al. (2014) discriminate between the

ordinal and nominal types by comparing the model evidence and the predictive test

log-likelihood of ordinal regression models and multi-class classifiers. One could run

such models on data and use their outputs as features for ptype-cat. It can be possible

to obtain similar features by using on word-embeddings for categorical values encoded

as strings.

Chapter 5

Bringing Semantics into Type

Inference

This chapter begins by describing our motivation to use semantics for type inference

(Sec. 5.1). Then, we describe the proposed methodology (Sec. 5.2) and discuss the re-

lated work (Sec. 5.3). Finally, we present our experiments (Sec. 5.4), which is followed

by a summary of this work and a discussion of potential research directions (Sec. 5.5).

5.1 Introduction

In Chapters 3 and 4, we describe two type inference methods named ptype and ptype-

cat. ptype relies on the syntax of the data values for type inference, whereas ptype-cat,

in addition to the syntax, takes into account additional features to better detect the

categorical type. However, they do not make use of the semantic information about a

given dataset, which can be essential for accurate and enhanced type inference.

Consider the following example: Suppose we are given the quantitative data col-

umn1 in Figure 5.1(a), which denotes the volume of freezers in various households.

The value of each data entry is a measurement encoded by a unit symbol, except the

last entry which does not have any unit symbol (we refer to the absence of a unit

symbol in an entry as the missing unit). Note that a measurement is a combination

of a numeric value and a unit (e.g., litre), which can be encoded by several possible

unit symbols for that unit (e.g., l and L). As shown in Figure 5.1(b), the measure-

ments are encoded with two distinct units (litres and cubic feet) and six different unit
1The data is sampled from the “Freezer_volume” column of the Household Electricity Survey (HES)

dataset which can be accessed by registering at https://tinyurl.com/ybbqu3n3.

56

https://tinyurl.com/ybbqu3n3

Chapter 5. Bringing Semantics into Type Inference 57

symbols, some of which including ltrs, and Cu can be considered as anomalous unit

symbols as they do not follow the standard encodings of units. Moreover, a unit (e.g.,

litre) can be informative about the dimension of a measurement (in this case volume).

The International Vocabulary of Metrology2 defines dimension as an expression of the

dependence of a physical quantity on mutually independent components called base

quantities. Following the terminology used by Chambers and Erwig (2010), we cate-

gorize dimensions into two groups: (i) basic dimensions (such as length and time) and

(ii) derived dimensions (such as speed and force).

Numeric
Value

Unit
Symbol

Unit

12 LTS Litre
7 CUFT Cubic foot
120 ltrs Litre
84 L Litre
105 Cu Cubic foot
7 Cf Cubic foot
42 NA NA

Freezer_volume

12LTS
7 CUFT
120ltrs
84L
105Cu
7cf
42

Header: Freezer_volume
Dimension: Volume
Unit: Litre
12
198.22
120
84
2973.27
198.22
NA

a) Raw data b) Intermediate steps c) Final clean data

Figure 5.1: A motivating real-world example that represents our pipeline. a) shows the

samples of a raw dataset. b) indicates the intermediate steps required to transform the

column. c) denotes the final data column obtained by applying the transformations.

ptype would label the column in Figure 5.1(a) with the string type rather than a

numeric type (float or integer) as the data values consist of alphanumeric characters and

whitespace. Similarly, ptype-cat would treat it as either string or categorical depending

on the additional features (e.g., the number of unique values) rather a numeric type.

But the correct type would be float if all the measurements are encoded in litres, as

in Figure 5.1(c). Moreover, we may want to extract additional semantic information

about the column such as its dimension, which is volume, and the units of all its entries

so that the data entries can be canonicalized (i.e., so they all are expressed in the same

units). Such information cannot be obtained by using ptype or ptype-cat. Instead,

one needs to apply transformations such as parsing and identifying the units in the

entries, inferring the common unit for the column which is placed in the metadata such

as the header, making the entries numeric and scaling the entries where needed. The

2The document is accessible at https://www.bipm.org/documents/20126/2071204/JCGM_200_
2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1

https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1
https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1

Chapter 5. Bringing Semantics into Type Inference 58

resulting data column would then be easier to understand and can be directly used in

data analytics pipelines.

Samadian et al. (2014) argue that clinical data often suffer from these problems, as

the data is usually collected by uncoordinated groups of people. Such issues are often

manually identified and resolved with dataset-specific scripts, which are typically used

only once. However, they should be automated with a dataset-independent tool to

reduce the time and effort spent on manual transformation of the data, and to enhance

reproducibility. To the best of our knowledge, the tasks below are not addressed by

any existing work in the literature (see Chapter 5.3 for a detailed discussion):

• the task of inferring the dimension of a column,

• the task of identifying the unit for each entry of a column,

• the task of canonicalizing the entries of a column.

In this chapter, we propose ptype-semantics - an extension of ptype enriched by

incorporating semantic information about units of measurement. The proposed model

allows us to extract semantic information about a given data column (such as its di-

mension and unit), canonicalize its entries and provides enhanced type inference ca-

pabilities for syntactic type inference methods such as ptype. Our contributions are as

follows:

• We propose a probabilistic model which annotates data columns containing unit

symbols in terms of dimensions and units (Section 2).

• We make the first quantitative comparison of the existing methods on the unit

identification task in real-world tabular data (Section 4).

• We present the first set of real-world datasets annotated for the units of measure-

ment, to accelerate research in this area.

5.2 Methodology

This section describes how we represent units (Sec. 5.2.1), introduces our model (Sec.

5.2.2) and presents the inference in this model (Sec. 5.2.3).

Chapter 5. Bringing Semantics into Type Inference 59

5.2.1 Representing Units

We represent units by extending a dictionary of units curated from Wikipedia3 with

information from WikiData (Vrandečić and Krötzsch, 2014) and QUDT (Quantities,

Units, Dimensions and Data Types Ontology)4. Keil and Schindler (2018) show that

WikiData is the most comprehensive knowledge graph for units and that QUDT con-

tains additional information to WikiData. By extending the existing dictionary, we

increase the number of units from 284 to 1080 (we only consider the units in English,

although extensions to other languages are straightforward).

Table 5.1 presents two instances that respectively represent the units of litre and

gram. The instances in the original dictionary can have six attributes: name, surfaces,

entity, URI, dimensions, and symbols. Note that the “surfaces” attribute denotes a

list of strings that refer to a unit, whereas the “symbols” attribute is a list of possible

symbols and abbreviations for that unit.

name surfaces entity URI dimensions symbols

litre
cubic decimetre, litre, volume .../wiki/Litre {’base’: ’decimetre’, l, L, ltr

cubic decimeter, liter ’power’: 3}

gram gram, gramme mass .../wiki/Gram — g, gm

Table 5.1: Two elements of the unit dictionary. Note that URIs begin with https:

//en.wikipedia.org/.

For each instance we extract a dimension, a unit and a list of unit symbols. The

name and entity attributes of the instances in Table 5.1 are respectively used as units

and their dimensions. Note that the naming convention used in the dictionary differs

from our terminology in that it refers to dimension as entity and uses the “dimensions"

attribute to encode the relationship between units. The “surfaces” and “symbols” at-

tributes are combined to build a set of unit symbols. To search for additional symbols

of a unit, we query WikiData using the URI attribute. Additionally, the QUDT ref-

erence ID, when available in the response obtained from WikiData, is used to query

QUDT. We provide the details of this process in Appendix C.1 for reproducibility. The

resulting set of tuples are then used to construct our model and can be seen as training

data.
3Accessible at https://github.com/marcolagi/quantulum/blob/master/quantulum/

units.json
4https://www.qudt.org/

https://en.wikipedia.org/
https://en.wikipedia.org/
https://github.com/marcolagi/quantulum/blob/master/quantulum/units.json
https://github.com/marcolagi/quantulum/blob/master/quantulum/units.json

Chapter 5. Bringing Semantics into Type Inference 60

5.2.2 The Proposed Model

To make use of the semantic information in the entries of a data column that contain

unit symbols, we extend ptype by incorporating the knowledge of units from knowl-

edge graphs. The resulting model called ptype-semantics can generate more fine-

grained type predictions than the string type, namely the column’s dimension (such

as length, mass or volume). In addition, it can detect the anomalous entries with non-

standard unit symbols which would be treated as valid string typed entries by ptype,

and can automatically repair anomalous unit symbols by mapping them to known unit

symbols.

ptype-semantics first generates a column dimension from a set of possible dimen-

sions and then generates a row unit for each data entry from the set of possible units for

that column dimension. Next, the model generates row labels, each of which is either

equal to the corresponding row unit, missing or anomalous. Finally, the observation

model generates a unit symbol for each row according to its label. We now introduce

our notation to represent this process, which is summarised in Table 5.2

Symbol Description

t the column dimension

ui the unit of the ith row

zi the label of the ith row

vi the numeric value of the ith row

xi the unit symbol of the ith row

yi the characters of the ith row

K the number of possible dimensions

Lt the number of possible units for dimension t

Sui the number of possible unit symbols for unit ui

Table 5.2: A summary of the notation used by ptype-semantics.

We assume that a column of data y = {yi}N
i=1 consisting of N rows has been read

in, where each yi denotes the characters in the ith row. Additionally, each yi is assumed

to be parsed to a numeric value vi and a unit symbol xi, which may be missing for some

entries, i.e., xi may be null. In this work, we use regular expressions to parse obser-

vations y (see Sec. 5.2.2 and Appendix C.3 for the details). We propose a generative

model with a set of latent variables t, u = {ui}N
i=1 and z = {zi}N

i=1, where t denotes

the dimension of a column, ui the unit and zi the label of its ith row. The missing and

anomalous labels, denoted by m and a respectively, are used to model the data entries

Chapter 5. Bringing Semantics into Type Inference 61

where the unit symbols are missing or anomalous. Thus, each zi can be m or a as

well as a row unit that fit the column dimension, i.e. zi ∈ {Litre,Cubic foot, ...,m,a}
given that t is volume. With this noise model, we make our inference procedure robust

against missing and anomalous unit symbols.

Denoting the number of possible dimensions for a column by K, our model has the

following generative process:

column dimension t ∼ U(1,K),

row unit ui ∼ p(ui|t),

row label zi =

ui with probability wui

ui
,

m with probability wm
ui
,

a with probability wa
ui
,

row symbol xi ∼ p(xi|zi),

where Lt , W and p(xi|zi) are respectively the number of units for the dimension t, the

mixing proportions, and the observation model. U denotes a discrete Uniform distri-

bution. Additionally, p(ui|t) denotes how likely a row unit ui represents the dimension

t. Here the mixing proportions wui
ui
+wm

ui
+wa

ui
= 1 for each row unit ui, and p(ui|t) is

modeled with an indicator function that assigns a non-zero score only when a unit is a

known unit of a dimension. Since entries are often expected to be of a regular row label

rather than the missing or anomalous labels, we favour regular labels during inference

by using lower coefficients for the missing and anomalous labels, i.e. wm
ui
< wui

ui
and

wa
ui
< wui

ui
. These mixing proportions W are assumed to be fixed and known. Even

though one could also learn the mixing proportions, this may not be vital as long as the

coefficients of the regular labels are larger than the others.

We build the observation model p(xi|zi) upon three functions. First, we develop a

Categorical distribution for row unit ui where the categories correspond to the possible

unit symbols for that unit:

p(xi|zi = ui) = Cat(xi,πui), (5.1)

where ∑
Sui
s=1 πs

ui
= 1. Here, Sui denotes the number of known unit symbols for a unit

ui. Second, we model missing units with an indicator function, which assigns a non-

zero probability only when a unit symbol is missing. Lastly, we adapt the anomaly

type in ptype, which is built based on the idea of an X-factor proposed by Quinn et al.

(2009), to model anomalous unit symbols. Here, we introduce a likelihood function

Chapter 5. Bringing Semantics into Type Inference 62

that assigns low non-zero probabilities to any data value, which in turn allows the

model to detect anomalous unit symbols which do not fit any known unit.

Parsing Unit Symbols

Unit symbols are usually positioned after quantities as in 1 L, with some exceptions

where the conventions are different. For example, they are usually placed before quan-

tities to represent monetary amounts, e.g., $159000 and $85810. When abbreviations

are used, however, unit symbols are placed after numeric parts, e.g., 70 USD, 19.68

AUD. Monetary amounts can also be represented in various non-standard formats. For

example, whitespace may be placed between symbols and amounts, e.g., $ 1012, $

964. We develop regular expressions by taking into account possible positions of unit

symbols. Additionally, we remove leading and trailing whitespace as well as trailing

dots. The regular expressions used can be found in Appendix C.3 for reproducibility.

5.2.3 Inference

Given the row symbols x in a data column, the initial task is to infer the column dimen-

sion t, which is cast as the problem of calculating the posterior distribution of t given

x, namely p(t|x). We then compute a posterior distribution over each row label con-

ditioned on the dimension and the observed value, i.e., p(zi|t,xi). Next, we determine

the row units by calculating the posterior distribution of each row unit ui given t, zi

and xi, which is also used to predict the column unit. Lastly, we introduce a strategy to

map a unit symbol labelled as anomalous to a known unit symbol and briefly describe

how we canonicalize the units. Note that we define unit canonicalization as the task of

canonicalizing the entries of a data column so that they all are expressed in the same

units. The detailed derivations are presented for reproducibility in Appendix C.4; here

we briefly discuss the corresponding calculations.

Column Dimension Inference

Assuming that the entries of a data column are conditionally independent given the

column dimension, we obtain the posterior distribution of column dimension t by

Chapter 5. Bringing Semantics into Type Inference 63

marginalizing over row unit and label variables u and z as follows:

p(t = k|x) ∝ p(t = k)
N

∏
i=1

 Lt

∑
l=1

p(ui = l|t = k)
(

wl
l p(xi|zi = l)

+wm
l p(xi|zi = m)+wa

l p(xi|zi = a)
). (5.2)

Eq. 5.2 can be used to estimate the column dimension t, since the one with maximum

posterior probability is the most likely dimension corresponding to the column x. Note

that Eq. 5.2 is similar to Eq. 3.1 as column dimension inference and column type

inference are carried out similarly (see Section 3.2.3 for the details).

As per equation 5.2, the model estimates the column dimension by considering all

the data rows, i.e. having missing or anomalous unit symbols does not confuse the

dimension inference. Note that such entries would have similar likelihoods for each

column dimension, which allows the model to choose the dominant dimension for

regular entries.

Row Label Inference

Following the inference of column dimension, the posterior probabilities of each row

label zi given t = k and xi is obtained by marginalizing the latent unit variable ui as

follows:

p(zi = j|t = k,xi) ∝

Lk

∑
l=1

p(ui = l|t = k) w j
l p(xi|zi = j). (5.3)

Note that Eq. 5.3 is similar to Eq. 3.2 as row label inference and row type inference

are carried out similarly (see Section 3.2.3 for the details).

Row Unit Inference

Given t = k, zi = j and xi, the posterior distribution of row unit ui is obtained as:

p(ui = l|t = k,zi = j,xi) =
p(ui = l|t = k) p(xi|z j = j)

∑
Lk
ui=1 p(ui = l|t = k) p(xi|z j = j)

. (5.4)

Chapter 5. Bringing Semantics into Type Inference 64

Column Unit Inference

Following the column dimension inference, we set the column unit l∗ as follows:

l∗ = argmax
l

N

∑
i=1

p(ui = l|t = k,xi), (5.5)

where l ∈ {1, . . . ,Lt} denotes a possible unit for dimension t.

Correcting Anomalous Unit Symbols

Row label inference annotates each data entry either as a unit, missing or anomalous.

We assume that the units of anomalous entries are encoded by anomalous unit sym-

bols (e.g., ltrs for litres) and can be identified by mapping anomalous unit symbols

(e.g., ltrs) to known unit symbols (e.g., lt) based on the edit-distance (Levenshtein,

1966). The edit-distance measures the minimum number of operations (addition, dele-

tion or substitution) that needs to be done to transform a string to another, and can

handle misspellings and non-standard abbreviations. Note that we restrict the set of

unit symbols to be compared with according to the column dimension, i.e., we com-

pare ltrs with known unit symbols that encode units of volume when the column

dimension is inferred as volume.

Canonicalizing Units

Following the inference of the row units and the column unit, we are now interested

in representing each row with the same unit by scaling its numerical value (e.g., con-

verting the data entry 1 m to 100 cm when the column and row units are respectively

centimetres and metres). Currently, we convert units via an existing tool named Pint

(Grecco, 2019) and demonstrate that our model improves over its performance for unit

conversion by identifying the row units more accurately. See Sec. 5.3 for a detailed

discussion of Pint.

5.3 Related Work

We are not aware of existing work specifically on the unit canonicalization problem.

The closest related works can be categorized as Semantic Web technologies

Chapter 5. Bringing Semantics into Type Inference 65

(Van Assem et al., 2010; Hignette et al., 2009; Samadian et al., 2014), regular expres-

sions (Grecco, 2019; Wolfram|Alpha, 2019; Shbita et al., 2019), and Machine Learning

(Lagi, 2016; Foppiano et al., 2019; Finkel et al., 2005), which are described below:

5.3.1 Semantic Web Technologies

A limited number of studies (Van Assem et al., 2010; Hignette et al., 2009) address

how quantitative data columns can be annotated in terms of units, based on unit on-

tologies and a set of heuristics. For example, Van Assem et al. (2010) infer the unit of

a data column by comparing the substrings of its header with unit symbols, and then

employing simple heuristics such as symbols between brackets referring to units, e.g.,

“f (Hz)”. Similarly, Hignette et al. (2009) use a combination of two functions: (i) a co-

sine similarity function between the header and the units, such as Hertz, (ii) a function

that assigns a non-zero score when a unit symbol is an element of the set of symbols

for a unit. However, these methods do not apply to our task for several reasons. First,

their annotations are based on ontological classes in domain-specific ontologies rather

than the dimensions considered in this work. Second, the authors do not tackle the task

of canonicalizing units of data entries. Third, the methods proposed in (Van Assem

et al., 2010; Hignette et al., 2009) do not handle anomalous unit symbols and are not

publicly available.

Chambers and Erwig (2010) consider the task of annotating data entries in spread-

sheets rather than tabular data. The authors apply text processing techniques such as

tokenization and normalization on headers for dimension and unit inference. They split

the label in a header into separate words, remove word inflections and map word stems

into known units and dimensions. Although their approach can be useful when infor-

mation is explicitly given in a label, it does not use the information given implicitly, as

in the label of “Credit Card Charges”.

Instead of focusing on annotating quantitative columns, Samadian et al. (2014) also

consider the problem of canonicalizing units, but their focus is different from ours.

The authors propose a Semantic Web Service-based approach by defining domain-

specific ontological classes, e.g., “High-Systolic-Blood-Pressure-Measurement” class

with kilopascal as its unit. Given a data column and its ontological class, their goal is

to represent all entries with the same predefined unit of the corresponding ontological

class. When a data entry has a unit different from the predefined unit, they send a query

to Ontology of Units of Measure (Rijgersberg et al., 2013) to convert the data to the

Chapter 5. Bringing Semantics into Type Inference 66

predefined unit. The authors assume that symbols are always given in known forms

that can be matched to the ontology. Hence, their proposed method does not handle

out-of-vocabulary unit symbols that are common in messy datasets. Moreover, they

consider only specific domains, preventing us from annotating data columns with the

dimensions used in this study.

5.3.2 Regular Expressions

The majority of the previous research on units has focused on parsing and identifying

units in text and unit conversion (Grecco, 2019; Wolfram|Alpha, 2019; Shbita et al.,

2019), which are also not directly applicable to our task, as explained below.

Pint (Grecco, 2019) is a tool that can extract units from text based on regular ex-

pressions and knowledge about units. Moreover, it enables unit conversion based on

the relationships among units. Similarly, Wolfram|Alpha (2019) presents an interface

which can extract units from text and manipulate them, such as calculating the sum of

two data values given in different units. Note that we have limited information about

the methods behind Wolfram|Alpha since they are not explicitly described due to com-

mercial concerns. Such tools can canonicalize different symbols that are commonly

used to represent a unit when parsing text. However, they are designed neither to an-

notate quantitative data columns with dimensions nor to canonicalize the units of their

entries. They do not even take the input as a data column, except for the professional

version of Wolfram|Alpha which is not freely available.

For tabular data, Shbita et al. (2019) develop a rule-based system named CCUT by

combining a grammar parser called Arpeggio and the unit ontology of QUDT. Their

goal is to map unit symbols in tabular data to the ontology so that the data entries can

be annotated with semantic information, which can be useful for table understanding.

Unlike us, the authors do not use the contextual information in the entries of a data col-

umn, i.e., the unit symbols in the entries of a data column may be related to each other

through the column dimension. Moreover, they do not consider the task of annotating

quantitative data columns with dimensions.

5.3.3 Machine Learning

Quantulum (Lagi, 2016) combines regular expressions and knowledge graphs with

a Machine Learning (ML) model in order to disambiguate unit symbols in unstruc-

tured text (e.g., whether “pound” in a sentence refers to currency or mass). Specif-

Chapter 5. Bringing Semantics into Type Inference 67

ically, Quantulum employs a linear Support Vector Machine (SVM) classifier on the

character-level features (e.g., n-grams), which can result in a good performance on

text data. However, this strategy may not be the best way to model tabular data due

to two reasons: (i) it discards the context shared among the entries of a data column,

(ii) the entries of a data column consist of only numeric values and unit symbols, un-

like long sentences where additional information is available through the other words.

Similarly, Foppiano et al. (2019) propose an ML framework named Grobid-Quantities

(GQ), where Conditional Random Fields (CRFs) are used to parse and identify mea-

surements in the scientific literature. GQ can be useful for processing text documents

such as PDF files. However, identifying units in general tabular data can be more chal-

lenging since units are more likely to be reported with standard unit symbols in the

scientific papers. In contrast, general tabular data may contain non-standard encodings

of measurements.

Williams et al. (2020) tackle dimension and unit inference for spreadsheets rather

than tabular data. Williams et al. (2020) combine logical constraint solving with ML,

where the constraints are generated based on the format of the data values, spreadsheet

formulas and tables. Note that tabular data such as CSV files do not support formu-

las, which prevents their proposed method from using the dependencies between cells.

When no constraints are generated for a cell, the proposed method relies on regular

expressions and simple ML techniques for dimension inference (e.g., the cosine sim-

ilarities between word-embeddings representations of the header and the units), and

then assign the most frequent unit for the inferred dimension as the column unit. Al-

though this approach can be useful for dimension inference, it may be misleading for

column unit inference as less frequent units can also be used to encode measurements

in data columns. Moreover, its performance may be limited for unit inference as it

does not handle anomalous unit symbols.

Lastly, dimension inference could benefit from Named Entity Recognition (NER)

models. Existing NER models including Stanford NER (Finkel et al., 2005) are typi-

cally used to label entity mentions (e.g., San Diego) in text with tags (e.g., Location).

However, the set of tags supported by Stanford NER includes only currency and time5.

Moreover, it does not consider measurements encoded by numeric values and unit sym-

bols as in tabular data. NER models can be trained by treating unit symbols as entity

mentions and dimensions as their tags. However, training NER models for dimensions

5See https://nlp.stanford.edu/software/CRF-NER.shtml for a complete list of the
supported tags.

https://nlp.stanford.edu/software/CRF-NER.shtml

Chapter 5. Bringing Semantics into Type Inference 68

can be challenging, given the limited availability of data.

5.4 Experiments

In this section, we first describe our experimental setup (Sec. 5.4.1) and then present

quantitative results on column dimension inference, unit identification and unit canon-

icalization (Sec. 5.4.2). The goal of our experiments is to evaluate the robustness of

the methods against real-world messy tabular datasets.

5.4.1 Experimental Setup

We describe the datasets, baseline methods and evaluation metrics used in our experi-

ments below:

Datasets

We conduct experiments on 24 data columns obtained from 16 CSV data files, each of

which contains at least one column where the measurements are encoded by units of

measurement. The dimensions of the data columns were annotated by hand for these

sets, resulting in 2 currency, 2 data storage, 6 mass, 3 volume and 11 length columns.

We also annotated each data entry in terms of its numeric value and unit symbol. Note

that numeric values are missing in 5 data columns, i.e., only unit symbols are observed

in the entries. For example, the “Quantity Units" column of the Open Units dataset

consists of three unique values. These are ml, pint and cl, which respectively denote

the units of millilitres, pint and centilitres. Table 5.3 presents the number of entries,

unique entries, units and unit symbols per data column. The number of unit symbols

per data column varies between 2 and 11. Lastly, we have annotated the data columns

for unit canonicalization evaluations by generating their clean versions, where we rep-

resent a data column with a single unit and scale its entries according to the annotated

column unit when necessary.

Baselines

As we describe in Sec. 5.3, the methods proposed in (Van Assem et al., 2010; Hignette

et al., 2009; Samadian et al., 2014; Shbita et al., 2019; Foppiano et al., 2019; Grecco,

2019; Lagi, 2016; Finkel et al., 2005) do not address the unit canonicalization task.

However, we can construct baselines to be used in our experiments by adapting some

Chapter 5. Bringing Semantics into Type Inference 69

dataset column # non-missing entries # unique entries # units # unit symbols

Arabica Bag W. . . 1,283 51 2 2

Arabica Altitude 132 81 2 11

HES Freezer. . . 50 47 2 11

HES Refrig. . . 38 37 2 9

Huffman DIST. . . 71 68 2 2

Maize PACK . . . 30 10 2 2

MBA CURR. . . 43 19 3 6

Open U. . . Quanti. . . 1,082 3 3 3

PHM Height 30,312 1,313 3 5

PHM Weight 179 135 2 3

PHM Width 36,330 1,282 3 5

PHM Depth 19,400 1,073 3 4

PHM Diameter 2,106 377 2 2

Robusta Bag W. . . 28 4 2 2

Robusta Altitude 8 3 1 2

query_2 unitH. . . 22 3 3 3

query_2 unitW. . . 22 3 3 3

query_4 unitH. . . 22 3 3 3

Zomato currency 6,386 9 9 9

143. . . 62 FORMAT 123 19 2 3

143. . . 23 Size 3,855 1,667 2 2

228. . . 96 Size 377 256 2 2

3b5. . . ff amount 5 5 2 2

Table 5.3: Size of the datasets used and the number of units and unit symbols in each

data column.

of these methods, namely CCUT (Shbita et al., 2019), Grobid-Quantities (GQ) (Fop-

piano et al., 2019), Pint (Grecco, 2019), Stanford NER (S-NER, Finkel et al. 2005)

and Quantulum (Lagi, 2016). All these methods take as input a sentence (e.g., “. . . 2

litres of water.”) and annotate the words that refer to quantities (e.g., 2 litres) with

their dimensions (e.g., volume), except S-NER which needs to be trained again for the

dimension prediction. Here, we use the data values of the entries as inputs to these

methods.

We construct baselines for dimension inference as follows. We first identify the

dimensions of the entries of a data column using a competitor method and then pre-

dict the column dimension through majority voting, i.e., assigning the most common

Chapter 5. Bringing Semantics into Type Inference 70

dimension as the column dimension. The baseline method based on the S-NER is

obtained by training the pre-trained model with pairs of unit symbols and their dimen-

sions (e.g., metres - length). The resulting model then generates a tag for each data

entry of a data column and can be used to assign a dimension to that column through

majority voting.

On the unit identification task, we evaluate whether the unit of a data entry can

be correctly identified, e.g., 1 cm as 1 and centimetre. For this, we compare our

method with CCUT, GQ, Pint and Quantulum, which are developed for identifying

units in textual documents.

Lastly, on the unit canonicalization task, we report the performance of our method

for canonicalizing different unit symbols in data columns. We compare our method

with a baseline constructed based on Pint, where the column unit is assumed to be

known.

Evaluation Metrics

We use different sets of metrics for dimension inference, unit identification and unit

canonicalization. For dimension inference, we use the overall accuracy and the Jaccard

index described in Chapter 3. See Section 3.3.1 for a detailed description of these

metrics and how they are used for type inference. Additionally, we evaluate the runtime

of each method per data column. To measure the performance on the unit identification

task, we report the accuracies of the methods per dataset and apply paired t-tests to

determine whether the predictions of the competitor methods are significantly different

from the predictions of our method. Note that the accuracy on the unit identification

task measures the ratio of number of entries in a dataset for which the unit is correctly

predicted over the number of entries in a dataset. Lastly, we report the accuracies of the

methods per data column on unit canonicalization, which indicates the ratio of number

of correctly canonicalized entries in a data column over the number of its entries.

5.4.2 Results

We present quantitative results on three tasks: (i) column dimension inference, (ii)

unit identification, and (iii) unit canonicalization. As we describe in Sec. 5.4.1, we

measure the performance of the methods on: (i) predicting dimensions of data columns

in column dimension inference, (ii) identifying the magnitude and unit symbol of a data

entry, e.g., 1 cm as 1 and centimetre in unit identification, and (iii) carrying out unit

Chapter 5. Bringing Semantics into Type Inference 71

canonicalization.

Column Dimension Inference

Table 5.4 presents the performance of the methods on the column dimension infer-

ence task. The overall accuracies show that ptype-semantics performs better than the

competitor methods. We observe a similar trend with the performance per dimension,

quantified through the Jaccard index. These improvements are due to our model’s

extensive knowledge about units and its structure that takes into account the context

shared among data rows. Note that Jaccard index becomes zero when a method incor-

rectly labels all the data columns of a particular dimension. As per Table 5.4, Jaccard

index for the currency dimension is obtained as zero by CCUT, which is primarily

because it cannot properly parse the corresponding data values. For example, CCUT

cannot handle the parenthesis signs in the data values of Dollar($) and Pounds(£)

which occur in the entries of the “Currency" column of the Zomato dataset.

PPPPPPPPPPPPPPP
Dimension

Method
CCUT GQ Pint S-NER Quantulum ptype-semantics

Currency 0.00 0.00 0.00 0.67 0.50 1.00

Data storage 0.00 0.00 0.00 0.00 0.50 1.00

Length 0.27 0.45 0.67 0.62 0.58 0.91

Mass 0.00 0.67 0.57 0.67 1.00 1.00

Volume 0.00 0.00 0.00 0.33 0.67 1.00

Overall
0.12 0.38 0.50 0.71 0.71 0.96

Accuracy

Table 5.4: Performance of the methods for dimension inference using the Jaccard index

and overall accuracy, for the dimensions Currency, Data storage, Length, Mass and

Volume. We highlight the best score in each row by making the highest score bold.

ptype-semantics correctly predicts the dimensions of all data columns, except one

data column for which all the competitor methods also fail. These failures result from

the inability to parse the data values such as 5'10" where ' and " denote respectively

feet and inches. We could improve our regular expression to parse such formats, which

we have not done in order not to optimise on test datasets. On the other hand, the lead-

ing competitor methods are S-NER and Quantulum, which achieve the same overall

accuracy. They both fail to identify the column dimensions of seven data columns. To

compare our method with these baselines, we present their normalised confusion ma-

Chapter 5. Bringing Semantics into Type Inference 72

trices in Fig. 5.2, normalised so that a column sums to 1 except the right-most column

of each matrix.

(a) Quantulum (b) S-NER (c) ptype-semantics

Figure 5.2: Normalized confusion matrices for (a) Quantulum, (b) S-NER and (c) ptype-

semantics plotted as Hinton diagrams, where the area of a square is proportional to the

magnitude of the entry.

Fig. 5.2(b) shows that S-NER tends to infer the column dimension as length. These

failures can be explained by the differences in the number of characters of unit sym-

bols. S-NER performs better on longer unit symbols, which may not be surprising as it

uses n-grams for feature extraction. For example, the confusions between volume and

length occur on the HES dataset, where the dimensions of units symbols for cubic foot

(e.g., cuft, cu.ft) are correctly predicted as volume. Nevertheless, the dimensions

of unit symbols for litre (e.g., l, L) are predicted as length instead of volume, which

result in incorrect predictions since they are more frequent in the data. Character-level

features (e.g., n-grams) could be useful to handle variations in the data such as mis-

spellings; however, they may lead to limited performance on short unit symbols. This

result indicates the advantage of incorporating knowledge about unit symbols directly

into the model, as in ptype-semantics.

As we discuss above, Quantulum cannot parse measurements such as 5'10" and

fails to identify the dimension of the corresponding data column. The confusion be-

tween length and data storage occurs in a data column where kilobyte and megabyte are

respectively encoded by K and M. Here, Quantulum mislabels M as metre and does not

generate a prediction for K. A detailed inspection of the remaining five columns shows

that numeric values are missing in the entries, which cannot be handled by Quantulum.

To determine whether the column dimension predictions of ptype-semantics and

the leading competitor methods (namely S-NER and Quantulum) are significantly dif-

Chapter 5. Bringing Semantics into Type Inference 73

ferent, we apply a variation of the McNemar’s test as the number of samples is low (see

e.g., Edwards (1948)). This test assumes that the two methods should have the same

error rate under the null hypothesis. We compute the exact p-value 2∑
n01
i=n10

(n
i

)
0.5i(1−

0.5)n−i where n = n01 +n10 with n01 and n10 which respectively denote the number of

columns misclassified by only a competitor method, and by only ptype-semantics. The

test to compare ptype-semantics and S-NER results in a p-value of 0.03 since n01 and

n10 are respectively equal to 6 and 0. These results reject the null hypothesis that the

means are equal and confirm that they are significantly different at the 0.05 level. We

obtain the same result from the test between ptype-semantics and Quantulum, as n01

and n10 are the same as S-NER, which confirms that they are significantly different at

the 0.05 level.

Lastly, we have evaluated the runtime of each method per data column. Figure 5.3

shows that S-NER is the slowest method, whereas ptype-semantics is the fastest on

average. The leading competitor method is Pint; however, the variation in its runtime

is higher than ptype-semantics. Note that we have not explicitly optimised our method

for speed, which may improve further its scalability.

Figure 5.3: Runtime violin plots denote the time in seconds taken to infer dimensions

per column. The dot, box, and whiskers respectively denote the median, interquartile

range, and 95% confidence interval.

Unit Identification

Table 5.5 presents the accuracy of each method on each dataset (aggregated over

columns) and its overall accuracy calculated by averaging over all datasets. We ob-

serve a similar trend as before in that ptype-semantics performs consistently better

than the competitor methods, whereas the competitor methods are competitive with

Chapter 5. Bringing Semantics into Type Inference 74

our method on some of the datasets. Note that accuracy becomes zero when a method

fails to identify the unit of any data entry of a dataset. As per the table, Pint leads to the

accuracy of zero for the MBA dataset because it cannot recognize the corresponding

unit symbols. For example, Pint cannot recognize the unit symbols of LB and OZ in the

entries of the MBA dataset, which respectively denote the pound and ounce units.

PPPPPPPPPPPPPPP
Dataset

Method
CCUT GQ Pint Quantulum ptype-semantics

Arabica 0.77 0.17 0.66 1.00 0.70

HES 0.18 0.00 0.27 0.64 0.98

Huffman 0.06 0.53 1.00 1.00 1.00

Maize 1.00 0.30 1.00 1.00 1.00

MBA 0.00 0.00 0.00 0.84 0.95

Open Units 0.00 0.00 1.00 0.00 1.00

PHM 0.99 0.95 0.99 1.00 1.00

query_2 0.00 0.00 1.00 0.00 1.00

query_4 0.00 0.00 1.00 0.00 1.00

Robusta 0.71 0.43 1.00 1.00 1.00

Zomato 0.00 0.00 0.00 0.00 0.60

143. . . 23 0.00 0.69 0.00 0.00 0.97

143. . . 62 0.58 0.00 0.00 0.95 0.95

228. . . 96 1.00 0.00 1.00 1.00 1.00

3b5. . . ff 0.60 0.00 0.00 1.00 1.00

Overall
0.39 0.20 0.59 0.62 0.94

Accuracy

Table 5.5: Accuracy of the methods on unit identification. We highlight the best score in

each row by making the highest score bold.

ptype-semantics outperforms the competitor methods by a large margin on 4 datasets

(143. . . 23, HES, MBA and Zomato) out of the 15. Note that we exclude the Taser

dataset from the evaluations since none of the methods could parse its values such

as 5'10" where ' and " denote respectively feet and inches. On the remaining 11

datasets, there is at least one competitor method competitive with ours.

The performance gap between ptype-semantics and the competitor methods reflects

the importance of mapping anomalous unit symbols to known symbols through string-

similarity. For example, on the HES dataset, the competitor methods could accurately

identify only a few unit symbols, whereas our method could successfully identify al-

Chapter 5. Bringing Semantics into Type Inference 75

most all of the unit symbols. Out of 14 unique unit symbols, CCUT identified L and

cuft, and Pint identified L, l and litres. In addition to these three unit symbols,

Quantulum identified Litres. Surprisingly, GQ, which is one of the state-of-the-art

methods in identifying units in text documents, could not identify any of these unit

symbols. ptype-semantics, on the other hand, could identify 12 unit symbols correctly,

with only two unidentified unit symbols (Cu and cf). We observe that Quantulum per-

forms better than ptype-semantics on the Arabica dataset. This result is mainly due to

the Altitude column where metre is encoded by M, which is a known symbol for mile.

Consequently, our method predicts the units of such entries as mile rather than metre.

We could avoid this confusion by making row units dependent, so that the presence of

unit symbols (e.g., m, metres) in the other data entries that encode the same unit (e.g.,

metre) is treated as an indicator of M being a symbol for metre rather than mile. Here,

we do not adapt our model accordingly so that it is not optimised on test datasets.

To determine whether the performances of ptype-semantics and Pint are signifi-

cantly different, we have applied a paired t-test on the differences of the accuracies,

i.e., Accuracy(ptype-semantics) - Accuracy(competitor method). Table 5.6 presents

these results, which reject the null hypothesis that the means are equal and confirm

that they are significantly different at the 0.05 level.

Method CCUT GQ Pint Quantulum

t-statistic 4.85 8.61 2.74 2.55

p-value 0.0002 0.000001 0.01 0.02

Table 5.6: The t-statistics and p-values obtained by applying a paired t-test on the

differences of the accuracies, i.e., Accuracy(ptype-semantics) - Accuracy(competitor

method).

Lastly, Table 5.5 indicates that Pint and Quantulum perform best among the com-

petitor methods. We have compared their performances through a paired t-test, i.e.,

Accuracy(Quantulum) - Accuracy(Pint), which suggests that they are not significantly

different at the 0.05 level (the t-statistics of 0.18 and the p-value of 0.86). This result

suggests that neither method is comprehensive enough to handle various unit symbols

observed in different datasets.

Chapter 5. Bringing Semantics into Type Inference 76

Unit Canonicalization

Table 5.7 presents the accuracies of ptype-semantics and Pint on each data column as

well as their overall accuracies calculated by averaging over the data columns. The

results indicate that ptype-semantics either outperforms or is equally good as Pint on

all data columns except one. Note that accuracy becomes zero when a method fails to

canonicalize any entry of a dataset. For example, ptype-semantics leads to the accuracy

of zero for the “Altitude” column of the Arabica dataset as it cannot recognize the

corresponding unit symbols, as discussed in Sec. 5.4.2).

We exclude seven columns from the evaluations. The data entries of two columns

(from the 3b5. . . ft and Zomato datasets) contain unit symbols used to denote currency,

for which conversion rates change dynamically over time. In such cases, our model can

inform the analyst of the dimensions so that the rate of conversion between currencies

can be given manually. Moreover, the data entries of the four columns obtained from

three datasets (Open Units, query_2 and query_4) do not contain any numeric values,

preventing us from converting units. Note that the numeric values are available in other

data columns. Our model can notify the analysts of the missing numeric values so that

the corresponding values can be provided to convert the units. Similarly to the unit

identification evaluations, we exclude the Taser dataset as the methods could not parse

the entries of its column.

ptype-semantics outperforms the competitor method Pint by a large margin on 6

data columns out of 17. Both methods achieve perfect results on the 9 columns whereas

pint excels at the remaining one. The performance of a method on unit canonicalization

is limited by its ability to identify units correctly. Consider the “Freezer_volume”

column of the HES dataset where the data entries contain 11 different unit symbols.

As we discuss in Sec. 5.4.2, ptype-semantics correctly identifies a higher number of

units than Pint on the HES dataset. As a result, more units are correctly canonicalized

by ptype-semantics, i.e., ptype-semantics canonicalizes all unit symbols except Cu and

cf, whereas Pint could only canonicalize L, l and litres.

The data column where Pint performs better than ptype-semantics is the Altitude

column of the Arabica dataset, where ptype-semantics incorrectly identifies the unit

of the symbol M, as we discuss in Sec. 5.4.2. This failure leads to incorrect unit con-

versions. See Sec. 5.4.2 for a discussion of how the performance of our model can be

improved for such cases.

To determine whether the performances are significantly different, we have applied

Chapter 5. Bringing Semantics into Type Inference 77

Dataset Column Pint ptype-semantics

Arabica
Bag Weight 1.00 1.00
Altitude 0.44 0.00

HES
Freezer_volume 0.26 0.96
Refrigerator_volume 0.30 1.00

Huffman Distance 1.00 1.00
Maize Pack Size 1.00 1.00
MBA Product Size 0.00 0.95

PHM

Height 1.00 1.00
Weight 0.61 1.00
Width 1.00 1.00
Depth 1.00 1.00
Diameter 0.99 1.00

Robusta
Bag Weight 1.00 1.00
Altitude 1.00 1.00

143. . . 23 Size 0.00 0.97
143. . . 62 Format 0.00 0.95
228. . . 96 Size 1.00 1.00

Overall Accuracy 0.68 0.93

Table 5.7: Accuracies of the methods on handling unit canonicalization problems per

data column.

a paired t-test on the differences of the accuracies, i.e., Accuracy(ptype-semantics) -

Accuracy(Pint). We have calculated the t-statistic of 2.13 and the p-value of 0.04.

These results reject the null hypothesis that the means are equal and confirm that they

are significantly different at the 0.05 level.

5.5 Discussion

Syntactic type inference methods including ptype do not make use of the semantic in-

formation about a given dataset. However, such information may be useful for accurate

and enhanced type inference. In this chapter, we demonstrate how ptype can be en-

riched semantically by using knowledge graphs, and tackle non-standard encodings of

measurements in quantitative data columns where otherwise time-consuming manual

data cleaning efforts would be needed. The resulting model called ptype-semantics can

automatically identify the units of the entries in a data column, predict the column di-

mension and canonicalize its entries. Our experiments on real-world data demonstrate

that the proposed model is consistently superior to competing techniques. Moreover,

Chapter 5. Bringing Semantics into Type Inference 78

we make these tabular datasets and our annotations regarding units of measurement

available with the aim of accelerating research in this area.

We can extend ptype-semantics further. For example, we can assume that the nu-

meric values and units in the entries of a data column are related. This assumption

may hold in certain scenarios, e.g., height measurements of people where one would

expect heights of adults in the range 150-250 cm, and thus 1.50 to 2.50 metres. In

such cases, incorporating the numeric values {vi}N
i=1 into our model may enable us to

address certain problems such as unit imputation, which is the task of identifying the

unit of a data entry for which no unit symbol is present, and unit repair, which is the

task of identifying the unit of a data entry where the measurement is encoded by an

anomalous unit symbol.

Another interesting research direction is to investigate how meta-data such as head-

ers can be taken into account as an additional source of information for dimension and

unit inference. We believe that it would sometimes be possible to identify the dimen-

sion and unit of a data column based on its header, similarly to how data type was

inferred from meta-data in Chapter 4.

Chapter 6

Conclusions and Future Work

In this chapter, we summarize the contributions of this thesis (Sec. 6.1) and then discuss

possible future work (Sec. 6.2)

6.1 Summary of the Contributions

Type inference is challenging primarily because raw datasets often suffer from the

presence of missing and anomalous data entries. This thesis has focused on devel-

oping probabilistic models that allow us to identify types accurately, even for such

messy datasets. Moreover, our models provide additional capabilities to semi-automate

certain data preprocessing tasks, including handling categorical variables and non-

standard encodings of measurements, which would need to be manually resolved by

data scientists otherwise.

Firstly, in Chapter 3, we proposed ptype - a novel probabilistic model for syntactic

type inference, which is typically carried out by using Finite-State Machines (FSMs),

such as regular expressions, that either accept or reject a given data value. In contrast,

ptype uses Probabilistic Finite-State Machines (PFSMs) that assign probabilities to

different values and therefore offer the advantage of generating weighted predictions

when a column of messy data is consistent with more than one type assignment. More-

over, ptype allows us to identify any values which (conditional on the inferred column

type) are deemed missing or anomalous.

We compared ptype with applicable existing approaches (Trifacta, 2018; Petricek

et al., 2016; Lindenberg, 2017; Stochastic Solutions, 2018; Döhmen et al., 2017; Wick-

ham et al., 2017) using a variety of datasets. Our evaluations demonstrated the advan-

tages of using probabilistic variants of Finite-State Machines and the importance of

79

Chapter 6. Conclusions and Future Work 80

explicitly modeling the missing and anomalous data for accurate type inference. Note

that we also provide a software package for ptype with support for a number of inter-

actions with the users.

Syntactic type inference methods such as ptype can classify Boolean variables as

categorical; however, they treat non-Boolean categorical variables as either integers

or strings rather than categoricals. Therefore, the user needs to transform these data

columns into categorical and specify the corresponding categorical values manually,

which can be tedious and time-consuming. In Chapter 4, we proposed an alternative

approach that can eliminate the need for this manual work. To better detect the cat-

egorical type (including non-Boolean variables), we extended ptype by combining its

output with additional features that can indicate whether a column denotes a categori-

cal variable or not, and employed a separate binary classifier to identify the categorical

variables. In addition, we identified the categorical values of a categorical variable by

adapting ptype. We showed that our probabilistic approach can be more flexible than

hard-choices made by existing applicable methods (Bot, OpenML and Weka) to infer

the type of a data column. Moreover, we investigated the use of meta-data for infer-

ring data types and categorical values. We observe that meta-data has the potential to

slightly improve the performance for type and categorical value inference when com-

bined with tabular data-based approaches. However, it is still possible to obtain a good

overall performance based on tabular data itself without extracting text sequences from

meta-data.

ptype relies on the syntax of the data values for type inference, whereas ptype-

cat, in addition to the syntax, takes into account additional features to better detect

the categorical type. However, they do not make use of the semantic information

about a given dataset, which can be essential for accurate and enhanced type inference.

In Chapter 5, we presented ptype-semantics which is an extension of ptype enriched

semantically by using knowledge graphs about units of measurement. The proposed

model allows us to extract semantic information about a given data column (such as its

dimension and unit), to canonicalize its entries, and it provides enhanced type inference

capabilities for syntactic type inference methods such as ptype.

ptype-semantics showed that Knowledge Graphs can be useful for enhanced type

inference and accelerating certain data preprocessing efforts such as the canonicaliza-

tion of units. Our experiments indicated that ptype-semantics performs better than

other applicable solutions (Shbita et al., 2019; Foppiano et al., 2019; Grecco, 2019;

Finkel et al., 2005; Lagi, 2016).

Chapter 6. Conclusions and Future Work 81

6.2 Future Work

We envision several ways to extend our work. Below we describe four open research

questions that would be useful to investigate further.

6.2.1 Identifying the Ordinal and Nominal Types

There are two types of categorical variables: (i) ordinal variables that have ordered

categorical values (e.g., patient status with the categorical values of good, fair, serious

and critical) and (ii) nominal variables for which there is no intrinsic ordering for the

categorical values (e.g., genre of music with the categorical values of classical, folk,

jazz and rock). See Agresti (2003) for a detailed description. Although ptype-cat

can automatically detect categorical variables, it does not distinguish between ordinal

and nominal variables, which are included within the categorical type. Therefore, the

analyst would need to manually make such distinctions which may be useful for the

later stages of the data analytics, such as data modeling.

One future research direction is investigating how ptype-cat can be improved to de-

termine whether a categorical variable represents an ordinal or a nominal variable. This

can potentially be accomplished by feeding ptype-cat with new features extracted from

categorical values themselves. For example, Hernández-Lobato et al. (2014) model

numeric categorical data with different observation models, and discriminate between

the ordinal and nominal types by comparing the model evidence and the predictive test

log-likelihood of ordinal regression models and multi-class classifiers. One could run

such models on data and use their outputs as features for ptype-cat.

Alternatively, one could encode each of the categorical values encoded as strings

with word-embeddings, and then combine them with a set transformer network (see

e.g., Lee et al., 2019) which is invariant (as required) to permutations of the input

order. This could then be used as input to an ordinal/nominal classifier.

6.2.2 Using Header Information to Aid Inference

In Chapter 4, we investigated how meta-data can be used to infer data types and cat-

egorical values. In particular, we extracted a text sequence for each data column and

employed sequence classification and named entity recognition models. An additional

source of information is the header, which is also known as the label. For example,

Chapter 6. Conclusions and Future Work 82

the header of the National Football League scouting dataset1 has the labels of “Height

(in)” and “Weight (lbs)” where in and lbs respectively denote the inch and pound

units. However, the unit symbols can be missing as in “Credit Card Charges”. In such

cases, it may still be possible to identify the dimension (which is currency in this case)

based on the semantics in the header.

Chambers and Erwig (2010) and Williams et al. (2020) take advantage of labels

in spreadsheets for dimension and unit inference. Chambers and Erwig (2010) split a

label (e.g., “Total Gallons”) into separate words (e.g., “Total” and “Gallons”), remove

word inflections (e.g., converting “Gallons” into “Gallon”) and map these word stems

into known units and dimensions (e.g., Gallon and volume). Their approach can iden-

tify units and dimensions when information is explicitly given in a label. However, it

does not use the information given implicitly, as in the label of “Credit Card Charges”.

Similarly, Williams et al. (2020) address the detection of explicitly given units in la-

bels by using pre-defined templates (e.g., checking the presence of unit symbols inside

parenthesis as in “Length (m)”). In addition, they rely on word-embeddings to carry

out dimension and unit inference when information is given implicitly (e.g., inferring

the dimension of the label “Credit Card Charges” as currency, and then assigning the

most frequent currency unit, which is dollar, as its unit). The idea is to calculate the co-

sine similarity between the word-embedding representation of known units and labels,

and then assign the closest dimension as the column dimension. It may be possible

to extend our model to use the information in a similar manner. Another interesting

research direction is to investigate the use of labels in different columns for dimension

inference. This may allow us to incorporate the context of the whole dataset for infer-

ring the dimension of a particular column (e.g., the height and length dimensions may

co-occur more often than the height and currency dimensions do).

6.2.3 Using Numeric Values for Unit Inference

ptype-semantics relies on the presence of unit symbols in the entries of a data column

to infer the semantics of a data column. However, numeric values in the entries of a

data column can also be informative about the semantics when the numeric values and

units are related, e.g., height measurements of people where one would expect heights

of adults in the range 150-250 cm, and thus 1.50 to 2.50 metres. In such cases, incor-

porating the numeric values into our model may enable us to address certain problems

1The data is publicly available at https://www.kaggle.com/dtrade84/2019-nfl-scouting-
combine

https://www.kaggle.com/dtrade84/2019-nfl-scouting-combine
https://www.kaggle.com/dtrade84/2019-nfl-scouting-combine

Chapter 6. Conclusions and Future Work 83

such as unit imputation, which is the task of identifying the unit of a data entry for

which no unit symbol is present, and unit repair, which is the task of identifying the

unit of a data entry where the measurement is encoded by an anomalous unit symbol.

We now present a simple application to demonstrate how our model can be used

to impute missing units. Given a set of numeric values v = {vi}N
i=1 and their units

u= {ui}N
i=1, the task is to predict the units of the data entries for which no unit symbols

are present, i.e., zi = m. We cast this problem as the problem of calculating the poste-

rior distribution of the missing units given its numeric value, namely p(ui|vi,zi = m).

Consider the 1438042987662 dataset, which is a list of bakery ingredients. The mea-

surements in the “FORMAT” column are encoded by the unit symbols of KG and LB,

which respectively denote kilograms and pounds. Note that KG is used in 86 data en-

tries, whereas LB is used in 36 data entries. Although the numeric values overlap (i.e.,

they vary between 1 and 38 for kilograms, and 18 and 50 for pounds), their distribu-

tions, which are shown in Fig 6.1 (left), confirm our assumption that numeric values

and units are related, and can therefore be helpful for unit inference when the unit

information is missing.

Figure 6.1: The probability density function of the numeric values in the original raw

data according to their units (left) and the probability density function of the numeric

values in the scaled data after kilogram-pounds conversion (right). The density plots

are obtained using a kernel density estimator2.

6.2.4 Enhancing User Interactions

We have made our implementation of ptype publically available as a Python package

in order to enhance the impact of our work. This tool can be used to infer a schema

for a given dataset and to transform it into its “clean” version based on this schema.

2We used Gaussian kernels with the bandwidths of 0.41 and 0.49 respectively for KG and LB.

Chapter 6. Conclusions and Future Work 84

These operations can reduce the time and effort spent to manually transform the data;

however, it requires user interaction when the inferred schema contains incorrect type

predictions. Therefore, we considered a set of scenarios where the schema is inferred

incorrectly, and demonstrated how the user can interact with the tool to handle the

errors (see Section 3.3.3 for a detailed discussion). For example, the user can choose

the correct type when ptype labels a column with an incorrect type. Similarly, ptype

may incorrectly treat some values as missing. The user can handle such cases by

updating the set of values that ptype is expected to treat as missing and then re-running

the inference.

We are investigating alternative user interaction styles for ptype. In this regard, one

choice is to design a rejection scheme where the user would tell the tool that a partic-

ular type annotation is incorrect, allowing the next most likely type to be populated as

the corresponding type prediction. This type of feedback mechanism can also be used

for missing and anomalous values. User feedback would also be needed for ptype-cat.

In fact, there may be new challenges resulting from detection of the general categor-

ical type. For example, the user may want to reject annotated categorical values or

manually specify the correct categorical values. We plan to present the tool based on

ptype-cat as an extension to the ptype package. Finally, it may be possible to improve

ptype-semantics through user feedback (e.g., the user can manually identify the unit of

an unknown unit symbol). It would be useful to feed such information back into our

knowledge graph about units of measurement.

Appendix A

Appendix for ptype

In this Appendix, we discuss the implementation of the Probabilistic Finite State Ma-

chines (PFSMs) (Appendix A.1), describe the data sets used (Appendix A.2) and

present the derivations for training in our model (Appendix A.3). Moreover, we dis-

cuss the behavior of PADS with an example (Appendix A.4) and report scalability of

the methods (Appendix A.5).

A.1 PFSMs for Data Types

In this work, we use five regular data types including integers, strings, floats, Booleans,

and dates; and two noisy data types, namely missing and anomaly.

A.1.1 Integers

Please see Sec. 3.2.1 for a detailed discussion of the PFSM used to represent integers.

A.1.2 Floats

A floating-point number often consists of digits and a full stop character, which is fol-

lowed by another set of digits. However, they can also be written without any fractional

component, i.e. as integer numbers. We also support the representations of floating-

point numbers with e or E. Lastly, we support the use of comma for the thousands

separator in floating-point numbers, such as 1,233.15, 1,389,233.15, etc.

85

Appendix A. Appendix for ptype 86

A.1.3 Strings

The string PFSM is constructed with one initial state and one final state. Through each

transition, either a digit, an alpha character, or a punctuation character is emitted. The

punctuation characters considered here are ., ,, -, _, %, :, and ;, which are commonly

found in real-world data sets to represent columns with the string type.

A.1.4 Booleans

Our machine supports the following values by assigning them non-zero probabilities:

Yes, No, True, False, 1, 0, -1 and their variants yes, Y, y, no, true, false.

A.1.5 Dates

We categorize date formats into two groups, which are detailed below:

ISO-8601

We support values in YYYY-MM-DDTHH:MM::SS, where T is the time designator

to indicate the start of the representation of the time of day component. We also

support other ISO-8601 formats such as YYYYMMDD, YYYY-MM-DD, HH:MM, and

HH:MM:SS.

Nonstandard Formats

We treat years in YYYY format as date type. To distinguish years and integers, we

restrict this to the range of [1000-2999]. On the other hand, we do not explicitly

constrain the month (MM) and day columns (DD) to valid ranges, and but treat them

as integers. We support ranges of years with the formats of YYYY-YYYY, YYYY YYYY,

YYYY - YYYY, YYYY -YYYY, and YYYY- YYYY. Lastly, We support dates written as

MM-DD-YYYY HH:MM:SS AM/PM, and months, e.g., January, February, etc.

A.1.6 Missing

The machine for missing data assigns non-zero probabilities to the elements of this set,

including Null, NA and their variants such as NULL, null, “NA ”, NA, “N A”, N/A, “N/

A”, “N /A”, N/A, #NA, #N/A, na, “ na”, “na ”, “n a”, n/a, N/O, NAN, NaN, nan, -NaN,

Appendix A. Appendix for ptype 87

and -nan; special characters such as -, !, ?, *, and .; integers such as 0, -1, -9, -99,

-999, -9999, and -99999; and characters denoting empty cells such as “” and “ ”.

A.1.7 Anomaly

We use all of the Unicode characters in this machine’s alphabet, including the accented

characters. Note that the number of elements in this set is 1,114,112.

A.2 Data Sets

We share the available data sets and the corresponding annotations at https://goo.

gl/v298ER. Here, we briefly describe these data sets, and provide a list in Table A.1

which denotes their sources, and whether they are used in the training or testing phase.

• Accident 2016: information on accidents casualties across Calderdale, including

location, number of people and vehicles involved, road surface, weather condi-

tions and severity of any casualties.

• Accidents 2015: a file from Road Safety data about the circumstances of per-

sonal injury road accidents in GB from 1979.

• Adult: a data set extracted from the U.S. Census Bureau database to predict

whether income exceeds $50K/yr.

• Auto: a data set consisting of various characteristics of a car, its assigned insur-

ance risk rating, and its normalized losses in use.

• Broadband: annual survey of consumer broadband speeds in the UK.

• Billboard: a data set on weekly Hot 100 singles, where each row represents a

song and the corresponding position on that week’s chart.

• Boston Housing: a data which contains census tracts of Boston from the 1970

census.

• BRFSS: a subset of the 2009 survey from BRFSS, an ongoing data collection

program designed to measure behavioral risk factors for the adult population.

• Canberra Observations: weather and climate data of Canberra (Australia) in

2013.

https://goo.gl/v298ER
https://goo.gl/v298ER

Appendix A. Appendix for ptype 88

• Casualties 2015: a file from Road Safety data about the consequential casualties.

• Census Income KDD: a data set that contains weighted census data extracted

from the 1994 and 1995 current population surveys conducted by the U.S. Cen-

sus Bureau.

• CleanEHR (Critical Care Health Informatics Collaborative): anonymised medi-

cal records 1.

• Cylinder Bands: a data set used in decision tree induction for mitigating process

delays known as “cylinder bands” in rotogravure printing.

• data.gov: 9 CSV files obtained from data.gov, presenting information such as the

age-adjusted death rates in the U.S., Average Daily Traffic counts, Web traffic

statistics, the current mobile licensed food vendors statistics in the City of Hart-

ford, a history of all exhibitions held at San Francisco International Airport by

SFO Museum, etc.

• EDF Stocks: EDF stocks prices from 23/01/2017 to 10/02/2017.

• El Niño: a data set containing oceanographic and surface meteorological read-

ings taken from a series of buoys positioned throughout the equatorial Pacific.

• FACA Member List 2015: data on Federal Advisory Committee Act (FACA)

Committee Member Lists.

• French Fries: a data set collected from a sensory experiment conducted at Iowa

State University in 2004 to investigate the effect of using three different fryer

oils on the taste of the fries.

• Fuel: Fuel Economy Guide data bases for 1985-1993 model.

• Geoplaces2: information about restaurants (from UCI ML Restaurant & con-

sumer data).

• HES (Household Electricity Survey): time series measurements of the electricity

use of domestic appliances (to gain access to the data, please register at https:

//tinyurl.com/ybbqu3n3).
1a subset is available at https://github.com/ropensci/cleanEHR/blob/master/data/

sample_ccd.RData

https://tinyurl.com/ybbqu3n3
https://tinyurl.com/ybbqu3n3
https://github.com/ropensci/cleanEHR/blob/master/data/sample_ccd.RData
https://github.com/ropensci/cleanEHR/blob/master/data/sample_ccd.RData

Appendix A. Appendix for ptype 89

• Housing Price: a data set containing 79 explanatory variables that describe (al-

most) every aspect of residential homes in Ames, Iowa.

• Inspection Outcomes: local authority children’s homes in England - inspection

and outcomes as at 30 September 2016.

• Intel Lab: a data set collected from sensors deployed in the Intel Berkeley Re-

search lab, measuring timestamped topology information, along with humidity,

temperature, light and voltage.

• mass.gov: 4 CSV files obtained from mass.gov, which is the official website of

the Commonwealth of Massachusetts.

• MINY Vendors: information on “made in New York” Vendors.

• National Characteristics: information on the overall, authorised, unauthorised

and persistent absence rates by pupil characteristics.

• One Plus Sessions: information on the number of enrollments with one or more

session of absence, including by reason for absence.

• Pedestrian: a count data set collected in 2016, that denotes the number of pedes-

trians passing within an hour.

• PHM Collection: information on the collection of Powerhouse Museum Sydney,

including textual descriptions, physical, temporal, and spatial data as well as,

where possible, thumbnail images.

• Processed Cleveland: a data set concerning heart disease diagnosis, collected at

Cleveland Clinic Foundation (from the UCI ML Heart Disease Data Set).

• Sandy Related: Hurricane Sandy-related NYC 311 calls.

• Reported Taser 2015: a hand-compiled raw data set based on forms filled out by

officers after a stun gun was used in an incident, provided by CCSU’s Institute

for Municipal and Regional Policy.

• Rodents: the information collected on rodents during a survey.

• Survey: a data set from a 2014 survey that measures attitudes towards mental

health and frequency of mental health disorders in the tech workplace.

Appendix A. Appendix for ptype 90

• TAO: a real-time data collected by the Tropical Atmosphere Ocean (TAO) project

from moored ocean buoys for improved detection, understanding and prediction

of El Niño and La Niña.

• Tb: a tuberculosis dataset collected by the World Health Organisation which

records the counts of confirmed tuberculosis cases by “country”, “year”, and

demographic group.

• Tundra Traits: measurements of the physical characteristics of shrubs in the arc-

tic tundra.

• T2Dv2 Gold Standard: a set of data Web tables to evaluate matching systems on

the task of matching Web tables to the DBpedia knowledge base.

• User Profile: information about consumers (from UCI ML Restaurant & con-

sumer data).

• Vehicles 2015: a file from Road Safety data about the types of vehicles involved

in the accidents.

• 83492acc-1aa2-4e80-ad05-28741e06e530: a hypoparsr data set which contains

information on expenses.

Note that the data sets from mass.gov and data.gov are obtained from Abdulhakim A.

Qahtan and also used in Qahtan et al. (2018).

Appendix A. Appendix for ptype 91

name source training/test # columns # rows

Accidents 2015 data.gov.uk test 32 140,056

Accident 2016 data.gov.uk test 18 555

Adult UCI ML training 15 32,561

Auto UCI ML test 26 205

Broadband data.gov.uk training 55 2,732

Billboard github.com training 72 317

Boston Housing Kaggle training 15 333

Brfss github.com training 34 245

Canberra Observations others training 13 19,918

Casualties 2015 data.gov.uk test 16 186,189

Census Income KDD UCI ML test 42 199,523

CleanEHR others training 62 1,979

Cylinder Bands UCI ML training 40 540

EDF Stocks github.com test 7 5,425

Elnino UCI ML test 9 782

FACAMemberList2015 github.com training 21 72,220

French Fries github.com training 10 696

Fuel github.com training 35 941

Geoplaces2 UCI ML training 20 130

HES ukdataservice.ac.uk training 65 4,600

Housing Price Kaggle training 81 1,460

Intel Lab others test 8 1,048,576

Inspection Outcomes others test 22 1,477

MINY Vendor data.gov test 18 897

Pedestrian others training 9 37,700

Phm others training 16 75,814

Processed Cleveland UCI ML training 14 303

Rodents others training 39 35,549

Sandy Related NYC OpenData training 38 87,444

SFR55_2017_national_characteristics gov.uk test 41 735

SFR55_2017_one_plus_sessions gov.uk test 31 228,282

Survey others test 27 1,259

Tao github.com training 7 736

Tb github.com training 23 5,769

TundraTraits github.com training 17 73,428

User Profile UCI ML training 19 138

Vehicles 2015 data.gov.uk test 23 257,845

4 csv files mass.gov test 27 (avg.) 46,934 (avg.)

9 csv files data.gov test 14 (avg.) 3904 (avg.)

2015ReportedTaserData github.com training 69 610

16 csv files T2Dv2 Gold Standard test 5 (avg.) 127 (avg.)

83492acc-1aa2-4e80-ad05-28741e06e530.csv github.com training 15 886

Table A.1: Information about the data sets used.

Appendix A. Appendix for ptype 92

A.3 Derivations for the Training

The task is to update the parameters of the PFSMs, given a set of columns X and their

column types t. Since the columns are assumed to be independent, the gradient can

be calculated by summing the gradient of each column. In the interest of simplicity,

here we only derive the gradient for a column x of type k. We would like to maximize

the posterior probability of the correct type k given a data column x, which can be

rewritten as follows:

log p(t = k|x) = log p(t = k,x)︸ ︷︷ ︸
Lc

− log p(x)︸ ︷︷ ︸
L f

. (A.1)

We now present the derivations of the gradients w.r.t. the transition parameters where

θτ

q,α,q′ denotes the transition parameter from state q to q′ emitting the symbol α in the

τth PFSM. Note that τ ∈ {1, . . . ,K} where K is the number of PFSMs.

We now differentiate these two terms, in section (4.1) and (4.2) respectively.

Appendix A. Appendix for ptype 93

A.3.1 Derivative of Lc

∂Lc

∂θτ

q,α,q′
=

∂ log p(t = k,x)
∂θτ

q,α,q′
,

=

∂

(
log p(t = k)∏

N
i=1 p(xi|t = k)

)
∂θτ

q,α,q′
,

=

∂

(
log p(t = k)+∑

N
i=1 log p(xi|t = k)

)
∂θτ

q,α,q′
,

=
N

∑
i=1

∂ log p(xi|t = k)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi|t = k)

∂p(xi|t = k)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi|t = k)

∂

(
∑z′ p(zi = z′,xi|t = k)

)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi|t = k)

∑z′ ∂p(zi = z′,xi|t = k)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi|t = k)

∑z′ ∂

(
p(zi = z′|t = k)p(xi|zi = z′)

)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi|t = k)

∂

(
πk

k p(xi|zi = k)+πm
k p(xi|zi = m)+πa

k p(xi|zi = a)
)

∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi|t = k)

πk
k∂p(xi|zi = k)

∂θτ

q,α,q′
. (A.2)

When τ is not equal to k, eq. (2) becomes 0. On the other hand, if τ = k, then we

would need to calculate ∂p(xi|zi=τ)
∂θτ

q,α,q′
, where p(xi|zi = τ) can be rewritten as ∑q0:L p(xi,q0:L|zi =

τ) as xi is generated by a PFSM. Note that q0:L denotes the states visited to generate xi.

Appendix A. Appendix for ptype 94

The derivative can be derived as follows:

∂p(xi|zi = τ)

∂θτ

q,α,q′
=

∂

(
∑q0:L p(xi,q0:L|zi = τ)

)
∂θτ

q,α,q′
,

= ∑
q0:L

∂p(xi,q0:L|zi = τ)

∂θτ

q,α,q′
,

= ∑
q0:L

p(xi,q0:L|zi = τ)
∂ log p(xi,q0:L|zi = τ)

∂θτ

q,α,q′
,

= ∑
q0:L

p(xi,q0:L|zi = τ)

∂ log
[

Iτ(q0)

(
∏

L−1
l=0 T τ(ql,xl

i,ql+1)

)
Fτ(qL)

]
∂θτ

q,α,q′
,

= ∑
q0:L

p(xi,q0:L|zi = τ)

∂∑
L−1
l=0

(
logT τ(ql,xl

i,ql+1)

)
∂θτ

q,α,q′
,

= ∑
q0:L

p(xi,q0:L|zi = τ)
L−1

∑
l=0

∂ logT τ(ql,xl
i,ql+1)

∂θτ

q,α,q′
,

= ∑
q0:L

p(xi,q0:L|zi = τ)
L−1

∑
l=0

δ(ql,q)δ(xl
i,α)δ(ql+1,q′)

T τ(ql,xl
i,ql+1)

,

= ∑
q0:L

L−1

∑
l=0

p(xi,q0:L|zi = τ)

(
δ(ql,q)δ(xl

i,α)δ(ql+1,q′)
T τ(ql,xl

i,ql+1)

)
,

= ∑
q0:L

L−1

∑
l=0

p(ql = q,ql+1 = q′,q0:L\l,l+1,xi|zi = τ)

(
δ(xl

i,α)

T τ(q,xl
i,q′)

)
,

=
L−1

∑
l=0

∑
q0:L

p(ql = q,ql+1 = q′,q0:L\l,l+1,xi|zi = τ)

(
δ(xl

i,α)

T τ(q,xl
i,q′)

)
,

=
L−1

∑
l=0

δ(xl
i,α)p(ql = q,ql+1 = q′,xi|zi = τ)

T τ(q,xl
i,q′)

. (A.3)

Hence, we need to evaluate the joint probability p(ql = q,ql+1 = q′,xi|zi = τ) for each

l where xl
i = α, which can be found by marginalizing out the variables q0:L\{l,l+1}:

p(ql = q,ql+1 = q′,xi|zi = τ) = ∑
ql′

p(ql = q,ql+1 = q′,ql′,xi|zi = τ), (A.4)

where l′ denotes {0 : L} \ {l, l + 1}. This can be calculated iteratively via Forward-

Backward Algorithm where the forward and backward messages are defined iteratively

Appendix A. Appendix for ptype 95

as follows:

vl→l+1(ql) = ∑
ql−1

T τ(ql−1,xl
i,ql)vl−1→l(ql−1),

λl+1→l(ql+1) = ∑
ql+2

T τ(ql+1,xl+2
i ,ql+2)λl+2→l+1(ql+2),

(A.5)

We can then rewrite p(ql = q,ql+1 = q′,xi|zi = τ) as follows:

p(ql,ql+1,xi|zi = τ) = (vl→l+1(ql)•λl+1→l(ql+1))�T τ(ql,xl+1
i ,ql+1), (A.6)

where • and � denote respectively outer and element-wise product.

A.3.2 Derivative of L f

Let us now take the derivative of the second term L f :

∂L f

∂θτ

q,α,q′
=

∂ log p(x)
∂θτ

q,α,q′
,

=
∂∑

N
i=1 log p(xi)

∂θτ

q,α,q′
,

=
N

∑
i=1

∂ log p(xi)

∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi)

∂

(
∑t ′∑z′ p(t = t ′,zi = z′,xi)

)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi)

∂

(
∑z′ p(t = τ,zi = z′,xi)

)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi)

∂

(
∑z′ p(t = τ)p(zi = z′|t = τ)p(xi|zi = z′)

)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi)

p(t = τ)∂
(

πτ
τ p(xi|zi = τ)+πm

τ p(xi|zi = m)+πa
τ p(xi|zi = a)

)
∂θτ

q,α,q′
,

=
N

∑
i=1

1
p(xi)

p(t = τ)πτ
τ∂p(xi|zi = τ)

∂θτ

q,α,q′
,

=
N

∑
i=1

p(t = τ)πτ
τ

p(xi)

∂p(xi|zi = τ)

∂θτ

q,α,q′
. (A.7)

Appendix A. Appendix for ptype 96

Let us now put all the equations together. When we are calculating the derivative

of eq. (1) w.r.t. the correct machine, i.e. τ = k, the derivative becomes the following:

∂ log p(t = k|x)
∂θτ

q,α,q′
=

N

∑
i=1

(
πk

k
p(xi|t = k)

∂p(xi|zi = k)
∂θk

q,α,q′
−

πk
k p(t = k)

p(xi)

∂p(xi|zi = k)
∂θk

q,α,q′

)
,

=
N

∑
i=1

(
π

k
k
∂p(xi|zi = k)

∂θk
q,α,q′

(
1

p(xi|t = k)
− p(t = k)

p(xi)

))
,

=
N

∑
i=1

πk
k

p(xi|t = k)
∂p(xi|zi = k)

∂θk
q,α,q′

(
1− p(t = k)p(xi|t = k)

p(xi)

)
,

=
N

∑
i=1

πk
k

p(xi|t = k)
∂p(xi|zi = k)

∂θk
q,α,q′

(
1− p(t = k,xi)

∑k′ p(t = k′,xi)

)
. (A.8)

When we are calculating the derivative of eq. (1) w.r.t. the wrong machines, i.e.

τ 6= k this becomes:

∂ log p(t = k|x)
∂θτ

q,α,q′
=−

N

∑
i=1

(
πτ

τ p(t = τ)

p(xi)

∂p(xi|zi = τ)

∂θτ

q,α,q′

)
. (A.9)

Lastly, we ensure the parameters remain positive and normalized using the softmax

function. We define Tτ(q,α,q′)= expT z
τ (q,α,q

′)/(expFz
τ (q)+∑α′,q′′ expT z

τ (q,α
′,q′′))

and Iz
τ(q) = exp Iz

τ(q)/∑q′ exp Iz
τ(q
′). We now update these new unconstrained pa-

rameters using the new gradient calculated via the chain rule: ∂ f/∂T z
τ (q,α,q

′) =

(∂ f/∂Tτ(q,α,q′))(∂Tτ(q,α,q′)/∂T z
τ (q,α,q

′)).

A.4 The Outputs of the PADS Library

We have mentioned previously that the outputs generated by the PADS library do not

directly address our problem. We present a sample from an example test dataset in

Table A.2, and a part of the corresponding output of the PADS library.

The outputs are interpreted starting from the bottom. In this case, the data is defined

as an array of “struct” type named Struct_194. This is further characterized as a com-

bination of various “union” types. For example, let us consider the first one named

Union_19 which consists of a constant string , another constant string year,

and and integer type. However, this can be more complicated as in type Union_165

consisting of two struct types Struct_192 and Struct_164. Note that the former is fur-

ther divided into a union type, whereas the latter is described as a combination of some

constant strings and a float type. As the reader can see, it can become difficult and

time-consuming to interpret an output. Moreover, the output becomes more complex

Appendix A. Appendix for ptype 97

year winner/2nd NULL scores total money (us$)

1998 fred couples 1 64-70-66-66-66 332 414000

 bruce lietzke 2 65-65-71-62-69 332 248400

1997 john cook 1 66-69-67-62-63 327 270000

 mark calcavecchia 2 64-67-66-64-67 328 162000

1996 mark brooks 1 66-68-69-67-67 337 234000

 john huston 2 69-71-65-65-68 338 140400

1995 kenny perry 1 63-71-64-67-70 335 216000

 david duval 2 67-68-65-67-69 336 129600

1994 scott hoch 1 66-62-70-66-70 334 198000

 fuzzy zoeller t2 70-67-66-68-66 337 82133.34

 lennie clements t2 67-69-61-72-68 337 82133.33

 jim gallagher jr. t2 66-67-74-62-68 337 82133.33

1993 tom kite 1 67-67-64-65-62 325 198000

Table A.2: A sample test dataset.

when delimiters are inferred correctly, as this can prevent the types from column spe-

cific.

Appendix A. Appendix for ptype 98

#include "vanilla.p"

Punion Union_19 {

v_stringconst_12 Pfrom(" ");

"year";

Puint16 v_intrange_4;

};

.

.

.

Punion Union_189 {

v_stringconst_173 Pfrom("money (us$)");

Puint32 v_intconst_169 : v_intconst_169 == 72600;

};

Pstruct Struct_192 {

’\"’;

Union_189 v_union_189;

’\"’;

};

Pstruct Struct_164 {

’\"’;

Pfloat64 v_float_156;

’\"’;

};

Punion Union_165 {

Struct_192 v_struct_192;

Struct_164 v_struct_164;

};

Precord Pstruct Struct_194 {

’\"’;

Union_19 v_union_19;

"\",";

Union_62 v_union_62;

",\"";

Union_86 v_union_86;

"\",";

Union_121 v_union_121;

’,’;

Union_141 v_union_141;

’,’;

Union_165 v_union_165;

};

Psource Parray entries_t {

Struct_194[];

};

Figure A.1: A fragment of the PADS output for a given dataset.

Appendix A. Appendix for ptype 99

A.5 Scalability of the Methods

Table A.3 denotes the number of rows, columns, unique elements, and the time passed

to infer column types.

dataset # cols # rows U hypoparsr messytables ptype readr TDDA Trifacta

21329809_0_. . . 6 156 699 2.595 0.001 0.011 0.010 0.0001 1.333

24036779_0_. . . 7 83 490 4.836 0.001 0.011 0.015 0.0001 1.143

24142265_0_. . . 6 100 271 2.345 0.001 0.007 0.002 0.0001 1.333

26270372_1_. . . 5 19 71 1.007 0.001 0.004 0.002 0.0001 2.200

28086084_0_. . . 6 224 229 1.475 0.002 0.006 0.002 0.0001 1.333

28154036_0_. . . 5 10 39 2.199 0.001 0.003 0.004 0.0001 1.400

28646774_0_. . . 6 8 45 1.613 0.001 0.004 0.002 0.0001 1.333

29886325_0_. . . 6 254 1063 3.572 0.002 0.015 0.014 0.0001 1.667

34899692_0_. . . 4 92 321 0.978 0.001 0.009 0.001 0.00004 2.250

40534006_0_. . . 4 39 118 2.667 0.001 0.004 0.002 0.00004 2.000

41480166_0_. . . 6 224 229 1.343 0.001 0.005 0.002 0.0001 1.500

44005578_0_. . . 4 8 31 2.014 0.001 0.003 0.001 0.00004 2.000

44206774_0_. . . 6 89 279 2.505 0.031 0.006 0.002 0.0001 1.500

47709681_0_. . . 4 408 706 3.432 0.006 0.021 0.002 0.00004 2.250

78891639_0_. . . 6 202 862 2.927 0.002 0.013 0.002 0.0001 1.333

8468806_0_. . . 7 110 489 3.654 0.001 0.007 0.002 0.0001 1.143

accident2016 18 555 1835 10.022 0.005 0.009 0.006 0.0001 0.611

accidents_2015 32 140056 609343 - 0.895 1.635 0.045 0.0003 0.281

auto 26 205 911 3.557 0.001 0.011 0.006 0.0002 0.308

casualties_2015 16 186189 140158 - 1.191 0.858 0.030 0.0002 0.625

census_inc. . . 42 199523 102028 - 0.853 0.423 0.054 0.0004 0.238

data_gov_10012_1 14 145 779 4.023 0.003 0.012 0.011 0.0002 0.571

data_gov_10151_1 21 99 775 2.227 0.002 0.006 0.002 0.0002 0.429

data_gov_12252_1 5 258 756 2.734 0.002 0.015 0.002 0.00005 1.600

data_gov_16834_1 24 15055 2911 - 0.056 0.035 0.005 0.0002 0.333

data_gov_18386_1 16 1238 3975 17.705 0.007 0.024 0.002 0.0001 0.500

data_gov_323_1 6 13260 11740 94.726 0.065 0.157 0.006 0.00005 1.500

data_gov_3397_1 18 437 534 5.785 0.002 0.005 0.002 0.0002 0.500

data_gov_356_1 8 1279 6993 25.147 0.008 0.068 0.003 0.0001 1.000

data_gov_5134_1 10 3366 12198 293.392 0.023 0.110 0.007 0.0001 0.700

edf_stocks 7 5425 4702 23.288 0.049 0.063 0.005 0.0001 1.143

elnino 9 782 1032 12.59 0.005 0.012 0.002 0.0001 1.220

inspection_ou. . . 22 1477 3115 12.349 0.007 0.014 0.002 0.0002 0.364

intel_lab 8 1048576 112912 - 8.956 2.183 0.266 0.0001 1.250

mass_1 12 131316 803207 - 0.703 12.502 0.150 0.0001 0.750

mass_2 19 44990 12452 - 0.275 0.137 0.015 0.0002 0.474

mass_5 53 8282 72659 - 0.029 0.115 0.009 0.001 0.189

mass_6 23 3148 3363 36.681 0.012 0.018 0.002 0.0002 0.348

miny_vendor 18 897 6728 7.148 0.006 0.030 0.002 0.0002 0.500

school_char. . . 41 735 16832 3.873 0.005 0.034 0.001 0.0003 0.220

school_sessions 31 228282 78913 - 1.010 0.514 0.039 0.0003 0.290

survey 27 1259 1622 7.036 0.008 0.015 0.001 0.0003 0.296

vehicles_2015 23 257845 141278 - 1.641 0.710 0.034 0.0002 0.391

Table A.3: Size of the test datasets and the times in seconds it takes to infer column

types per column (on average), where U denotes the number of unique data entries in

a dataset.

Appendix B

Appendix for ptype-cat

We share the available datasets, their sources (e.g., Kaggle and OpenML), the text

sequences extracted from their meta-data and our annotations for data types and cat-

egorical values at https://bit.ly/2Ra2Vu7. Here, we briefly describe these data

sets, and report the number of datasets and the counts of data types in each nested

cross-validation fold, respectively in Tables B.1 and B.2.

• Abalone: measurements of physical properties of Abalones used to predict their

ages.

• Ada Prior: a dataset extracted from census data to discover high revenue people.

• Analcatdata Broadwaymult: information about Broadway shows such as their

types (e.g., play and musical), ratings from 0 to 5, and the number of Tony

nominations and awards earned.

• Analcatdata Homerun: a collection of game-by-game statistics about home runs

of baseball players.

• Anneal: measurements about physical and chemical properties of products after

annealing, which is a heating process to reduce their hardness, is applied.

• Atari Head: a collection of actions and eye movements while playing Atari video

games.

• Australian: information about credit card applications and whether they are ap-

proved or rejected.

• Auto MPG: technical specifications of cars.

100

https://bit.ly/2Ra2Vu7

Appendix B. Appendix for ptype-cat 101

• Autos: information about cars such as their characteristics, insurance risk ratings

and normalized losses in use as compared to other cars.

• Backache: information about women and back pain levels they experience dur-

ing pregnancy.

• Bank Marketing: a dataset about marketing campaigns of a Portuguese banking

institution used to predict if the client will subscribe a term deposit.

• Banknote Authentication: a dataset of banknote images used to predict whether

a banknote is genuine or forged.

• Breast Cancer Wisconsin Diagnostic (WDBC): a dataset about the characteris-

tics of the cell nuclei present in the image of a fine needle aspirate of a breast

mass.

• Chscase Geyser1: a dataset of interval times between eruptions of the Old Faith-

ful Geyser at Yellowstone National Park, measured during August 1978 and

1979.

• CleanEHR: see Appendix A.2 for the description of this dataset.

• Click Prediction Small: a dataset about advertisements shown alongside search

results, and whether or not people clicked on these ads.

• Colleges AAUP: information on faculty salaries for 1161 American colleges and

universities.

• Consolidation Centres: descriptions of construction sites that would possibly use

the services of a Construction Consolidation Center (CCC).

• Contraceptive Method Choice (CMC): a subset of the 1987 National Indonesia

Contraceptive Prevalence Survey, which is used to predict the current contracep-

tive method choice of a woman based on her demographic and socio-economic

characteristics.

• Cover Type: information about wilderness areas in northern Colorado used to

predict forest cover type from cartographic variables.

• Cylinder Bands: information about process delays known as cylinder bands in

rotogravure printing.

Appendix B. Appendix for ptype-cat 102

• Diabetes (scikit-learn): information about patients such as their characteristics

(e.g., age and sex) and various health-related measurements (e.g., average blood

pressure and their disease progression).

• Echocardiogram-UCI: a dataset about patients’ heart attacks and health condi-

tions, which is used to predict whether a patient will survive at least one year.

• Electricity Prices ICON: a dataset collected from a cloud computing service to

predict the price of its electricity consumption.

• Emotions: a dataset about songs and associated emotions such as happy-pleased

and relaxing calm.

• Eucalyptus: information about the suitability of seed lots for soil conservation

in seasonally dry hill country.

• Forest Fires: a meteorological dataset used to predict the burned area of forest

fires in the northeast region of Portugal.

• Fri-C2-1000-50 and Fri-C4-250-25: two artificially generated datasets using the

Friedman functions with varying colinearinty degrees, numbers of samples and

features.

• Fruitfly: a dataset collected from male fruitflies to analyze the effect of sexual

activity on their lifespans.

• Geoplaces2: see Appendix A.2 for the description of this dataset.

• Grub-damage: information about grass grub population and the loss (both pas-

ture damage and economic loss) caused by grass grubs.

• Hypothyroid: thyroid disease records supplied by the Garavan Institute.

• Image: a benchmark dataset that consists of 2000 natural scene images, where

135 features are extracted for each image, and the corresponding labels such as

desert, mountains, sea, sunset and trees.

• Iris: the famous UCI dataset containing measurements about plants.

• Jannis: a collection of images used to label the regions in an image, where the

labels are Animals, Man-made objects, Persons and Landscape.

Appendix B. Appendix for ptype-cat 103

• JM1 and MC1: two collections of statistics extracted from source codes to pre-

dict whether or not the corresponding software causes a defect.

• Jungle Chess - Lion vs. Elephant: a dataset consisting of features extracted from

the game called “Jungle Chess” and the outcome of the games played between

two pieces of lion and elephant.

• KDD Cup 99: a subsample of the data from the 1999 ACM KDD Cup where the

task was to build a network intrusion detector.

• KEGG Metabolic Reaction Network: a graph dataset where product compounds

are considered as node, and genes are treated as edges.

• Kick: a dataset about cars used to predict if a car purchased at an auction is a bad

buy, i.e., the car has serious issues that prevent it from being sold to customers.

• King-Rook vs. King-Pawn (Kr-vs-kp): an UCI dataset about chess end-games,

where the 36 features describe various positions on the board and the 37th feature

describes whether the white can win or not.

• LED: an extension of the UCI LED display dataset, where decimal digits are

display with 24 features rather than 7 features.

• Localization Data for Person Activity (LDPA): localization recordings of five

people performing different activities, where each person wears four sensors

(ankle left, ankle right, belt and chest).

• Magic Telescope: a dataset generated via a Monte Carlo simulation that simu-

lates registration of gamma particles in a ground-based telescope.

• Midwest Survey Nominal: a dataset that contains individual responses from sur-

veys about regional identification.

• MIP 2016 PAR10 Classification: PAR10 performances of modern solvers on the

solvable instances of MIPLIB 2010.

• MofN-3-7-10: a dataset consisting of 10 binary features used to evaluate “M-of-

N” rules.

• Molecular Biology Promoters: E. coli gene sequences used to recognize promot-

ers in strings that represent nucleotides (one of A, G, T or C).

Appendix B. Appendix for ptype-cat 104

• Nomao: a dataset about places (e.g., name, phone and localization) used for

deduplication.

• NYC-home-parks: information about the manufactured home parks in New York

City such as their names, addresses and counties in which they are located.

• Ozone Level 8hr: a ground ozone level dataset collected from 1998 to 2004 at

the Houston, Galveston and Brazoria area.

• Page Blocks: a collection of the page layouts of documents annotated with labels

such as text, horizontal line, picture, vertical line and graphic.

• Parkinson Speech Dataset with Multiple Types of Sound Recordings: a dataset

consisting of features extracted from audio recordings (e.g., numbers and short

sentences pronounced by people with parkinson’s disease and healthy people)

and a rating that denotes how severe a person’s condition is.

• Pasture: information about areas such as their biophysical properties and how

they are managed (fertilizer application/stocking rate) which is used to predict

pasture production.

• Pharynx: information about patients with squamous carcinoma and the treat-

ment methods applied (either radiation therapy alone or radiation therapy with

together with a chemotherapeutic agent).

• Philippine: features about cells of zebrafish embryo and manually annotated

labels that denote whether they are in division (meiosis) or not.

• Poker Hand: information about poker hands each of which consists of five play-

ing cards drawn from a standard deck of 52.

• Premier League Odds and Prob: a dataset that contains the probabilities gener-

ated with the statistical models and matches odds for each Premier League match

in the 2014-2015 season.

• Rabe 176: information about schools (e.g., facilities and faculty credentials) and

student achievements.

• Ringnorm: an implementation of Leo Breiman’s ringnorm example (Breiman,

1996), that consists of 2 classes where each class is drawn from a multivariate

normal distribution.

Appendix B. Appendix for ptype-cat 105

• River Ice: a dataset about estimated river ice (length) fraction based on images

from USGS Landsat satellite missions.

• Rodents: see Appendix A.2 for the description of this dataset.

• Satellite: a modified version of satellite observations which are used to classify

an image into the soil category of the observed region.

• Scene: a collection of features extracted from scene images and the correspond-

ing labels such as “Urban” and “Not Urban”.

• Sick: a modified version of thyroid disease records supplied by the Garavan

Institute.

• Sleuth Case 1202: information (e.g., age, sex, education, work experience and

salary) about employees of a bank that was sued for sex discrimination.

• Slump: a multivariate regression dataset used to predict three properties of con-

crete (slump, flow and compressive strength) as a function of the content of seven

concrete ingredients, e.g., cement, fly ash, blast furnace slag, water, superplasti-

cizer, coarse aggregate and fine aggregate.

• SPECT: a dataset consisting of binary features extracted from cardiac images and

the corresponding image labels (e.g., normal and abnormal), used to generate

diagnoses rules.

• Squash Stored: measurements (e.g., weight, sweetness and flavour) about squash

fruits that are transported by refrigerated cargo vessels, used for quality evalua-

tion.

• Student Alcohol Consumption: information (social behaviors, gender and study-

related variables such as weekly study time and grades) about students in sec-

ondary school.

• TAE: information about teaching assistants (TAs), courses and their teaching

performance categorized into “low”, “medium” and “high”.

• Thoracic Surgery: a thoracic surgery dataset collected from patients who under-

went major lung resections for primary lung cancer in the years 2007-2011.

Appendix B. Appendix for ptype-cat 106

• USP05: a dataset about university student software projects used to estimate the

efforts in hours required to complete a project.

• Vinnie: a collection of statistics about the shooting performance of Vinnie John-

son of the Detroit Pistons during the 1985-1986.

• Volcanoes-b6 and Volcanoes-d4: two datasets with varying focus of attention

that contain images of volcanoes in Venus collected by the Magellan spacecraft

and labels provided by human experts that denote their beliefs over the locations

of volcanoes within the images.

• Wall Robot Navigation: measurements collected by using ultrasound sensors

from a robot navigating through a room.

• Weather: a synthetically generated dataset about the suitability of weather con-

ditions for playing an unspecified game.

• White Clover: measurements about white clovers, used to analyze how high

temperatures in summer impact white clover population.

• Wholesale Customers: a dataset about clients of a wholesale distributor such as

their annual spending on diverse product categories.

• Wikipedia Adventure: a dataset obtained from a survey of Wikipedia editors

who played a gamified tutorial.

• Womens’ Clothing Reviews: an e-commerce dataset containing information about

clothing products and their reviews by customers.

• Young People Survey: a dataset obtained from a survey about young people and

their preferences/habits.

• Zoo: a dataset that contains 17 binary attributes describing animals and a class

attribute.

Appendix B. Appendix for ptype-cat 107

Phase Outer Inner # Datasets Column Type

Fold Fold Categorical Date Float Integer String Total

Training 1 1 54 580 19 1258 210 52 2119

Validation 1 1 14 201 20 40 121 8 390

Training 1 2 54 711 31 926 311 52 2031

Validation 1 2 14 70 8 372 20 8 478

Training 1 3 54 565 34 1091 246 34 1970

Validation 1 3 14 216 5 207 85 26 539

Training 1 4 55 686 35 685 255 48 1709

Validation 1 4 13 95 4 613 76 12 800

Training 1 5 55 582 37 1232 302 54 2207

Validation 1 5 13 199 2 66 29 6 302

Training 1 - 68 781 39 1298 331 60 2509

Test 1 - 18 120 9 166 180 5 480

Training 2 1 55 587 24 1187 220 54 2072

Validation 2 1 14 99 0 156 163 3 421

Training 2 2 55 610 11 1096 353 47 2117

Validation 2 2 14 76 13 247 30 10 376

Training 2 3 55 478 19 1082 300 31 1910

Validation 2 3 14 208 5 261 83 26 583

Training 2 4 55 582 20 730 305 45 1682

Validation 2 4 14 104 4 613 78 12 811

Training 2 5 56 487 22 1277 354 51 2191

Validation 2 5 13 199 2 66 29 6 302

Training 2 - 69 686 24 1343 383 57 2493

Test 2 - 17 215 24 121 128 8 496

Table B.1: Summaries per fold.

Appendix B. Appendix for ptype-cat 108

Phase Outer Inner # Datasets Column Type

Fold Fold Categorical Date Float Integer String Total

Training 3 1 55 663 40 987 272 48 2010

Validation 3 1 14 99 0 156 163 3 421

Training 3 2 55 604 11 1106 366 44 2131

Validation 3 2 14 158 29 37 69 7 300

Training 3 3 55 560 35 872 339 28 1834

Validation 3 3 14 202 5 271 96 23 597

Training 3 4 55 658 36 530 357 39 1620

Validation 3 4 14 104 4 613 78 12 811

Training 3 5 56 563 38 1077 406 45 2129

Validation 3 5 13 199 2 66 29 6 302

Training 3 - 69 762 40 1143 435 51 2431

Test 3 - 17 139 8 321 76 14 558

Training 4 1 55 610 43 543 261 30 1487

Validation 4 1 14 99 0 156 163 3 421

Training 4 2 55 551 14 662 355 26 1608

Validation 4 2 14 158 29 37 69 7 300

Training 4 3 55 605 35 510 338 22 1510

Validation 4 3 14 104 8 189 86 11 398

Training 4 4 55 560 39 448 347 27 1421

Validation 4 4 14 149 4 251 77 6 487

Training 4 5 56 510 41 633 395 27 1606

Validation 4 5 13 199 2 66 29 6 302

Training 4 - 69 709 43 699 424 33 1908

Test 4 - 17 192 5 765 87 32 1081

Training 5 1 55 567 46 1217 308 56 2194

Validation 5 1 14 99 0 156 163 3 421

Training 5 2 55 508 17 1336 402 52 2315

Validation 5 2 14 158 29 37 69 7 300

Training 5 3 55 562 38 1184 385 48 2217

Validation 5 3 14 104 8 189 86 11 398

Training 5 4 55 433 41 1059 399 33 1965

Validation 5 4 14 233 5 314 72 26 650

Training 5 5 56 594 42 696 390 47 1769

Validation 5 5 13 72 4 677 81 12 846

Training 5 - 69 666 46 1373 471 59 2615

Test 5 - 17 235 2 91 40 6 374

Table B.2: Summaries per fold.

Appendix C

Appendix for ptype-semantics

Below, we give additional information about our knowledge graph of units (Appendix

C.1), describe the datasets used (Appendix C.2), present regular expressions used to

parse unit symbols (Appendix C.3) and present the derivations for inference in our

model (Appendix C.4).

C.1 Additional Information about Our Knowledge Graph

We support the following dimensions: acceleration, amount of substance, angle, area,

capacitance, catalytic activity, charge, currency, current, data storage, data transfer rate,

dimensionless, dynamic viscosity, electric potential, electrical conductance, electrical

resistance, energy, flux density, force, frequency, illuminance, inductance, instance

frequency, irradiance, kinematic viscosity, length, linear mass density, luminance, lu-

minous flux, luminous intensity, magnetic field, magnetic flux, magnetomotive force,

mass, mass flow, power, pressure, radiation absorbed dose, radiation exposure, radioac-

tivity, sound level, speed, temperature, time, torque, typographical element, volume,

volume (lumber), volumetric flow.

To query WikiData, Wikipedia and QUDT, we respectively use wikidata (Minhee,

2017), wikipedia (Goldsmith, 2016) and pyqudt (Brown, 2019).

C.2 Brief Description of the Datasets

The datasets used can be briefly described as follows:

• Arabica, Robusta: a collection of reviews about coffee beans.

109

Appendix C. Appendix for ptype-semantics 110

• HES (Household Electricity Survey): time series measurements of the electricity

use of domestic appliances (to gain access to the data, please register at https:

//tinyurl.com/ybbqu3n3).

• Huffman: the Huffman Prairie flight trials in 1904, which is available through

the U.S. Centennial of Flight Commission.

• Maize Meal: a list of maize meal products.

• MBA: a list of products in a grocery shop.

• Open Units: a list of 1,000 standard servings of branded drinks and their alcohol

content.

• PHM Collection: information on the collection of Powerhouse Museum Sydney,

including textual descriptions, physical, temporal, and spatial data as well as,

where possible, thumbnail images.

• 143. . . 6, 143. . . 23 and 228. . . 96: a set of data Web tables from T2Dv2 Gold

Standard to evaluate matching systems on the task of matching Web tables to the

DBpedia knowledge base.

• query_2, query_4: a set of tables extracted from WikiData using the properties

of height or weight.

• Zomato: information about restaurants extracted from Zomato.

C.3 Regular Expressions for Parsing Unit Symbols

We use the following regular expression to parse a unit symbol from a given text:

import re

numeric_with_string_const_pattern = r"""

[-+]? # optional sign

(

(?: \d+ \/ \d+) # 1/4 etc

|

(?: \d* [.,] \d+) # .1 .12 .123 etc 9.1 etc 98.1 etc

|

(?: \d+ \.?) # 1. 12. 123. etc 1 12 123 etc

https://tinyurl.com/ybbqu3n3
https://tinyurl.com/ybbqu3n3

Appendix C. Appendix for ptype-semantics 111

) ?

whitespace as separator

(?: [\s]*) ?

followed by optional characters (alphanumeric,

whitespace and some punctuation marks)

([\w\s.!?\\-]*) ?

"""

rx = re.compile(numeric_with_string_const_pattern, re.VERBOSE)

C.4 Derivations for Inference

C.4.1 Column Type

The posterior distribution of column type t can be derived as follows:

p(t = k|x) ∝ p(t = k,x),

= p(t = k)
N

∏
i=1

p(xi|t = k),

= p(t = k)
N

∏
i=1

 Lk

∑
ui=1

∑
zi∈{ui,m,a}

p(xi,zi,ui|t = k)

 ,
= p(t = k)

N

∏
i=1

 Lk

∑
ui=1

p(ui|t = k)
(

wk
ui

p(xi|zi = ui)

+wm
ui

p(xi|zi = m)+wa
ui

p(xi|zi = a)
).

C.4.2 Row Label

Let us assume that t = k according to p(t|x), the posterior distribution of column type.

Then we can write the posterior distribution of row label zi given t = k and xi as:

p(zi = j|t = k,xi) =
p(zi = j,xi|t = k)

∑`∈{ui,m,a} p(zi = `,xi|t = k)
,

Appendix C. Appendix for ptype-semantics 112

where p(zi = j,xi|t = k) can be calculated as follows:

p(zi = j,xi|t = k) =
Lk

∑
l=1

p(ui = l,zi = j,xi|t = k),

=
Lk

∑
l=1

p(ui = l|t = k)w j
l p(xi|zi = j). (C.0)

C.4.3 Row Unit

The posterior probabilities of each row unit ui given t = k, zi = j and xi can be written

as:

p(ui = l|t = k,zi = j,xi) =
p(ui = l,xi|t = k,zi = j)

∑
Lk
ui=1 p(ui = l,xi|t = k,zi = j)

,

where p(ui = l,xi|t = k,zi = j) can be calculated as follows:

= p(ui = l|t = k)p(xi|t = k,ui = l,zi = j),

= p(ui = l|t = k)p(xi|zi = j).

C.4.4 Column Unit

p(ui = l|t = k,xi) ∝ p(ui = l|t = k) p(xi|ui = l, t = k),

= p(ui = l|t = k)

 ∑
`∈{ui,m,a}

(
p(xi,zi = `|ui = l, t = k)

),
= p(ui = l|t = k)

 ∑
`∈{ui,m,a}

(
p(zi = `|ui = l) p(xi|zi = `)

).

Bibliography

Agresti, A. (2003). Categorical data analysis, volume 482. John Wiley & Sons, 3

edition.

Bahl, L., Brown, P., De Souza, P., and Mercer, R. (1986). Maximum mutual informa-

tion estimation of hidden Markov model parameters for speech recognition. In IEEE

International Conference on Acoustics, Speech, and Signal Processing, volume 11,

pages 49–52. IEEE.

Breiman, L. (1996). Bias, variance, and arcing classifiers. Technical report, Statistics

Department, University of California, Berkeley.

Brown, G. (2019). pyqudt. https://pypi.org/project/pyqudt/ [Accessed on

06/02/2020].

Brown, P. F. (1987). The Acoustic-Modeling Problem in Automatic Speech Recogni-

tion. Ph.D. Dissertation, Department of Computer Science, Carnegie Mellon Uni-

versity, Pittsburgh, PA, USA.

Castelijns, L. A., Maas, Y., and Vanschoren, J. (2020). The ABC of data: A classifying

framework for data readiness. In Cellier, P. and Driessens, K., editors, Machine

Learning and Knowledge Discovery in Databases, volume 1167 of Communications

in Computer and Information Science, pages 3–16. Springer.

Ceritli, T., Williams, C. K. I., and Geddes, J. (2020). ptype: probabilistic type infer-

ence. Data Mining and Knowledge Discovery, 34(3):870—-904.

Chambers, C. and Erwig, M. (2010). Reasoning about spreadsheets with labels and

dimensions. Journal of Visual Languages & Computing, 21(5):249–262.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly detection: A survey. ACM

Computing Surveys (CSUR), 41(3):15.

113

https://pypi.org/project/pyqudt/

Bibliography 114

Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., and Wirth,

R. (2000). CRISP-DM 1.0: Step-by-step data minning guide. pages 10–29.

Chen, J., Jiménez-Ruiz, E., Horrocks, I., and Sutton, C. (2019a). Colnet: Embedding

the semantics of web tables for column type prediction. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 29–36.

Chen, J., Jimenez-Ruiz, E., Horrocks, I., and Sutton, C. (2019b). Learning semantic

annotations for tabular data. Proceedings of the Twenty-Eighth International Joint

Conference on Artificial Intelligence.

Dasu, T. and Johnson, T. (2003). Exploratory data mining and data cleaning: An

overview. In Exploratory Data Mining and Data Cleaning, volume 479, chapter 1,

pages 1–16. John Wiley & Sons, Inc., New York, NY, USA, 1 edition.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). BERT: Pre-training

of deep bidirectional transformers for language understanding. In Proceedings of

the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pages 4171–4186. Association for Computational Linguistics.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised clas-

sification learning algorithms. Neural Computation, 10(7):1895–1923.

Döhmen, T., Mühleisen, H., and Boncz, P. (2017). Multi-Hypothesis CSV Parsing.

In Proceedings of the 29th International Conference on Scientific and Statistical

Database Management.

Dupont, P., Denis, F., and Esposito, Y. (2005). Links between probabilistic automata

and hidden Markov models: Probability distributions, learning models and induction

algorithms. Pattern Recognition, 38(9):1349–1371.

Eduardo, S., Nazábal, A., Williams, C. K. I., and Sutton, C. (2020). Robust variational

autoencoders for outlier detection and repair of mixed-type data. In Proceedings

of the Twenty Third International Conference on Artificial Intelligence and Statis-

tics, volume 108 of Proceedings of Machine Learning Research, pages 4056–4066.

PMLR.

Bibliography 115

Edwards, A. L. (1948). Note on the "correction for continuity" in testing the signifi-

cance of the difference between correlated proportions. Psychometrika, 13(3):185–

187.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incorporating non-local informa-

tion into information extraction systems by Gibbs sampling. In Proceedings of the

43rd Annual Meeting on Association for Computational Linguistics, pages 363–370.

Association for Computational Linguistics.

Fisher, K. and Gruber, R. (2005). PADS: A domain-specific language for processing

ad hoc data. In Proceedings of the 2005 ACM SIGPLAN conference on Program-

ming language design and implementation (PLDI’05), volume 40(6), page 421–434.

Association for Computing Machinery.

Fisher, K., Walker, D., Zhu, K. Q., and White, P. (2008). From dirt to shovels: Fully

automatic tool generation from ad hoc data. In Proceedings of the 35th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

volume 43, pages 421–434. Association for Computing Machinery.

Foppiano, L., Romary, L., Ishii, M., and Tanifuji, M. (2019). Automatic identification

and normalisation of physical measurements in scientific literature. In Proceedings

of the ACM Symposium on Document Engineering, page 24. Association for Com-

puting Machinery.

Gill, A. (1962). The basic model. In Introduction to the Theory of Finite-State Ma-

chines, pages 1–15. McGraw-Hill Book Company.

Goldsmith, J. (2016). wikipedia. https://pypi.org/project/wikipedia/ [Ac-

cessed on 06/02/2020].

Graves, A. and Schmidhuber, J. (2005). Framewise phoneme classification with bidi-

rectional LSTM and other neural network architectures. Neural Networks, 18(5-

6):602–610.

Grecco, H. E. (2019). pint Documentation Release 0.10.dev0. https://

buildmedia.readthedocs.org/media/pdf/pint/latest/pint.pdf [Accessed

on 05/08/2019].

https://pypi.org/project/wikipedia/
https://buildmedia.readthedocs.org/media/pdf/pint/latest/pint.pdf
https://buildmedia.readthedocs.org/media/pdf/pint/latest/pint.pdf

Bibliography 116

Guo, P. J., Kandel, S., Hellerstein, J. M., and Heer, J. (2011). Proactive wrangling:

Mixed-initiative end-user programming of data transformation scripts. In Proceed-

ings of the 24th Annual ACM Symposium on User Interface Software and Technol-

ogy, pages 65–74. Association for Computing Machinery.

Hand, D. J., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT Press.

Hernández-Lobato, J. M., Lloyd, J. R., Hernández-Lobato, D., and Ghahramani, Z.

(2014). Learning the semantics of discrete random variables: Ordinal or categorical.

In NeurIPS Workshop on Learning Semantics.

Hignette, G., Buche, P., Dibie-Barthélemy, J., and Haemmerlé, O. (2009). Fuzzy anno-

tation of web data tables driven by a domain ontology. In European Semantic Web

Conference, pages 638–653. Springer Berlin Heidelberg.

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2001). Introduction to automata

theory, languages, and computation, 2nd edition. ACM SIGACT News, 32(1):60–65.

Jiang, H. (2010). Discriminative training of HMMs for automatic speech recognition:

A survey. Computer Speech & Language, 24(4):589–608.

Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. (2011). Wrangler: Interactive

visual specification of data transformation scripts. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 3363–3372. Associa-

tion for Computing Machinery.

Keil, J. M. and Schindler, S. (2018). Comparison and evaluation of ontologies for units

of measurement. Semantic Web, 10:1–19.

Kittler, J., Hatef, M., Duin, R. P. W., and Matas, J. (1998). On combining classifiers.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):226–239.

Lagi, M. (2016). Quantulum. https://github.com/marcolagi/quantulum [Ac-

cessed on 05/08/2019].

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh, Y. W. (2019). Set trans-

former: A framework for attention-based permutation-invariant neural networks. In

International Conference on Machine Learning, pages 3744–3753. PMLR.

Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and

reversals. In Soviet Physics Doklady, volume 10, pages 707–710.

https://github.com/marcolagi/quantulum

Bibliography 117

Limaye, G., Sarawagi, S., and Chakrabarti, S. (2010). Annotating and searching web

tables using entities, types and relationships. Proceedings of the 36th International

Conference on Very Large Data Bases, 3(1-2):1338–1347.

Lindenberg, F. (2017). messytables Documentation Release 0.3. https://media.

readthedocs.org/pdf/messytables/latest/messytables.pdf [Accessed on

29/06/2018].

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-

moyer, L., and Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pre-

training approach. arXiv preprint arXiv:1907.11692.

Majoor, A. and Vanschoren, J. (2018). Auto-cleaning dirty data: the data encoding

bot. Technical report, Technical University of Eindoven. https://github.

com/openml/ARFF-tools/blob/master/Data_Encoding_bot_Report.pdf

[Accessed on 06/08/2020].

McDaniel, G. (1994). IBM Dictionary of Computing, page 21. McGraw-Hill,

Inc. https://www.ibm.com/ibm/history/documents/pdf/glossary.pdf [Ac-

cessed on 11/06/2020].

Minhee, H. (2017). Wikidata. https://pypi.org/project/wikipedia/ [Accessed

on 06/02/2020].

Nádas, A., Nahamoo, D., and Picheny, M. A. (1988). On a model-robust training

method for speech recognition. IEEE Transactions on Acoustics, Speech, and Signal

Processing, 36(9):1432–1436.

Nazábal, A., Williams, C. K. I., Colavizza, G., Smith, C. R., and Williams, A. (2020).

Data engineering for data analytics: A classification of the issues, and case studies.

arXiv preprint arXiv:2004.12929.

Paz, A. (1971). Introduction to Probabilistic Automata, volume 78. Academic Press,

Inc., New York, NY, USA.

Pearson, R. K. (2006). The problem of disguised missing data. ACM SIGKDD Explo-

rations, 8(1):83–92.

Petricek, T., Guerra, G., and Syme, D. (2016). Types from data: Making structured

data first-class citizens in F#. In Proceedings of the 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation.

https://media.readthedocs.org/pdf/messytables/latest/messytables.pdf
https://media.readthedocs.org/pdf/messytables/latest/messytables.pdf
https://github.com/openml/ARFF-tools/blob/master/Data_Encoding_bot_Report.pdf
https://github.com/openml/ARFF-tools/blob/master/Data_Encoding_bot_Report.pdf
https://www.ibm.com/ibm/history/documents/pdf/glossary.pdf
https://pypi.org/project/wikipedia/

Bibliography 118

Qahtan, A. A., Elmagarmid, A., Castro Fernandez, R., Ouzzani, M., and Tang, N.

(2018). FAHES: A robust disguised missing values detector. In Proceedings of

the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 2100–2109. Association for Computing Machinery.

Quinn, J. A., Williams, C. K. I., and McIntosh, N. (2009). Factorial switching lin-

ear dynamical systems applied to physiological condition monitoring. IEEE Trans.

Pattern Anal. Mach. Intell., 31(9):1537–1551.

Rabin, M. O. (1963). Probabilistic automata. Information and Control, 6(3):230–245.

Rabin, M. O. and Scott, D. (1959). Finite automata and their decision problems. IBM

Journal of Research and Development, 3(2):114–125.

Raman, V. and Hellerstein, J. M. (2001). Potter’s wheel: An interactive data cleaning

system. In Proceedings of the 27th International Conference on Very Large Data

Bases, pages 381–390. Morgan Kaufmann Publishers Inc.

Rijgersberg, H., Van Assem, M., and Top, J. (2013). Ontology of units of measure and

related concepts. Semantic Web, 4(1):3–13.

Samadian, S., McManus, B., and Wilkinson, M. D. (2014). Automatic detection and

resolution of measurement-unit conflicts in aggregated data. BMC Medical Ge-

nomics, 7(1):S12.

Shbita, B., Rajendran, A., Pujara, J., and Knoblock, C. A. (2019). Parsing, representing

and transforming units of measure. Modeling the World’s Systems.

Stochastic Solutions (2018). Test-Driven Data Analysis. https://tdda.

readthedocs.io/en/tdda-1.0.23/constraints.html [Accessed on

08/04/2019].

Trifacta (2018). Trifacta Wrangler. https://www.trifacta.com/ [Accessed on

27/06/2018].

Valera, I. and Ghahramani, Z. (2017). Automatic discovery of the statistical types

of variables in a dataset. In Proceedings of the 34th International Conference on

Machine Learning, volume 70, pages 3521–3529. PMLR.

https://tdda.readthedocs.io/en/tdda-1.0.23/constraints.html
https://tdda.readthedocs.io/en/tdda-1.0.23/constraints.html
https://www.trifacta.com/

Bibliography 119

Van Assem, M., Rijgersberg, H., Wigham, M., and Top, J. (2010). Converting and an-

notating quantitative data tables. In International Semantic Web Conference, pages

16–31. Springer Berlin Heidelberg.

Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., and Velera, I.

(2019). Automatic Bayesian density analysis. In Proceedings of the AAAI Con-

ference on Artificial Intelligence.

Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., and Carrasco, R. C. (2005).

Probabilistic finite-state machines - Part I. IEEE Trans. Pattern Anal. Mach. Intell.,

27(7):1013–1025.

Vrandečić, D. and Krötzsch, M. (2014). Wikidata: A free collaborative knowledge-

base. Communications of the ACM, 57(10):78–85. https://query.wikidata.

org/ [Accessed on 25/11/2019].

Wickham, H. and Grolemund, G. (2016). R for data science: Import, tidy, transform,

visualize, and model data, chapter 8, pages 137–138. O’Reilly Media, Inc., 1 edi-

tion. http://r4ds.had.co.nz/data-import.html [Accessed on 24/07/2018].

Wickham, H., Hester, J., Francois, R., Jylänki, J., and Jørgensen, M. (2017). readr

1.1.1. https://cran.r-project.org/web/packages/readr/readr.pdf [Ac-

cessed on 29/06/2018].

Williams, C. K. I. and Hinton, G. E. (1991). Mean field networks that learn to discrim-

inate temporally distorted strings. In Proceedings of the 1990 Connectionist Models

Summer School, pages 18–22. Morgan Kaufmann Publishers, Inc.

Williams, J., Negreanu, C., Gordon, A. D., and Sarkar, A. (2020). Understanding and

inferring units in spreadsheets. In 2020 IEEE Symposium on Visual Languages and

Human-Centric Computing, pages 1–9.

Wolfram|Alpha (2019). Units Overview-Wolfram Language Documentation. https:

//reference.wolfram.com/language/tutorial/UnitsOverview.html [Ac-

cessed on 05/08/2019].

Zwicklbauer, S., Einsiedler, C., Granitzer, M., and Seifert, C. (2013). Towards dis-

ambiguating web tables. In International Semantic Web Conference (Posters & De-

mos), pages 205–208.

https://query.wikidata.org/
https://query.wikidata.org/
http://r4ds.had.co.nz/data-import.html
https://cran.r-project.org/web/packages/readr/readr.pdf
https://reference.wolfram.com/language/tutorial/UnitsOverview.html
https://reference.wolfram.com/language/tutorial/UnitsOverview.html

	Introduction
	Outline of the thesis

	Background
	Data Dictionary
	Syntactic Type Inference
	Semantic Type Inference

	Syntactic Type Inference
	Introduction
	Methodology
	Probabilistic Finite-State Machines
	The Proposed Model
	Inference
	Training of the Model

	Experiments
	Experimental Setup
	Quantitative Results
	Qualitative Results

	Summary

	Inferring the Type and Values of Categorical Variables
	Introduction
	Methodology
	Probabilistic Type Inference for Categorical Variables
	Identification of Categorical Values
	Using Meta-data for Inference

	Experiments
	Experimental Setup
	Experimental Results

	Discussion

	Bringing Semantics into Type Inference
	Introduction
	Methodology
	Representing Units
	The Proposed Model
	Inference

	Related Work
	Semantic Web Technologies
	Regular Expressions
	Machine Learning

	Experiments
	Experimental Setup
	Results

	Discussion

	Conclusions and Future Work
	Summary of the Contributions
	Future Work
	Identifying the Ordinal and Nominal Types
	Using Header Information to Aid Inference
	Using Numeric Values for Unit Inference
	Enhancing User Interactions

	Appendix for ptype
	PFSMs for Data Types
	Integers
	Floats
	Strings
	Booleans
	Dates
	Missing
	Anomaly

	Data Sets
	Derivations for the Training
	Derivative of Lc
	Derivative of Lf

	The Outputs of the PADS Library
	Scalability of the Methods

	Appendix for ptype-cat
	Appendix for ptype-semantics
	Additional Information about Our Knowledge Graph
	Brief Description of the Datasets
	Regular Expressions for Parsing Unit Symbols
	Derivations for Inference
	Column Type
	Row Label
	Row Unit
	Column Unit

	Bibliography

