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Frequently Used Notation 
 
The following mathematical notational conventions are used throughout this thesis: 
 

• Scalar values are written in italic lower-case letters, for example k.  

• Vectors are written in bold lower-case letters, for example !.  
• Matrices are written in bold capital letters, for example ". {∙}!,# 	denotes the ith 

row, jth column matrix entry. The subscript n in the form	'$ indicates the nth 
element of a vector.  

• Unless otherwise specified, the Euclidean distance is used.  

• The set of integers, known as the natural numbers, is denoted ℕ, and the strictly 
positive (not including zero) subset of natural numbers is denoted ℕ%. 

• The set of real numbers is denoted	ℝ, and the strictly positive subset of real 
numbers is denoted ℝ%.   

• Scaled or transformed vectors or scalars are denoted x* and k*, respectively. 

• The modulus, or absolute value, of a number, here x, is denoted |x|. 
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Abstract 
Background 
Asthma attacks cause approximately 270 hospitalisations and four deaths per day in 
the United Kingdom (UK).  Previous attempts to construct data-driven risk prediction 
models of asthma attacks have lacked clinical utility: either producing inaccurate 
predictions or requiring patient data which are not cost-effective to collect on a large 
scale (such as electronic monitoring device data).  Electronic Health Record (EHR) use 
throughout the UK enables researchers to harness comprehensive and panoramic 
patient data, but their cleaning and pre-processing requires sophisticated empirical 
experimentation and data analytics approaches. My objectives were to appraise the 
previously utilised methods in asthma attack risk prediction modelling for feature 
extraction, model development, and model selection, and to train and test a model in 
Scottish EHRs. 
 
Methods 
In this thesis, I used a Scottish longitudinal primary care EHR dataset with linked 

secondary care records, to investigate the optimisation of an asthma attack risk 
prediction model. To inform the model, I refined methods for estimation of asthma 
medication adherence from EHRs, compared model training data enrichment 
procedures, and evaluated measures for validating model performance.  After 
conducting a critical appraisal of the methods employed in the literature, I trained and 
tested four statistical learning algorithms for prediction in the next four weeks, i.e. 
logistic regression, naïve Bayes classification, random forests, and extreme gradient 
boosting, and validated model performance in an unseen hold-out dataset. Training 
data enrichment methods were compared across all algorithms to establish whether 
the sensitivity of estimating relatively uncommon event incidence, such as asthma 
attacks in the general asthma population, could be improved.  Secondary event 
horizons were also examined, such as prediction in the next six months.  Empirical 
experimentation established the balanced accuracy to be the most appropriate 
prediction model performance measure, and the calibration between estimated and 
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observed risk was additionally assessed using the Area Under the Receiver-Operator 
Curve (AUC).   
 
Results 
Data were available for over 670,000 individuals, followed for up to 17 years (177,306 
person-years in total).  Binary prediction of asthma attacks in the following four-week 
period resulted in 1,203,476 data samples, of which 1% contained one or more attacks 
(12,193 total attacks).  In the preliminary model selection phase, the random forest 
algorithm provided the best balance between accuracy in those with asthma attacks 
(sensitivity) and in those predicted to have attacks (positive predictive value) in the 
following four weeks.  In an unseen data partition, the final random forest model, with 
optimised hyper-parameters, achieved an AUC of 0.91, and a balanced accuracy of 
73.6% after the application of an optimised decision threshold.  Accurate predictions 
were made for a median of 99.6% of those who did not go on to have attacks 
(specificity).  As expected with rare event predictions, the sensitivity was lower at 
47.7%, but this was well balanced with the positive predictive value of 48.9%.  
Furthermore, several of the secondary models, including predicting asthma attacks in 

the following 12 weeks, achieved state-of-the-art performance and still had high 
potential clinical utility.   
 
Conclusions  
I successfully developed an EHR-based model for predicting asthma attacks in the 
next four weeks.  Accurately predicting asthma attacks occurrence may facilitate closer 
monitoring to ensure that preventative therapy is adequately managing symptoms, 
reinforce the need to keep abreast of triggers, and allow rescue treatments to be 
administered quickly when necessary. 
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Lay Summary 
My main challenge in this thesis was to find a way to predict asthma attacks that can 
be used by healthcare professionals to help them improve patient care.   
 
Asthma attacks kill roughly four people every day on average in the United Kingdom.   
Doctors and nurses can prescribe very high strength oral steroids (such as prednisone) 
for a few days, to help patients’ symptoms improve quickly and make it less likely that 
they will need to go to the hospital.  Repeated use of oral steroids can however lead 
to very unpleasant side effects like bone weakness, thinned skin, and poor eyesight.   
Therefore, while we want to identify a high number of the people that might need oral 
steroids to avoid emergency care for their exacerbated symptoms, we also want to 
avoid using them when not absolutely necessary.   
 
Other researchers have tried to predict asthma attacks before, but they have come 
across a lot of problems.  They could not work out when people with asthma were not 
regularly taking their prescribed daily medication, which is very common and a major 

cause of sudden changes in symptoms.  The researchers often did not check their 
system worked properly, meaning that their results can be hard to trust, and often used 
data which are hard and expensive to obtain, for example data from personal 
monitoring machines such as electronic peak flow monitors or smart-inhalers.  In the 
UK, patients have individual electronic health records, digital versions of their medical 
history that their GP maintains.  These make it easy for doctors to find important 
information from your past, and everything is stored more safely than paper copies.  
These records can also be used in medical research, after removing information that 
could be used to work out who someone is.  A collection of mathematical methods 
known as machine learning often work really well with electronic health records to 
make predictions.  This is because these methods need a huge number of data records 
to work, but they can find out very specific combinations of traits (like the height, weight, 
age, and medical history of a person) that changes the risk of asthma attacks.   
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In this thesis, I show step-by-step how to build an asthma attack prediction system.  By 
using better data and better methods than previous studies to make our prediction 
system, I believe that I can now predict asthma attacks better than before.  However, 
there is still more work that can be done, and I have highlighted some ideas to make 
the system work even better.   
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1 Introduction 
In this chapter, I will provide some preliminary background into the topics discussed, 
for ease of reading, define the technical vocabulary that will be used throughout, and 
describe the structure of this thesis. 
 

1.1 Background 
 

 Asthma 
DEFINITION: ASTHMA 

“A disease characterized by recurrent attacks of breathlessness and wheezing, 
which vary in severity and frequency from person to person. In an individual, they 

may occur from hour to hour and day to day. 
 

This condition is due to inflammation of the air passages in the lungs and affects the 
sensitivity of the nerve endings in the airways so they become easily irritated. In an 
attack, the lining of the passages swell causing the airways to narrow and reducing 

the flow of air in and out of the lungs.” 
World Health Organization 1 

 
Asthma is a chronic long-term lung disease characterised by inflammation of the 
airways and sensitivity of the nerve endings in the airways so they become easily 
irritated (known as hyper-responsiveness) by stimuli including allergens  1. This 

inflammation obstructs the airways and can result in wheezing, chest tightness, 
coughing and shortness of breath 2.  An asthma attack is the sudden increase of 
constriction to the airways, as shown in Figure 1.1, which leads to a drastic worsening 
of symptoms including wheezing and coughing, often further exacerbated by the 
excessive production of thick mucus 3. In extreme cases, unless aggressive 
emergency care is administered immediately, blood oxygen saturation may be 
reduced until the individual loses consciousness and dies. 
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In recent years, asthma has been estimated to affect between 235 and 339 million 
people worldwide 4–8.  Prevalence rates vary greatly between countries 7, as a result 
of genetic and sociodemographic population factors 9,10, and  diagnosis ascertainment 
criteria (such as doctor-diagnosed vs. treated) 7.  Respiratory diseases, including 
asthma, are the third most common type of chronic illness worldwide 11, and the United 
Kingdom (UK) is amongst the countries with the highest asthma prevalence 7.   
 
 

 
Figure 1.1: Normal airways, airways of someone with asthma, and airways during an 
asthma attack (illustration by Tibble, H., 2018) 

 
Mukherjee et al. 12 estimated in 2016 that 3.8 per 1000 people in the UK have a first-
time asthma diagnosis by a General Practitioner (GP) every year (age-standardised; 
95% Confidence Intervals (CI) = 3.8–3.9), resulting in an estimated 16% of the 
population ever having been diagnosed by a clinician (95% CI 14.3-16.9).   
 

 Asthma Treatments 
Asthma preventative treatments (also known as controller or prophylactic 
medications), are used to minimise airway hyper-responsiveness, resulting in fewer 
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daily symptoms and lower risk of an attack.  The most common asthma preventer 
medication is a class of drugs known as Inhaled Corticosteroids (ICS), which are 
usually taken twice daily (morning and evening) by inhalation. ICS moderate 
inflammation through a mechanism of deactivating inflammatory genes, reducing 
airway hyper-responsiveness, and thus controlling asthma symptoms 13,14. 
 
Other common asthma preventer medications, which are often taken alongside ICS, 
include Long-Acting β-2 Agonists (LABAs), and Leukotriene Receptor Antagonists 
(LTRAs) 15.  There are also procedures aimed at controlling asthma symptoms, such 
as bronchial thermoplasty, and add-on therapies such as allergy treatments (including 

antihistamines) in cases where symptoms may be exacerbated by common or severe 
allergies.   
 
Maintenance Oral Corticosteroids (OCS) can also be prescribed for patients whose 
asthma cannot be controlled even with very high doses of ICS (of which a single dose 
will be a lower strength than a dose of OCS) and add-on therapies.  They are, however, 
often considered a last resort, because high doses of steroids result in an undesirable 
safety profile and side-effects, including increased risk of diabetes 16–19, bone 
weakness 19–22, and psychotic and affective disorders 19,22–25 with repeated use.   
Despite well-documented fears 26,27, there is no evidence of the same side-effects (or 
other major safety concerns) for ICS 26,28.   
 
More recently, there has been substantial development of biological treatments 
including Monoclonal Antibodies (mAb; externally produced), proteins which the 
immune system uses to neutralise pathogens in the body.  In immunological diseases 
such as asthma, they usually work by binding to, and inhibiting, interleukins (immune 
response signalling molecules) 29–32 or other antibodies 33.  They are increasingly 
recommended as a more tolerable alternative to OCS 34.   
 
The most common reliever (also known as rescue) medication is a Short-Acting β-2 

Agonist (SABA).  Like LABA, SABA opens the airways by relaxing the muscles in the 
airways, however the effects only last for around three to six hours, unlike LABA which 
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may be longer than 12 hours.  Until recently, those without persistent asthma 
symptoms may have been prescribed SABA alone, however this is no longer 
recommended as of the 2019 Global Initiative for Asthma (GINA) guidelines 35,36.   
 

 Asthma Attacks 
Asthma attacks lead to more than 25 deaths per week on average in the UK 37,38.  If a 
patient contacts a health professional promptly after a severe exacerbation of 
symptoms, short courses of high-strength systemic steroids (oral or suspension) can 
be prescribed on top of preventative therapy to relieve exacerbations and reduce the 
need for (transfer to or continuation in) emergency care 39–43.   Systematic reviews by 
the Cochrane Airways Group have found that steroid courses administered in Accident 
and Emergency (A&E) reduced the probability of both inpatient admission and 
subsequent relapse of an asthma attack by 60% 44,45.   
 
Sudden-onset asthma attacks, defined by development over a period of less than six 
hours, are uncommon (6–20% of  cases 43,46) and typically the exacerbation of 
symptoms will be evident days before the peak of the attack 47,48.  Sudden-onset 
asthma attacks may be more commonly triggered by allergens, exercise or stress 46,47, 
and less commonly triggered by respiratory infections 49, compared to longer-onset 
asthma attacks.   
 
While primary care providers are able to prescribe OCS courses, the first point of 
contact at symptoms decline for many patients is emergency care, either due to 

sudden-onset, or a lack of awareness of their symptom change or severity 50.  Indeed, 
the 2014 National Review of Asthma Deaths 51 reported that almost half of those who 
died had not sought medical assistance, or did so too late for emergency care to reach 
them.  Even when medical assistance is sought, it is not always easy to tell when 
symptom decline will lead to an attack.  Frequent use of OCS can lead to dangerous 
side-effects, especially when several courses are taken over a short duration.  As 
such, clinicians need to be able to accurately gauge an individual patient’s current 
risk.   
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The rationale for the development of this model is the hypothesis that risk classification 
facilitates efficient intervention.  If a clinician was able to establish that a patient was 
identified as high risk of an asthma attack in the near future (such as, in the next four 
weeks), but was not immediately presenting with an exacerbation, they could be 
prompted to conduct certain small interventions to ensure that attacks were managed 
in a timely manner, and the need for secondary care was reduced.  This would reduce 
patient anxiety, risk of life-threatening attacks, and the burden on the healthcare 
system of unscheduled care.  Such interventions might include reviewing the asthma 
attack action plan, educating the patient about potentially risk-reducing lifestyle 
changes, providing the patient with tools and resources for lung function or symptoms 

self-monitoring, conducting an inhaler technique assessment, reviewing known 
triggers, and discussing the need for a step-up in asthma treatment.   While repeated 
use of the prediction tool would be unlikely to yield substantially different results unless 
major lifestyle modifications were made, treatment adherence had changed, treatment 
had been altered, or the patient was strongly affected by seasonality, the tool is still 
able to facilitate population risk stratification and be used as a health education tool.   
 

 Machine Learning 
A primary focus of this thesis is how a methodology known as machine learning can 
be applied to prognostic modelling of health data: in our case for the prediction of 
future asthma attack risk.   
 
Machine learning is a term with no universally accepted definition 52,53, but is 

considered herein to encompass statistical methods using either parametric or non-
parametric computational algorithms to make estimations (continuous numerical 
value) or predictions (categorical values), or to provide statistical mapping for decision 
support.  Parametric algorithms, including logistic regression and linear regression, 
have fixed parameters, which are estimated from the data.  These algorithms are the 
most commonly used in clinical prediction modelling 54.  Non-parametric algorithms 
have flexible (un-specified) parameters; guided purely by the data, with no enforced 
assumptions of relationships between variables.   Models using parametric algorithms 
are typically more easily interpreted and generally require less data to build than those 
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using non-parametric algorithms.  Non-parametric algorithm models tend to 
outperform parametric algorithm models based on predictive accuracy, particularly 
when domain knowledge is low and the relationships between features are unknown 
(including interactions between features which cannot easily be expressed a priori in 
a parametric form), but the available relevant historical data are plentiful 55,56.  
However, if not handled appropriately, this flexibility can result in random patterns in 
the data being learned as concepts which do not generalise well to new, unseen, data.   
 

 Prediction Modelling with Electronic Health Records 
One potential source of the required wealth of historical data, discussed in Section 
1.1.4, is Electronic Health Records (EHRs).  Advances in data storage capacity and 
processing capabilities have opened doors to new mechanisms and models of health 
care.  In recent years, many countries, including the UK, have strived to digitise their 
health records 57.  The transition from physical paper-based records to EHRs has been 
shown to save time, reduce medication errors, and increase adherence to clinical best 
practices 58–60.  It also generates a rich and wide-covering database, which can be 
repurposed for medical research, covering large proportions of the population with 
minimal cost or risk of privacy breach.    The limitations of these data, however, are 
that extracting the required information is at best an arduous task, requiring substantial 
cleaning, outlier detection, and reformatting.  At worst, the task may be impossible: 
the desired information may not be captured in the data, or the structure of the data 
may prohibit reliable extraction.   
 

 
 
"The [electronic health record] is not a direct reflection of the patient and physiology, 

but a reflection of the recording process inherent in healthcare with noise and 
feedback loops." 

- George Hripcsak & David J. Albers 61 
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Furthermore, machine learning algorithms cannot be applied to EHR datasets without 
substantial pre-processing, and there are many factors that need to be considered 
when deciding how this should be done.  First, we must consider how to define the 
analysis population, both in terms of asthma diagnosis and further exclusion criteria 
such as treatment 62–66, attack history 48,66,67, age 68–74, and comorbidities 64,75,76.  Next, 
we must consider whether to conduct a study cross-sectionally (using a single time-
point) or longitudinally (following people over time).  If data permit analysis of multiple 
time-points per person, it must be considered how the lack of independence between 
time-points for the same person will be acknowledged, either in the data or in the 
algorithm itself.  For cross-sectional studies, or for each time-point in longitudinal 

studies, one must consider the duration of the follow-up window in which we are 
looking for the outcome.  Previous studies have mostly assessed whether an asthma 
attack occurred in the following six to 24 months 66–69,71,73,75,77.  They have also defined 
asthma attacks differently, some considering only those which resulted in hospital 
admission to be recorded, and some including any asthma-related unscheduled doctor 
visits 78.  Different risk factors have been used to predict attacks 54,79, and different 
algorithms have been employed to generate the predictions 54.   
 
When building a clinical prediction model with aspirations for large-scale deployment, 
it is crucial to balance model performance with feasibility.  The model must be able to 
predict events occurring within a sufficiently short window of time to enable 
preventative care to be provided at the appropriate time.  It should leverage all of the 
relevant data that are captured in EHRs, and it must provide guidance in an 
appropriate way respective of the target end-user.  Finally, the performance of this 
model must be estimated and reported in a way such that the user can both be 
confident in any results produced, while also aware of any potential limitations.   
 
 

1.2 Key Technical Terminology 
Herein, I will briefly list a few key terms that will be used when discussing prediction 
modelling.   
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Sample 
A single data point, or observation.  The number of samples, or sample size, will be 
denoted herein as N. It is important to distinguish the sample size from the analysis 
population size, the latter of which measures only the number of individuals 
contributing the samples, rather than the number of samples themselves.   
 
Feature 
A measurable property, or characteristic, of a sample – either comprised of raw data 
values, or some function of the raw data (such as Body Mass Index, or BMI, calculated 
using the raw height and weight recorded). Herein, the number of features will be 

denoted as M.    
 
Design Matrix 
The design matrix is a matrix of data ", comprised of N M-dimensional row vectors 
(samples), denoted !! = ('!&…'!'), where N is the number of samples and M the 
number of features. 
 

" = /
'&& ⋯ '&'
⋮ ⋱ ⋮
'(& ⋯ '('

3
45555655557

Design matrix

 

 
As the features are also known as dimensions, the term high dimensional data can be 
used to refer to design matrices with a large number of features.  
 
Feature Space 
The M-dimensional space where each sample in the design matrix is represented by 
a single point.    
 
Characteristic 
The value of a feature, such as green for the feature eye colour. 
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Outcome 
The response, or label; that which we are attempting to estimate (continuous) or 
predict (categorical).  Each outcome (denoted 8!) corresponds to a single sample, !!.   
 

		9 = /
8&
⋮
8(
3

:
Outcome vector

 

 
Labelled Data 
Data which include a corresponding outcome for each sample. 
 
Algorithm 
A mathematical process which specifies the steps for solving a problem.  In machine 
learning, these steps tend to be iterative and run until a specific criterion is met.   
 
Supervised Learning 
Determining a functional form (;) associating a set of features with outcomes.   
 

	; </
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Reinforcement Learning 
The machine is able to continuously learn from past errors by reconciling the observed 
and expected outcomes.  A form of supervised learning.   
 
Unsupervised Learning 
Obtaining information from features for a set of samples, with no assigned outcome.   
 
Training Data 
Data used to build a statistical model. 
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Query Sample 
A sample which was not part of the training data, which is presented in the statistical 
learning model to estimate the outcome.   
 
Test Data 
Labelled data which are used to test the performance of a constructed statistical model 
by the comparison of the predicted and observed outcome. 
 
Class 
A categorical outcome.  If binary outcomes (e.g. control vs asthma) lead to a binary 

class classification problem, otherwise (multiple possible outcomes) leads to a multi-
class classification problem (see classification). 
 
Classification 
A form of supervised learning that assigns query samples on a finite number of 
classes, as observed in the training data.  Binary classification pertains to data with 
only two possible classes (such as YES and NO), while multi-class classification is for 
data with three or more possible classes.   
 
Regression 
A form of supervised learning that estimates a continuous or possibly ordered 
outcome: the latter may also be considered a classification problem in some cases.   
 
Model 
The product of applying a machine learning algorithm to training data. The model then 
allows estimation or prediction of outcomes (either classification or regression) for 
unseen test data.   
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Over-fitting 
A model has learned very well from the training data, but fails to generalise in new, 
unseen data. Implementing overly complex models which demonstrate low prediction 
error in the training data but do not generalise well to test data, resulting in 
considerable deviation between training and testing dataset performance.   
 
Validation 
The process of establishing the reliability of the model’s performance in unseen data.  
Validation can be internal if the testing data are from the same database, and are 
processed under the same conditions, as the training data (for example, if a random 

partition of 20% of the data was kept aside for validation) or external if it comes from 
a different database (for example, a similar but distinct study population).   Validation 
can also be classed as temporal if it comes from the same source but at a later time-
point (for the same exact individuals, or for an overlapping sample of new and 
previously used individuals) 80, however we will consider that a subset of external 
validation methods herein and restrict internal validation to random partitioning.   
 
To some, the phrase internal validation may be used to refer to model fit statistics 
calculated in the same data samples used to train the model, rather than in unseen 
data from the same distribution, however we will refer to this as in-sample validation 
to avoid confusion.  Both internal and external validation as defined herein are out-of-
sample validation methods.   
 
 

1.3 Aims and Objectives 
In this thesis, I aim to critically review previous literature relating to each aspect of 
asthma attack risk prediction modelling, to test select methodologies to guide model 
building, and to construct and validate an asthma attack prediction model for 
deployment in UK primary care.   
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My objectives are: 
1. To review opportunities and limitations of using EHRs for medical research, 
2. To evaluate criteria for selecting the analysis population from primary and 

secondary care records, 
3. To compare criteria for defining asthma attacks in EHRs, 
4. To systematically evaluate previously identified asthma attack risk factors, for 

the utility and feasibility of their integration in a parsimonious statistical learning 
model,  

5. To investigate machine learning methods which can be implemented on the 
model building platform, 

6. To build and validate an asthma attack risk prediction model from mined EHR 
data and statistical machine learning algorithms. 

 
 

1.4 Scope and Structure of the Thesis 
The second chapter describes the two datasets used in my thesis research, with 
respect to their generation, format, and contents, as well as noting the ethics approvals 
in place ensuring that the benefit of my research outweighs any potential harm to the 
individuals represented in the data.  Of note, Section 2.1 investigates the strengths 
and weaknesses of using EHRs for medical research reported in the literature 
(Objective One), Section 2.3 reviews the ways in which the EHR population may be 
restricted for the model training data (Objective Two), and Section 2.4 highlights 
different approaches to ascertaining the incidence of asthma attacks (Objective 
Three).   
 
Chapter three comprises a critical appraisal of previously identified potential risk 
factors for asthma attacks (Objective Four).  The review in particular highlights their 
previously described predictive ability, whether they are reported routinely in EHRs, 
methods of extracting the pertinent information from EHRs, and the duration for which 

a measurement of a potentially time-varying risk factor can be reliably maintained 
(such as age, which cannot be assumed constant for more than one year).   
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In the fourth chapter, I further explore one particular risk factor identified in chapter 
three, for which there was insufficient guidance relating to how the information should 
be extracted from EHRs: medication adherence.  I began by detailing the asthma 
treatment pathway, describing the expert-recommended framework for quantifying 
adherence, and comparing select measures in the primary dataset.  The comparisons 
between adherence measures included the inter-measure and intra-measure 
(temporal) correlations between the measures at different timescales.   
 
Chapter five delves into the machine learning methods which underpin this thesis 
(Objective Five) by detailing the process by which a statistical learning model is trained 

and tested, the different algorithms which I compared, and the methods by which the 
performance of the model can be summarised.  At the end of this chapter, I also 
reviewed a problem I anticipated might impact the performance of the model, the 
relatively low incidence of asthma, and reviewed methods by which negative effects 
could be circumvented.   
 
Chapter six comprises a series of experiments in both simulated data and real-world 
datasets to examine how various binary classification performance measures 
summarise scenarios anticipated as a result of the low incidence of asthma attacks 
described in Chapter four.   
 
The seventh chapter assimilates the findings from all of the previous chapters to 
describe the training and testing of the asthma attack risk prediction model (Objective 
Six). 
 
Finally, in chapter eight I discuss the strengths, limitations, potential impact, and future 
directions of this body of work, with a summary of the key learnings.   
 
A summary of my milestones is available in Appendix A. 
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1.5 Key Contributions 
The four key contributions of this thesis are as follows.  First, I conducted a narrative 
review of literature on the estimation and reporting of asthma medication adherence, 
highlighting the value of standardised methodology and demonstrating how this could 
be used to increase the impact of research both within and across medical conditions.  
 
Second, from the findings of this review, I conducted an investigation of the patterns 
observed in data from electronic inhaler monitoring devices, which provide granular 
records of exact device actuation times.  This multi-dimensional overview contributed 
to a subsequent study comparing methods of approximating from EHRs the 

agreement between a prescribed medication regimen and the patient’s resulting 
regimen execution.  This analysis provided a thorough review of the methodology as 
it pertained to a real-world case study, informing asthma research and providing a 
template for similar investigations in order medical conditions.   
 
Third, I constructed an algorithm for probabilistically linking asthma medication 
prescription and dispensing records.  This allows researchers to identify prescriptions 
that were not collected, even when the two necessary data sources do not contain a 
unique identifying link. 
 
In order to facilitate the identification and optimisation of the prediction model which 
provides the best results, I compared the ability of multiple binary classification model 
performance measures to detect specific failings in model prediction, specifically 
pertaining to prediction of rare events.  Using these findings, I constructed a decision 
aid to assist researchers in the selection of a performance measure for general data 
problems.  
 
Finally, I developed an asthma attack risk prediction model, which utilised data 
routinely recorded in the UK primary care setting, to provide forecasted risk within 

various event horizons between one week and one year in the future.  The model had 
improved performance compared to others in the literature and is readily 
implementable thanks to publicly available R scripts.   



 17 

These key contributions have resulted in the following publications and 
presentations: 
 
Peer-Reviewed Journal Papers 

Tibble H, Chan AHY, Mitchell EA, Horne E, Doudesis D, Horne R, Mizani MA, 
Sheikh A, Tsanas A. (2021) A Data-Driven Typology of Asthma Medication 
Adherence using Cluster Analysis.  Scientific Reports. 10(1).  14999. 
 
Tibble H, Lay-Flurrie J, Sheikh A, Horne R, Mizani MA, Tsanas A., The Salford 
Lung Study Team. (2020) Linkage of Primary Care Prescribing Records and 

Pharmacy Dispensing Records in the Salford Lung Study: Application in 
Asthma.  BMC Medical Research Methodology. 20(1). 303. 
 
Tibble H, Flook M, Sheikh A, Tsanas A, Horne R, Vrijens B, De Geest S, Stagg 
HR. (2020) Measuring and reporting treatment adherence: what can we learn 
by comparing two respiratory conditions? British Journal of Clinical 
Pharmacology. 87(3). 825-836. 
 
Tibble H, Horne E, Horne R, Mizani AM, Simpson CR, Sheikh A, Tsanas A. 
(2019) Predicting asthma attacks in primary care: protocol for developing a 
machine learning-based prediction model. BMJ Open. 9(7), e028375. 

 
Conference papers 

Tibble H, Chan A, Mitchell EA, Horne R, Mizani MA, Sheikh A, Tsanas A. 
(2019) Heterogeneity in Asthma Medication Adherence Measurement. 2019 
IEEE 19th International Conference on Bioinformatics and Bioengineering 
(BIBE).  p. 899-903. 
 

Conference abstracts 
Tibble H, Sheikh A, Tsanas A, Horne R, Mizani M, Simpson C, Lay-Flurrie, J. 

(2019) Linkage of Primary Care Prescribing Records and Pharmacy Dispensing 
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Records in Asthma Controller Medications. International Journal of Population 
Data Science, 4(3).  

 
Oral presentations 

Heterogeneity in Asthma Medication Adherence Measurement. IEEE 19th 
International Conference on Bioinformatics and Bioengineering (BIBE), 28th – 
30th October 2019, Athens, Greece. 
 
Linkage of Primary Care Prescribing Records and Pharmacy Dispensing 
Records in the Salford Lung Study: Application in Asthma.  Administrative Data 

Research, 9th – 11th December 2019, Cardiff, UK. 
 
Hormonal contraceptives and clinical outcomes of asthma in reproductive-age 
women: UK population-based cohort study. Asthma UK Centre for Applied 
Research (AUKCAR) ASM, 26th March 2020, Virtual Event. 

 
Poster presentations 

Predicting asthma attacks in primary care: protocol for developing a machine 
learning-based prediction model. AUKCAR ASM, 12th March 2019, London, 
UK. 
 
A Data-Driven Typology of Asthma Medication Adherence Subgroups and their 
Associated Clinical Outcomes.  Scottish Informatics and Computer Science 
Alliance (SICSA), 18th – 19th June 2019, Aberdeen, UK. 
 
Measuring and Reporting Treatment Non-Adherence: What Can We Learn 
from the Cross-Comparison of Two Respiratory Conditions? AUKCAR ASM, 
26th March 2020, Virtual Event. 
 
Linkage of Primary Care Prescribing Records and Pharmacy Dispensing 

Records in the Salford Lung Study: Application in Asthma Adherence 
Research.  AUKCAR ASM, 26th March 2020, Virtual Event. 
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Linkage of Primary Care Prescribing Records and Pharmacy Dispensing 
Records in the Salford Lung Study: Application in Asthma Adherence 
Research. International Society for Pharmacoepidemiology (ISPE) Mid-Year 
Meeting, 15th September 2020, Virtual Event. 
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2 Overview of Electronic Health Records and 
Dataset for Analyses 

In this chapter, I review the strengths and limitations of using EHRs in medical 
modelling, and describe the study dataset used herein, with respect to format, size, 
and pre-processing. 
 
 

2.1 Electronic Health Record Data for Model Training 
While the determination of whether or not the data source is appropriate for the 

model’s intended use is dependent on the required domains of information, the data 
structure itself inevitably has some influence on the processing requirements, the 
model’s limitations, and the exact specifications of the model’s features.  In this 
section, I review the rationale and limitations of the use of EHRs in prediction 
modelling. 
 

 Strengths of Using Electronic Health Records for Health Research 
There are many benefits to using EHRs for medical research over data from other 
sources. The cost of recruitment for primary research studies (using purpose-built 
datasets) which require direct participant contact increases by the population size and 
follow-up duration, due to additional research time spent on consent and data 
collection.  As EHRs are collected routinely, secondary analyses can  be conducted 

using larger numbers of participants than in primary analyses, without considerable 
cost increase 81–83.  A recent study of risk prediction models developed with EHRs 
found that the median population size was over 25,000 individuals 84.  Large, 
population-representative sample sizes increase the internal validity of research by 
enabling sufficiently powered subgroup analysis and the identification of less common 
risk factors 83.   
 
EHRs collect a panoramic view of patient safety 85, capturing a wide (many people) 
but typically shallow (low granularity) net of information about a population.  They 
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typically have a lower risk of selection bias (in which the samples are not 
representative of the population under analysis) than patient-recruiting cohort studies 
83,86–88.  This leads to increased generalisability, resulting in more reliable predictive 
performance in similar but distinct populations.   
 
Many traditional studies are only able to capture data for a finite duration and at set 
time-points.  Although many clinical measurements can only be taken by healthcare 
professionals, some Patient Reported Outcome Measures (PROMs) and data 
measurements may be completed by patients self-reporting on their symptom in 
paper-based or electronic forms.  In EHR-based studies, almost any contact with a 

healthcare professional will result in data being captured, which can be used for 
analysis.  This generates a longitudinal dataset with long follow-up duration.  More 
frequent data collection also means that time-varying risk factors will be more 
accurately recorded, and that a single individual may be able to contribute multiple 
samples (for example, stratifying by year) to the analysis, further increasing the 
number of records available for analysis 83.  We may also be able to use data from the 
start of a patient’s registration at a primary care practice, which means both more data, 
and access to their documented medical history 82.  Traditional studies on the other 
hand would rely on self-reported medical (including family) history, which is subject to 
recall bias 89–91.   
 
In traditional studies, the physiological, demographic, and other documented clinical 
data of interest (potential risk factors and confounders) must be predetermined and 
cannot be changed retrospectively, as the data would not have been captured.  The 
amount of data collected from patients is also limited by resource availability (cost, 
time, and equipment).  In EHR-based studies, there is a wealth of information captured 
which can be repurposed for analysis 83.  Furthermore, it is possible to discover new 
risk factors for which the data would not have been collected for use in traditional 
studies.  Tests that are not conducted in routine practice cannot be included in 
analysis.  While this might generally be considered a limitation, it means that EHR-

based studies are inherently practicable for primary care-based decision support. 
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 Limitations of Using Electronic Health Records for Health Research 
As with any data source, there are limitations to the use of EHRs in academic 
research.  The first consideration is that EHRs are not designed for research.  Primary 
data are often of higher quality for research than secondary data, as they are being 
collected for that express purpose, rather than administrative purposes, for example 
92–94.  EHR data may be entered inaccurately by busy clinicians 95, or by other 
colleagues who were not present at the consultation (based on the text notes recorded 
by the clinician). Therefore, data which are not deemed important to the clinician (such 
as the weight of an individual with a healthy body mass) may not be recorded.    
 

Furthermore, while primary care records may be used to capture data regarding 
medical recommendations, such as written prescriptions and referrals, in many cases 
the result of said recommendation is unknown 96.  A future record indicating whether 
the referral was followed through, or whether the prescription was effective, is only 
possible when there is a follow-up primary care appointment.  As those with co-
morbidities are seen more frequently by practitioners 97,98, and are often excluded in 
traditional prospective studies, this may introduce selection bias in studies using 
outcomes ascertained only from primary care records.   
 
Changes in study participation legislation may influence the risk of selection bias, such 
as changing to an opt-in consent model 83,99.  Previous studies comparing those who 
have opted in to the organ donation registry in the UK have found that older people 
and ethnic minorities were less likely to opt-in 100.   
 
All UK primary care data were recorded using Read Codes as the standard clinical 
terminology system between April 1986 and March 2018.  In England and Wales, 
Read Codes are currently being replaced by SNOMED-CT, however Scotland 
currently maintains Read Code (version 2) as the de facto standard.   Read Codes are 
5-byte (or 4-byte prior to 2010) hierarchical, case-sensitive, and ordered character 
strings.  For example, the code “H33..” is the header for asthma, and the code “H330.” 

for atopic asthma falls underneath, as denoted by their shared first three characters.  
Much important information, however, is recorded in the unstructured free-text fields.   



 23 

A 2012 study into health records in the UK Clinical Practice Research Datalink 101 
(formerly known as the General Practice Research Dataset) found that cause of death 
was written solely in the free-text (not in any coded or structured cells) in almost 20% 
of mortality records.  This free-text cannot always be made available to researchers, 
as it requires extensive anonymising which is often a manual process.  Even when 
they are available, free-text data are much harder to use for quantitative analysis, and 
often requires natural language processing for the accurate extraction of useable 
clinical information 102,103. 
 
 

2.2 Asthma Learning Healthcare System Data 
 

 Introduction 
The Asthma Learning Healthcare System (henceforth ALHS) data were created by 
University of Edinburgh researchers (led by Dr. Ireneous Soyiri and Dr. Colin Simpson) 
in order to develop and validate a prototype learning healthcare system for asthma 
patients in Scotland.  In a learning healthcare system, patient data are repurposed for 
a continuous loop of knowledge-generation, evidence-based clinical practice change, 
and change assessment and validation 104.  The project aimed to increase 
understanding of variation in asthma outcomes and create benchmarks for clinical 
practice in order to reduce sub-optimal care.  The study recruited over half a million 
patients from 75 general practices in Scotland, with primary care records linked to 
national A&E, hospital and mortality datasets using the Scottish health identification 

number known as the Community Health Index (CHI). 
 
As shown in Figure 2.1, six primary datasets were cleaned and linked to create the 
ALHS data: a primary care registry containing patient demographics, primary care 
prescribing records, primary care Read Codes (version 2, see Section 2.1.2), inpatient 
hospital admissions, A&E records and deaths (Table 2.1).  
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Figure 2.1: Linked Analysis Dataset Flow Diagram 
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Table 2.1: Metadata for clinical data sources in the ALHS data 

Data Number of 
Records 

Number of 
Individuals Valid Date Range 

Primary Care Registry 706,546 682,396 N/A 
Primary Care Encounters 11,766,100 49,307 Jan 2000 – Nov 2017 
Primary Care Prescribing 41,433,707 671,304 Jan 2009 – Apr 2017 
Accident & Emergency  1,831,789 500,321 Jun 2007 – Sep 2017 
Hospital Inpatient Admissions 1,668,957 342,838 Jan 2000 – Mar 2017 
Mortality NA 91,758 Jan 2000 – Mar 2017 

Note: Primary care encounter records available for the subset of the population with asthma diagnosis 
only 

 
The primary care prescribing records were linked to pharmacy dispensing data, so 
that only collected prescriptions were included.   This data linkage is not a perfect 
process, however, as prescription will have only a single identification code, 
regardless of the number of items.  There is no item-specific identifier for each 
medication prescribed.  As such, if the items are listed in a different order on the 
dispensing and prescribing records, additional information relating to a specific item 
(such as dosing direction notes from the pharmacist) may be assigned to the wrong 
prescription item.   
 
As described in Table 2.1, the valid date range for records was between January 2000 
and November 2017, although there were records dated outside of these limits which 
could be considered erroneous (such as the year 2099; date of record event can be 
documented as a distinct value to the date of record creation).  To align the datasets, 
however, records dated before January 2009 or after March 2017 (henceforth referred 

to as the study period) were excluded.   
 

 Ethics 
While there are many benefits in healthcare data analysis for the population under 
analysis, there are also concerns at the individual level about health data usage, 
including personal and private information becoming publicly leaked, and the potential 
for insurance companies to use aggregate level data to calculate risk which may raise 
premiums even when the individual is in fine health 105. 
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Research has shown that the opt-in/opt-out status of a study results in different 
populations defined by their clinical profiles 106–108, and demography 108–110.    The 
General Data Protection Regulation (GDPR), which came into effect on 25th May 
2018, dictates that all data collected by European Union (EU) or UK organisations 
must have protection prioritised: unambiguous, informed consent must be received 
from all individuals for the storage and processing of any personal data, and all 
subjects have the right to revoke consent at any time.    
 
In a public lecture in 2017, entitled "How Big Data Can Inform Mental Health Research" 

(University of Melbourne), Associate Professor Nicolas Cherbuin of the Australian 
National University stated that public perception was of the key barriers to modern 
health informatics, and that in order to gain trust of the public we as researchers need 
to be more transparent about the benefit-risk ratio.  Fundamentally, denying that risks 
to data security exist is a lie, and instead being upfront about these risks and their 
likelihood may be more effective.   
 
So, what are the risks to the public?  There have been documented cases of 
researchers using their position of power to look up personal data relating to their 
peers, as well as the more commonly discussed fear of cyberterrorism.  Illegitimate 
collection of health data relating to a specific individual, however, is unlikely unless 
that individual's data is especially valuable (a political figure, for example).  Perhaps a 
more likely risk to the public is accidental publication of identifiable data, for example 
the publication of Australian Medicare data in 2016 which enabled identification of 
doctors, and even patients in certain rural areas 111.   
 
In our study, individual patient data was collected at the practice-level, and individual 
consent was not obtained.  Permissions for the ALHS project were obtained from the 
South East Scotland Research Ethics Committee 02 [16/SS/0130] and the Public 
Benefit and Privacy Panel (PBPP) for Health and Social Care [1516-0489].    
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The ALHS data are held by the National Services Scotland electronic Data Research 
and Innovation Service (eDRIS) in the National Safe Haven.  To be able to access the 
ALHS data, researchers must be added to the study team, and have their analysis 
plan approved by the PBPP.  They must also have passed the Safe Users of Research 
data Environment (SURE) training, provided by the Administrative Data Research 
Network (ADRN).    
 
Data were initially accessed only through the Edinburgh Safe Haven portal – a 
monitored, secure hub based at the Bioquarter, which requires two-factor 
authentication.  After the UK entered lockdown for the COVID-19 pandemic (March 

23rd, 2020), eDRIS announced that researchers would be able to apply for special 
access from their home personal computers (via Virtual Private Network, or VPN).  On 
July 6th, 2020, my home access for this study was approved, and data were once again 
accessible.   
 
Any outputs, including metadata (information about the specifications of the data, 
including size and format), are subject to disclosure checking by the eDRIS team, in 
order to ensure that no identifiable data are released.   
 

 Data Processing 
 

2.2.3.1 Primary Care Registry Data 

The primary care registry dataset contained 706,546 records for 682,396 unique 
individuals.  659,505 individuals (96.6%) had only a single registration record, while 
21,720 had two (3.2%), and the remaining 1171 (0.2%) had between three and five.  
Features of the dataset are described in Table 2.2, including the Scottish Index of 
Multiple Deprivation (SIMD),  a composite geographic-level measure incorporating 
income, employment, education, health, access to services, crime and housing 112, 
and the 6-category Scottish Government Urban Rural Classification Scale 113 (UR6).   
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1032 records (1022 unique people) were missing registration date, and for 90 of these 
the deduction date was also missing. The earliest registration date was January 1st, 

1860 (9937 records), and 10,559 records (1.5%) had registration before the year 1910.   
The latest registration was August 21st, 2017.   The earliest deduction date was 
January 1st, 2010, and the latest was August 3rd, 2914 (erroneous).  Only 10 records 
had deduction date after 2017 (the end of the study period).   Those with missing 
registration or deduction dates were treated as the individual having registered before 
the study period and deducted afterwards.  No modifications were made to outlier 
dates outside of the study period.   48,503 records were missing information related 
to DataZone, SIMD (both 2009 and 2012) and UR6.  An additional 3,402 records were 

solely missing UR6 data.  DataZones were linked to higher level area codes using the 
Nomenclature of Units for Territorial Statistics Level-3 (NUTS-3) 114.  Missing values 
for NUTS, SIMD, and UR6 were coded as a new category: “missing”, 
 
Table 2.2: Features present in the ALHS primary care registration dataset 

Feature Name Data Type Description Example 
ID String Unique Patient Identifier “000001” 
Sex String Sex “F” 
Age Numeric Age at 31st, March 2018, or 

at deduction date if recorded  
26 

RegDate Date  
(YYYY-MM-DD) 

Date of registration at 
practice 

“2003-04-02” 

DeductionDate Date  
(YYYY-MM-DD) 

Date of deduction from 
practice 

“2020-07-05” 

RegStatus String Registration Status “REG014” 
DataZone String SNS 2001 DataZone of 

residence  
 

SIMD2012quintile Numeric SIMD quintile 2012 4 
SIMD2009quintile Numeric SIMD quintile 2009 5 
UR6_Code Numeric UR6 Code 5 
UR6_Desc string Label of UR6 Level “Accessible 

Rural” 
Notes: SNS = Scottish Neighbourhood Statistics, SIMD = Scottish Index of Multiple Deprivation, UR6 
= 6-category Urban-Rurality Scale 
 



 29 

2.2.3.2 Primary Care Encounters 
The Primary care dataset consisted of 11,766,100 Read Code records, for 49,307 
unique patients (data from primary care encounters were only provided for those with 
a diagnosis of asthma), dated between January 1st, 2000 and November 1st, 9998 
(erroneously).  The features of the dataset are described in Table 2.3.   Records dated 
after the study period end (31st March 2017; Table 2.1) were removed (n=624,393 
records).  Two further records were excluded because the Read Codes were missing.  
860,092 records were removed because they were duplicates of other records on all 
variables except the encounter ID (subject, date, Read Code, and values associated 
with the code).  Finally, one record was removed that was not in the correct 5-byte 

format, and thus could not be verified.  This left 10,281,612 records, for 48,975 unique 
individuals.   
 
Table 2.3: Features present in the ALHS primary care encounters dataset 

Feature 
Name Data Type Description Example 

Index1 String Unique Patient Identifier “000001” 
EncounterKey Numeric Unique Encounter Identifier 0001 

EventDate Date (DD-MM-YYYY) Date of Encounter 01-01-
2000 

ReadCode String Read Code “H33..” 

Data1 Numeric 
Numeric value associated 
with Read code (e.g. height 
in centimetres) 

7 

Data2 Boolean 
Boolean value associated 
with Read Code (e.g. recent 
medication review) 

TRUE 

Data3 String 
String value associated with 
Read Code (e.g. unit of 
Data1 value) 

“kg” 
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2.2.3.3 Primary Care Prescriptions 
The prescriptions dataset contained 41,433,707 records for 671,304 individuals.  The 
features of the data are described in Table 2.4.  673 records were removed that were 
dated outside of the study period, leaving 41,433,034 records for 671,298 individuals.  
These records were linked by unique record identifier (named ndx) to a dataset 
containing the dose directions (instructions for taking, including the interval of doses; 
described in Table 2.5).  There was one dose direction record for every prescription 
record in the Prescribing Information Service (PIS) dataset, and no additional records.  
39 records were excluded after linking, however, as the dose directions indicated that 
the record should be deleted due to an error, leaving 41,432,995 records remaining 

(671,298 individuals).   
 
From manual inspection of the excluded records, it became apparent that the dose 
directions were not always accurately matched to the prescription record.  Upon 
consulting with the National Services Scotland Information Services Division Principal 
Pharmacist, Stuart McTaggart, I was informed that soon after initiation of the currently 
employed system, there were instances reported of the order of medications on the 
same prescription being different between the prescription and dispensing records, 
resulting in incorrect matching (correspondence in June 2020).  Although feedback 
and improvement to this system has resulted in improvement over time, the issue still 
persists.   The limitations in analyses resulting from this linkage process are described 
later in Section 8.3. 
 

2.2.3.4 Accident and Emergency Presentations 

There were 1,831,789 A&E records in the study period, and the features are described 
in Table 2.6.  Records dated after the right censoring date were excluded (n=100,118).  
A further 651,465 (36%) records were removed as they contained no presenting 
complaint text or primary disease code (Disease1Code), leaving 1,080,206 records 
for 360,297 unique individuals.  
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Table 2.4: Features present in the ALHS primary care prescriptions dataset 

Feature Name Data Type Description Example 
Index10 String Unique Patient Identifier “000001” 

PIApprovedName String Medication Name “BECLOMETASONE 
DIPROPRIONATE” 

PIPrescribableItemName String Brand Name “BECLOMETASONE” 
PIDrugFormulation String Formulation “NASAL SPRAY” 
PIItemStrength.UOM String Medication Strength “400MCG “ 
PrescDate Date (DD-MM-YYYY) Date of Prescription 01-01-2000 
DispDate Date (DD-MM-YYYY) Date of Dispensing 02-01-2000 
PIBNFChapterCode Numeric Categorical BNF Chapter Code 12 
PIBNFSectionCode Numeric Categorical BNF Section Code 1202 
PIBNFSubsectionCode Numeric Categorical BNF SubSection Code 120201 
PIBNFParagraphCode Numeric Categorical BNF Paragraph Code 1202010 
PatientAgeatPaidDate Numeric Age of patient at date of prescription 30 
ageatDispDate Numeric Age of patient at date of dispensing 30 

ndx Numeric Unique record identifier for linkage to 
dose description dataset 1 

Prescribed_quantity Numeric Quantity of medication prescribed 1 
Dispensed_quantity Numeric Quantity of medication dispensed 1 

Note: BNF = British National Formulary   
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Table 2.5: Features present in the ALHS primary care prescription dose description dataset 

Feature Name Data 
Type Description Example 

ndx Numeric Unique record identifier for linkage to 
PIS dataset 1 

ePRNativeDoseInstructions String Dose instructions “take once daily” 

ePRNDName String Full medication name (brand or 
formulation, and medication strength) “BECONASE 400mcg” 

Amount.min Numeric Minimum dose amount 1 
Amount.max Numeric Maximum dose amount 2 
Amount.unit String Dose unit (e.g. spray, mcg, nebule) “spray” 
Timing_freq.min Numeric Minimum dose timing 1 
Timing_freq.max Numeric Maximum dose timing 2 
Timing_freq.unit String Dose timing unit (e.g. hour, day, week) “day” 
Timing_internal.min Numeric Minimum inter-dose interval 5 
Timing_interval.max Numeric Maximum inter-dose interval 8 
Timing_interval.unit String Dose interval unit (e.g. hour, week, day) “hours” 
As_required Boolean To be taken as required, TRUE/FALSE TRUE 
As_directed Boolean To be taken as directed, TRUE/FALSE FALSE 

Note: PIS = Prescribing Information Service 
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Table 2.6: Features present in the ALHS accident and emergency presentations dataset 

Feature Name Data Type Description Example 
IndexNumber String Unique Patient Identifier “000001” 
ArrivalDate Date (DD-MM-YYYY) Date of Presentation 01-01-2000 
PresentingComplaintText String Primary Complaint Description “hurt knee” 
AlcoholInvolvedCode Numeric Categorical Flag for Alcohol Involvement 1 

TriageCategoryCode Numeric Categorical Triage Category (e.g. standard, urgent, etc.) 3 
PatManTypeCategoryCode Numeric Categorical Patient Management (Minor/Major/Resuscitation)  2 
InvestigationType1Code Boolean Investigation Type Code  TRUE 
InvestigationType2Code Boolean Investigation Type Code TRUE 
InvestigationType3Code Boolean Investigation Type Code TRUE 
Procedure1Code Numeric Categorical Procedure Code 9 
Procedure2Code Numeric Categorical Procedure Code 9 
Procedure3Code Numeric Categorical Procedure Code 9 
Diagnosis1Code Numeric Categorical Diagnosis Code  16 
Diagnosis2Code Numeric Categorical Diagnosis Code  16 
Diagnosis3Code Numeric Categorical Diagnosis Code  16 
Disease1Code String ICD10 Code “F29” 
Disease2Code String ICD10 Code “F29” 
Disease3Code String ICD10 Code “F29” 
ArrivalModeCode Numeric Categorical Arrival mode (e.g. air ambulance) 2 

Notes: The National Services Scotland Information Services Division A&E Data Recording Manual specifies that investigation type codes should be numeric, 
but the features are Boolean in this dataset.  
Diagnosis codes are recorded as only the top level (numeric) code, such as ‘9’, rather than the full, more specific, alpha-numeric code, such as 09B.   
ICD10 = International Classification of Diseases, version 10
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Diagnoses made from presentations to A&E are recorded in (up to) three fields in the 
data and are coded using the International Classification of Diseases (ICD) medical 
classification system, developed by the WHO.  In the current version (ICD10, to be 
replaced in 2022), codes beginning with “J” are part of the subclass relating to the 
respiratory system, and the subdivision “J4” relates to chronic lower respiratory 
diseases.  “J45” generally describes asthma, and “J46” specifically indicates an acute 
asthma attack.   
 
Both “J45” and “J46” (and child codes belonging to these parent classes) were used 
to identify asthma-related A&E presentations, as well as the keyword asthma in their 

presenting complaint text.  In total, 7,205 (1.1%) A&E presentations were flagged as 
asthma-related, for 4,185 unique individuals.  
 

2.2.3.5 Inpatient Hospital Admissions 
This dataset is also known as SMR01.  There were 1,668,957 inpatient admission 
records in the study period, and the dataset features are described in Table 2.7.  Of 
these, 21,517 (1.3%, 7,899 individuals) were identified as relating to asthma by the 
presence of ICD code “J45” or “J46” (Condition_1). 
 

2.2.3.6 Mortality 

There were 91,758 records in the study period, for which 91,022 (99.2%) were for 
deaths (rather than stillbirths).  The features of the dataset are described in Table 
2.8.  Of these, 190 (0.2%) had “J45” or “J46” as the primary cause of death.   
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Table 2.7: Features present in the ALHS inpatient hospital admissions dataset 

Feature Name Data Type Description Example 
Index8 String Unique Patient Identifier “000001” 
DATE_OF_BIRTH_YM Numeric Date (MMYYYY) Month and Year of Birth 041990 
ADMISSION_DATE Date (DD-MM-YYYY) Admission Date 01-01-2000 
DISCHARGE_DATE Date (DD-MM-YYYY) Discharge Date 02-01-2000 
AGE_IN_YEARS Numeric Age at admission 19 
SEX Numeric Categorical Sex 1 
ADMISSION_TYPE Numeric Categorical Type of Admission 32 
LENGTH_OF_STAY Numeric Length of stay (days) 2 
Condition_1 String ICD10 Code (Primary) “F29” 
Condition_2 String ICD10 Code “F29” 
Condition_3 String ICD10 Code “F29” 
Condition_4 String ICD10 Code NA 
Condition_5 String ICD10 Code NA 
Condition_6 String ICD10 Code NA 
MAIN_OPERATION String Operation Code “G459” 
OTHER_OPERATION_1 String Operation Code “G459” 
OTHER_OPERATION_2 String Operation Code “G459” 
OTHER_OPERATION_3 String Operation Code “G459” 

TOTAL_NUMBER_OF_EPISODES Numeric Total Number of admissions 
in previous 12 months 3 

Note: ICD10 = International Classification of Diseases, version 10 

 



 36 

Table 2.8: Features present in the ALHS mortality dataset 

Feature Name Data Type Description Example 
Index6 String Unique Patient Identifier “000001” 
DEATH_DATE Date (DD-MM-YYYY) Date of Death 01-01-2000 
PRIMARY_CAUSE_OF_DEATH_0 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_0 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_1 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_2 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_3 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_4 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_5 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_6 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_7 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_8 String ICD10 Code I21 
SECONDARY_CAUSE_OF_DEATH_9 String ICD10 Code I21 
NRSStillbirths Binary Binary flag for stillbirth 0 
NRSDeaths Binary Binary flag for death 1 

Note: ICD10 = International Classification of Diseases, version 10 
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2.3 Training Data Population 
Using EHRs as our primary data source to train the model allows us to include a broad 
spectrum of the population; the full study population is thus representative of any 
Scottish individual registered at a GP clinic.  Despite this, we may wish to restrict the 
analysis population in some ways. 
 
First, we want to include only those with asthma, as that is the target user of this 
prediction model.  Previous studies have identified people with asthma as those with 
either clinician-diagnosed asthma 48,68,70,115–117 or clinician-diagnosed-and-treated 
asthma.  Clinician diagnosed asthma can be ascertained in Scottish EHRs from Read 

Codes, although the codes used by various studies may differ.  For example, Papi et 

al. used the Quality and Outcomes Framework (QOF) codes 68, while Turner et al. 
additionally included codes relating to asthma management 68, such as Read Code 
“8B3j.” for asthma medication review.    
 
A study by Nissen et al. compared the number of people that were identified as having 
asthma in the UK Clinical Practice Research Datalink (CPRD) according to various 
criteria, and then estimated the percentage of those identified by clinical review to 
have a true diagnosis of asthma (a measure known as the Positive Predictive Value, 
or PPV) 118.  They found that including symptom-based codes (wheeze, 
breathlessness, chest tightness and cough) in the inclusion criteria, instead of specific 
diagnosis codes, even in combination with medication and reversibility testing, 
resulted in very poor PPV (56%).  Requiring evidence of airway reversibility drastically 
reduced the number of identified individuals and did not show any improvement to the 
PPV.  Adding recently prescribed asthma medication to combined diagnosis and 
management codes did not improve the PPV for asthma diagnosis, but also did not 
drastically reduce the population size. 
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Having both a sufficiently large analysis population and having a population of almost 
exclusively people with true asthma are very important.  However, it is also useful to 
know approximately how many people with true asthma were excluded by these 
criteria, as excluding them might introduce bias.  Unfortunately, Nissen et al. did not 
assess this 118.   
 
Some studies further stratified their population, such as including only those with mild 
to moderate asthma 119 or severe asthma 64–66,120.  While this might reduce the analysis 
population heterogeneity, it also restricts the utility of the resultant  prediction model, 
as asthma attacks occur even in those with mild asthma 75,121,122.  Indeed, the majority 

of asthma attacks occur in low severity asthma patients (due to the small proportion 
of people with asthma that are considered moderate-to-severe 123.   Some studies also 
excluded people with 64,65,67,119,124 recent exacerbations, preventing first-time 
exacerbators from being detected.   In order to maximise the (potential) benefit to 
patients of the methodology and data available, I did not wish to restrict asthma 
patients in such a way.  However, subgroup analyses should be conducted to appraise 
the model’s discriminatory performance across the strata of asthma severity 
(stratification process described later in Section 3.6.4).   
 
Multiple studies additionally excluded individuals with Chronic Obstructive Pulmonary 
Disease (COPD) 64,75,76 or any chronic respiratory disease, excluding asthma 68,117.  
Individuals with both asthma and COPD diagnoses may have either been 
misdiagnosed (most commonly asthma misdiagnosis 125), or have a condition known 
as Asthma-COPD Overlap Syndrome (ACOS), which is known to result in higher rates 
of attacks than asthma alone and may be associated with different risk factors 126,127.    
 
 

2.4 Asthma Attack Ascertainment 
There is no single consensus on the definition of asthma attacks; a joint report by the 

American Thoracic Society and the European Respiratory Society (2009; ATS/ERS) 
78 reviewed asthma attack definitions in the literature, which included use of OCS 
(sometimes of at least 3 or 5 days in duration 128), emergency room visits, 
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hospitalisations, unscheduled doctor visits, and/or decline in peak flow.   Similarly, a 
2017 review of EHR-specific asthma attack definitions found that prescriptions of OCS  
(with or without a concurrent primary or secondary care asthma-related encounter), 
SABA prescriptions, and secondary care events relating either to asthma attacks or to 
conditions including pneumonia in previously-diagnosed asthma patient, were all used 
129.    
 
The ATS/ERS Task Force recommend that for retrospective studies in EHR datasets, 
severe exacerbations (attacks) are defined as either a prescription of OCS, an asthma-
related A&E department visit, or an asthma-related hospital admission 78.  The 

ascertainment of an asthma-related OCS prescription is described in Section 3.6.6. 
 
Another important consideration is the time window in which we will look into the future 
and attempt to predict events, known as the event horizon.  In this analysis, I aim to 
identify people who would benefit from further monitoring and health education 
interventions, and as such event horizons of between one week and 12 months (the 
recommended maximum time between asthma reviews) will be considered.   
 
 

2.5 Chapter Summary 
In this chapter, I have reviewed the practical and ethical rationale for the use of EHRs 
in medical modelling studies and have reviewed the literature regarding population 
inclusion criteria and outcome ascertainment criteria from related studies.   
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3 A Critical Appraisal of the Predictive Value of 

Asthma Attack Risk Factors 
In this chapter, I review my process for identifying, evaluating, and selecting the risk 
factors to be used in my asthma attack prediction model.   There are a number of 
important considerations for the inclusion of risk factors in the model, including their 
effect, their changeability, and the feasibility of measuring them.  
 
 

3.1 Feature Selection for Prediction Modelling 
In order to build a classification model, we need to provide a set of features and the 
ground truth (the observed clinical outcome), and the model can learn to estimate how 
these features map onto the outcome.  These features are pieces of information about 
the patient at a specific point in time (and generally, may also include non-time-varying 
features, e.g. birthplace).  While we could provide any information to the model, the 
best predictions will come when the features provided all have some effect on the risk 
of the outcome: in our case, asthma attacks.   
 
As such, it is necessary to construct a list of the risk factors, identified from the 
research literature and clinical input and rationale, which will be measured and 
recorded for each patient.  While limiting our model to the assessment of known factors 
means that we are unable to appraise new features which contributes to a patient’s 
risk, it is not feasible to extract every single piece of information about a patient’s life.  
Furthermore, including too many features into the model, especially when there is no 
biological rationale for any effect, increases the risk of over-fitting (see Section 1.2).   
 
It might seem intuitive that tracking a patient’s current symptoms would indicate when 
the patient was declining and would take into account small changes in environment 
(like the fact that their neighbour bought a new cat, which they are allergic to).  

However, the clinical markers of asthma control (such as peak expiratory flow) and 
the occurrence of asthma attacks are often at a disconnect 130.  The biological 
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mechanisms responsible for asthma attacks may be different to those causing 
wheezes, coughs and chest tightness 131. Indeed, some individuals are more prone to 
attacks than others, with past attack history being commonly found to be one of the 
strongest risk predictors for future attacks 48,62,79.   
 
When narrowing down a list of potential risk factors for inclusion, another consideration 
is whether that factor is modifiable.  A modifiable risk factor is one which can be 
purposefully changed in some way, such as smoking status or weight.  It is important 
to distinguish them from non-modifiable but time-varying risk factors, which change 
over time but cannot be controlled (such as age).   Including enough time varying 

factors ensures that the model is sensitive to changes within the same person, for 
example capturing that a patient with severe allergic rhinitis (also known as hay fever) 
might be at higher risk during pollen season.   
 
A final note is that not all risk factors are possible to extract from EHRs.  For example, 
the results of clinical tests which are not routinely conducted will not be available for 
the majority of patients.  Some data are routinely captured in other sources, such as 
the weather by the national meteorological office.  This information could be 
incorporated into the training data for model building with relative ease, however it 
would be a more difficult task for a clinician to incorporate this information when they 
are evaluating a patient’s risk themselves.   
 
 

3.2 Introduction to Missing Data 
In a design matrix with N samples and M features (as introduced in Section 1.2), cells 
in which there was no data available are known as missing data.  The proportion of 
samples that had missing data for any one feature is known as the missingness.   
 
Many of the features that are described in the following sections are extracted from 

primary care records, which are stored in the long format, described in Section 2.2.3.2.  
Rather than having explicitly left blank the cells of the design matrix, this corresponds 
to not having recorded an entry relating to that feature at a timepoint.  Whether this 
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results in missing data for a feature depends on how often corresponding Read codes 
are recorded, as well as how features are derived over multiple previous primary care 
encounters.  For example, a feature might be derived as whether a status has been 
recorded ever, in the past year, or on the day of the encounter itself.   
 
Many statistical learning algorithms require data to have no missing values 132.  There 
are different approaches to overcoming missingness, of which the simplest is 
complete case analysis: excluding any samples with any missing data.  As well as 
reducing the sample size, and thus the power to detect any real and valid associations 
or patterns, record deletion may introduce bias to the analysis, depending on the type 

of missingness.  Missing data can be categorised into 4 levels: Structurally Missing, 
Missing Completely At Random (MCAR), Missing At Random (MAR), or Missing Not 
At Random (MNAR).  Structurally missing occurs when the value should not exist.  For 
example, if I record the age at diagnosis of asthma for a group of people, those without 
a diagnosis of asthma should not have a value here.   
 
When data are MCAR, the fact that the data are missing is independent of both the 
observed (other features in the design matrix) and unobserved (the value itself, and 
other missing values) data.  When data are MCAR, the missing values cannot be 
reasonably estimated using statistical methods, or common sense.  For example, in a 
clinical trial, if whether a patient was in the placebo or intervention arm was missing, 
this should not be possible to ascertain from their baseline characteristics.   
 
MAR data, in contrast, may be possible to predict using the data which was available 
for a sample.  For example, if someone had been smoking for more than five years, 
we could reasonably infer they were adult rather than paediatric.   
 
Finally, when data are MNAR, the unknown values themselves are associated with 
the likelihood that a value was missing.  For example, if a primary care practitioner 
had never recorded whether someone had been diagnosed with cancer, it is mostly 

likely not the case.  Due to the multitude of Read codes available, naturally, irrelevant 
data is likely to be omitted from the record.  A diagnostic test or examination which is 
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costly to conduct (time, resources, financial expense) is unlikely to be conducted 
unless the practitioner thinks the result will provide some value to the patient’s care.  
Thus, certain untested results may be inferred by the nature of being untested.   
 
As well as the complete case approach described above, it is possible to overcome 
issues with missing data by replacing the cell with some value, a method known as 
imputation.   When data is MCAR, a simple imputation such as the mean value (if 
normally distributed) across the sample will not introduce bias.  When data is MAR, 
values to be imputed can be estimated using the non-missing data and statistical 
learning algorithms, such as those discussed in Section 5.3.  Multiple imputation 

creates multiple copies of the dataset containing missing values, imputes the values 
with some random error included, and combines the results of the imputed datasets  
132.   
 
Finally, in the missing indicator method, missing values are not imputed at all.  Instead, 
a new category is added to categorical data (‘missing’) or a simple imputation can be 
conducted in continuous data, alongside a new feature flagging the samples in which 
imputation was conducted  133.  This method is known to bias the estimates for 
confounders in parametric methods 133, but may even strengthen the predictive ability 
of the model, depending on the mechanism of missingness 134.  
 
 

3.3 Asthma Attack Risk Factor Inclusion and Exclusion 
Criteria 

In this section, I define the criteria that I applied to risk factors for asthma attacks 
identified in the literature, in order to determine which should be included in my model.  
Studies conducted only in children were included, however the weight of evidence 
relating to the adult population was carefully reviewed.   
 

Risk factors discussed in two systematic reviews (Loymans et al. 54 and Buelo et al. 
79), and the 2019 guidelines jointly written by British Thoracic Society (BTS) and the 
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Scottish Intercollegiate Guidelines Network (SIGN) 135, were systematically compared 
against the selection criteria described in Table 3.1, using supplementary literature for 
the review where necessary.  Evidence is presented from the literature of an effect on 
the incidence of asthma attacks, the feasibility of extraction from EHRs, and the time-
varying nature, of each identified risk factor.  Furthermore, I detail the process by which 
the feature should be extracted and processed from EHRs, including missing data 
handling, Clinical code lists (such as Read Codes), categorisation, and outlier 
detection.  Note that all Read Code lists provided in this thesis were compiled by the 
ALHS study team.   
 

In line with the recommendations made by Goldstein et al. 84 in their review of EHR-
based risk prediction models, I made sure to use a large number of time-varying 
features, and to carefully consider missing data.  
 
Table 3.1: Asthma attack risk factor inclusion and exclusion criteria 

Criteria Inclusion Exclusion 

Feasibility 

• The information is captured in one 
of the available data sources. 

• The measurement is conducted 
routinely. 

• The information 
requires complex 
natural language 
processing to extract. 

Effect  

• There is some evidence in the 
literature of either a protective or 
harmful effect on the incidence of 
asthma attacks (either in adults or 
by a mechanism that is likely valid 
for adults and children). 

• Any effect observed 
in the literature has 
been found 
exclusively in a child 
population. 

Changeability 

• If time-varying, the time scale used 
for calculation of the feature has 
been clearly defined in the 
literature.  

N/A 
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3.4 Demographic Risk Factors 
In this first section, I review four demographic risk factors identified in the previous 
reviews: age, sex, socioeconomic status, and ethnicity.   
 

 Current Age 
Increasing age in adults (18 and over) may be associated with a lower risk of acute 
asthma attacks (hospitalisation or A&E presentation) 115,120,136, but a higher rate of 
subacute episodes 75.   Age is captured in primary care patient registry data (Section 
2.2.3.1) and was included in the analysis as a time-varying feature.  Those with 
missing age were excluded from my analysis. 
 

 Sex 
Adult women with asthma are often found to have a higher risk of asthma attacks than 
men with asthma 75,77,120,136,137.  More adult women than adult men present for asthma 
to primary care 138 and A&E 139–142, and a higher proportion of A&E presentations result 
in hospital admission for women 139,143,144.  Women are also more likely than men to 

return to A&E for asthma after discharge 140,145.   
 
A study of prepubescent children with asthma found that boys had a higher risk of 
asthma attacks than girls 146, in line with findings that boys have more primary care 
consultations, A&E presentations, and hospital admissions than girls  138,140,142,146,147.  
Significant interactions between age and sex on asthma attack risk have also been 
identified, with higher incidence in male than female children and adolescents, but 
higher incidence in adult women than adult men 138,147,148.   One explanation for this is 
puberty, and the changing levels of sex hormones.  This hypothesis is supported by 
further studies demonstrating changes in exacerbation risk at certain phases of the 
menstrual cycle, or before and after events such as menarche, pregnancy and 
menopause 147,149–151.   
 
Sex, like age, is captured in primary care patient details data, and those with missing 
data were excluded from the study. 
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 Socioeconomic Status 
Several studies found that risk factors related to socioeconomic status were predictive 
of asthma attacks.  In the United States of American (USA), higher rates of asthma-
related hospitalisation in adults have been associated with lower income 72, Medicaid 
health coverage status 77, and lower levels of education 115. Recent studies in England 
and Wales have found that deprivation was associated with higher rates of asthma 
attacks 121,152,153, and there is some evidence of a non-linear interaction with age 152.    
 
Deprivation is captured in the patient registry dataset by the composite measure SIMD 
112, with changes in address represented in updated registration information, and thus 

time-varying.  Missingness for social deprivation was coded into a new category: 
missing. 
 

 Ethnicity 
A study from the USA found that non-White adults with asthma had higher risk of acute 
attacks than White adults, but without any controlling for socioeconomic factors 120.   
Another USA study, however, found that in children with asthma and Medicaid health 
insurance, Black and Hispanic children were at a higher risk of A&E presentation than 
White and Asian children 146.  The effect persisted after additional county-level 
socioeconomic features were included, however no individual-level features were 
tested.   Other USA studies have found similar increases in risk of asthma attacks for 
Asian, Black, Indigenous, and Hispanic children,  compared to White or non-Black 
children, controlling for confounding factors such as deprivation and parental 

education 71,79,154–156. 
 
A Scottish study found that Pakistani, Indian and other South Asian people had 20-
50% higher rates of asthma-related hospitalisation than White Scots, and Chinese 
people had 30-40% lower rates 157.  While disaggregating genetic from sociological 
effects in the incidence of asthma attacks is very difficult, these findings indicate that 
including ethnicity where possible may help to improve risk prediction. 
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Unfortunately, while ethnicity is sometimes recorded in primary care data, it often 
contains high levels of missingness 157, and as such was not included in my model.   
 
 

3.5 Risk Factors Relating to Lifestyle 
In this section, I review two lifestyle-based risk factors: smoking status and obesity, 
although the latter may also be caused at least in part by genetics rather than solely 
lifestyle. 
 

 Smoking 
Three of the highlighted risk prediction model studies identified smoking as a risk factor 
for asthma attacks 67,75,117, with between 17% and 77% increased odds compared to 
non-smokers, although Loymans et al. 67 observed some confounding with lung 
function and Fractional Exhaled Nitric Oxide (FENO).  This increased risk is in line with 
previous findings that smokers have higher risk of inpatient admission for asthma 
attack than non-smokers and former smokers 67,75,117,158.  There is also some evidence 
of an increased risk of asthma attacks with exposure to environmental tobacco smoke 
79, such as from a cohabitant.   
 
Smoking status can be recorded in primary care data, using Read Codes.   There is 
no gold standard approach for categorising smoking status from Read Codes, and 
thus previous studies have often used different code lists 159–161.  Similarly, the process 
for mapping Read Codes to smoking status category is not always obvious, such as 

the decision rule for the presence of the code “137X.”: Cigarette consumption.  
Atkinson et al. described a complex decision tree for a seven-level categorisation 
(including distinguishing between smokers and relapsed smokers), however the 
validity of the categorisation was low when compared to GP manual classifying 161.    
 
The list of Read Codes used herein, and corresponding 3-level (current, former, and 
non-smoker) categorisation rules, is presented in Appendix B.  They are primarily the 
codes and simplified decision rules presented by Atkinson et al. 161, however only the 
Version 2 Read Codes were included.  Those with unknown smoking status were 
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coded as non-smokers 162,163.  Note that if a previous record indicated that an individual 
was a smoker, and a later record indicated that the individual had never smoked, using 
the most recent record results in ignoring this inconsistency.  Smoking status is not 
static, and was revised upon a recorded change.   
 

 Obesity 
Compared to being in the normal BMI range, being overweight or obese is associated 
with an increased risk of asthma attacks 164–167.  Luo et al. 116 and Bateman et al. 66 
used BMI as a continuous feature, with the latter finding a 10% increased risk of a 
severe exacerbation per increase in kg/m2.  Blakey et al. 75 used categorical, with 16% 
higher odds of an attack for those with BMI between 25 and 30 (overweight) and 27% 
increase for those with BMI over 30 (obese), compared to normal BMI (18.5-24.9).  
There was no significant difference between normal BMI and being underweight 
(<18.5 BMI) or having unknown BMI.  Miller et al. 120 used BMI as a binary feature, 
dichotomising around  the higher threshold of 35kg/m2. 
 
In my analysis, obesity was a binary flag indicating that an individual’s most recent 
BMI recording was greater than or equal to 30 kg/m2, calculated using records of 
continuous BMI values, dichotomous obesity codes, or BMI calculated from recent 
height and weight records (Appendix B).  If no BMI could be calculated from available 
records, an individual was considered most-likely non-obese 168.   
 
A study in the USA 165 compared exacerbation rates by season in obese, overweight 

and normal weight individuals, and found that there was an interaction between 
season and BMI such that the increased risk from high BMI had a higher effect in 
autumn and winter (14-16% in spring and summer, compared to 34-41% in autumn 
and winter).  As such, and also to be discussed further in Section 3.7.2, I will also be 
including calendar month as a risk factor.   
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3.6 Asthma-Related Risk Factors 
In this section, six risk factors relating to asthma presentation and management are 
reviewed: asthma symptom control, lung function, exhaled inflammatory markers, 
controller treatment, treatment adherence, and history of asthma attacks.   
 

 Asthma Symptom Control 
Many of the studies include some marker of current symptoms and management, 
including the number of β-2 agonists prescribed (SABA and LABA) 72,73,116, the mean 
daily reliever (self-reported) reliever actuations 66,75, the ratio of reliever to controller 
medications prescribed 146,169, and asthma control questionnaire scores 66,67,70,124,170–

172.  Osborne et al. 115 also used more explicit survey data to create binary features 
flagging those with nightly nocturnal symptoms and symptoms impacting school/work 
attendance, which had risk ratios of 1.99 (95% CI = 1.40-2.80) and 1.45 (95% CI = 
1.16-1.80), respectively.  The presence of nocturnal symptoms was no longer 
statistically significant after controlling for lung function, but symptoms impacting 
school/work attendance remained in the model.  
 
Haselkorn et al. 71 and Zeiger et al. 173 also used survey data, with the USA’s National 
Heart, Lung, and Blood Institute (NHLBI) guidelines for asthma control categorisation 
174: a composite measure of symptoms, night-time awakenings, interference with 
normal activity,  and SABA use.   
 
Like the studies by Blakey et al. 75 and Bateman et al. 66, I evaluated asthma control 

using the mean SABA (in micrograms) used per day during the last SABA prescription 
refill interval, estimated from the strength and volume prescribed and the number of 
days between the most recent and the preceding prescription.   Additionally, a variable 
was included to flag any prescriptions of nebulised SABA in the last 90 days, indicating 
a probable short-term increase in symptoms.     
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 Lung Function 
Spirometry is a pulmonary function test, conducted in specialist care, that can measure 
Forced Vital Capacity (FVC; volume of exhalation) and Forced Expiratory Volume 
(FEV1; volume of the first second of exhalation).  In patients with obstructed airflows, 
asthma can be diagnosed by measuring bronchodilator reversibility - change in 
spirometry results before and after inhaling 400μg of a bronchodilator such as 
salbutamol 175.   Pre-bronchodilator spirometry results can also be used as a measure 
of lung function.  Peak Expiratory Flow Rate (PEFR) is an alternative lung function 
test, which can be measured using a simple, cheap to manufacture plastic device.  For 
this reason, it is often distributed to asthma patients for home monitoring purposes, as 

well as being tested routinely in the primary care setting 176.  FEV1 was used in several 
of the examined risk models 66,67,115,124,172, and FVC in two 120,171.  Like UK studies by 
Blakey et al. 75 and Turner et al. 68 , I decided to use PEFR as it is recorded more 
frequently in UK primary care practice, where my prediction model is designed to be 
used, than other lung function measures.  The Read Codes used to identify PEFR 
measurements are listed in Appendix B. 
 
PEFR, FEV and FVC are all routinely standardised by comparing results to the 
expected values based on age, height and sex 177, or the best recorded historical value 
for that individual.    The expected values to use as a reference vary depending on the 
source 178, and many do not account for ethnic variation 176.   As such, the BTS/SIGN 
Guidelines 135 promote using an individual’s personal best PEFR value as the 
reference.     
 
On the date of any asthma consultation, the most recent PEFR measurement within 
seven days was converted to a categorical percentage of their previously recorded 
(any historical measurement) maximum (>90%, 80-90%, 70-80%, or less than 70%), 
or missing if there were no recorded values in the last seven days.  Typically, this 
measurement will have taken place during the reference consultation itself, however 
if a measurement had been taken at a recently occurring consultation, the evaluation 

may not be repeated.   
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 Exhaled Inflammatory Markers 
Exhaled Inflammatory Markers (EIMs) are signals of an inflammatory immune 
response which can be detected from the analysis of Exhaled Breath Condensate 
(EBC).   Robroeks et al. 70 found that concentration of the protein Interleukin-5 (IL-5) 
and the acidity of EBC were both significant predictors of asthma attacks in univariate 
analyses, and that IL-5 remained significant in multivariate analysis.  Furthermore, 
Robroeks et al. 70 demonstrated that increased IL-5 was detectable a month prior to 
exacerbation, unlike FENO, which only raised at the start of the attack and within 3 
days had on average returned to its value  three months prior to the attack.  When 
Van Vliet et al. 69 attempted to replicate the findings of this study in a further dataset, 

they found that none of the EIMs (in isolation or together) were able to predict asthma 
attacks.  While Sato et al. 124 included FENO in their decision tree to improve the 
specificity of the model, its inclusion decreased the overall performance, as measured 
by the Area Under the Receiver Operator Curve (AUC; detailed later in Section 5.4.1).   
 
Further studies included in the BTS/SIGN Guidelines evidence base demonstrate 
similarly unclear effects 179–181.   EIMs are also not routinely measured in primary care, 
and so were unlikely to be available for a sufficiently large proportion of the population 
to add any predictive value to the model.  Indeed, the BTS/SIGN guidelines 135 
discourage the use of FENO testing except in specialist asthma clinics.  As such, I 
decided not to include any EIMs as risk factors in the model.     
 

 Controller Treatment Intensity and Severity 
Asthma severity can be estimated by examining the prescribed medications used to 
control symptoms.  There are several established treatment classifications used in the 
UK, including the GINA 35 and BTS Treatment Steps 135.  The differences between the 
two classifications of treatment steps (2019 editions) are detailed in Table 3.2. Note 
that the GINA guidelines 35 also state that the preferred reliever option across all 
treatment steps is a low-strength as-needed combination ICS+LABA inhaler 
(specifically formoterol).  Both Turner et al. 68 and Bateman et al. 66 used the GINA 
treatment management steps in their analysis, while Price et al. 117 used the BTS 
treatment steps.   
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Table 3.2: Comparison of Global Initiative for Asthma (GINA) and British Thoracic Society (BTS) 2019 asthma treatment 
recommendations 

Step GINA Guidelines 35 BTS  Guidelines 135 

1 As-needed Low-Strength ICS + LABA, 
As needed Low-Strength ICS As-needed Low-Strength ICS  

2 

Low-Strength ICS, 
As-needed Low-Strength ICS + LABA, 
LTRA, 
As needed Low-Strength ICS 

Low-Strength ICS 

3 
Low-Strength ICS + LABA, 
Medium-Strength ICS, 
Low-Strength ICS + LTRA 

Low-Strength ICS + LABA 

4 

Medium-Strength ICS + LABA, 
High-Strength ICS, 
Medium-Strength ICS + LTRA, 
Medium-Strength ICS + add-on therapy 

Medium-Strength ICS, 
Low-Strength ICS + LTRA, 
Medium-Strength ICS + LABA 

5 

High-Strength ICS + LABA, 
High-Strength ICS + LABA + add-on therapy, 
Medium-Strength ICS + LABA + OCS, 
High-Strength ICS + OCS, 
Medium-Strength ICS + LTRA + OCS, 
Medium-Strength ICS + add-on therapy + OCS 

Medium-Strength ICS + LTRA, 
Medium-Strength ICS + LTRA + add-on therapy,  
Medium-Strength ICS + LTRA + LABA,  
Medium-Strength ICS + LTRA + LABA + add-on therapy,  
High-Strength ICS,  
High-Strength ICS + LTRA, 
High-Strength ICS + LTRA + add-on therapy, 
High-Strength ICS + LABA, 
High-Strength ICS + LABA + add-on therapy, 
High-Strength ICS + LTRA + LABA, 
High-Strength ICS + LTRA + LABA + add-on therapy 
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Other studies used custom severity indicators in their studies.  In their study of asthma 
attacks in those with severe asthma, Miller et al. 120 identified users of 
nebulised ipratropium bromide as a proxy for any nebuliser use, and found that it was 
a mild but significant indicator of later hospitalisation or A&E presentation.  They 
additionally included current diagnoses of cataracts, which may have been used as 
an indicator of prolonged use of high-strength steroids 182.   
 
Schatz et al. 136 found that individuals on a sustained high intensity treatment regimen 
(high-strength ICS+LABA) had an increased risk of asthma attacks over those who 
were only prescribed the high intensity regimen in the index year, but no higher risk of 

hospitalisation.   
 
While treatment intensity is often considered a proxy for asthma severity, the treatment 
regimen in itself also independently has some predictive value.  Price et al. 117 
observed a non-linear effect, with BTS treatment steps 0 and 1 (low-strength ICS only) 
resulting in higher odds of asthma attack than with Step 2 (in which LABA is added).   
Samuels-Kalow et al. 183 found that those without controller medication prescribed had 
4.43 times higher odds of high emergency department utilisation.  Similarly, in the 
USA, Grana et al. 77 defined treatment severity using dispensed, rather than 
prescribed, medications: combining both the quantity claimed and the medications 
themselves in their categorisation.  They found that the lack of any pharmacy plan had 
20% higher odds of an asthma attack requiring hospitalisation than even those 
requiring a single course of OCS (or multiple bursts with duration under 28 days).   
 
In my analysis I used the 2019 BTS 5-step treatment classification, updated at any 
change in regimen.  The BTS classification was chosen over the GINA classification 
because there were fewer treatment options at the lower steps, and some of the same 
treatment options at higher BTS step were considered lower in the GINA guidelines.  
I hypothesised that more distinction between the lower steps, at which the majority of 
patients are treated, would improve the predictive ability of this feature.  The 

ascertainment of the patient treatment steps is described fully in Appendix C, as 
prescribers may deviate from the recommended treatment steps when appropriate.  
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Note that treatment intermissions of longer than 120 days were coded as treatment 
step zero, in order to prevent discontinued treatments carrying over.   Additionally, the 
number of asthma controller medications dispensed in the previous calendar year was 
recorded.   
 

 Medication Adherence 
 

DEFINITION: ADHERENCE 
“The extent to which a person’s behaviour taking medication, following a diet, and/or 

executing lifestyle changes, corresponds with agreed recommendations from a 

health care provider” 
- World Health Organization 184 

 
Non-adherence to asthma controller treatments has been repeatedly highlighted as a 
major contributing factor to excess mortality and life-threatening asthma attacks.  A 
2015 systematic review and meta-analysis by Engelkes et al. 185 found that, in both 
adults and children, poor adherence was associated with higher rates of 
exacerbations, across varying study designs, adherence definitions, and asthma 
attack definitions.  For example, a study of almost 100,000 individuals 186 found a 14% 
reduction in odds of asthma emergency department presentation or hospitalisation 
between those above and below the 75th percentile of adherence, as measured by the 
Medication Possession Ratio (MPR).  Williams et al. 76 estimated that one in four 
reported asthma attacks could have been attributed to poor adherence.   A recent 

study by Chongmelaxme et al. 187 also found that risk was reduced when comparing 
moderate and poor adherence, as well as good and moderate adherence.   
 
Four of the studies examined in this section found significant associations using some 
measure to approximate medication adherence.  Luo et al. 116, Schatz et al. 72, and 
Lieu et al. 169 included simple counts of the number of controller medications 
dispensed during the study, but without any observation of the number of units that 
were prescribed.  As such, it is not possible to disambiguate lower-strength treatments 
(likely associated with lower risk) and poor adherence (higher risk).  Blakey et al. 75  
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used the MPR but found that lower adherence was associated with a lower risk of 
attack.  They speculated that this may have been a result on confounding with asthma 
severity (individuals with milder asthma self-managing their treatment successfully), 
but this was not investigated, as asthma severity was not included as a covariate.   
 
Adherence is rarely explicitly captured in EHRs, so its estimation requires careful 
consideration. When it is captured it is reported directly by PROMs, such as 
standardised questionnaires and psychometric scales 188.  More commonly, however, 
adherence is estimated from prescribing and dispensing records, using some function 
of the expected and observed time between subsequent prescriptions, based on the 

quantity of medication prescribed.  Many methods of measuring adherence from EHRs 
have been defined, however no gold standard has been proposed, and very few 
studies have attempted to critique the measures 189–191.  More information was 
required in order to determine the most appropriate methodology, and so a more in-
depth review of the literature, as well as experiments in my data, was conducted 
(Chapter 4).   
 

 Previous Asthma Attacks and Unscheduled Care 
As discussed in Section 3.1, previous asthma attacks are consistently identified as the 
strongest risk factor for subsequent attacks.  Almost all of the examined risk model 
studies found a significant effect of this nature, but have quantified past history in 
different ways, including previous unscheduled asthma care (primary and/or 
emergency 73,115,136,170,183), oral steroid bursts 120,169, and combinations thereof 
67,68,72,74,75,116,117,148,192 (including the ATS/ERS Taskforce attack ascertainment criteria 
78, introduced in Section 2.4), often matching the criteria they used to ascertain the 
outcome. 
 
Miller et al. 120 found that in those with asthma attacks during the study, 16% had 
required intubation in the past, and less than 5% had not required any steroid bursts 
in the three months prior to baseline (23% had required three or more).  Similarly, 
Loymans et al. 67 found 3.8 times higher odds of a severe asthma attack in those who 
had required oral steroids in the previous year.    Grana et al. 77 looked at both the 
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timing, frequency, and location of unscheduled asthma care, and found that more 
frequent and more recent episodes, as well as those requiring hospital admission as 
opposed to A&E or primary care presentation, all increased the risk of subsequent 
attacks.    
 
Episodes of secondary care for asthma (A&E presentations or inpatient admissions) 
are not automatically recorded in primary care data, although letters may be sent to 
the patient’s GP in order to inform them (indicated in the Read Codes in Table 3.3).  
As such, EHR primary care data may or may not include Read Codes referring to 
secondary care encounters but will record any primary care prescriptions of OCS. 

 
As this model will be deployed in the primary care setting, it is important to use only 
the data that GPs have access too.  As such, if a previous secondary care encounter 
has not been coded in the patient notes, it cannot be used as a predictor of future risk.  
One limitation of this approach is that previous history of secondary care asthma 
encounters may be recorded in the free text medical notes, rather than in Read Codes, 
and are thus not able to be identified for this model.  In practice, however, this means 
that the model may perform better in real life (when information is more certain) than 
in the testing data. 
 
Table 3.3: Asthma attack Read Codes (Version 2) 

Read Code (V2) Term 
H3301 Extrinsic asthma with asthma attack 
H3311 Intrinsic asthma with asthma attack 
H333. Acute exacerbation of asthma 
H33z000 Status asthmaticus NOS 
H33z011 Severe asthma attack 
H33z1 Asthma attack 
633d. Emergency asthma admission since last appointment 
663m. Asthma accident and emergency attendance since last visit 
8H2P. Emergency admission, asthma 
663y. Number of asthma exacerbations in past year 

Note: NOS = Not Otherwise Specified 
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In my analysis, I included a binary flag for whether there had been more than one 
inhaled steroid prescription in either the previous or current (to date) calendar year.  
Prescriptions of prednisolone oral steroids (brand names listed in Appendix D) were 
identified as related to an asthma attack if they met the following conditions: 1) They 
were prescribed to someone with a diagnosis of asthma or receiving asthma 
treatment, 2) They were prescribed on the same day as an asthma-related 
consultation (identified by the presence of any Read Code listed in Appendices 
Appendix E or Appendix F on the same day), and 3) The total prescribed dosage was 
between 200 and 1000 mg (based on the British National Formulary Version 80 

(BNF80) recommendation that 40-50mg daily be prescribed for asthma attacks, for at 
least 5 days 193).   
 
Additionally, the time since the last asthma attack was recorded (either steroid 
prescription or Read Code), categorised as ‘one to two years’, ‘six months to one year’, 
‘three to six months’, ‘one up to three months’, ‘in the last month’, or ‘none in the last 
two years’.  
 
 

3.7 Other Comorbidities 
Finally, other comorbidities which may interact with asthma to increase risk of adverse 
outcomes are reviewed: eosinophilia, atopy, respiratory infections, and other chronic 
comorbidities.   
 

 Eosinophilia 
Eosinophilia is defined as elevated counts of eosinophil white blood cells.  A common 
threshold for defining an elevated count is ≥400 cells per μL, used by Blakey et al. 75, 
Turner et al. 68, and Price et al. 117.  Forno et al. 74 used the raw laboratory data, and 
thus had eosinophil count as a continuous feature (with a median of approximately 2.6 
log10cells/mm).   
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Blakey et al. 75 found that eosinophil  counts over ≥400 cells per μL resulted in 21% 
higher odds of an asthma attack., while Turner et al. 68 found 46% higher odds of 
attack and Price et al. 117 found a very similar estimate of 48% increased odds.  Forno 
et al. 74 found a 2.7 times odds increase for each unit increase in log10cells/mm.   
 
Blakey et al. 75 and Turner et al. 68 found that 66% and 61% (respectively) of their UK 
EHR study populations had at least one recorded eosinophil reading.  Blakey et al. 75 
also found that the missing group had significantly lower odds of an attack than those 
with <400 cells per μL, demonstrating that this information should not be considered 
missing at random.    

 
McGrath et al. 194 have noted that eosinophilia can be either persistent or intermittent, 
even in the absence of ICS treatment, which typically targets eosinophil-specific 
inflammation 195,196 and thus may reduce eosinophil levels when used regularly.   
Eosinophilia should thus be considered time-varying.   
 
Records of blood eosinophil counts were extracted from continuous Read Codes 
values (Appendix B). I dichotomised the recorded value at ≥400 cells per μL, or 
missing for those without any recorded measurements, using the most recent Read 
Code record at any time.   
 

 Atopy 
 

DEFINITION: ATOPY 
“The genetic tendency to develop allergic diseases such as allergic rhinitis, asthma 

and atopic dermatitis (eczema). Atopy is typically associated with heightened 

immune responses to common allergens, especially inhaled allergens and food 

allergens.” 

- American Academy of Allergy, Asthma, and Immunology 197 
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Atopy can be quantified by measuring Immunoglobulin E (IgE) levels from blood 
samples after exposure to individual allergens, from total IgE levels after exposure to 
a range of allergens, or by reaction to a Skin Prick Test (SPT).   Diagnoses of allergic 
comorbidities, such as eczema and allergic rhinitis, may also be used as a proxy.   
 
Blakey et al. 75 identified diagnoses of nasal polyps, anaphylaxis, active eczema and 
active rhinitis as risk factors for subsequent asthma attack incidence.  All four 
diagnoses were significant in the multivariable model, signifying that such 
comorbidities may have distinct mechanisms to general atopy for increased risk of 
asthma attacks.  

Loymans et al. 67 investigated several measures of atopy, including total IgE of over 
100 kU/mL, chronic sinusitis (which they postulated may be related to nasal polyps), 
self-reported food allergy, or exposure to sensitised allergens (defined as positive-
specific IgE titres to any of house dust mite, grass pollens, or birch pollens and/or IgE 
positivity to cat or dog, combined with ownership) 67.  The cut-off for labelling atopy 
from IgE levels is subjective, with Westerhof et al. 198 using a substantially higher value 
of total IgE over 350 kU/mL, for example.  Sinusitis was the only significant predictor 
in the final model, controlling for spirometry and FENO, with an OR of 2.39 (95% CI = 
1.11-5.14).   
 
Luo et al. 116 counted the number of distinct recorded allergies, binary flags for food 
allergy, drug or material allergy, or environmental allergy, and prescriptions for 
allergies or nasal steroid sprays (treatment for rhinitis).  Haselkorn et al. 71 also 
counted the number of allergic triggers, and found a consistent trend that more 
allergies increased risk of asthma attack.   
 
Engelkes et al. 148 defined atopy as the diagnosis of either rhinitis or eczema 
(significant predictors in all but one cohort, with ORs between 1.09 and 2.07), but also 
included nasal polyps as a covariate (although it was found to be very rare in all of the 
cohorts they investigated, possibly contributing to its non-significance).  Price et al. 117 

used rhinitis and eczema separately, with 10% and 8% increased odds of attacks with 
diagnosis, respectively.   
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Finally, Forno et al.’s study 74 in children looked at family history of allergic conditions, 
as the data were taken from a genetic study with detailed family medical histories, 
however in primary care this is rarely recorded, especially for adults.   
 
I used four separate allergic comorbidities as markers of atopy: diagnoses of rhinitis 
or eczema, and any history of nasal polyps or anaphylaxis (Read Codes listed in 
Appendix G).  Additionally, I included prescriptions of a corticosteroid nasal sprays. 
The four allergic comorbidities and nasal sprays were categorised as ‘never’, ‘in the 
past year’, ‘in the past 5 years’ (not including in the past year), or ‘longer than five 

years ago’.    
 
The current month was included as an additional feature, allowing possible 
interactions between season and seasonal allergies to be detected in non-parametric 
analyses, as well as the interaction between season and BMI as discussed in Section 
3.5.2.  The allergic comorbidities and nasal sprays were categorised as ‘never’, ‘in the 
past year’, ‘in the past five years’ (not including in the past year), or ‘longer than five 
years ago’.    
 

 Respiratory Infections 
Respiratory infections have been found to be associated with higher odds of frequent 
exacerbations 62.  In adults presenting at hospital for asthma attacks, approximately 
35-75% have a respiratory virus detected 199–201.  Rhinovirus is the most common 

agent involved in acute episodes of wheeze in adults, followed by coronaviruses 
200,202–205.  One study in Singapore 206 found that in those presenting to hospital for 
asthma attacks, a higher percentage of the near fatal attacks (requiring ventilatory 
support) had a concurrent infection of a picornavirus (which includes rhinovirus) or 
adenovirus, although no difference was identified for influenza infections.  
 
Luo et al. 116 only included diagnoses of bronchiolitis in the baseline year in their final 
model, a Lower Respiratory Tract Infection (LRTI) affecting the bronchioles.  
Bronchiolitis is commonly caused by Respiratory Syncytial Virus (RSV) or rhinovirus, 
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but almost exclusively occurs infants and children under the age of two 207.  Miller et 

al. 120 also only included one infection-related feature in their final model: any history 
of pneumonia, lung inflammation primarily affecting the alveoli.   
 
Turner et al. 68 found that any LRTI diagnosis in the baseline year increased odds of 
asthma attack by 48%, but with very wide confidence intervals demonstrating low 
precision (95% CI =  4 - 214% odds increase).  Price et al. 117 only considered LRTI 
diagnoses in the baseline year that resulted in antibiotic prescription, and also found 
a modest increase in risk (18% for one LRTI, and 28% for two or more).   
 

LRTIs were flagged in the primary care dataset using the Read Codes listed in 
Appendix G.  The maximum of the number of infections in the previous or current 
calendar year was used to estimate susceptibility to infection, and the time since the 
most recent infection was used to identify periods of recovery, categorised as ‘In the 
past two weeks’, ‘Between two weeks and up to two months ago’, ‘Between two 
months and up to six months ago’, ‘Between six months and up to twelve months ago’, 
‘Between one year and up to two years ago’, or ‘None in the last two years’.   
 
In addition, although not relevant to my analysis due to the time-period of the datasets 
used herein, there is some conflicting evidence on whether infection from the recent 
pandemic novel coronavirus (SARS-CoV-2) disease (known as COVID-19) provoked 
worse clinical outcomes in asthma patients.  Early studies found high prevalence of 
asthma in those hospitalised with COVID-19 in the UK 208,209, however the evidence 
pertaining to elevated mortality risk remains inconclusive 209–211. 
 

 Other Chronic Comorbidities  
For many disease areas, including respiratory diseases, musculoskeletal diseases, 
and cardiac diseases, higher rates of comorbidity are seen in people with asthma than 
in the general population 212–215.  Some of these conditions interact with asthma in 
ways which increases risk of asthma attacks.   
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Luo et al. 116 identified diagnoses of diabetes without chronic complications and COPD 
as a risk factor for asthma attacks.   Miller et al. 120 also found active diabetes to be a 
significant predictors of asthma attacks, in additional to cataracts (discussed in Section 
3.6.4).  Grana et al. 77 found significant increases in risk with diagnoses of ischaemic 
heart disease (OR = 1.64) and COPD (OR = 1.75).   
 
Price et al. 117 found that diabetes and ischaemic heart disease were risk factors for 
hospitalisation (ORs of 1.64 and 1.53, respectively), and that anxiety/depression 
(associated with impaired immune response 216) and diabetes were associated with 
increased odds of two or more attacks of any type (ORs 1.09 and 1.11, respectively).   

Finally, Engelkes et al. 148 identified Gastroesophageal Reflux Disease (GERD) as a 
significant risk factor in some, but not all, of the cohorts in their multicentre study.   
 
As well as the aforementioned studies, Schatz et al. 136 also identified COPD as a risk 
factor for asthma attacks.  However, as discussed in Section 2.3, those with COPD 
were excluded from our study in case the risk factors and mechanisms in those with 
Asthma-COPD Overlap Syndrome are distinct.  As such, it could not be included as a 
risk factor.   
 
In my risk prediction model, I included as binary variables (flags) the 17 diagnostic 
categories of the adapted Charlson Comorbidity Index (CCI; any history) 217,218, and 
diagnoses of anxiety/depression or GERD.  The diagnostic Read Codes are listed in 
Appendix G.  Anxiety/depression and GERD features were categorised as ‘never’, ‘in 
the past year’, ‘in the past 5 years’ (not including in the past year), or ‘longer than five 
years ago’.    
 
 

3.8 Other Notable Risk Factors 
There are established differences between the sexes in the severity of asthma 

(Section 3.4.2), which it has been hypothesised are related to sex hormones.  This 
hypothesis is supported by observed changes in asthma severity around various 
female reproductive events such as menarche and menopause 147,149–151.   While sex 
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chromosomes cannot be changed, sex hormones can be modified by hormone 
therapies, for indications such as hormonal contraception, Hormone Replacement 
Therapy (HRT; menopause symptom relief), and sex reassignment therapy.   A study 
in Scottish women taking oral contraceptives 219 found lower rates of asthma onset, 
but no difference in the incidence of wheezing attacks.  Our recently published UK-
wide study found that combined oestrogen/progestogen hormonal contraceptive (but 
not progestogen only contraceptive) use was associated with a lower risk of asthma 
attacks, increasing with duration of use 220.   I was not able to include hormonal 
therapies as a risk factor in my analysis, as the relevant Read Codes were not 
available in the ALHS dataset, and identification from prescribing records was beyond 

the scope of this body of work.   
 
Various air pollutants, including carbon monoxide, ozone, PM2.5 (atmosphere 
Particulate Matter of less than 2.5 micrometres diameter, less than 1/20th of the 
diameter of a human hair), and nitrogen dioxide, have been linked to increased risk of 
asthma attacks 221–223.  Stratification by age shows that older children and adolescents 
may be more vulnerable than adults 221–223.    While this information is not explicitly 
captured in EHRs, I will be including the local area identifier, as well as a measure of 
rurality, in the analysis which will account for some confounding due to pollution 224.  
 
Two studies found that the number of prescribers for an individual was associated with 
their risk of asthma attacks, however they were both conducted in children 72,73.  One 
of the two studies also explored the effect in adults, however they did not identify any 
significant relationship 72.  Additionally, the number of GPs an individual had seen 
about their asthma was evaluated by another adult study, however it did not contribute 
to the final decision tree 169.  As such, I did not include this information as a risk factor 
in my model.   
 
Occupational exposures such as cleaning products, exhaust fumes, and animal 
products may increase daily symptoms and asthma attack risk 225–227.  Osborne et al. 
115 also identified increased caffeine consumption as a mild risk factor for asthma 
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attacks, however this is not captured routinely in primary care.  Neither exposure is 
recorded routinely in primary care data and thus was not included in the model.    
 
There is strong evidence that respiratory infections are a serious risk factor for 
subsequent asthma attacks, as discussed in Section 3.7.3.  As such, people with 
severe asthma are often encouraged to have the seasonal influenza vaccination 
228,229.  While many studies have reported lower rates of asthma attacks in those who 
have had the seasonal influenza vaccination 230, I have seen no evidence for any 
preventative mechanism other than reducing the rate of influenza infection.  Indeed, 
only one study was identified that included a subgroup analysis of the effect of 

vaccination in those who did not have any influenza vaccination, and they found no 
significant change in asthma attack rates 231. As such, the inclusion of respiratory 
infections as a predictive feature should be a more informative and reliably predictive 
feature than the vaccination itself, and thus the latter was not included in analyses.   
Another argument for the inclusion of influenza vaccination status is that it may be 
considered in part a proxy for higher health engagement, which was already captured 
in some measure through the feature counting the number of asthma consultations in 
the previous calendar year. 
 
Luo et al. 116 also looked at a number of asthma attack risk factors which were not 
used in other studies’ models, such as religion, primary language, marital status, vital 
signs, and time since diagnosis.  Unfortunately, none of these risk factors were 
possible to ascertain in the ALHS dataset, as the relevant Read Codes were not 
included in the data extract.  Guidance sought informally from clinical colleagues 
informed me that the low incidence of recording in primary care records meant that 
there would likely be high missingness if the additional codes were requested, and so 
I decided not to include them in my analysis.  While time since diagnosis is not explicitly 
coded in primary care datasets, it can be determined using the first diagnosis code 
date for an individual.  Unfortunately, this information is not always available (such as 
if the diagnosis occurred prior to the study start, or when diagnosis is not clearly and 

explicitly recorded) and as such this was also not included in the analysis.   
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3.9 Conclusions 
In this section, I have reviewed the evidence of effect on asthma attack incidence, 
feasibility of extraction from EHRs, and time-varying nature of identified potential risk 
factors, for inclusion in my risk prediction model.   
 
In Table 3.4 I have listed the risk factors which were included in my risk prediction 
model, the method of extracting them, their duration of effect, and the format of the 
feature. 
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Table 3.4: Asthma attack risk prediction model risk factors 

Risk Factor Extraction Method Time Feature Format 

Age 
Difference in integer years between 
date of birth, from primary care patient 
registration dataset, and date of event 

Time-varying, per record Positive integer, no missing 
values allowed 

Sex 
Recorded in Primary Care, from 
primary care patient registration 
dataset 

Constant Categorical {‘F’, ’M’}, no 
missing values allowed 

Socioeconomic 
Status 

SIMD, from primary care patient 
registration dataset 

Time-varying, updated at 
changes to patient registration  Categorical {1:5, missing} 

Local Area Code 

Nomenclature of Units for Territorial 
Statistics Level-3 (NUTS-3) codes, 
linked from the data zone (2001 
version) the person was residing in at 
registration 

Constant Categorical {Not Listed, 
including missing} 

Rurality 
Scottish Government Urban Rural 
Classification Scale, from primary care 
patient registration dataset 

Time-varying, updated at 
changes to patient registration Categories {1:6, missing} 

Smoking Status Primary care Read Codes listed in 
Appendix B 

Time-varying, most recent 
category. 

Categories {‘current’, ‘former’, 
‘non-smoker’} 

Reliever Medication 
Usage 

SABA dosage prescribed divided by 
SABA refill interval, from primary care 
prescriptions 

Time varying, most recent 
closed refill interval 

Continuous positive real 
value, or zero if no previous 
(closed) SABA refill interval 
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Risk Factor Extraction Method Time Feature Format 

Peak Expiratory Flow 

Primary care Read Codes listed in 
Appendix B.  Standardised as the 
percentage of the best measurement 
to date (including that measurement) 

Time-varying, most recent 
measurement in the previous 7 
days 

Categorical {‘>90%’, ‘80-90%’, 
‘70-80%’, ‘less than 70%’, 
‘missing’} 

BTS Step 

Prescribed asthma controller 
medications, processed as detailed in  
Appendix C (not directly aligned with 
BTS Steps as presented in Table 3.2) 

Time-varying, most recent 
treatment step estimated from 
prescriptions in the last 120 
days 

Positive integer in range [0,4] 

Recent LRTI 

Read Primary care Read Codes listed 
in Appendix G, more than one distinct 
event in previous calendar year or 
current calendar year  

Time-varying, most recent 
event 

Binary (1=Multiple recent 
LRTIs, 0 = One or fewer 
recent LRTIs) 

Recent Asthma 
Encounters 

Primary care Read Codes listed in 
Appendix E and Appendix F, more 
than one distinct event in previous 
calendar year or current calendar year 

Time-varying, most recent 
event 

Binary (1= Multiple recent 
Asthma Encounters, 0 = One 
or fewer recent Asthma 
Encounters) 

Recent Steroid 
Prescriptions 

Steroid treatments (identification 
described in Section 3.6.6), more than 
one distinct event in previous calendar 
year or current calendar year 

Time-varying, most recent 
event 

Binary (1= Multiple recent 
Steroid Prescriptions, 0 = One 
or fewer recent Steroid 
Prescriptions) 

Number of asthma 
controller 
medications  

Number of asthma controller 
medications (identification process 
discussed later in Section 4.2.2) in the 
previous calendar year 

Time-varying, annual Positive integer, no missing 
values allowed 
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Risk Factor Extraction Method Time Feature Format 

Time Since Last 
Asthma Attack 
(Recorded in Primary 
Care) 

Primary care Read Codes listed in Table 
3.3, difference between date of last event 
and current date 

Time-varying, most recent event 

Categorical {‘one to two years’, 
‘six months up to one year’, 
‘three up to six months’, ‘one up 
to three months’, ‘in the last 
month’ or ‘none in the last two 
years’} 

Adherence 
Prescribed asthma controller 
medications, processing method to be 
determined 

To be determined To be determined 

Eosinophilia 
Read Primary care Read Codes listed in 
Appendix B, dichotomised the recorded 
value at ≥400 cells per μL 

Time-varying, most recent 
measurement 

Categorical {‘≥400’, ‘<400’, 
‘missing’} 

Month Calendar month of Event Time-varying, per record 

Categorical {‘January’, 
’February’, ’March’, ‘April’, 
‘May’, ‘June’, ‘July’, ‘August’, 
‘September’, ‘October’, 
‘November’, ‘December’} 

Rhinitis Diagnosis Read Primary care Read Codes listed in 
Appendix G, most recent diagnosis code  Time-varying, per record 

Categorical {‘Never’, ‘In the 
past year’, ‘One up to five years 
ago’, ‘Longer than five years 
ago’}   

Eczema Diagnosis Read Primary care Read Codes listed in 
Appendix G, most recent diagnosis code Time-varying, per record 

Categorical {‘Never’, ‘In the 
past year’, ‘One up to five years 
ago’, ‘Longer than five years 
ago’}   
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Risk Factor Extraction Method Time Feature Format 

Anxiety/Depression 
Diagnosis 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code 

Time-varying, per record 

Categorical {‘Never’, ‘In the 
past year’, ‘One up to five 
years ago’, ‘Longer than five 
years ago’}   

Nasal Polyps 
Diagnosis 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code 

Time-varying, per record 

Categorical {‘Never’, ‘In the 
past year’, ‘One up to five 
years ago’, ‘Longer than five 
years ago’}   

Anaphylaxis 
Diagnosis 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code 

Time-varying, per record 

Categorical {‘Never’, ‘In the 
past year’, ‘One up to five 
years ago’, ‘Longer than five 
years ago’}   

GERD Diagnosis 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code 

Time-varying, per record 

Categorical {‘Never’, ‘In the 
past year’, ‘One up to five 
years ago’, ‘Longer than five 
years ago’}   

Corticosteroid Nasal 
Sprays  

Spray formulations with drug name 
“mometasone”, “fluticasone”, 
“beclometasone” or “budesonide” 

Time-varying, annual 

Categorical {‘Never’, ‘In the 
past year’, ‘One up to five 
years ago’, ‘Longer than five 
years ago’}   
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Risk Factor Extraction Method Time Feature Format 

Time since last LRTI Read Primary care Read Codes listed 
in Appendix G Time-varying, annual 

Categorical {‘In the past two 
weeks’, ‘Between two weeks 
and up to two months ago’, 
‘Between two months and up 
to six months ago’, ‘Between 
six months and up to twelve 
months ago’, ‘Between one 
year and up to two years ago’, 
‘None in the last two years’}  

Nebulised SABA Prescriptions for any nebulised SABA 
in the last 90 days 

Time-varying, most recent 
measurement 

Binary (1=Prescription in the 
last 90 days, 0 = No 
prescription in the last 90 
days 

Obesity 

Read Primary care Read Codes listed 
in Appendix B.  Continuous BMI values 
dichotomised at 30 kg/m2.  Categorical 
BMI values dichotomised as obese or 
non-obese.  Continuous BMI 
calculated from height and weight 

Time-varying, most recent 
measurement 

Binary (1=Obese, 0 = Non-
Obese) 

AIDS 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= AIDS, 0 = No 
AIDS) 

Cancer 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Cancer, 0 = No 
Cancer) 
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Risk Factor Extraction Method Time Feature Format 

Cerebrovascular 
disease 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Cerebrovascular 
disease, 0 = No 
Cerebrovascular disease) 

Chronic pulmonary 
disease 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Chronic pulmonary 
disease, 0 = No Chronic 
pulmonary disease) 

Congestive heart 
disease 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Congestive heart 
disease, 0 = No Congestive 
heart disease) 

Dementia 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Dementia, 0 = No 
Dementia) 

Diabetes (without 
complications) 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Diabetes, 0 = No 
Diabetes) 

Diabetes with 
complications 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Diabetes with 
complications, 0 = No 
Diabetes with complications) 

Hemiplegia 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Hemiplegia, 0 = No 
Hemiplegia) 

Metastatic tumour 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Metastatic tumour, 
0 = No Metastatic tumour) 
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Risk Factor Extraction Method Time Feature Format 

Mild liver disease 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Mild liver disease, 
0 = No Mild liver disease) 

Moderate liver 
disease 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Moderate liver 
disease, 0 = No Moderate 
liver disease) 

Myocardial infarction 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Myocardial 
infarction, 0 = No Myocardial 
infarction) 

Peptic ulcer disease 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Peptic ulcer 
disease, 0 = No Peptic ulcer 
disease) 

Peripheral vascular 
disease 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Peripheral vascular 
disease, 0 = No Peripheral 
vascular disease) 

Renal disease 
Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Renal disease, 0 = 
No Renal disease) 

Rheumatological 
disease 

Read Primary care Read Codes listed 
in Appendix G, most recent diagnosis 
code within the last year 

Time-varying, updated at first 
observed diagnosis code 

Binary (1= Rheumatological 
disease, 0 = No 
Rheumatological disease) 
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4 Comparison of Pharmacy-Based Measures of 

Asthma Controller Medication Adherence in 

the Asthma Learning Healthcare System Data 
As discussed in Section 3.6.5, adherence has been identified before as an important 

risk factor in the prediction of asthma attacks.  Adherence is not assessed routinely in 

primary care, and while it can be estimated using prescribing records, the methods 

require careful consideration. In this chapter, I conducted an in-depth review of the 

methods described in the literature and conducted experiments in the ALHS data to 

determine the most appropriate approach for my purposes.     

 

 

4.1 Background  
Medication adherence is defined as the process by which a patient takes their 

medication, in accordance to the regimen agreed to with their healthcare provider 184.   

Non-adherence to treatment for chronic diseases is high 184, and is a substantial 

impediment to treatment effectiveness 63,64,185,232–234.  Furthermore, subsequent poor 

clinical outcomes may lead to unnecessary dose escalation and/or additional 

treatment to control symptoms, itself resulting in the onset of avoidable side-effects 
17,19,22,235,236.   

 

Estimates of non-adherence incidence are crucial for approximating associated costs 

(both financial and quality of life) 237–241, identifying the most at-risk patients 242–244, and 

accurately appraising the effectiveness of new treatments 245–247.  Prescription records 

provide opportunity to estimate adherence cost-effectively and at scale, although of 

course not all aspects of adherence can be measured (such as whether the medication 

is being taken once collected).  While many methods have been proposed and tested 
248, there is currently no consensus on what should be considered the gold standard, 

both in terms of clinical relevance and utility in statistical modelling 191,249–251.   
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Boissel et al. 252 summarised the challenges regarding medication adherence neatly: 

“One challenge in studying varying [adherence] is that no single feature can express 
it.”  Despite this, there are very few studies that have reported more than one measure 

of adherence, by which to compare and critique approaches.   For example, Engelkes 

et al. 185 reported that in studies that investigated adherence and risk of asthma attacks 

using EHRs, only 1 in 17 computed more than one adherence measure.     

 

Crucially, studies which have evaluated multiple measures have often demonstrated 

their non-equivalence in associations with clinical outcomes.  Williams et al. 253 
compared two measures, one of which measured the amount of medication prescribed 

over the duration, and one of which measured the amount of time without medication 

available, and found that the latter was consistently more strongly correlated with 

clinical outcomes, including hospitalisations and use of emergency treatment.  

Similarly, Ismaila et al. found that the proportion of time with medication in supply was 

less strongly associated with severe outcomes (such as intensive care unit admission 

and intubation) than the continuous renewal of prescriptions without a gap of more 

than 30 days 254.   

 

Electronic monitoring devices (EMDs) enable the real-time tracking of inhaler use, by 

means of a small electronic chip fitted onto an inhaler, which records the date and time 

of each dose taken 255.  In a recent investigation, outwith my thesis, of patterns of 

adherence within an EMD dataset, I compared five approaches to summarising the 

longitudinal data over a six-month period 256,257.  I demonstrated that the simple 

measure of percentage of doses taken was the best single adherence measure at 

capturing the diversity of medication taking patterns. However, it failed to distinguish 

between those with long intermissions of treatment and those with frequently missed 

single doses, the latter of which has less severe consequences on asthma control.  As 

Alleman et al. 258 noted:  

 

“Some temporal sequences of deviations from the prescribed regimen may be more 

detrimental to treatment effectiveness and safety compared to others.” 
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While this EMD dataset provided extremely granular medication taking data, the 

observed limitations of using a single aggregate measure are only exemplified in EHR 

data, where adherence measures are far less precise approximations of the 

underlying behaviour.    

 

Collectively, these studies highlight that the method of measuring medication non-

adherence is not trivial, and that further work is needed in order to guide best practice.   

As highlighted in my recent review of adherence measurement and reporting in two 

respiratory conditions (asthma and tuberculosis), it is essential to understand how 

longitudinal data aggregation may mask clinically relevant changes in medication 

taking behaviour 255.  In this chapter, I critically appraise a variety of different measures 

of medication adherence in a UK EHR dataset, in order to guide the selection of the 

most appropriate measure for my risk prediction model.  As a chronic condition with 

high prevalence 7,8 and high rates of non-adherence 259–265, asthma is in many 

respects an ideal case study to highlight some of the specific aspects that researchers 

must consider in other diseases.   

 

 

4.2 Methods 
 

 Prescription-Based Adherence Measures 
Two single refill interval measures were used herein; the Continuous Single interval 

measures of medication Availability (CSA; Equation (4.1) and Gaps (CSG; Equation 

(4.2) 189.  Both measures use the supply days obtained at refill (how many days the 

prescription should last for if taken as prescribed; 28 days in example Figure 4.1) and 

the refill interval duration (the time between this prescription and the next; 31 days in 

example Figure 4.1).   

 

Continuous single-interval measure of medication acquisition (CSA): 

 Supply days obtained at refill
Refill interval duration  (4.1) 
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Continuous single-interval measure of medication gaps (CSG): 

 Refill interval duration− 	Supply days obtained at refill
Refill interval duration  (4.2) 

 

M T W T F S S 
{28}       

       

       

       

   {28}    

Figure 4.1: Prescription calendar example, with 28 days of supply obtained in a 31-
day refill interval 

Note: {28} denotes 28 days of supply obtained 

 

Vollmer et al. 190 defined eight adherence measures which used multiple refills (known 

as the Continuous Multiple-interval measures of medication Availability, or CMAs), 

labelled CMA1 to CMA8 (summarised in Table 4.1, with illustrated examples provided 

in Appendix H).  CMA measures 1 through 4 are explicitly measures of medication 

acquisition rather than medication taking, as they use the amount of medication 

obtained over a period in the numerator, rather than any calculations requiring 

acknowledgement of the spacing and gaps in availability.  This makes them relatively 

simply to calculate but results in an overly simplified reflection of the observed time 

series.  In contrast, CMA5 to CMA8 incorporate the timing of the prescriptions (all at 

once, or evenly spaced) within the observation period to better detect gaps in 

medication availability.  They can accordingly be considered Continuous Multiple-

interval measures of medication Gaps, or CMGs.  They are inhibited from detecting 

over-supply of medications, which mark that a patient is using their medication at more 

regular intervals or dosages than they had been instructed 266. 
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Table 4.1: Start and end of analysis window within observation period for continuous, multiple-interval, measures of medication 
availability and gaps 

Measure Start of Window End of Window Derivation 

CMA1 Day of first prescription 
in observation period 

Day before final 
prescription in 
observation period 

Supply days obtained in window
Window duration  (4.3) 

CMA2 Day of first prescription End of observation period Supply days obtained in window
Window duration  (4.4) 

CMA3 Day of first prescription  Day before final 
prescription 

Supply days obtained in window
Window duration  (4.5) 

CMA4 Day of first prescription End of observation period Supply days obtained in window
Window duration  (4.6) 

CMA5 Day of first prescription 
in observation period 

Day before final 
prescription in 
observation period 

Days with medication available in window
Window duration  (4.7) 

CMA6 Day of first prescription End of observation period Supply days obtained in window
Window duration  (4.8) 
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CMA7 Start of observation 
period End of observation period Supply days obtained in window

Window duration  (4.9) 

CMA8 

Day that supply that 
was available at the 
start of observation 
period theoretically 
exhausted 

End of observation period Days with medication available in window
Window duration  (4.10) 
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Of the first four CMA measures, only two (CMA1 and CMA3) were designed for 
patient-level analysis.  Capping an individual’s adherence estimate at 1 is used when 
averaging adherence across a population, as it ensures that one patient’s over-supply 
does not balance out another’s under-supply.  CMA2 is calculated in the same manner 
as CMA1, but with the terminal gap included.  As such, observation periods containing 
only a single prescription can still produce an estimate of adherence, unlike CMA1.  
However, as both CMA1 and CMA2 sum the amount of medication, rather than the 
number of days with medication, obtaining a large amount of medication near the end 
of the follow-up will result in inflated estimates.  It is primarily used in cases where a 
single prescription during the observation period is likely, and thus enables adherence 

estimates for more of the population.  As Vollmer et al. themselves note, in a chronic 
condition such as asthma this is not expected so long as the observation period is long 
enough 190, relative to the expected duration of supply dispensed (typically 1-2 
months).  
 
Of the gap-related measures, CMA6 was excluded from analyses as it relates to CMA5 
in the same way that CMA2 relates to CMA1; it extends the calculation period past the 
final prescription to the end of the person’s follow-up.  CMA7 is a simplified version of 
CMA8, which does not exclude the period in which the remaining supply from the last 
dispensing prior to the start of observation was being used.  The two measures are 
expected to be markedly different only when an intervention of some variety would 
have changed adherence at the beginning of the observation period, such as in a 
clinical trial.  Although no such interventions were deployed in our analysis, we might 
wish to differentiate periods such as calendar years more distinctly so that 
associations between clinical events and changes to adherence might be identified.   
 
As such, the three measures selected as the most appropriate for my study were 
CMA1, CMA5, and CMA8. 
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 Identifying Asthma Controller Medications 
Asthma can be effectively managed in the majority of individuals through regular use 
of ICS 14,267,268, although additional therapies may also be used in those with poor 
control.  One such additional therapy is LABA, which may be prescribed in a stand-
alone, or combination ICS+LABA inhaler.   
 
To identify asthma medications, the medication’s name (a concatenation of the 
PIApprovedName and PIPrescribableItemName variables) was searched for various 
keywords relating to the medication ingredients and brand names listed in Appendix 
D, an update of the classification used previously by Mukherjee et al. 160, with the 

addition of formulations and dosages approved for asthma treatment in adults 
(extracted from the British National Formulary Version 80; September 2020 269).  The 
medications were then labelled with their corresponding drug class (such as LABA).   
 
Many corticosteroids are also used in other dosages and formulations for conditions 
such as rhinitis (e.g. nasal sprays) and Crohn’s disease (e.g. foam enemas).  All 
medications with the formulation listed as ‘sprays’ or ‘drops’ were excluded.   The 
brand names of the medications were also checked to exclude brands relating to 
treatments for inhaled medications for related conditions, such as COPD, or for nasal 
sprays with missing formulation variable (Table 4.2).  Finally, the dose directions 
(ePRNativeDoseInstructions) and medication name (ePRNDName) were searched for 
keywords listed in Table 4.3 to further exclude other formulations.   
 
 
Table 4.2: Corticosteroid asthma therapy exclusion brands 

Corticosteroid Asthma Therapy Exclusion Brands 

"NASONEX", "FLIXONASE", "ANORO ELLIPTA", "SUMATRIPTAN", "AVAMYS", 
“RHINOCORT", "NASOBEC", "NASOFAN", "RYNACROM", "PIRINASE", 
"SPIOLTO", "DYMISTA" , "POLLENASE", "VIVIDRIN",  "DUAKLIR",  "SEEBRI", 
"ULTIBRO",   "PRED FORTE", "TRELEGY", "TRIMBOW", "BRALTUS", "RINATEC",  
"ENTOCORT", "BENACORT", "AIRCORT", "BUDEFLAM", "BUDENOFALK",  
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"CORTIMENT", "JORVEZA", "AZELASTINE", "CUTIVATE", "ELOCON", 
"NALCROM", "CATACROM", "ASPIRE", "OPTICROM", "OPTREX", "BECONASE",  
"MURINE", "ACLIDINIUM", "GENUAIR", "OLADATEROL", "YANIMO" 

 
 
Table 4.3: Corticosteroid asthma therapy exclusion formulation and indication terms 

Corticosteroid Asthma Therapy Exclusion Formulation and Indication Terms 

"NASAL", "NOSE", "NOSTRIL", "NASULE", "HAYFEVER", "EYE", "EAR", "DROP", 
"TONGUE", "FOAM", "ENEMA", "RECTAL", "SUPPOSITOR", "CREAM", 
"OINTMENT", "ULCER", "SKIN", "PATCH", "APPLY" 

 
 
The designated class of medication for each remaining record is reported in Appendix 
D, with corticosteroid solutions distinguished from inhaled formulations by listed 
formulation (“SOL”, “CAPS”, or “TABS”) or by the presence of any of the following 
keywords in the dose directions or ePRNDName:  

"SACHET", "RESPULE", "NEB", "VIAL", "AMPOULE” 
 
 

 Controller Medication Cleaning 
In order to estimate adherence, the date when a medication supply should be 
exhausted must be calculated, if used according to the dose directions: a function of 

the amount that should be taken every day, and the volume of the prescription.   The 
amount that should be taken every day is the product of the number of times a day in 
which medicine should be taken, and the specified dosage each time. 
 
First, the number of daily doses (dose frequency) that should be taken each day were 
extracted from prescriptions, using the keywords (and combinations of keywords) 
listed in Table 4.4.  For example, if one puff of an inhaler twice per day is prescribed, 
the dose frequency is twice daily.  Missing dose frequencies were imputed as the most 
common (mode) by medication type (such as beclometasone, rather than by brand).   
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Secondly, the number of doses (inhalations, tablets, and so forth) of medicine that 
should be taken at each dose time (dose quantity; for example TWO PUFFS) was 
estimated by searching for the numbers one, two, three, or four (in numerals and 
written out) preceded by “take_” or “inhale_”, or followed by “_to_be_taken_”, “_at_”, 
“_daily”, “_puf” (with a single ‘f’ to allow for typographical errors), “_p “ or “p_” (‘p’ being 
commonly used shorthand for puffs).  For all of the above, an underscore is used here 
to denote a space.  When this information could not be extracted, the mode by 
medication type was imputed. 
 
Table 4.4: Daily medication dose frequency keywords and observed incidence 

Daily 
Dose 
Frequency 

Key Words 

Once  

"ONCE","O-D", "O.D" 

"DAILY", "EVERY 
DAY", "EACH DAY"  

WITHOUT 

"TWICE", "TWO TIMES", "2 TIMES", "TD", 
"TID", "BID", "BD", "B-D", "B.D", “FOUR 
TIMES”, “4 TIMES”, “QID” 

“MORN” “NIGHT”, “EVE”, “BEDTIME” 
“MANE” “NOCTE” 
‘NOCTE” “MANE” 
“AM” “PM” 
“PM” “AM” 
“A.M” “P.M” 
“P.M” “A.M” 

Twice 

"TWICE", "TWO TIMES", "2 TIMES", "TD", "TID", "BID", "BD", "B-D", "B.D"   

“MORN” 

WITH  

“NIGHT”, “EVE”, “BEDTIME” 
“AM” “PM” 
“A.M” “P.M” 
“MANE” “NOCTE” 

Four Times "QID", "FOUR TIMES", "4 TIMES"    

Unknown N/A 
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Next, the number of medication units (inhalers, boxes of tablets, and so forth) 
prescribed was extracted (unit quantity).  The ALHS dataset contained two variables 
relating to medication quantity – the prescribed and dispensed amount.  A final 
quantity variable was derived as shown in Figure 4.2.   
 

 
Figure 4.2: Decision tree illustrating the selection of medication quantity from 
prescribed and dispensed quantity variables in the Asthma Learning Healthcare 
System prescribing dataset 

 
In order to estimate the number of prescribed doses, I multiplied the number of 
medications units by the number of doses per unit (unit volume), extracted from the 
free-text prescription information.  To do this, I searched for any of the values [200, 
120, 112, 100, 60, 56, 50, 40, 30, 28, 24, 20, 14, 5] followed by any of “DOSE” (with a 
space), “-DOSE”, or “ X ”.  Additionally, records with quantity of 14 or over were 
included as extracted values of prescribed doses.  The next step was to impute unit 
volume values for the prescriptions where information could not be extracted.  
Medications are frequently available in different pack sizes depending on the strength: 
lower strengths are often available in larger volumes.  As such, the prescribed strength 
was also extracted from the data.  Note that herein strength refers to the amount of 

Medication 
Quantity 

Dispensed 
Quantity 
Missing 

Prescribed 
Quantity <1 
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Quantity <1 
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YES YES 

NO 

NO NO 

1 1 Prescribed 
Quantity 

Dispensed 
Quantity 
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medication that is taken in a specified dose.  Strength is sometimes used 
interchangeably in the literature with dose, however the latter refers herein to the unit 
of medication taken at a single point of ingestion (such as two puffs on an inhaler, or 
one tablet).    
 
First, I searched through the free-text prescription information (ePRNDName) for any 
of the following medication strengths in micrograms [10000, 5000, 4000, 2000, 1000, 
500, 400, 320, 250, 200, 184, 160, 125, 100, 92, 80, 65, 50], followed by “MCG” or 
“MICROGRAM”, with and without spaces between the value and phrase.  Additionally, 
for ICS+LABA medications, which have medication strengths for the ICS and LABA 

components separately, the values could proceed “/” (without a space).  By searching 
through the values in descending order I ensure that “250 MCG” is not extracted as 
“50 MCG”, for example.    Following that, I searched for the following medication 
strengths in milligrams [0.5, 20, 10, 5, 4, 2, 1] followed by “MG” or “MILLIGRAM” 
(again, with or without a space between).  Similarly to the micrograms, 0.5 is searched 
prior to the integer values such that “0.5MG” is not extracted as “5MG”.  Finally, the 
microgram values previously specified could also be followed by “CLICKHALER”, 
“ACCUHALER”, “EVOHALER”, or “TURBOHALER”, or preceded by “QVAR”, 
“SERETIDE”, “SERETIDE MDI”, “INHAL”, or “ALVESCO”.      This process is illustrated 
in Figure 4.3. The extracted milligram value is multiplied by 1000 to convert all 
extracted values into micrograms.   
 
Missing medication strengths were investigated to identify the most appropriate level 
for mode imputation: brand, medication type, or drug class.  
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Figure 4.3: Illustration of the medication strength identification natural language 
pathways 

 
The extracted medication strength for a prescription was compared to a look-up table 
of available medication strengths by brand (presented in Appendix D, pressurised 
inhaler or inhalation powder only for ICS or ICS+LABA), in order to flag values that 
were outside of the range of medication strengths prescribed for that medication 
specifically for asthma, indicating it may have been prescribed for another condition 
and should be excluded.  The range of included medication strengths were only 
matched to their medication type (such as beclometasone), rather than specific brand, 
to account for generic substitution dispensing.   
 
Returning to the unit volume imputation, the modal value by strength and medication 
type and brand was imputed for missing values.  If there were no records with 
extractable unit volume (and thus no mode could be calculated) the value was imputed 
as the smallest unit volume listed for that brand (or the most common brand for generic 
medications) and medication strength from Electronic Medicines Compendium (EMC) 
website, medicine.org.uk, which hosts information on all medicines licensed for use 
the UK.  
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Finally, the prescribed doses were calculated as the number of units prescribed 
multiplied by the unit volume.  For some values of prescribed quantity, it is not always 
clear whether it relates to the number of doses or the number of units (such as 20, 
which is high for a number of inhalers, but low for a number of doses).  The prescribed 
quantity was manually reviewed in order to guide data-driven thresholds for classing 
quantity as number of units or number of doses.  
 
An algorithm was developed by McTaggart et al. 270 for the extraction of prescription 
data from the free-text prescribing fields, which is applied automatically to all research 
datasets extracted from the Scottish PIS.   The accuracy of their algorithm has not 

been tested in data unseen in the derivation process, however in the subset of the 
derivation data pertaining to respiratory therapy, data was extracted for 95.3% of 
records 270.  In the PIS data, however, there was a high amount of missing data in the 
asthma medications, and so I developed my own methods for use herein, as 
described.   When both methods had managed to extract values for the number of 
doses per day, the amount to take at each dose, and the strength of the medication, 
the agreement was between 99.6 and 99.9%.  My methods consistently resulted in 
lower missingness (before imputation): 13% versus 10% for daily dose frequency, 
13% versus 11% for dose quantity, and 62% versus 8% for dose strength.  The most 
common phrases which were not translated (no information extracted) were “Morning 
and night” (equalling two daily dose times), “[n] inhalations” or “[n] inspirations” 
(equalling n units of inhaled medication to be taken at each dose time), and ICS+LABA 
medications such as Seretide and Symbicort which were commonly listed without the 
unit (i.e. “SERETIDE 250”).   
 

 Analysis Plan 
The CSA and CSG were calculated for each refill in the observation period except the 
individual’s last, as the adherence measures require a subsequent prescription to cap 
the duration.  Rolling means of the CSA for the last 3, 5, and 10 refills were also 
calculated, denoted CSA_3, CSA_5, and CSA_10.  The means were not weighted by 
either the chronology of the intervals, or the length of each interval.  
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The definition of each CMA provided by Vollmer et al. 190 states that in CMA5 and 
CMA8 the number of days of theoretical use should assume “medications taken as 
directed and new medications banked until needed”.  In line with work by Galozy et al. 
266, I additionally included two variations of this approach to estimating medication 
supply.  Three measures of supply were used to estimate whether there was 
medication available on each day, with supply estimation method henceforth denoted 
by the numbers below following an underscore: 

1. Assuming all medication was lost or disposed of at a new prescription 
(ignoring leftovers) and calculated using only the time since the last 
dispensing, and how much was dispensed. 

2. Assuming the maximum amount available after a dispensing was double the 
amount dispensed (capping the leftovers) 

3. Assuming all leftovers were available, and no medication was ever lost, 
disposed of, or went out of date (as utilised by Vollmer et al. 190). 

For example, CMA5_1 denotes CMA5 with over-supply discarded.   
 
For all measures, multiple prescriptions obtained on the same day were condensed 
into a single record by summing the supply obtained and removing the first record 
(which would have the refill interval duration calculated as zero days).  For the multiple 
refill measures, I processed separately each individual’s entire observation period, and 
sub-periods of single calendar years and three-month blocks (quarter-years).   
 
CMA8 could only be calculated when some prior history of medication was known, 

such that the supply quantity at the start of the observation period can be calculated.  
For this analysis, the calculation of CMA8 in sub-periods which start at the beginning 
of follow-up will assume no carryover (equivalent to CMA7).   
 
Changes in medication (therapy type, strength, brand, etc.) were disregarded in this 
analysis, such that it was assumed carryover was not discarded when a new treatment 
began, however changes to the number of doses to be taken each day were assumed 
to come into effect immediately, even in cases when the carryover supply was for a 
different medication as well as daily dosing regimen.   
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First, described the results of the asthma prescription identification process, and 
reported on the number of records excluded at each stage, as well as the proportions 
of each characteristic before and after imputation was conducted.  For each measure, 
I provided summary statistics, and Spearman correlation coefficients between one 
interval (refill, quarter, or year) and the next.  Correlation coefficients were considered 
to denote strong (|R|>0.7), moderate (0.3<|R|<0.7), or weak (|R|<0.3) statistical 
associations.  Spearman correlation coefficients measure the strength (and direction) 
of monotonic relationships between two variables.   
 

The Spearman correlation coefficients between different measures for the same time 
period (all of follow-up, years, and quarters) were also calculated.  There is no perfect 
method to map the single interval measures (including the rolling averages) to the 
multiple interval measures, such that they can be compared.  My approach for this 
analysis was to match each single interval measure time-point to the period it matched 
up to. 
 
 

4.3 Results 
 

 Asthma Prescription Record Identification 
A negligible (fewer than 10) number of prescriptions for mAb treatments were 
identified, which were removed from further analysis to prevent accidental disclosure.  

After these exclusions, there were 5,684,338 potential asthma medications, identified 
by brand names and active ingredients, of which 2,342,339 (41.2%) were either ICS 
or combination ICS+LABA medications (Figure 4.4).  ICS Records with formulation 
listed as a spray (n=687,511) or a drop (n=22,938) were excluded, leaving 1,631,890 
were ICS or ICS+LABA medications (32.8%).   
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A further 1332 records were excluded based on the identification of non-asthma 
indication brand names (of which none were ICS or ICS+LABA), leaving 4,970,983 
records.  Finally, 5269 records (1407 ICS or ICS+LABA records) were excluded as 
they contained one or more formulation exclusion keywords, leaving 4,965,714 
records for 187,487 unique individuals (1,630,483 ICS or ICS+LABA).  2675 ICS 
records were reclassed as steroid solutions (Table 4.5), leaving 1,627,808 ICS and 
ICS+LABA prescriptions.   
 
 
 

 
Figure 4.4: Flowchart of ICS and ICS+LABA prescription record exclusions 

Notes: ICS = Inhaled Corticosteroids, LABA = Long Acting β-2 Agonist 

 
 
 
Overall, 44.5% of prescriptions had identified brand names prescriptions, of which 
20.6% had a generic drug substituted at dispensing.   
 
 
 

retained only ICS or ICS+LABA (n=3,341,999 excluded) 

excluded spray or drop formulations (n=710,499) 
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keywords (n=1,407) 
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prescriptions 
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Table 4.5: Asthma medication classifications in the ALHS prescription data 
(n=4,965,714) 

Drug Class Number of 
Prescriptions (%) 

Percentage of class 
branded at prescription 

ICS 644,907 (13.0) 88.3 
CS Solution 2675 (0.1) 27.7 
ICS+LABA 982,901 (19.8) >99.9 
LABA 567,916 (11.4) 21.8 
SABA 1,976,932 (39.8) 21.1 
Other 790,383 (15.9%) 14.3 

Notes: ‘other’ category included LTRA (3.2%), Long-Acting Muscarinic Antagonists (LAMA; 1.0%), 
Theophylline (1.2%), and OCS (10.2%) medications. 
 
 
 

 Asthma Controller Medication Prescription Record Processing 
The modal dose frequency by medication (ingredients) was imputed when a value 
could not be extracted (Table 4.6):  once daily for Ciclesonide and Fluticasone 
Vilanterol (n=1210), else twice daily (n=162,102).   The modal dose quantity by 
medication was also imputed when a value could not be extracted: one dose at each 
daily dose time for Budesonide, Ciclesonide, Fluticasone Vilanterol, Fluticasone 
Salmeterol, and Mometasone (n=71,880), else two (n=103,621). 
 
181 prescriptions had missing dispensed quantity (0.1%), and 50,556 (3.1%) had 
distinct prescribed and dispensed quantities.  Of these, 50,490 had prescribed quantity 

of zero (99.9%).  59.5% of prescriptions had final quantity value 1, 39.7% had 2, 0.8% 
had higher.  The maximum recorded quantity was 480.   
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Table 4.6: Asthma controller medication daily dose frequency and quantity of doses 
per dose time 

(N=1,627,808) 

Before 
Imputation 

After 
Imputation 

Percentage of 
Prescriptions 

Dose Frequency   
 Once 2.3 2.4 
 Twice 87.4 97.4 
 Four Times 0.2 0.2 
 Unknown 10.0 - 
Dose Quantity   
 One 35.8 40.2 
 Two 53.0 59.3 
 Three 0.2 0.2 
 Four 0.3 0.3 
 Unknown 10.8 - 

 

 
221 prescriptions had extracted medication strength values which were not listed on 
the lookup table presented in Appendix D, and were thus excluded.  This left 1,627,587 
prescriptions for 91,332 unique individuals.  No strength value could be extracted for 
8.4% of prescriptions (n=136,151), and the modal medication strength by medication 
was imputed.   
 
The unit volume could be extracted for only 15.2% of records, and the modal value by 
medication strength and medication type and brand was imputed.  Of the 60 
combinations of medication, brand, and medication strength, 42 (70%) had at least 
80% confidence: the imputed modal unit volume leading by a majority of at least 80% 
of the samples with extracted values.  55 of the combinations (92%) had confidence 
over 60%, translating to 82.6% of the imputed prescriptions.  The most common 
combinations also tended to have higher confidence, leading to a median confidence 
in imputed records of 99.97% (interquartile range, or IQR, between 99.8 and 100%).  
There was only one combination confidence lower than 50% (Relvar Ellipta 184mcg), 
but this represented only 0.3% of the imputed records (n=3792).  The next lowest 
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confidence combination was Seretide 250mcg (n=233,068) for which 59% of the 
extractable records stated 120 doses per pack and 41% said 60.  For the 1.2% of 
prescriptions for which no modal value could be calculated for imputation, values were 
manually imputed.    From manual review, the threshold above which quantity was 
assumed to quantity doses rather than units was 15.  
 
The expected duration of the medication supply was calculated as the quantity 
dispensed divided by the daily number of doses.  The median duration was 60 days, 
with an interquartile range of 30 to 60 (range 3.5 to 1100).  The prescription interval 
duration was calculated as the number of days between the date of that prescription, 

and the next chronological prescription for that person.  The range was 0 to 2964 days 
(median 53, and IQR 30 to 88), with 91,332 records (one per person) with no 
calculated interval duration, as they were either the only, or the final prescription in the 
study period for that person.   If multiple prescriptions were issued on the same day, 
their quantities (and expected supply durations) were summed, thus assuming that 
the medications would be taken sequentially and not simultaneously.  This resulted in 
1,600,419 records being retained. 
 
15,329 people (16.8%) had only a single prescription during their follow-up (Figure 
4.5); their single-interval measures (CSA and CSG), CMA1, and CMA5s could not be 
calculated for any interval length.    
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Figure 4.5: Bar chart of the number of prescriptions per individual during their follow-
up in the Asthma Learning Healthcare System Dataset 

 

 Single Interval Adherence Measures 
Of the single interval measures, the CSG (Equation (4.2) is the only one with a finite 
range [0, 1).  Across all people, the median prescription interval gap was <0.001 (mean 
0.21), and the upper quartile was 0.41.  The within person median CSGs ranged 
between 0 and 0.99, with a median of medians of 0.24.   
 
The CSA and cumulative variations were all unbounded, and the CSA had a maximum 
value of 480 (median 1.00).  Longer windows (more refills) for rolling averages of CSA 
resulted in higher values (Figure 4.6), likely due to some combination of survivor bias 
(only 49% of people had 10 or more prescriptions during their follow-up) and the 
reduced impact of a single poor interval (regardless of its length or chronology).   The 
interquartile range width was similar between window sizes, however (between 1.01 
for CSA_3 (0.79 to 1.80) and 1.08 (0.57 to 1.67) for CSA; Table 4.7).  Density plots of 

the single interval adherence measures are presented in Appendix I. 
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Figure 4.6: Boxplots (without outliers) of the values of each single interval availability 
adherence measure 

Notes: CSA = Continuous Single interval measures of medication Availability 
The number following the underscore denotes the number of previous prescriptions the estimate is 
averaged over. 
Outliers (extending above 50 for the rolling average CSAs, and up to 480 for CSA) have been 
excluded from this plot to aid readability. 

 
 
 
Table 4.7: Summary table of the values of each single interval availability adherence 
measure 

 CSA CSA_3 CSA_5 CSA_10 
25th Percentile 0.59 0.79 0.86 0.95 
Median 1.00 1.10 1.17 1.29 
75th Percentile 1.67 1.80 1.88 2.02 
 Interquartile Width 1.08 1.01 1.02 1.07 

Note: The number following the underscore denotes the number of previous prescriptions the 
estimate is averaged over. 
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Table 4.8 summarises the correlation coefficients between one refill and the following 
two refills (respectively).  The correlation for the next refill was strong for the rolling 
window measures and moderate for the single interval measures.  For the refill after 
next, the correlation remained strong for only CSA_5 and CSA_10 (R 0.817 and 0.914, 
respectively).   
 
Table 4.8: Spearman correlation coefficients between single prescription adherence 
measures for subsequent refills. 

Measure 
Spearman Correlation 

Compared to one refill later Compared to two refills later 
Correlation Coefficient (Number of Samples) 

CSA 0.422 (n=1,433,084) 0.419 (n=1,364,718) 
CSG 0.393 (n=1,433,084) 0.386 (n=1,364,718) 
CSA_3 0.836 (n=1,242,777) 0.682 (n=1,187,508) 
CSA_5 0.908 (n=1,135,211) 0.817 (n=1,085,638) 
CSA_10 0.958 (n=909,304) 0.914 (n=869,819) 

Notes: All correlation coefficients were statistically significant, with p<0.001 
The number following the underscore denotes the number of previous prescription refills the estimate 
is averaged over. 
 
 

 Multiple Interval Adherence Measures 
There were 647,585 person-years, of which 232,251 (35.9%) contained no 
prescriptions and 114,890 (17.7%) contained only one.  Therefore, CMA1 and CMA5s 
could not be calculated for 53.6% of person-years.  Similarly, there were 2,230,480 
person-quarters, of which 1,183,672 (53.1%) contained no prescriptions and 643,809 
(28.9%) contained only one.  Therefore, CMA1 and CMA5s could not be calculated 
for 81.9% of person-quarters.   
 
Table 4.9 shows that as the interval decreases in length, the values increased for the 
decreasing number of intervals in which a value could be calculated.  Quarters in which 
there were multiple prescriptions (and a value could thus be calculated) tended to be 
instances of more medication being collected than is required for that period.  Density 
plots of the single interval adherence measures are presented in Appendix I. 
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Table 4.9: Median and spread of CMA1 across time windows 

Time Window Median Interquartile 
Range Range Number Not 

Calculable 
All of follow-up 0.609 0.318-0.979 0.007-120.000 15,329 (16.8%) 
Years 0.929 0.600-1.333 0.040-480.000 347,141 (53.1%) 
Quarters 1.225 0.896-2.000 0.078-480.00 3,414,152 (81.9%) 

  
 
Like the CMA1, the three CMA5 measures require there to be at least two prescriptions 
in each analysis interval, such that there is at least one with a known end date.  The 
CMA8 measures have no such requirement.  In Figure 4.7, both the CMA5 and CMA8 
measures (for all supply calculation methods) also increase on average when the 
interval is shorter, even for the single prescription cases with the CMA8s.  While the 
CMA8s were always markedly lower than their CMA5 counterpart (by supply 
calculation method), the difference decreased with the length of the interval.  
 
There is also a consistent trend with higher values when over-supply is allowed, but 
also note that the capped oversupply closely resembles the uncapped oversupply in 
distribution, implying that especially high (outlier) quantities of over-supply were 
uncommon.   
 
The Spearman correlation between the subsequent years was highest for the CMA8s, 
and substantially lower for CMA1 than any other measure (Table 4.10). In both the 

CMA5s and CMA8s, the supply calculation method with no oversupply had the highest 
correlation to the next period.  Across all period comparisons, the CMA8s had the 
strongest correlation. This difference in the continuity between the measures 
highlights the effect of excluding the incomplete prescription intervals in the time-
period; the retrospective CMA8 is a much more appropriate proxy for current 
adherence than either CMA5 or CMA1.   
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Figure 4.7: Boxplots of CMA5s and CMA8s for (A) all follow-up time, (B) years of 
follow-up, and (C) quarters of follow-up 

Note: Number following underscore denotes the supply estimation approach: 1) Assuming all 
medication was lost or disposed of at a new prescription (ignoring leftovers) and calculated using only 
the time since the last dispensing, and how much was dispensed, 2) Assuming the maximum amount 
available after a dispensing was double the amount dispensed (capping the leftovers), 3) Assuming all 
leftovers were available, and no medication was ever lost, disposed of, or went out of date. 

(A) 
 
 
 
 
 
 
 
 
(B) 
 
 
 
 
 
 
 
 
(C) 
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Table 4.10:  Spearman correlation between multiple prescription adherence measures 
for subsequent intervals (years and quarters) 

Measure Spearman Correlation 
Compared to 
one year later 

Compared to 
two years later 

Compared to 
one quarter 

later 

Compared to 
two quarters 

later 
CMA1 0.512 

(n=231,536) 
0.428 

(n=177,540) 
0.459 

(n=345,126) 
0.418 

(n=300,438) 
CMA5_1 0.463 

(n=231,536) 
0.387 

(n=177,540) 
0.387 

(n=345,126) 
0.346 

(n=300,438) 
CMA5_2 0.405 

(n=231,536) 
0.323 

(n=177,540) 
0.370 

(n=345,126) 
0.331 

(n=300,438) 
CMA5_3 0.397 

(n=231,536) 
0.317 

(n=177,540) 
0.369 

(n=345,126) 
0.330 

(n=300,438) 
CMA8_1 0.710 

(n=556,253) 
0.612 

(n=466,263) 
0.617 

(n=2,139,148) 
0.550 

(n=2,049,158) 
CMA8_2 0.692 

(n=556,253) 
0.595 

(n=466,263) 
0.616 

(n=2,139,148) 
0.549 

(n=2,049,158) 
CMA8_3 0.691 

(n=556,253) 
0.594 

(n=466,263) 
0.616 

(n=2,139,148) 
0.549 

(n=2,049,158) 
Notes: All correlation coefficients were statistically significant, with p<0.001 
Number following underscore denotes the supply estimation approach: 1) Assuming all medication was 
lost or disposed of at a new prescription (ignoring leftovers) and calculated using only the time since 
the last dispensing, and how much was dispensed, 2) Assuming the maximum amount available after 
a dispensing was double the amount dispensed (capping the leftovers), 3) Assuming all leftovers were 
available, and no medication was ever lost, disposed of, or went out of date. 

 
 

 Correlation between Time-Matched Adherence Measures 
The single interval CSA was strongly (negatively) correlated with the CSG (-0.91; 
Figure 4.8), and shorter window rolling averages of CSA were more correlated with 
the single interval CSA (0.74, 0.66, and 0.57, in order of window length).  The 
correlations between the 3-refill and 5-refill measures, the 3-refill and 10-refill 
measures, and the 5-refill and 10-refill measures were both strongly positive (0.89, 
0.76 and 0.85, respectively). 
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Figure 4.8: Spearman correlation between single interval adherence measures at 
each prescription refill 

Note: The number following the underscore denotes the number of previous prescriptions the 
estimate is averaged over. 

 
 
Over the entire study period, for people with at least two prescriptions, the correlation 

between all multiple-interval measures was mostly strong (R>0.65).  The correlations 
were above 0.9 within the CMA5s and CMA8s, and also between the CMA5s and 
CMA1 (Figure 4.9A).  The same was true within years and quarters, with the only 
substantial difference being the declining correlation between CMA1 and the other 
CMA measures as the interval decreased (Figure 4.9B and Figure 4.9C).  
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Figure 4.9: Spearman correlation between multiple interval adherence measures in (A) all of follow-up, (B) years, and (C) quarters  

Notes: Number following underscore denotes the supply estimation approach: 1) Assuming all medication was lost or disposed of at a new prescription 
(ignoring leftovers) and calculated using only the time since the last dispensing, and how much was dispensed, 2) Assuming the maximum amount available 
after a dispensing was double the amount dispensed (capping the leftovers), 3) Assuming all leftovers were available, and no medication was ever lost, 
disposed of, or went out of date. 
The correlation between the CMA8 measures when there was only a single prescription was always 1; these cases were excluded so as not to skew the 
results.  
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There is no perfect method to map the single interval measures (including the rolling 

averages) to the multiple interval measures, such that they can be compared.  Figure 

4.10A shows that over an individual’s full follow-up (each individual refill is matched to 

the person’s full follow-up adherence estimates), all single interval measures are 

moderately well correlated with all CMAs.  The strongest correlation is between CMA1 

and the 10-refill CSA, but this is only available for people with at least 10 refills, which 

likely introduces some confounding.  When the individual refills were matched to their 

annual or quarterly adherence estimates (Figure 4.10B and Figure 4.10C) similar 

trends were observed, but had strong correlation with the shorter window rolling 

measures (3- and 5-interval, and 10-interval at the annual level only).    

 

4.4 Adherence Measure Selection 
 

 Principal Findings 
Appropriate selection of an adherence measure is crucial to ensure that the nuance in 

prescribing records is captured.  Rolling average windows covering higher numbers of 

refills are more susceptible to survivor bias, and neglect recent gaps in prescriptions, 

while single interval measures have massive variance.   Across all individuals with 

asthma controller medications, 17% had only a single prescription, and thus no values 

for CMA1 or the CMA5s could be calculated.  Periods of oversupply were common, 

but the minimal difference between the capped and uncapped oversupply estimates 

demonstrate that they rarely skewed estimates substantially in annual and quarterly 

estimates (more so in the full follow-up).  The CMA8 had stronger correlation between 

subsequent years and quarters than either the CMA1 or CMA5s, which meant that 

retrospective estimates (such as for the previous year) were likely a better proxy for 

current use. 
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Figure 4.10: Spearman correlation between single and multiple interval adherence measures in (A) all of follow-up, (B) years, and 
(C) quarters 

Notes: The number following the underscore in the CMA measures denotes the supply estimation approach: 1) Assuming all medication was lost or disposed 
of at a new prescription (ignoring leftovers) and calculated using only the time since the last dispensing, and how much was dispensed, 2) Assuming the 
maximum amount available after a dispensing was double the amount dispensed (capping the leftovers), 3) Assuming all leftovers were available, and no 
medication was ever lost, disposed of, or went out of date. 
The number following the underscore in the single interval measures denotes the number of previous prescriptions the estimate is averaged over. 
The correlation between the CMA8 measures when there was only a single prescription was always 1; these cases were excluded so as not to skew the 
results.  
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 Results in Context 
A recent review by LeClerq and Choi 271 compared four variations on the CMA5 in 
pharmacy dispensing records for multiple sclerosis patients, in which the end of the 
observation window is censored in different ways.  All variations used the equivalent 

of the uncapped medication supply estimation approach defined herein.  The window 
end decision rule for the first version was as defined for the CMA5: the date on which 
the last refill in the full observation window was made (referred to as ‘last fill’).  In the 
second, the observation window continued until some predefined date, much like the 
CMA8 (‘fixed’).  In the third, the window ended when the last fill would be exhausted, 
if used compliantly (‘last fill plus’).  Finally, the fourth approach adds up to 30 days of 
non-adherence to the end of the last refill’s exhaustion date (‘last fill plus plus’), with 
the rationale that one cannot be certain whether the treatment had been discontinued 
by the medication professional, but wish to compromise between the last fill plus and 
fixed approaches.  Across all participants, the mean adherence was lowest for the 
fixed variation (0.87, with 23% under 0.8) and highest for the last fill plus variation 
(0.92, with 14% under 0.8).  In subsets of participants with higher numbers of refills 
during follow-up, the difference between the variations became smaller.    This is well 
aligned with our findings in Figure 4.7, i.e. that the CMA8 was substantially lower for 
the full follow-up than the CMA5, but the difference decreased in magnitude when 
annual or quarterly periods were considered, as full periods without a single 
prescription were removed.  The pertinence of the possibility of authorised medication 
discontinuations effecting estimates depends largely on the study design and 
population.   

 
Similarly, Bjarnadottir et al. challenged some of the assumptions and parameters used 
in their calculation of an adherence measure equivalent in its primary state to the 
CMA1 as defined herein 272.  In one comparison, they noted, similarly to LeClerq and 
Choi 271, that using fixed follow-up end dates led to lower mean adherence than when 
an individual’s follow-up was right-censored at the theoretical end of their last refill’s 
supply.  Similarly to this study, they also reported that shorter follow-up periods 
resulted in higher mean adherence, that people with fewer prescriptions tended to 
have lower adherence when a fixed end-point was used, and that disposing of any 
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over-supply drastically reduced mean adherence (54% of the study participants had 
at least one overlap in prescriptions during follow-up).   
 
A recent comparison of adherence measures in a South African pharmacy claims 
database demonstrated using Bland-Altman plots (scatterplots of the difference 
between two measures against the mean of the two measures) that even similarly 
defined measures may show poor agreement 273.  Evidently, measures for estimating 
adherence from EHRs are very sensitive to key underlying assumptions.  Buono et 

al.’s recent review of EHR adherence measurement methodology 274 highlights the 
importance of matching the measure to its intended purpose in the analysis.  For 

example, it is important to consider the most meaningful timescale for a specific 
purpose.  Averaging adherence across a long period means that it would not be 
possible to evaluate how changes to adherence affect the likelihood of an event 
occurring in a short period, for example adherence in last month might be more 
pertinent than in the previous calendar year for predicting whether an attack is likely 
to occur in the next week.  On the other hand, only using adherence measured over a 
short duration to extrapolate over a longer study might introduce some bias from 
seasonal variations in adherence.  Similarly, the optimal approach for estimating 
medication supply may vary depending on the condition (liquid solutions, for example, 
are more prone to volume loss by spillage than tablets) and the population (such as 
children being perhaps more likely to have multiple inhalers at one time than adults).    
 

 Limitations and Future Directions 
A fundamental limitation of measuring adherence from EHRs is that prescription 
recording systems cannot record whether a medication is actually taken, and indeed 
whether it is taken appropriately (including with good or poor technique).  Unlike 
treatments which are taken orally, poor inhaler technique limits the ingestion of inhaled 
asthma medication 244. As such, EHRs cannot be considered a good estimator of the 
implementation of a treatment regimen 188.   
 
If prescribing and dispensing records are both available (and linked), then it is also 
possible to identify when an individual has failed to initiate a prescribed regimen.  In 
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datasets such as the one used herein, in which entries correspond to pharmacy 
claims, only dispensed medications are recorded and thus regimens which were never 
initiated cannot be detected.  Asthma non-initiation rate estimates from the USA and 
Canada range between 8-20%, as ascertained from prescriptions claims datasets 259–
263.    
 
The primary value in estimating adherence from EHRs is in evaluating an individual’s 
persistence, including the duration and incidence of unscheduled treatment 
intermissions (an extended duration of consecutively missed doses, with the minimum 
duration varying by treatment and condition 275–279).  Intermissions may occur many 

times in the unbounded duration of asthma treatment, particularly as 30-50% of 
asthma patients in western Europe are classed as having intermittent asthma 280–282, 
according to the GINA guidelines 35.  Additionally, the most common reasons for a 
sanctioned treatment discontinuation are possible to identify in the EHRs, by 
searching for changes in prescriptions 250 or Read Codes relating to revised diagnosis, 
a change in regimen, or asthma resolution (common in childhood asthma 283 and 
occupational asthma 284).   
 
Specifically relating to the methods employed herein, the primary limitations of this 
study relate to the extreme complexity of EHRs, and the procedures that were 
implemented for data extraction.  First, data extraction from the free-text fields of the 
drug description and instruction was handled using very basic approaches.  In the 
following example dose instructions, the bold text highlights words (and segments) 
which will result in the exclusion of the corresponding records, according to my 
process: 
 

“TAKE 8 A DAY IF PEAK FLOW DROPS BELOW 220 IN ACCORDANCE WITH 
PERSONAL ASTHMA PLAN” 

 
“MAKE APPOINTMENT FOR REVIEW PLEASE” 

 
“USE AFTER NASAL SPRAY” 



 106 

This was unfortunately unavoidable without conducting a full manual review, or using 
more complex natural language processing techniques, which was outside of the 
scope of this study.  
 
Secondly, the data linkage between prescribing and dispensing records in Scottish 
EHRs (conducted by National Services Scotland Information Services Division) is not 
a perfect process, as prescriptions containing multiple items have only a single 
identifier, rather than an item-specific identifier.  As such, if the items are listed in a 
different order on the dispensing and prescribing records, additional information 
relating to a specific item (such as dosing direction notes from the pharmacist) may 

be assigned to the wrong prescription item.  Although feedback and improvement to 
this system has resulted in improvement over time, the issue still persists, and the 
incidence of such mis-matching (and subsequent erroneous exclusions) is hard to 
estimate.  From a manual review of a sample of 1000 asthma medications included 
herein, less than 1% were obviously incorrect (either named a different medication or 
described a method of ingestion inherent to a different formulation, such as ‘inject’).   
Although rare, this mismatch is likely to have led to a small number asthma-related 
records being erroneously excluded on the basis of indication, as they contained 
exclusion keywords.  Motivated by this observation, I designed an algorithm which 
could be used to probabilistically link prescribing and dispensing records for asthma 
controller medications 265, utilising the information recorded in free-text fields; further 
details are provided in Appendix J. 
 
There is some evidence that the use of EHRs to estimate adherence is more 
appropriate in adults than in children: the latter may result in substantial 
overestimation, as seen by Jentzsch et al. 264 in their study of children with asthma 
(population average 70% vs 52%), as the refills are likely coordinated by their parents, 
regardless of the child’s medication taking.  Furthermore, the impact of not being able 
to assess implementation in EHRs is thought to be low in adults.  In the general adult 
population, it has been estimated that (across multiple conditions) only 10% of adults 

could be classed as engaged (not discontinued), but poorly implementing their 
treatment regimen 285.   
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A final note is that it is becoming increasingly common to recommend patients self-
manage their treatment to some extent, and use their inhaler only as needed 188,286,287.  
Such patients can be flagged using dosage instructions recorded in prescription 
records.  For those patients, adherence is not a meaningful measure of their 
exacerbation risk, although medical usage patterns, measured in the same way, may 
still have some predictive value.   
 

 Adherence Measure Selection for Asthma Attack Risk Prediction 

Modelling 
First, consider the most meaningful timescale for measurement for my aim: short-term 
prediction of asthma attacks.  Averaging adherence across the entirety of follow-up 
(up to a maximum of 7 years in ALHS, see Section 2.2.1) will not be as sufficiently 
sensitive to predicting asthma attacks at smaller resolutions, such as in the following 
four weeks for example.  Furthermore, in this analysis the upper interquartile range of 
expected prescribed medication supply was 60 days.  As such, one would expect the 
majority of patients to have at least one refill every quarter; however this stipulation 
may bias estimation such that individuals with overlapping prescription supplies or 
longer duration supplies (more common when asthma is stable) are more likely to 
have quarters with no prescriptions, and thus no estimable adherence.  As such, I 
decided that years were the optimal period lengths for CMA-based adherence 
estimation.  In the single interval availability measures, the 3-refill CSA rolling average 
was selected as the optimal balance between the risk of discounting previously 
accumulated oversupply and the risk of a recent interval of poor adherence being 

masked by prior intervals of good adherence.  Similarly, the availability measures were 
preferable to the complementary medication gaps measure, as averaging the gaps 
will not enable oversupply periods to balance out longer intervals.   
 
Secondly, the optimal CMA approach was selected.   Both CMA5 and CMA8, which 
use the estimated medication supply, have some ability to cap outliers, while CMA1 
has an infinite range.  Both CMA1 and CMA5 cannot be calculated for those with only 
one prescription during a year, whereas CMA8 is available for anyone with at least 
one prescription during the year, which was found to be common in this data.  When 
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treatment is discontinued, CMA5 and CMA1 will discard the time from the last 
prescription in the year onwards, whereas CMA8 will estimate poor adherence.  The 
side-effect that authorised discontinuation will result in low estimates of adherence 
may be less pertinent in the main analysis because those with asthma resolved flags 
were excluded, assuming they are well utilised codes.  As such, CMA8 was selected 
as the optimal CMA for this analysis, using the capped over-supply approach with one-
year intervals.   
 
Next, the approach for estimating medication supply must be determined.  While 
Figure 4.7 shows that the population distribution of the measures does not vary greatly 

between supply estimation approaches at the annual and quarterly level, Table 4.9 
shows that at an individual level there is a noticeable effect resulting in allowance of 
oversupply consistently reducing correlation between subsequent periods.  Due to the 
finding by Bjarnadottir et al. 272 of high prevalence of overlapping prescriptions, the 
capped oversupply (second variation) approach was selected as an appropriate 
compromise between the risk of inflating supply due to medication switching or loss, 
and the risk of ignoring genuine overlaps.   
 
The final comparison is between the multiple interval measure (CMA8_2 annual) and 
the single interval measure (CSA_3).  As demonstrated in Figure 4.10, the correlation 
between CSA_3 measurements in the same year as the corresponding CMA8_2 
values was moderate (correlation coefficient 0.63).  To better understand the 
relationship between the two measures I created a Bland-Altman plot, which plots the 
mean of the two values against the difference between them (Figure 4.11).   
 
There is a fairly consistent average difference of approximately zero until the mean of 
the two values exceeds one, with greater heterogeneity as the mean increases.  When 
the CMA8_2 is poor, it is either due to consistently poor implementation or 
discontinuation (with or without poor implementation prior to discontinuation).  
Recalling that CSA_3 right-censors at the date of the most recent prescription, when 

discontinuation did occur, the difference between the CSA_3 and CMA8_2 is entirely 
dependent on the implementation prior to discontinuation, leading to increased 
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heterogeneity of deviation between the measures.  Ultimately, I decided to use both 
CMA8_2 at the annual level (for the previous calendar year) and CSA_3 in my risk 
prediction model.  The two measures enable me to capture different aspects of 
adherence without concern for their collinearity.   
 
 
 

 
Figure 4.11: Bland-Altman plot of annual CMA8_2 and (year matched) CSA_3 
estimates 
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5 Machine Learning 
In this chapter, I introduce in greater detail the core concepts of machine learning and 
the process of building a machine learning model.  Following that, I describe the 
classification algorithms and model performance measures considered for this 
analysis and introduce the concepts of training data enrichment and model 
interpretability.   
 
 

5.1 Introduction to Machine Learning 
As stated in Section 1.1.4, machine learning is a term with no universally accepted 
definition 52,53.  Herein, I use the term to describe the set of statistical methods which 
use computational algorithms to make estimations or predictions, or to provide 
statistical mapping for decision support.  These estimations are more agile than rule-
based approaches in cases where the statements are extremely complex to program 
manually (like predicting whether an email is spam by the content), but they can also 
be more accurate in cases where the true underlying physiological mechanism is 
unknown (for example, the immediate occurrence of an asthma attack).    
 
Supervised learning models utilise algorithms applied to labelled training data, in 
which a corresponding outcome is known for each sample, and determine a functional 
form associating a set of features with the outcomes.  Unsupervised learning, in 
contrast, does not require known outcomes, and obtains information about the data 
structure based on the features alone.   For both learning paradigms, although most 
commonly in supervised learning, it is possible to evaluate the performance of the 
model by comparing the estimations against the ground truth; observed outcomes 
withheld from the model training process.  In supervised learning, this can be done by 
querying completely unseen data with known outcomes.  In unsupervised learning, it 
is good practice to evaluate how well the model distinguishes samples included in the 
training data as controls (deliberate outliers).   
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As previously introduced in Section 1.1.4, parametric algorithms are defined in terms 
of a finite number of unknown values, known as parameters, that are estimated from 
the data.  Generalised linear algorithms, including logistic regression and linear 
regression, are the most commonly used parametric statistical mapping algorithms.  
The functional form (f) of the design matrix X defines the expression of random 
variables and parameters mapping the samples to their outcomes. A random variable 
is a variable whose value depends on the outcome of a random phenomenon.   For 
example, the random variable ‘age’ can be mathematically interpreted as a function 
which maps any randomly selected individual from a population to their years of age.  
The realisations of each random variable can be presented using a probability 

distribution, for example the probability of a random person’s age being over 105 years 
old is very small.  A random variable can be composed of single features, or 
interactions between multiple features.  Their specification is based on scientific 
domain knowledge, and intuition.  The data-driven estimations of the parameters may 

consist of the intercept (a), the expected mean outcome value when the realisation of 

all random variables is equal to zero, and the random variable coefficients (b1, b2…bk), 

which quantify the average contribution of a unit change in the realisation of a random 
variable, all else being equal, to the outcome.   
 
Non-parametric algorithms, on the other hand, do not require the specification of the 
parameters or random variable formulation, and the functional form is instead inferred 
as part of the statistical learning process.  They are thus more flexible when 
relationships between features are non-linear 55,56.  This does, however, make their 
interpretation more complicated 288,289.   
 
There are, of course, advantages to both parametric and non-parametric models.  
Parametric models are more easily interpreted, as the coefficients can be used to 
quantify the relative effect of the features onto the outcome.  This can help identify 
important risk factors in prediction models, for example.  They are also able to test 
hypothetical relationships, with non-zero coefficients often indicating that a term was 
useful in the model, assuming there is no collinearity.  Finally, they require less data 
to build than non-parametric models, as the structure is pre-determined rather than 
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inferred from the samples.  Non-parametric models, however, often outperform 
parametric models based on predictive accuracy, particularly when domain knowledge 
is limited, but there is a vast quantity of available relevant historical data, as is the case 
when using EHRs.   
 
 

5.2 Process Flow for Model Training, Selecting, and Testing  
As introduced in Section 1.2, the development of any statistical learning model is 
conducted in three stages: (1) a selection of algorithms (and hyper-parameters) are 
chosen, and trained on the partition of the data known as the training set, (2) the 

trained models are compared in the validation set in order to find the optimal model 
selection (including the choice of algorithm and hyper-parameter values), (3) the 
chosen model is evaluated using the testing set.   
 
When a model is trained, the model fit in the model training data (in-sample model 

validation) can be evaluated.  If the model overfits to the training data, however, it may 
not generalise well to out-of-sample data.  The balance between avoiding overfitting 
and capturing the pertinent relationships between features in the data is known as the 
bias-variance trade-off.   
 
Model validation in out-of-sample data can confirm whether overfitting has occurred to 
a degree such that the model’s performance might suffer in a new testing dataset, and 
hence we cannot be confident about how well the model will generalise.  As introduced 
in Section 1.2, models can be validated internally (from a random partition of the same 
dataset, and thus taken from the same feature distribution) or externally (in a distinct 
dataset, with potentially different feature distributions).    
 
External validation is often a better confirmation that over-fitting has not occurred, as 
the differences in distributions of uncommon feature values may highlight weaknesses 

in the model, however it may not always be possible to obtain sufficiently similar data 
from another source.   
 



 113 

One method of internal validation is to set aside a random subset of the data for 
validation purposes, however this both a) reduces the sample size that is available to 
train the model, and b) incurs the risk that the partitioning itself randomly produced 
especially good or bad performance.  The former is particularly problematic if the 
training data sample size was small, and thus you risk not capturing the full diversity 
of the applicable population.  One way to overcome both problems, however, is to use 
k-fold cross-validation (CV), in which one kth of the data are used for testing (and the 
remainder for training) in a process repeated for a total of k times, ensuring that each 
sample is in the testing partition in exactly one of the k folds.  Using a higher number 
of folds is often desirable, but decreases the quantity of data that are used for testing 

and thus increases the variation between folds.    
 
Other variations of cross-validation include the leave-one-out CV, in which each 
sample is in turn used as the single query sample for a model trained on all remaining 
data (equal to k -fold CV when k is equal to the number of samples).   This is known 
as an exhaustive method, such that every combination of testing and training samples 
(within the parameters that the testing set size must be equal to one sample) are 
permuted.  The generalised form, leave-p-out CV, takes all possible ways of dividing 

the data such that the testing partition comprises p samples.  This results in !!
#!(!%#)! 

permutations, in which n is the sample size, and x! denotes the factorial of x. 
 
In stratified CV, the k folds are selected such that the class balance (or mean response 
for regression) is approximately equal for all partitions.  Finally, in repeated CV, the 
data partitioning in k-fold CV is repeated multiple times.  This allows for smaller values 
of k to be used when the sample size is low, but with additional confidence in the 
average performance.    
 
  



 114 

5.3 Classification Algorithms 
Classification, as introduced in Section 1.2, is the estimation of outcomes from a finite 
set, also known as a categorical outcome, or the class, of a sample.  The classification 
algorithms which will be tested in my risk prediction model are described in detail in 
the following sections.   
 

 Generalised Logistic Regression 
Generalised Logistic Regression (GLM) is a statistical model, based on the logistic 
function, for modelling binary classes.  In the logistic model, the log-
odds (the logarithm of the odds, denoted l) for the event/class is a linear 

combination of k continuous or binary features (b) and their respective parameters (a):   

 
 ! = 	a+	%'&' +	%(&( +⋯+	%)&) (5.1) 

 
The logistic function can then be used to convert log-odds (l) to the probability (p) of 
positive event, given the observed data.   The standard logistic function, with values 

in the range [0,1] and a logistic growth rate of 1, is defined as follows: 
 
 ( = 	 1

1 + *%* (5.2) 

 
The estimated class is then assigned by comparing the probability of the positive class 
to some threshold, typically with default 0.5.   
 
In general terms, regression models estimate the parameters of the model by finding 
the set of parameter values which maximise some function.  In logistic regression, 
maximum likelihood estimation is most commonly used: the parameter values which 
make the derivative of the log-likelihood equal to zero (the stationary point, in this case 
the maxima) are found using the Newton-Raphson optimisation algorithm (expressed 
as the Iteratively Reweighted Least Squares, or IRLS) based on the gradient descent 
method. The exponent of the coefficients from a logistic regression model, known as 
the Odds Ratio (OR), are a common way of reporting the estimated strength of 
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association.  Increased odds (OR>1) mean that higher values of that feature (or the 
presence, for binary features) are associated (correlated) with higher odds of the 
outcome.  An OR of 1 implies no correlation.  For more information, and the formulation 
of the IRLS, refer to Hastie et al. (Book chapter 4) 290.   
 

 Naïve Bayes Classifiers 
Naïve Bayes Classifiers (NBCs) are in fact a whole family of parametric classifiers, 
which use Bayes’ theorem to evaluate the probability of each class, given the 
distribution of the classes in the training data.  The ‘naïve’ term comes from the 
assumption that features are all independent, however the classifier often performs 
well even when this assumption is violated 291.  Bayes’ theorem is as follows: 
 

 ((,)|	.) = 	
((,))	((.	|	,))

((.)  (5.3) 

 
It can be thought of as the probability of a sample having class ‘k’ is equal to the 

proportion of labelled samples with class ‘k’ (the prior) multiplied by the proportion of 

the labelled samples with class ‘k’ that have the same characteristics as our query 

sample (the likelihood), divided by the proportion of labelled samples with the same 

characteristics as our query sample (the evidence).   
 
Extensions of the classifier are often centred around the characteristics of the data; 
Bernoulli naïve Bayes has binary features (e.g. yes, is it raining), and Gaussian naïve 
Bayes has continuous features (e.g. height of the subject’s father), for example 292.  In 
order to calculate probability of a characteristic which is continuous, we must make an 
assumption about the distribution of this feature within our dataset.  For example, if 
we assume that the height of our subjects was normally distributed then we can 
calculate the evidence by calculating the mean and standard deviation of heights 
within the training dataset and applying a Gaussian function.  In practise, the 
distributions are selected individually for each feature, based on its class 293. 
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 K-Nearest Neighbours 
For dataset with two features, such as height and age, it would be possible to plot 
each sample as a point in a 2-dimensional figure.  Similarly, if we added an additional 
feature, we could make an appropriate 3-dimensional plot, and so on.  This is a simple 
way of explaining what we call a (Euclidean) feature space – a collection of vectors of 
information, such as our dataset’s features.  For a dataset with M features, we have 
an M-dimensional feature space.   
 
The k-Nearest Neighbours (k-NN) algorithm entails finding the k training data samples 
in the M-dimensional feature space with the smallest distance between them if you 

were drawing a straight line.  From these identified closest samples, one can either 
select their modal label (classification) or their mean value (regression).   
 
In Figure 5.1, I demonstrate a simple 5-NN example for three classes (families) in a 2-
dimensional (height and age) feature space.  The denoted query sample, which 
appears as red dot (‘Unlabelled person’), needs to be assigned to one of the three 
families on the basis of its proximity to its closest neighbours.  We can see that the 
majority (three) of the five closest neighbours to our unknown child are in family B, and 
so we place them in that class.  The estimated probability of each class is the 
proportion of neighbours that are in that class (estimated probability of being in class 
B = 0.6).  Although there is no limit to the number of features in a feature space, higher 
dimensions evidently become harder to visualise.   
 
The example in Figure 5.1 uses distance in Euclidean space (known as the Euclidean 
distance).  It is also the most commonly used distance measure, however there are 
many alternatives, each with their own strengths and weaknesses.  For example, the 
Hamming distance is calculated as the proportion of features with different values 
between two samples 294, and is therefore used for purely categorical (usually binary) 
features.  There are also composite measures designed for mixed data, such as the 
Gower distance 295, which calculate a distance metric for each feature type, and then 

combine them into a single distance value.  
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Figure 5.1: Using a 5-NN algorithm to estimate the family that an unlabelled child 
belongs to, based on their height and age 

 
The Euclidean distance is best used with numerical (non-binary) data, but in practice 
it is usually the default choice.  When using the Euclidean distance for any distance-
based algorithm (such as k-NN), the scale of the features is of great importance.  As 
such, a sample which was identical in all regards to another except one feature which 
had a much wider scale than the others may have a higher distance than a sample 
which was mildly different for all other features.  Features should therefore be rescaled 
to have the same range, or a range that is meaningful relative to the feature 
importance.   
 
k-NN is an example of a lazy learning algorithm, which means it does not conduct any 
generalisations until a query is made (a new data sample requires assessing), as 
opposed to eager learning, where the system will calculate the outcome of any given 
query before they are made.  As such, k-NN does not produce a trained model which 
can then be used for new query samples without disclosing any potentially identifiable 
information about the individuals in the training dataset.  As our training data cannot 
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be shared for patient confidentiality reasons, the use of k-NN is not feasible for this 
analysis.   
 

 Decision Trees 
A decision tree is a basic non-parametric algorithm containing a series of decision 
statements (such as ‘height > 3’, with products true or false) with each decision leading 
to a different set of subsequent statements until it reaches the terminus: the predicted 
class.  As an example, a single terminal node may have the associated decision rule 
if condition1 and condition2 then class1. 

 

The tree is constructed starting from the root.  The algorithm assesses which of the 
features can be used to split the data (and where for continuous features), in order to 
maximise some measure of the data variability. Generally, this performance is related 
to the homogeneity of each terminal node: having as many of the training samples be 
in the same class as possible.  Different implementations of the decision tree algorithm 
use different measures.  The CART (Classification and Regression Tree) 
implementation 296, for example, uses the Gini impurity (G): the probability of a new 
random sample (at a specific node in the tree) being incorrectly classified, if all 
samples at that node were randomly classified according to the distribution of classes 
observed in the training data at that node 297.  It can thus be calculated as follows, 
where J is the number of distinct classes, and P(i) is the proportion of samples with 
class i: 
 

! = 	1 −	&'())!
"

#$%
 

(5.4) 

 
The quality of a potential split can be assessed by summing the impurity at each 
branch, with weighting for the proportion of the samples at the top of the branch that 

filter in each direction.  For example, if a split of 10 training samples gave 0.5 impurity 
on one branch for 8 training samples, and the other branch gave 0.0 impurity for the 
remaining 2 training samples, the overall impurity would be 0.5*0.8 + 0.0*0.2 = 0.4. 
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Decision tree algorithms are recursive (the same steps repeating until a stop command 
is issued) and greedy (makes the best choice at the time, regardless of the impact 
further down the line).  They will continue to find further splits until a stopping criterion 
is met, including any of the following: 

• every terminal (end of the branch) node’s dataset contains only one class (for 
classification trees), or only five samples (regression trees), 

• subsequent splits would result in nodes below a minimum size threshold, 

• the maximum tree height (distance from root to terminal node) is reached, 

• the maximum number of nodes is reached. 
 
The predicted class probability is estimated as the proportion of training samples that 

were in each class at the terminal node a query sample reaches.  As such, if the tree 
does not stop growing until every terminal node contains only a single class, the tree 
will optimistically estimate the probability to be 100% for the larger class and 0% for 
the smaller class.   
 
As well as improving the quality of the estimated probability estimates, the setting of 
stopping criteria prevents the tree from becoming overly complex and over-fitting to 
the data.  Another method to prevent this is to prune the tree: using cross-validation 
(partitioning the data into complementary subsets; see Section 5.2) to identify splits 
that are more likely to result from over-fitting and reduce the predictive accuracy of the 
model in out-of-sample data.  These branches are then pruned, and the node becomes 
a terminal node.   
 
Shallow decision trees are very easy to interpret, and have value even with very few 
samples, as demonstrated by the example in Figure 5.2 (which shows a set of rules 
that can be used to tell me and my siblings apart).   
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Figure 5.2: A decision tree to distinguish the Tibble siblings 

 
 

 Support Vector Machines 
A Support Vector Machine (SVM) is a non-parametric model which creates a 
hyperplane that best defines the areas in M-dimensional feature space inhabited by 
samples belonging to one of two classes.  To put this more simply, imagine a dataset 

with two features, and binary classes.  An SVM creates a boundary which best 
separates the samples when plotted.   
 
The calculation of the location of the boundary, known as the hyperplane, is an 
optimisation problem.  In the simple linearly separable 2-dimensional case, there is a 
straight line which can be drawn between the two classes and separate them perfectly.  
To find the optimal hyperplane we can simply iterate between combinations of the 
samples on the class’s convex hull (Figure 5.3, using R.A. Fisher’s Iris dataset 298) and 
rotate the angle of the two parallel lines which separate them to find the largest margin.   
 
 

Sex 

Hair colour Holly 

Andrew Ben 

female male 

blonde brown 
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Figure 5.3: Convex hull of one class (Setosa) from the Iris dataset 

 
 
We can see in Figure 5.4 a hyperplane which divides two classes of Iris flower, based 
on two features: the width and length of the petals.  In the figure, regular samples are 
represented with a hollow circles and triangles, while the samples on the convex hull 
which were used to calculate the hyperplane are represented by a filled shape; these 
are the support vectors.  The dotted lines are the boundaries for the maximal margin 
between the classes, around the hyperplane.   
 
The example here is very simple, but there will be cases in which the classes overlap 
in feature space.  One way in which non-linearly separable cases can be handled is 
the implementation of a soft margin 299.  Herein, samples are allowed to cross the 
margin, however they incur a penalty based on the distance they cross it.   
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Figure 5.4: Linear support vector machine example using a modification of the Iris 
dataset, separating iris’s of species Setosa and Versicolor by their petal length and 
width 

 
Non-linear hyperplanes can also be calculated by applying a transformation which 
expands the feature space and finding some linear boundary in this new higher-
dimensional space.  The transformation itself is not usually explicitly specified, but we 

define it by describing the kernel function 290; that which computes the inner products 
of two samples (a scalar value from the multiplication of two row vectors in the design 
matrix) in our new feature space, using the inner products of the same samples in the 
original feature space.   
 
A back-transformation is required to convert the SVM native output to the approximate 
class probabilities, commonly using the method of Platt scaling 300, and implemented 
by training a cross-validated logistic regression model on top of the SVM’s class 
estimations.  This process is thus very computationally intensive in large datasets.   
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Additionally, while SVMs are strong at predicting with relatively few samples, their 
complexity (and thus training time) increases drastically with larger training sample 
size 301.  As such, the computing power required to train an SVM model in such large 
data as used herein, and the requirements for extensive tuning, meant that it was not 
feasible to include SVMs in this analysis.   
 

 Ensemble Learning 
Ensemble learning is the method of combining multiple base models (also known as 
weak learners), either in parallel or in sequence, in order to improve out-of-sample 
performance.  In order to maximise the performance of an ensemble method, base 
models should be as diverse as possible, so that they have different regions of 
competence. Diverse base models can be created in multiple ways, such as altering 
prediction model parameters 302,303, using multiple random subsets of the data 
samples 303–305, combining base models created using different algorithms (method 
known as a heterogeneous ensemble) 302,303,305, and using subsets of the available 
variables (method known as the random subspace method) 303,306.  Diversity of base 
models can be evaluated by calculating the range of pairwise base model correlations 
307, such as the Q-statistic 303 and the double-fault measure 308, and non-pairwise 
measures such as the Kohavi-Wolpert variance 309.   
 
There are three common approaches which describe both the generation of the base 
models and the consensus function which aggregates them (Figure 5.5).   Bagging 
(shortened form of bootstrap aggregating) trains base models on a subset of the full 

sample, using random sampling with replacement, known as a bootstrap sample.  
These base models are typically homogeneous; they use the same learning algorithm.  
Using bootstrapping gives us multiple independently sampled subsets of the 
underlying analysis population, with variations between subsets in the distributions of 
less common characteristics helping to overcome problems with variance. They also 
enable probabilistic exploration of the different properties of the feature space, and 
they can be combined using some deterministic algorithm.   
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For example, we may take the mean estimation of a regression model, or the modal 
prediction of a classification model.   The aim is that the resulting ensemble has lower 
variance (reducing the risk of over-fitting) than both the constituent parts and the model 
trained on the full sample simultaneously.  The most common bagging algorithm is the 
random forest, an extension of decision trees, which is explained in Section 5.3.6.1.   
 
Boosting is a sequential method (unlike bagging, in which base models can be 
generated in parallel) of selecting targeted training data samples in order to improve 
performance in cases where previous base models have had lower performance.  Like 
bagging, it typically uses homogeneous base models, but instead of focussing on 

reducing variance, boosting focuses on reducing the ensemble model’s bias.  
Reducing bias means avoiding having certain query samples with inaccurate 
prediction, as a result of the base models not picking up on the nuances captured in 
the data.  High bias results in the opposite of over-fitting, known as under-fitting, when 
the model fails to capture the trends observed in the training data.  Two boosting 
methods, adaptive boosting and gradient boosting, are described in Sections 5.3.6.2.   
 
Finally, stacking is an approach for combining heterogeneous base models using a 
meta-learner, with both of the base learners (collectively) and meta-learner trained on 
separate data partitions.  Meta-learners include the Behavior Knowledge Space 310, 
by which commonly occurring combinations of characteristics in the training data set 
are noted along with their true classification, the Borda Count 303, which uses the 
likelihood of each response from each classifier, rather than simply submitting the best 
choice to the committee (similar to the alternative voting system), and the Dynamic 

Classifier Selection 311, which highlights the class suggested by the base model which 
performed best on the training data on similar samples.  
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Figure 5.5: A visualisation of the three paradigms of ensemble classification 

Note: Testing data are presented into the trained (and optimised) classifiers to provide a best estimate of out-of-sample performance.  
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There exists no one method (ensemble or consensus building) that consistently 
outperforms competing learning algorithms across all datasets 312,313 (in machine 
learning parlance known as the no-free lunch theorem), nor are they guaranteed to 
outperform all of the base models.  Furthermore, they are computationally 
considerably more intensive than single models.  They can also be challenging to 
interpret, because of the internal complexity of the ensemble method and its integral 
base learners.  
 

5.3.6.1 Random Forests 

The Random Forest (RF) algorithm uses multiple (500 by default in most 
implementations) decision trees as base learners, each constructed using a 
bootstrapped sample of the data, and selecting the splitting feature at each node from 
a random subset, to increase the diversity between the trees 314.  Random split 
selection can also be employed, which may allow a slightly suboptimal feature split to 
be made 315.  
 
The predicted class probability output from a random forest is the mean of the 
predicted class (not the estimated class probabilities) from each of the trees in the 
forest.   
 

5.3.6.2 Adaptive Boosting and Gradient Boosting 

Adaptive boosting (also known as AdaBoost) uses sample weights to identify cases in 
which the model needs improving 316.   To start, AdaBoost produces a base model 
with equally weighted samples.  The base model weight, in the range (−∞,∞), is 
calculated using the sum of the weights of the incorrectly classified samples.  The 
sample weights are then updated based on whether the sample was correctly 
classified in the previous model, and the weight of that model.  The next base model 
is then constructed using these new sample weights.  This process iterates until some 
stopping criteria are met.     
 
Gradient boosting is a generalisation of the AdaBoost algorithm, which allows for a 
wider variety of loss functions (in classification, a function that maps the design matrix 
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to a real number intuitively representing some "cost" associated with the 
misclassification between the observed and predicted outputs).  Gradient boosting 
constructs sequential base models that minimise the designated differentiable loss 
function, using an iterative optimisation method known as gradient descent: 
progressing along the loss function in the direction of negative gradient (lower cost) to 
find a local minimum 317.   Further extensions to the method, utilising the sub-gradient 
descent procedure 318, also allow non-differentiable loss functions to be used 319. 
 
We calculate the pseudo-residuals (error) for each sample as the difference between 
the estimated probability of the class (calculated by applying the logistic function to 

the log odds) and the observed class (with values 0 or 1).  We then construct a base 
model to estimate the pseudo-residuals and transform them from probabilities to log 
odds values.  These estimated log odds values are used to update our predicted class 
for each sample by multiplying them by the learning rate, a value between 0 and 1, 
and adding this to the previous log odds.  This process is iterated until some stopping 
criteria are met.  The learning rate affects how much information we take on from the 
estimated residuals; a value of 0 means that the predicted classes do not update at 
all, and a value of 1 means that the predicted classes are completely replaced at every 
iteration.  Smaller values will take longer to converge but will result in lower variance; 
0.3 is the default value in the R implementation of gradient boosting (package 
XGBoost 320), which is on the higher end of the typically used values (most commonly 
between 0.1 and 0.3).   Like the random forest, by default in most implementations 
500 trees are grown. 
 
 

5.4 Evaluating Model Performance  
In order to choose the best performing model for a classification task (a process known 
as model selection), and to evaluate the final product, we must be able to assess how 
well the model is able to classify new ‘query’ samples, by comparing the predicted 

outcome of the model with the ground truth (the observed outcome).  The ground truth 
might not always be known, and thus the current state of the art prediction (known as 
the gold standard) may be used instead.   
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In this section I will review some common performance measures used in binary 
classification problems.  Later, in Chapter 6, I will further explore the strengths and 
limitations of each performance measure, in order to determine the best choice to use 
for my analysis.   
 

 Probabilistic Performance Measures 
Model performance can be quantified by comparing the ground truth to the estimated 
probabilistic outcome of the classifier (the class probabilities), given a set of query 
samples.  Using the class probabilities allows a robust assessment of two fundamental 
components of model fit: discrimination and calibration 288,321,322.  Good discrimination 
means the model can distinguish between the classes well, at some optimal threshold 
of the estimated class probabilities.  For example, in Figure 5.6, one may assign some 
threshold in the range of 0.2 to 0.5 (for which value there is overlap between the class 
estimated probabilities) in order to separate the two classes.   
 
Good calibration means that there is strong alignment between the estimated 
probability and the observed rate of events, which can be evaluated by binning the 
samples into risk groups, such as deciles (see Section 5.4.4).  As such, it is a measure 
of the precision of the forecast. All performance measures penalise poor calibration to 
some extent, but in practice, some compromise is necessary between a model’s 
discrimination and calibration.   
 

The most well-known probabilistic performance measure is the AUC, the Area Under 
the Curve (known as the Receiver Operator Curve, or ROC) formed by plotting the 
sensitivity (the true positive rate) and specificity (the true negative rate), as shown by 
the shaded area in Figure 5.7.  The AUC is equal to the probability that a randomly 
chosen negative-class sample will have a lower probability of belonging to the positive 
class than a randomly chosen positive-class sample 323.   
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Figure 5.6: Density plot of estimated probabilities by observed outcome 

 

 
Figure 5.7: Example of a Receiver Operator Curve  
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A limitation of the AUC is that it is not possible to prioritise minimising false-positives 
over false-negatives (or vice-versa), which have different misclassification costs.  
Additionally, it encapsulates performance in regions of the ROC space in which a 
threshold would never practically be selected, such as the area with either 
exceptionally low sensitivity or specificity (bottom-left and top-right corners of Figure 
5.7) 324.    
 
Another common probabilistic performance measure is the Brier Score (BS): the mean 
squared error of the estimated probabilities (&'!) and the observed outcomes ((!) 325: 
 

 
BS = 	

∑ (&'! − (!)"
#
!$%

.
 

(5.5) 

 
There are many cases when assessment of the raw probabilities is not appropriate.  
Physician statistical literacy has been found in many studies to be insufficient to ensure 
that probabilistic outputs will be interpreted effectively 326–330, and thus we instead 
assess performance after some decision rule has been defined.  In the binary case, 
this decision rule depends on a single classification threshold value above which the 
outcome is predicted to occur.  This value may be determined by identifying the 
threshold which optimises the performance, according to non-probabilistic 
performance measures.    The classification threshold might also be pre-defined and 
not possible to optimise, such as when comparing a model to previous literature.    
 

 Confusion Matrices and the Data Imbalance Problem 
The performance of a model can be evaluated based on the predicted versus 

observed class of each query sample, described using the cells of the confusion 
matrix.  The confusion matrix, also known as a contingency table, is a 2*2 table (or 
more generally m*m for multi-class classification problems) of the true and predicted 
classes.  An example of a binary confusion matrix is shown in Table 5.1, including the 
shorthand notation for the value of each cell. 
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Table 5.1: An annotated binary confusion matrix 

 Observed Outcome 
(ground truth) 

Positive Negative 

Pr
ed

ic
te

d 
O

ut
co

m
e  

Positive 
True 

Positive 
(TP) 

False 
Positive 

(FP) 

Negative 
False 

Negative 
(FN) 

True 
Negative 

(TN) 

 
 
Before the confusion matrix performance measures are introduced, there is an 
important factor relevant to asthma attack risk modelling which must be introduced: 
Data Imbalance.  Consider a dataset in which 99% of the sample belonged to a certain 
class, denoted as the majority (or major) class.  This is very common when predicting 
rare events, such as asthma attacks.  A model could predict the class of an unlabelled, 
unseen sample and make the correct prediction for 99% of the samples by simply 
assigning it to the majority class – without using the features of that sample at all.  By 

some measures, the resulting model would look to be performing very well, but looking 
at the people who were observed to have the event we would see that none of them 
were detected by the model.   
 
As such, when there are substantially fewer samples in one class than the other, the 
performance measure must be selected carefully to ensure that poor performance in 
one class is detected and penalised appropriately. 
 

 Confusion Matrix Performance Measures 
As shown in Table 5.1, all information about a binary classification model performance 
can be captured in the four cells (or m^2 cells for an m-class problem) of the confusion 
matrix.  Despite this, it is frequently useful to be able to summarise all of this 
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information in a single statistic, for example, when trying to develop an optimisation 
function or when objectively ranking models for the purposes of model selection.  This 
has sparked interest in the development of classifier performance measures, many of 
which are summarised in the following sections. 
 

5.4.3.1 Sensitivity and Specificity 

The sensitivity and specificity (introduced in Section 5.4.1; also known as the True 
Positive Rate and True Negative Rate) are paired measures, meaning that they only 
each describe half of the confusion matrix and are rarely considered in isolation.  They 
show the proportion of the samples from the true positive and negative classes, 
respectively, that are correctly estimated. Using the confusion matrix notation, they 
are formally expressed as follows: 
 
 Sensitivity  =	 TP

TP&FN (5.6) 

   

 Specificity =	 TN
TN&FP (5.7) 

 
 

5.4.3.2 Accuracy 

The accuracy is the number of correct predictions, both positive and negative, as 
follows: 
 

 Accuracy = TP+TN
TP+TN+FP+FN

 (5.8) 

   

5.4.3.3 Balanced Accuracy 
The balanced accuracy is an extension of the accuracy specifically for cases with 
imbalanced classes.  It is calculated as the average of sensitivity and specificity as 
follows: 
 
 Balanced Accuracy = 0.5*(sensitivity + specificity) (5.9) 
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The balanced accuracy is also known as the Bookmaker’s Informedness (BI) when 
the latter is scaled to the [0,1] range: the BI otherwise exists in the [-1,1] range.   
 

5.4.3.4 Positive Predictive Value and Negative Predictive Value 

The Positive and Negative Predictive values (PPV and NPV) are paired measures 
(see Section 5.4.3.1) which describe the proportion of samples in the predicted 
positive and negative classes, respectively, which were correctly predicted.  Using the 
confusion matrix notation, they are formally expressed as follows: 
 
 PPV = TP

TP+FP
 (5.10) 

   

 NPV = 	 TN
TN+FN

 (5.11) 

 

5.4.3.5 Markedness 
Markedness is a single measure (summarises the entire confusion matrix) which uses 
the PPV and NPV, as follows: 
 
 Markedness = PPV + NPV - 1 (5.12) 

 
 
Markedness takes values in the range [-1,1]. To aid comparison between the 
measures, we have rescaled the markedness to the [0,1] range using min-max 
normalisation, as follows: 

 
 

/∗ = 0 +	
(/ −min(/)) ∗ (3 − 0)

max(/) −min	(/)  (5.13) 

 
Where x is the value pre-scaling, and the desired scale is [a,b].  The minimum and 
maximum values of x are taken from the range of the measure ([-1,1]).  The scaled 
version of the measure, x* is equivalent to the average of the sensitivity and specificity. 
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5.4.3.6 F1 and Fb Measures 
The F1 Measure, also known as the F1 Score, is the harmonic mean of the PPV and 
the sensitivity.  The F1 Measure is thus defined as follows: 
 

 F1 Measure = 2 ∗ TP
"∗TP+FN+FP (5.14) 

 

The generalisation of the F1 Measure, known as the Fb, enables the user to weight the 

PPV and the sensitivity, as follows: 
 
 

F( = (1 +	7") ∗ (
sensitivity ∗ specificity

(7" ∗ sensitivity) + 	specificity) (5.15) 

 
The value 7 represents the relative weighting of the sensitivity (accuracy of the true 
positives) to the PPV (accuracy of the predicted positives).  While altering the 7 value 
does not change the fact that the positive class is prioritised over the negative class, 
it allows the user to weight the measure based on the costs of each misclassification 
respectively.  For example, if a false negative is worse than a false positive (such as 
the risks to the unborn baby if a mother is told they are not pregnant, compared to the 
distress of mistakenly being told that they are pregnant) then selecting a high 7 value 
is preferable.   In this analysis, I will include the F1.1 Measure alongside the F1 Measure.   
 

5.4.3.7 Geometric Mean Accuracy 

In mathematics, the geometric mean is an average which uses the product of a set 
values, as opposed to the arithmetic mean which uses the sum (like in the Balanced 
Accuracy).   In classifier performance, the Geometric Mean Accuracy (GMA) is thus 
the square-root of sensitivity and specificity, as follows: 
 
 GMA =	;sensitivity*specificity (5.16) 

 
The GMA is sometimes also referred to as the G-Measure 331. 
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5.4.3.8 Matthews Correlation Coefficient 
The Matthews Correlation Coefficient (MCC), also known as the Phi coefficient, 
calculates the correlation between predicted and observed outcomes 332.  It is 
computed as follows: 
 
 MCC = (TP*TN)-(FP*FN)

+(TP+FP)*(TP+FN)*(TN+FP)*(TN+FN) (5.17) 

 
When every sample in the test set is either observed or predicted to be in the same 
class the MCC fails to compute, due to zero sums on the denominator.  The MCC, like 
markedness, has range [-1,1], and so is scaled to the [0,1] range using the minmax 
formula (Equation (5.13). 

 

5.4.3.9 Optimized Precision 
Optimized Precision (OP) is a hybrid performance measure, equal to the accuracy 
minus the Relationship Index (RI) 333, defined as follows: 
 
 RI =	

|sensitivity - specificity|
sensitivity + specificity  (5.18) 

   
 OP = accuracy - RI (5.19) 

 
A lower RI (closer to zero) is best, and occurs when the sensitivity and specificity are 
higher, but the difference between them is small.  The RI has the disadvantage, 
however, that it equals zero whenever the sensitivity and specificity are equal, 
regardless of their value.  The OP negates this, by incorporating in the accuracy.  The 
OP, like markedness and MCC, is scaled using the minmax formula defined preciously 
(Equation (5.13), from the range [-1,1] to [0,1]. 
 

 Model Calibration 
Model calibration evaluation is often conducted as a post-hoc analysis of a trained 
model, to assess how well the predicted risk of an outcome corresponds to the 
observed outcome on an individual level, as opposed to across the whole population.  
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A well calibrated model affords additional flexibility of being able to use the estimated 
class probabilities, rather than just the predicted class, in order to add more nuance to 
the interpretation of a model’s performance.   
 
Two common calibration measures are known as the calibration-in-the-large and the 
calibration slope, respectively 334.  The calibration-in-the-large quantifies the difference 
between the means of the observed (&) and estimated (&') probabilities, and can be 
calculated as the intercept, =, of the logistic regression shown in Equation (5.20 335. 
 
 & = 	= + 	offset(&)C (5.20) 

 
The calibration slope is estimated by the 7 term in Equation (5.21.   It reflects whether 
the estimated risks are appropriately scaled, with 7>1 indicating that the estimated 
probabilities do not vary enough; if ==0 then the estimated probabilities would be too 

low overall.  On the other hand, 7<1 indicates that the estimated probabilities are too 
extreme.   
 
 & = 	= + 	7&' (5.21) 

 
It is also possible to recalibrate estimated probabilities 336,337, such as by Platt scaling 
(using a logistic sigmoid function; see Section 5.3.5) or isotonic regression 338.  The 
quality of a recalibration should be assessed in the same manner as any hyper-
parameter tuning (see Section 5.2): the parameters should be estimated in a training 
data partition and evaluated when applied to an unseen testing partition.  Furthermore, 
applying a model which is well-calibrated in its derivation dataset to a new external 
dataset does not guarantee good calibration there, even if the discriminative ability of 
the model is similar between datasets 339.  As such, it is sometimes desirable to 
recalibrate models when they are being applied to a new setting.   
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5.5 Training Data Enrichment 
Data used in the training of machine learning models can be modified to improve 
efficiency and accuracy in prediction modelling, known as data enrichment.  One 
common reason for employing data enrichment, and indeed the reason it will be used 
herein, is towards prediction with imbalanced classes, as introduced in Section 5.4.2.    
With an anticipated asthma attack incidence rate of approximately 0.16 attacks per 
patient per year 340 (estimated in an unselected UK asthma population, using the 
ATS/ERS outcome definition 78, introduced in Section 2.4), imbalanced data are likely 
to pose a significant barrier to model performance without preventative measures.   
 

Training data enrichments methods can either increase or decrease the size of the 
training dataset, by adding or removing samples in order to create a more balanced 
dataset, with roughly equal sample representation in each class 341.     Over-sampling 
is an additive method of adding weight to samples of the minority class by duplicating 
them a specified number of times.  This duplication of samples can lead to over-fitting 
in the minority class, which will result in high predictive performance in the training 
data but generally lower performance in the unseen data 342,343.   Random over-
sampling specifically replicates a random subset (with replacement; class-specific 
targeted bootstrapping) of the minority class, rather than all samples; when conducted 
multiple times, this reduces the likelihood of over-fitting by preventing individual 
samples from being too influential.  Sample synthesis is a sub-class of additive 
methods, in which new samples are synthesised (artificially generated) rather than 
replicating already existing samples.   
 
Restrictive methods reduce the number of samples in the training dataset by 
subsampling the majority class.  Random under-sampling removes samples in the 
majority class at random 342,343.  Restrictive methods are useful in cases where there 
is sufficiently large number of samples belonging to the smaller class, and sample size 
in the majority class which is larger than required for efficient prediction, although one 

drawback is the risk that nuances in the majority class determination may be missed 
by the removal of pertinent samples 343.      
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Finally, there are methods which combine restrictive and additive sample-based 
enrichment methods in order to reduce the negative effects associated with each 
method class respectively.  Informed sample-based enrichment methods make use of 
the underlying structure of the data, such as hierarchy of samples and the distribution 
of features, in order to prevent the loss of pertinent data or, conversely, the duplication 
of particularly specific records likely to result in over-fitting.  In Synthetic Minority Over-
Sampling TEchinque (SMOTE) 341,344, each minor class sample is paired with another 
from its K-nearest minority class neighbours, and feature values are generated from a 
uniform distribution within the range of the example sample pair (demonstrated in 
Figure 5.8, using R.A. Fisher’s Iris dataset 298).  This is repeated a specified number 

of times for each minor class sample.  SMOTEing can also use random under-
sampling.   
 
 
 

 
Figure 5.8: A scatterplot showing original samples of versicolor irises, from R.A. 
Fisher’s Iris dataset, alongside SMOTE generated samples 
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There are two main parameters in the SMOTEing function, for the over-sampling and 
under-sampling rates.  These parameters, and the effect on the training data sample 
size, will be described using the following notation: 

a = the number of training samples in minor class A  
b = the number of training samples in major class B 

 
The SMOTEd training data generates k new synthetic samples for each sample in the 
minor class, resulting in (k+1)*a  samples in the minor class, and retaining z*k*a major 
class samples.     
 

If z*k*a is in fact larger than b, then we instead generate b-z*k*a new samples in the 
major class.  However, as class B already contains more samples than class A, we do 
not need to generate more samples in this class.  In fact, we want to explicitly avoid it.  
As such, we limit z to be any positive number: 
 

 D	 ≤ 	 ,
-∗., D	 ∈ 	ℝ

& (5.22) 

 
Furthermore, we do not want to produce more samples in class A than there are in 
class B.  As such, we limit k to be any non-negative integer: 
 
 H	 ≤ 	 ,- − 1, H	 ∈ 	ℕ (5.23) 

 

The user can also specify the number of neighbouring samples (closest distance in 
Euclidean space) to draw from in the creation of new synthetic samples, commonly 5.  
In their 2017 asthma attack risk prediction study, Finkelstein and Jeong 345 compared 
the results from three algorithms (NBC, SVM, and adaptive Bayesian networks), and 
demonstrated that under-sampling improved sensitivity with mild (or no) decline in 
specificity, compared to the original training data.  Zhang et al. 346 compared varying 
levels of under-sampling, over-sampling, and SMOTEing, for logistic regression, and 
similarly found that all tested variation improved sensitivity from 0% to at least 55% 
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(maximum 87%) with a maximum reduction in specificity from 100% to 84%.  No 
changes in the AUC (see Section 5.4.1) were observed.   
 
 

5.6 Model Interpretability 
A model can be considered interpretable if the reasons behind a prediction are 
intuitively understandable to a human.  A simple decision tree, like the one shown in 
Figure 5.2, is completely interpretable.  For a deeper decision tree, it may be possible 
to see in specific (local) cases the ruleset that a patient met in order to be classed as 
they were, but harder to see how all possible rulesets relate to all possible outcomes 

(global interpretability).  In the case of a random forest, for example, neither may be 
easily inferred.   
 
While the attribute of interpretability itself is hard to quantify 347, more pertinent perhaps 
is describing the methods by which interpretability might be improved, such that some 
explanation can be provided to the model’s user.  This might serve to facilitate trust in 
the system, or to highlight clinically irrelevant patterns that the training data might have 
provided 347,348.   
 

 Global Model Interpretation 
Global interpretability is the trait that the logic and reasoning behind the entire model 
can be easily understood by a human.  Few algorithms inherently provide global 
interpretability, but for many algorithms the contribution of individual features to the 

model can be used to aid interpretation of the results.    
 
For linear methods, the feature weight model coefficient can be simply interpreted 
relative to the other features and to the model intercept.  For non-linear methods, the 
predictive value of each feature (known as the feature importance) can be computed 
by comparing the absolute difference in the performance of the model (see Section 
5.4) to the performance when values for each of the features in turn are randomly 
permutated across testing samples  314.  This estimate can be validated further by 
including a single random feature and comparing its importance to other features, but 
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is nonetheless liable to inflate importance of correlated variables 349.  Additionally, for 
tree-based methods, feature importance can be quantified by averaging the mean 
decrease in impurity (or the corresponding performance measure used to grow the 
tree) that would be achieved by using each feature as the splitting criterion for each 
parent node in each tree 314.  These values should be considered relative to each 
other, rather than in terms of the computed magnitude.   
 
Another way of gaining global model insight is the application of an interpreter, or 
explanation, model over the final prediction model.  For example, single-tree 
approximation is the application of a single decision tree to demonstrate the main 

drivers of a black-box model’s predictions 348. The interpretation model can be 
appraised on the basis of interpretability and accuracy, but also fidelity: how well the 
interpretation model predicts the outcome predicted by the primary prediction model 
348.   
 

 Local Model Interpretation 
When presented with a prediction that differs greatly from the expected outcome, 
understanding the model’s local predictions may be more efficient than the global 
interpretation.   
 
In a linear model, such as logistic regression, the local effect of each feature is simply 
the product of the feature weight (coefficient) and the value itself.  For non-linear 
models, we can approximate the effect using Shapley values.  Shapley values 

originated in the field of game theory, used to determine an individual player’s 
contribution to the pay-out in a collaborative game.  They can be applied to predictive 
modelling to estimate how much an individual feature (player) contributes towards the 
prediction (pay-out) of a single query sample (the game), compared to the average 
prediction 350.  For example, if the average estimated risk of an asthma attack is 10% 
in the training data, and one patient has an estimated risk of 60%, we want to estimate 
the marginal contributions of each characteristic of that patient to this difference (50% 
increase).    
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To simplify the explanation of how the estimation of the marginal contributions work, 
envision a simple prediction model with only four features (F=4), of which two are 
binary (A and B) and two are continuous (X and Y).    For our query sample (patient) 
in question, A is true, B is false, C is 100, and D is 5.  To estimate the Shapley value 
for feature D, we must first define all possible coalitions (C): unordered sets containing 
between 0 and n-1 of features.  There are k=8 coalitions excluding the feature Y: J/	= 
{no features, A, B, X, A+B, A+X, B+X, A+B+X}.   
 
The first coalition we will look at is A+X, which we will arbitrarily label J/,1 as it was the 

sixth in the list above.  We note that there are three coalitions of the same size as J/,1: 

K(J/,1)=3.  We simulate a set of samples for this coalition by finding m random training 

samples with A=TRUE and X=100, and using their values of the missing feature B.  
We then calculate the estimated event probability for these m samples: (1) when Y=5 
(from the patient’s data), and (2) using the samples’ Y values.  The mean difference 
between (1) and (2) is the estimated contribution in this coalition (herein denoted 
L(J/,1)).  This process is repeated for all coalitions, and the Shapley value (M/) is the 

weighted average of the marginal contributions across the coalitions: 
 

M! =
1
N
	O

L(J!,2)
K(J!,2)

.

2$%
 

 
 
The sum of M! for each feature (i between 1 and F) is equal to the difference between 
the estimated event probability for this patient and the estimated event probability for 
the average patient in the training data. 
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5.7 Summary 
In this chapter, I have described the technical methods which have been considered 
for use in my asthma attack risk prediction model. These included machine learning 
classification algorithms, performance measures, training data enrichment methods, 
and interpretability aid methods. 
 
In chapter 7, I will be utilising logistic regression, naïve Bayes classifiers, RF, and 
extreme gradient boosting algorithms, with a selection of training data enrichments.  
There is no gold standard approach to performance measurement in classification 
modelling, as the most appropriate performance measure is dependent on the data 

(including the class imbalance) and the priorities with regards to minimising errors.  In 
the next chapter, I conduct a detailed review of the performance measures under 
various empirical and experimental conditions, in order to evaluate their utility for my 
model selection process.   
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6 Performance Measures for Binary 

Classification Problems 
There are a number of classification performance measures which can be computed 
directly from a confusion-matrix, some of which have been described in Section 5.4.3.  
In this section, I conduct a theoretical exploration of binary classification performance 
measures, in order to guide my selection in the testing of my asthma attack risk 
prediction model.  A particular focus of this body of work is the impact of class 
imbalance (introduced in Section 5.4.2). 
 

 

6.1 Previous Work 
To designate our primary performance measure for our risk prediction model selection, 
it is essential to understand how performance measures are affected by data 
idiosyncrasies.  There is no gold-standard performance measure which should be 
used primarily in all cases, or that can capture how well a model performs without 
losing some of the information captured within the confusion matrix.  The use of 
multiple performance measures retains more of the nuance of the confusion matrix 
351, but there are benefits to using a single performance measure.  Firstly, it facilitates 
the objective ranking of models for the purposes of model selection.  Secondly, it is 
easier to define an objective loss function with a specific measure as part of the 
optimisation algorithms, towards selecting the best-performing hyper-parameters.    
 
There have been numerous attempts previously to pragmatically explain the 
differences between various classification performance measures, often aiming to 
examine the conditions under which a performance measure may produce 
undesirable estimates 352–355.   These studies each provided a useful perspective on 
the problems faced when choosing a classification performance measure, and specific 
use cases in which one performance measure is more illustrative of the model’s 

shortcomings than another.  Lacking, however, was pragmatic guidance on the 
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generalisable implications of their findings, and a pathway for performance measure 
recommendation.   
 
For example, Chicco and Jurman 353 compared three performance measures 
(Accuracy, F1 Measure, and the MCC) in six simulated binary confusion matrices 
representing use cases defined by levels and direction of class imbalance.  They 
demonstrated that MCC was more informative than the accuracy when classes were 
imbalanced, and more informative than the F1 Measure when performance was poor 
in the negative class.  Despite highlighting the cases in which the F1 Measure is 
inherently more informative, such as in the prediction of DeoxyriboNucleic Acid (DNA) 

sequence variants, as discussed by Brown 352, the authors close by stating their 
(contradictory) belief that the MCC should be used preferentially over the F1 Measure 
and the accuracy in all binary classification task evaluations.  Caution should be taken 
before recommending any such ‘one-performance-measure-fits-all’ approach, and a 
key priority in this chapter is to investigate the most appropriate measure for specific 
use-cases.   
 
Sokolova and Lapalme 355 also conducted an investigation of a small selection of 
measures, but covering a broad spectrum of cases (including multi-class and multi-
label classification performance measures).  The measures were compared according 
to eight properties, however they failed to provide any mapping between these 
properties and pragmatic cases, and many of the measures were not possible to 
distinguish.  
 
Studies such as Alaiz-Rodriguez et al. 356 and Kouznetsov and Japkowicz 357 have 
also demonstrated methods of aggregating multiple performance metrics into one 
single metric, using a consensus approach for model selection in a similar way that 
ensemble models use consensus for classification itself, however this can make 
interpretation of results much more complicated. Therefore, it is useful to explore a 
single performance measure for our purposes. 
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In this chapter, I aimed to use simulated confusion matrices to explore the various 
methods by which predicted-class based performance measures have been 
compared and contrasted, and to conduct further empirical analyses to facilitate the 
selection of the performance measure that will be used in optimisation processes in 
the development of my asthma attack risk prediction model. 
 
 

6.2 Methods 
 

 Simulated Confusion Matrices 
I conducted two experiments using simulated confusion matrices to illustrate the 
effects of error imbalance and class imbalance in specific cases of their performance 
measures.    
 
The first experiment used confusion matrices with varying degrees of class imbalance; 
changing the size of the negative class relative to the size of the positive class (with 
100 samples).  Confusion matrices were generated for each combination of sensitivity 
and specificity in the range 0.1,0.5,0.9, and the Class Imbalance Coefficient (CIC) with 

values %3 ,
%
4 ,

%
5 ,

%
" , 1, 2, 3, 4, and	5.  The construction of the confusion matrices is shown in 

Table 6.1.  This resulted in 81 confusion matrices.   
 
Table 6.1: Confusion matrix cell calculations for experiment 1 with varying class 
imbalance coefficients  

 Observed 
Positive Observed Negative 

Predicted 
Positive sensitivity*100 (1-specificity)*100*CIC 

Predicted 
Negative (1-sensitivity)*100 specificity*100*CIC 

Note: CIC = Class Imbalance Coefficient, in range (!" ,
!
# ,

!
$ ,

!
% , 1, 2, 3, 4, 5) 
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The second experiment varied the sensitivity and specificity more widely for five cases: 
10% positive samples, 25% positive samples, 50% positive samples (balanced 
classes), 75% positive samples and 90% positive samples.  For every case and 
combination of the sensitivity and specificity between 0.005 and 0.995, at intervals of 
0.005, a confusion matrix was constructed with 1000 total samples, as shown in Table 
6.2, with 39,601 confusion matrices for each case, where z equals the proportion of 
the samples that are in the positive class.   
 
Table 6.2: Confusion matrix cell calculations for experiment 2 with balanced classes 

 True Positive True Negative 
Predicted Positive 1000* z *sensitivity 1000*(1- z)*(1-specificity) 
Predicted Negative 1000* z *(1-sensitivity) 1000*(1- z)*specificity 

Note: z = the proportion of the samples that are in the positive class, with range (0.1, 0.25, 

0.6, 0.75, 0.9) 

 
 

 Real Datasets 
Two datasets from the University of California, Irvine (UCI) machine learning 
repository were used to further describe the nuances of the performance measures.    
The datasets were chosen on the basis of their large size (>25,000 samples), small 
number of features (<25), and diverse class imbalance proportions.   
 
The first dataset I used in these empirical demonstrations is the UCI dataset ‘default 
of credit card clients’ (henceforth default) 358.   The dataset contained 24 features (3 
nominal, 1 binary, 20 numeric) and 30,000 samples, of which 22% were in the positive 
class and 78% were in the negative class (Table 6.3). One of the nominal features 
was a case identifier, which was removed.  The two remaining nominal features had 
4 and 7 levels respectively.  These features were one-hot encoded: a data 
transformation in which each unique level becomes a new binary feature 359.  For 
example, one-hot encoding a categorical feature ‘eye colour’ might result in three new 
binary features ‘blue’, ‘brown’, and ‘other’, of which exactly one will have the value 1 
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for each sample (else 0). The resulting dataset had 20 numerical features, and 12 
binary features (1 plus 11 from one-hot encoding).   
 
The second UCI dataset was ‘poker-hand-training-true’ (henceforth poker) 360, which 
contained 10 nominal features for 25,010 samples (Table 6.3).  Five of the features 
indicate the rank of card in the player’s hand.  While the rank of a card in a poker hand 
can be considered ordinal, a value of 1 (an ace) is simultaneously both lower than 2, 
and higher than 13 (a king).  As such, I treated the rank as nominal in this dataset. 
The outcome in this dataset is ordinal and multiclass, with range 0-9, indicating the 
best hand-rank achievable with the player’s hand.   

 
The poker dataset was used in multiple analyses, as the range of outcomes allowed 
flexibility in the dichotomisation to a binary outcome to create a range of class 
imbalance proportions that were not available from other UCI datasets.  First, a 
variation was created by dichotomising on whether or not the player’s hand was ‘bust’ 
(fitted no ranked category; rank 0 in this dataset).  This variation, known henceforth 
denoted poker1, had perfectly balanced classes.   The second variation, poker2, was 
created by dichotomising above rank 1 (indicating that the hand could beat a pair of 
aces, assuming ace-high) and had a minor class proportion of 8%.  Finally, the third 
variation, poker3, dichotomised at whether the player’s hand could beat a three-of-a-
kind on aces, with 1% probability.   
 
Table 6.3: UCI dataset characteristics, before processing 

Dataset Name Default Poker1 Poker2 Poker3 
Samples 30,000 25,010 
Classification Binary Multiclass (ordinal) 

Class Balance 

22% 
positive, 
78% 
negative 

50% 
positive, 
50% 
negative 

8% positive, 
92% 
negative 

1% positive, 
99% 
negative 

Features 24 10 

Feature Types 
3 nominal, 1 
binary, 20 
numerical 

Nominal 
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 Analysis Plan 
The effects of the varying parameters in the experiments with simulated confusion 
matrices were visualised with heatmaps, in order to compare the patterns observed 
in different performance measures.   
 
The empirical analyses consisted of seven datasets and variations (Table 6.4), each 
randomly partitioned iteratively 100 times, such that 80% of the data were used for 
training and 20% was used for testing.  In the fifth analysis, a training data enrichment 
method was applied (see Section 5.5), a modification to only data used for model 
training aiming to improve model performance in the testing partition.  Specifically, the 

method employed herein, known as (random) under-sampling, works by removing a 
random selection of samples from the majority class in order to retain a subset of the 
original data samples and ensure the classifier is presented with a balanced dataset.  
Under-sampling may improve the performance of the model, but tends to increase the 
variance of the performance measure across random samples, as occasionally 
important samples will be discarded 361; this balance is commonly known as the bias-
variance trade-off 362.  This procedure is only conducted on the training data partition, 
and the testing data partition was identical (for each iteration) to that of the third 
analysis. 
 
In the sixth analysis, only the testing partition was modified, with slight under-sampling 
to increase the positive class percentage from 8% to approximately 19% (deviation 
caused by under-sampling post random partitioning, with standard deviation of 0.8).   
 
The classification algorithm used for the empirical data analysis was an RF, using 
Breiman's implementation from the R package randomForest with default settings and 
hyper-parameters: 500 trees were ‘grown’ (hyper-parameter ntree), the number of 
features evaluated as candidates at each split was equal to the square root of the 
number of features (rounding to the lower integer number, if needed; hyper-parameter 
mtry), and there was no requirement for a minimum number (greater than one) of 

training samples in each terminal node (hyper-parameter nodesize).  Thus the tree will 
finish growing when all samples in each terminal node are of the same class.   
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Table 6.4: Description of empirical analyses of performance measures 

Analysis Dataset/Variation Analysis Description 
1 Poker1 Balanced Data  
2 Default Mild Positive Imbalance 
3 Poker2 Moderate Positive Imbalance 
4 Poker3 Extreme Positive Imbalance 

5 Poker2 + Training 
Enrichment 

Moderate Positive Imbalance with Under-
sampled Training Data 

6 Poker2 + Testing 
Modification 

Moderate Positive Imbalance with Mildly 
Imbalanced Testing Data 

 
For each dataset, the RF algorithm was trained on the (randomly sampled) training 
partition, and the resulting model was tested on the testing partition.  For each of the 
100 iterations, the number of true and false predicted negative and positive testing 
samples were recorded (the cells of the confusion matrix).  Each of the performance 
measures was then calculated from the confusion matrix of each iteration and dataset 

(with primary and enriched training data).   
 
The distribution of each performance measure in each dataset was evaluated (see 
Appendix K) and, given the non-normal distribution in many of the performance 
measures, the across-iteration performance was summarised using the median and 
interquartile range.  Some performance measures fail to compute when specific cells 
of the confusion matrix are zero.  The number of iterations for which this was the case 
was recorded, and no values were imputed, such that these iterations did not 
contribute towards the averages.   
 
 

6.3 Results 
 

 Experiment 1: The effect of class imbalance on performance 

measures with set true positive and negative class accuracy 
In the first experiment, I changed the size of the negative class relative to the constant 
positive class size and recorded the performance for 9 combinations of the true 
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positive and negative rate.  As the sensitivity and specificity are only affected by 
performance in the positive and negative classes, respectively, there is no change in 
performance as the class balance changes.  The performance in the positive class 
(sensitivity) has negligible effect on the accuracy when the CIC is high, indicating that 
the negative class is larger than the positive class (Figure 6.1), and vice versa.  When 
the class performances are equal, the accuracy is unaffected by the class imbalance.  
The same is true for the OP, however unlike the accuracy when the performance in 
one class is very low, even good performance in a larger class has a minimal effect 
on the overall performance.   
 

The Balanced Accuracy, GMA and F1.1 Measure are all unaffected by the change in 
class balance when the class performances are held constant.  They vary in how much 
they penalise poor calibration, with the F1.1 Measure showing the greatest effect, and 
the balanced accuracy showing the least.  The MCC shows only a mild effect from 
class imbalance but demonstrates that balanced classes only result in better 
performance when both classes are performing well.  When both classes are 
performing badly, unbalanced classes actually result in better performance.  The 
same, but more extreme, is shown for markedness.  
 
Finally, the F1 Measure is the only performance measure to discriminate between 
which class is the positive and which is the negative: positive class performance is far 
more important than performance in the negative class.  There are cases when this 
would be useful, such as when the costs associated with misclassifying a true positive 
case (someone with the outcome) are substantially higher than for misclassifying a 
true negative case.  For example, incorrect diagnosis of a dangerous and contagious 
disease leads to undesirable quarantine, whereas incorrectly not diagnosing someone 
could lead to a deadly outbreak.   
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Figure 6.1: The effect of varying the Class Imbalance Coefficient (CIC; size of the negative class relative to the positive class, which 
had 100 samples), for set values of the sensitivity and specificity
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There are also, however, cases when this is not true.  It could be that the correct 
classification of a negative case is more important.  In this case, however, you could 
still use the F1 Measure by switching the positive and negative classes.  Another 
instance in which the true positive rate is not the more important is when the classes 
are both important, such as when the treatment regimen for a condition is dangerous, 
expensive or distressing.  In the case of asthma attacks, failing to identify and treat a 
patient who subsequently experiences an attack is worse than unnecessarily treating 
a patient with a course of OCS, despite the risk of consequential side-effects.  A model 
may repeatedly classify an individual as high-risk, however, and recurrent OCS 
courses accumulate a higher risk of adverse outcomes.  

 
 

 Experiment 2: The effect of true positive and negative class 

accuracy on performance measures with set class imbalance 
In practice, imbalanced classes can have a substantial effect on the individual class 
performances.  In this section, I explore how the performance measures vary in 
empirical analyses.  Figure 6.2 highlights the effect that interactions between the 
sensitivity and the specificity have on performance for set values of class imbalance.   
 
Accuracy has parallel contour lines of performance, which means the two classes both 
contribute linearly to the overall performance.  The slope of the contour lines 
demonstrates the weighting of each class according to the class balance.  When 
balanced, the class accuracies contribute equally to the accuracy.  The same is true 

for the balanced accuracy, both when classes are balanced (in which case it is equal 
to the accuracy) or imbalanced.     
 
The F1 Measure has only minimal interaction between the classes, with performance 
in the positive class being the dominating factor (close to the sensitivity).  As such, it 
is possible to have good overall performance according to the F1 Measure despite 
poor performance in the negative class, when the positive class is small, or even when 
classes are balanced.  On the other hand, not even perfect sensitivity and specificity 
will result in very high performance.  
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Figure 6.2: The effect of varying sensitivity and specificity on performance measures 
for balanced (50% positive samples) and imbalanced classes (10%, 25%, 75% and 
90% positive samples) 
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However, using a ! value of 1.1 instead of 1 has a big difference, and there is a much 
more substantial interaction between the classes.  The F1.1 Measure and the GMA are 
similar, and are both sensitive to poorly calibrated models, such that even substantial 
improvements to performance in once class can have very little effect on the overall 
performance when performance in the other class is low.  The OP is even more 
sensitive to poorly calibrated models and can provide misleading performance 
evaluations when performance in either class is low.   Like the F1.1 Measure and the 
GMA, there is very little change across the three cases.   
 
The MCC and markedness are similar to the balanced accuracy but penalise poor 

calibration slightly less.  For both of these performance measures, high imbalance 
means that smaller changes in the major class performance are weighted more than 
larger changes in the minor class performance.  For example, when 90% of samples 
are positive, the MCC is higher (in the yellow zone in Figure 6.2) when the specificity 
is 65% and the sensitivity is over 99% (MCC = 0.880) than when the specificity is 90% 
and the sensitivity is 95% (orange zone: MCC = 0.873). 
 
 

 Empirical Analyses 
In the first empirical four analyses, I compared varying levels of imbalance between 
the classes (Table 6.4).  Analysis 1, 3 and 4 use the poker dataset, with 50%, 8% and 
1% of samples being in the positive class, respectively.  The second analysis uses the 
default dataset, with 22% of samples in the positive class.   

 
When the classes were balanced (analysis 1), the sensitivity and specificity were 
similar (0.66 and 0.73, respectively; Table 6.5).  All performance measures except the 
OP (which was the highest at 0.82) fell in the range between the sensitivity and 
specificity and had similarly low interquartile widths (the difference between the upper 
and lower interquartiles; 0.008 to 0.012 compared to 0.013 and 0.014 for the sensitivity 
and specificity, respectively).   
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Table 6.5: Results in empirical analyses with varying levels of class imbalance 

Performance 
Measure 

Analysis 1: 
50% Positive 

Analysis 2: 
22% Positive 

Analysis 3: 
8% Positive 

Analysis 4: 
1% Positive 

Median (interquartile width) [% failed to compute] 
AUC 0.766 (0.009) [0] 0.767 (0.009) [0] 0.779 (0.016) [0] 0.824 (0.042) [0] 
Sensitivity 0.660 (0.014) [0] 0.367 (0.015) [0] 0.010 (0.006) [0] 0.000 (0.000) [0] 
Specificity 0.734 (0.013) [0] 0.946 (0.004) [0] 1.000 (0.000) [0] 1.000 (0.000) [0] 
PPV 0.714 (0.012) [0] 0.660 (0.023) [0] 0.750 (0.175) [0] 0.000 (0.000) [96] 
NPV 0.683 (0.011) [0] 0.841 (0.006) [0] 0.924 (0.004) [0] 0.992 (0.001) [0] 
Accuracy 0.697 (0.008) [0] 0.819 (0.005) [0] 0.924 (0.004) [0] 0.992 (0.001) [0] 
Balanced Accuracy 0.697 (0.008) [0] 0.657 (0.008) [0] 0.505 (0.003) [0] 0.500 (0.000) [0] 
F1 Measure 0.686 (0.010) [0] 0.472 (0.014) [0] 0.020 (0.011) [0] 0.000 (0.000) [0] 
F1.1 Measure 0.699 (0.008) [0] 0.553 (0.015) [0] 0.022 (0.012) [0] 0.000 (0.000) [0] 
GMA 0.696 (0.008) [0] 0.590 (0.012) [0] 0.101 (0.028) [0] 0.000 (0.000) [0] 
Markedness 0.698 (0.008) [0] 0.750 (0.012) [0] 0.836 (0.090) [0] 0.496 (0.000) [96] 
MCC 0.698 (0.008) [0] 0.698 (0.010) [0] 0.541 (0.018) [0] 0.499 (0.000) [96] 
OP 0.822 (0.009) [0] 0.689 (0.009) [0] 0.472 (0.007) [0] 0.496 (0.001) [0] 

Notes: The five reference measures are included at the top (shaded darker) of the table, above the measures compared herein, for reference. 
Analysis with highest median performance by performance measure highlighted in bold. 
The percentage ‘failed to compute’ is the percentage of iterations for which no measure value could be calculated due to an empty cell in the confusion matrix 
(i.e. all query samples predicted to be in the same class). 
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In the second analysis, the imbalance resulted in high specificity (0.95) and low 

sensitivity (0.37).  Consequently, the accuracy was very high (0.82), but also remained 

highly precise (interquartile width 0.005).  Like the accuracy, the markedness was 

higher in the second analysis than the first (0.75 versus 0.70), and the MCC remained 

the same (0.7).  All other performance measures were lower in the second analysis, 

driven by the low sensitivity (as a result of the classifier output being skewed towards 

the dominating class). 

 

Consistent trends were seen in the third analysis, such that higher levels of imbalance 

resulted in higher accuracy (0.92) and markedness (0.84), while other performance 

measures showed lower performance (0.02 to 0.54).  The balanced accuracy and 

MCC showed the least change (0.51 and 0.54 in analysis 3, compared to 0.70 and 

0.70 in analysis 1, respectively).  The markedness also became more imprecise (as 

indicated by the interquartile width; from 0.008 and 0.012 in analyses 1 and 2, 

respectively, to 0.090) than the other performance measures, while the accuracy and 

balanced accuracy stayed the most precise (0.004 and 0.003).  Finally, in the fourth 

analysis, for the first time that the imbalance has resulted in no test samples being 

predicted to be in the minor class on 96% of the iterations, meaning that the PPV, 

MCC, and markedness all failed to compute (see last column in Table 6.5).   Table 6.5 

also lists the AUC for each analysis for completeness; more imbalance resulted in a 

higher AUC precision (0.82 versus 0.77 in analysis 1) but with lower precision (0.042 

versus 0.009). 

 

In Table 6.6, the results of the fifth (enriched training data) and sixth (modified testing 

data) analyses are compared to the third analysis.  In analysis 5, enrichment has 

improved the sensitivity from 0.01 to 0.65, while maintaining an acceptable specificity 

(0.70, reduced from 1.00).  However, the decline in prevalence between the training 

and testing data naturally results in a lower PPV, reduced from 0.75 to 0.15.  The 

accuracy also declined, from 0.92 to 0.69, as the major class is no longer performing 

exceptionally.  
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Table 6.6: Results in empirical analyses with variations on the third analysis (high imbalance) 

Performance Measure 

Analysis 3: 
8% Positive 

Training and Testing 

Analysis 5: 
50% Positive Training 
8% Positive Testing 

Analysis 6: 
8% Positive Training 
19% Positive Testing 

Median (interquartile range) [% failed to compute] 
AUC 0.779 (0.016) [0] 0.735 (0.017) [0] 0.779 (0.012) [0] 
Sensitivity 0.010 (0.006) [0] 0.649 (0.031) [0] 0.010 (0.005) [0] 
Specificity 1.000 (0.000) [0] 0.697 (0.015) [0] 1.000 (0.001) [0] 
PPV 0.750 (0.175) [0] 0.151 (0.011) [0] 1.000 (0.200) [1] 
NPV 0.924 (0.004) [0] 0.960 (0.004) [0] 0.809 (0.010) [0] 
Accuracy 0.924 (0.004) [0] 0.693 (0.015) [0] 0.810 (0.010) [0] 
Balanced Accuracy 0.505 (0.003) [0] 0.673 (0.014) [0] 0.505 (0.003) [0] 
F1 Measure 0.020 (0.011) [0] 0.245 (0.016) [0] 0.020 (0.011) [0] 
F1.1 Measure 0.022 (0.012) [0] 0.674 (0.014) [0] 0.022 (0.012) [0] 
GMA 0.101 (0.028) [0] 0.672 (0.015) [0] 0.101 (0.027) [0] 
Markedness 0.836 (0.090) [0] 0.555 (0.006) [0] 0.902 (0.100) [1] 
MCC 0.541 (0.018) [0] 0.598 (0.010) [0] 0.543 (0.018) [1] 
OP 0.472 (0.007) [0] 0.829 (0.012) [0] 0.415 (0.008) [0] 

Notes: The five reference measures are included at the top (shaded darker) of the table, above the measures compared herein, for reference. 
Analysis with highest median performance by performance measure highlighted in bold 
Analysis three was designed to have high levels of class imbalance (92:8 ratio) in both training and testing sets.  The two variations (analyses 5 and 6) 
increase the number of samples in the positive class in the training only and testing only sets, respectively. 
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Similarly, the balanced accuracy, F1 Measure, F1.1 Measure, GMA, and OP have all 
improved as a result of the improved sensitivity.  The markedness, which is driven by 
the PPV and NPV, declined from 0.84 to 0.56.  The MCC, however, remained similar 
between analyses 3 (0.54) and 5 (0.60) as both poor sensitivity/specificity balance 
and poor NPV/PPV balance result in lower performance.   
 
In the sixth analysis, the only performance measures which were affected by the 
change in testing outcome distribution were the accuracy and OP (worse when the 
testing data were more balanced; 0.81 and 0.42 versus 0.92 and 0.47, respectively) 
and the markedness (better when the testing data were more balanced; 0.90 versus 

0.84). 
 
The AUC was similar between the three analyses presented in Table 6.6, but slightly 
lower on the fifth analysis for which the training data had been enriched (0.74 versus 
0.78 in analyses 3 and 6).   
 
 
6.4 Summarising Findings and Recommendations for 

Choice of Performance Measure 
 

 Summary of Experimental Investigation 
 I assessed experimental (controlled) and empirical binary classification outputs, to 
compare performance measures under certain conditions, with a focus on class 

imbalance.   
 
For accuracy and the F1 Measure, performance is strongly affected by the proportion 
of the classes (i.e. how much one class dominates).  As such, poor performance in 
the non-dominant class often goes unnoticed.   The balanced accuracy, markedness, 
and the MCC may select as the optimal model one which could be improved by 
recalibration, which would improve the performance in the under-performing class, but 
not without sacrificing some of the performance in the better class.  Additionally, this 
is only desirable when the model or scenario allows recalibration (not true, for 
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example, when using domain-expert decision rules) and when sufficient post-hoc 
validation can be conducted.  Between these three measures, the balanced accuracy 
remains unaffected by class imbalance, while the markedness and (to a lesser extent) 
the MCC still weights performance more in the major class than the minor class.  The 
GMA, F1.1 Measure and OP penalise poor calibration strongly, and as such it is unlikely 
that models which could benefit from recalibration methods 337,363 would be 
discounted.   
 
Across low and moderate levels of class imbalance, the accuracy and markedness 
both increased as the major class performance increased, even when the minor class 

performance rapidly declined simultaneously.  The same was true of the MCC, but 
only when imbalance was high.  The other performance measures all penalised the 
decline in minor class performance significantly, despite its small size.   
 

 Results in Context 
As introduced in Section 6.1, Sokolova and Lapalme 355 defined a taxonomy of eight 
performance measure invariance properties as the preservation of performance 
evaluation after certain elementary matrix operations are made to the confusion matrix 
(such as increasing the number of samples in one class while preserving the class-
specific performance).  They highlighted that such invariance can be beneficial or 
adverse, depending on the objective of the classification task, but failed to map these 
invariance properties to pragmatic use cases.  For completeness, the invariance 
properties of the performance measures used herein are described in further detail in 

Appendix L.  While several of the measures used therein could not be distinguished 
at all, they did highlight the main difference the GMA and F1.1 Measure: the GMA is 
invariant to the swapping of the positive and negative columns.  This property is 
characteristic of the robustness of a measure to study specific definitions (asthma 
attack as the positive outcome) but has little significance in most practical settings.  

Furthermore, the b value of 1.1 was chosen as a comparator in this analysis because 

it is a close approximation of the value which gives true invariance, but the F1.1 
Measure actually results in lower variance than the GMA in many practical settings, 
as demonstrated in Tables Table 6.5 and Table 6.6.   
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To the best of my knowledge, Luque et al. 354 is the only study which attempted to 
translate their findings into guidance.  They used cluster analysis to group 
performance measures according to their handling of class imbalance, quantified as 
the bias of the performance measure to the direction and magnitude of imbalance.  
They define the property null-biased as when the degree of imbalance, independent 
of the sensitivity and specificity, changes the resulting performance value (illustrated 
as parallel lines in Figure 6.1).  They concluded that in imbalanced data classification, 
the GMA and Balanced Accuracy (more accurately, they refer to the Bookmaker’s 
Informedness, discussed in the Section 5.4.3.3) are the best null-biased measures “if 

their focus on successes (dismissing the errors) presents no limitation for the specific 

application where they are used”.  In other words, if you do not want the imbalance to 
explicitly affect the relative weight of the true positive and negative class accuracies, 
but good discrimination is the overall aim.  This is the case in my asthma attack risk 
prediction modelling: any weighting between class inaccuracies should be chosen on 
the basis of medical rationale rather than observed class imbalance.   
 
On the other hand, the authors highlight how the MCC is the best choice when the 
NPV/PPV balance must be considered as well as the sensitivity/specificity balance.  
Such is the case when the prevalence is expected to be different in the testing data 
than the model was trained on.  This is not expected to be the case in my analyses, 
as the training and testing data are random partitions of the same original dataset.   
 

 Recommendations Dictating Performance Measure Choice  

There are two primary contexts in which performance measures are used: comparing 
multiple models in the same data (validation) and comparing the same model in 
multiple datasets (testing).  In both contexts, reporting as many performance 
measures as possible (as well as the confusion matrix itself) increases transparency 
and aids comparison with other research.  However, the model selection process itself 
requires a single, primary performance measure so that models can be objectively 
compared and ranked.  As each performance measure is a differently derived 
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summary of the model’s performance, it is important to select a measure in a way that 
is meaningful for the given data in that specific application and the investigated 
research question.   

Figure 6.3 shows a decision tree I have constructed to provide a generic roadmap for 

the comparative recommended use of the performance measures in binary 
classification settings.  I have not included the F1 Measure in this decision tree, as it 
has a very distinct and unique use case. 
 
At the first branch, we split on whether the major class comprises more than 60% of 
samples in the training data.  When data are substantially imbalanced (major class 
representing over 60% of samples), the Accuracy and OP are poor choices of 
performance measure. Accuracy weighs the class-specific accuracies according to the 
size of the class, and a model with poorer performance in the minor class (which is 
common as there are fewer samples to learn from) may not have a much lower 
accuracy than a model with excellent performance in the minor class.  The OP is not 
appropriate when the class-accuracies are poorly calibrated, as when the sensitivity 
is low, a model with poor specificity may be appraised to perform better than a model 
with good specificity (and vice versa).   
 
If the data are fairly balanced, most algorithms will attempt to roughly equate the 
observed and predicted class balance, resulting in poor discrimination if either class 
is hard to predict.  An important distinction between performance measures is whether 
they prioritise model calibration or model discrimination. Good calibration ensures high 

performance across an entire population whereas good discrimination means a higher 
chance of good performance for an individual.  If calibration is the priority, then the OP 
is a strong candidate measure which will select the best model as the one in which the 
estimated class probabilities are well aligned with the observed risk for all individuals.  
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Figure 6.3: Decision tree for selecting performance measure in binary classification settings 

 

Yes No 

Is calibration prioritised over 
discrimination?  

Is interpretability prioritised over 
precision? 

MCC 

Yes 

Does the larger class comprise fewer than 
60% of the samples? 

No 

No 

Yes 

Is calibration prioritised over 
discrimination?  

Yes 

OP 

Balanced 
Accuracy 

Yes No 

Accuracy Balanced 
Accuracy 

Are there likely to be cases with no 
samples predicted in the minor class? 

No 

Is interpretability prioritised 
over precision? 

Yes No 

GMA F1.1 Measure 
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If discrimination is more important, then the final question is whether the model should 
prioritise interpretability or precision.  The accuracy is simpler to explain and to 
understand, whereas the balanced accuracy is the indicated choice for detecting 
models with poor class performance, especially if the model may be applied to data 
with a differing prevalence.   
 
Although not presented in this side of the decision tree, the GMA and F1.1 Measure are 
good middle ground performance measures for lower levels of imbalance when 
calibration is desired, but not to the extreme of the OP (As shown in Figure 6.2).  Both 
measures will be slightly more favourable than the OP to models in which there is 

more variance in the observed to estimated risk, and so better able to distinguish 
between models when calibration is less easily achieved.  The GMA and F1.1 Measure 
will provide very similar results to each other, but the F1.1 Measure is slightly more 
precise than the GMA, at the expense of being an unconventional measure.  
Furthermore, the F1.1 Measure penalises models with very low performance in one 
class quite extremely, so a mean-based model selection algorithm would detect better 
if one class was underperforming.  The markedness, which is also not included in the 
decision tree, penalises poor calibration even less than the balanced accuracy or 
accuracy.  An optimal use case for this measure was not identified in this analysis, 
perhaps suggesting why its use has not been so widespread as the other measures 
(as discussed by Chicco et al. 353). 
 
When data are imbalanced (returning to the top of the decision tree and continuing 
down the right branch) and one wishes to prioritise calibration over discrimination, the 
GMA and F1.1 Measure are both suggested, with the same distinctions between the 
measures described previously applying in this case.  When good discrimination is 
more important, our two prime choices are the MCC and the balanced accuracy.  The 
most substantial difference between the two is that the balanced accuracy only 
observed the true class accuracies, whereas the MCC also observes the predicted 
class accuracies.  The most important case where this distinction becomes pertinent 

is when there is a risk of no (or very few) samples being predicted to the minor class.  
As seen in Figure 6.2, the MCC does not give a balanced overview of the two classes 
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when the imbalance is extreme and one class is substantially outperforming the other, 
such that small improvements in the major class affect the performance more than 
large improvement in the minor class.  This finding was also observed by Luque et al. 
354  (see their Figure 7).  As such, when the imbalance is over 90%, the MCC should 
only be considered when cases with very poor minor class performance have been 
identified, or when the classification threshold has already been optimised to balance 
the class performance.   
 
In this case, or when the imbalance is between 60-80%, the benefits of the MCC 
become more pertinent: it does not reward improved minor class performance when it 

came at the expense of the class predictive value.  The MCC’s ability to balance all 
cells of the confusion matrix in its calculation makes it very stable when comparing 
across datasets with different prevalence (in external validation, or with a very small 
testing set, for example) and identify cases where too many samples are predicted as 
belonging to the minor class (low PPV) as poorly performing.   
 
 

6.5 Summary remarks 
In accordance with the well-known machine learning mantra “there is no unique single 

best algorithm” for any problem, there is no single best performance measure for all 
applications.   By thoroughly investigating the results of multiple binary classification 
performance measures under certain conditions, I have determined the factors which 
need to be considered in order to facilitate the identification of the likely most suitable 
performance measure for a given application taking into account the imbalance of the 
data, the application of the model, and the audience.  
 
In my analyses, a single performance measure is required for two steps of the model 
selection process: 1) classification threshold optimisation within a model, and 2) model 
selection itself.  For the first step, the risk prediction model could still achieve good 

discrimination by predicting that no query samples will have an asthma attack (setting 
the classification threshold to a very high value, such as samples with over 99% 
predicted risk).  As such, even though the model needs to be accurate at the 
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population level, the calibration is crucial to ensure that poor sensitivity is penalised.  
The balanced accuracy was chosen accordingly as the most appropriate performance 
measure for this step and will be used for classification threshold optimisation in 
Chapter 7.    For the second step, once models have been optimised to balance the 
class accuracies, the MCC is the selected measure for model ranking and selection.   
 



 167 

7 Asthma Attack Risk Prediction Model 
Primary care consultations provide the opportunity for patients and clinicians to assess 
changes to asthma attack risk.  Accurate prediction of risk can instigate timely primary 
care intervention, prompt more frequency primary care visits, promote risk-reducing 
lifestyle choices, and encourage patients to seek emergency care following symptom 
deterioration.  Furthermore, highlighting periods when risk is lower can reduce lifetime 
steroid use and patient anxiety.  In this section, I conduct a detailed review of previous 
asthma attack risk prediction models, in order to establish the criteria for benchmarking 
my model’s performance.   I then review the relevant literature regarding reporting 
guidelines and best practices for prediction model development, describe the final 

methodology for my prediction model, and finally, present my results.   
 
 

7.1 Previous Work 
To critically appraise and benchmark the performance of my own model, it is important 
to determine the current state-of-the-art, in the context of the various study settings 
and outcome definitions used in the literature.  A 2018 systematic review by Loymans 
et al. 54 had previously identified adult asthma attack risk models, of which eight of the   
twelve studies identified therein reported some estimate of model performance, and 
were included in my review.  An additional five studies matching these criteria were 
identified since 2017 from the Google Scholar results of the search terms listed below, 
for a total of 13 included in this section (Table 7.1).  No risk of bias assessment was 
conducted on these studies, as the purpose of this review was simply to describe 
methods previously used and to provide guidance on the model benchmarking 
process.  
 

("asthma attack" OR "asthma exacerbation") AND model AND ("sensitivity" OR 

"accuracy" OR "C-statistic" OR "AUC")  
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Table 7.1: Characteristics of previous asthma attack risk prediction models 

Study 
Authors Data Source 

Population 
(Training Sample 
Size) 

Primary Outcome(s) 
Event 

Horizon 
(Months) 

Incidence 
Risk 

Eisner et al. 
65, 2012 

Secondary analysis of 
observational study 
(EXCELS; NCT00252135) 

Diagnosed asthma 
(N=2878) 

One or more serious adverse 
event 

12 Not 
Reported 

One or more inpatient admission 

One or more A&E presentation 

One or more OCS prescription 
One or more unscheduled 
doctor visit  

Grana et al. 
77, 1997 US EHRs 

Diagnosed or 
treated asthma 
(N=54,573) 

One or more inpatient admission  12 1.8% 

Lieu et al. 169, 
1999 US EHRs 

One or more 
asthma attack in 
previous two years 
(N=7141) 

One or more A&E presentation 
or inpatient admission  12 6.9% 

Loymans et 
al. 67, 2016 

Secondary analysis of RCT 
(ACCURATE; NTR1756) 

Diagnosed and 
treated asthma 
(N=611) 

One or more ATS/ERS defined 
severe exacerbation   12 13.1% 

Notes: Sample size and incidence risk reported from model training set only, except Eisner et al. which was an external validation study of a previous model 
Eisner et al. also looked at the components of this composite score in isolation, but only the outcome most closely resembling my own has been included 
herein 
Lieu et al. also looked at inpatient admissions only 
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Study 
Authors Data Source 

Population 
(Training Sample 
Size) 

Primary Outcome(s) 
Event 

Horizon 
(Months) 

Incidence 
Risk 

Luo et al. 116, 
2020 US EHRs 

Diagnosed asthma 
(164,320 person-
years) 

One or more A&E presentation 
or inpatient admission  12 3.4% 

Martin et al. 
364, 2020 US EHRs 

Diagnosed and 
treated asthma 
(N=1787) 

One or more ATS/ERS defined 
severe exacerbation  12 54.8% 

Miller et al. 
120, 2006 

Secondary analysis of 
observational study 
(TENOR; NCT00091767)  

Severe asthma 
(N=2821) 

One or more A&E presentation 
or inpatient admission  6 8.5% 

Sato et al. 124, 
2009 

Retrospective 
Observational study  

Diagnosed and 
treated asthma 
(N=78) 

One or more OCS prescription, 
A&E presentation, inpatient 
admission, or two (or more) 
consecutive days of a PEFR of 
sub-70% of baseline  

12 20.5% 

Schatz et al. 
72, 2003 US EHRs 

Diagnosed or 
treated asthma 
(N=6904) 

One or more inpatient admission  12 1.2% 

Xiang et al. 
365, 2020 US EHRs 

Diagnosed and 
treated asthma 
(N=31,433) 

One or more A&E presentation, 
inpatient admission or OCS 
prescription  

12 7.8% 

Notes: Sample size and incidence risk reported from model training set only 
PEFR = Peak Expiratory Flow Rate 
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Schatz et al. conducted a stratified analysis on both children and adults, but only the adult strata is included herein 

Study 
Authors Data Source 

Population 
(Training Sample 
Size) 

Primary Outcome(s) 
Event 

Horizon 
(Months) 

Incidence 
Risk 

Yurk et al. 366, 
2004 

Prospective Observational 
study 

Diagnosed asthma 
(N=4895) One or more inpatient admission 12 9% 

Zein et al. 367, 
2021 US EHRs 

Diagnosed and 
treated asthma 
(N=60,302) 

One or more OCS prescriptions 
12 

32.8% 
One or more inpatient admission 1.5% 
One or more A&E presentation 2.9% 

Zhang et al. 
346, 2020 

Secondary analysis of 
observational study 
(SAKURA; NCT00839800) 

Diagnosed and 
treated asthma, 
and a recent history 
of asthma attacks 
(N=2010) 

One or more A&E presentation, 
inpatient admission or OCS 
prescription initiation lasting for 
at least 3 days (multiple events 
per person possible, samples 
comprised 728,535 follow-up 
days) 

~ 0.1 (3 
days) <0.1% 

Notes: Sample size and incidence risk reported from model training set only 
Yurk et al. did not report the number of people with positive outcomes, and thus a more precise incidence estimate could not be calculated, but also looked at 
an alternative composite outcome including reduced activity (not presented here). 
Zein et al. also looked at A&E presentations and inpatient admissions 
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 Study Setting 
Secondary data sources were used for 11 of the 13 studies identified, including EHRs 
(all US), RCTs and observational studies.  Only two of the studies (Miller 120 and Zhang 
346) used an event horizon of less than 12 months.  While identifying patients at high 

risk of an attack in the next 12 months might highlight an appropriate population for a 
health education program, or a home monitoring-based intervention, it is not specific 
enough to assist in the prescribing of a short-term pharmacological intervention 
(OCS).   
 
Three studies (Miller 120, Lieu 169, and Zhang 346) restricted analysis to patients with 
severe asthma, however the other studies used the more general criteria of diagnosed 
and/or treated asthma for the primary population.   
 
As discussed in Section 2.3, while those with mild asthma have a relatively low 
incidence rate of asthma attacks, they comprise a large proportion of asthma attacks 
by virtue of being the most populous severity group.  As such, limiting my study to 
those with severe, or even moderate-to-severe asthma, limits the potential benefit of 
my prediction model.   
 
The definition of an asthma attack (used as outcome) varied considerably across 
studies, as discussed in Section 2.4.  Eisner et al. 65 used multiple outcomes in their 
study, as listed in Table 7.1, one of which was a study defined serious adverse event.  
Sato et al. 124 used peak flow in their (composite) outcome, while the other studies 

used some combination of A&E presentations, inpatient admissions, and OCS 
prescriptions (including the outcome definition defined by ATS/ERS).   
 

 Study Methodology 
The most common modelling approach used in the reviewed asthma attack risk 
prediction studies was logistic regression (11 of 13 studies).  Only four of the studies 
investigated any algorithms other than logistic regression and decision trees (Luo 116, 
Xiang 365, Zein 367, and Zhang 346), and only five compared multiple algorithms (Eisner 
65, Luo 116, Xiang 365, Zein 367, and Zhang 346).  Five of the studies only tested a single 
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model (logistic regression; Grana 77,  Martin 364,  Miller 120, Schatz 72, and Yurk 366), 
but others tested various algorithm hyper-parameters (Lieu 169, Luo 116, Sato 124, Xiang 
365, Zein 367, and Zhang 346), feature sets (Eisner 65, Lieu 169, Loymans 67, Luo 116, and 
Xiang 365), or training data enrichment methods (Luo 116 and Zhang 346).  As introduced 
in Section 5.3.6, there is no free lunch; no algorithm or model guaranteed to produce 
the ‘universally best’ performance across every dataset.  As such, without comparing 
multiple models it is very unlikely that the best performing model will be identified.  
 
Luo et al.’s final model used the extreme gradient boosting algorithm with the positive 
and negative classes weight hyper-parameter optimised to 0.02 116.  They note that 

while this improved the AUC, it resulted in poorly calibrated estimated probabilities.   
Zhang et al. 346 compared under-sampling, over-sampling, and SMOTEing (see 
Section 5.5), for varying levels of resulting class balance, on a logistic regression 
model, and found that all methods performed equally, with respect to sensitivity and 
specificity, and that the performance was best when the classes were equally 
balanced 346.  Under-sampling was used as their final method due to simplicity, 
increasing the sensitivity from 0 to 87 with a decline in specificity from 100 to 84.   
 
Only one of the studies reported their performance in an external dataset (Loymans 
67), three used a random split-sample (also known as a hold-out set; Zein 367, Xiang 
365, Lieu 169), three used a temporal split-sample (such as the last year of data; Grana 
77, Luo 116, and Miller 120), and two used cross-validation (Zhang 346) or bootstrapping 
(Schatz 72).  Four of the studies only reported their performance in either the training 
data (Eisner 65, Sato 124, Yurk 366) or a pooled training and testing set (Martin 364).  The 
result of this is the performance reported is likely higher than its comparators (and to 
the performance expected in a practical application of the model) as predictive models 
tend to perform better on the training data than on new data, as they have learned the 
patterns present in that data and have fit the model to it 368.   
 
Five studies (Eisner 65, Loymans 67, Miller 120, Xiang 365, and Yurk 366) evaluated the 

performance of their models using only the AUC (Table 7.2).  In contrast, both Grana 
et al. 77 and Lieu et al. 169 reported only the predicted classes of their test samples.  
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The other six studies all reported on both the probabilistic outputs and the predicted 
classes assigned after a threshold was applied to the probabilistic outputs of the 
classifiers to obtain a deterministic class estimate.  As described in Section 5.4.1, the 
AUC has many limitations such as measuring performance at thresholds that would 
never be applied in the real world (such as a false positive rate of 99%) and it is not 
intuitive to interpret.   It can be very useful to supplement deterministic performance 
measures, however, as it can provide some overview of the sensitivity of the 
performance depending on the threshold chosen.     
 
Note that multiple models for the same outcome were presented equally by Lieu 169, 

Loymans 67, and Miller 120.  For Miller and Loymans, who each reported only the AUC, 
the best performing model is reported in Table 7.2.  For Lieu et al., who reported 
multiple performance measures, both models are reported here (models A and B).   
 
Similarly, multiple models with different outcomes were presented equally by Eisner 
et al.  65, and so have all been reported here with a three-character code denoting the 
different outcomes.  
 
Five studies (Eisner 65, Loymans 67, Miller 120, Xiang 365, and Yurk 366) evaluated the 
performance of their models using only the AUC.  In contrast, both Grana et al. 77 and 
Lieu et al. 169 reported only the deterministic predicted classes of their test samples.  
The other six studies all reported on both the probabilistic outputs and the predicted 
classes assigned after a threshold was applied to the probabilistic outputs of the 
classifiers to obtain a deterministic class estimate.  As described in Section 5.4.1, the 
AUC has many limitations such as measuring performance at thresholds that would 
never be applied in the real world (such as a false positive rate of 99%) and it is not 
intuitive to interpret.   It can be very useful to supplement deterministic performance 
measures, however, as it can provide some overview of the sensitivity of the 
performance depending on the threshold chosen.   
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Table 7.2: Model performance measures reported in asthma attack risk prediction studies 

Study AUC Sensitivity Specificity PPV  NPV Performance Validation Approach 

Eisner et al. 65, 2012 (SAE) 0.78 - - - - 

Performance reported only in the data seen in 
model training 

Eisner et al. 65, 2012 (INP) 0.69 - - - - 

Eisner et al. 65, 2012 (A&E) 0.75 - - - - 

Eisner et al. 65, 2012 (OCS) 0.69 - - - - 

Eisner et al. 65, 2012 (UDV) 0.68 - - - - 

Loymans et al. 67, 2016  0.72 - - - - External 

Miller et al. 120, 2006 0.81 - - - - Internal (Temporal) 

Xiang et al. 365, 2020 0.70 - - - - Internal (20% hold-out) 

Yurk et al. 366, 2004 0.71 - - - - Training set 

Grana et al. 77, 1997 - 70 71 - - Internal (Temporal) 

Lieu et al. 169, 1999  (A) - 49 85 20 - 
Internal (50% hold-out) 

Lieu et al. 169, 1999  (B) - 36 92 25 - 

Luo et al. 116, 2020  0.86 54 92 23 98 Internal (Temporal) 

Martin et al. 364, 2020 0.67 48 80 74 56 Combined training and validation set 

Sato et al. 124, 2009 0.68 44 92 - - Training set 
Notes: SAE = serious adverse event, INP = inpatient admission, A&E = accident and emergency presentation, OCS = oral corticosteroid prescription, UDV = 
unscheduled doctor visit.  For the performance validation approach, internal refers to using a single database for training and testing (usually done in some 
standard way of model validation, e.g. CV), and external refers to having an external database. A hyphen denotes that a measure was not reported. 
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Study AUC Sensitivity Specificity PPV  NPV Performance Validation Approach 

Schatz et al. 72, 2003 0.71 45 87 4 99 Internal (bootstrap & jack-knife estimates) 

Zein et al. 367, 2021 (OCS) 0.71 64 67 51 78 

Internal (20% hold-out) Zein et al. 367, 2021 (INP) 0.85 86 73 5 100 

Zein et al. 367, 2021 (A&E) 0.88 84 76 12 99 

Zhang et al. 346, 2020 0.85 90 83 - - Internal (10-rep 5-fold CV) 
Notes: SAE = serious adverse event, INP = inpatient admission, A&E = accident and emergency presentation, OCS = oral corticosteroid prescription, UDV = 
unscheduled doctor visit, CV = cross validation.  For the performance validation approach, internal refers to using a single database for training and testing 
(usually done in some standard way of model validation, e.g. CV), and external refers to having an external database. 
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 Model Performance 
The AUC values reported ranged between 0.67 and 0.88.  Four models achieved an 
AUC of 0.8 or greater: Luo 116, Zein: Inpatient 367, Zein: A&E 367, and Zhang 346.  All 
four models achieved greater than 70% specificity, and over 50% sensitivity.  In fact, 

Zhang et al. 346 and both Zein et al. models 367 achieved over 80% sensitivity.  
Unfortunately, this performance in the minor class came at the expense of the PPV, 
which was under 15 for both Zein 367 models and only 23% for Luo et al. 116.   No PPV 
was reported for Zhang et al. 346.  The model by Grana et al. 77 also achieved over 
70% for both sensitivity and specificity, but failed to report PPV.  Zein et al.’s OCS 
prediction model 367 was the only to achieve greater than 50% for sensitivity, 
specificity, PPV and NPV, however with a very low AUC. 
 

 Conclusions 
Defining a benchmark is no simple task, due to the multitude of performance measures 
used, and the different settings of the models evaluated.  Overall, I decided on a 
composite benchmark, with six criteria which if met a model could be considered 

conclusively the highest performing: 

• Sensitivity and PPV greater than 50% (median sensitivity in Table 7.2) 

• Specificity and NPV greater than 70% (median specificity in Table 7.2) 

• Balanced accuracy greater than 70% (median balanced accuracy calculated 
from studies reporting both sensitivity and specificity in Table 7.2) 

• AUC greater than 0.70 (median AUC in Table 7.2). 
 
Reviewing the previous models has also reinforced the importance of appraising 
training data enrichment methods, ensuring that data (including both samples and 
parameters) from model training are not used in the performance evaluation, and 
reporting on a wide array of performance measures.  Furthermore, providing the 
confusion matrix allows further performance measures to be calculated post-hoc.   
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7.2 Published Guidelines for Developing and Reporting 
Clinical Risk Prediction Models 

In this section I will review published guidelines for the development and reporting of 
clinical risk prediction models, and for observational studies using routinely collected 
data.   Items on any of the discussed guidelines which were pertinent to secondary 
data analyses and to a thesis, rather than a journal publication, will be listed in 
Appendix M, along with the section in which the item will be covered.   
 
Within the EQUATOR (Enhancing the Quality and Transparency of health Research) 
network, three guidelines were identified which pertained to risk prediction or 

prognostic modelling.  First, RiGoR (Reporting Guidelines to address common 
sources of bias in Risk model development, by Kerr et al.  368) primarily aims to improve 
practices relating to two common causes of bias, which are sometimes combined into 
optimism bias: leaking of information (either data samples, or parameters estimated 
from said data) from the training set to the testing set (named resubstitution bias 
therein, but often known as data-leakage) and reporting on the performance of the 
model which performs best in the training or validation set, but not the final 
performance in new unseen data (model-selection bias).  Such considerations are of 
great importance to ensuring model validity but are very often missing from less 
technical guidelines.   
 
Luo et al. 53 published guidelines specifically for machine learning predictive models.     
Some points related strictly to specific algorithms (including recommended hyper-
parameter fine tuning), but they also stressed the importance of some quantification 
of clinical benefit from this model over standard practice, such as calculating the 
Number Needed to Treat (NNT) and/or providing a health economics evaluation.   
 
The TRIPOD (Transparent Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis) guidelines by Collins et al. 369 provides well-rounded general 

guidance for both prognostic and diagnostic models.  Few points were raised which 
were not covered by either of the two previously described guidelines, however they 
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also comment on the value of publishing a study protocol prior to the start of analysis, 
and the importance of highlighting any changes to the originally described 
methodology that were undertaken after the data was explored.   
 
Finally, the RECORD (Reporting of studies Conducted using Observational Routinely-
collected health Data) guidelines by Benchimol et al. 370 were used to supplement the 
prediction model-centred guidelines with mandates specifically pertaining to the use 
of EHRs.  These included describing the extent to which the investigators had access 
to the database population, and including flow charts to demonstrate the data linkage 
process.   

 
 

7.3 Methods 
In this section I review the conclusions I have made in the previous chapters which 
comprise the methods for my risk prediction model.   
 

 Inclusion and Exclusion Criteria 
The final study population is adults (aged 18 and over) with clinician-diagnosed-and-
treated asthma (identified by Read Codes in Appendix E and at least one controller 
medication as identified in Section 4.2.2).  This includes those with inactive asthma, 
as there was no enforced time limit on the recency of asthma controller medication 
prescriptions. 
 

I chose to focus this analysis on the adult population as there is evidence that use of 
EHRs to estimate adherence is more appropriate in adults than in children.  Jentzsch 
et al. 264 saw a substantial overestimation of adherence in their study of children with 
asthma, possibly as a result of parents coordinating the refills, regardless of the child’s 
medication taking.  In the general adult population, it has been estimated that (across 
multiple conditions) only 10% of adults could be classed as engaged (not 
discontinued) but poorly implementing 285.  As such, they may be the most appropriate 
age group for such an assessment.  If age was missing from the primary care registry, 
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it was not possible to ascertain if an individual was an adult, and so they were 
excluded.   
 
COPD is a condition with a similar presentation to asthma, but a different biological 
mechanism and different risk factors 126,127.   In addition, a previous UK study by 
Nissen et al. found that over half (52%) of individuals with validated COPD diagnoses 
also had a previous asthma diagnosis, however the majority (72%) of these were 
asthma misdiagnoses 125.  I decided to exclude anyone with a COPD diagnosis, as 
ascertained by the presence of Read Codes listed in Appendix N).   
 

The ALHS datasets were left-censored on January 2009 (all records prior to this date 
were discarded) in order to align with the primary care prescribing data and right-
censored on March 2017 (all records after to this date were discarded) in order to align 
with the primary care, inpatient hospital admission, and mortality records (as 
presented in Table 2.1). Each person’s follow-up time was further left-censored at their 
first treatment event (whichever came first) and right-censored at their date of death 
or asthma resolution (the cessation of symptoms; Read Code 212G.).   
 
In the final analysis dataset, only primary care encounters for asthma or respiratory 
infections (days on which at least one asthma-related code was recorded), on days 
with no steroid prescriptions or secondary care asthma encounters, were retained as 
samples for training and validation.  As such, to be included in the analyses, individuals 
were required to have at least one such event during their follow-up.  Read Codes for 
asthma encounters other than diagnoses are listed in Appendix F.  Finally, those with 
missing age or sex (in the primary care registry) were excluded from analyses.   
 

 Asthma Attacks 
As discussed in Section 2.4, I used the ATS/ERS Task Force definition of a severe 
exacerbation 78 to define asthma attacks in my dataset: a prescription of OCS, an 
asthma-related A&E visit, or an asthma-related hospital admission.  In addition, deaths 
with asthma as the primary cause were considered asthma attacks, and cases of 
multiple attack-identifying records occurring within a 14-day period were coded as a 
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single incident.  A&E presentations, inpatient admissions, and deaths due to asthma 
were all identified by the ICD10 codes J45 or J46.  Additionally, A&E presentations 
were flagged as asthma attacks if ‘asthma’ was identified in the free text field for 
presenting complaint in A&E admissions, (manually checked to confirm no negation, 
such as ‘not asthma’). 
 
As described in Section 3.6.6, prescriptions of prednisolone oral steroids (brand 
names listed in Appendix D) were considered indicative of an asthma attack if all of 
the following conditions were also met: 1) they were prescribed to someone with a 
diagnosis of asthma or receiving asthma treatment, 2) they were prescribed on the 

same day as an asthma-related consultation (identified by the presence of any Read 
Code listed in Appendix E and Appendix F on the same day), and 3) the total 
prescribed dose was between 200 and 1000 mg (based on the British National 
Formulary Version 80 (BNF80) recommendation that 40-50mg daily be prescribed for 
asthma attacks, for at least 5 days 193).   
 
Medication strength was extracted in ALHS by searching the ePRNDName (and 
PIItemStrength.UOM if no value could be identified from ePRNDName) for any of 500, 
125, 120, 100, 80, 40, 25, 20, 16, 15, 10, 5, 4, 2, 1 or 2.5, followed by “MG”, or 
“MILLIGRAM” (with or without a preceding space), or 1 followed by “G” (with or without 
space, and subsequently converted from grams to milligrams).  The total dose was 
then calculated as the quantity (see Section 4.2.3) multiplied by the medication 
strength.      
 

 Risk Factors 
Table 3.4 describes the full set of risk factors which were included in the analysis.  In 
this section, I describe the feature extraction method, where previously undetermined, 
and any subsequent data processing not described in Chapter 3.   
 
Following from the findings in Chapter 4, prescribing records were used to estimate 
two measures of adherence: a rolling average of the three most recent (closed-ended) 
prescription intervals (known as CSA_3), and the percentage of days in the previous 
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calendar year for which there was medication supply available, assuming that supply 
from overlapping intervals is not discarded (CMA8_2).    
 
The mean inhaled SABA dosage per day and a binary flag for the recent prescription 
(in the last 90 days) of nebulised SABA were used as proxies for asthma control.  The 
mean inhaled SABA dosage per day was estimated from the dosage and the dates 
between prescriptions. Non-inhaled reliever medications were identified by “ML” in the 
PIItemstrength.UOM, or any of the following phrases in the ePRNDName or 
PIDrugformulation: 

“NEB”, “ORAL”, “CAP”, “TAB”, “SYRUP”, “SOL”, “SOLN”, “INJ” 

The medication strength was then extracted by searching for any of the values 95, 
100, or 200, followed by “MICRO” or “MCG” (with or without a preceding space) in 
ePRNDName, or PIItemstrength.UOM if no value could be extracted from the 
ePRNDName.   The volume of the inhaler was estimated by searching for 60, 100, 
120, or 200, following by “DOSE” (with or without a preceding space or hyphen) in 
ePRNDName.  The mean SABA dosage daily was then estimated as the prescribed 
quantity of inhalers multiplied by the medication strength in micrograms and the 
volume of the inhaler unit and divided by the number of days until the next prescription.   
 
Of the 45 features (the 43 listed in Table 3.4, plus CSA_3 and CMA8_2), 22 were 
binary, six were continuous, and 17 were categorical (with more than two categories).  
The distributions and summary statistics of each continuous feature, and the 
proportions for each value of the categorical features, are presented in Appendix O.  
The categorical variables were one-hot encoded (described in Section 6.2.2), resulting 
in a design matrix with 125 columns and 1,154,048 rows.   
 

 Analysis Plan 
In this analysis, a repeated, random split-sample approach is used to train and validate 
the models.  A 10% partition (115,404 samples) of the ALHS dataset (Section 2.2) was 
kept aside for holdout testing, and the remaining 90% (1,038,644 samples) was used 
for model selection and initial performance reporting (henceforth the derivation 
dataset).   
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For model selection, the derivation dataset was further randomly partitioned 10 times 
such that 90% of the samples were used for training, and 10% for validation (Figure 
7.1).  Feature scaling was conducted on the continuous features by min-max 
normalisation, introduced previously in Section 5.4.3.5 (Equation (5.13), 
independently in the training/validation and testing partitions.  Feature scaling speeds 
up gradient descent-based methods (such as logistic regression).  This can be 
illustrated by a simple example: in a dataset with two features, of which one has range 
[0,1] and the other has range [0,1000000], the learning rate required to complement 
the scale of the first feature will result in very inefficient descent relative to the second 

feature.  Feature scaling is also necessary for SMOTEing, as it is based on the 
Euclidean distance between minority samples.  As such, a sample which was identical 
in all regards to another except one feature which had a much wider scale than the 
others may have a higher distance than a sample which was mildly different for all 
features.  Minmax normalisation was chosen specifically because the range of values 
for each feature are the only required parameters, rather than the full distribution of 
the feature.  As such, the minimum and maximum observed in this derivation data can 
be easily shared and compared against the range observed in an external dataset, in 
order to determine the range to use for the external data scaling.   
 
Outliers were removed from the continuous features before scaling by right-censoring 
values at the value closest to one significant figure (such as 3000, or 40) to the median 
multiplied by four.  12 models (Appendix P) were then trained on four variations of the 
same scaled training data partition, to predict whether an asthma attack would occur 
in the following four weeks (primary endpoint).   The 12 models used the following 
algorithms: (1) logistic regression, (2) naïve Bayes classifier, (3-6) random forests 
(with four hyper-parameter values trialled) and (7-12) extreme gradient boosting (two 
hyper-parameter value sets, of size three and two, for a total of six models trialled).      
The logistic regression model, employed without any feature selection or polynomial 
terms, serves as a naïve benchmark to demonstrate the flexibility of the non-

parametric machine learning models.  



 183 

 
Figure 7.1: Model training and validation process 
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Variations of the training data employed different data enrichment methods, assessing 
how to best overcome problems in model performance as a result of low outcome 
prevalence (see Section 5.5).  The variations were: the original training data partition, 
and the original training data partition with three SMOTEing parameter sets applied 
(described in Section 7.3.5).  The stability of the performance measure estimates 
across the 10 iterations of the training/validation partitioning was evaluated to ensure 
that there is sufficient confidence in the selection of the model to proceed to the second 
model validation phase, else further iterations will be conducted at this stage.   
 
For each iteration, model, and enrichment method, the AUC and Brier Score were 

calculated, and the confusion matrix was recorded for both the default (probability 
greater than 0.5) classification threshold, or the threshold that optimised the balanced 
accuracy in predictions made on the training data.  The optimised threshold was 
identified using golden-section search optimisation 371; an iterative technique which 
assumes that the function mapping the threshold values to the resulting balanced 
accuracy is monotonically increasing until the optimal value, and then monotonically 
decreasing above it.  Across iterations, summary statistics were calculated for each 
performance measure to provide some estimate of the average performance, and the 
certainty around that estimate.  The best-performing model was selected on the basis 
of the sensitivity and PPV in the validation partitions for each of the 10 split-sample 
iterations.   
 
For performance reporting, the derivation dataset was randomly partitioned another 
100 times, again with 90% of the data used for training the final selected algorithm, 
hyper-parameters and enrichment method, and 10% for validation.  The model 
performance was reported aggregated over the 100 iterations of the split-sample 
process.   
 
Finally, the model was then retrained on the full derivation dataset and tested on the 
as-of-yet unseen holdout test partition.  Retraining the model allows the final testing in 

the holdout partition to make use of the full wealth of the derivation dataset, as well as 
selecting a classification threshold informed by the performance in the validation 
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stage. Each performance measure estimated in this holdout partition was compared 
to the range of estimates in the 100 previous iterations to ensure that the crossover in 
samples between the model selection and performance reporting subsets did not bias 
the results.  
 
The Gini importance 314 of each feature in the full derivation dataset was evaluated 
(see Section 5.6.1), and the top ten and bottom five features were included in a bar 
chart for illustration of the relative importance.   
 
Post-hoc analyses of model calibration were conducted on the holdout partition using 

the calibration slope and calibration-in-the-large (Section 5.4.4).  Discrimination in 
subgroups was evaluated by assessing the classification errors according to the 
following factors: prior history of asthma attacks, asthma severity, asthma attack 
severity, and smoking status.   
 
As an unvalidated comparison, the final selection of algorithm, hyper-parameters and 
enrichment method was retrained (in the derivation dataset) on nine alternative 
endpoints, tested in the holdout partition.  Four alternate event horizons were tested, 
compared to prediction in the next four weeks: one week, 12 weeks, 26 weeks, and 
52 weeks.  Five endpoints used the same five event horizons but only for predicting 
asthma attacks that presented in secondary care.  The hyper-parameters for these 
models have not been fine-tuned, nor the model performance robustly tested, but it 
serves as a simple indicator of possible utility for varying clinical settings.    
 
The protocol for this analysis was published in BMJ Open in 2019 372, and any 
deviations from that protocol are detailed in Appendix Q.   
 

 Enrichments 
The primary SMOTEing parameters, as described in Section 5.5, relate to the degree 
of over-sampling and under-sampling conducted.  In our case, with an expected minor 
class proportion of 0.01, k can take any integer value in the range 1 to 98 (Equation 
(5.22), and z any real value in the range 1 to 99 (Equation (5.23).   
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As shown in Figure 7.2, the enriched training dataset sample size is at its largest for 
each value of k when z is maximised.  I used three scenarios, selected at the 5th, 15th, 
and 25th percentiles (rounded to the nearest integer) of k (6, 16 and 25), and the 
corresponding value of z (to the nearest 1 decimal place) which minimised the 
deviation in sample size from the original (unenriched) sample (15.5, 5.2, and 3); 
denoted by the diamonds.  The neighbourhood radius parameter was set to the default 
value of 5 from the function SMOTE in the package DMwR 373.    
 
 

 
Figure 7.2: Selected values of k,z for SMOTE enrichment, and their resulting sample 
size, relating to the original training data sample size 

Note: The SMOTEd training data generates k new synthetic samples for each sample in the minor 
class, resulting in (k+1)*a  samples in the minor class, and retaining z*k*a major class samples.     
 
 

 Parallel Programming for Increased Efficiency  
Training machine learning models, and generating predictions in new data, is a 
computationally intensive and time-consuming process.  One way to improve the 
efficiency of running such programs is to move from serial execution (completing 
tasks, such as training models, one at a time) to parallel execution (running several 
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tasks simultaneously).  When programs are being run on a processor with multiple 
cores (a computation unit, capable of running a single task), known as a multi-core 

processor (Figure 7.3), it may be possible to assign independent processes (or 
workers) to compute, and pass their results back to the master process.  The total 
volume of work (including data) given to a worker to complete is known as a chunk.  It 
can also be possible to use multiple cores spread across multiple networked 
computers (or nodes), using a Message Passing Interface (MPI). 
 
 

 
Figure 7.3: Diagram of a multi-core processor 

 
 
In my main program, described in Section 7.3.4, there were 100 iterations of the model 
building and validating that could be conducted in parallel.  The initial data set up was 
conducted on a single core, and then the 100 iterations were divided between 5 
workers.  Each worker trained the models, made predictions about each model in the 
validation partition, assessed the performance of each model’s predictions, and 
passed these evaluations back to the master process.  The master then combined 
these evaluations into one dataset, so that the performance of each model across all 
iterations could be reviewed.   
 
 
 
 
 

CORE 

PROCESSOR 
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7.4 Results 
 

 Analysis Population 
The ALHS dataset identified those with a diagnosis of asthma as determined by the 
presence of one or more diagnostic or asthma management Read Codes, presented 
in Appendix E 104.  As described in Section 2.2, the primary care encounters dataset 
had already been restricted to this population, leaving 49,307 individuals. After 
cleaning (described in Section 2.2.3.2), records for 48,975 remained. A further 1,702 
individuals were excluded due to their diagnosis of COPD, leaving 47,273 individuals 
(Figure 7.4).  Finally, only individuals with at least one primary care encounter relating 
to asthma or a respiratory infection (else they did not have any data to input), excluding 
a further 522 individuals (46,897 remaining). 
 
I additionally specified that individuals must have had at least one ICS asthma 
medication prescribed during their follow-up (clinician-diagnosed-and-treated 

asthma), although I did not specify that it had to have been a recent prescription, in 
line with the findings of Nissen et al. 118.  Asthma treatment, and the identification of 
asthma medications from EHRs, is described in the Section 4.2.2.   From the 671,298 
individuals remaining after data cleaning was conducted in the primary care 
prescriptions dataset (Section 2.2.3.3), 91,327 individuals had at least one ICS asthma 
medication (Section 4.2.2).  The intersect between the eligible patients in the primary 
care encounters dataset and the primary care prescriptions dataset was 31,463 
patients. 

 
Follow-up time was calculated from the first eligible prescription record in the primary 
care prescriptions (asthma medications other than SABA) until the resolution of their 
asthma, their death, or the end of the study period (March 2017).  1590 patients had 
Read Codes for asthma resolution, of which 133 patients occurred before the start of 
their follow-up, and as such they were excluded from the analyses (leaving 31,330 
patients).   
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Figure 7.4: Asthma attack risk prediction model analysis population flow diagram 
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Patients with missing sex and/or date of birth (n=6) or age under 18 (n=5,325) were 
excluded, leaving 25,999 viable patients.  No other demographic exclusion criteria 
were implemented.  This resulted in a total of 177,299 person-years of data, with a 
median of 7.8 years per person (interquartile range 6.3 to 8.1, range <1 to 8.2).   
 
Patients in the analysis sample were mostly males, aged 18 to 35, female, and living 
within urban areas (Table 7.3).  The vast majority of all patients had no indication of 
smoking status (or had an explicit non-smoking code) in their baseline year (all records 
in which they were their baseline age in years).   The most prevalent comorbidity in 

the analysis population was chronic pulmonary disease.  This did not include COPD, 
which had already been excluded, but did include asthma diagnosis codes in addition 
to pulmonary fibrosis, asbestosis, and others, as listed in Appendix G.  As such, while 
everyone in the study had either an asthma diagnosis or management code, not 
everyone had a chronic pulmonary disease diagnosis. 
 
Other common comorbidities were anxiety/depression, eczema, GERD, and rhinitis 
(Table 7.4).   Additionally, 9,777 individuals (37.6%) had at least one nasal spray 
prescription during the study period, of whom 21% had at least one asthma attack 
(unadjusted OR = 1.34, p<0.001).   
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Table 7.3: Demographics of the ALHS analysis population 

Characteristics All Patients (N=25,999) 
Patients with no attacks 

during follow-up 
(N=21,234) 

Patients with one or 
more attacks during 
follow-up (N=4,765) 

Baseline Age 
 18 to 35 10721 (41.2%) 8881 (41.8%) 1840 (38.6%) 
 36 to 45 4825 (18.6%) 3859 (18.2%) 966 (20.3%) 
 46 to 60 5957 (22.9%) 4779 (22.5%) 1178 (24.7%) 
 61 to 75 3385 (13.0%) 2764 (13.0%) 621 (13.0%) 
 76 to 99 1111 (4.3%) 951 (4.5%) 160 (3.4%) 
Sex 
 Male  10544 (40.6%) 8904 (41.9%) 1640 (34.4%) 
 Female 15455 (59.4%) 12330 (58.1%) 3125 (65.6%) 
Obesity 
 Not Obese 24187 (93.03%) 4318 (90.62%) 19869 (93.57%) 
 Obese 1812 (6.97%) 447 (9.38%) 1365 (6.43%) 
Baseline Maximum BTS Step a 

 0 6281 (24.2%) 5135 (24.2%) 1146 (24.1%) 
 1 8394 (32.3%) 7216 (34.0%) 1178 (24.7%) 
 2 2518 (9.7%) 2012 (9.5%) 506 (10.6%) 
 3 7951 (30.6%) 6360 (30.0%) 1591 (33.4%) 
 4 855 (3.3%) 511 (2.4%) 344 (7.2%) 

Note: Baseline period for maximum BTS step was all records for which the patient was at the same age as when they entered the study, rather than in the 
chronological year following the start of the study.   
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Characteristics All Patients (N=25,999) 
Patients with no attacks 

during follow-up 
(N=21,234) 

Patients with one or 
more attacks during 
follow-up (N=4,765) 

Baseline Smoking Status b 
 Current 1604 (6.2%) 1127 (5.3%) 477 (10.0%) 
 Former 1513 (5.8%) 1114 (5.2%) 399 (8.4%) 
 Never 22882 (88.0%) 18993 (89.4%) 3889 (81.6%) 
Baseline Scottish Index of Multiple Deprivation 

 1(Highest Deprivation) 5555 (21.4%) 4350 (20.5%) 1205 (25.3%) 
 2 5070 (19.5%) 3992 (18.8%) 1078 (22.6%) 
 3 4261 (16.4%) 3476 (16.4%) 785 (16.5%) 
 4 5778 (22.2%) 4869 (22.9%) 909 (19.1%) 
 5 (Lowest Deprivation) 4664 (17.9%) 3987 (18.8%) 677 (14.2%) 
 Missing 671 (2.6%) 560 (2.6%) 111 (2.3%) 
Baseline Scottish Urban Rural Classification 

 1 (Large Urban) 8912 (34.3%) 7409 (34.9%) 1503 (31.5%) 
 2 (Other Urban Area) 8974 (34.5%) 7169 (33.8%) 1805 (37.9%) 
 3 (Accessible Small Towns) 2160 (8.3%) 1642 (7.7%) 518 (10.9%) 
 4 (Remote Small Towns) 910 (3.5%) 782 (3.7%) 128 (2.7%) 
 5 (Accessible Rural) 2711 (10.4%) 2259 (10.6%) 452 (9.5%) 
 6 (Remote Rural) 1512 (5.8%) 1292 (6.1%) 220 (4.6%) 
 Missing 820 (3.2%) 681 (3.2%) 139 (2.9%) 

Note: Baseline period for most recent smoking status was all records for which the patient was at the same age as when they entered the study, rather than in 
the chronological year following the start of the study.   
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Table 7.4: Prevalence of comorbidities in ALHS analysis population 

Comorbidity 
All Patients 
(N=25,999) 

Patients with no 
attacks during 

follow-up (N=21,234) 

Patients with one or 
more attacks during 
follow-up (N=4,765) 

Odds Ratio 
(95% Confidence 

Interval) Number (Percent) 
AIDS NR NR (<0.1%) NR (<0.5%) NR 
Hemiplegia NR NR (<0.1%) NR (<0.5%) NR 
Anaphylaxis NR NR (<0.1%) NR (<0.5%) NR 
Moderate liver disease NR 27 (0.2%) NR (<0.5%) NR 
Metastatic tumour NR 39 (0.2%) NR (<0.5%) NR 
Mild liver disease NR 50 (0.2%) NR (<0.5%) NR 
Peptic ulcer disease NR 50 (0.2%) NR (<0.5%) NR 
Peripheral vascular disease 93 (0.4%) 63 (0.3%) 30 (0.6%) 2.13 (1.38 – 3.29) 
Rheumatological disease 126 (0.5%) 64 (0.3%) 62 (1.3%) 4.36 (3.07 – 6.19) 
Nasal Polyps  141 (0.5%) 84 (0.4%) 57 (1.2%) 3.05 (2.18 – 4.28) 
Dementia 142 (0.5%) 106 (0.5%) 36 (0.8%) 1.52 (1.04 – 2.22)  
Congestive heart disease 147 (0.6%) 96 (0.4%) 51 (1.1%) 2.38 (1.69 – 3.35) 
Myocardial infarction 162 (0.6%) 108 (0.5%) 54 (1.1%) 2.24 (1.61 – 3.11) 
Diabetes with complications 308 (1.2%) 221 (1.0%) 87 (1.8%) 1.77 (1.38 – 2.27) 
Cerebrovascular disease 318 (1.2%) 229 (1.1%) 89 (1.9%) 1.75 (1.36 – 2.23) 
Renal disease 344 (1.3%) 259 (1.2%) 85 (1.8%) 1.47 (1.15 – 1.88) 
Cancer 522 (2.0%) 401 (1.9%) 121 (2.5%) 1.35 (1.10 – 1.66) 
Diabetes 607 (2.3%) 419 (2.0%) 188 (3.9%) 2.04 (1.71 – 2.43) 
GERD 963 (3.7%) 645 (3.0%) 318 (6.7%) 2.28 (1.99 – 2.62) 

Note: Values with percentages under 0.5% for attacks and 0.1% for no attacks have been redacted due to small numbers. 
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Comorbidity 
All Patients 
(N=25,999) 

Patients with no 
attacks during 

follow-up (N=21,234) 

Patients with one or 
more attacks during 
follow-up (N=4,765) 

Odds Ratio 
(95% Confidence 

Interval) Number (Percent) 
Rhinitis 987 (3.8%) 712 (3.4%) 275 (5.8%) 1.77 (1.53 – 2.04) 
Eczema 1326 (5.1%) 952 (4.5%) 374 (7.8%) 1.81 (1.60 – 2.05) 
Anxiety/Depression 3683 (14.2%) 2523 (11.9%) 1160 (24.3%) 2.39 (2.21 – 2.58) 
Chronic pulmonary disease 8822 (33.9%) 7011 (33.0%) 1811 (38.0%) 1.24 (1.17 – 1.33) 
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 Outcome Ascertainment 
514,785 steroid prescriptions were identified, of which only 17 had a missing or 
negative value for quantity.  The median estimated total dose was 200mg (interquartile 
range 140-280 mg, and range 1-168,000 mg).  307,369 prescriptions were retained 

with total dose between 200 and 1000mg, of which 7061 occurred on the dates of 
asthma consultations and were thus included as steroid bursts.   
 
A total of 12,193 asthma attack events occurred within the study period in our analysis 
population: 3221 inpatient admissions, 2405 A&E presentations, 6533 primary care 
OCS courses, and 34 deaths (0.3% of identified severe attacks were fatal).  Attack 
events occurring within 14 days of an initial event were not counted herein as separate 
attacks.  As such, if a patient presented to their GP and were prescribed OCS, but 
then required subsequent secondary care within 2 weeks, the attack would be labelled 
herein as OCS.  Overall, the rate of asthma attacks in the analysis population was 
687.7 per 10,000 person-years (95% CI = 675.5-699.9).  As shown in Figure 7.5, the 
majority of this constituted of OCS prescriptions (368.5 per 10,000 person-years, 95% 
CI = 359.5-277.4).  There were approximately 1.9 deaths per 10,000 person-years. 
 
 
 

 
Figure 7.5: Rate of asthma attack events per 10,000 person-years, and percentage of 
total attacks by event type 
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Figure 7.6: Percentage of all patients and all asthma attacks in analysis population by 
maximum British Thoracic Society (BTS) treatment step during follow-up  

 
 
Overall, 18.3% of the population had at least one identified attack, but only 14.4% of 
patients had some record of asthma attacks in their Read Codes.  As shown in Figure 

7.7, 66.3% of patients with at least one identified asthma attack had no record of the 
event in their Read Codes.  Additionally, 10.1% of people with no identified asthma 
attacks did have a Read Code of an asthma attack (2140/21,234).  
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Figure 7.7: Venn diagram of patients with one or more asthma attack according to 
study criteria (green) and Read Codes (orange) 

 
 

 Algorithm and Enrichment Selection 
Ten iterations of partitioning, training, and validation were conducted in the derivation 
dataset to inform the selection of the algorithm and enrichment method to be carried 
through the next phase of analysis.   
 
Table 7.5  summarises the distribution of the class samples sizes and the minor 
class proportion.  The minor class proportion was actually slightly below our 0.1% 
estimate (0.08%), which meant that the SMOTE parameters did not result in equal 
total sample size across enrichment methods.  Enrichment method four, for example, 
had a mean total sample size of only 66% of that of the unenriched data (method 
one).   
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Table 7.5: Class sample sizes for enrichment methods across iterations 

Enrichment 
Method 

Minor 
Class 
Proportion 

Class 
Mean 

Sample 
Size 

Minimum 
Sample 

Size 

Maximum 
Sample 

Size 

1 0.1% 
Negative 926947.5 926913 926997 
Positive 7831.5 7782 7866 
Total 934779 934779 934779 

2 15.1% 
Negative 704835 700380 707940 
Positive 125304 124512 125856 
Total 830139 824892 833796 

3 7.0% 
Negative 626520 622560 629280 
Positive 46989 46692 47196 
Total 673509 669252 676476 

4 5.1% 
Negative 587362.5 583650 589950 
Positive 31326 31128 31464 
Total 618688 614778 621414 

Notes: The minor class proportion was estimated from the mean sample size across iterations.   
Enrichment methods: (1) unenriched data, (2) high up-sampling SMOTE, (3) medium up-sampling 
SMOTE, (4) low up-sampling SMOTE.   
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The boxplots presented in Figure 7.8 show that, across enrichment methods, the RF 
algorithm consistently performs higher than the other algorithms according to the AUC, 
across the hyper-parameter range investigated.  Furthermore, SMOTEing shows no 
improvement for any algorithm over the original data.   
 
 
 

 
Figure 7.8: Boxplots of the area under the curve for each algorithm and enrichment 
method 

Notes: Algorithms: GLM = Generalised Logistic Regression, NBC = Naïve Bayes Classification, RF = 
Random Forest, XGB = eXtreme Gradient Boosting.  
Enrichment methods: (1) unenriched data, (2) high up-sampling SMOTE, (3) medium up-sampling 
SMOTE, (4) low up-sampling SMOTE.   
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As shown in Figure 7.9, an average balanced accuracy of greater than 70 is achieved 
by the GLM and XGBoost in the unenriched data, and by the RF algorithm for most 
enrichment methods.  Optimising the classification threshold (based on the balanced 
accuracy in the training data) resulted in higher average performance in the validation 
data across all algorithms and enrichment methods.   
 
 

 
Figure 7.9: Boxplots of balanced accuracy for each algorithm, enrichment method, and 
classification threshold approach 

Notes: Algorithms: GLM = Generalised Logistic Regression, NBC = Naïve Bayes Classification, RF = 
Random Forest, XGB = eXtreme Gradient Boosting. 
Enrichment methods: (1) unenriched data, (2) high up-sampling SMOTE, (3) medium up-sampling 
SMOTE, (4) low up-sampling SMOTE.   
Thresholds: Fixed = 0.5, Variable = balanced accuracy optimising threshold in training data. 
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As seen in Figure 7.10, all algorithms achieved greater than 70% specificity, with most 
achieving over 95% on average by enrichment method and thresholding approach.  
The specificity was much lower for the NBC than the other algorithms on average, and 
it was also the only algorithm for which the fixed classification threshold of 0.5 resulted 
in higher specificity than the balanced accuracy optimised threshold (specifically, in 
the unenriched data).   
 
 

 
Figure 7.10: Boxplots of specificity for each algorithm, enrichment method, and 
classification threshold approach 

Notes: Algorithms: GLM = Generalised Logistic Regression, NBC = Naïve Bayes Classification, RF = 
Random Forest, XGB = eXtreme Gradient Boosting.  
Enrichment methods: (1) unenriched data, (2) high up-sampling SMOTE, (3) medium up-sampling 
SMOTE, (4) low up-sampling SMOTE.   
Thresholds: Fixed = 0.5, Variable = balanced accuracy optimising threshold in training data. 
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In Figure 7.11, we see that the sensitivity follows a similar pattern to the AUC, with the 
unenriched, optimised threshold GLM and XGBoost achieving average sensitivity of 
over 60%.  For the RF, the median was consistently around 40% for all enrichment 
methods, when the optimised threshold was used.   
 
 

 
Figure 7.11: Boxplots of sensitivity for each algorithm, enrichment method, and 
classification threshold approach 

Notes: Algorithms: GLM = Generalised Logistic Regression, NBC = Naïve Bayes Classification, RF = 
Random Forest, XGB = eXtreme Gradient Boosting.  
Enrichment methods: (1) unenriched data, (2) high up-sampling SMOTE, (3) medium up-sampling 
SMOTE, (4) low up-sampling SMOTE.   
Thresholds: Fixed = 0.5, Variable = balanced accuracy optimising threshold in training data. 
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As shown in Figure 7.12, however, the higher sensitivity for the GLM and XGBoost 
came at the expense of the PPV, which was below 25 for all (optimised threshold) 
algorithms except RF.   Plots for additional performance measures accuracy, MCC, 
Brier Score, and NPV are presented in Appendix R.   
 

 
Figure 7.12: Boxplots of Positive Predictive Value (PPV) for each algorithm, 
enrichment method, and classification threshold approach 

Notes: Algorithms: GLM = Generalised Logistic Regression, NBC = Naïve Bayes Classification, RF = 
Random Forest, XGB = eXtreme Gradient Boosting.  
Enrichment methods: (1) unenriched data, (2) high up-sampling SMOTE, (3) medium up-sampling 
SMOTE, (4) low up-sampling SMOTE.   
Thresholds: Fixed = 0.5, Variable = balanced accuracy optimising threshold in training data. 
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Overall, the RF appeared to be the best performing algorithm as it had the highest 
AUC, and the best balance of the sensitivity and PPV.  The results were also very 
stable across iterations, with clear distinctions between the cases investigated.  As 
such, I was confident in my selection of algorithm (RF) and enrichment method (none) 
and did not require further iterations to be added at this stage.   
 
Consequently, the subsequent analyses focussed on identifying the optimal hyper-
parameters and classification threshold for the RF using the unenriched data, with 
balanced accuracy optimised classification threshold.  Figure 7.13 shows the 
sensitivity, PPV, and MCC for the four RF models (varying values of the mtry 

parameter, which defines the number of features randomly sampled as candidates at 
each split).   
 
 

 
Figure 7.13: Sensitivity, Positive Predictive Value (PPV) and Matthews Correlation 
Coefficient (MCC) for the four RF models, using unenriched training data and 
optimised classification thresholds 

Notes: Number of variables randomly sampled as candidates at each split (default square root of the 

number of predictors; k):  RF1 = floor(!"), RF2 = floor(2*√"), RF3 = floor(4*!"), RF4 = floor(8*!") 
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Generally, we see that the lowest mtry value results in the highest sensitivity but the 
lowest PPV.  The MCC, which incorporates both of these values in its calculations, 

was used for the model selection. The second model, with floor(2*√") (equal to 22 of 
124), variables randomly sampled as candidates at each split, was chosen.  Once 
again, the boxplot demonstrates sufficient stability across iterations to make this 
selection with confidence.   
 

 Model Performance 
In Table 7.6, the summary statistics of a selection of model performance measures 
across the 100 iterations of derivation data partitioning are presented.  There were no 
substantial differences to the results seen in the 10 iterations at the model selection 

phase.   
 
The threshold that optimised the balanced accuracy in each training data partition 
ranged between 0.111 and 0.168, with a median of 0.150 (mean 0.148).  In a linear 
regression, adjusted for the resultant AUC, lower threshold values were significantly 
associated with higher balanced accuracy in the validation partition (p<0.001), 
recalling that the threshold is optimised in the training data.  The formula is shown 
below: 
 

balanced accuracy = 42.7 + 40.43 ∗ AUC− 50.97 ∗ threshold 
 
However, higher threshold values were associated with higher PPV (and lower 
threshold values with higher sensitivity).  For model evaluation in the holdout partition, 
the median probability threshold of 0.149974 was chosen to classify samples as low 
or high predicted risk in the hold-out data.  The confusion matrix in the holdout partition 
is presented in Table 7.7. 
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Table 7.6: Summary statistics of model performance measures from 100 data partition iterations, and the hold-out data partition 

Performance 
Measure 

ALHS Model Development Data 
ALHS Hold-out 
Validation Data Minimum 25th 

Percentile Median Mean 75th 
Percentile Maximum 

Sensitivity 37.84 40.74 41.71 41.72 42.56 46.83 47.70 
Specificity 99.31 99.52 99.58 99.56 99.61 99.67 99.57 
PPV 36.10 42.70 44.92 44.80 47.02 50.50 48.90 
NPV 99.46 99.49 99.51 99.51 99.52 99.58 99.55 
Accuracy 98.86 99.05 99.09 99.08 99.12 99.17 99.13 
AUC 86.03 87.38 87.84 87.77 88.19 89.77 90.72 
Balanced Accuracy 68.74 70.24 70.65 70.64 71.07 73.07 73.64 
MCC 38.76 41.54 42.86 42.72 43.79 46.18 47.86 

Note: Green cells indicate that this value was exceeded in the hold-out validation data partition. 
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As shown in the final column of Table 7.6, the performance in the holdout partition was 
consistently within, or above, the range observed in the derivation dataset.  
Performance in the holdout partition was within the top 25% of derivation iterations’ 
performance for the PPV, NPV and the accuracy.  In the sensitivity, AUC, balanced 
accuracy, and MCC, it was higher in the holdout partition (with a larger amount of 
training data, and a more robust classification threshold) than in any derivation 
iterations.  This internal validation demonstrates the stability of the model performance 
within this data to perturbations of the sample set and confirms that the crossover in 
samples between the model selection and performance reporting subsets did not bias 
the results.  

 
Table 7.7: Confusion matrix for model performance in holdout partition 

 Asthma Attack in the 4 weeks 
following an asthma consultation 

Yes No  

Pr
ed

ic
te

d 
C

la
ss

 High Risk 467 488 

Low Risk 512 113,937 

 

 

The ROC curve is presented in Figure 7.14, with threshold values for each 
combination of sensitivity (true positive rate) and specificity (1- true negative rate) 
colour-coded.  We can see that any threshold above 0.2 yields very poor sensitivity.   

 
The density plot of the estimated probabilities by the observed outcome is shown in 
Figure 7.15.   The median estimated attack probability in those who did have an attack 

was 13.7% (IQR = 2.2 – 31.6%) and was 0.2% in those who did not have an attack 
(IQR = <0.1 - 0.6%).    
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Figure 7.14: Receiver Operator Curve for model performance in holdout partition, with 
threshold values indicated by colour 
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Figure 7.15: Density plot of logarithm of estimated probabilities by observed outcome 
in holdout partition 

 

 Feature Importance 
Appendix S lists the feature importance (mean decrease in impurity, defined in Section 
5.6.1) of all features in the model, excluding the NUTS-3 area codes.  The three most 
important features in the derivation dataset were CSA_3, reliever medication use, and 
age (Figure 7.16).  The least important features were AIDS diagnosis, hemiplegia 
diagnosis, and nasal polyps diagnosis more than five years ago.  In fact, no features 
relating to nasal polyps (such as diagnosis in the last year) ranked in the top 100.  The 
latter is surprising perhaps, given the high unadjusted odds ratio seen in Table 7.4.   
 
Additionally, for tree-based methods, feature importance can be quantified by 
averaging the mean decrease in impurity (or the corresponding performance measure 
used to grow the tree) that would be achieved by using each feature as the splitting 
criterion for each parent node in each tree 314.  These values should be considered 
relative to each other, rather than in terms of the computed magnitude.   
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Nasal spray prescription, on the other hand, had a lower unadjusted odds ratio, but 
was the 19th most important feature (prescription in the last year), and the second most 
important comorbidity related feature behind chronic pulmonary disease (10th most 
important overall).  As discussed in Section 7.4.1, this included explicit asthma 
diagnosis codes (rather than asthma management codes; everyone in the study had 
one or the other according to inclusion criteria), in addition to pulmonary fibrosis, 
asbestosis, and others.  The importance of this feature highlights that medical coding 
is shrouded in nuance, and that the use of specific codes can hold more meaning than 
the description of the code itself.  The use of certain codes changes over time, such 
as when new QOF guidelines are introduced, and so it may be important for further 

development of the model to include the year of data collection.   
 
Despite such high levels of missingness (74%; Appendix O), blood eosinophil count 
under 400 cells per μL was the 34th most important feature (missing and over 400 cells 
per μL were 40th and 42nd most important features, respectively).  Peak flow did not 
manage to remain important with 98% missingness, but interestingly missing and 
greater than 90% of baseline were 89th and 92nd most important features, with the 
former being 4.3 times more important than a peak flow measurement of under 70% 
of baseline.   
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Figure 7.16: Top and bottom ranked features by Gini importance 

Note: features relating to geographical areas (NUTS-3 codes) have been excluded from these 
rankings.  

 
  



 212 

 Model Calibration 
Figure 7.17 shows the calibration between the estimated probability of an asthma 
attack and the observed rate of asthma attacks in the holdout partition.  98.7% of 
samples had estimated risk under 0.1, 0.7% had estimated risk between 0.1 and 0,2, 
and 0.6% had estimated risk over 0.2. The calibration-in-the-large (Section 5.4.4) was 
estimated as -4.77 and the calibration slope was estimated at 18.27.  This 
demonstrates inappropriate scaling of estimated probabilities.   
 

 
Figure 7.17: Model calibration by risk deciles in the holdout partition 

Note: the bins used to approximate the observed probabilities are of width 0.1, and the confidence 
intervals were estimated using the exact binomial test.  
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 Model Discrimination in Subgroups 
The discrimination in selected population subgroups was evaluated by comparing the 
number of false negative and false positive predictions to the number of true positive 
predictions.  As shown in Figure 7.18, those with previous asthma attacks have higher 
sensitivity (58.8%) than those without (38.9%), with modest differences in PPV (48.0% 
compared to 50.0%).   
 
 

 
 
Figure 7.18: Discrimination by asthma attack history in the holdout partition 

Notes: Sens = sensitivity, PPV = Positive Predictive Value, B. Acc. = Balanced Accuracy 

 
 
Secondly, I wanted to know how well the model discriminated by asthma severity (as 
defined by BTS treatment step).  Figure 7.19 shows that the sensitivity and PPV were 
both lower in those at BTS step 0 (no controller therapy; 29.5% and 48.6%, 
respectively) than at other steps (32.8% and 51.2%, for each BTS step, respectively).   
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Figure 7.19: Discrimination by asthma severity, according to treatment step, in the 
holdout partition 

Notes: Sens = sensitivity, PPV = Positive Predictive Value, B. Acc. = Balanced Accuracy 

 
 
Next, I wanted to know whether the model was predicting severe attacks (A&E and 
hospitalisations) better or worse than attacks which were treated in primary care.  The 
sensitivity for asthma attacks treated in primary care was 45.4%, and the PPV was 
35.6% (Figure 7.20).  For those treated in secondary care, the sensitivity was higher 
(51.3%) but the PPV was only 28.8%.  For both of these analyses, the negative class 
was not having any attack, which is why both of the PPV values are lower than the 
overall average.   
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Figure 7.20: Discrimination by asthma attack severity in the holdout partition 

Notes: Sens = sensitivity, PPV = Positive Predictive Value, B. Acc. = Balanced Accuracy 

 
 
Finally, discrimination by smoking status was used to assess whether possibly 
undiagnosed COPD or ACOS might have affected model performance.  The sensitivity 
was highest in former smokers (56.8%), and lowest in current smokers (41.8%).   The 
PPV was similar between smoking statuses, but slightly higher in current smokers 
(50% compared to 48.9%; Figure 7.21) 
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Figure 7.21: Discrimination by smoking status in the holdout partition 

Notes: Sens = sensitivity, PPV = Positive Predictive Value, B. Acc. = Balanced Accuracy 

 
 
 

 Secondary Endpoints 
For our primary endpoint, longer event horizons resulted in better performance 
according to the sensitivity, PPV, AUC, balanced accuracy, and MCC, with only 
modest reductions in specificity, NPV, and accuracy (Table 7.8).  For the model 
predicting attacks within the next 12 weeks (and all subsequent event horizon models), 
the six benchmarks were clearly met.  For example, the sensitivity was 83%, and the 
PPV was 72%.   The same trend was seen in the models using only attacks presenting 
in secondary care, with comparable performance across outcome definitions at the 
same event horizon.  This improvement in performance is likely a combination of better 
class balance, and more prominently that there are further important features for 
shorter-term prediction which are not available in EHRs, such as allergen exposure 
and weather.   
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Table 7.8: Performance measures for secondary endpoints 

 

Performance 
Measure 

All Attacks Secondary Care Attacks 
Event Horizon 

1 Week 4 Weeks 12 
Weeks 

26 
Weeks 

52 
Weeks 1 Week 4 Weeks 12 

Weeks 
26 

Weeks 
52 

Weeks 
Sensitivity 18.86 47.70 74.46 82.96 89.89 29.10 59.38 74.16 85.92 89.30 
Specificity 99.84 99.57 98.84 98.72 98.49 99.89 99.70 99.55 99.25 99.28 
PPV 23.83 48.90 57.94 71.94 80.15 24.22 39.79 57.02 61.20 73.80 
NPV 99.79 99.55 99.45 99.32 99.31 99.92 99.86 99.79 99.80 99.76 
Accuracy 99.64 99.13 98.33 98.13 97.94 99.81 99.57 99.34 99.06 99.06 
AUC 79.49 90.72 96.25 97.96 98.69 82.90 93.59 97.38 98.48 98.98 
Balanced 
Accuracy 59.35 73.64 86.65 90.84 94.19 64.50 79.54 86.86 92.58 94.29 

MCC 21.02 47.86 64.86 76.30 83.80 26.46 48.40 64.71 72.08 80.72 
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While the top five features by importance were the same for all models, there were 
small differences in their relative (normalised by the maximum value for that model) 
importance.  For example, the CSA_3 (using the last three refills) adherence measure 
was more important than CMA8_2 (using the last year’s refills) for all event horizons 
except the very longest (attack in the next year) (Figure 7.22).   
 
 
 

 
Figure 7.22: Adjusted feature importance of the top ten most important features in 
primary analysis, across secondary endpoints 

Note: The importance of each feature within an endpoint is standardised by dividing the calculated 
feature importance by the maximum importance for that endpoint so that entries lie between 0 and 1. 
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Both age and controller use in the last year was also more important for longer event 
horizons, and reliever use (which is estimated using the SABA refill before last) was 
more important in near future prediction.  The same results were observed in the 
models using only attacks presenting in secondary care (Figure 7.23). 
 
 

 
Figure 7.23: Adjusted feature importance of the top ten most important features in 
primary analysis, across secondary endpoints, for attacks presenting to secondary 
care only 

Note: The importance of each feature within an endpoint is standardised by dividing the calculated 
feature importance by the maximum importance for that endpoint so that entries lie between 0 and 1. 

 
 
 
I hypothesised that seasonal trends (measured by the month of the consultation) 
would be more influential in prediction models with shorter event horizons.  The 52-
week model, for example, would be positive if there was an asthma attack in any of 
the following seasons, whereas for the 1-week model the attack would be in the same 
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season as the consultation.  To test this, I calculated the feature importance for each 
month in each model, and divided each month by the median feature importance for 
that model (recalling from Section 5.6.1 that feature importance should not be 
evaluated absolutely).  Figure 7.24 shows this indeed to be true, but also suggests 
that consultation month was more important for predicting attacks in secondary care 
than in primary care.   
 

 
Figure 7.24: Median-relative feature importance for consultation month by health care 
setting and event horizon (weeks) 

Note: The importance of each month feature was divided by the median feature importance for that 
model (event horizon and health care setting). 
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7.5 Conclusions 
After evaluating multiple models, with different statistical learning algorithms, training 
data enrichment methods, hyper-parameters, and classification thresholds, I selected 
and trained a random forest model to predict asthma attacks in the next four weeks.  
In an unseen ‘holdout’ data partition, this model had a balanced accuracy of 73.6%.  
The sensitivity was 47.7%, and the specificity was 99.6%, largely due to the relatively 
small size of the positive class (low rate of asthma attacks in a four-week event 
horizon).  The three most important features in the model were adherence averaged 
over the last three prescriptions (CSA_3), the estimated daily reliever medication use, 
and age.  The estimated probability of an asthma attack was poorly calibrated with the 

observed rate of attacks, with a high degree of variability seen especially in those with 
higher estimated risk.  Using a longer prediction event horizon, such as 12 weeks 
rather than four weeks, substantially improved model performance.    
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8 Discussion 
 

8.1 Key Findings 
In this section I revisit the four major areas of my research, bringing together my key 
findings from studies that have: (1) compared adherence measures in EHRs, (2) 
compared predictive model performance measures in the context of imbalanced data, 
(3) quantified the incidence of asthma attacks in the general population, and (4) 
assessed the predictive performance of a short-term asthma attack prediction model 
using machine learning.   

 
Adherence was repeatedly reported as a very important risk factor for asthma attack 
incidence, however the literature review of studies of adherence measured in EHRs 
highlighted the lack of clear guidance on best practices.  Motivated by an aim to 
determine the most appropriate asthma adherence measures, I conducted a thorough 
appraisal of the literature, and a critical comparison of the methods in my data.  I have 
cross compared findings with TB, and hence believe these findings may likely 
generalise in other settings where adherence measures are used.  In particular, I found 
that rolling average windows of single-prescription measures, over a small number of 
prescriptions, were able to reduce the variance seen in single-prescription measures 
while reducing the risk of survivor bias observed in longer windows.  This was 
particularly pertinent as 17% of all individuals with any asthma controller medications 
had only a single prescription over their median follow-up of 7.1 years.  This also 
meant that many fixed-interval (such as calendar years) measures could not be 
calculated for a large proportion of the population.  One fixed-interval measure, 
however, was able to account for this (CMA8).  Only one fixed-interval measure 
(CMA1) had strong correlation (|R|>0.7) with any of the rolling average measures; a 
result of the different ways the calculations regarded good implementation during 
periods of persistence (before a discontinuation of treatment) within a fixed time 
period.   
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I conducted a theoretical and empirical investigation into the differences between 
various binary classification performance measures under certain conditions and 
investigated the three key factors which need to be considered in order to facilitate the 
identification of the most appropriate performance measure: the imbalance of the data, 
the application of the model, and the end user of the model. The results of these 
experiments were condensed into a simple decision graph to provide a generic 
roadmap to help researchers choose the likely most appropriate performance 
measure for the given application.  In the context of my analysis, the central 
observations related to the impact of class imbalance; good discrimination in the risk 
prediction model could still be achieved by predicting all query samples to be in the 

major class.  Consequently, the model calibration is more informative when ensuring 
that poor sensitivity is penalised; measures that prioritise prediction across an entire 
population, rather than for individuals, are more beneficial.  The balanced accuracy 
was chosen accordingly as the most appropriate performance measure for this 
analysis and was used for my model selection process.   
 
In patients with one or more asthma attack in the study follow-up (18%; median 7.8 
years, interquartile range 6.3 to 8.1 years), 58% were never treated above BTS Step 
1 (low-dose ICS without LABA or any add-on therapies).  In unadjusted analyses, the 
four comorbidities with the strongest associations with asthma attacks were 
rheumatological diseases (OR = 4.36, 95% CI 3.07 – 6.19), nasal polyps (OR = 3.05, 
95% CI 2.18 – 4.28), congestive heart disease (OR = 2.38, 95% CI 1.69 – 3.35), and 
anxiety/depression (OR = 2.39, 95% CI 2.21 – 2.58).  The rate of asthma attacks in 
the analysis population was 687.7 per 10,000 person-years (95% CI = 675.5 - 699.9).   
Almost half of asthma attacks (47%) presented initially to secondary care, with no OCS 
courses prescribed in the two weeks prior.   This clearly demonstrates the scope for 
improved early intervention in primary care.  Primarily, OCS courses may be 
prescribed to diminish symptoms before the peak of the exacerbation, but also a timely 
consultation may facilitate discussion about triggers, home monitoring, and plans of 
action for if an attack does subsequently occur.   
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In an unseen data partition, the final model achieved 47.7% sensitivity and 99.6% 
specificity.  The overall accuracy was 99.1%, and the balanced accuracy (which 
accounts for the relatively low incidence of the positive class) was 73.6%.  The three 
most important features to the random forest were adherence averaged over the last 
three prescriptions (CSA_3), the estimated daily reliever medication use, and age.   
 
Using a longer prediction event horizon, such as 12 weeks rather than four weeks, 
improved model performance: up to 90% sensitivity and 98% specificity (80% PPV 
and 99% NPV) for prediction of attacks in the following year.   
 

 

8.2 Strengths 
In Chapter 2, I introduced the primary dataset for this thesis: the ALHS study data.   As 
described therein, the study recruited 75 general practices in Scotland.  These 
practices had over half a million patients registered, therefore covering about 9% of 
the population.  In total, there were over 57 million entries for these patients in primary 
care (Read Codes and prescriptions), A&E presentations, hospital admissions, and 
deaths, between 2000 and 2017.  The wide spread of this data resulted in a lower risk 
of selection bias than observational studies which individually recruited patients, as 
well as EHR based studies which were limited to a single geographic area or 
demographic (such as private US hospitals) but generalised to a much wider 
population.   
 
In Section 7.4.1, I reported that 31,330 patients met the inclusion criteria of asthma 
consultation and treatment within the study period, without diagnosed COPD, before 
subsequent exclusions were made on the basis of age and missing demographic data.  
With a total of 682,396 individuals in the primary care registry, this equates to an 
estimated prevalence of 4.6% over the entire study duration.  The demographics of 
the study population were compared to British studies in similar populations in the 

literature, and the (adult) age 374, sex 374–376, and obesity 375,376 distributions were 
comparable. Unlike some previous studies 152, we found a fairly even distribution of 
patients amongst the socioeconomic deprivation scale, however we observed higher 
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rates of deprivation amongst those with attacks during the study.   The most 
substantial difference compared to previous literature was baseline smoking status, in 
which a higher proportion of patients in our study were classed as non-smokers (never 
or former: 94%) in their baseline period than in previous 374,375,377 studies (79-85%).  
This was, however, solely due to how the baseline period was calculated for Table 
7.3: the most recent smoking status before their first birthday within the study period, 
which will therefore be less than a year.   When this period was extended to the most 
recent before their second birthday, the distribution was well aligned with the literature.  
 
In Chapter 3, I provided a comprehensive review of the literature on asthma attack risk 

factors. The main strength of this chapter was my evaluation of the feasibility of 
extraction from EHRs, presentation of validated code lists, and critiques of algorithms 
and derivation methods employed in previous studies.  As part of this, I conducted the 
most in-depth review of adherence measures in EHRs to date (presented in Chapter 
4).  As well as providing detailed guidance on the cleaning and processing of 
prescription records, I provided comparisons of several commonly used adherence 
measures, across multiple time-scales.  This enables researchers to translate and 
replicate my methods for other datasets and medical conditions, and to make informed 
decisions about the most appropriate measure for their analysis. 
 
Similarly, in Chapter 6 I conducted a thorough exploration of binary classification 
model performance measures in different settings with imbalanced data.  As well as 
the breadth of performance measures covered in this analysis, a major strength was 
the resulting discussion and guidance on suggested use-cases, an analysis which 
informs problems across any binary classification problem in diverse applications.  I 
was able to construct a tree diagram that a researcher could use to find the 
recommended performance measure for their analysis.  In my original literature 
review, in which I sought guidance for the most appropriate way to handle the 
inevitable low incidence in my risk prediction model, I found that many studies provided 
findings from various experiments but did not provide any practical guidance 353,355–

357.   
 



 226 

Reporting guidelines relating to clinical risk prediction modelling and studies using 
EHRs were reviewed 53,368–370, and relevant items on the checklists were combined in 
order to construct a thorough list of items to dictate how my analysis was conducted 
and my results were presented.   
 
In Chapter 7, I constructed a list of composite benchmarks of model performance, 
based on a review of previously reported risk prediction models, which included a wide 
variety of model performance measurements.  This multi-factor benchmark sets a 
threshold which any model exceeding can be considered state-of-the-art.  My final 
model achieved four of the six benchmarking criteria, narrowly missing out on the final 

two criteria: 50% sensitivity and PPV (achieving 47.7% and 48.9%, respectively).  As 
such, by my own benchmark, I cannot definitely class my 4-week event horizon model 
as the best-performing model ever.  Despite this, I would still argue that it is a well-
rounded model with good performance, and with a more clinically useful event horizon 
than many of the comparator models, listed in Table 7.1.  Additionally, my model used 
a more heterogeneous population than the study by Zhang et al. 346 (diagnosed and 
treated asthma, and a recent history of asthma attacks), which was the only identified 
study with an event horizon of less than 6 months (3 days).  As such, one might argue 
that my model’s performance was both more clinically useful and harder to achieve.   
 
The secondary analysis models using longer event horizons achieving significantly 
better performance than either the four-week or one-week horizon models.  For 
example, the model predicting asthma attacks in the next 12 weeks achieved all 
benchmarks.   The most clinically useful event horizon has yet to be determined and 
there is evidently further work to be done to find the optimal combination of model and 
intervention.     
 
In my analyses, I included two different measures of adherence as features.  One 
measure was a rolling average of the ratio of days’ supply obtained to the length (in 
days) of the prescription refill interval, for the last three prescriptions.  The second was 

a proportion of (eligible) days in the previous calendar year for which medication was 
available.  These two adherence measures were both found to be important in the risk 
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prediction models across different event horizons, but their relative importance 
changed based on the event horizon in question.  As well as allowing us to capture 
slightly different dimensions of medication adherence, using two adherence measures 
with different retrospective calculation durations affords us some estimate of the 
recent change in adherence.  For example if the CMA8_2 (last year) was high but the 
CSA_3 (last three refills) was poor, we might expect that adherence was on a 
downward trajectory.  The value of temporal trends, rather than single feature 
snapshots, has been discussed by other researchers in the past and is still being 
investigated 378.  
 

While both the data and the specifics of the implementation employed herein are both 
UK specific, the central processes can be applied to EHRs in any country.  
Additionally, it brings to focus key areas which need to be considered when 
assembling the infrastructure of a national digital health system, and areas to be 
reinforced in existing systems, which are discussed in Section 8.5.     
 
 

8.3 Limitations 
In this section, I will review the limitations of my thesis in the order of the research-
based chapters. 
 
First, the literature review conducted in Chapter 3 to identify candidate risk factors for 
asthma attacks was not a systematic review.  By this, I mean that I did not construct a 
list of composite search terms and manually review every paper which matched these 
criteria, from an online academic repository such as Scopus or a similar established 
academic database.  Composite search terms may use logical expressions such as A 
AND B, C OR D, or asterisk-denoted wildcard characters to allow for variations in 
words.  For example, asthma* would include any word that began with asthma, 
including the word itself, asthmatic, and more.   

 
The limitations of not conducting a systematic review are that it is possible that some 
important study might have been overlooked, which might have drastically improved 
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the performance of the model.  For example, there might have been a less-commonly 
reported risk factor that I missed, a novel method of extracting a risk factor from the 
available data, or some important study on the effect of that risk factor which might 
have indicated a superior method of reporting that feature for prediction purposes.   On 
the other hand, there were several practical benefits to my approach over a full 
systematic review.  First, the review could be conducted much faster.   The search 
criteria and study retrieval alone of a well-conducted systematic review often takes in 
excess of six hundred hours 379,380.  To include a systematic review of even a single 
of my research questions, let alone all of them, would have been so time-intensive it 
would have left me little time for any further research.  Secondly, not conducting a full 

systematic review meant that it was not necessary for me to comprehensively report 
on the negative findings of my review, for example factors for which there was no 
evidence of increased asthma attack risk, or extraction methods which were 
demonstrated to be inferior to other methods in benchmarking studies.  Nevertheless, 
I did include notes in Section 3.8 on a few risk factors which were not included in my 
final analysis but which I decided warranted a more detailed explanation for the 
reasons of their exclusion.  This particularly pertained to risk factors for which there 
was substantial evidence of their predictive value, but which were not feasible to 
include in my analysis.   Instead of a systematic review, however, I conducted a critical, 
systemised review 381 of the risk factors which I had identified from the non-systematic 
literature review, including evaluating the utility and feasibility of extracting each factor 
from EHRs.   
 
Chapter 4 did not comprise an exhaustive list of all previously defined adherence 
measures in EHRs.  Indeed, the seminal paper by Steiner and Prochazka described 
an adherence measure which they named the CMA 189, but which was subtly different 
to any of the CMA measures defined by Vollmer et al. 190.  It was calculated similarly 
to Vollmer et al.’s CMA1, but instead of being calculated over a fixed interval, such as 
one year, it was a time-series which continuously updated at every prescription refill.  
This inspired my inclusion of the rolling-average CSA measures, but suffer from the 

same limitation as the CSA_10 (10-interval rolling average) that recent, later intervals 
with poor adherence do not influence the overall output as much as we may desire.  
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Particularly over longer durations, Steiner and Prochazka’s CMA has very clear 
drawbacks.  One other inclusion in their paper, however, which I also did not include 
was the counter-measure to the CMA, the CSG.  Indeed, no multiple interval measures 
of gaps were explicitly included in my analyses.  However, as the CMA5 and CMA8 
both use the proportion of days with supply, their natural complement is the proportion 
of days without supply, or the days with gaps.  In this way, these two measures are 
conceptually distinct to the CMA1, which measures the total supply (not capped at 
100%) and thus it cannot capture information relating to gaps.  The justification for not 
including the other CMA measures as defined by Vollmer et al. 190 was listed in Section 
4.2.1, however overall I believe I have captured an appropriate variety of measures 

which encompass the fundamental differences in adherence measurement.   
 
Some of the limitations of the methods by which I processed the prescription data in 
Chapter  4 have already been described in Section 4.4.3.  Briefly, my approach to 
handling the free-text fields was somewhat basic and allowed erroneous exclusions, 
such as excluding a prescription with the dose directions ‘use inhaler after nasal spray’ 
on the basis of the identification of the keyword ‘nasal’ and ‘spray’.  As previously 
stated, without the integration of complex natural language processing this problem is 
extremely difficult to circumvent with confidence.  Such methods were beyond the 
scope of this thesis.  Alternatively, however, a full manual review could have been 
conducted of all excluded records and exclusions could have been made on a case-
by-case basis.   There were 5269 records which were excluded on the basis of the 
presence of one or more exclusion keyword, but which did not have the formulation 
listed as a spray or drop.  While this is a lot of records to manually review, it was also 
only a small percentage of the remaining ICS or ICS+LABA records (0.3%) and thus 
the potential effect was minimal.  
 
Another point mentioned in Section 4.4.3 (and before, in Section 2.2.3.3) was the 
imperfect data linkage between prescribing and dispensing records in Scottish EHRs 
(conducted by National Services Scotland Information Services Division).  Multiple 

medications prescribed simultaneously share a prescription event identifier and have 
no unique prescription item identifier.  As such, differences in the ordering of items on 
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a single prescription may have resulted in incorrect dispensing data being assigned to 
a prescription.  This may have been the cause of the 5269 records with exclusion 
keywords in their dose descriptions (from the dispensary) but not exclusion 
formulations listed on their prescription record.  In order to evaluate the potential 
magnitude of this flawed linkage, I conducted a manual review of a random sample of 
1000 asthma prescriptions (from the pool of 4,965,714 prescriptions) and identified 
fewer than 1% which either contained internal contradictions (either named a different 
medication or described a method of ingestion inherent to a different formulation, such 
as ‘inject’) or had empty data fields from the dispensing information.  Overall, the 
integrity of the adherence measures, and indeed the other prescription-based model 

features (reliever inhaler use and BTS treatment step) is likely to have been 
compromised, however rare the occurrence.     
 
Other points of concern are the high proportion of prescriptions for which the unit 
volume (doses per unit, such as inhaler) could not be extracted (84.8%) and were 
imputed.  The unit volume was imputed based on the medication name and medication 
strength, the latter of which was also required to be imputed for the 8.4% of records 
without an extractable value.   While review of the imputations demonstrated that there 
was a clearly prominent unit volume (over 80%) for 42/60 medication type (including 
brandname) and strength combinations, for 17.4% of imputed records the most 
prominent unit volume represented less than 60% of the reference prescriptions.   
Consequently, the imputation may not have been very precise.   The most common 
medication for which confidence in the imputed dose was low (less than 60%) was 
both high dose and a combination ICS+LABA medication (Seretide 250mcg), and thus 
affected individuals were likely on a higher BTS step, there is a chance that adherence 
was systematically underestimated in the higher BTS steps.   
 
Finally, although not pertinent to the results presented in Chapter 4, the review of 
primary asthma controller medications (ICS and combination ICS+LABA) had much 
more depth than the subsequent review of add-on therapies.  The possible inclusion 

of add-on therapies which were being prescribed for indications other than asthma 
(and COPD, which was a participant exclusion criteria), such as theophylline for 
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apnoea or omalizumab for urticaria, may have biased the BTS step estimation to 
appear higher for those with higher numbers of comorbidities.   
 
One limitation of Chapter 6 is that I did not include an exhaustive list of all performance 
measures. For example, I limited my focus on binary class classification settings, and 
hence have not investigated multi-class classification performance measures. 
Accuracy can naturally be applied to the multi-class setting, simply as the proportion 
of samples which were correctly classed.  Others can easily be adapted, for example 
there is a multi-class adaptation of the MCC 382.  The class-specific performance 
measures such as the sensitivity/specificity and PPV/NPV easily generalise to the 

accuracy within any observed/predicted class, and they can also be averaged to 
compute a single summary performance measure.  The macro-average of class-
specific performance measures is the mean of the performance measure for each 
class, and thus gives equal weighting to the classes regardless of size imbalance.  For 
example, the balanced accuracy (see Section 5.4.3.3) is the macro-average of the 
observed class accuracies: the sensitivity and specificity in the binary case.  Other 
multi-class model performance measures include Cohen’s Kappa and Multi-class 
Performance Score (MPS) 331.    Multi-class classification can be used in risk prediction 
to assign patients into ordinal risk categories (such as low, medium, and high risk).  
While interesting in the evaluation of model calibration, although less informative than 
simply using the estimated probabilities of the event themselves, asthma attacks are 
themselves a binary event and thus binary classification is the only way that 
discrimination can be evaluated.   
 
In terms of the primary analyses presented in Chapter 7, one limitation is that short-
term event prediction requires data to have been recorded in the recent past, and is 
thus reliant on frequent primary care consultations to accurately detect those at 
elevated risk.  The model will inevitably provide less accurate predictions for those 
with infrequent primary care contact, or who have only recently joined a practice.  One 
solution for this, however, would be to allow manual data entry to supplement, or 

overrule, the information that had been extracted automatically.  Further discussion 
regarding the possible deployment of this model is presented in Section 8.4.   
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In section 7.3.1, I highlighted a study by Jentzsch et al. 264, which found that, in 
children, adherence estimates derived from pharmacy dispensing data were often 
overestimated.  One hypothetical reason for this, and the concern that lead me to 
focus my analysis on the adult population, was that the parent is typically coordinating 
medication refills, regardless of the child’s medication taking.  A limitation of this thesis 
is that adherence rates between children and adults were not compared in Chapter 4, 
and indeed children were excluded from the analyses in Chapter 7.  Additionally, 
however, there is reason to hypothesise that differences might have been observed 
between the adult and elderly population (who might also have their refills coordinated 

by a third party, such as a carer) or for those with a high number of comorbidities (for 
whom asthma medications may well be refilled at the same time as other medications) 
 383.  These examples highlight a broader point, that further assessment of the 
calibration with regards to all risk factors is important in order to identify weaknesses 
in the model.   
 
The criteria used to estimate whether steroid prescriptions were related to asthma 
symptoms are described in detail in Section 7.3.2, and while an obvious limitation is 
that this process might not have been perfectly accurate, a perhaps more interesting 
dilemma is that the steroids might not have been prescribed for immediate use 376.  If 
they were instead prescribed to be taken if needed, then the data sample would have 
been falsely labelled as an attack, and a potential future point in time might have been 
incorrectly labelled as ‘not an attack’.   Furthermore, the high prevalence of 
rheumatological diseases in people that were identified as having an asthma attack 
during the study (Table 7.3) may indicate that the identification of steroid prescriptions 
as asthma-related was imperfect, as steroids are commonly used to treat 
rheumatological flare-ups as well.   
 
As discussed in Sections 3.4.4 and 3.8, three notable features which were not included 
in my risk prediction model were race/ethnicity, influenza vaccination, and synthetic 

hormone treatment (hormonal contraceptive or hormone replacement therapy).   
Race/ethnicity could not be linked from census data due to study ethics approval 
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limitations, and was not available in the patient registry data.  Read Codes relating to 
hormonal therapies were not available for the ALHS study, and the identification of 
relevant medications from prescribing records was beyond the scope of this body of 
work.  Additionally, hormonal contraceptives are often prescribed in secondary care 
and thus may not be reliably recorded in primary care data.  Finally, influenza 
vaccination was not included as there was no supporting evidence for any mechanism 
of effect on asthma attack incidence aside from reduced risk of respiratory infections: 
a feature which had already been included in the analysis.   
 
As discussed in Section 3.7.2, rhinitis was included as a predictor in the risk model as 

a marker of atopy.  The Read Codes, listed in Appendix G, include “H18..” for 
vasomotor (non-allergic) rhinitis.  Neither Price et al. 117 nor Blakey et al. 75 used any 
differentiation between allergic and vasomotor rhinitis in their risk prediction models.  
Luo et al. 116 used only allergic rhinitis ICD codes, and Engelkes et al. 148 also reported 
that they used allergic rhinitis specifically, although there was not sufficient detail in 
their methods to see how they specified this.  While this demonstrates the evidence 
for the importance of both allergic and non-allergic rhinitis, the conflation of the two 
into a single risk factor may negatively impact the predictive ability of the model, 
especially in the tree-based models where compound effects with other markers of 
atopy may be attenuated.  Further work is required to estimate whether the distinct 
mechanisms of the two types of rhinitis (atopic versus sinusal pathologies 384) have an 
effect on the risk of asthma attacks, and should thus be considered separate risk 
factors.  Additionally, the validity distinguishing between vasomotor and allergic rhinitis 
on the basis of Read Codes would need to be investigated.  
 
There is some evidence that the sensitivity of anxiety and depression diagnostic Read 
coding was negatively affected by the Quality and Outcomes Framework (QOF).  QOF 
is a points-based system, introduced in 2004, which financially rewards and 
remunerates GP surgeries for conducting certain practices envisioned to improve the 
quality of care provided.  The first depression QOF points were initiated in 2006, for 

evaluating depression severity using specified symptom questionnaires up to 28 days 
after diagnosis with any depressive disorder 385. A further criterion was added in 2009 
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awarding additional points for follow-up severity assessments 5-12 weeks after the 
initial diagnosis 386.  An unintended consequence of the QOF was that GPs became 
less likely to use diagnostic Read Codes (thus circumventing the QOF requirements) 
and instead use symptom-based coding 387 or prescribe antidepressants without any 
coding 388,389.  Doing so removed such patients from the denominator of the 
proportions with severity assessments, and thus enabled them to circumvent the time-
consuming questionnaires without any loss to their overall percentage, and thus aid 
their awarding of the criteria points. Using prescriptions of anti-depressants in 
supplement to diagnostic coding may have improved the sensitivity of the feature, 
however only a limited selection of medications pertaining to the central nervous 

system were available in the ALHS dataset.  
 
The final limitation to the methodology I will describe herein is that the range of 
algorithms that were investigated was relatively limited.  I have already justified, in 
Sections 5.3.3 and 5.3.5, not including k-NNs or SVMs in my analyses.  Briefly, k-NNs 
require the full training data to resolve query samples, and SVMs are very 
computationally intensive in large datasets, with complexity increasing exponentially 
with training sample size.   One noteworthy algorithm that was not investigated is 
neural networks, described in detail in  Hastie et al. (Book Chapter 11) 290.  Optimising 
the architecture of neural networks is considered an art by some and was outside of 
the scope of this thesis.  However, their application to this problem may be considered 
in the future.  Finally, there are other ensemble algorithms (see Section 5.3.6) that 
could be investigated, including bagging with base learners other than decision trees, 
and stacking.    
 
Regarding the results themselves, in Section 7.4.6 the model was found to have poor 
calibration.  The calibration slope (18.27) shows that the estimated probabilities were 
inappropriately scaled, with insufficient variation between the samples with low and 
high estimated risk.  This was visualised in Figure 7.17, with significantly lower 
estimated risk than the observed rate for the higher-estimated risk samples.  This 

could have been improved by optimising the model on calibration-based performance 
measures (Section 5.4.1) rather than the balanced accuracy, or by using recalibration 
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methods (Section 5.4.4).   However, the focus of this thesis was on binary 
classification, and so these methods were not investigated.  Primarily, this decision 
was made due to the known subjectivity of interpretation of probabilities 390.  Cognitive 
biases inherent to all humans may result in variation in test result interpretation and 
suboptimal management plans for patients 391, which can contribute to increased 
health inequity.   
 

8.4 Implementation  
Despite the derivation of many asthma attack risk scores, none are currently endorsed 
for clinicians in guidelines by either the GINA (2020) 392 or BTS/SIGN (2019) 135, and 

are not referenced at all in the 2020 National Institute of Clinical Excellence (NICE) 
guidelines 393. 
 

“..., and the clinical usefulness of these, and other, classification and asthma 
prediction systems remain a subject of active investigation.” 

GINA Guidelines, 2020 392 
 
 

“Clinical prediction models for quantifying risk need to be developed and 
prospectively validated in adults, children aged 5–12 and children under five years of 

age. Does risk assessment based on these factors improve outcomes when used 
prospectively in routine clinical practice?” 

BTS/SIGN Guidelines, 2019 135 
 
With so much effort and research into developing asthma risk prediction models and 
risk stratification tools, it is disheartening to see the minimal impact they have had on 
routine practice 52.  While insufficient predictive power of past models is undoubtably 
a factor in this, it is not the only reason why the implementation of this work has hitherto 
been unsuccessful.  The same phenomenon is seen in many medical fields, as 

discussed by Dekker et al. in their conversation piece entitled “Most clinical risk scores 
are useless” 394.  The authors argue that the most common causes are either too many 
(relative to the sample size) or too few predictor variables, poor reporting, and poor 
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methodology.  Crucially, the authors note that “the development of these scores is 
based on an underlying assumption that accurately predicted estimated probabilities 
improve a clinician’s decision-making or the patient’s quality of life.”  Similarly, Damen 
et al. 395 stated that “most developed prediction models are insufficiently reported to 
allow external validation by others, let alone to become implemented in clinical 
guidelines or being used in practice”.  Having now developed a risk prediction model 
which is practical to implement in primary care, and with sufficiently good performance 
to justify it, further work is needed to evaluate the best way to implement such a model, 
and to measure the impact on clinical outcomes.   
 

Typically, risk prediction models are implemented as Clinical Decision Support 
Systems (CDSSs), in which clinicians are provided with data-driven recommendations 
and statistics related to a patient (such as to inform their treatment recommendations) 
or process (such as prompting further investigations, or triaging) 396.  Data about an 
individual at the time of query is usually entered manually but may also be extracted 
automatically from the EHRs.  As the cost of CDSS implementation and maintenance 
is not negligible, understanding what makes a system successful and cost-
effectiveness is of great value.  Perhaps the most comprehensive quantitative study 
was conducted by Roshanov et al. in 2013 397; their meta-regression on 162 clinical 
trials of CDSSs evaluated factors associated with successful CDSS implementation: a 
significant change in provider activity or patient outcomes.  For example, while multiple 
previous studies had reported that clinicians were often found to  side with their own 
judgement when there was a substantial difference in the advice provided  96,398, 
Roshanov et al. found that requiring a reason entered for over-riding the systems 
advice reduced this (unadjusted OR = 8.92, 95% CI = 2.01 to 39.61).  They also found 
that presenting the output of the model as both advice to the practitioner and to the 
patient improved success rates (OR = 2.99, 95% CI = 1.20 to 7.42).  Neither whether 
the advice was presented automatically in the workflow, not whether the practitioner 
was required to enter the data manually, were associated with either success or 
failure, however advice being integrated into the electronic charting or order entry form 

was associated with reduced odds of success (OR = 0.53, 95% CI = 0.28 to 1.02).   
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Overall, Roshanov et al. found that 52-64% of the trials in their meta-regression 
showed significant improvements in processes of care, but only 15-31% of those 
evaluated for impact on patients’ health showed positive impact 397.   Well implemented 
risk models have been used to triage chronic kidney disease patients, reducing wait 
time for high risk patients 399, to reduce osteoporosis prescribing without any increase 
in fractures 400, and to reduce inappropriate prescribing of antibiotics 401.  There have 
been modest successes in asthma management too: A 2012 RCT (known as ARRISA) 
also managed to demonstrate a slight reduction in asthma hospitalisations after 
introducing a very primitive (and unvalidated) high-risk patient flag, based on asthma 
treatment, attack history, and subjective psychosocial factors 402.  The number of 

asthma attacks did not decrease in the intervention practices, it was in actuality higher, 
however a lower number of the attacks were treated in secondary or out-of-hours care.  
As well as decreasing financial burden on the healthcare system, this is also less 
traumatic to the patient.  The study team are currently conducting another RCT of a 
similar design, using a validated risk score in place of the previously used method, 
although the results have not yet been published 403.   
 
Not all CDSSs are based on data-driven risk prediction models, some are based on 
simple knowledge-based rulesets.  The aforementioned original ARRISA patient flag, 
for example, was built on four simple criteria: age, asthma diagnosis, asthma severity, 
and evidence of some psychosocial problems.  While such a crude model may not 
have the same predictive power as an algorithm with more features, interactions (or 
if-then statements), and weighting of features, they have the benefit of being incredibly 
transparent.  The same cannot be said for all data-driven machine learning models, 
which can be incredibly difficult to interpret more generally than on the basis of 
individual predictions.  In practice, many such models are what we call black box 
models: in which the input and output are recorded without any comprehensive 
understanding of the internal mechanism.  For example, a simple decision tree like the 
one presented in Figure 5.2 is easy enough to follow, however if the depth were 
increased from two steps up to even 10 steps, the tree becomes much more 

complicated.  Furthermore, understanding of a random forest of 500 or more distinct, 
deep decision trees is inevitably obfuscated. 
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Understanding how much individual features contribute to the model (through 
parametric model coefficients, or feature importance as discussed in Section 5.6.1) 
improves the interpretation of the model globally, but on a case-by-case basis 
understanding the model’s local (such as for a single patient at a consultation) 
predictions may be more important.  Methods such as Shapley values (Section 5.6.2) 
can be used to estimate the features which are most influencing the model’s prediction 
for a specific patient, and by focussing on the modifiable risk factors this could make 
a powerful education tool.   
 

Luo et al. conducted a secondary analysis of their asthma attack risk prediction model 
116, presented in Section 7.1, to evaluate a previously developed methodology 404 in 
this setting 405 (including an extension of the methodology for imbalanced data).  In 
their methodology, the interpreter is used to generate a list of all possible decision 
rules (if criteria then outcome; generated using classification rule mining 406) which are 
pruned according to certain global criteria (including use of important features, high 
confidence in rule, clinical guidance, interpretability, and generalisability).  The set of 
rules matching both the predicted outcome (from the primary model) and the query 
sample (patient) characteristics are then presented.  They were able to provide some 
explanation using this approach for 92% of the true positives in their previous model 
116, and 87% in an external dataset 407.  There was no way, however, to evaluate the 
interpreter fidelity, or indeed how well the presented rules aligned with the true drivers 
of the primary prediction model.   
 
Black box prediction models are not likely to be a big concern to a user in practice 
when the model’s prediction is well aligned with the user’s instincts, or when the model 
is well known to outperform clinicians consistently.  However, the hypothetical (and 
possibly real) concern about occasions where the model’s predictions are very 
different to the clinician’s view is more pertinent.  In these cases, it is understandable 
that someone would be reluctant to put their patient’s health (and indeed their legal 

liability) in the hands of a machine without clear and easily understandable rationale 
408.  After all, the model cannot incorporate all knowledge that a patient-facing clinician 
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can detect.   No prediction model or interface is perfect either, and inaccurate results 
and system malfunctions both decrease trust with users.  A recent study of users of a 
CDSS at Brigham and Women’s Hospital (US), used for drug interaction, allergy, test 
result and screening reminder alerts, found that two-thirds of those surveyed had 
experienced malfunctions at least annually 409.    
 
It is worth noting that while any risk prediction model is limited by the features provided 
in the training data, the additional information about a patient that can be observed 
from a face-to-face consultation (such as the severity of current seasonal allergies) 
does not necessarily translate to a better risk appraisal from a human than a machine.  

There are circumstances, for example, in which the user’s instincts may be explicitly 
detrimental to the patient.  Cognitive biases inherent to all humans may result in 
diagnostic inaccuracies and suboptimal treatment plans for patients 391.  This can 
contribute to increased health inequity.  Theoretically, a CDSS could avert this problem 
by removing the personal judgement component.  On the other hand, the system still 
needs data to inform the computer model which will not introduce bias of its own.  The 
majority of routinely collected data are inherently populated by those with regular 
access to healthcare 410, rather by those from vulnerable populations who may 
experience rates of healthcare events differently – such as the formerly incarcerated, 
refugee, or homeless populations.   While the ALHS dataset is highly representative 
of the Scottish population it is inevitable that minority groups exist for which the 
prediction is substantially less reliable.   
 
The final question is how the model is best presented to the user.  As discussed in 
Section 8.3, there are limitations to presentation of risk prediction models as 
continuous values, which is why this thesis has focussed on binary classification.  
There are still more nuanced approaches to presenting this prediction than a simple 
‘yes’ or ‘no’, however, such as presenting the uncertainty using the number needed to 
treat in order to prevent an attack.   There also could be recommendations made 
based on the estimated risk, without presenting the risk itself.  This would also be a 

way to discourage unnecessary treatment step-ups (which would inadvertently change 
the estimated risk, as treatment severity is a risk factor in the model) for people with 
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mild daily symptoms but prominent triggers, and to focus more on health education 
and monitoring.   
 
Things to consider include whether patient data should be manually inserted (not 
pragmatic for a model of 45 features, but better for a simplified model using only the 
most important features, for example) or automatically extracted from EHRs (which 
will likely result in some extraction errors or missing data).   Furthermore, there are 
potential unintended effects of manual data entry.  The missing data mechanism 
primarily employed in this thesis is known as missing data indication: creating a 
category to flag that the value was missing (discussed in Section 3.2).  The primary 

strength of this approach is that the fact that a feature was not noted, measured, or 
recorded, is acknowledged by the model. For example, a lack of peak flow 
measurement is likely to indicate that no clear reduction in lung function was evident.  
An important consideration for this approach, however, was noted in a recent paper 
by van Smeden et al.: if the clinician is required to manually input data into the model, 
the request for data which might otherwise be unrecorded might alter the meaning of 
the data capture (or lack thereof) and negatively influence model performance 134 . A 
similar effect might be observed with changes to clinical practice guidelines.   
 
It might be preferred that model predictions were only presented when requested, or 
automatically during an asthma review, to prevent ‘alert fatigue’.  The model might be 
presented via an online webform, a mobile application, or an application integrated 
into the primary care EHR system.  Some clinicians might prefer a binary suggestion, 
whereas others might prefer to see the estimated risk probability itself.  The trajectory 
of expected change in risk caused by time-varying features (such as age and month) 
could be visualised 411.  Finally, the user would likely wish to see either some 
explanation of the results, using a points based score 412, Shapley values (perhaps 
limited to the modifiable risk factors), the relevant path through a single-tree 
approximation, or a selection of rule-based statements like Luo et al. 405, for example.  
Cai et al.’s recent survey of pathologist queries about a CDSS for prostate cancer 

diagnosis found that the most common theme was the capabilities and limitations of 
the system, including known population subgroups with lower accuracy and the 
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diversity of the training data 413.  Primarily, they wanted to know context that would 
help them decide whether to trust their own judgement over the model’s estimates in 
the cases where they differed.  Carroll et al. reported that many of the clinicians who 
tested their cardiovascular risk prediction model program particularly liked to be able 
to use the interface as a demonstration tool with patients, and so appreciated clear 
graphics and the option for a print-out to be generated 411.   In short, further 
consultation with patients and practitioners is essential in order to maximise the impact 
of any prediction model in clinical practice.   
 

8.5 Future Work 
This body of work highlights the value of enabling reliable and routine linkage between 
health data sources.  While primary and secondary care records are simple enough to 
link for research purposes in the UK, using NHS or CHI personal identification 
numbers, linkage of prescribing and dispensing records, in which records must be 
linked not just by person but by event, is not so trivial.  The system in place in Scotland 
facilitates basic linkage, although, as discussed in Section 2.2.3.3, it is not without 
limitations.   In many countries, however, even this crude linkage is not conducted 
routinely.  For example, in England, prescribing and dispensing of medications are 
recorded by separate processes.  Since 2015, NHS Business Services Authority 
(NHSBSA) dispensing data have included a patient identifier (NHS number) 414; this 
is, however, not routinely linked to primary care prescribing records held by Public 
Health England (PHE). The NHSBSA and PHE records also do not have a common 
unique prescribing event identifier. Therefore, even with a data sharing agreement in 
place, matching records (one-to-one) using common identifiers (known as 
deterministic linkage) is currently impossible. Therefore, it is necessary to link records 
probabilistically; estimating the likelihood that two records will match given the data 
they contain.    As mentioned in Section 4.4.3, and described in Appendix J, I 
collaborated with the pharmaceutical company GlaxoSmithKline (GSK) and the 
Salford Lung Study (SLS) team) to design an algorithm for probabilistic linkage of 

prescribing and dispensing records for asthma controller medications 265.   
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The high prevalence of primary non-adherence in asthma (reported incidence 
between 12-45% 259,261,262,265,415,416) is an informative example of the utility of having 
linked prescribing and dispensing records.  While further external validation of our 
promising findings 265 is needed on additional datasets, this work has gone a long way 
to improve the interoperability of my adherence research outside of Scotland.  Making 
this data linkage routine is not only useful for research purposes but could also be 
integrated into primary care reporting systems to provide a preliminary assessment of 
whether patients are collecting their prescribed asthma medications, improve 
clinicians’ understanding of patient adherence, and enable open discussions about 
barriers to adherence.   

 
Recently, there has been increasing interest in the integration of patient data (including 
data from home monitoring devices, and PROMs) into EHRs 417–419.  Enabling patients 
to contribute data to their health records allows health professionals to see recent 
historical trends in time-varying data, such as symptoms and lung function 420.  It can 
also save time in consultations by encouraging patients to complete surveys and 
questionnaires in their own time.  Patients being able to view their own EHRs might 
also enable errors to be spotted which would otherwise impact the quality of their care 
421.  In medical research, this could improve the precision of time-varying features 
which are currently infrequently captured in primary care, and enable new features to 
be included in risk prediction models.  When integrated EHRs are implemented, it will 
be a fantastic opportunity to examine how this richer data can improve prediction 
models. 
 
In terms of more technical recommendations, Section 5.5 omits more recent 
developments to the field of training data enrichment than SMOTEing.  For example, 
ADASYN (ADAptive SYNthetic sampling) is another synthetic data generation 
algorithm, which adds weight to the minority samples estimated to be the hardest to 
predict.  It does so by generating synthetic samples which are equidistant (according 
to Euclidean distance in M-dimensional feature space) between a minority sample and 

another minority sample in its (K-nearest minority class) neighbourhood.  The number 
of synthetic samples per minority sample is calculated by a function of the normalised 
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ratio of classes of their neighbours and the desired enriched data class (im)balance 
422.  This algorithm seeks to overcome the biggest limitation of the SMOTE algorithm, 
which is that it does not take into account the nearby neighbours of a minority class 
sample which are in the majority class.  This and further methods should be 
investigated to see if they are able to provide improvements on the performance 
achieved herein.  
 
In Section 7.3.4, I described how the six continuous features were scaled using the 
min-max normalisation method.  All the algorithms used herein are independent of the 
feature scale, however, so the (linear) scaling itself will have no effect on the models 

built on unenriched data. Algorithms which are not independent of feature scale are 
again those which are distance-based, such as k-NN (Section 5.3.3) and SVMs 
(Section 5.3.5).  Additionally, algorithms which use regularisation (penalising 
coefficients for the purpose of feature selection) require all features to be scaled 290.   
For more information, refer to Hastie et al. (Book section 3.4) 290.  Alternative feature 
scaling methods, such as Z-score normalisation (also known as standardisation), may 
be investigated in the future, if different algorithms or enrichment methods were used. 
 
Another approach to the prediction of rare events is one-class classification (OCC; 
also known as anomaly detection 423), in which models are trained on data sharing the 
primary characteristic (for example, emails which are not spam) and try to identify 
outliers which do not belong in that class.  Typically, these OCC approaches attempt 
to find some minimum area in multi-dimensional space which encapsulate all the 
training samples, and then identify outliers simply as any query sample lying outside 
of this area 424.  OCC can be applied to imbalanced data prediction in the typically 
binary case and is best suited to cases in which the minor class lacks consistent 
characteristics, making it difficult for many binary classification to establish reliable 
decision rules, and often resulting in poor discrimination 425.  For example, asthma 
attacks resulting in death and those resulting in GP-prescribed oral steroids may be 
distinctive and trying to classify them both under the general class of ‘asthma attacks’ 

rather than anything other than stable asthma (one-class) leads to poor performance.  
Performance in the test data set can be evaluated in the same way as in a binary-
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classification problem.  The inclusion of this analytical approach was beyond the scope 
of this thesis, and while there were no identified studies in this area in the literature, 
one protocol paper which included OCC in its prospective methods was published in 
2020 426.  I eagerly anticipate the result and hope that it might provide further insights 
into areas of future investigation.   
 
Five of the six most important features were derived from prescribing records (CSA_3, 
reliever use, CMA8_2, number of controllers in previous year, and treatment step).  As 
such, it is likely that inaccurate data extraction in some individuals has contributed 
towards incorrect model predictions.    Neither pharmacy nor primary care records are 

written with future linkage in mind, and as such they often require substantial pre-
processing.  Missing data are a common problem; in the aforementioned collaboration 
with GSK and SLS, we found that for the 17% of dispensing records for which a match 
could not be identified, both medication strength and dispensed quantity had 
approximately 60% missing data 265.  Furthermore, both primary and secondary care 
records often contain data in free text entry fields: areas that allow manual entry of 
information without finite options.  These free text fields can contain information which 
is vital to correctly understand the record 427,428.   As an example, a 2012 study into 
health records in the UK General Practice Research Database found that cause of 
death was written in the free-text alone (and not in any coded or structured cells) in 
almost 20% of mortality records 101.   Yang et al. categorised quality-related events in 
free-text prescription fields, and found that the most common problem was missing 
dose quantity (e.g. ‘two puffs’; 54% of quality flagged records) 429.    
 
Extracting free-text information requires intensive processing to ensure validity, often 
using methods known as Natural Language Processing (NLP) 430,431.   In contrast to 
simple rule-based methods, like searching for the word ‘asthma’ in inpatient admission 
records, NLP uses machine learning algorithms to distinguish nuanced segments, 
such as understanding that ‘not asthma’ is semantically different from ‘asthma’.  
Although there have been many recent advances in free-text prescribing data 

extraction 270,432,433, there is still the requirement for more research into the integration 
of specific medical domain knowledge 434,435.  The algorithm developed by McTaggart 



 245 

et al.’s 270 is applied to all Scottish prescribing data, however as discussed in Section 
4.2.3, my methods (which included asthma-specific domain knowledge) resulted in 
lower missingness, with above 99.6% agreement on non-missing extracted features.   
 
Given the high rate of imputation of the doses per prescribed medication unit, and the 
importance of this information in adherence estimation, refining this process is 
empirical to improving the reliability of the estimates.  The observed low confidence in 
the number of doses per unit for the 250mcg Seretide prescriptions can be used as a 
starting point for identifying areas for improvement.  For example, further work could 
seek to identify distinguishing factors between the prescriptions of the 120-dose and 

60-dose units in order to improve imputation across all prescriptions.   
 
Finally, a very important future area for extending the work described in this thesis is 
extensive validation in the real-world setting.  This validation is essential to confirm the 
generalisability of the model’s performance to other datasets.  Additionally, it is 
necessary to ensure that the model is suitable for deployment in the primary care 
setting, both in terms of user-interaction (as discussed in Section 8.4) and in impact 
on clinical outcomes.  Given the exemplary performance at the 12-week event horizon, 
this might be the endpoint with the most potential to pursue further.  Several models 
may be appraised for impact when paired with different interventions, in order to find 
the optimal implementation.       
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8.6 Conclusion 
In conclusion, I have demonstrated that it is possible to predict asthma attacks in 
primary care with sufficiently high discrimination to guide clinical decision making, 
prompting further reviews, and initiating preventative treatments.  Furthermore, I have 
demonstrated the importance of modifiable risk factors, including medication 
adherence and overuse of reliever medication.  Crucially, the basis in electronic health 
records results in a prediction model which is feasible and clinically useful to 
implement in primary care, due to the use of routinely collected data, and near-future 
predictions.  

 

The key to this achievement was a robust understanding of how adherence to 
medications can be estimated from electronic health records and a thorough extraction 
of risk factors from primary care data.  Furthermore, I have built the tools and 
knowledge base to allow other researchers to more robustly build on my work – such 
as data linkage algorithms, and detailed investigations into prescribing records, 
adherence patterns, and measurement trends.   
 
While the primary final model (prediction of ATS/ERS defined asthma attacks in the 
next four weeks) did not meet all components of my comprehensive, composite model 
benchmarking criteria, it succeeded in providing an implementable and well tested 
decision aid with good, balanced performance across a wide selection of quantitative 
measures.  Furthermore, several of the secondary models, including predicting 
asthma attacks in the following 12 weeks, achieved state of the art performance and 
still had high potential clinical utility.   
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Appendix A: Notable Events and Achievements 
Year 1 

• 7th March 2018 – Matriculated into the University of Edinburgh 

• 5th & 6th April 2018 – Outreach: Edinburgh Science Festival with AUKCAR  

• 25th April 2018 – SURE safe researcher qualification awarded 

• 5th June 2018 – Access approved for the LHS data in the Safe Haven  

• 19th-22nd June 2018 – Hackathon: EHMAthon in Budapest.  Result: Runner up 

• 28th-29th June 2018 – Conference: SICSA in Aberdeen.  Won a small hackathon 
about grant applications 

• 29th June 2018 – Access approved for the asthma electronic monitoring dataset 
from UCL (Amy Chan) 

• 4th-11th July 2018 – Hackathon: EIT European Health Catapult in Naples 

• 21st August 2018 – AUKCAR affiliation approved 

• 5th November 2018 – Presentation: Centre for Medical Informatics Seminar 

• 29th November to 1st December 2018 – Conference: European Society for 
Patient Adherence, Compliance, and Persistence (ESPACOMP) in Dublin 

• 8th February 2019 – Workshop: Cluster Analysis  

• 21st – 24th February 2019 – Hackathon: Product Forge  
 
Year 2 

• 7th March 2019 – SLS NDA Approved by all parties 

• 8th March 2019 – Risk prediction model protocol Paper accepted to BMJ Open 

• 11th March 2019 – First Year Review 

• 12th March 2019 – Conference: AUKCAR ASM (poster – 2nd prize, Public and 
Patient Involvement (PPI) presentation, chairing a session) 

• 6th-10th April 2019 – Outreach: Edinburgh Science Festival Informatics 
Workshop 

• 15th June 2019 – Outreach: Glasgow Science Festival AUKCAR stand with 
paper maché airways 

• 18th – 19th June 2019 – Conference: SICSA in Stirling (poster)  
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• 14th – 20th July 2019 – Summer School: Public Health: From small island state 
to global population with ACU in Mauritius 

• 28th – 30th October 2019 – Conference: IEEE BioInformatics and Biomedical 
Engineering (BIBE) in Athens (oral presentation) 

• 9th – 11th December 2019 – Conference: Administrative Data Research in 
Cardiff (poster presentation) 

• 8th January 2020 – Accepted for poster presentation at ISPE 2020 
(subsequently cancelled due to COVID-19) 

• 15th January 2020 – Conference: Dealing with Data in Edinburgh (oral 
presentation) 

• 21st January 2020 – Second Year Review 
 
Year 3 
- 11th February 2020 – Asthma phenotyping methods paper (First author Elsie 

Horne) accepted into JMIR 
- 20th – 23rd February 2020 – Hackathon: Product Forge (Winner in track, 

emergency and unscheduled care, and winner overall) 
- 27th February 2020 – Hormonal contraceptives and asthma onset paper (First 

Author Bright Nwaru) accepted into JACI 
- 9th March 2020 – Started working from home, as per government guidelines.  

Currently, no access to ALHS dataset remotely.  
- 23rd March 2020 – UK enters lockdown for COVID-19 

- 26th March 2020 – Conference: Virtual AUKCAR ASM (three posters and an 
oral presentation)  

- 30th June 2020 - Adherence in asthma and TB comparison paper accepted into 
BJCP  

- 6th July 2020 – Remote access for ALHS dataset approved 
- 20th August 2020 – Clustering of EMD adherence data in children paper 

accepted into Scientific Reports 
- 10th September 2020 – 4-month funding extension confirmed 
- 15th September 2020 – Conference: (Virtual) International Society for 

Pharmacoepidemiology Meeting (one poster) 
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- 24th September 2020 – Hormonal contraceptives and asthma outcomes paper 
(first Author Bright Nwaru) accepted into Thorax 

- 25th November 2020 – Hormone replacement therapy and asthma onset paper 
(First Author Ahmar Shah) accepted into JACI 

- 27th November 2020 - Linkage of primary care prescribing records and 
pharmacy dispensing records in the Salford Lung Study paper accepted into 
BMC Medical Research Methodology 

- 1st December 2020 – Took over management of Master’s course Medical 
Informatics 

- 26th February 2021 - Hormone replacement therapy and asthma outcomes 

paper (First Author Ahmar Shah) accepted into JACI: In Practice 
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Appendix B: Asthma Attack Risk Factor Read Codes (Version 2) 

Terms have a maximum character length of 50, and as such may 
feature truncated expressions. 
Smoking Status 
Read Code (V2) Term Class 
1371. Never smoked tobacco Never Smoked 
1377. Ex-trivial smoker (<1/day) 

Former Smoker 

1378. Ex-light smoker (1-9/day) 
1379. Ex-moderate smoker (10-19/day) 
137A. Ex-heavy smoker (20-39/day) 
137B. Ex-very heavy smoker (40+/day) 
137F. Ex-smoker - amount unknown 
137i. Ex tobacco chewer 
137j. Ex-cigarette smoker 
137K. Stopped smoking 
137K0 Recently stopped smoking 
137L. Current non-smoker 
137l. Ex roll-up cigarette smoker 
137N. Ex pipe smoker 
137S. Ex smoker 
137T. Date ceased smoking 
1372. Trivial smoker - < 1 cig/day 

Smoking Current 

1373. Light smoker - 1-9 cigs/day 
1374. Moderate smoker - 10-19 cigs/d 
1375. Heavy smoker - 20-39 cigs/day 
1376. Very heavy smoker - 40+cigs/d 
137a. Pipe tobacco consumption 
137b. Ready to stop smoking 
137c. Thinking about stopping smoking 
137C. Keeps trying to stop smoking 
137d. Not interested in stopping smoking 

137D. Admitted tobacco consumption 
untrue 

137e. Smoking restarted 
137f. Reason for restarting smoking 
137G. Trying to give up smoking 
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Smoking Status 
Read Code (V2) Term Class 

137h. Minutes from waking to first tobacco 
consumption 

Smoking Current 

137H. Pipe smoker 
137J. Cigar smoker 
137M. Rolls own cigarettes 
137M. Rolls own cigarettes 
137m. Failed attempt to stop smoking 
137P. Cigarette smoker 
137Q. Smoking started 
137R. Current smoker 
137V. Smoking reduced 
137.. Smoker - amount smoked Current Smoker if >0 

137E. Tobacco consumption unknown Current Smoker if 
non-missing 

137g. Cigarette pack-years Current Smoker if >0 
137X. Cigarette consumption Current Smoker if >0 
137Y. Cigar consumption Current Smoker if >0 
137Z. Tobacco consumption NOS Current Smoker if >0 

 
 

Obesity 
Read Code 
(V2) Term Code Type 

22K.. Body Mass Index BMI – numerical 
value 

22K3. Body Mass Index low K/M2 BMI Low (Not Obese) 22K6. Body mass index less than 20 
22K1. Body Mass Index normal BMI Normal (Not 

Obese) 22K8. Body mass index 20-24 - normal 
22K2. Body Mass Index high BMI High (Not 

Obese) 22K4. Body mass index index 25-29 - 
overweight 

22K5. Body mass index 30+ - obesity 

BMI Very High 
(Obese) 

22K7. Body mass index 40+ - severely obese 
22KC. Obese Class I 
22KD. Obese Class II 
22KE. Obese Class III 
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Obesity 
Read Code 
(V2) Term Code Type 

229.. Height Height – numerical 
value 

22A.. Weight Weight – numerical 
value 

 
 

Peak Flow 
Read Code 
(V2) 

Term 

339A. Peak flow rate before bronchodilation 
339c. Peak expiratory flow rate pre steroids 

 

 

Eosinophilia 
Read Code 
(V2) 

Term 

42K.. Eosinophil count 
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Appendix C: Illustration of Algorithm Used to Assign British 
Thoracic Society/Scottish Intercollegiate Guidelines Networks 
(2019) Treatment Steps 
The 2019 BTS/SIGN Guidelines 135 present a single recommended medication dosage 
for each level of dosage: low, medium, or high. In practice, many regimens did not 
perfectly align with these guidelines.     
 
As such, conversion of the continuous ICS and ICS/LABA daily dose into the three 
levels (low, medium, and high) was based on ranges, accommodating all observed 
values, as listed in the table below.  The range for the low-dose category was zero 
mcg/day up to the low-dose value in the guidelines.  Medium-dose was assigned from 
one microgram higher than the low-dose value up to the medium-dose value, unless 
there was no recommended low-dose.  In this case, half of the medium-dose value 
was used as the lower range limit.  Similarly, the high-dose category was assigned 
from one microgram higher than the medium-dose value up to four times the medium-
dose value, unless the medium-dose value was missing, in which case half of the high-
dose value was used as the lower range limit and twice the high-dose value for the 

upper range limit.  If the medication strength value recorded was above the upper limit 
of the high-dose category, then the medication strength category ‘unknown’ was 
assigned.  Generic medications (or those with unlisted brand) will assume the category 
of the brand name group highlighted by asterisk. 
 
Three Belcometasone inhaler brands (Becodisks, Asmabec, and Pulvinal) were no 
longer recommended in the 2019 BTS/SIGN guidelines, and so strength categories 
were taken from the most recent guidelines that they were respectively included in.  
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ICS Drug Brand Names Low Daily 
ICS Dose 

Medium 
Daily ICS 

Dose 

High Daily 
ICS Dose 

Beclometasone Clenil, Soprobec, 
Becodisks * 0-400mcg 401-800mcg 801-3200mcg 

Qvar, Kelhale,  
Pulvinal 0-200mcg 201-400mcg 401-1600mcg 

Asmabec 0-200mcg 201-400mcg N/A 
Budesonide Budelin N/A 400-800mcg 801-3200mcg 

Pulmicort * 0-400mcg 401-800mcg 801-3200mcg 
Fluticasone Flixotide* 0-200mcg 201-500mcg 501-2000mcg 
Mometasone Asmanex 

Twisthaler * 0-400mcg 401-800mcg N/A 

Ciclesonide Alvesco * 0-160mcg 161-320mcg N/A 
Beclometasone 
+ Formoterol 

Fostair * 0-200mcg 201-400mcg 401-1600mcg 

Budesonide + 
Formoterol 

Symbicort, 
DuoResp 
Spiromax * 

0-400mcg 401-800mcg 801-3200mcg 

Fobumix  0-320mcg 321-640mcg 641-2560mcg 
Fluticasone + 
Formoterol 

Flutiform * 0-200mcg 201-500mcg 501-2000mcg 

Fluticasone + 
Salmeterol 

Seretide, 
Combisal * 0-200mcg 201-500mcg 501-2000mcg 

AirFluSal, 
Sirdupla, Sereflo, 
Aloflute, 
Fusacomb 

N/A 250-500mcg 501-2000mcg 

Stalpex N/A N/A 500-2000mcg 
Fluticasone + 
Vilanterol 

Relvar Ellipta * N/A 46-92mcg 93-368mcg 

 
The 2019 BTS/SIGN guidelines recommend treating everyone with a minimum of as-
needed low dose ICS (Step 1), however, prior to this, as-needed SABA only treatment 
was common in people with mild intermittent symptoms.  As such, we have 
categorised this as a Step 0, as shown in the decision tree below.   There were a 
negligible number of cases of adults being prescribed ICS solution monotherapy (to 
be used in nebulisers and similar devices, sometimes used as monotherapy in the 
paediatric setting), however these were also classed as Step 0.  The second 
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BTS/SIGN treatment step is to add LABA to the ICS, using either a combination or a 
stand-alone inhaler.  At Step 3, ICS may be increased to medium (or high) dose, and 
an LTRA may be added, with or without continuation of the LABA.  I have included 
other add-on therapies with ICS (LTRA, theophylline, LAMA, MAb, and ICS solutions) 
into this step, however I have classed those with medium or high dose ICS with LABA 
and add-on therapies as a Step 4.  BTS/SIGN classes Step 4 as the addition of 
specialist care.  Finally, the BTS/SIGN Step 5 includes maintenance OCS treatment, 
however as it was not possible to identify the indication for OCS prescriptions, this 
treatment step was disregarded and Step 4 was considered the top level.   
 

 

 

Prescriptions in the 
last 120 days 

Any ICS? 

 
0 Any 

LABA? 

Most recent 
ICS dose 

low? 

Most recent 
ICS dose 

low? 

 
3 

Any add-
on? 

 
2  

4

Any add-
on? 

 
3 

 
3 

Any add-
on? 

 
1 

 
4 

Any add-
on? 

 
3 

YES 

YES 

YES 

YES 

YES 

YES YES YES 

NO 

NO 

NO NO 

NO NO NO NO 
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Appendix D: UK Asthma Medication Brand and Generic Names, Formulations, and Medication 
Strength (Adults) 
This table is an update of the classification used previously by Mukherjee et al. 160.  The updates include the addition of new brands 
added to the British National Formulary (brand highlighted in bold) and new therapies approved by NICE (also highlighted in bold, 
with NICE technical appraisal and evidence summary identifiers included).   Additionally, bambuterol was corrected from being listed 
as SABA to LABA.  The formulations and dosages approved for asthma treatment in adults were extracted from the British National 
Formulary on April 10th, 2020 or sourced from previous versions for medications which are no longer recommended.  
 

Drug Type Ingredients Brand Names Formulation Medication Strength  
SABA Salbutamol / Albuterol Generic Tablet 2mg, 4mg 

Oral Solution 2mg/5ml 
Pressurised Inhaler 100mcg 
Inhalation Powder 100mcg, 200mcg 
Nebulising Solution 2.5mg/2.5ml, 5mg/2.5ml 

Salamol Pressurised Inhaler 100mcg 
Nebulising Solution 5mg/2.5ml 

Ventolin Infusion Ampoules 5mg/5ml 
Injection 500mcg/1ml 
Oral Solution 2mg/5ml 
Pressurised Inhaler 100mcg 
Inhalation Powder 200mcg 
Nebules 2.5mg, 5mg 
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Drug Type Ingredients Brand Names Formulation Medication Strength  
SABA Salbutamol / Albuterol Ventolin Nebulising Solution 5mg/1ml 

Airomir Pressurised Inhaler 100mcg 
Salbulin Inhalation Powder 100mcg 
AirSalb Pressurised Inhaler 100mcg 
Ventmax Capsule 4mg, 8mg 
Asmasal Inhalation Powder 95mcg 
Pulvinal Salbutamol Inhalation Powder 200mcg 

LABA Bambuterol Bambec Tablet 10mg 
Formoterol Generic Inhalation Powder 12mcg 

Atimos Pressurised Inhaler 12mcg 
Foradil Inhalation Powder 12mcg 
Oxis Inhalation Powder 6mcg, 12mcg 

Salmeterol Neovent Pressurised Inhaler 25mcg 
Serevent Pressurised Inhaler 25mcg 

Inhalation Powder 50mcg 
Soltel Pressurised Inhaler 25mcg 

Terbutaline Bricanyl Tablet 5mg 
Injection 2.5mg/5ml, 500mcg/1ml 
Inhalation Powder 500mcg 
Nebulising Solution 5mg/2ml 

Tiotropium [ESNM55] Spiriva Respimat Pressurised Inhaler 2.5mg 
LAMA Ipratropium Generic Nebulising Solution 250mcg/1ml, 

500mcg/2ml 
Atrovent Pressurised Inhaler 20mcg 
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Drug Type Ingredients Brand Names Formulation Medication Strength  
LAMA Ipratropium Atrovent Nebulising Solution 250mcg/1ml, 

500mcg/2ml 
Inhalvent Pressurised Inhaler 20mcg 
Ipravent Pressurised Inhaler 20mcg 
Respontin  Nebulising Solution 250mcg/1ml, 

500mcg/2ml 
LAMA + LABA Ipratropium + Salbutamol Ipramol Nebulising Solution (200mcg + 1mg) / 1ml 

Combivent Nebulising Solution (200mcg + 1mg) / 1ml 
Theophylline Theophylline Uniphyllin Tablet 200mcg, 300mcg, 

400mcg 
Nuelin Tablet 175 mg, 250 mg 
Slo-Phyllin  Tablet 60mg, 125mg, 250mg 

Aminophylline Phyllocontin Tablet 225mg, 350mg 
Injection 250mg/10ml 

ICS Beclometasone / 
Beclomethasone 

Generic Inhalation Powder 200mcg 
Clenil Pressurised Inhaler 50mcg, 100mcg, 

200mcg, 250mcg 
Qvar Pressurised Inhaler 50mcg, 100mcg 
Kelhale Pressurised Inhaler 50mcg, 100mcg 
Soprobec Pressurised Inhaler 50mcg, 100mcg, 

200mcg, 250mcg 
Becodisks Inhalation Powder 100mcg, 200mcg, 

400mcg 
Notes: Dosage for combination LAMA+LABA medications are listed in the same order as the ingredients
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Drug Type Ingredients Brand Names Formulation Medication Strength  
ICS Beclometasone / 

Beclomethasone 
Pulvinal 
Beclometasone 

Inhalation Powder 100mcg, 200mcg, 
400mcg 

Asmabec Pressurised Inhaler 100mcg, 250mcg 
Budesonide Generic Nebulising Solution 250mcg/2ml, 

500mcg/2ml, 1mg/2ml 
Inhalation Powder 100mcg, 200mcg, 

400mcg 
Budelin Inhalation Powder 200mcg 
Pulmicort Inhalation Powder 100mcg, 200mcg, 

400mcg 
Respules 0.5mg, 1mg 

Fluticasone Flixotide Pressurised Inhaler 50mcg, 125mcg, 
250mcg 

Inhalation Powder 50mcg, 100mcg, 
250mcg, 500mcg 

Nebules 0.5mg/2ml, 2mg/2ml 
Mometasone Asmanex / Twisthaler Inhalation Powder 200mcg, 400mcg 
Ciclesonide Alvesco Pressurised Inhaler 80mcg, 160mcg 

ICS + LABA Beclometasone + 
Formoterol 

Fostair Pressurised Inhaler 100mcg+6mcg, 
200mcg+6mcg 

Inhalation Powder 100mcg+6mcg, 
200mcg+6mcg 

Notes: Dosage for combination ICS+LABA medications are listed in the same order as the ingredients 
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Drug Type Ingredients Brand Names Formulation Medication Strength  
ICS + LABA Budesonide + Formoterol Symbicort Pressurised Inhaler 200mcg+6mcg 

Inhalation Powder 100mcg+6mcg, 
200mcg+6mcg, 
400mcg+12mcg 

DuoResp Spiromax Inhalation Powder 160mcg+4.5mcg, 
320mcg+12mcg 

Fobumix  Inhalation Powder 50mcg+4.5mcg, 
160mcg+4.5mcg 
320mcg+9mcg 

Fluticasone + Formoterol Flutiform Pressurised Inhaler 50mcg+5mcg, 
125mcg+5mcg, 
250mcg+10mcg 

Fluticasone + Salmeterol Seretide Pressurised Inhaler 50mcg+25mcg, 
125mcg+25mcg, 
250mcg+25mcg 

Inhalation Powder 100mcg+50mcg, 
250mcg+50mcg, 
500mcg+50mcg 

Airflusal Pressurised Inhaler 125mcg+25mcg, 
250mcg+25mcg 

Inhalation Powder 500mcg+50mcg 
Sirdupla Pressurised Inhaler 250mcg+25mcg 

Notes: Dosage for combination ICS+LABA medications are listed in the same order as the ingredients 
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Drug Type Ingredients Brand Names Formulation Medication Strength  
ICS + LABA Fluticasone + Salmeterol Sereflo Pressurised Inhaler 125mcg+25mcg, 

250mcg+25mcg 
Aloflute Pressurised Inhaler 125mcg+25mcg, 

250mcg+25mcg 
Combisal Pressurised Inhaler 50mcg+25mcg, 

125mcg+25mcg, 
250mcg+25mcg 

Fusacomb Inhalation Powder 100mcg+50mcg, 
500mcg+50mcg 

Stalpex Inhalation Powder 500mcg+50mcg 
Fluticasone + Vilanterol Relvar Ellipta Inhalation Powder 92mcg+22mcg, 

184mcg+22mcg 
LTRA Montelukast Generic Tablet 4mg, 5mg, 10mg 

Sachet for Solution 4mg 
Singulair Tablet 5mg, 10mg 

Sachet for Solution 4mg 
Zafirlukast Generic Tablet 10mg, 20mg 

Accolate Tablet 10mg, 20mg 
Cromolyn / Sodium 
Cromoglicate 

Intal Pressurised Inhaler 5mg 

Nedocromil Tilade Pressurised Inhaler 2mg 
Steroid Prednisolone Generic Tablet 1mg, 2.5mg, 5mg, 

10mg, 20mg, 25mg, 
30mg 

Notes: Dosage for combination ICS+LABA medications are listed in the same order as the ingredients 
LTRA category includes cromoglicates and related therapies 
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Drug Type Ingredients Brand Names Formulation Medication Strength  
Steroid Prednisolone Generic Oral Solution 5mg/5ml, 10mg/1ml 

Deltacortril Tablet 2.5mg, 5mg 
Dilacort Tablet 2.5mg, 5mg 
Deltastab Injection 25mg/1ml 
Pevanti Tablet 2.5mg, 5mg, 10mg, 

20mg, 25mg 
MAb Omalizumab Xolair Injection 75mg/0.5ml, 150mg/1ml 

Mepolizumab [TA431] Nucala Injection 100mg/1ml 
Benralizumab [TA565] Fasenra Injection 30mg/1ml 
Reslizumab [TA479] Cinqaero Infusion Solution 25mg/2.5ml, 

100mg/10ml 
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Appendix E: Asthma Diagnosis and Management Read Codes 
(Version 2) 
Terms have a maximum character length of 50, and as such may feature truncated 
expressions. 

Read Code (V2) Term 
173A. Exercise induced asthma 
H3120 Chronic asthmatic bronchitis 
H33.. Asthma 
H330. Extrinsic (atopic) asthma 
H3300 Extrinsic asthma without status asthmaticus 
H3301 Extrinsic asthma with status asthmaticus 
H330z Extrinsic asthma NOS 
H331. Intrinsic asthma 
H3310 Intrinsic asthma without status asthmaticus 
H3311 Intrinsic asthma with status asthmaticus 
H331z Intrinsic asthma NOS 
H332. Mixed asthma 
H334. Brittle asthma 
H335. Chronic asthma with fixed airflow obstruction 
H33z. Asthma unspecified 
H33z0 Status asthmaticus NOS 
H33z1 Asthma attack 
H33z2 Late-onset asthma 
H33zz Asthma NOS 
H3B.. Asthma-chronic obstructive pulmonary disease overlap 

syndrome 
663.. Respiratory disease monitoring 
6632. Follow-up respiratory assessment 
6636. Inhaler technique shown 
6637. Inhaler technique observed 
663a. Oral steroids used since last appointment 
663B. Resp. treatment changed 
663d. Emergency asthma admission since last appointment 
663e. Asthma restricts exercise 
663e0 Asthma sometimes restricts exercise 
663e1 Asthma severely restricts exercise 
663F. Oral steroids started 
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Read Code (V2) Term 
663f. Asthma never restricts exercise 
663G. Oral steroids stopped 
663g. Inhaled steroids use 
663g0 Not using inhaled steroids 
663g1 Using inhaled steroids - normal dose 
663g2 Using inhaled steroids - high dose 
663g3 Increases inhaled steroids appropriately 
663H. Inhaler technique - good 
663h. Asthma - currently dormant 
663I. Inhaler technique - poor 
663J. Airways obstruction reversible 
663j. Asthma - currently active 
663L. Bronchodilators used more than once daily 
663M. Bronchodilators used a maximum of once daily 

663m. 
Asthma accident and emergency attendance since last 
visit 

663N. Asthma disturbing sleep 
663n. Asthma treatment compliance satisfactory 
663N0 Asthma causing night waking 
663N1 Asthma disturbs sleep weekly 
663N2 Asthma disturbs sleep frequently 
663O. Asthma not disturbing sleep 
663O0 Asthma never disturbs sleep 
663P. Asthma limiting activities 
663p. Asthma treatment compliance unsatisfactory 
663Q. Asthma not limiting activities 
663q. Asthma daytime symptoms 
663R. Service of nebuliser 
663r. Asthma causes night symptoms 1 to 2 times per month 
663S. Peak flow meter at home 
663s. Asthma never causes daytime symptoms 
663T. No peak flow meter at home 

663t. 
Asthma causes daytime symptoms 1 to 2 times per 
month 

663U. Asthma management plan given 
663u. Asthma causes daytime symptoms 1 to 2 times per week 
663V. Asthma severity 
663v. Asthma causes daytime symptoms most days 
663V0 Occasional asthma 
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Read Code (V2) Term 
663V1 Mild asthma 
663V2 Moderate asthma 
663V3 Severe asthma 
663W. Asthma prophylactic medication used 
663w. Asthma limits walking up hills or stairs 
663X. Irritable airways 
663x. Asthma limits walking on the flat 
663Y. Steroid dose inhaled daily 
663y. Number of asthma exacerbations in past year 
663Z. Resp. disease monitoring NOS 
663z. Number of times bronchodilator used in one week 
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Appendix F: Asthma Primary Care Encounter Read Codes 
(Version 2) 
Primary care encounters relating to asthma were identified by the presence of any 
Read Codes used for asthma diagnosis or management (Appendix E), and any of the 
following additional asthma encounter codes.  These codes were not seemed 
sufficient in isolation to indicate a diagnosis, but assuming that a diagnosis had been 
confirmed could be assumed to be relating to asthma management.  Terms have a 
maximum character length of 50, and as such may feature truncated expressions. 
 

Read Code (V2) Term 
173c. Occupational asthma 
173d. Work aggravated asthma 
178.. Asthma trigger 
1O2.. Asthma confirmed 
388t. Royal College of Physicians asthma assessment 
66Y0. Number of times bronchodilator used in 24 hours 
66Y1. Peak expiratory flow rate - technique poor 
66Y2. Peak expiratory flow rate - technique moderate 
66Y3. Peak expiratory flow rate - technique good 
66Y4. Inhaler technique - moderate 
66Y5. Change in asthma management plan 
66Y6. Peak expiratory flow rate - compliance good 
66Y7. Peak expiratory flow rate - compliance moderate 
66Y8. Peak expiratory flow rate - compliance poor 
66Y9. Step up change in asthma management plan 
66YA. Step down change in asthma management plan 
66Ya. Reversibility trial by bronchodilator 
66Yb. Reversibility trial by anticholinergic 
66YC. Absent from work or school due to asthma 
66Yc. Number of cons days less than 80% peak expiratory flow rate 
66YE. Asthma monitoring due 
66YF. Nebulizer technique good 
66YG. Nebulizer technique poor 
66YJ. Asthma annual review 
66YK. Asthma follow-up 
66Ym. Inhaler device in use 
66YN. Peak expiratory flow rate compliance 
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Read Code (V2) Term 
66YO. Peak expiratory flow rate technique 
66YP. Asthma night-time symptoms 
66YQ. Asthma monitoring by nurse 
66YR. Asthma monitoring by doctor 
66YV. Does not use spacer device 
66YW. No nebulisation since last appointment 
66YX. Peak expiratory flow rate monitoring 
66YY. Peak expiratory flow rate monitoring using diary 
66YZ. Does not have asthma management plan 
679J. Health education - asthma 
8B3j. Asthma medication review 
8CE2. Asthma leaflet given 
8CR0. Asthma clinical management plan 
8HTT. Referral to asthma clinic 
9N1d. Seen in asthma clinic 
9NI8. Asthma outreach clinic 
9OJ.. Asthma monitoring admin. 
9OJ1. Attends asthma monitoring 
9OJA. Asthma monitoring check done 
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Appendix G:  Comorbidity Read Codes (Version 2) 
Terms have a maximum character length of 50, and as such may feature truncated 
expressions. 

Nasal Polyps 
Read Code (V2) Term 
H11.. Nasal Polyps 

 

Anaphylaxis 
Read Code (V2) Term 
SN50. Anaphylactic shock 
SN500 Anaphylactic shock due to adverse food reaction 

SN501 Anaphylactic shock due to adverse effect of correct drug or 
medicament properly administered 

SN59. Allergic reaction to venom 
SP34. Anaphylactic shock due to serum 

 

Rhinitis 
Read Code (V2) Term  
H17.. Allergic rhinitis 
H170. Allergic rhinitis due to pollens 
H171. Allergic rhinitis due to other allergens  
H1710 Allergy to animal 
H172. Allergic rhinitis due to unspecified allergen  
H17z. Allergic rhinitis NOS  
H18.. Vasomotor rhinitis 
Hyu21 Other allergic rhinitis  

 

Eczema 
Read Code (V2) Term  
M11.. Atopic dermatitis and related conditions 
M111. Atopic dermatitis/eczema 
M112. Infantile eczema 
M113. Flexural eczema 
M114. Allergic (intrinsic) eczema 
M11z. Atopic dermatitis NOS 
M12z0 Dermatitis NOS 
M12z1 Eczema NOS 
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Anxiety or Depression 
Read Code (V2) Term  
8G94. Anxiety Management Training 
E2... Neurotic; Personality And Other Nonpsychotic Disorders 
E20.. Neurotic Disorders 
E200. Anxiety States 
E2000 Anxiety State Unspecified 
E2001 Panic Disorder 
E2002 Generalised Anxiety Disorder 
E2003 Anxiety With Depression 
E2004 Chronic Anxiety 
E2005 Recurrent Anxiety 
E200z Anxiety State NOS 
E201. Hysteria 
E2010 Hysteria Unspecified 
E2011 Hysterical Blindness 
E2012 Hysterical Deafness 
E2013 Hysterical Tremor 
E2014 Hysterical Paralysis 
E2015 Hysterical Seizures 
E2016 Other Conversion Disorder 
E2017 Hysterical Amnesia 
E2018 Hysterical Fugue 
E2019 Multiple Personality 
E201A Dissociative Reaction Unspecified  
E201B Compensation Neurosis 
E201C Phantom Pregnancy 
E201z Hysteria Nos 
E202. Phobic Disorders 
E2020 Phobia Unspecified 
E2021 Agoraphobia With Panic Attacks 
E2022 Agoraphobia Without Mention Of Panic Attacks 
E2023 Social Phobia, Fear Of Eating In Public 
E2024 Social Phobia, Fear Of Public Speaking 
E2025 Social Phobia, Fear Of Public Washing 
E2026 Acrophobia 
E2027 Animal Phobia 
E2028 Claustrophobia 
E2029 Fear Of Crowds 
E202A Fear Of Flying 
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Read Code (V2) Term  
E202B Cancer Phobia 
E202C Dental Phobia 
E202D Fear Of Death 
E202E Fear Of Pregnancy 
E202z Phobic Disorder NOS 
E203. Obsessive-Compulsive Disorders 
E2030 Compulsive Neurosis 
E2031 Obsessional Neurosis 
E203z Obsessive-Compulsive Disorder Nos 
E205. Neurasthenia - Nervous Debility 
E206. Depersonalisation Syndrome 
E207. Hypochondriasis 
E20y. Other Neurotic Disorders 
E20y0 Somatization Disorder 
E20y1 Writer's Cramp Neurosis 
E20y2 Other Occupational Neurosis 
E20y3 Psychasthenic Neurosis 
E20yz Other Neurotic Disorder NOS 
E20z. Neurotic Disorder Nos 
E21.. Personality Disorders 
E210. Paranoid Personality Disorder 
E211. Affective Personality Disorder 
E2110 Unspecified Affective Personality Disorder 
E2111 Hypomanic Personality Disorder 
E2112 Depressive Personality Disorder 
E2113 Cyclothymic Personality Disorder 
E211z Affective Personality Disorder NOS 
E26.. Physiological Malfunction Arising From Mental Factors 
E260. Psychogenic Musculoskeletal Symptoms 
E2600 Psychogenic Paralysis 
E2601 Psychogenic Torticollis 
E260z Psychogenic Musculoskeletal Symptoms Nos 
E261. Psychogenic Respiratory Symptoms 
E2610 Psychogenic Air Hunger 
E2611 Psychogenic Cough 
E2612 Psychogenic Hiccough 
E2613 Psychogenic Hyperventilation  
E2614 Psychogenic Yawning 
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Anxiety or Depression 
Read Code (V2) Term  
E2615 Psychogenic Aphonia 
E261z Psychogenic Respiratory Symptom NOS 
E262. Psychogenic Cardiovascular Symptoms 
E2620 Cardiac Neurosis 
E2621 Cardiovascular Neurosis 
E2622 Neurocirculatory Asthenia 
E2623 Psychogenic Cardiovascular Disorder  
E262z Psychogenic Cardiovascular Symptom Nos 
E263. Psychogenic Skin Symptoms 
E2630 Psychogenic Pruritus 
E263z Psychogenic Skin Symptoms Nos 
E264. Psychogenic Gastrointestinal Tract Symptoms 
E2640 Psychogenic Aerophagy 
E2642 Cyclical Vomiting - Psychogenic 
E2643 Psychogenic Diarrhoea 
E2644 Psychogenic Dyspepsia 
E2645 Psychogenic Constipation 
E264z Psychogenic Gastrointestinal Tract Symptom Nos 
E265. Psychogenic Genitourinary Tract Symptoms 
E2650 Psychogenic Genitourinary Tract Malfunction Unspecified 
E2651 Psychogenic Vaginismus 
E2652 Psychogenic Dysmenorrhea 
E2653 Psychogenic Dysuria 
E265z Psychogenic Genitourinary Tract Symptom NOS 
E266. Psychogenic Endocrine Malfunction 
E267. Psychogenic Symptom Of Special Sense Organ 
E26y. Other Psychogenic Malfunction 
E26y0 Bruxism (Teeth Grinding) 
E26yz Other Psychogenic Malfunction NOS 
E26z. Psychosomatic Disorder 
E278. Psychalgia 
E2780 Psychogenic Pain Unspecified 
E2781 Tension Headache 
E2782 Psychogenic Backache 
E278z Psychalgia Nos 
E28.. Acute Reaction To Stress 
E280. Acute Panic State Due To Acute Stress Reaction 
E281. Acute Fugue State Due To Acute Stress Reaction 
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Read Code (V2) Term  
E283. Other Acute Stress Reactions 
E2830 Acute Situational Disturbance 
E2831 Acute Posttrauma Stress State 
E283z Other Acute Stress Reaction NOS 

E284. Stress Reaction Causing Mixed Disturbance Of 
Emotion/Conduct 

E28z. Acute Stress Reaction NOS 
E29.. Adjustment Reaction   
E2900 Bereavement Reaction 

E292. Adjustment Reaction, Predominant Disturbance Other 
Emotions 

E2920 Separation Anxiety Disorder 
E2921 Adolescent Emancipation Disorder 
E2922 Early Adult Emancipation Disorder 
E2923 Specific Academic Or Work Inhibition 
E2924 Adjustment Reaction With Anxious Mood 
E2925 Culture Shock 
E292y Adjustment Reaction With Mixed Disturbance Of Emotion 

E292z Adjustment Reaction With Disturbance Of Other Emotion 
NOS 

E293. Adjustment Reaction With Predominant Disturbance Of 
Conduct 

E2930 Adjustment Reaction With Aggression 
E2931 Adjustment Reaction With Antisocial Behaviour 
E2932 Adjustment Reaction With Destructiveness 

E293z Adjustment Reaction With Predominant Disturbance 
Conduct NOS 

E294. Adjustment Reaction With Disturbance Emotion And 
Conduct 

E29y. Other Adjustment Reactions 
E29y0 Concentration Camp Syndrome  
E29y1 Other Post-Traumatic Stress Disorder 
E29y2 Adjustment Reaction With Physical Symptoms 
E29y3 Elective Mutism Due To An Adjustment Reaction 
E29y4 Adjustment Reaction Due To Hospitalisation 
E29y5 Other Adjustment Reaction With Withdrawal 
E29yz Other Adjustment Reactions Nos 
E29z. Adjustment Reaction Nos  
Eu4.. [X]Neurotic; Stress - Related And Somoform Disorders 
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Read Code (V2) Term  
Eu40. [X]Phobic Anxiety Disorders 
Eu400 [X]Agoraphobia 
Eu401 [X]Social Phobias 
Eu402 [X]Specific (Isolated) Phobias 
Eu403 [X]Needle Phobia 
Eu40y [X]Other Phobic Anxiety Disorders 
Eu40z [X]Phobic Anxiety Disorder, Unspecified 
Eu41. [X]Other Anxiety Disorders 
Eu410 [X]Panic Disorder [Episodic Paroxysmal Anxiety] 
Eu411 [X]Generalized Anxiety Disorder 
Eu412 [X]Mixed Anxiety And Depressive Disorder 
Eu413 [X]Other Mixed Anxiety Disorders 
Eu41y [X]Anxiety Hysteria 
Eu41z [X]Anxiety Nos 
Eu42. [X]Obsessive - Compulsive Disorder  
Eu420 [X]Predominantly Obsessional Thoughts Or Ruminations 
Eu421 [X]Predominantly Compulsive Acts [Obsessional Rituals] 
Eu422 [X]Mixed Obsessional Thoughts And Acts 
Eu42y [X]Other Obsessive-Compulsive Disorders 
Eu42z [X]Obsessive-Compulsive Disorder; Unspecified 
Eu43. [X]Reaction To Severe Stress; And Adjustment Disorders 
Eu430 [X]Acute Stress Reaction 
Eu431 [X]Post - Traumatic Stress Disorder 
Eu432 [X]Adjustment Disorders 
Eu43y [X]Other Reactions To Severe Stress 
Eu43z [X]Reaction To Severe Stress; Unspecified  
Eu44. [X]Dissociative [Conversion] Disorders 
Eu440 [X]Dissociative Amnesia 
Eu441 [X]Dissociative Fugue 
Eu442 [X]Dissociative Stupor 
Eu443 [X]Trance And Possession Disorders 
Eu444 [X]Dissociative Motor Disorders 
Eu445 [X]Dissociative Convulsions 
Eu446 [X]Dissociative Anaesthesia And Sensory Loss 
Eu447 [X]Mixed Dissociative [Conversion] Disorders 
Eu44y [X]Other Dissociative [Conversion] Disorders 
Eu44z [X]Dissociative [Conversion] Disorder; Unspecified 
Eu45. [X]Somatoform Disorders 
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Anxiety or Depression 
Read Code (V2) Term  
Eu450 [X]Somatization Disorder 
Eu451 [X]Undifferentiated Somatoform Disorder 
Eu452 [X]Hypochondriacal Disorder 
Eu453 [X]Somatoform Autonomic Dysfunction 
Eu454 [X]Persistent Somatoform Pain Disorder 
Eu455 [X]Globus Pharyngeus 
Eu45y [X]Other Somatoform Disorders 
Eu45z [X]Somatoform Disorder; Unspecified 
Eu46. [X]Other Neurotic Disorders 
Eu460 [X]Neurasthenia 
Eu461 [X]Depersonalization - Derealization Syndrome 
Eu46y [X]Other Specified Neurotic Disorders 
Eu46z [X]Neurotic Disorder; Unspecified 
ZN114 Anxiety Management 
ZS7C7 Post-Traumatic Mutism. 
1B17. Depressed 
62T1. Puerperal Depression 
6G00. Postnatal Depression Counselling 
8CAa. Patient Given Advice About Management Of Depression 
9H90. Depression Annual Review 
9H91. Depression Medication Review 
9H92. Depression Interim Review 
E03y2 Organic Affective Syndrome 
E03y3 Unspecified Puerperal Psychosis 
E11.. Depressive Psychoses 
E112. Single Major Depressive Episode 
E1120 Single Major Depressive Episode, Unspecified 
E1121 Single Major Depressive Episode, Mild 
E1122 Single Major Depressive Episode, Moderate 

E1123 Single Major Depressive Episode, Severe, Without 
Psychosis 

E1124 Single Major Depressive Episode, Severe, With Psychosis 

E1125 Single Major Depressive Episode, Partial Or Unspec 
Remission 

E1126 Single Major Depressive Episode, In Full Remission 
E112z Single Major Depressive Episode NOS 
E113. Recurrent Major Depressive Episode 
E1130 Recurrent Major Depressive Episodes, Unspecified 
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Anxiety or Depression 
Read Code (V2) Term  
E1131 Recurrent Major Depressive Episodes, Mild 
E1132 Recurrent Major Depressive Episodes, Moderate 

E1133 Recurrent Major Depressive Episodes, Severe, No 
Psychosis 

E1134 Recurrent Major Depressive Episodes, Severe, With 
Psychosis 

E1135 Recurrent Major Depressive Episodes,Partial/Unspec 
Remission 

E1136 Recurrent Major Depressive Episodes, In Full Remission 
E1137 Recurrent Depression 
E113z Recurrent Major Depressive Episode NOS 
E118. Seasonal Affective Disorder 
E11y2 Atypical Depressive Disorder 
E11y3 Other Mixed Manic-Depressive Psychoses 
E11yz Other And Unspecified Manic-Depressive Psychoses NOS 
E11z. Other And Unspecified Affective Psychoses 
E11z0 Unspecified Affective Psychoses NOS 
E11z1 Rebound Mood Swings 
E11z2 Masked Depression 
E11zz Other Affective Psychosis NOS 
E135. Agitated Depression 
E204. Neurotic Depression Reactive Type 
E290. Brief Depressive Reaction 
E290z Brief Depressive Reaction NOS 
E291. Prolonged Depressive Reaction 
E2B.. Depressive Disorder NEC 
E2B0. Postviral Depression 
E2B1. Chronic Depression 
Eu3.. [X]Mood - Affective Disorders 
Eu32. [X]Depressive Episode 
Eu320 [X]Mild Depressive Episode 
Eu321 [X]Moderate Depressive Episode 
Eu322 [X]Severe Depressive Episode Without Psychotic Symptoms 
Eu324 [X]Mild Depression 
Eu32y [X]Other Depressive Episodes 
Eu32z [X]Depressive Episode, Unspecified 
Eu33. [X]Recurrent Depressive Disorder 
Eu330 [X]Recurrent Depressive Disorder, Current Episode Mild 
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Anxiety or Depression 
Read Code (V2) Term  
Eu450 [X]Somatization Disorder 
Eu451 [X]Undifferentiated Somatoform Disorder 
Eu452 [X]Hypochondriacal Disorder 
Eu453 [X]Somatoform Autonomic Dysfunction 
Eu454 [X]Persistent Somatoform Pain Disorder 
Eu455 [X]Globus Pharyngeus 
Eu45y [X]Other Somatoform Disorders 
Eu45z [X]Somatoform Disorder; Unspecified 
Eu46. [X]Other Neurotic Disorders 
Eu460 [X]Neurasthenia 
Eu461 [X]Depersonalization - Derealization Syndrome 
Eu46y [X]Other Specified Neurotic Disorders 
Eu46z [X]Neurotic Disorder; Unspecified 
ZN114 Anxiety Management 
ZS7C7 Post-Traumatic Mutism. 
1B17. Depressed 
62T1. Puerperal Depression 
6G00. Postnatal Depression Counselling 
8CAa. Patient Given Advice About Management Of Depression 
9H90. Depression Annual Review 
9H91. Depression Medication Review 
9H92. Depression Interim Review 
E03y2 Organic Affective Syndrome 
E03y3 Unspecified Puerperal Psychosis 
E11.. Depressive Psychoses 
E112. Single Major Depressive Episode 
E1120 Single Major Depressive Episode, Unspecified 
E1121 Single Major Depressive Episode, Mild 
E1122 Single Major Depressive Episode, Moderate 

E1123 Single Major Depressive Episode, Severe, Without 
Psychosis 

E1124 Single Major Depressive Episode, Severe, With Psychosis 

E1125 Single Major Depressive Episode, Partial Or Unspec 
Remission 

E1126 Single Major Depressive Episode, In Full Remission 
E112z Single Major Depressive Episode NOS 
E113. Recurrent Major Depressive Episode 
E1130 Recurrent Major Depressive Episodes, Unspecified 
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Anxiety or Depression 
Read Code (V2) Term  
E1131 Recurrent Major Depressive Episodes, Mild 
E1132 Recurrent Major Depressive Episodes, Moderate 

E1133 Recurrent Major Depressive Episodes, Severe, No 
Psychosis 

E1134 Recurrent Major Depressive Episodes, Severe, With 
Psychosis 

E1135 Recurrent Major Depressive Episodes,Partial/Unspec 
Remission 

E1136 Recurrent Major Depressive Episodes, In Full Remission 
E1137 Recurrent Depression 
E113z Recurrent Major Depressive Episode NOS 
E118. Seasonal Affective Disorder 
E11y2 Atypical Depressive Disorder 
E11y3 Other Mixed Manic-Depressive Psychoses 
E11yz Other And Unspecified Manic-Depressive Psychoses NOS 
E11z. Other And Unspecified Affective Psychoses 
E11z0 Unspecified Affective Psychoses NOS 
E11z1 Rebound Mood Swings 
E11z2 Masked Depression 
E11zz Other Affective Psychosis NOS 
E135. Agitated Depression 
E204. Neurotic Depression Reactive Type 
E290. Brief Depressive Reaction 
E290z Brief Depressive Reaction NOS 
E291. Prolonged Depressive Reaction 
E2B.. Depressive Disorder NEC 
E2B0. Postviral Depression 
E2B1. Chronic Depression 
Eu3.. [X]Mood - Affective Disorders 
Eu32. [X]Depressive Episode 
Eu320 [X]Mild Depressive Episode 
Eu321 [X]Moderate Depressive Episode 
Eu322 [X]Severe Depressive Episode Without Psychotic Symptoms 
Eu324 [X]Mild Depression 
Eu32y [X]Other Depressive Episodes 
Eu32z [X]Depressive Episode, Unspecified 
Eu33. [X]Recurrent Depressive Disorder 
Eu330 [X]Recurrent Depressive Disorder, Current Episode Mild 
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Anxiety or Depression 
Read Code (V2) Term  

Eu331 [X]Recurrent Depressive Disorder, Current Episode 
Moderate 

Eu332 [X]Recurr Depress Disorder Cur Epi Severe Without Psyc 
Sympt 

Eu334 [X]Recurrent Depressive Disorder, Currently In Remission 
Eu33y [X]Other Recurrent Depressive Disorders 
Eu33z [X]Recurrent Depressive Disorder, Unspecified 
Eu34. [X]Persistent Mood Affective Disorders 
Eu340 [X]Cyclothymia 
Eu341 [X]Dysthymia 
Eu34y [X]Other Persistent Mood Affective Disorders 
Eu34z [X]Persistent Mood Affective Disorder, Unspecified 
Eu3y. [X]Other Mood Affective Disorders 
Eu3y0 [X]Other Single Mood Affective Disorders 
Eu3y1 [X]Recurrent Brief Depressive Episodes 
Eu3yy [X]Other Specified Mood Affective Disorders 
Eu3z. [X]Unspecified Mood Affective Disorder 

 
 

GERD 
Read Code (V2) Term  
J101. Oesophagitis 
J10y4 Oesophageal reflux without mention of oesophagitis 
J10y6 Barrett's oesophagus 
J1011 Reflux oesophagitis 
J1016 Barratt's oesophagitis 
J101z Oesophagitis NOS 
J1025 Barrett's ulcer of oesophagus 
J1020 Peptic ulcer of oesophagus 
1957. Gastric reflux 

 

LRTI 
Read Code (V2) Term  
H2… Pneumonia and influenza  
H20.. Viral pneumonia  
H201. Pneumonia due to respiratory syncitial virus  
H20y. Viral pneumonia NEC  
H20z. Viral pneumonia NOS 
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LRTI 
Read Code (V2) Term  
H20y0 Severe acute respiratory syndrome 
H21.. Lobar (pneumococcal pneumonia)  
H22.. Other bacterial pneumonia 
H220. Pneumonia due to klebsiella pneumoniae  
H222. Pneumonia due to haemophilus influenzae  
H223. Pneumonia due to streptococcus  
H224. Pneumonia due to staphylococcus  
H22y. Pneumonia – other specific bacteria 
H22y2 Pneumonia-legionella  
H22yz Pneumonia due to bacteria NOS  
H22z. Bacterial pneumonia NOS  
H23.. Pneumonia due to other specified organisms  
H231. Pneumonia due to mycoplasma pneumoniae 
H23z. Pneumonia due to specified organism NOS  
H24.. Pneumonia with infectious diseases EC 
H24y. Pneumonia with other infectious diseases EC 
H24yz Pneumonia with other infectious diseases EC NOS 
H24y2 Pneumonia with pneumocystis carinii  
H24z Pneumonia with infectious diseases EC NOS 
H25.. Bronchopneumonia due to unspecified organism 
H26.. Pneumonia due to unspecified organism  
H260. Lobar pneumonia due to unspecified organism 
H2600 Lung consolidation 
H261. Basal pneumonia due to unspecified organism 
H262. Postoperative pneumonia  
H263. Pneumonitis, unspecified 
H27.. Influenza 
H270. Influenza with pneumonia 
H2700 Influenza with bronchopneumonia  
H2701 Influenza with pneumonia, influenza virus identified 
H271. Influenza with other respiratory manifestation 
H2710 Influenza with laryngitis 
H27z. Influenza NOS 
H28.. Atypical pneumonia 
H2A.. Influenza due to Influenza A virus subtype H1N1 
H2B.. Community acquired pneumonia 
H2C.. Hospital acquired pneumonia 
H2y.. Other specified pneumonia or influenza 
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LRTI 
Read Code (V2) Term  
H2z.. Pneumonia or Influenza NOS 
H5400 Hypostatic pneumonia 
H5401 Hypostatic bronchopneumonia 
Hyu08 Other viral pneumonia 
Hyu0A Other bacterial pneumonia 
Hyu0B Pneumonia due to other specified infectious organisms 
Hyu0H Other pneumonia, organism unspecified 
G5203 Acute myocarditis – influenzal 

 
 

Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

A788% Acquired immune deficiency 
syndrome AIDS 

A789% Human immunodef virus 
resulting in other disease AIDS 

AyuC% [X]Human immunodeficiency 
virus disease AIDS 

B.... Cancers Cancer 

B0% Carcinoma of lip, oral cavity 
and pharynx Cancer 

B1% Carcinoma of digestive organs 
and peritoneum Cancer 

B2% Carcinoma of respiratory tract 
and intrathoracic organs Cancer 

B3% Carcinoma of bone, connective 
tissue, skin and breast Cancer 

B4% Malignant neoplasm of 
genitourinary organ Cancer 

B5... Malignant neoplasm of other 
and unspecified sites Cancer 

B50% Malignant neoplasm of eye Cancer 
B51% Malignant neoplasm of brain Cancer 

B52% 
Malig neop of other and 
unspecified parts of nervous 
system 

Cancer 

B53.. Malignant neoplasm of thyroid 
gland Cancer 
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Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

B54% Malig neop of other endocrine 
glands and related structures Cancer 

B55% Malignant neoplasm of other 
and ill-defined sites Cancer 

B6% Malignant neoplasm of 
histiocytic tissue Cancer 

By% Neoplasms otherwise specified Cancer 
Bz… Neoplasms NOS Cancer 

ZV10% [V]Personal history of 
malignant neoplasm Cancer 

1477. H/O: cerebrovascular disease Cerebrovascular disease 

70043 Evacuation of intracerebral 
haematoma NEC Cerebrovascular disease 

14A7. H/O: stroke Cerebrovascular disease 
662M. Stroke monitoring Cerebrovascular disease 

F11x2 Cerebral degeneration due to 
cerebrovascular disease Cerebrovascular disease 

G6% Cerebrovascular disease Cerebrovascular disease 
Gyu6% [X]Cerebrovascular diseases Cerebrovascular disease 

S62% Subarachnoid haemorrhage 
following injury Cerebrovascular disease 

H30% Bronchitis unspecified Chronic pulmonary 
disease 

H31% Chronic bronchitis Chronic pulmonary 
disease 

H325 Emphysema Chronic pulmonary 
disease 

H33% Asthma Chronic pulmonary 
disease 

H34.. Bronchiectasis Chronic pulmonary 
disease 

H35.. Extrinsic allergic alveolitis Chronic pulmonary 
disease 

H3z% Chronic obstructive pulmonary 
disease NOS 

Chronic pulmonary 
disease 

H40% Coal workers' pneumoconiosis Chronic pulmonary 
disease 

H415 Asbestosis Chronic pulmonary 
disease 
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Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

H42% Silica and silicate 
pneumoconiosis 

Chronic pulmonary 
disease 

H43% Pneumoconiosis due to other 
inorganic dust 

Chronic pulmonary 
disease 

H440. Byssinosis Chronic pulmonary 
disease 

H441. Cannabinosis Chronic pulmonary 
disease 

H442. Flax-dressers' disease Chronic pulmonary 
disease 

H45% Pneumoconiosis NOS Chronic pulmonary 
disease 

H4605 Bronchitis and pneumonitis 
due to chemical fumes 

Chronic pulmonary 
disease 

1761. C/O bronchial catarrh Chronic pulmonary 
disease 

1780. Aspirin induced asthma Chronic pulmonary 
disease 

14B4. H/O: asthma Chronic pulmonary 
disease 

173A. Exercise induced asthma Chronic pulmonary 
disease 

173c. Occupational asthma Chronic pulmonary 
disease 

1O2.. Asthma confirmed Chronic pulmonary 
disease 

663% Asthma monitoring Chronic pulmonary 
disease 

66YC. Absent from work or school 
due to asthma 

Chronic pulmonary 
disease 

8H2P. Emergency admission, asthma Chronic pulmonary 
disease 

66YP. Asthma night-time symptoms Chronic pulmonary 
disease 

8H2P. Emergency admission, asthma Chronic pulmonary 
disease 

9OJ1. Attends asthma monitoring Chronic pulmonary 
disease 
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Read Code (V2) * Parents Term Header Charlson Comorbidity 

9OJA. Asthma monitored Chronic pulmonary 
disease 

H47y0 Detergent asthma Chronic pulmonary 
disease 

H4y10 Chronic pulmonary fibrosis 
following radiation 

Chronic pulmonary 
disease 

H4z.. Lung disease due to external 
agents NOS 

Chronic pulmonary 
disease 

H57y. Lung disease with diseases 
EC 

Chronic pulmonary 
disease 

H57yz Lung disease with diseases 
EC NOS 

Chronic pulmonary 
disease 

H581. Interstitial emphysema Chronic pulmonary 
disease 

H582. Compensatory emphysema Chronic pulmonary 
disease 

Hyu30 [X]Other emphysema Chronic pulmonary 
disease 

Hyu40 [X]Pneumoconiosis due to 
other dust containing silica 

Chronic pulmonary 
disease 

Hyu41 [X]Pneumoconiosis due to 
other specified inorganic dusts 

Chronic pulmonary 
disease 

Hyu43 
[X]Hypersensitivity 
pneumonitis due to other 
organic dusts 

Chronic pulmonary 
disease 

SK07. Subcutaneous emphysema Chronic pulmonary 
disease 

66YP. Asthma night-time symptoms Chronic pulmonary 
disease 

8H2P. Emergency admission, asthma Chronic pulmonary 
disease 

9OJ1. Attends asthma monitoring Chronic pulmonary 
disease 

9OJA. Asthma monitored Chronic pulmonary 
disease 

H47y0 Detergent asthma Chronic pulmonary 
disease 

H4y10 Chronic pulmonary fibrosis 
following radiation 

Chronic pulmonary 
disease 
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Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

H4z.. Lung disease due to external 
agents NOS 

Chronic pulmonary 
disease 

H57y. Lung disease with diseases 
EC 

Chronic pulmonary 
disease 

H57yz Lung disease with diseases 
EC NOS 

Chronic pulmonary 
disease 

H581. Interstitial emphysema Chronic pulmonary 
disease 

H582. Compensatory emphysema Chronic pulmonary 
disease 

Hyu30 [X]Other emphysema Chronic pulmonary 
disease 

Hyu40 [X]Pneumoconiosis due to 
other dust containing silica 

Chronic pulmonary 
disease 

Hyu41 [X]Pneumoconiosis due to 
other specified inorganic dusts 

Chronic pulmonary 
disease 

Hyu43 
[X]Hypersensitivity 
pneumonitis due to other 
organic dusts 

Chronic pulmonary 
disease 

SK07. Subcutaneous emphysema Chronic pulmonary 
disease 

14A6. H/O: heart failure Congestive heart disease 
14AM. H/O: Heart failure in last year Congestive heart disease 
1O1.. Heart failure confirmed Congestive heart disease 
662W. Heart failure annual review Congestive heart disease 
8B29. Cardiac failure therapy Congestive heart disease 

8CL3. Heart failure care plan 
discussed with patient Congestive heart disease 

8H2S. Admit heart failure emergency Congestive heart disease 

G232. Hypertensive heart&renal dis 
wth (congestive) heart failure Congestive heart disease 

G5540 Congestive cardiomyopathy Congestive heart disease 
G58% Heart failure Congestive heart disease 

SP111 Heart failure as a complication 
of care Congestive heart disease 

1461. H/O: dementia Dementia 
E00% Senile/presenile dementia Dementia 

E041% Dementia in conditions EC Dementia 
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Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

Eu00% [X]Dementia in Alzheimer's 
disease Dementia 

Eu01% [X]Vascular dementia Dementia 

Eu02% [X]Dementia in other diseases 
classified elsewhere Dementia 

1434. H/O: diabetes mellitus Dementia 
66A% Diabetic monitoring Diabetes 
8A13. Diabetic stabilisation Diabetes 

8BL2. Patient on maximal tolerated 
therapy for diabetes Diabetes 

8H2J. Admit diabetic emergency Diabetes 
C10.. Diabetes mellitus Diabetes 
Cyu2. [X]Diabetes mellitus Diabetes 
G73y0 Diabetic peripheral angiopathy Diabetes 

L1805 Pre-existing diabetes mellitus, 
insulin-dependent Diabetes 

L1806 Pre-existing diabetes mellitus, 
non-insulin-dependent Diabetes 

L180X Pre-existing diabetes mellitus, 
unspecified Diabetes 

2BB% O/E - diabetic retinopathy Diabetes with 
complications 

C104% Diabetic nephropathy Diabetes with 
complications 

C105% Diabetes mellitus with 
ophthalmic manifestation 

Diabetes with 
complications 

C106% Diabetic amyotrophy Diabetes with 
complications 

C108% Type I diabetes mellitus with 
complications 

Diabetes with 
complications 

C109% Type 2 diabetes mellitus with 
complications 

Diabetes with 
complications 

C10E% Type 1 diabetes mellitus with 
complications 

Diabetes with 
complications 

C10F% Type 2 diabetes mellitus with 
complications 

Diabetes with 
complications 

F372. Diabetic polyneuropathy Diabetes with 
complications 
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Read Code (V2) * Parents Term Header Charlson Comorbidity 

F374z Polyneuropathy in disease 
NOS 

Diabetes with 
complications 

F3813 Diabetic amyotrophy Diabetes with 
complications 

F3y0. Diabetic mononeuropathy Diabetes with 
complications 

F420% Diabetic retinopathy Diabetes with 
complications 

F4640 Diabetic cataract Diabetes with 
complications 

K01x1 Kimmelstiel - Wilson disease Diabetes with 
complications 

2833. O/E - hemiplegia Hemiplegia 
2835. O/E - paraplegia Hemiplegia 
F141. Hereditary spastic paraplegia Hemiplegia 
F22% Hemiplegia Hemiplegia 
F230% Paraplegia - congenital Hemiplegia 
F241% Paraplegia Hemiplegia 

B153. Secondary malignant 
neoplasm of liver Metastatic tumour 

B56% Lymph node metastases Metastatic tumour 

B57% Metastases of respiratory 
and/or digestive systems Metastatic tumour 

B58% Secondary carcinoma of other 
specified sites Metastatic tumour 

B59zX Malignant neoplasm of 
unspecified site Metastatic tumour 

B5y.. Malignant neoplasm of other 
and unspecified site OS Metastatic tumour 

B5z.. Malignant neoplasm of other 
and unspecified site NOS Metastatic tumour 

ByuC% 
[X]Malignant neoplasm of ill-
defined, secondary and 
unspeci 

Metastatic tumour 

C3104 Glycogenosis with hepatic 
cirrhosis Mild liver disease 

C3500 Pigmentary cirrhosis of liver Mild liver disease 
J6002 Acute yellow atrophy Mild liver disease 
J6012 Subacute yellow atrophy Mild liver disease 
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Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

J61% Cirrhosis and chronic liver 
disease Mild liver disease 

J633. Hepatitis unspecified Mild liver disease 

J6356 Toxic liver disease with fibrosis 
and cirrhosis of liver Mild liver disease 

Jyu71 [X]Other and unspecified 
cirrhosis of liver Mild liver disease 

760F3 
Rigid oesophagoscopic 
injection sclerotherapy oesoph 
varices 

Mod liver disease 

A704z Other specified viral hepatitis 
with hepatic coma NOS Mod liver disease 

G85% Oesophageal varices Mod liver disease 

Gyu94 [X]Oesophageal varices in 
diseases classified elsewhere Mod liver disease 

J622. Hepatic coma Mod liver disease 
J623. Portal hypertension Mod liver disease 
J624. Hepatorenal syndrome Mod liver disease 

J62y. Other sequelae of chronic liver 
disease Mod liver disease 

J62z. 
Liver abscess and chronic liver 
disease causing sequelae 
NOS 

Mod liver disease 

14AH. H/O: Myocardial infarction in 
last year Myocardial infarction 

G30% Heart attack Myocardial infarction 

G32.. Personal history of myocardial 
infarction Myocardial infarction 

1956. Peptic ulcer symptoms Peptic ulcer disease 
7627. Operations on duodenal ulcer Peptic ulcer disease 
76121 Balfour excision of gastric ulcer Peptic ulcer disease 

76125 Resection of gastric ulcer by 
cautery Peptic ulcer disease 

76270 Closure of perforated duodenal 
ulcer Peptic ulcer disease 

761D6 Endoscopic injection 
haemostasis of gastric ulcer Peptic ulcer disease 

761J. Stomach ulcer operations Peptic ulcer disease 
761J. Operations on gastric ulcer Peptic ulcer disease 
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Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

761J0 Closure of perforated gastric 
ulcer Peptic ulcer disease 

761J1 Closure of gastric ulcer NEC Peptic ulcer disease 

761J1 Suture of ulcer of stomach 
NEC Peptic ulcer disease 

761Jy Other specified operation on 
gastric ulcer Peptic ulcer disease 

761Jz Operation on gastric ulcer 
NOS Peptic ulcer disease 

J1020 Peptic ulcer of oesophagus Peptic ulcer disease 
J11% Gastric ulcer - (GU) Peptic ulcer disease 
J12% Duodenal ulcer - (DU) Peptic ulcer disease 
J13% Peptic ulcer Peptic ulcer disease 
J14% Stomal ulcer Peptic ulcer disease 

ZV127 [V]Personal history of peptic 
ulcer Peptic ulcer disease 

ZV12C [V] Personal history of gastric 
ulcer Peptic ulcer disease 

14AE. H/O: aortic aneurysm Peripheral vascular 
disease 

14NB. H/O: Peripheral vascular 
disease procedure 

Peripheral vascular 
disease 

2I16. O/E - gangrene Peripheral vascular 
disease 

7A112 Y graft of abdominal Aortic 
aneurysm (emergency) 

Peripheral vascular 
disease 

7A113 Y graft abdominal Aortic 
aneurysm 

Peripheral vascular 
disease 

7A13. Emergency repair of aortic 
aneurysm 

Peripheral vascular 
disease 

7A134 Tube graft abdominal Aortic 
aneurysm (emergency) 

Peripheral vascular 
disease 

7A14. Aortic aneurysm repair Peripheral vascular 
disease 

7A144 Tube graft of Abdominal aortic 
aneurysm 

Peripheral vascular 
disease 

C107. Diabetes with gangrene Peripheral vascular 
disease 
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Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

G71% Aortic aneurysm Peripheral vascular 
disease 

G73% Peripheral ischaemic vascular 
disease 

Peripheral vascular 
disease 

Gyu71 [X]Aortic aneurysm of 
unspecified site, ruptured 

Peripheral vascular 
disease 

Gyu72 [X]Aortic aneurysm of 
unspecified site, nonruptured 

Peripheral vascular 
disease 

Gyu74 [X]Other specified peripheral 
vascular diseases 

Peripheral vascular 
disease 

R054% [D]Gangrene Peripheral vascular 
disease 

14D1. H/O: nephritis Renal disease 

1Z10. Chronic kidney disease stage 
1 Renal disease 

1Z11. Chronic kidney disease stage 
2 Renal disease 

1Z12. Chronic kidney disease stage 
3 Renal disease 

1Z13. Chronic kidney disease stage 
4 Renal disease 

1Z14. Chronic kidney disease stage 
5 Renal disease 

K0% Nephritis, nephrosis and 
nephrotic syndrome Renal disease 

K1000 Chronic pyelonephritis without 
medullary necrosis Renal disease 

K1001 Chronic pyelonephritis with 
medullary necrosis Renal disease 

K1010 Acute pyelonephritis without 
medullary necrosis Renal disease 

K1011 Acute pyelonephritis with 
medullary necrosis Renal disease 

Kyu2% [X]Renal failure Renal disease 

F3712 Polyneuropathy in rheumatoid 
arthritis Rheumatological disease 

F3961 Myopathy due to disseminated 
lupus erythematosus Rheumatological disease 
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Charlson Comorbidity Index Categories 
Read Code (V2) * Parents Term Header Charlson Comorbidity 

F3964 Myopathy due to rheumatoid 
arthritis Rheumatological disease 

F3966 Myopathy due to scleroderma Rheumatological disease 
G5yA. Rheumatoid carditis Rheumatological disease 
H570. Rheumatoid lung Rheumatological disease 

H572. Lung disease with systemic 
sclerosis Rheumatological disease 

H57y1 Lung disease with polymyositis Rheumatological disease 

H57y4 Lung disease with systemic 
lupus erythematosus Rheumatological disease 

K01x4 Nephrotic syndrome in 
systemic lupus erythematosus Rheumatological disease 

N000% Systemic lupus erythematosus Rheumatological disease 
N001% Scleroderma Rheumatological disease 
N004. Polymyositis Rheumatological disease 

N04% Rheumatoid arthritis and other 
inflammatory polyarthropathy Rheumatological disease 

N060. Endemic polyarthritis Rheumatological disease 
N20% Polymyalgia rheumatica Rheumatological disease 
N2314 Polymyositis ossificans Rheumatological disease 

N240% Rheumatism and fibrositis 
unspecified Rheumatological disease 

N2y.. Other specified nonarticular 
rheumatism Rheumatological disease 

N2z.. Nonarticular rheumatism NOS Rheumatological disease 

Nyu10 [X]Rheumatoid arthritis organs 
or systems Rheumatological disease 

Nyu11 [X]Other seropositive 
rheumatoid arthritis Rheumatological disease 

Nyu12 [X]Other specified rheumatoid 
arthritis Rheumatological disease 

Nyu1G [X]Seropositive rheumatoid 
arthritis, unspecified Rheumatological disease 

Nyu43 [X]Other forms of systemic 
lupus erythematosus Rheumatological disease 

Nyu45 [X]Other forms of systemic 
sclerosis Rheumatological disease 
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Appendix H: Visualisation of CMA Adherence Measures 
KEY 

 Days Excluded from Analysis Window 

 Non-Excluded Day Prior to First Refill 

 Day in Interval of First Refill  

 Day in Interval of Second Refill 

 Day in Interval of Third Refill 

{x} x days of supply obtained on this date 

[[x]] x days of supply remaining on this date 

 
 

CMA1 & CMA3  Window starts on the day of the first dispensing in 
observation period (day 10) 
 
Window ends on the day prior to the last 
dispensing in observation period (day 66) 
 
Duration of analysis window = 57 days 
(refill 1= 26 days, refill 2 = 31 days) 
 
Supply dispensed = 28*2 = 56 
 
CMA1 = 56/57 = 0.98 
CMA3 = min(CMA1, 1) = 0.98 

M T W T F S S 
       
  {28}     
       
       
       

{28}       
       
       
       

   {28}    

 
CMA2 & CMA4  Window starts on the day of the first dispensing in 

observation period (day 10) 
 
Window ends on the last day in observation period 
(day 70) 
 
Duration of analysis window = 61 days 
(refill 1= 26 days, refill 2 = 31 days, refill 3 = 4 
days) 
 
Supply dispensed = 28*3 = 84 
 
CMA2 = 84/61 = 1.37 
CMA4 = min(CMA2, 1) = 1 

M T W T F S S 
       
  {28}     
       
       
       

{28}       
       
       
       

   {28}    
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CMA5  Window starts on the day of the first dispensing in 

observation period (day 10) 
 
Window ends on the day prior to the last 
dispensing in observation period (day 66) 
 
Duration of analysis window = 57 days 
(refill 1= 33 days, refill 2 = 24 days) 
 
Days with medication available in window = 52 
days 
(refill 1 = 28/33 days, refill 2 = 24/24 days) 
 
CMA5 = 52/57 = 0.91 

M T W T F S S 
       
  {28}     
       
       
       
       

{28}       
       
       

   {28}    

 
 
 

CMA6  Window starts on the day of the first dispensing in 
observation period (day 10) 
 
Window ends on the last day in observation period 
(day 70) 
 
Duration of analysis window = 61 days 
(refill 1= 26 days, refill 2 = 31 days, refill 3 = 4 
days) 
 
Days with medication available in window = 56 
days  
(refill 1 = 28/33 days, refill 2 = 24/24 days, refill3 = 
4/4 days) 
 
CMA6 = 56/61 = 0.92 

M T W T F S S 

       

  {28}     

       

       
       
       

{28}       

       
       

   {28}    
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CMA7  Window starts on first day in observation period 
(day 1) 
 
Window ends on the last day in observation period 
(day 70) 
 
Duration of analysis window = 70 days 
 
Days with medication available in window = 59 
days  
(before first refill = 3/9 days, refill 1 = 28/33 days, 
refill 2 = 24/24 days, refill3 = 4/4 days) 
 
CMA7 = 59/70 = 0.84 

M T W T F S S 
[[3]]       

  {28}     
       
       
       
       

{28}       
       
       

   {28}    

 

CMA8  Window starts on the day when the supply 
remaining at the start of the observation period is 
exhausted (day 4) 
 
Window ends on the last day in observation period 
(day 70) 
 
Duration of analysis window = 67 days 
 
Days with medication available in window = 56 
days  
(before first refill = 0/6 days, refill 1 = 28/33 days, 
refill 2 = 24/24 days, refill3 = 4/4 days) 
 
CMA7 = 56/67 = 0.84 

M T W T F S S 

[[3]]       

  {28}     

       
       
       
       

{28}       
       
       

   {28}    
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Appendix I: Density Plots of Adherence Measures 
The following plots show the Kernel Density Estimates (KDEs) calculated with 
Gaussian kernels for the adherence measures described in this analysis.  Kernel 
density estimation aims to provide a smooth density estimate.  Computationally, it 
works by fitting a kernel (a weighting function; denoted !!(#)) over each sample (each 
observed value of an adherence measure, in our case; #"), using the samples in its 
neighbourhood and the number of query samples, n.  The width of the kernel (the 
confidence around the sample) imposed over each sample is defined by the parameter 
% > 0, known as the bandwidth.  In the base R KDE implementation, the bandwidth,  
%,		is selected using the Silverman’s Rule of Thumb method 436, according to the 

standard deviation (*)+ and the interquartile range (I) of the samples: 

% = 	0.9 ∗ min	(*,3 4)
1.34)8

#$
%  

 
The KDE of x (the adherence value in this instance) is then defined as follows: 

9:!(#) = 	
1
8;!!(# − #")

&

"'$
 

 
The Gaussian kernel function used herein, =!(#), is defined as follows: 

=!(#) = 	
1

%√2@
A
#(!
)!!  

 
For more information, please refer to Chapter 6 of Hastie et al. 290 . 
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CSA Measures 

 

 
Note: the upper range of x-axis has been cropped at the 4, as there is a long tail (very low-density 
area). 

 
 

CSG  
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CMA1 Measures 
 
 

 
Note: the upper range of x-axis has been cropped at the 4, as there is a long tail (very low-density 
area). 
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Appendix J: Linkage of Primary Care Prescribing Records and 
Pharmacy Dispensing Records in the Salford Lung Study: 
Application in Asthma 
 
I published the following in BMC Medical Research Methodology in 2020,  and it is 
currently available online in its full form 265.  The following is a short summary, aiming 
to highlight the rationale for such an algorithm, and provide a brief overview of the 
methodology and key results. 
 

Background 
Failure to collect the initial asthma prescription (primary non-adherence) has wide-
varying reported incidence in studies of linked (or integrated) prescribing and 
dispensing records of between 12-45% 259,261,262,415,416, with high variance due to 
differences in the right censoring point.  Various components of the text processing 
that were necessary for my analysis (in the estimation of BTS treatment step and 
medication adherence) leant themselves naturally to the derivation of a linkage 
algorithm, which I hoped would facilitate the replication and validation of my work 
outside of Scotland.   
 
As described in Section 8.4, prescribing and dispensing of medications are recorded 
by separate processes, and the data held by separate bodies, in England.  These data 
also do not have a common unique prescribing event identifier, and as such matching 
records (one-to-one) using common identifiers (known as deterministic linkage) is 
currently impossible. Therefore, it is necessary to link records probabilistically; 
estimating the likelihood that two records will match given the data they contain.   
 

The linkage of prescribing and dispensing records can enable the extraction of 
information about adherence to prescribed medications, including the identification of 
uncollected medications.  In this study, we sought to develop a novel methodology 
linking primary care prescribing and dispensing records without a common identifier, 
using heuristics and features extracted from free-text fields.    
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Methods 
The Salford Lung Study (SLS) was a prospective, 12-month, open-label, parallel 
group, RCT conducted in 74 general practice clinics in Salford and South Manchester, 
UK 437.  A total of 4,233 participants with asthma were recruited in primary care settings 
by the healthcare professionals who provided their normal everyday care, and 
randomly allocated to either initiate a combination fluticasone furoate/vilanterol 
treatment or to continue their maintenance therapy (“usual care”).  The dispensing 
data contained 225,235 records, for 4,197 unique participants, between 27th 
November 2012 and 9th December 2016.    The prescribing dataset contained 339,792 
records for 4,233 unique participants between 22nd November 2012 and 17th January 

2017, however records outside of the dispensing data period were excluded.  
 
Asthma controller medications were identified by the predecessor of the refined 
process described in Section 4.2.2.  Key differences include the refinement of 
Appendix D and Table 4.2 (process described in full in publication).   
 
The datasets of prescribing and dispensing records were merged such that a record 
(a candidate link) was generated for each eligible (common patient identifier and 
medication class) pair of records for matching. We note that the medication class 
keyword, composed of the active ingredients identified, was used in the place of a 
brand name such that generic substitutions would be identified as appropriate 
candidates for matching records.  Pairs of records were eligible if the suggested 
dispensing date occurred after the prescription was written, but no more than six 
months after the prescription was written, at which point the prescription became 
invalid.   
 
Probabilistic linkage, which aims to match records based on multiple non-unique 
features, utilizes weights to determine the strength of a link.  These weights are 
numerical values representing the similarity of two records, derived using domain 
knowledge about the prevalence of dissimilarities between features in true matches.   
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In this linkage, a rule-based approach, based on a simplified posterior multivariate 
distribution of clerically reviewed data and previous literature, was used to weight 
candidate links for estimated likelihood of being a true match.  Candidate links could 
then be ranked, and those with a linkage weight lower than 70% excluded.  Each set 
of remaining dispensing records for each person-medication combination were looped 
through from the last to first through, as follows: 

1. Identified the candidate in which the dispensing record occurs most recently 
after the prescription was written (record with highest match weight chosen if 
two candidate links on the same day were identified); this is a match between 
records, 

2. Removed all other candidate links which contain the dispensing record or the 
prescribing records relating to this match, 

3. Progressed to the previous dispensing for this person-medication. 
 
The process is illustrated in the following figure: 

 

All candidate links 
are identified 

Links to matched 
records are removed 

The best match for the 
most recent prescription is 

found 

The previous prescription 
is identified 

A record with no potential 
match is identified 

The best match for the 

prescription is found 
The last prescription’s 

links are identified 
All matches have 
been identified 
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The most recent prescribing record before the dispensing was prioritised over more 
distant records with a higher match weight, as we considered it more likely that 
prescription records for the same person within such a short time window were for the 
same medication, recorded differently, rather than a new treatment.  Prescriptions that 
did not match any dispensing record were marked as unclaimed.  We also noted 
dispensing records that were not matched (implying no corresponding prescription 
event) to assess linkage quality.    
 

Results 
202,659 candidate links of identified asthma medications were processed, and 53,289 
candidate links were confirmed as matches: 69.5% of prescribing records (n=76,680), 
and 83.2% of dispensing records (n=64,065).  The median percentage of prescriptions 
claimed by an individual was 79%, with an interquartile range of 50-92% (range 0-
100%).   23% of individuals claimed fewer than 50% of their prescriptions.  
 
We inspected 23,391 prescribing records (31%) and 10,776 dispensing records (17%) 
for which a match could not be made (including those with candidate links which were 
not matched by the matching algorithm).  In the non-matched prescriptions, 9% 
(n=2,109/23,391) had missing medication dosage, and <1% (n=87/23,391) had 
missing data on quantity (both missing in less than <0.1%).  In the non-matched 
dispensing records, however, it was 62% (n=6,639/10,776) and 58% 
(n=6,222/10,776), respectively (both missing in 55%).    
 

Discussion 
Our finding that 30% of prescriptions were labelled as uncollected, known as primary 
non-adherence, was a substantially higher proportion than the 8-20% found in 
previous asthma studies in US administrative health data studies 259–263.    One might 
assume that subsidised prescriptions, as we have in England, would result in higher 

primary adherence rates, as a barrier to adherence has been removed.  On the 
contrary, a recent study in Canada, where prescriptions are subsidised and thus 



 341 

considerably more affordable than in the USA, found that the fill rate for new asthma 
prescriptions was only 69% in adults 415.   
 
In lieu of a ground truth for comparison of our matches, we conducted quality 
assurance comparing features of the matched and unmatched records, as 
recommended by Harron et al.’s guidelines 438.  We observed that prescriptions (for 
which the status of being non-matched might imply either medication non-initiation, or 
not being correctly matched using the proposed algorithm) had missed medication 
strength in fewer than 10% of records, and missing quantity in fewer than 1%.  In the 
non-matched dispensing records (which should occur only in rare emergency 

prescriptions and indicate shortcomings in matching prescription and dispensing 
records), 62% had missing medication strength and 58% had missing quantity. This 
indicates that one of the biggest barriers to successful record linkage was poor 
medication dispensing record quality.   
 
The frequency of non-matched dispensing records was our best indicator as to the 
quality of our linkage, however we found that 95% of these records that were missing 
quantity (58%) were also missing medication strength.  As such, reducing the weight 
threshold from 70% to 50%, would have had a substantial effect on the pool of 
candidate links allowed to be used in the matching algorithm.  With so much missing 
data, however, the veracity of these matches would be hard to ascertain.  In its current 
state, the algorithm will not match records with high amounts of missing data even if 
no other match is identified.   
 
The presented methodology towards probabilistic record linkage enables preliminary 
assessment of whether patients are collecting their prescribed asthma medications 
and can improve clinicians’ understanding of patient adherence. Further external 
validation of these promising findings on additional datasets is needed given the 
uncertainty around linkage quality. 
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Appendix K: Density Plots of Performance Measures in Iterations 
of Empirical Data Analyses 
 
For details on the derivation of the kernel density estimators plotted in this appendix, 
please see Appendix I.   
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Appendix L: Application of Sokolova and Lapalme’s Performance Measure Invariance Properties to 
Further Performance Measures 

Invariance 
Property [Accuracy] Balanced 

Accuracy 
[F1 

Measure] 
F1.1 

Measure GMA MCC Markedness OP 

I1 + + - - + + + + 
I2 - - + - - - - - 
I3 - - - - - - - - 
I4 - - - - - - - - 
I5 - - - - - - - - 
I6 + + + + + + + + 
I7 - - - - - - + - 
I8 - + - + + - - - 

 
Notes: + means positive for invariance, and - means negative for invariance (measure is variant) 
The accuracy and F1 Measures were both included in the original analysis by Sokolova and Lapalme: the other measures have been included here for 
thoroughness. 
Summary of invariance properties: (1) what is considered the positive and negative classes are switched, (2) The number of true negatives is changed, (3) The 
number of true positives is changed, (4) The number of false negatives is changed, (5) The number of false positives is changed, (6) All cell counts are changed 
by a consistent factor, (7) the observed positive and negative columns are changed by two distinct factors, (8) the predicted positive and negative rows are 
changed by two distinct factors.  
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Appendix M: Relevant Risk Prediction Model Guidelines Items 
and Location within Thesis 
Section and 
Topic Item Thesis 

Section  
Rationale Review the current practice and the rationale for 

the investigation being reported 1.1.3 

State specific objectives, including any 
prespecified hypotheses 1.3 

Review the state-of-the-art in predictive 
accuracy 7.1 

Explain the practical costs of misclassification 
errors 1.1.2, 1.1.3 

Methods State the ethics approval number for data 
access 2.2.2 

Describe the extent to which the investigators 
had access to the database population 2.2.2 

Describe the population selection criteria 7.3.1 
List the codes or algorithms used to identify the 
study population  

Appendix E,  
4.2.2 

Present a flow diagram or other graphical 
display to demonstrate the data linkage process, 
including the number of individuals with linked 
data at each stage 

7.4.1 

Report on the beginning and end dates of the 
study period 2.2.1 

Describe how the outcome was defined 7.3.2 
Document the model performance measures, 
and the methods to quantify uncertainty 7.3.4 

Describe the class imbalance 7.4.2 
Describe the feature selection process 3.9 
Describe the feature pre-processing performed, 
including how missing data were handled 7.3.3 

Provide a complete list of codes 
used to classify exposures 

Appendix B, 
Appendix G 

Report any categorical features which 
predominantly (more than 95% samples) take 
the same value 

Appendix O 

Document the algorithm used to develop the 
model 5.3 
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Section and 
Topic Item Thesis 

Section  
Methods Document the methodology used to avoid 

model-selection bias 7.3.4 

Document the methodology used to avoid 
resubstitution bias 7.3.4 

Describe the methodology for assessing internal 
validation and calibration 7.3.4 

Results Report the clinical and demographic 
characteristics of the study population 7.4.1 

Report on the final risk model 7.4.3 
Report the estimates of model performance with 
measures of uncertainty 7.4.4 

Report evidence of model calibration 7.4.6 
Quantify predictive value of features 7.4.5 

External 
Validation 

Describe the methodology for assessing 
external validation 

N/A Report on the differences between the 
development and external validation dataset 
study populations 
Present the results of the external validation 

Discussion Discuss the prospects of the final model for 
satisfying the research goal, including the 
clinical implications 

7.4.4, 7.4.5, 
8.5 

Discuss known and possible limitations to 
generalizability or applicability of the model 8.3 

Report on differences between the final 
methodology and the published study protocol, 
where appropriate 

Appendix Q 
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Appendix N: Chronic Obstructive Pulmonary Disease Diagnosis 
Read Codes (Version 2) 
Terms have a maximum character length of 50, and as such may feature truncated 
expressions. 

Read Code 
(V2) 

Term 

173A. Exercise induced asthma 
H3120 Chronic asthmatic bronchitis 
H33.. Asthma 
H330. Extrinsic (atopic) asthma 
H3300 Extrinsic asthma without status asthmaticus 
H3301 Extrinsic asthma with status asthmaticus 
H330z Extrinsic asthma NOS 
H331. Intrinsic asthma 
H3310 Intrinsic asthma without status asthmaticus 
H3311 Intrinsic asthma with status asthmaticus 
H331z Intrinsic asthma NOS 
H332. Mixed asthma 
H334. Brittle asthma 
H335. Chronic asthma with fixed airflow obstruction 
H33z. Asthma unspecified 
H33z0 Status asthmaticus NOS 
H33z1 Asthma attack 
H33z2 Late-onset asthma 
H33zz Asthma NOS 
H3B.. Asthma-chronic obstructive pulmonary disease overlap 

syndrome 
663.. Respiratory disease monitoring 
6632. Follow-up respiratory assessment 
6636. Inhaler technique shown 
6637. Inhaler technique observed 
663a. Oral steroids used since last appointment 
663B. Resp. treatment changed 
663d. Emergency asthma admission since last appointment 
663e. Asthma restricts exercise 
663e0 Asthma sometimes restricts exercise 
663e1 Asthma severely restricts exercise 
663F. Oral steroids started 
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Read Code 
(V2) 

Term 

663f. Asthma never restricts exercise 
663G. Oral steroids stopped 
663g. Inhaled steroids use 
663g0 Not using inhaled steroids 
663g1 Using inhaled steroids - normal dose 
663g2 Using inhaled steroids - high dose 
663g3 Increases inhaled steroids appropriately 
663H. Inhaler technique - good 
663h. Asthma - currently dormant 
663I. Inhaler technique - poor 
663J. Airways obstruction reversible 
663j. Asthma - currently active 
663L. Bronchodilators used more than once daily 
663M. Bronchodilators used a maximum of once daily 
663m. Asthma accident and emergency attendance since last visit 
663N. Asthma disturbing sleep 
663n. Asthma treatment compliance satisfactory 
663N0 Asthma causing night waking 
663N1 Asthma disturbs sleep weekly 
663N2 Asthma disturbs sleep frequently 
663O. Asthma not disturbing sleep 
663O0 Asthma never disturbs sleep 
663P. Asthma limiting activities 
663p. Asthma treatment compliance unsatisfactory 
663Q. Asthma not limiting activities 
663q. Asthma daytime symptoms 
663R. Service of nebuliser 
663r. Asthma causes night symptoms 1 to 2 times per month 
663S. Peak flow meter at home 
663s. Asthma never causes daytime symptoms 
663T. No peak flow meter at home 
663t. Asthma causes daytime symptoms 1 to 2 times per month 
663U. Asthma management plan given 
663u. Asthma causes daytime symptoms 1 to 2 times per week 
663V. Asthma severity 
663v. Asthma causes daytime symptoms most days 
663V0 Occasional asthma 
663V1 Mild asthma 
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Read Code 
(V2) 

Term 

663V2 Moderate asthma 
663V3 Severe asthma 
663W. Asthma prophylactic medication used 
663w. Asthma limits walking up hills or stairs 
663X. Irritable airways 
663x. Asthma limits walking on the flat 
663Y. Steroid dose inhaled daily 
663y. Number of asthma exacerbations in past year 
663Z. Resp. disease monitoring NOS 
663z. Number of times bronchodilator used in one week 
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Appendix O: Summary of Features in Risk Prediction Model 

Continuous (non-ordinal) features (n=5) 
Feature Summary Statistics Density Plot or Bar Chart (after capping, when 

appropriate) 
Age 

Minimum = 18 
LQL = 36 
Median = 50 
Mean = 50.1 
UQL = 63 
Max = 102  

 

Reliever 
Medication 
Usage 
(mcg/day) 

Minimum = 2.35 
LQL = 215.1 
Median = 571.4 
Mean = 821.4 
UQL = 740.7 
Max = 80000 
 
5.76% over 
4*median to 1 
significant figure 
(2000; upper cap)  
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Feature Summary Statistics Density Plot or Bar Chart (after capping, when 
appropriate) 

CMA8_2 

Minimum = 0.000 
LQL = 0.000 
Median = 0.485 
Mean = 0.479 
UQL = 0.878 
Max = 1.000 

 

CSA_3 

Minimum = 0.000 
LQL = 0.432 
Median = 0.881 
Mean = 1.319 
UQL = 1.459 
Max = 162.041 
 
3.97% over 
4*median to 1 
significant figure (4; 
upper cap)  

 

Number of 
controller 
medications 

Minimum = 0 
LQL = 1 
Median = 4  
Mean = 4.4 
UQL = 6 
Max = 67 
 
0.91% over 
4*median (16; upper 
cap) 

 
Note: For details on the derivation of the kernel density estimators plotted in this appendix, please see 
Appendix I, LQL = Lower Interquartile Limit, UQL = Upper Interquartile Limit 
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Ordinal features (n=1) 
Feature Value Proportion 

BTS Step 

0 13.75% 
1 25.40% 
2 20.09% 
3 31.87% 
4 8.89% 

 
 
Binary features (n=22) 

Feature Proportion 
Positive 

Recent LRTI 1.19% 
Recent Asthma Encounters 13.04% 
Recent Steroid Prescriptions 1.29% 
Nebulised SABA 1.76% 
Obesity 28.14% 
AIDS <0.01% 
Cancer 1.32% 
Cerebrovascular disease 1.07% 
Chronic pulmonary disease 21.97% 
Congestive heart disease 0.40% 
Dementia 0.28% 
Diabetes (without complications) 2.02% 
Diabetes with complications 0.99% 
Hemiplegia 0.03% 
Metastatic tumour 0.05% 
Mild liver disease 0.19% 
Moderate liver disease 0.11% 
Myocardial infarction 0.50% 
Peptic ulcer disease 0.25% 
Peripheral vascular disease 0.36% 
Renal disease 1.24% 
Rheumatological disease 0.05% 

 
 



 355 

Categorical features (n=17) 
Feature Value Proportion 
Sex Female 60.83% 

Male 39.17% 
Socioeconomic Status 
(SIMD) 

Quintile 1 (Most Deprived) 22.72% 
Quintile 2 20.93% 
Quintile 3 16.97% 
Quintile 4 21.24% 
Quintile 5 (Least Deprived) 15.84% 
Missing 2.31% 

Local Area Code Not listed: most common 13.8%, least common <0.01% 
Rurality (UR6) Level 1 (Large Urban Areas) 31.78% 

Level 2 (Other Urban Areas) 37.03% 
Level 3 (Small Towns) 8.60% 
Level 4 (Rural Areas) 3.48% 
Level 5 (Accessible) 10.63% 
Level 6 (Remote) 5.56% 
Missing 2.92% 

Smoking Status Current 13.87% 
Former 15.57% 
Non-Smoker 70.56% 

Peak Expiratory Flow >90% 1.60% 
80-90% 0.24% 
70-80% 0.10% 
Less than 70% 0.05% 
Missing 98.00% 

Time Since Last Asthma 
Attack recorded in 
Primary Care 

One to two years 3.73% 
Six months up to one year 3.19% 
Three up to six months 1.92% 
One up to three months 1.56% 
In the last month 1.46% 
None in the last two years 88.14% 

Eosinophilia ≥400 cells per μL 6.27% 
<400 cells per μL 19.73% 
Missing 74.00% 
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Feature Value Proportion 

Month January 7.86% 

February 7.40% 
March 7.91% 
April 6.88% 
May 7.04% 
June 7.15% 
July 7.12% 
August 7.24% 
September 7.23% 
October 8.13% 
November 8.75% 
December 18.29% 

Rhinitis Diagnosis Never  97.38% 
In the past year  0.80% 
One up to 5 years ago 1.57% 
Longer than five years ago 0.24% 

Eczema Diagnosis Never  96.51% 
In the past year  1.39% 
One up to 5 years ago 1.93% 
Longer than five years ago 0.18% 

Anxiety/Depression 
Diagnosis 

Never  88.72% 
In the past year  4.67% 
One up to 5 years ago 5.74% 
Longer than five years ago 0.87% 

Nasal Polyps Diagnosis Never  99.46% 
In the past year  0.19% 
One up to 5 years ago 0.31% 
Longer than five years ago 0.05% 

Anaphylaxis Diagnosis Never  99.92% 
In the past year  0.02% 
One up to 5 years ago 0.05% 
Longer than five years ago 0.01% 

GERD Diagnosis Never  96.9% 
In the past year  1.03% 
One up to 5 years ago 1.85% 
Longer than five years ago 0.23% 
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Feature Value Proportion 
Corticosteroid Nasal 
Sprays  

Never  68.89% 
In the past year  19.72% 
One up to 5 years ago 9.95% 
Longer than five years ago 1.24% 

Time since last LRTI In the past two weeks 1.04% 
Between two weeks and up to 
two months ago 0.88% 

Between two months and up to 
six months ago 1.80% 

Between six months and up to 
twelve months ago 2.20% 

Between one year and up to two 
years ago 3.04% 

None in the last two years 91.04% 
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Appendix P: Machine Learning Classification Algorithms: 
Functions for Implementation in R, and Hyper-parameter 
Ranges 
 
Logistic Regression 
Implemented using the base R function glm.   
No hyper-parameters.   
 
Naïve Bayes Classifier 
Implemented using the R function naivebayes, from the package of the same name 
293. 
No hyper-parameters.   
 
Random Forests  
Implemented using the R function ranger, from the package of the same name 439.   
- MTRY = Number of features randomly sampled as candidates at each split 

(default is the rounded down integer of the square root of the number of features; 

k):  floor(√"), floor(2*$"), floor(4*$") , floor(8*$")  – in which floor represents 

the rounded-down integer value. 
All other hyper-parameters take implementation default values. 
Note that the ‘floor’ function denotes the rounded down integer of a value. 
 
Extreme Gradient Boosting  
Implemented using the R function xgboost, from the package of the same name 440. 

- ETA = Step size shrinkage: 0.1, 0.25, 0.5 
- NROUNDS = the number of decision trees in the final model: 100, 200 
All other hyper-parameters take implementation default values. 
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Appendix Q: Deviations between the Final Analysis and the 
Published Protocol Paper Analysis Plan 
In this appendix, I describe the deviations between my analysis and the original 
protocol which I had published before commencing the analysis, published in BMJ 
Open 372. 
 

Topic Original plan: quote from 
protocol paper 

Revised action 

Record 
Right-
Censoring 

“All records [will be] right-
censored at March 2017, in order 
to align with the mortality, 
primary care, and inpatient 
hospital admission records” 

Records should be right-censored 
at the earliest of death, asthma 
resolution Read code, or the end of 
the study period (the end date of 
the data from the dataset in ALHS 
which ends first) 

External 
Validation 

“In order to verify that the 
prediction model performance is 
not limited to the development 
dataset and that it generalizes 
well in new, unseen data … we 
will evaluate its performance 
using an external cohort study 
dataset, the second Seasonal 
Influenza Vaccination 
Effectiveness (SIVE II) cohort 
study …” 

Access to the SIVE II dataset was 
not available for the duration 
required for analysis to be 
conducted, due to GDPR 
requirements for data deletion after 
the conclusion of the original study.  
Thus, unfortunately this external 
validation was not possible to 
conduct.   

Model 
Features 

“Active diagnoses of rhinitis, 
eczema, gastroesophageal reflux 
disease (GERD), nasal polyps, 
and anaphylaxis will be 
recorded” 

I created a feature for the time 
since the last diagnosis code was 
recorded, allowing both recent and 
past diagnoses to be included, 
categorised as {‘Never’, ‘In the past 
year’, ‘One up to five years ago’, 
‘Longer than five years ago’}   

N/A In line with the findings of Price et 
al. 117, anxiety and depression were 
also included (as a single feature, 
recorded categorically by time 
since last diagnostic code, as 
above.)   
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Topic Original plan: quote from 
protocol paper 

Revised action 

Model 
Features 

N/A Given the strength of the evidence 
for association between both nasal 
polyps and rhinitis with asthma 
exacerbation risk (Section 3.7.2), 
and the relative ease of identifying 
corticosteroid nasal sprays in the 
prescribing data (by virtue of 
needing to exclude them from the 
pool of asthma prescribing 
records), time since the most 
recent prescription of nasal spray 
corticosteroids was included as a 
risk factor (coded categorically as 
above). 

N/A LRTIs (including pneumonia and 
influenza) were added on the basis 
of the evidence presented in 
Section 3.7.3.  They were 
measured by two distinct features: 
a binary flag for whether more than 
one had been recorded in the last 
year (a proxy for susceptibility) and 
the time since the last recorded 
infection (to flag periods of 
recovery).  This feature was 
categorised as: {‘In the past two 
weeks’, ‘Between two weeks and 
up to two months ago’, ‘Between 
two months and up to six months 
ago’, ‘Between six months and up 
to twelve months ago’, ‘Between 
one year and up to two years ago’, 
‘None in the last two years’} 
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Topic Original plan: quote from 
protocol paper 

Revised action 

Model 
Features 

“the number of primary care 
asthma encounters (days on 
which at least one asthma 
related code was recorded) in 
the previous year will be derived” 

I created a binary flag for whether 
or not there were more than one in 
the previous year.  The decision to 
binarize the data was due to the 
wide range observed in the counts, 
which resulted in the differences 
between lower counts being 
quashed by the normalisation 
process.  The decision boundary 
was based on the observed low 
median number of past encounters 
observed across the whole 
analysis population.  

“the prior number of attacks … 
will be considered time-
dependent and accurate at the 
weekly level.” 

As above, this feature was 
amended to a binary indicator of 
whether there was more than one 
asthma attack either in the previous 
calendar year, or in the current year 
to date.   

“The mean Short-Acting Beta-2 
Agonist (SABA) dose per day will 
be estimated retroactively by 
examining the dates between 
prescriptions” 

The mean SABA dose was refined 
to only include inhaled SABA 
medications, however an additional 
feature was added to indicate that 
a nebulised SABA medication had 
been prescribed in the last 90 days.   

“Adherence to preventer therapy 
will be approximated using the 
medication possession ratio, 
calculated from primary care 
prescribing records.” 

As per the analyses described in 
Chapter 4, two measures of 
adherence were used as risk 
factors in my prediction model: 
CSA_3 and CMA8_2.  The 
Medication Possession Ratio 
(MPR; equivalent to the CMA1) 
was previously selected based on 
its use by Blakey et al. 75, however 
upon further investigation the 
requirement for at least two 
prescriptions to calculate excluded 
too many people (16.8% in Chapter 
4 analyses).  
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Topic Original plan: quote from 
protocol paper 

Revised action 

Models 
tested 

“[We will] employ more advanced 
state of the art principled 
supervised learning algorithmic 
tools such as support vector 
machines…” 

Upon further investigation of the 
SVM algorithm, I decided it was no 
longer feasible to include: it was 
likely to be very computationally 
intensive and it was not a scenario 
in which SVMs typically excelled 
over other methods (see Section 
5.3.5).    

Random Forest classifier 
hyper-parameters: 
“ 
- NTREE = Number of trees to 

grow (default 500): 500, 750, 
1000 

- MTRY = Number of variables 
randomly sampled as 
candidates at each split 
(default square root of the 
number of predictors; k):  
floor(0.5 ∗ $"), floor(√"), 
floor(2*$") – in which floor 
represents the rounded-down 
integer value. 

” 

For RFs, higher values of mtry 
(candidate features at each split) 
were tested (floor(√"), floor(2*$"), 
floor(4*$"), and floor(8*$")), but 
the models with higher numbers of 
trees (ntrees) were removed.  More 
trees generally result in a better 
variance-bias trade-off, and thus a 
lower risk of overfitting, but the 
improvement is not always efficient 
relative to the increased training 
time.   

“Implemented using the r 
function randomForest, from the 
package of the same name” 

The R implementation was 
changed to the faster ranger 
package.   

Extreme Gradient Boosting 
“Implemented using the r 
package xgboost, with 10-fold 
cross validation, repeated 3 
times.” 

For XGBoost, repeated cross-
validation was not used, and the 
hyper-parameters were instead 
evaluated in the same way as the 
RFs, for consistency.   
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Topic Original plan: quote from 
protocol paper 

Revised action 

Models 
tested 

XGBoost classifier hyper-
parameters: 
“ 
- NROUNDS = maximum 

number of iterations (default 
100): 50,100 

- MAXDEPTH = Maximum 
depth of each tree (default = 
6): (1:5)^2 

- ETA =  step size of each 
boosting step (default = 0.3): 
0.25, 0.5, 1 

” 

For XGBoost, lower values of the 
learning rate (eta) were used (0.1, 
0.25, and 0.5, instead of 0.25, 0.5 
and 1).  Although this increased the 
computation time, it vastly 
increased the stability of the 
model’s performance across 
iterations, which was important to 
ensure that the first 10 iterations 
were sufficient to evaluate the 
model performance compared to 
the other algorithms.  In line with 
the lowered learning rate, higher 
numbers of boosting rounds were 
tested (100 and 200, rather than 50 
and 100).  To reduce the number of 
models being tested, only the 
default maximum tree depth (6 
branches deep) was used.   

“Ensemble: Stacking  
Combining models from different 
classifiers, with an over-arching 
supervisor model which 
determines the best way to use 
all sources of information for 
prediction.  The base set of weak 
learners will comprise all 
aforementioned model and 
hyper-parameter combinations, 
and the meta-learner (random 
forest with 500 trees and mtry = 
floor(0.5 ∗ $")) will use all weak 
learners with a validation set 
performance in the top 50%. “ 

There was insufficient memory, 
particularly once the parallel 
computing was implemented, for 
model stacking to be tested, as it 
requires all of the trained models to 
be kept in the memory 
simultaneously.   
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Topic Original plan: quote from 
protocol paper 

Revised action 

Analysis 
Plan 

“We will run 100 iterations [of 
each model] for statistical 
confidence, each time randomly 
permuting samples prior to 
determining the three subsets” 
(training, testing and validation). 

The data partitioning procedure 
was altered such that instead of 
running 100 iterations of every 
model, the model selection process 
was only based on the first ten 
iterations.  As such, to ensure that 
there was no overlap between the 
validation and model selection 
partitions, a 10% hold-out set was 
used, and the partitioning in the 
remaining 90% was changed to 
90% training and 10% testing.  

“we will identify the highest 
performing model as that with the 
highest mean MCC” 

As described in Chapter 6, the 
balanced accuracy replaced the 
MCC as the primary performance 
measure, used to optimise the 
classification threshold.   

“Performance in the testing 
datasets will be assessed using 
… the Bayesian Information 
Criterion (BIC) to obtain a trade-
off between model complexity 
and accuracy.” 

The BIC was no longer reported, as 
it is not appropriate for tree-based 
algorithms.   
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Topic Original plan: quote from 
protocol paper 

Revised action 

Analysis 
Plan 

“A selection of training 
enrichment methods will be 
trialled, in order to assess how to 
best overcome poor performance 
as a result of low outcome 
prevalence.  Typically, modelling 
rare events results in reduced 
sensitivity (the proportion of 
those who had attacks that were 
detected), so those predicted to 
be low-risk will have a high rate 
of asthma attacks.  As such, this 
start of this process (the first 20 
iterations of training each model) 
will be repeated five times, using: 
1. the original analysis dataset,  
2. original data with additional 

duplicates of the positive 
outcome records (a method 
known as over-sampling), 

3. original data, with a selection 
of the negative outcome 
records removed (under-
sampling), 

4. original data with additional 
slightly modified duplicates of 
the positive outcome records, 
with a selection of the 
negative outcome records 
removed (Synthetic minority 
over-sampling; SMOTE) 

5. original data, using the 
outcome classification 
threshold to maximise the 
primary metric” 

Due to the extreme class 
imbalance, the pure under-
sampling and over-sampling 
approaches would have resulted in 
either a very low sample size, or a 
dataset with almost 50% replicated 
samples, respectively.  As such, 
three SMOTE tests were 
conducting, using different 
balanced of the under and over-
sampling parameters, as described 
in Sections 5.5 and 7.3.5.   
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Topic Original plan: quote from 
protocol paper 

Revised action 

 “We will re-train the model using 
the hyper-parameter 
specifications from the best 
performing model, with a 
modified version of the derivation 
dataset which incorporates data 
extracted from secondary care 
records (such as A&E 
presentations for asthma attack 
not captured in primary care 
records) in the determination of 
the risk factors.  This allows us to 
evaluate the added value of 
secondary care data linkage in 
the prediction of impending 
asthma attacks, and will be 
determined by the same metrics 
used for the primary model 
evaluation” 

I was not able to conduct the 
planned analyses of the increased 
predictive accuracy when features 
extracted from secondary care data 
sources (such as the accurate 
number of previous A&E 
presentations) were used, due to 
time constraints.   
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Appendix R: Algorithm and Enrichment Selection: Additional 
Performance Measure Boxplots 
Notes: Algorithms: GLM = Generalised Logistic Regression, NBC = Naïve Bayes 
Classification, RF = Random Forest, XGB = eXtreme Gradient Boosting.  

Enrichment methods: (1) unenriched data, (2) high up-sampling SMOTE, (3) medium 
up-sampling SMOTE, (4) low up-sampling SMOTE.   
Thresholds: Fixed = 0.5, Variable = balanced accuracy optimising threshold in training 
data. 
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Appendix S: Feature Importance 
NUTS-3 Area code features have been omitted from the table, with feature 
importance ranks preserved. 
 

Ranking Feature Importance 
1 CSA_3 1238.73256 
2 Reliever medication usage 966.64807 
3 Age 926.46366 
4 CMA8_2 825.19142 
5 Number of asthma controller medications 589.03353 
6 BTS Step 273.78548 
7 December 164.15359 
8 November 129.10426 
9 October 124.52131 

10 Chronic pulmonary disease 122.74018 
11 January 117.98583 
12 September 117.86288 
13 Recent steroid prescriptions 116.18237 
14 August 109.61743 
15 SIMD Quintile 1 (Most Deprived) 104.14281 
16 February 103.75893 
17 March 103.06641 
18 April 99.16979 
19 Nasal spray: in last year 97.32321 
20 SIMD Quintile 2 96.5793 
21 Nasal spray: never 96.37738 
22 July 95.96794 
23 SIMD Quintile 3 93.21225 
24 June 93.13822 
25 Obese 89.75654 
26 May 89.25433 

27 Nasal spray: most recent prescription between 1 and 5 
years ago 86.63695 

28 Recent asthma encounters 85.14908 
29 SIMD Quintile 4 82.48751 

30 Last asthma attack recorded in primary care: more than 
2 years ago, or never 77.7579 

31 UR6 Level 2 (Other Urban Areas) 75.46633 
32 SIMD Quintile 5 (Least Deprived) 74.38821 
33 Smoking: former 74.02668 
34 Blood eosinophil count:  <400 cells per μL 71.97436 
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Ranking Feature Importance 
37 Nebulised SABA 70.6153 
38 Smoking: never 70.07 
39 Smoking: current 68.90283 
40 Blood eosinophil count:  missing 67.40511 
41 UR6 Level 5 (Accessible) 66.0845 
42 Blood eosinophil count:  ≥400 cells per μL 66.01362 
45 UR6 Level 1 (Large Urban Areas) 63.32584 
47 Anxiety or depression: diagnosis in the last year 60.42213 

48 Last asthma attack recorded in primary care: in the last 
month 58.7913 

49 UR6 Level 3 (Small Towns) 58.21762 
50 Sex: male 57.37407 
51 Anxiety or depression: never diagnosed 57.13349 
52 Sex: female 56.91534 

55 Anxiety or depression: diagnosis more than five years 
ago 53.13463 

56 Last asthma attack recorded in primary care: between 1-
3 months ago 51.32111 

58 Last asthma attack recorded in primary care: between 6-
12  months ago 49.97327 

59 Last asthma attack recorded in primary care: between 3-
6 months ago 46.64843 

60 Most recent ARI:  none in the last 2 years 46.00958 
61 Most recent ARI: between 1-2 years ago 41.73519 
62 Most recent ARI:  between 6-12 months ago 41.44628 
64 UR6 Level 6 (Remote) 39.98814 
65 Most recent ARI: less than 2 weeks ago 38.15304 

66 Nasal spray: most recent prescription longer than 5 
years ago 38.01244 

67 Recent ARI 37.93222 

69 Last asthma attack recorded in primary care: between  
1-2 year ago 36.95823 

70 Most recent ARI:  between 2-6 months ago 36.88576 
72 Most recent ARI: between 2 weeks and  2 months ago 32.7854 
73 Eczema: never diagnosed 32.52421 
74 GERD: diagnosis between 1 and 5 years ago 31.71125 
75 Eczema: diagnosis in the last year 31.12032 
76 Eczema: diagnosis between 1 and 5 years ago 30.28 
77 Diabetes 30.17845 
78 Renal disease 30.08415 
79 GERD: never diagnosed 29.88308 
81 UR6 Level 4 (Rural Areas) 26.98316 
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Ranking Feature Importance 
82 Rhinitis: never diagnosed 26.06488 
83 GERD: diagnosis in the last year 24.20393 
84 Cancer 24.16607 
85 Cerebrovascular disease 22.64548 
86 Rhinitis: diagnosis between 1 and 5 years ago 21.8377 

87 Anxiety and/or depression: diagnosis longer than 5 
years ago 21.74429 

88 Rhinitis: diagnosis in the last year 21.40076 
89 Peak flow: missing 20.44507 
90 UR6: Missing 20.04361 
92 Peak flow: Over 90% of previous best 18.47437 
94 Diabetes with complications 17.48473 
95 Peptic ulcer disease 16.07865 
96 Anaphylaxis: never diagnosed 15.82673 
98 Congestive heart disease 15.28804 
99 Rheumatological disease 13.47202 

100 SIMD: missing 13.38391 
102 Myocardial infarction 12.51991 
103 Peak flow: between 70-80% of previous best 12.37725 
104 Peak flow: between 80-90% of previous best 8.99995 
105 Peripheral vascular disease 8.07812 
106 GERD: diagnosis longer than 5 years ago 7.6681 
107 Nasal polyps: diagnosed in the  last  year 6.77403 
108 Nasal polyps: never diagnosed 6.12656 
109 Moderate liver disease 5.88974 
110 Eczema: diagnosis longer than 5 years ago 5.85268 
111 Anaphylaxis: diagnosis longer than 5 years ago 5.38636 
112 Anaphylaxis: diagnosis between 1 and 5 years ago 5.27932 
113 Anaphylaxis: diagnosis in the last year 5.14537 
114 Rhinitis: diagnosis longer than 5 years ago 4.95995 
115 Peak flow: less than 70% of previous best 4.73282 
116 Dementia 4.30758 
117 Mild liver disease 3.88159 
118 Nasal polyps: diagnosis between 1 and 5 years ago 3.80023 
120 Metastatic tumour 1.97517 
121 Nasal polyps: diagnosis longer than 5 years ago 0.86597 
122 Hemiplegia 0.82026 
123 AIDS 0.00062 
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Glossary 
Phrase Definition 

Asthma Attack A sudden increase of constriction to the airways, leading 
to a drastic worsening of symptoms 

Asthma Exacerbation 
Another term for an asthma attack, discouraged by 
patient advocates due to perceptions about lack of 
severity 

Interleukins Immune response signalling molecules 

Parameters Finite unknown values  

Parametric Algorithms Algorithms which find estimates of parameters using 
training data  

Non-Parametric 
Algorithms 

Algorithms not requiring the specification of parameters, 
and whose functional form is instead inferred as part of 
the statistical learning process 

Primary Care Care provided at a GP surgery 

Secondary Care Care provided at a hospital or other community health 
service 

Electronic Health 
Records 

Digitised medical records, including primary care and 
secondary care 

Cross-sectional 
studies Studies using a single time-point per person 

Longitudinal studies Studies which follow people over a duration of time, and 
have multiple time-points per person 

Sample A single data point, or observation 

Sample Size The number of samples 

Analysis Population 
Size 

The number of individuals in the study data (equal to the 
sample size for cross-sectional studies) 

Feature 
A measurable property or characteristic of a sample, 
either comprised of raw data values, or some function of 
the raw data 

Characteristic The value of a feature, such as ‘green’ for the feature ‘eye 
colour’ 

Outcome The response, or label; that which we are attempting to 
estimate or predict 
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Phrase Definition 

Labelled Data Data which includes a corresponding outcome for each 
sample 

Algorithm 
A mathematical process which specifies the steps for 
solving a problem.  In machine learning, these steps tend 
to be iterative and run until a specific criterion is met 

Supervised Learning Determining a functional form associating a set of 
features with outcomes 

Training Data Data used to build a statistical model 

Query Sample 
A sample which was not part of the training data, which is 
presented in the statistical learning model to estimate the 
outcome 

Test Data 
Labelled data which are used to test the performance of a 
constructed statistical model by the comparison of the 
predicted and observed outcome 

Class A categorical outcome 

Classification 
A form of supervised learning that assigns query samples 
on a finite number of classes, as observed in the training 
data 

Regression A form of supervised learning that estimates a continuous 
or ordered outcome 

Model 
The product of applying a machine learning algorithm to 
training data, allowing estimation or prediction of 
outcomes for unseen test data 

Over-fitting Learning very well the training data but failing to 
generalize in new, unseen data 

Under-fitting Failing to capture the trends observed in the training data 

Validation The process of establishing the reliability of the model’s 
performance in unseen data 

Selection Bias 
The deviation from a true estimate resulting from samples 
which are not representative of the population under 
analysis 

Read Codes 

5-byte (or 4-byte prior to 2010) hierarchical, case-
sensitive, and ordered character strings, describing some 
factor of medical care, such as a diagnosis, a test, a 
survey, or a measurement 

Metadata Information about the specifications of the data, including 
size and format 
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Phrase Definition 

Ground Truth The observed outcome (class or value) 

Modifiable Risk Factor A characteristic of a sample which can be purposefully 
changed in some way, such as smoking status or weight 

Spirometry A pulmonary function test conducted in specialist care 

Atopy The tendency to develop allergic conditions 

Adherence  

“The extent to which a person’s behaviour taking 
medication, following a diet, and/or executing lifestyle 
changes, corresponds with agreed recommendations 
from a health care provider” 184 

Initiation (Adherence) Taking the first dose of a prescribed medication 

Primary Adherence Relating to the collection of an initial prescription after it is 
written 

Discontinuation The act of ceasing to take a prescribed medication 

Implementation The execution of the recommended treatment plan, 
during the period between initiation and discontinuation. 

Persistence 
The continuity of adherence, including both the duration 
of the time between treatment initiation and 
discontinuation 

Treatment Intermission A period of non-persistence, in which medication is not 
taken continuously for a duration 

Re-initiation The act of restarting a treatment after an intermission of 
treatment 

(Medical) Electronic 
monitoring devices 

Devices which enable the real-time tracking of 
medication-related device use, such as Bluetooth enabled 
inhalers which record the date and time of each dose 
actuation 

Ensemble Learning 
The method of combining multiple base models (also 
known as weak learners), either in parallel or in 
sequence, in order to improve out-of-sample performance 

Confusion matrix 
A 2*2 table (in binary classification, or more generally 
m*m for multi-class classification problems) of the true 
and predicted classes 

Discrimination The assessment of how well the predicted risk allows us 
to distinguish between positive and negative samples 

Calibration  The assessment of how well the predicted risk of an 
outcome corresponds to the observed outcome 
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Phrase Definition 

Imbalanced Data One class is substantially larger than another 

Training Data 
Enrichment 

The artificial modification of data used for model training 
in order to improve estimation in unseen data 

Over-sampling 
A training data enrichment method which increases the 
size of the minor class, either by replication or generation 
of new synthetic samples 

Under-sampling A training data enrichment method which reduces the 
size of the major class 

Synthetic Minority 
Over-Sampling 
(SMOTE) 

A training data enrichment method which combines over-
sampling in the minor class and under-sampling in the 
major class 

Model Interpretability  
The characteristic of a model such that the reasons why a 
prediction was made are intuitively understandable to a 
human  

Feature Importance The predictive value of each feature to a statistical model 

Parallel Programming The mode of executing sections of a program 
simultaneously and in parallel, rather than sequentially 

 


