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Abstract

Ageing is a complex, multi-faceted process that afflicts all humans. It invariably

increases susceptibility to a range of diseases such as cancer and neurological

disorders. Drugs that mimic calorie restriction show promise in slowing down

ageing, but very few treatments appear to be able to actively reverse ageing.

Partially reprogrammed stem cells have shown potential as an anti-ageing

therapy when used to safely rejuvenate mice without tumour incidence. The

question remained as to what exactly occurred at a cellular level. Were a

subpopulation of cells dedifferentiating, or partially dedifferentiating and causing

a rejuvenative effect by being more stem-like? Or, were the cells epigenetically

rejuvenated, where cells became more youthful without loss of somatic cell

identity? To test either of these hypotheses, two biomarkers were required to

track (i) biological ageing and (ii) dedifferentiation state.

By analysing a previously published dataset of fibroblasts dedifferentiating to

induced pluripotent stem cells (iPSCs) over a 49-day time-course, I helped

assess the dynamics of cellular ageing. Epigenetic age was used a proxy for

biological age, while RNA microarray data was used to assess the state of

dedifferentiation (ie. by comparing fibroblast specific gene expression with

pluripotency gene markers). Partially reprogrammed cells (between days 7 and

15 of dedifferentiation) declined in predicted age (also known as epigenetic age,

eAge), while somatic cell identity was maintained. This shows that loss of

somatic gene expression and epigenetic age follow different kinetics, suggesting

that they can be uncoupled and a possible “safe period” exists where
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rejuvenation can be achieved with a minimized risk of cancer.

While epigenetic clocks appear to confer biological age in many respects,

their true underlying function remains a mystery, and the precise aspects of

ageing they capture is unclear. For example, differences between epigenetic age

and chronological age that are associated with ageing disease states, could be

caused by biological and technical biases. Biological biases can arise from

mutations affecting the DNA methylation machinery, resulting in global sweeps in

methylation. Technical biases may arise from errors in bisulphite (BS)

conversion, which could cause a slight overestimation in percentage methylation

and therefore alter eAge estimates.

To explore how robust the epigenetic clocks are to sweeps of global

methylation, incremental increases and decreases of global methylation were

simulated in a large cohort. I showed that epigenetic clocks are not impervious

to gradual, global changes in methylation. I also showed how discrete alterations

in methylation state can cause a significant difference in eAge compared to a

control group, which conceivably could occur in experiments testing rare genetic

diseases.

I also present an epigenetic clock based on average methylation over genomic

regions, rather than individual CpGs. This clock provides a more robust method

of predicting age, which may pave the way for more accurate age predictors using

mouse RRBS data.

This thesis has demonstrated that epigenetic clocks are invaluable tools for

exploring health-span extending therapies. However, caution must be taken

when analysing epigenetic data, as mutations and technical issues may

confound analysis. Nonetheless, epigenetic clocks have shown great potential in

the molecular ageing field. By understanding the precise nature of eAge,

avenues to achieve therapeutic anti-ageing therapies may also be achieved.
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Lay Summary

Ageing is a condition that impacts everyone. A growing debate in science is

whether to classify ageing as a disease, which would imply that it is curable.

Growing evidence suggests that ageing can indeed be slowed by calorie

restricting diets. Drugs that mimic these diets also have the potential to slow

ageing. There is a growing body of evidence that suggests ageing can even be

reversed using the same developmental genes that can artificially create stem

cells. Stem cells have a lot of medical potential, however, using them to treat

people can lead to cancer. My work has helped show that turning on these

developmental genes for 7-15 days in skin cells reduces biological age. Their

cell type remains the same, which minimises cancer risk. I have also helped

develop a technique to better assess the biological age of mice, which will open

avenues for testing anti-aging drugs. Finally, I explored the tools used to predict

biological age, and how they could be improved.
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Chapter 1

Literature Review

1.1 Theories and Causes of Ageing

Ageing is a multifaceted and complex process that leads to increased

susceptibility to an extensive range of diseases, such as cardiovascular,

metabolic and neurodegenerative varieties, as well as many forms of cancer

(López-Otı́n et al. 2013; Brunet and Berger 2014; Benayoun, Pollina, and Brunet

2015). The hallmarks of ageing include genomic instability, telomere attrition,

epigenetic alterations, loss of proteostasis, de-regulated nutrient sensing,

mitochondrial dysfunction, accumulation of senescent cells, stem cell

exhaustion, and altered intercellular communication (reviewed in López-Otı́n

et al. 2013).

Many theories regarding the cause of ageing fall into either of two categories:

programmed ageing or damage/error theories. The programmed theories imply

that ageing follows a biological schedule that is perhaps a continuation of a

programme regulating growth and development (Jin 2010). An example of this is

Wnt signalling, which governs cell proliferation, cell fate choice, apoptosis and

cell polarity during development (Schlessinger, Hall, and Tolwinski 2009; Clevers

and Nusse 2012; Clevers, Loh, and Nusse 2014). It also controls stem cell

maintenance in adults and appears to promote mechanistic target of rapamycin
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(mTOR) mediated epidermal stem cell exhaustion and ageing (Castilho et al.

2009). Error/damage theories emphasise that environmental stressors induce

cumulative damage to living organisms over time and cause ageing (Jin 2010).

Examples of damage that contributes to ageing includes DNA mutations and

genomic damage (such as DNA double stranded breaks, DSBs), which could be

caused by reactive oxygen species (ROS), radiation, and other genotoxins

(chemicals or agents that cause DNA or chromosomal damage; Phillips and Arlt

2009; Afanas’ev 2010; Jin 2010; White and Vijg 2016).

1.1.1 Programmed Theories of Ageing

One of the earliest propositions promoting a programmed theory of ageing was

by August Weismann. He reasoned that ageing removes older individuals that

are inactive and no longer viable to reproduce, and would otherwise consume

resources that would better benefit a younger population (Weismann 1889). This

theory has been ill favoured, since starvation, predation and other environmental

threats endanger animals before reaching old age, hence a gene network

designed to undergo ageing would be unlikely to surface via evolution (Kirkwood

2005). The programmed theory of ageing would also imply ageing is a

favourable trait evolutionarily selected to benefit the species, however, no

mutations have been observed that appear to “turn off” ageing. Therefore, it is

unlikely there are specific gene networks that promote ageing (Kirkwood 2005).

One counter argument would be animals that exist with rapid life cycles that

experience sexual maturity and old age in a short time, eg. the African krillfish

has a lifespan of 12 weeks (Kim, Nam, and Valenzano 2016).

Weismann also theorised that heredity is transmitted via a lineage of

immortal cells, termed “germline” (Weismann 1889; West et al. 2019), a theory

which was validated by the discovery and study of primordial germ cells

(Chiquoine 1954; Reik, Dean, and Walter 2001; Lehmann 2012). The distinction

between germline and somatic cells is now termed the “Weismann barrier”.
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More specifically, it is defined as the loss of replicative immortality that is present

in early embryogenesis (somatic restriction). It can be observed not only in

complex organisms (eg. mammals) as the difference between germline and

soma, but also between organisms. For example, simple unicellular organisms

display replicative immortality (Florea 2017), and primitive invertebrates such as

planaria (Elliott and Sánchez Alvarado 2013) and hydra (Martı́nez 1998;

Schaible et al. 2015) display no evidence of ageing. Moreover, axolotls live their

adulthood in an arrested larval stage, and have a profound regenerative potential

in many different tissues such as the heart, forebrain and jaw (West et al. 2019).

Hence, they are able to live “below” the Weismann barrier and retain

regenerative capabilities. Therefore, ageing could be theorised as a deregulation

of development pathways. Indeed, developmental pathways are dysregulated

during ageing (such as Wnt and Notch), which could be caused by cumulative

epigenetic alterations in stem cells (Castilho et al. 2009; Ermolaeva et al. 2018).

1.1.2 Error/Damage Theories of Ageing

No definitive gene pathway has been found that directly and uniquely governs

ageing. Error/damage theories of ageing might therefore explain why these

developmental gene pathways are involved in ageing. One error/damage theory

that has become prominent and underpins many modern theories of ageing is

“mutation accumulation” by Peter Medawar (Medawar 1952). It theorises that

late-acting deleterious alleles arising from de novo germline mutations

accumulate as natural selection wanes with age (Medawar 1952; Kirkwood

2005; Cohen and Holmes 2014). After all, natural selection would be almost

powerless to select against mutations that are deleterious in late-life, since the

individual has likely already reproduced and passed on their genes. Hence,

late-acting, deleterious mutations would accumulate over generations, and any

individual that lives long enough would experience these mutations as “ageing”

(Kirkwood 2005). This means ageing might have evolved indirectly, and could be
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falsely perceived as a “programmed” process.

One theory which expands on mutation accumulation is “antagonistic

pleiotropy”. According to this theory, the genes that drive ageing are initially

selected because they give reproductive advantages in early life (Williams 1957).

Antagonistic pleiotropy and the mutation accumulation theories are not mutually

exclusive, both of which have provided the groundwork for many evolution and

ageing theories (Kirkwood and Austad 2000; Partridge and Gems 2002;

Kirkwood 2005). Indeed, evidence for antagonistic pleiotropy is growing, as more

variants that increase fitness in early age but not in late life are identified (Austad

and Hoffman 2018; Byars and Voskarides 2019; Austad and Hoffman 2019).

Another prominent ageing theory is “disposable soma”. It assumes that the

error/damage theory is true, and that ageing is an evolutionary trade-off between

reproduction, growth, and DNA repair (Kirkwood 1977; Kirkwood 2005). In other

words, it states that resources for somatic maintenance are limited, and

therefore reproduction is prioritised (Kirkwood 2005; Schultz and Sinclair 2016).

While the end result is similar to antagonistic pleiotropy (prioritising reproductive

fitness/youth at the cost of longevity), the process of disposable soma is more

intrinsic and stochastic (Kirkwood 1977; Kirkwood 2005).

While evidence for the ageing theories previously mentioned (particularly

antagonistic pleiotropy) are building, they are heavily genetics based. It is

possible that the damage accumulation (eg. by ROS and other genotoxins) not

only causes somatic mutations, but also contributes to epigenetic and chromatin

changes that result in loss of stem cell functionality and age-related diseases

(Ermolaeva et al. 2018). The following literature review will explore ageing in the

context of epigenetics (particularly DNA methylation) and potential rejuvenation

therapies that operate through epigenetic remodelling.
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1.2 Epigenetic Drift - DNA Methylation Changes

with Age

Ageing can be observed not only in an individual’s physiology, but also at a

cellular and molecular level (Benayoun, Pollina, and Brunet 2015). While many

ageing theories have been developed from a genetics point of view, age-related

changes are also reflected in the epigenome; the entirety of non-coding genomic

modifications that regulate gene expression. Alterations to the distribution of

epigenetic markers such as 5-methyl-cytosine (5mC) throughout the genome

affect gene expression in different tissues during ageing (D’Aquila et al. 2013).

Hence, an emerging hypothesis is that the epigenetic landscape has biological

sensors that reflect not only cellular identity, but also cell health and vitality

(Benayoun, Pollina, and Brunet 2015).

Epigenetic modifications such as 5mC are one of the most common

epigenetic modifications. Throughout this thesis, DNA methylation (DNAm) will

refer to 5mC specifically. DNAm occurs non-randomly in the genome and has a

dramatic impact on chromatin, by condensing DNA into a compact structure thus

preventing gene transcription (Geiman and Robertson 2002; Sierra, Fernández,

and Fraga 2015). DNAm can persist throughout cell divisions via the activity of

DNA methyl-transferase (DNMT) 1, which binds to hemimethylated CpG sites

and methylates the cytosine on the complementary strand (Gruenbaum, Cedar,

and Razin 1982; Bestor and Ingram 1983; Li, Bestor, and Jaenisch 1992;

Vilkaitis et al. 2005). De novo methylation is conducted by DNMT3A and

DNMT3B, which are particularly important for initialising the epigenome for

development after fertilisation (Okano et al. 1999; Reik, Dean, and Walter 2001;

Brunet and Berger 2014).

Demethylation is conducted in either a passive manner (eg. through inhibition

of DNMT1 during cell replication; Wolffe, Jones, and Wade 1999; Mayer et al.

2000), or actively via methyl-CpG binding domain protein 4 (MBD4; Hendrich
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et al. 1999) or ten-eleven translocation (TET) dioxygenases (Jin et al. 2014;

Ichiyama et al. 2015). Global demethylation can also occur through somatic

mutations in DNMT3A/B which may contribute to age related conditions such as

clonal haematopoesis (Robertson et al. 2019; Bond et al. 2019). Age related

changes in the epigenetic landscape are collectively referred to as epigenetic

drift, be it changes stochastic in nature or otherwise (Zheng, Widschwendter,

and Teschendorff 2016; Ermolaeva et al. 2018).

The first indication that DNAm changes with age was observed in humpback

salmon by Berdyshev et al. (1967). The same group later showed that DNAm

decreases (hypomethylates) with age in rats (Vanyushin et al. 1973). Global

hypomethylation was first confirmed in humans by Wilson et al. in 1987 (Wilson

et al. 1987). Initially, it was theorised that the general loss of methylation leads to

the relaxation of gene expression with age and to a dysdifferentiated phenotype

(ZS.-Nagy, Culter, and Semesi 1988; Unnikrishnan et al. 2018). One of the first

studies comparing the DNAm profile of monozygotic twins revealed that they are

epigenetically indistinguishable during the early years of life (Fraga et al. 2005).

However, adult twins showed divergent patterns (hyper- and hypomethylation of

specific regions), and this divergence increased with age (Fraga et al. 2005;

Zheng, Widschwendter, and Teschendorff 2016). A longitudinal familial study

also showed global changes, particularly hypomethylation, occurs with ageing

(Bjornsson et al. 2008). Multiple studies using thin-layer chromatography (Wilson

et al. 1987) and high-pressure liquid chromatography (Singhal, Mays-Hoopes,

and Eichhorn 1987; Fuke et al. 2004; Liu et al. 2011) showed a global decrease

in methylation with age in mouse and humans. However, recent next-generation

sequencing experiments have shown no global changes in methylation with age

in various mouse tissues (Raddatz et al. 2013; Sun et al. 2014; Cole et al. 2017),

and skin (Hadad et al. 2016) and cortex (Lister et al. 2013) in humans.

A recent review assessed many of the studies listed here and concluded that

global demethylation does occur in most, if not all cells/tissues as an animal ages
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(Unnikrishnan et al. 2018). However, they also state that specific, age-related

hypomethylation may occur in specific regions of the genome and in specific cells

(e.g. certain cell types or senescent cells), even when global DNAm levels are

unchanged. For example, CpG islands bound by polycomb proteins undergo de

novo methylation with age at key tissue types (Maegawa et al. 2010; Klutstein

et al. 2017), while lamin-associated domains demethylate with age (Dmitrijeva et

al. 2018; Dor and Cedar 2018). Other studies have shown that age-associated

DNAm hyper- and hypomethylation that occur in the genome are non-random

and independent of tissue/cell-type (Zheng, Widschwendter, and Teschendorff

2016). For example, age-related hypomethylation occurs at strong enhancers

and active promoters (Day et al. 2013). Age-associated hypermethylation, on the

other hand, is more likely to occur at polycomb repressive complex 2 marked sites

in multiple tissue types (Teschendorff et al. 2010; Horvath et al. 2012; Day et al.

2013; West et al. 2013) or at bivalent (poised) chromatin domains (Rakyan et al.

2010).

Global hypomethylation (Feinberg and Vogelstein 1983; Goelz et al. 1985)

and specific hypermethylation of promoter CpG islands (Esteller et al. 2001;

Esteller 2002; Herman and Baylin 2003) are also hallmarks of cancer cells. This

phenomenon is observed in replicative senescence (RS) cells, and a hypothesis

has emerged that the epigenome of tumour cells is a result of cells that might

escape RS, and that this epigenomic configuration might promote tumorigenesis

(Cruickshanks et al. 2013; Zane, Sharma, and Misteli 2014; Xie, Baylin, and

Easwaran 2019). However, Xie et al. have showed that the epigenome of RS

cells and tumour cells are quite different, and that the tumour epigenentic

landscape is not derived from RS epigenetic changes as previously suspected

(Xie et al. 2018; Xie, Baylin, and Easwaran 2019). Xie et al. also showed that

cancer risk associated with epigenetic alterations are more likely to come from

ageing cells accumulating stochastic methylation changes, rather than RS cells

(Xie et al. 2018; Xie, Baylin, and Easwaran 2019).
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In addition to cancer, global demethylation has been associated with other

age-related diseases, such as neurodegenerative disease and cardiovascular

disease (Baccarelli et al. 2010; Chouliaras et al. 2013; Xiao, Wang, and Kong

2019). Centenarians have a delayed onset of age-related disease, which be due

to a specific DNAm profile where disease-associated CpGs are being repressed

(Hitt et al. 1999; Engberg et al. 2009; Andersen et al. 2012; Heyn et al. 2012;

Gentilini et al. 2013; Xiao et al. 2015; Xiao, Wang, and Kong 2019). Methylation

levels of specific CpGs (associated with PDE4C and CLCN6) have also been

associated with longevity (Lin et al. 2016). What remains unclear is if there is

any causal relationship between these age-related methylation changes and

ageing.

Epigenetic drift can also be seen in adult stem cell populations, particularly

haematopoetic and mesenchymal stem and progenitor cells, resulting in

heterogeneous and dysfunctional cell populations. What role does epigenetic

drift play in the ageing of stem cells? And how does an ageing stem cell

population impact an ageing organism as a whole?

1.3 Stem Cells in Ageing

Stem cells are undifferentiated cells that are able to give rise to any cell of an

organism (reviewed in Zakrzewski et al. 2019). They have the ability to

self-renew (ie. stem cells can divide and remain pluripotent) and are responsible

for giving rise to an organism during embryonic development and maintaining

the organism during adulthood (He, Nakada, and Morrison 2009; Zakrzewski

et al. 2019). Young stem cells tend to have fairly uniform epigenomes. However,

as they age, stochastic errors in DNA methylation maintenance create

epigenetic mosaicism among the ageing stem cell population (reviewed in

Shibata 2009; Issa 2014). For example, in the haematopoetic system, many

age-related DNAm alterations observed are uniform regardless of cell type
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(Yuan et al. 2015). This indicates that these methylation changes originate from

a stem or early progenitor cell level which in turn causes lineage bias, reduced

stem cell function and increased risk of developing haematologic cancer

(Kirschner et al. 2017; Ermolaeva et al. 2018; Kurosawa and Iwama 2020). This

phenomenon, referred to as age-related clonal haematopoesis (ARCH), can

result from mutations in genes that regulate the epigenome, such as DNMT3A,

TET2 and ASXL1 (Ley et al. 2010; Kim et al. 2013; Yasuda et al. 2014; Herold

et al. 2017; Jeong et al. 2018; Abelson and Wang 2018; Robertson et al. 2019;

Kurosawa and Iwama 2020).

Stem cells age in many unique ways depending on their cell type. Certain

cell types proliferate faster with age (eg. haematopoetic and intestinal stem

cells), while others are slower (eg. satellite, neuronal, melanocyte and germline

stem cells, reviewed in Schultz and Sinclair 2016). Hair follicle stem cells are an

exception in that they do not change in proliferation rate (Giangreco et al. 2008;

Rittié et al. 2009), but rather have a longer “rest” (telogen) phase which can

result in alopecia (Keyes et al. 2013). Regardless of tissue type, ageing stem

cells share a number of physiological changes, including telomere shortening

and cellular senescence (Schultz and Sinclair 2016). Other interesting aspects

of ageing stem cells are DNA damage and epigenetic dysregulation, and the

degree to which they are intertwined.

It is possible that stem cell ageing is driven by damage from genotoxic agents

(eg. radiation exposure) that cause DSBs which result in mutations that reduce

function. Indeed, there is evidence accumulating that DSBs may drive ageing

(White and Vijg 2016; Gorbunova and Seluanov 2016). For example, mutations

in DSB repair genes lead to premature ageing (Vogel et al. 1999; Shiloh and

Kastan 2001; Espejel et al. 2004; Liu et al. 2005; Mostoslavsky et al. 2006). In

addition, a recent preprint showed that DSBs cause a disruption in the epigenome

which leads to an accelerated rate of ageing in mice (Hayano et al. 2019). DNA

replication is a possible source of genotoxic damage during ageing (Flach et al.
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2014; Walter et al. 2015). The more stem cells divide, the higher the likelihood of

tumorigenesis developing in the daughter tissue (Tomasetti and Vogelstein 2015).

Stem cells can avoid possible damage via DNA replication by entering quiescence

(a non-cycling state) for prolonged periods of time (White and Vijg 2016; Tsai

2016). Unfortunately during quiescence, stem cells are only able to repair DSBs

via non homologous end joining (Schultz and Sinclair 2016; Biechonski et al.

2018), a repair mechanism which directly ligates DSBs without a homologous

template, which increases mutagenesis risk (Chang et al. 2017; Biechonski et al.

2018). This is because homologous recombination (an error free mechanism of

repairing DNA), is conducted primarily during S-phase in cycling cells (Karanam

et al. 2012). Hence, if a stem cell is damaged while it is quiescent, then any

daughter cells/tissues might be compromised in function, which could lead to

ageing and promote age-related disorders such as ARCH, and cancer.

1.4 DNA Methylation as a Biomarker and Predictor

of Age

DNAm has emerged as one of the most efficient biomarkers to predict biological

age (Benayoun, Pollina, and Brunet 2015; Jylhävä, Pedersen, and Hägg 2017).

In the past decade a large number of age predictors utilising DNAm have been

developed. These DNAm age predictors (more commonly known as epigenetic

clocks) are created using CpGs that have tractable changes with age. The

majority of these clocks are built using penalised regression models (such as

elastic net (Zou and Hastie 2005) or LASSO (Tibshirani 1997)), which select a

group of CpGs that have a linear relationship with age in a given training dataset

(Horvath and Raj 2018). In other words, key CpGs whose age-related hyper-

and hypomethylation correlates with age, are selected and weighted in a linear

model. The result is an equation, whereby chronological age can be estimated

based on the percentage methylation at these key CpG sites in a given sample
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(see Methods, pg. 62).

Epigenetic clocks have become increasingly diverse, with each predictor

capturing different aspects of ageing. The expanding repertoire of clocks enable

the study of ageing and rejuvenative approaches quantitatively. This section

(1.4) will give an overview of the growing toolbox of epigenetic clocks to inform

which approach might be best suited to a scientific question.

1.4.1 Do Epigenetic Clocks Predict Biological Age?

Epigenetic clocks have proven themselves to be accurate at predicting

chronological age (chAge), which is commonly referred to as DNAm age or

epigenetic age (eAge). When epigenetic clocks first emerged, a fundamental

question arose; if eAge deviates significantly from chAge, is this difference due

to inaccuracies of the clock itself, or caused by biological factors (eg. genetics,

disease status, environment)? In other words, are these clocks able to predict

biological age? This difference between eAge and chAge is referred to as age

acceleration, and can be calculated as the mean absolute deviation (MAD) or

median absolute deviation between eAge and chAge (Horvath 2013), or as the

residual from the linear regression between eAge and chAge (Horvath and Raj

2018).

There are two other measures of age acceleration that can be used when

predicting the eAge of blood (Horvath et al. 2016a). Intrinsic eAge acceleration

(IEAA) adjusts for both chAge and blood cell counts, resulting in an estimate

unaffected by either variable(Horvath et al. 2016a; Quach et al. 2017). Extrinsic

eAge acceleration (EEAA) integrates known age-related changes in blood cell

count before adjusting for chAge (Horvath et al. 2016a; Quach et al. 2017). IEAA

can be thought of as a cell-intrinsic measure of ageing, while EEAA is a

measurement of ageing in terms of the immune system (Horvath et al. 2016a;

Quach et al. 2017).

For many of the eAge predictors, age acceleration is associated with a
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number of age-related diseases and conditions. For example, patients with

Down’s syndrome (Horvath et al. 2015a), HIV (Horvath and Levine 2015),

obesity (Horvath et al. 2014), Huntington’s disease (Horvath et al. 2016b),

Werner syndrome (Maierhofer et al. 2017) and Sotos syndrome (Martin-Herranz

et al. 2019) tend to exhibit increased age acceleration. eAge acceleration has

also been associated with physical and cognitive fitness (Marioni et al. 2015b;

Breitling et al. 2016; Quach et al. 2017) and neuropathy (Levine et al. 2015; Lu

et al. 2017; please see Horvath and Raj 2018 and Declerck and Vanden Berghe

2018 for comprehensive lists of age acceleration-associated conditions).

Variation in epigenetic ageing rates between individuals have been shown to

significantly depend on sex and race/ethnicity (Horvath et al. 2016a; McCartney

et al. 2019). Smoking has been associated with an increase in eAge in airway

cells and lung tissue (4.9 and 4.3 years, respectively; Wu et al. 2019), and

smoking during pregnancy might have an effect on eAge in offspring (Simpkin

et al. 2016). The number of studies associating eAge acceleration with diseases,

phenotypes and environmental interventions that appear to affect ageing,

emphasises eAge as a candidate metric for biological age (Wang et al. 2017).

However, it remains unclear if age-acceleration/clock CpGs are causative of

ageing and age-related diseases (see Section 1.4.6). The limitations of eAge as

a proxy for biological age remain to be fully established. Most epigenetic clocks

described in the following subsection used Illumina DNAm array-based

technology and are summarised in Table 1.1.

1.4.2 DNAm Array-Based Epigenetic Clocks

Early Epigenetic Age Predictors

The first epigenetic clocks incorporated relatively few CpG sites and samples in

their training datasets, in comparison to later clocks. Bocklandt et al., for example

created a clock from 68 samples (34 twin pairs) that predicts age in saliva with an
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Table 1.1: Epigenetic clocks based on Illumina human DNA methylation
arrays. Age-associated CpGs are selected and weighted in a linear model,
resulting in epigenetic age predictors (epigenetic clocks). Error (years) is based
on mean absolute deviation (MAD) unless otherwise stated.

Clock No. 
CpGs Error (Years) 

Method Used to Find 
Age-Associated 
CpGs

No. of 
Samples 
in Training 

Age Range
of Training

Cell Types/Tissue 
Used for Training

Additional 
Functional 
Tissues/Cells 

Reference

Bocklandt 88 5.2 CpGs with 
q < 0.05 & absolute 
corr  > 0.57 with age

68 
(34 twin 
pairs)

21-55 Saliva - Bocklandt 
et al. (2011)

Koch & 
Wagner

5 11 Pavlidis Template
Matching

150 16-72 Fibroblasts, 
keratinocytes, 
epithelial, 
peripheral 
blood

Saliva, breast
organoid

Koch &
Wagner 
(2011)

Passage 
Number 

6 - Pavlidis Template
Matching

- - Fibroblasts, 
mesenchymal 
stem cells

- Koch et al. 
(2012)

Horvath 
(Pan-Tissue)

353 Median 
Absolute
Deviance
3.6

Elastic net
regression

8000 0-100 51 different 
tissues/cell types 
including blood, 
brain, muscle

- Horvath 
(2013)

Skin & Blood 
(S&B)

391 No overall 
MAD for all 
tissues
/cell types

Elastic net
regression

896 0-94 Fibroblasts, 
keratinocytes, 
buccal cells, 
endothelial cells, 
lymphoblastoid,
skin, blood, saliva 

Brain, neurons, 
glia, liver,bone

Horvath 
et al. (2018)

Zhang 
(Elastic Net)

514 RMSE
2.04

Elastic net
regression

13,661 2-104 Whole blood, 
saliva

Breast, liver, 
adipose, 
muscle, 
endometrium

Zhang 
et al. (2019)

Zhang 
(BLUP)

319,607 RMSE
 ~ 2.04

Best linear unbiased 
prediction

13,661 2-104 Whole blood, 
saliva

- Zhang 
et al. (2019)

Hannum 71 RMSE 
4.9

FDR to filter 
significant CpGs 
then elastic net

482 19-101 Whole blood - Hannum 
et al. (2013)

Weidner 
(102 CpG)

102 3.3 CpGs selected by 
pearson corr (r > 
0.85 or r < −0.85)

575 0-78 Whole blood - Weidner 
et al. (2014)

Weidner 
(99 CpG)

99 4.1 CpGs derived from 
102 previous CpGs 
in Weidner et al. 
(2014) 

656 19-101 Whole blood - Weidner 
et al. (2014)

Weidner/Lin 
(3 CpG)

3 7.6 Three CpGs 
selected from 102 
previous CpGs, 
recursive feature 
elimination

656 19-101 Whole blood - Weidner 
et al. (2014), 
Lin et al. 
(2016)

Boroni Skin 2,266 RMSE
4.98

Elastic net
regression

249 18-95 Dermis, 
epidermis, 
whole skin

- Boroni 
et al. (2020)

Pediatric-
Buccal-
Epigenetic 
(PedBE)

94 0.35 Elastic net
regression

1,032 0-19.5 Buccal 
epithelial cells

- McEwen 
et al. (2019)
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average accuracy of 5.2 years (Bocklandt et al. 2011). Koch and Wagner used

five CpG sites and predicted age in multiple cell types, but with lower accuracy

than the Bocklandt clock (MAD = 11 years; Koch and Wagner 2011). The same

lab produced a six CpG clock that could track passage number in fibroblast cell

cultures, regardless of original donor age (Koch et al. 2012). After these initial

studies, epigenetic clocks grew in complexity in terms of number of samples,

tissues, and CpGs implemented.

Multi-Tissue Age Predictors

The first multi-tissue age predictor (referred to as the Horvath or Pan-Tissue

clock) utilised 353 CpGs and has a mean error of 3.6 years, which at that time

was unprecedented for any biomarker/age predictor (Horvath 2013). The

training dataset used to construct the clock comprised of 8000 samples from 82

studies, including 51 healthy tissues and cell types. The size of the training data

was a step-change in clock design. Hence, the Horvath clock gained popularity

in the scientific community since it can predict age in multiple tissues using a

relatively small number of CpGs (compared to the rest of the epigenome), and

revealed that tissues may age at different rates. For example, brain tissue

appears to age slower relative to other tissues in the body, according to the

Horvath clock (Horvath 2013; Horvath et al. 2015c).

The association between age acceleration and health/disease status was

first shown with the Horvath clock in obesity (Horvath et al. 2014), and has since

become an established tool to assess biological age (Horvath et al. 2015a;

Horvath and Levine 2015; Horvath et al. 2014; Horvath et al. 2016b; Maierhofer

et al. 2017; Martin-Herranz et al. 2019). The Horvath clock has shown some

limitations with particular tissues and age-associated disease conditions. One of

the most severe premature ageing syndromes, Hutchinson-Gilford Progeria

Syndrome (HGPS), did not exhibit age acceleration according to the Horvath

clock (Horvath 2013). Children with multifocal developmental dysfunctions
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(syndrome X), who appear to age slower, do not decelerate in eAge (Walker

et al. 2015). However, being rare genetic disorders, both studies were limited in

the number of individuals tested.

The Horvath clock does not work reliably on cultured cells, particularly

fibroblasts (Horvath 2013; Horvath et al. 2018; Horvath et al. 2019). Replicative

senescence in primary fibroblasts is a widely used model system in cellular

ageing (Hayflick and Moorhead 1961; Hayflick 1965; Chandra and Kirschner

2016). More recently, Horvath et al. developed an epigenetic clock that predicts

the age of human fibroblasts, keratinocytes, buccal cells, endothelial cells,

lymphoblastoid cells, skin, blood, and saliva samples, better than the original

Horvath clock (Horvath et al. 2018). This clock, known as the skin and blood

(S&B) clock, is able to predict both in vivo and in vitro tissues accurately

(Horvath et al. 2018; Horvath et al. 2019). The S&B clock also detected a

modest, yet significant age acceleration in HGPS samples (Horvath et al. 2018).

The Zhang clock, while primarily trained to work on blood, is able to predict

the ages of breast, liver, adipose, and muscle tissue as accurately as the Horvath

clock (Zhang et al. 2019). This clock also outperformed both the Horvath and

Hannum clocks in predicting blood age. It is unclear why the the Zhang clock

seems to transcend tissue type, while other clocks trained on single tissues do

not. It is set apart by the size of its training data with over 13,000 samples.

Tissue-Specific Age Predictors

A number of CpG clocks have been developed for single tissues, aiming at an

increased accuracy for a given cell type or specialised applications. Multiple

clocks have been developed for blood, the first of which was the Hannum clock

(Hannum et al. 2013; Weidner et al. 2014; Zhang et al. 2017b; Horvath and Raj

2018; Zhang et al. 2019). A later study found 102 CpG sites that can predict age

in blood, 99 of which were adapted for a separate clock that works on the

Illumina 450K array (Weidner et al. 2014). It was demonstrated that three of the
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102 CpGs alone (selected by recursive feature elimination) can predict age in

arrays and pyrosequenced samples (Weidner et al. 2014; Lin et al. 2016). A

minimal approach such as this that uses as few CpGs as possible, is a sought

after technique for affordable use in clinical and forensic fields (see Chapter

1.4.3, pg. 17).

Inaccuracies in epigenetic clocks are apparent when predicting the age of

younger individuals (under 20 years old Simpkin et al. 2016). This might be due to

insufficient numbers of young individuals in training datasets, or due to the linear

models used to construct the epigenetic clocks (see Chapter 1.4.5, pg. 22). The

Pediatric-Buccal-Epigenetic (PedBE) clock was developed for use in 0-20 year

olds and trained on a large number of buccal swab samples (1,032, aged 0-19.5

years old; McEwen et al. 2019). This clock performs well (MAD = 0.35 years) and

is an example of how the accuracy of epigenetic clocks can be improved not only

by targeting specific tissues, but also specific age groups.

A study by Boroni et al. has produced an accurate skin age predictor, based

on 2266 CpGs (one of the largest number of CpGs used to create an eAge clock)

selected by elastic net regression (Boroni et al. 2020). It was trained on dermis,

epidermis and whole skin biopsies (40, 99 and 110 samples respectively) and had

a root mean squared error (RMSE) of 4.98 when tested on an external validation

dataset of whole skin biopsies (by comparison, the Horavth and SB clocks had

RMSEs of 15.74 and 7.64 respectively; Boroni et al. 2020). This study again

highlights the power of tissue specific age predictors, which makes one wonder

if the large number of CpGs in this particular clock is beneficial? Multiple studies

have shown few highly age-associated CpGs are enough to predict eAge (see

“Minimised CpG Clocks”, next section), hence a large number CpGs would be

presumably redundant. It is possible that the large number of CpGs increase

clock robustness and account for the age-related epigenetic heterogeneity in skin

between different individuals (Bormann et al. 2016; Boroni et al. 2020), which

potentially confounds age prediction.
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1.4.3 Minimised CpG Clocks

Most of the epigenetic clocks mentioned above rely on Illumina Infinium arrays.

The price of these arrays limits the applicability of eAge technology in

drug-discovery. Drug-discovery pipelines require the multiplexing of thousands

of samples, but not necessarily the accuracy of the arrays. Here we will discuss

clocks relying on fewer CpGs (minimised clocks), which have the potential to be

upscaled or run at a lower sample cost. The forensics field has developed

multiple minimised clocks using strong age-associated CpGs (such as ELOVL2

and FHL2; Garagnani et al. 2012; Bacalini et al. 2017), and are designed for

common tissues found at crime scenes, such as blood, saliva, buccal swabs and

semen (Table 1.2). Some clocks have also been trained on deceased

individuals and have proven effective at predicting their age at death (Dias et al.

2020a; Dias et al. 2020c; Dias et al. 2020b).

Minimised clocks use a variety of technologies such as the Qiagen platform for

pyrosequencing (referred to as pyrosequencing from here), which is more cost-

effective for profiling the methylation of select CpGs. The Weidner 3 CpG clock

(see Chapter 1.4.2, pg. 15) for example, can predict age in blood samples using

pyrosequencing (Weidner et al. 2014), but over-predicts age in saliva (a common

source of DNA at crime scenes) by 14.6 years on average (Eipel et al. 2016).

When adapted for saliva by adding two additional buccal-specific age-associated

CpGs, eAge prediction was improved (Eipel et al. 2016).

Pyrosequencing had its own limitations such as multiplexing; allowing a large

number of samples and CpGs to be pooled and sequenced in a single run,

however, new approaches increasing multiplex capabilities in pyrosequencing

are emerging (Fleckhaus and Schneider 2020). Another assay, termed

SNaPshot, can multiplex 10 CpG sites (Thermo Fisher 2020), and is used for

many minimised epigenetic clocks.

The use of minimised clocks in forensics is just developing and for most

clocks cross-validation is missing (Cho et al. 2017). However, the clock by
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Table 1.2: Minimized CpG epigenetic clocks. Epigenetic clocks created using a
low number of CpGs (typically under 10), usually from preselected CpGs/regions
known to have high age-correlation. Error is based on mean absolute deviation
(MAD).

Clock Sequencing No. 
CpGs

Error 
(Years)

Method Used to Find Age-
Associated CpGs

No. of 
Samples 
in Training

Age Range
of Training

Cell Types/Tissue 
Used for Training Reference

Weidner 3 CpG Bisulphite 
pyrosequencing

3 4.5 3 CpGs selected from 102 
previous CpGs by  recursive 
feature elimination

82 0-78 Whole blood Weidner 
et al. (2014)

Eipel Buccal Bisulphite 
pyrosequencing

5 5.1 3 CpGs from Weidner et al. 
(2014), plus two additional 
buccal specific CpGs 

55 1-85 Saliva Eipel 
et al. (2016)

Zbieć-Piekarska 
(ZP) Clock

Bisulphite 
pyrosequencing

5 3.9 8 CpGs from Hannum et al. 
(2013)  then multivariate 
linear regression

420 2-75 Peripheral blood Zbieć-
Piekarska 
et al. (2015)

Cho Model 2 Bisulphite 
pyrosequencing

5 4.2 Similar CpGs to ZP clock 
(same associated genes but 
different CpGs), trained in 
multivariate regression model 

100 20-74 Whole blood Cho 
et al. (2017)

Jung - Blood SNaPShot 5 3.5 CpGs used by Cho Model 2 
(with different Clorf132 CpG) 
retrained in multivariate linear 
model

100 ~19-70 Whole blood Jung 
et al. (2019)

Jung - Saliva SNaPShot 5 3.6 "" 100 ~19-70 Saliva Jung 
et al. (2019)

Jung - 
Buccal Swab

SNaPShot 5 4.3 "" 100 ~19-70 Buccal epithelial 
cells

Jung 
et al. (2019)

Jung - 
Mixed Tissue

SNaPShot 5 3.8 "" 300 ~19-70 Whole blood, 
saliva, buccal 
epithelial cells

Jung 
et al. (2019)

Dias - 
Deceased Clock 

Bisulphite PCR 5 8.8 PCR of CpGs from previous 
studies, trained in 
multivariate linear model

51 
(Deceased)

24-86 Blood Dias 
et al. (2020a)

Dias - 
Multi-Locus 
Model 

Bisulphite PCR 4 5.4 Using CpGs/regions 
previously used in Dias et al. 
(2020a), trained in 
multivariate linear model

53 1-95 Peripheral blood Dias 
et al. (2020b)

Dias -
Blood (5 CpG)

SNaPShot 5 4.3 Same CpGs used by Jung et 
al. (2019), retrained in 
multivariate linear model

59 1-94 Peripheral blood Dias 
et al. (2020c)

Dias - 
Blood (3 CpG)

SNaPShot 3 4.8 3 of 5 CpGs used by Jung et 
al. (2019) were retrained in 
multivariate linear model

59 1-94 Peripheral blood Dias 
et al. (2020c)
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Zbieć-Piekarska et al. has been validated and adapted in other studies. It is

based on 5 out of 8 CpGs previously identified by Hannum et al. as showing the

strongest age-association (Hannum et al. 2013; Zbieć-Piekarska et al. 2015),

and has a standard error of 4.5 years and an MAD of 3.9 years. The genes

associated with these CpGs are ELOVL2, C1orf132, TRIM59, KLF14 and FHL2.

A clock based on five CpGs (located near the same previous genes) was

created by Cho et al., and has been validated in multiple tissues (Cho et al.

2017; Jung et al. 2019; Dias et al. 2020c). These CpGs not only operate

adequately with SNaPshot assays as tissue-specific age predictors, but also as

a multi-tissue age predictor for common forensic tissues (blood, saliva and

buccal swab) (Jung et al. 2019). Three of the CpG sites (near ELOVL2, FHL2

and C1orf132) have also proven sufficient to predict age efficiently (Dias et al.

2020c). These studies have demonstrated the versatility and accuracy predictors

based on a few select CpGs can have, and might be good candidates to

increase the scale of eAge prediction.

1.4.4 Composite Epigenetic Clocks as Predictors of Morbidity

and Mortality

Epigenetic clocks have proven capable of estimating not only chAge, but also

time-to-death. Marioni et al. first showed that the higher difference between

eAge and chAge, the greater the risk of all-cause mortality (mortality

independent of health status, known genetic factors, and lifestyle factors; Marioni

et al. 2015a). This finding was further validated in other studies (Chen et al.

2016; Christiansen et al. 2016). Positive age acceleration was also shown to

predict cause-specific mortality in cancer and cardiovascular disease (Perna

et al. 2016). These mortality associations were found using clocks that were not

designed to directly predict mortality. Various composite approaches have been

developed, whereby CpGs that correlate with metrics of physiological or cellular

ageing (eg. cholesterol or protein abundance) are used to construct a clock to
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Table 1.3: Composite and mortality epigenetic clocks. All clocks below are
composite clocks, ie. CpGs that correlate with physiological or cellular ageing
are used to create a biological age predictor (except the Zhang Mortality Clock,
where mortality data was directly regressed on DNAm).

Clock No.
CpGs

Method Used 
to Obtain CpGs

No. of Samples 
in Training Reference

PhenoAge 513 Elastic net 9,926 Levine et al. (2018)

GrimAge 1,113 Elastic net 1,731 Lu et al. (2019a)

Zhang Mortality Clock 10 LASSO Cox regression 548 Zhang et al. (2017a)

DunedinPoAm 46 Elastic net 810 Belsky et al. (2020)

Telomere Clock 140 Elastic net 2,256 Lu et al. (2019b)

predict age (Table 1.3). These clocks were build with the potential of capturing

more of age-relevant biology than clocks trained on chAge alone.

The first composite biomarker age predictor (created independent of DNAm

data) was based on survey data from NHANES III, a large cohort (9,926

samples) with over 23 years of mortality data (Levine 2013). This predictor

incorporated ten biomarkers that significantly correlated with age; C-reactive

protein, serum creatinine, glycated haemoglobin, systolic blood pressure, serum

albumin, total cholesterol, cytomegalovirus optical density, serum alkaline

phosphatase, forced expiratory volume, and serum urea nitrogen (Levine 2013).

Using a similar process, Levine et al. combined chAge plus nine other

biomarkers. The resulting phenotypic clock was regressed on DNA methylation

data using elastic net regression, resulting in 513 CpGs forming the DNAm

PhenoAge clock (Levine et al. 2018). This clock predicts all-cause mortality,

cancer, healthspan, physical functioning, and Alzheimer’s disease more

accurately than previous age predictors (Levine et al. 2018).

The GrimAge clock developed by Lu et al., uses the methylation of CpGs

associated with smoking (pack-years) and levels of 7 plasma proteins previously

associated with mortality (Ridker et al. 2003; Ignjatovic et al. 2011), as

surrogates for physiological risk factors (Lu et al. 2019a). The age acceleration

of GrimAge was not only found to be associated with age related conditions and

lifestyle factors, but outperformed previous attempts at predicting time-to-death,
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time-to-coronary heart disease and time-to-cancer (Lu et al. 2019a). A

significant association has been shown between GrimAge acceleration and

lifelong trauma, but not childhood trauma (Katrinli et al. 2020), which is

consistent with other studies showing Hannum (Wolf et al. 2016) and Horvath

(Yang et al. 2020) clock age accelerations in post-traumatic stress disorder.

GrimAge acceleration is also significantly associated with cortical atrophy

(Katrinli et al. 2020), shorter pregnancy periods and lower birthweight (Ross

et al. 2020).

Zhang et al. created a mortality-specific predictor, where they performed an

epigenome wide association study (EWAS) on a cohort with up to 14 years follow

up data. 58 CpGs were found that correlate with all-cause mortality, from which

a predictor was constructed using only ten of the CpGs (Zhang et al. 2017a). 48

of the CpGs identified had been associated with smoking, alcohol consumption,

diabetes and cancer, some of which were also found in previous EWAS studies

(Travers et al. 2013; Nilsson et al. 2014; Chambers et al. 2015; Gao et al. 2015;

Teschendorff et al. 2015; Al Muftah et al. 2016; Zhang et al. 2017a).

A DNAm telomere length (DNAmTL) estimator was created by Lu et al.

2019b, where leukocyte telomere length (LTL) was regressed against blood

methylation data. This resulted in 140 LTL-associated CpGs forming the

DNAmTL estimator (Lu et al. 2019b). Not only does the DNAmTL predict LTL

accurately, but it also demonstrates stronger predictive power of lifespan,

time-to-coronary heart disease, time-to-congestive heart failure and smoking

history compared to normal LTL.

Variability in early-life environmental exposures has been proposed as one of

the main confounders of mortality clocks (Bell et al. 2019; Hillary et al. 2020).

Belsky et al. addressed this directly, by analysing rate of change of 18

blood-chemistry and organ-system-function in a cohort with the same birth year

and birth place (Belsky et al. 2015; Hillary et al. 2020). Termed “Pace-of-Ageing”

(PoA), this measure formed the basis of the DunedinPoAm clock, a proxy
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approach with PoA regressed on DNAm (Belsky et al. 2020). In other words,

DunedinPoAm aims to provide the rate of biological ageing at a single-time-point

of a person (Belsky et al. 2020).

The Marioni lab compared the performance of six of the epigenetic

age/mortality predictors mentioned (Horvath, Hannum, PhenoAge, GrimAge,

DNAmTL and DunedinPoAm) in terms of lifespan and disease prediction, on the

Generation Scotland cohort (Hillary et al. 2020). GrimAge overall had the best

performance; it predicted the prevalence of chronic obstructive pulmonary

disease (COPD) and the incidence of multiple diseases, including COPD, type-2

diabetes and cardiovascular disease. GrimAge also outperformed other clocks

for predicted death in terms of all-cause mortality, after adjustment for lifestyle

risk factors. Another recent study also showed GrimAge outperforms Horvath,

Hannum and PhenoAge clocks at predicting all-cause mortality and age-related

clinical phenotypes (McCrory et al. 2020). However, DunedinPoAm did reveal

faster rates of biological ageing associated with lung cancer and COPD.

PhenoAge and DNAmTL also showed associations with disease incidence for

type 2 diabetes and ischemic heart disease respectively. Hence, composite

clocks can use DNAm to predict non-DNAm traits, which in turn can be used as

additional variables to accurately predict biological age, disease status and

mortality.

1.4.5 Inaccuracies and Tick-Rate of Epigenetic Clocks

The Horvath clock is the most widely used clock for it’s accuracy, versatility and

the accumulated knowledge we have of its behaviour from previous studies (see

Chapter 1.4.1, pg. 11). As with the Horvath clock, most clocks that followed after

were also built on penalised linear regression models. However, are there intrinsic

inaccuracies in the Horvath clock, and the approach used to construct epigenetic

clocks?

El Khoury et al. analysed previously published DNAm datasets and found
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that both the Horvath and Hannum clocks systematically underestimate the age

of older individuals (El Khoury et al. 2019). If age acceleration is dependent on

chAge itself, biological interpretation of age acceleration at very old age

becomes difficult. Centenarian peripheral blood mononuclear cells are predicted

8.6 years younger than their chAge, according to the Horvath clock (Horvath

et al. 2015b). Similar findings were also found in analysis of cerebellum tissue

from supercentenarians (Horvath et al. 2015c). The interpretation has been that

the younger age predicted for centenarians reflects survival bias, where the

lower biological age enabled the centenarians to live long. However, with the

clock possibly underpredicting older age systematically, this assumption might

need to be reexamined.

While negative age acceleration (eAge predicted lower than chAge) was

highest in the cerebellum, this underestimation was also observed in other

tissues (including blood) from multiple datasets (El Khoury et al. 2019; Marioni

et al. 2019; Martin-Herranz et al. 2019). It was also found that when accounting

for age as a cofactor, the correlation between age acceleration and amyloid

plaque load in brain tissue is attenuated (El Khoury et al. 2019), which is

inconsistent with previous findings (Levine et al. 2015). It is possible that

5-hydroxymethyl cytosine (an epigenetic modification more prevalent in brain

tissue and indistinguishable from 5mC after bisulphite conversion) could cause

age prediction offset in brain tissue (Lunnon et al. 2016; El Khoury et al. 2019).

However, 5hmC is not prevalent in blood, and therefore does not explain the

negative age acceleration in blood detected by Marioni et al. and El Khoury et al.

(Marioni et al. 2019; El Khoury et al. 2019). These alterations in predictive

accuracy of the clock in older individuals could be due intrinsic changes in the

rate of biological ageing during certain time points. The rate of change, or “tick”

rate, was explored earlier in the Horvath clock study (Horvath 2013). By looking

at the weighted averages of the 353 CpGs compared with chAge, the tick rate

was exponential between 0 and 20 years old, after which it continued linearly. As
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such, the Horvath clock applies a logarithmic transformation to ages <20 years,

while the linear model is unaltered for ages >20 years (Horvath 2013; Snir,

Farrell, and Pellegrini 2019). The study suggested that a higher organismal

growth and cell division rate at early age might explain the initial acceleration in

ageing (Horvath 2013). A later study found a faster eAge tick rate during puberty

in girls (Binder et al. 2018). However, no decrease in the tick rate of older

subjects was observed (Horvath 2013), which could be due to a lack of older

individuals in the training dataset used to construct the Horvath clock (El Khoury

et al. 2019). Differences in tick rate could also be sex-specific. The Horvath,

Hannum, and Zbieć-Piekarska clocks show slightly faster ageing in men than

women (Bergsma and Rogaeva 2020).

A recent study found that simple multiple linear regression outperforms

sophisticated machine learning techniques (Lau and Fung 2020). However, if

there is indeed a non-linear progression of age acceleration, then other models

might be worth exploring to predict eAge. Support vector regression has been

suggested as an alternative to penalised linear regression (Xu et al. 2015; Aliferi

et al. 2018). The epigenetic pacemaker (EPM) is an algorithm where predicted

age follows a logarithmic trend (Snir, VonHoldt, and Pellegrini 2016; Snir, Farrell,

and Pellegrini 2019). Whether EPM or other non-linear models predict eAge in

centenarians more accurately has not been determined.

1.4.6 Underlying Mechanism of the Epigenetic Clock

The Horvath clock gained the attention of the scientific community due to the fact

that age can be predicted in multiple tissues using a relatively small number of

CpGs (compared to the rest of the epigenome; Horvath 2013). The fact that

such a clock can be constructed provokes the question, is there a functional

significance that correlates these CpGs with age in multiple tissues? If ageing is

a phenomena that we are “programmed” to undergo, then are these CpGs an

integral part of that machinery? To understand the nature of eAge/epigenetic
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clocks, we must understand the aspects of physiological ageing they capture, the

CpGs that constitute these clocks, and any causative relationship with ageing.

What Aspects of Physiological Ageing Does eAge Capture?

eAge acceleration (eAge higher than chAge) or deceleration (eAge lower than

chAge) reflects most diseases or environmental factors (eg. smoking) that

appear to increase or decrease ageing at a physiological level (Horvath et al.

2014; Horvath 2015; Horvath and Levine 2015; Horvath et al. 2016b; Marioni

et al. 2015a; Chen et al. 2016; Simpkin et al. 2016; Maierhofer et al. 2017;

Horvath et al. 2018; Martin-Herranz et al. 2019; Wu et al. 2019; Higgins-Chen

et al. 2020). However, caution should be considered when inferring the biological

significance of age acceleration. DNAm age prediction is a relatively new field,

and the true nature of how age acceleration is mechanistically associated with

biological age is not fully understood. Does eAge reflect or measure known

physiological/cellular ageing phenomena (eg. telomere length, senescence)?

Similar eAge among the tissues of an individual person suggests that eAge is

not a measure of cellular proliferation, since different tissues have variable

proliferation rates and frequency (Horvath 2013; Horvath et al. 2015c; Horvath

et al. 2019). Indeed, multiple studies have shown that while eAge correlates with

cell passage number, the Horvath age predictor does not correlate with cell

division since it can track eAge in non-proliferative tissues (eg. neuronal cells;

Horvath 2013; Yang et al. 2016; Horvath et al. 2019). A mitotic clock (EpiTOC)

has been developed specifically to track cell divisions, and measured

acceleration of this clock correlates with cancer status (Yang et al. 2016). It

would be intuitive to assume that eAge reflects other known aspects of ageing

such as senescence, since an increase in senescence cells is a key hallmark of

ageing (López-Otı́n et al. 2013; Horvath et al. 2019). However, this is not the

case as both replicative and damage induced senescence do not correlate with

increased eAge (Lowe, Horvath, and Raj 2016; Horvath et al. 2019). In addition,
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human telomerase reverse transcriptase (hTERT) expressing cells continue to

epigenetically age despite never being able to enter replicative senescence

(Kabacik et al. 2018). Leukocyte telomere length (LTL) erosion is one of the first

biological phenomena that showed potential as biomarkers of ageing (Harley,

Futcher, and Greider 1990; Hastie et al. 1990; Lindsey et al. 1991; Frenck,

Blackburn, and Shannon 1998), and could be a physiological sign of ageing that

correlates with eAge. However, like cellular proliferation and senescence,

multiple studies have shown that eAge has no association with telomere length

(Lowe, Horvath, and Raj 2016; Marioni et al. 2016; Kabacik et al. 2018; Horvath

et al. 2019; Cypris et al. 2020).

A plausible alternative is that eAge is governed by cellular differentiation. As

stem cells divide during development, they differentiate into different cell types

as the embryo matures, which could be reflected by changes in eAge. One

study tested the influence of tissue identity on eAge by growing keratinocytes in

a media that encourages differentiation. No increase of eAge was observed in

the differentiating keratinocytes compared to the non-differentiating, proliferating

keratinocytes (Horvath et al. 2019). A separate study transdifferentiated

fibroblasts to neurons via miRNAs. The reprogrammed neurons not only had a

similar eAge as the donor fibroblasts but also similar telomere length, oxidative

stress and DNA damage (Huh et al. 2016). This means that direct

reprogramming, ie. changing cellular identity without OSKM-mediated

dedifferentiation, had no effect on eAge. These studies give credence to the idea

that cellular identity and eAge (biological age), are indeed separate.

It has been hypothesised that eAge related changes are reflected in

intracellular alterations and changes in cell composition in a subset of cells

termed “clock cells” (Horvath and Raj 2018). eAge might therefore capture the

loss of somatic cells in some tissues (Horvath and Raj 2018) or the loss of stem

cells, which do decline during ageing (Hernando-Herraez et al. 2019). A caveat

is that eAge can be captured in neuronal cells, which are terminally differentiated
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cells and lack a stem cell pool (Horvath 2013; Horvath et al. 2015c; Horvath and

Raj 2018). It also possible that eAge measures aspects of age-related

epigenetic drift/deregulation (Yu et al. 2020), which is discussed in Chapter 5 pg.

101. The precise aspects of physiological ageing that eAge captures (if any)

remains a mystery. But further investigations into genes associated with

eAge/clock CpGs and associations with other ageing biomarkers (see Chapter

1.5, pg. 34) may disclose clues to the true nature of eAge.

Clock CpGs with Possible Functions in Ageing

As previously mentioned (see Chapter 1.4, pg. 10), DNAm became apparent as

a potential biomarker of ageing with the discovery of strong age-associated

CpGs, such as those in the CpG islands of ELOVL2, FHL2 and PENK1

(Garagnani et al. 2012; Bacalini et al. 2017). The CpGs neighbouring ELOVL2

strongly hypermethylate with age (Garagnani et al. 2012) and have been used in

multiple forensic clocks (see Chapter 1.4.3, pg. 1.4.3). The function of ELOVL2

in terms of ageing has been unclear, until now. ELOVL2 is an enzyme involved in

elongation of long-chain polyunsaturated fatty acids, and also in the production

of docosahexaenoic acid (DHA). DHA is the main polyunsaturated fatty acid in

the retina and brain, and is necessary for healthy retinal function. Chen et al.

showed that the Elovl2 promoter is more highly methylated in the retina of aged

mice, and that demethylation of this site recovers age-related decline in visual

function via increased expression of Elovl2 (Chen et al. 2020). This is one of few

studies to show a causative link of age-associated CpGs with phenotypic

ageing. With ELOVL2 in itself being a strong biomarker for ageing in multiple

tissues in both human and mouse (Garagnani et al. 2012; Hannum et al. 2013;

Bacalini et al. 2017; Slieker et al. 2018; Chen et al. 2020), it is conceivable that it

has more substantial, functional roles in ageing yet to be discovered. It is also

possible other epigenetic clock CpGs may contribute to the ageing phenotype.
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Transcriptional Associations with eAge

One approach to finding functional components of the epigenetic clock (ie. CpGs

that have a causal link with ageing) is to analyse gene expression changes that

correlate with age acceleration or with the methylation of age-associated CpGs.

In the Horvath clock, a significant number of the 193 CpGs that hypermethylate

with age are located in poised (bivalent) promoters (Horvath 2013). Poised

chromatin has both repressive and expressive modifications, which means these

promoters could be transcriptionally active. Of the 160 CpGs that hypomethylate

with age from the 353 Horvath CpGs, a significant number are located in either

weak promoters or strong enhancer regions (Horvath 2013). However, linking

the activity of age-related CpGs with specific gene expression is a difficult task

(Jung and Pfeifer 2015; Zheng, Widschwendter, and Teschendorff 2016; Yin

et al. 2017; Horvath and Raj 2018), mainly because the epigenetic state of cells

in any given tissue is heterogeneous. This means dual transciptomic and

epigenetic sequencing at a single cell level is required to achieve a clear

functional link between the two (Horvath and Raj 2018). Single-cell DNA

methylation and transcriptome sequencing (scMT-seq) achieves exactly this, by

separating the RNA and DNA of single cells, and sequencing the RNA using

Smart-seq2 and the DNA by single-cell bisulphite sequencing (Angermueller

et al. 2016). With more multi-omic approaches such as this being developed and

becoming more commonplace, age related changes between epigenetic clock

CpGs and gene expression may one day be revealed.

In fact, a recent study by Hernando-Herraez et al. used scMT-seq to assess

ageing in mouse muscle stem cells (MuSCs). They isolated young and old

quiescent MuSCs and determined that epigenetic drift (specifically, stochastic

methylation heterogeneity at promoters) is associated with age-associated

transcriptional heterogeneity (Hernando-Herraez et al. 2019). They also

predicted eAge by aggregating single cells by individual (two young and two old

mice, with 35 cells per individual). Their age predictor performed accurately on
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the young MuSCs, however, their old MuSCs had a similar eAge to the young

samples (~10 weeks, while the chAge of the old MuSCs were ~100 weeks). To

compensate for this error, they estimated eAge using different combinations of

cells and permutations, by removing 5% of cells and calculating eAge of the

subsequent sample. The old MuSCs were still ~90 weeks lower than the

chronological age (Hernando-Herraez et al. 2019). It is possible that the

negative age acceleration could be explained by the quiescent state of the old

MuSCs, however, multiple reports have shown that the Horvath and S&B clocks

do not correlate with cell proliferation (Horvath 2013; Yang et al. 2016; Horvath

et al. 2019). It is possible that the age predictor developed by Hernando-Herraez

et al. captures aspects of cell proliferation that other age predictors do not.

A genome wide association study (GWAS) is a method that could reveal genes

that regulate eAge by finding genetic polymorphisms that correlate with eAge.

A GWAS of cerebellum tissue found variants near an mTOR complex 2 gene

(MLST8) and in an RNA-helicase gene (DHX57) that are associated with age

acceleration. Many genes associated with cerebellar age acceleration also had

overlap with neurodegenerative conditions such as Alzheimer’s disease (Lu et

al. 2016). Another GWAS revealed that one of the loci associated with intrinsic

eAge acceleration (IEAA, see Chapter 1.4.1, pg. 11) co-locates with hTERT (Lu

et al. 2018). Variants of hTERT were found that associated with both IEAA and

longer telomeres. Moreover, it was showed in vitro that higher hTERT expression

(which is normally associated with cellular longevity) increases eAge. Control

cells passaged with no hTERT experienced an initial increase in eAge after 33

days in culture, that eventually plateaued. These findings further enforce that

eAge is not governed by cell division, replicative senescence or telomere length

per se (Lowe, Horvath, and Raj 2016; Marioni et al. 2016; Kabacik et al. 2018;

Horvath et al. 2019; Cypris et al. 2020), since short telomeres are indicative of

high proliferation and triggers replicative senescence. This paradoxial result could

explain the previously reported rapid rate of epigenetic ageing during embryonic
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development and early postnatal life, which are periods of fast organismal growth

coupled with high hTERT expression and cell division (Hiyama and Hiyama 2007;

Simpkin et al. 2016; Simpkin et al. 2017; Lu et al. 2018).

Another approach involves screening for developmental disorders that cause

an acceleration or deceleration of eAge. This was conducted by Martin-Herranz

et al., who screened 367 genetic disorders, and found that Sotos syndrome

significantly accelerated eAge (Martin-Herranz et al. 2019). Sotos syndrome is

caused by a loss-of-function mutation in NSD1, which encodes a histone H3

lysine 36 (H3K36) methyltransferase (Kurotaki et al. 2002; Choufani et al. 2015).

Methylated H3K36 recruits DNMT3A/B and promotes methylation of surrounding

regions. The authors hypothesise that H3K36 methylation machinery might

break down with age. The NSD1 mutation Martin-Herranz et al. observed might

simulate an ageing affect that occurs naturally. An updated study with more

samples (particularly of Sotos syndrome) is required to corroborate their findings

(Martin-Herranz et al. 2019).

Overall, it remains unclear if the methylation status of clock CpGs has a

causative influence on ageing. MLST8 and DHX57 variants have been

associated with age acceleration. The demethylation of CpGs associated with

ELOVL2 (used in minimised clocks) appears to improve vision in mice (Chen

et al. 2020) and is one of the few examples of a causative age-associated clock

CpG. Aberrant methylation of these sites with age could have an influence on

vision or other age-related outcomes yet to be shown.

1.4.7 Mouse and Non-Human Epigenetic Age Predictors

Since the advent of DNAm age prediction for humans, age predictors have been

created for other species; mice (Table 1.4), rats (Horvath et al. 2020b; Levine

et al. 2020), dogs (Thompson et al. 2017; Wang et al. 2020), wolves (Thompson

et al. 2017), humpback whales (Polanowski et al. 2014), chimpanzees (Ito et

al. 2018; Guevara et al. 2020), marmosets (Horvath et al. 2020a), naked mole
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Table 1.4: Mouse epigenetic clocks. All clocks below were trained on mouse
RRBS data (with the exception of Wang et al., which also used WGBS).

Clock Number of 
CpGs

Correlation 
(R^2)

Method Used to 
Find Age-
Associated CpGs

Number of 
Samples in 
Training Data

Age Range of 
Training Samples 
(Months)

Cell Types/Tissue 
Used for Training Reference

Wang 107 0.91 Elastic net 148 0.2-26 Liver Wang et al. 
(2017)

Petkovich 90 > 0.90 Elastic net 141 3-35 Partial blood Petkovich et al. 
(2017)

Stubbs Multi-
Tissue

329 0.7 Elastic net 129 0.2-9.5 Liver, lung, heart, 
muscle, spleem, 
cerebellum, cortex

Stubbs et al. 
(2017)

Meer 435 0.89 Elastic net ~333 0.2–35 Blood, heart, 
cortex, liver, lung, 
muscle, spleen, 
cerebellum, pro B 
cells, follicular B 
cells

Meer et al. (2018)

Thompson 
All CpGs 
(Ridge)

582 0.79 Ridge 
Regression

893 0-30 Various tissues 
including adipose, 
blood, kidney, liver, 
lung, muscle, 
spleen

Thompson et al. 
(2018)

Thompson 
All CpGs 
(Elastic Net)

582 0.82 Elastic net 893 0-30 "" Thompson et al. 
(2018)

Thompson 
Conserved 
CpGs (Ridge)

273 0.64 Ridge 
Regression

893 0-30 "" Thompson et al. 
(2018)

Thompson 
Conserved 
CpGs (Elastic 
Net)

273 0.68 Elastic net 893 0-30 "" Thompson et al. 
(2018)

rats (Lowe et al. 2020), sea bass (Anastasiadi and Piferrer 2020), and zebrafish

(Mayne et al. 2020) (see Table 1.5 for a list of non-human/mouse epigenetic

clocks).

In 2017, three mouse epigenetic clocks were developed primarily using

reduced representation bisulphite sequencing (RRBS) data. Wang et al. 2017

used 148 CpGs from liver tissue (using both RRBS and whole genome

bisulphite data, WGBS), and found a moderate conservation of age related

CpGs between human and mouse. Their clock also showed an age reduction for

calorie restriction, rapamycin and Prop1df/df dwarfism (which results in lifespan

extension up to 1.5 fold; Brown-Borg et al. 1996; Wang et al. 2017; Cole et al.

2017). Petkovich et al. built a mouse epigenetic clock using 90 CpGs from blood,
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Table 1.5: Studies that have developed epigenetic clocks for non-human or
mouse species.

Study Species Platform

Horvath et al. (2020b) Rat, human HorvathMammalMethylChip40

Levine et al. (2020) Rat RRBS

Sugrue et al. (2020) Sheep, human HorvathMammalMethylChip40

Thompson et al. (2017) Dogs, wolves RRBS

Polanowski et al. (2014) Humpback whale Bisulphite pyrosequencing

Ito et al. (2018) Chimpanzee Bisulphite pyrosequencing

Guevara et al. 2020 Chimpanzee, human Human Illumina 850K array

Lowe et al. (2020) Naked mole rat Bisulphite PCR

Anastasiadi & Piferrer Seabass Multiplex bisulphite sequencing

Mayne et al. (2020) Zebrafish RRBS

Horvath et al. (2020a) Marmoset HorvathMammalMethylChip40

Wang et al. (2020) Mouse, dogs Syntenic Bisulfite Sequencing 

and detected that calorie restriction reduces eAge according to their clock

(Petkovich et al. 2017). The first mouse multi-tissue age predictor was

constructed based on 329 unique CpGs with a median absolute error of 3.33

weeks, mainly trained on young and middle aged mice (0.2-9.5 months) (Stubbs

et al. 2017). A recent multi-tissue age predictor in mouse has been developed by

Meer et al. that uses 435 CpGs, and predicts age across a wide age-range (1-35

months; Meer et al. 2018). It operates on multiple tissues including blood, liver,

brain and heart (Meer et al. 2018). Thompson et al. created four mouse RRBS

clocks to compare statistical methods (Thompson et al. 2018). They found the

most accurate clock resulting from using elastic net regression. However, only

the ridge regression based clocks were able to replicate age reduction in the

Prop1 df/df dwarf mice, while all the clocks were able to show an effect with

calorie restriction (Thompson et al. 2018).

The Wang, Stubbs and Petkovich mouse clocks mentioned here show little

overlap in CpGs utilised (Field et al. 2018). This is probably due to the variability

of RRBS data, where the regional genome coverage differs between protocols

and enzymes used, rather than different statistical methods applied (Field et al.
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2018; Thompson et al. 2018). Transferability of these clocks to datasets outside of

the original studies has therefore been difficult (see Results Chapter 6, pg. 103).

WGBS at a high enough coverage for eAge prediction is expensive, and most

mouse clocks are trained on RRBS. Another alternative is has been developed by

FOXO BioScience, who have collaborated with Van Andel Institute and Illumina

to create a cost-effective Infinium Mouse Methylation Array (FOXO BioScience

2020).

Indeed, other studies have created a similar custom array to accurately predict

age in model organisms. Currently available as a preprint, the Horvath lab have

published an epigenetic clock that works on both rats and humans (Horvath et al.

2020b). This was created using a custom Illumina methylation array called the

HorvathMammalMethylChip40, made up of 36,000 CpGs conserved among 50

mammalian species. The MAE for human and rat data was 0.03, and a correlation

of 0.95. Three single tissue clocks were also created for rat liver, brain and blood,

as well as a multi-tissue clock combining all three tissues (Horvath et al. 2020b).

Another preprint has been released of a sheep epigenetic clock, using the same

array, with a median error of 5.1 months (~3.5-4.2 % of expected sheep lifespan).

The study reported that castrated sheep had a higher age acceleration than age-

matched controls, and a dual human and sheep clock was constructed with an

additional 1,848 human samples. (Sugrue et al. 2020).

A rat clock has also been developed using 134 RRBS whole blood samples

(Levine et al. 2020). Elastic net selected 68 CpGs, and had a correlation of r = 0.9

in their test dataset. It also appears to work in mice, where it predicted reduced

age acceleration after calorie restriction.

Many age associated CpGs are conserved between different species (Horvath

2013; Wang et al. 2017; Horvath et al. 2020b; Wang et al. 2020), which means

that pan-species clocks might be possible. For example, an epigenetic clock

has been created using 394 CpGs from modules of developmental genes with

conserved, age-related methylation changes, between mouse, human and dogs

33



CHAPTER 1. LITERATURE REVIEW

(Wang et al. 2020). If developed, a pan-species clock might give more information

regarding biological ageing, regardless of species.

1.5 Non-DNAm-Based Biomarkers and Age

Predictors

While DNAm has proven to be the most accurate predictor of biological age,

other interesting biomarkers have been used to construct age predictors. It

remains unclear whether DNAm predictors constructed differently captures the

same components of ageing. Non-DNAm biomarkers might capture processes

DNAm is inert to (Table 1.6). Among the earliest biomarkers of ageing was

leukocyte telomere length (LTL; Harley, Futcher, and Greider 1990; Hastie et al.

1990; Lindsey et al. 1991; Frenck, Blackburn, and Shannon 1998). Indeed,

multiple predictive clocks have been developed using telomere length (Tsuji

et al. 2002; Karlsson et al. 2008; Hewakapuge et al. 2008; Ren et al. 2009;

Weidner et al. 2014), and short telomere length in adults is associated with

increased mortality rates (Goglin et al. 2016). The 4977-bp deletion in human

mitochondrial DNA has been explored as a potential biomarker and predictor of

ageing in human skeletal muscle, heart and brain (Meissner et al. 1999;

Meissner et al. 2008b), however, a direct correlation could not be shown due to

the heterogeneity of the mutations (Meissner et al. 1999; Meissner et al. 2008b;

Saeed, Berlin, and Cruz 2012). Progressive loss of the Y chromosome in men

with age has potential as a biomarker of ageing (Jacobs et al. 1963; Guttenbach,

Schakowski, and Schmid 1994; Barros et al. 2020). Another biomarker that has

been developed into several age predictors are signal-joint T cell receptor

excision circles (sjTREC). sjTREC are DNA segments that result from T-cell

receptor gene rearrangement, and their levels correlate negatively with age in

blood. Multiple sjTREC clocks have been constructed, with standard errors

ranging from 7.35 to 9.42 years (Zubakov et al. 2010; Ou et al. 2012; Cho et al.
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Table 1.6: Studies that have developed non-DNAm age predictors.

Clock Type Studies

Leukocyte telomere length (LTL) Tsuji et al. (2002), Karlsson et al. (2008), 
Hewakapug et al. (2008), Ren et al. (2009), Weidner et al. (2014)

Signal-joint T cell receptor 
excision circles (sjTREC)

Zubakov et al. (2010), Ou et al. (2012), 
Cho et al. (2014), Ibrahim et al. (2016), Cho et al. (2017)

Transcriptomic Peters et al. (2015)

Blood Plasma Tanaka et al. (2018), 
Lehallier et al. (2019)

Cellular Morphology Phillips et al. (2017)

Microbiome Galkin et al. 2020

2014; Ibrahim, Gaballah, and Rashed 2016; Cho et al. 2017). In fact, a

combination of sjTREC and CpG methylation provided an accurate age predictor

with a mean absolute deviation of 3.31 years (Cho et al. 2017).

Transcription-based age prediction has also shown potential. Large scale

changes in gene expression with age were initially shown in a small selection of

genes (LRRN3, CD27, GRAP, CCR6, VAMP5 and CD248) which were used to

differentiate between younger (age <65 years) and older subjects (age >=75

years; Harries et al. 2011; Holly et al. 2013). Senescence associated genes

have also shown interesting associations with ageing. For example, p16INK4a

monotonically increases with age, ie. it increases exponentially during young

age and eventually plateaus (Tsygankov et al. 2009). Additionally, seven specific

senescence associated secretory phenotype (SASP) proteins have been shown

to correlate highly with age and adverse post-operation outcomes, and could

predict these outcomes better than chronological age (Schafer et al. 2020).

Peters et al. have shown progress developing a transcriptional clock. After

performing whole-blood gene expression (RNA microarray-based) meta-analysis

with 14,983 individuals, 1,497 genes were identified that are differentially

expressed during ageing. Furthermore, they found 12,280 CpG sites whose

methylation state correlated with these age-associated expression changes.
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They then performed ridge-regression between chAge and gene expression of

11,908 genes to generate a transcriptomic clock. The age acceleration between

transcriptomic age and chAge correlated with age-associated features such as

blood pressure, cholesterol levels, fasting glucose, and body mass index (Peters

et al. 2015). A separate study found 2213 genes that are differentially expressed

in blood over time, with the most differentially expressed genes affected by a

subset of 77 putative, causative genes (Bryois et al. 2017). These genes could

potentially be used to construct a transcriptomic clock.

Proteomic clocks are an alternative age predictor that has recently been

demonstrated with blood plasma proteins (Tanaka et al. 2018; Lehallier et al.

2019). The first plasma-based proteomic clock used 240 healthy adults aged

22-93 years old, and found 217 proteins that significantly correlated with age

(Tanaka et al. 2018). Elastic net regression was performed on these 217 plasma

proteins to create a predictor (76 proteins after penalised regression) with a

correlation of 0.94 with chAge (Tanaka et al. 2018). In a second study, 2925

plasma proteins were measured from 4265 adults ranging in age from 18-95

(Lehallier et al. 2019). 373 of these proteins were used to construct a proteomic

clock to predict age and healthspan (Lehallier et al. 2019). Interestingly, while

some of the plasma proteins identified in this study progressed linearly, some

had a non-linear relationship with age. Waves of proteomic-plasma changes with

age were also associated with age-associated diseases and phenotypic traits.

Recently, Phillip et al. used a combination of biophysical and bio-molecular

assays to find the best cellular parameters to predict chAge in primary dermal

fibroblasts (Phillip et al. 2017). Since these assays relied on high-throughput

single-cell technologies, cellular heterogeneity was also analysed by measuring

cell-to-cell variation of biophysical and bio-molecular features, which showed

potential as a predictor of age. Phillip et al. then found that cell roughness peak,

combined with nuclear size, provided the one of the best predictors of chAge

(Phillip et al. 2017). While this study is greatly limited by it’s cohort size (9

36



CHAPTER 1. LITERATURE REVIEW

samples in training dataset), it highlights the benefits of quantifying

non-traditional measurements of age, such as biophysics, which has been

sparsely investigated in an ageing context. Another recently developed and

unusual age predictor uses microflora taxonomic profiles to predict age (Galkin

et al. 2020).

These novel approaches have proven that alternate methods such as

proteomic age prediction is possible. Perhaps looking at DNAm in combination

with non-DNAm based biomarkers will broaden our understanding and predictive

power of biological ageing and mortality. Composite clocks such as PhenoAge

and GrimAge (see Chapter 1.4.4, pg. 19) are first steps in that direction.

Transcription clocks may reveal regulators of biological ageing, for example, if

key ageing genes are found to be linked with eAge either by correlating with age

acceleration or directly with methylation changes of key clock CpGs.

1.6 Potential Rejuvenation Strategies

One of the most exciting applications of eAge predictors is to screen potential

molecules and compounds for use in anti-ageing therapies. Many recent studies

have been dedicated to the slowing, and even the reversal of ageing, both of

which were long assumed impossible. These rejuvenation strategies can be

categorised into one of four wide-ranging groups; systemic (blood) factors,

metabolic alterations, senescent cell ablation and cellular reprogramming

(Mahmoudi, Xu, and Brunet 2019).

1.6.1 Blood Factors

Blood factors have shown rejuvenative properties through heterochronic

parabolic studies, whereby the circulatory systems of a young and old organism

are fused. Exposure of aged mice to young serum was initially shown to

increase the regenerative capacity of muscle stem cells and hepatocytes by
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restoring Notch signalling and decreasing Wnt signalling pathways (Conboy

et al. 2005; Brack et al. 2007). These findings are critical in showing that despite

having an aged phenotype, these cells still have a regenerative capacity given

the correct environment to promote tissue regeneration (Conboy et al. 2005;

Brack et al. 2007).

Since these initial findings, heterochronic parabiosis has been shown to

ameliorate age-related hallmarks in cardiomyocytes (Loffredo et al. 2013),

skeletal muscle (Sinha et al. 2014; Katsimpardi et al. 2014), brain function

(Villeda et al. 2011; Villeda et al. 2014; Katsimpardi et al. 2014; Smith et al.

2015), the central nervous system (Ruckh et al. 2012) and bone regeneration

(Baht et al. 2015). It also appears that factors in blood plasma, rather than blood

cells themselves, are responsible for these rejuvenative effects (Ruckh et al.

2012; Villeda et al. 2014). Human blood plasma was able to restore mouse

hippocampal function, with the candidate anti-ageing factor acting here being

TIMP2, a metalloproteinase inhibitor (Castellano et al. 2017).

However, a possible explanation of heterochronic parabiosis is that young

blood dilutes pro-ageing factors present in older blood (Mahmoudi, Xu, and

Brunet 2019). These pro-ageing factors discovered through heterochronic

parabiosis experiments include eotaxin (Villeda et al. 2011) and β2-microglobulin

(Smith et al. 2015). Another pro-ageing example is excessive Wnt signalling,

which promotes skeletal muscle to aberrantly convert to fibrous connective

tissue, a hallmark of ageing muscle (Brack et al. 2007). The involvement of Wnt

in ageing is supported by another report where Wnt signalling induces activation

of the mTOR pathway, which in turn promoted epidermal stem cell exhaustion

and ageing (Castilho et al. 2009).

These studies have shown that old blood contains factors that promote

ageing, while young blood contains factors which impede ageing. However, the

direct interactions between these factors and the signalling pathways they are

involved in still need to be fully discerned before clinical application (Mahmoudi,
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Xu, and Brunet 2019). A single-cell RNA sequencing (scRNA-seq) study of 13

organs from old mice five weeks after undergoing heterochronic parabiosis, has

been released as a preprint (Pálovics et al. 2020). It revealed that young blood

reverses global loss of gene expression with age, particularly genes encoding

components of the electron transport chain. This highlights mitochondrial

restoration as a key component of heterochronic parabiosis. Multiple cell types,

including haematopoetic stem cells, were also rejuvenated. Once peer-reviewed,

this study may form the basis of further exploration into the precise

understanding of blood born factors that promote ageing or rejuvenation.

1.6.2 Metabolic Alterations

Metabolic alterations primarily involve the manipulation of dietary intake which in

turn offset ageing by improving stress response and autophagy (Mahmoudi, Xu,

and Brunet 2019). Dietary restriction is one of the main examples, of which there

are many different kinds (Brandhorst et al. 2015).

Dietary Restrictions

Calorie restriction (CR) is one of the most common dietary restrictions, whereby

calorie consumption is reduced without triggering malnutrition (Weindruch et al.

1986; Montano 2014). The effect of CR increasing lifespan has been known

for over 70 years (McCay, Crowell, and Maynard 1935; Weindruch et al. 1986;

Weindruch et al. 1988; Bordone and Guarente 2005). In rats, it has been shown to

ameliorate age-related hallmarks in the epigenome (Kim et al. 2016) and oxidative

stress in peripheral nerves (Opalach et al. 2010). A two year trial of CR in humans

(n=34, control = 19) showed a slowed metabolic rate, along with reduced oxidative

stress (Redman et al. 2018).

Intermittent fasting (IF) is another dietary example, which involves one or more

fasting day per week (0-800 kcal per fast day), and is commonly structured as 5:2

ratio of normal to diet days per week (Barnard, Snowdon, and Hewitson 2018).
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Studies with rodents have shown that IF can promote resilience against cancer,

diabetes, heart disease and neuro-degeneration (reviewed in Longo and Mattson

2014). In humans, IF has shown to not only promote weight loss, but also proven

as efficient as CR at improving insulin sensitivity and blood pressure (Harvie et al.

2011).

Some dietary restrictions are capable of rejuvenation even when initiated in

mid-life or later. The periodic fasting-mimicking diet (FMD) is one example,

which is designed to achieve the effects of fasting while providing essential

micronutrients and minimising the burden of fasting. In humans, FMD is

structured as follows; ~1090 kcal is consumed on the first day (10% protein,

56% fat, 34% carbohydrate), and days 2-5 ~725kcal are consumed (9% protein,

44% fat, 47% carbohydrate) (Brandhorst et al. 2015). Clinical trials in humans

showed FMD benefited test subjects by reducing body weight, cardiovascular

risk, and IGF-1 expression, while increasing ketone body production (Brandhorst

et al. 2015; Wei et al. 2017). FMD was able to increase median life span, reduce

cancer incidence in middle aged mice (Brandhorst et al. 2015), and reduce risk

of diabetes in young mice (Wei et al. 2018).

Another diet that may have rejuvenative effects when initiated later in life is

the ketogenic diet (Newman et al. 2017; Roberts et al. 2017). This diet involves

eating a normal caloric intake, whilst also minimising carbohydrate consumption

(>50g) (Paoli and Bosco 2015; Mahmoudi, Xu, and Brunet 2019). Like the fasting

methods previously mentioned, the ketogenic diet initiates ketosis, which shifts

the body towards metabolising fatty acids for energy rather than carbohydrates

(Paoli and Bosco 2015; Newman et al. 2017; Roberts et al. 2017).

mTOR and Rapamycin

What all these diets mentioned have in common is that they manipulate nutrient

sensing pathways, particularly those involving mTOR and insulin/insulin-like

growth factor (IGF), which downstream extends longevity (Weindruch et al.
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1986; Weindruch et al. 1988; Blüher, Kahn, and Kahn 2003; Holzenberger et al.

2003; Pearson et al. 2008; Johnson, Rabinovitch, and Kaeberlein 2013). mTOR

forms the catalytic core of two protein complexes; mTORC1 (characterised

primarily by the presence of RAPTOR), and mTORC2 (characterised primarily

by the presence of RICTOR) (Johnson, Rabinovitch, and Kaeberlein 2013).

mTORC1 promotes cellular proliferation, growth and survival via anabolic

processes such as lipid, ribosomal and protein biosynthesis, mitochondrial

metabolism, and also catabolic functions such as inhibition of autophagy

(Laplante and Sabatini 2009; Zoncu, Efeyan, and Sabatini 2011; Watanabe, Wei,

and Huang 2011). Rapamycin is a drug which acts by binding with FKBP12 (a

subunit of mTORC1), which in turn inhibits mTORC1 by interrupting interactions

between mTOR and RAPTOR (another key subunit of mTORC1; Johnson,

Rabinovitch, and Kaeberlein 2013; Kazyken et al. 2019). Inhibiting mTOR via

rapamycin as a drug intervention extends lifespan in mice by acting as a dietary

restriction mimic (Harrison et al. 2009; Chen et al. 2009; Miller et al. 2011;

Anisimov et al. 2011; Neff et al. 2013). As well as increased longevity, rapamycin

promotes autophagy, a process the decline of which is associated with a number

age-related diseases such as diabetes, cancer, cardiovascular and

neurodegenerative diseases (Cuervo 2008; Mizushima et al. 2008; Johnson,

Rabinovitch, and Kaeberlein 2013; Mahmoudi, Xu, and Brunet 2019; Singh et al.

2019). Rapamycin and the mTOR signalling pathway have since become major

candidates in anti-ageing therapy (Johnson, Rabinovitch, and Kaeberlein 2013).

mTORC2 also promotes cellular proliferation and survival, however its overall

function is less clearly defined than mTORC1 (Kazyken et al. 2019). While

mTORC2 is not directly influenced by rapamycin, it is theorised that chronic

exposure can sequester mTOR from mTORC2, which leads to activation of

forkhead box (FOXO) genes (Johnson, Rabinovitch, and Kaeberlein 2013; Singh

et al. 2019). FOXO genes (which are also activated by low insulin/IGF signalling)

in turn control a cascade of genes that promote autophagy and stress resistance
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(Johnson, Rabinovitch, and Kaeberlein 2013; Singh et al. 2019).

Sirtuins and Resveratrol

Sirtuins are a set of genes correlated with nutrient sensing that, when

upregulated, can delay the onset of age-related diseases (Pfluger et al. 2008;

Banks et al. 2008; Kanfi et al. 2010; Hubbard and Sinclair 2014; Kugel et al.

2016) and increase longevity (Kanfi et al. 2010; Satoh et al. 2013; Mercken et al.

2014; Mitchell et al. 2014). Sirtuins are highly conserved NAD+-dependent

deacylases involved in a variety of processes, including transcription regulation

(eg. FOXO genes), cell survival, metabolism regulation, DNA repair, circadian

rhythm regulation and inflammation (reviewed in Kane and Sinclair 2018).

However, there is controversy surrounding the role of sirtuins in longevity. Firstly,

their role in CR is still debated. Since CR enhances NAD+ production, and also

converts nicotinamide (a sirtuin inhibitor) to niacin. It is therefore reasonable to

hypothesise that CR increases sirtuin activation and plays a roll in CR mediated

longevity (Dang 2014). Indeed, deletion of SIR2 (a homolog of SIR1) blocks

CR-induced life extension in yeast (Kaeberlein, McVey, and Guarente 1999),

with similar results reported in worms (Rogina and Helfand 2004) and fruit flies

(Wang et al. 2006). While the direct role of sirtuins in CR is still being elucidated,

other studies have shown that sirtuins mediate the rejuvenative effects of CR in

skeletal and cardiac muscle (reviewed in Zullo et al. 2018).

Resveratrol is a drug that has been routinely studied for life extending

properties. This compound can be extracted from red wine, and has shown life

extension in yeast, worms, flies and fish (Howitz et al. 2003; Wood et al. 2004).

While studies have shown that it does not extend life in mice fed on normal diets

(Baur et al. 2006; Pearson et al. 2008; Miller et al. 2011), mice fed on a calorie

high diet appear to have life extension, improved mitochondrial function and

protection from diet-induced obesity and insulin resistance (Baur et al. 2006;

Lagouge et al. 2006). Resveratrol appears to induce similar transcriptional
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changes, ageing retardation, and improved insulin mediated glucose uptake in

muscle as CR (Barger et al. 2008). It has been shown that sirtuins are activated

by resveratrol (Dai et al. 2010; Lakshminarasimhan et al. 2013) which is

postulated as the reason why resveratrol promotes life extension, however, this

activation has not been shown in vivo and the life extension effects also differ

between worm and fly strains (Baur et al. 2006). Hence, the exact role of

resveratrol in sirtuin activation is still debated (Callaway 2010; Dang 2014), and

has been the subject of controversy. In 2008, the pharmaceutical company

GlaxoSmithKline bought Sirtris for 720 million dollars, a company that was

researching the anti-ageing properties of reseveratrol and its role in activating

sirtuins (Callaway 2010). The clinical trial for the proprietary version of

resveratrol was later cancelled by Sirtris (Popat et al. 2013), and the company

was dismantled and absorbed by GlaxoSmithKline (Ledford 2013; Carroll 2015).

1.6.3 Senescent Cell Ablation

Accumulation of Senescent Cells and Ageing

Cellular senescence is a cell-intrinsic mechanism that irreversibly and stably

halts cell division in response to intrinsic and extrinsic stressors such as

DNA-damage, telomere shortening, oxidative stress, oncogenic and mitogenic

stimuli (Hernandez-Segura, Nehme, and Demaria 2018; Herranz and Gil 2018).

Initially, this phenomenon was identified in cultured fibroblasts that when left to

divide undergo a finite number of cell divisions until they stop (known as the

“Hayflick limit”; Hayflick and Moorhead 1961). This limited replicative capacity of

cultured cells (also known as replicative senescence) suggested a mechanism

of ageing at a cellular level, which would therefore contribute to organismal

ageing (Rattanavirotkul, Kirschner, and Chandra 2020). Indeed, senescent cells

accumulate in aged tissue as less immune cells (eg. macrophages, natural killer

cells and T-cells) are present to clear them (Schmeer et al. 2019), which is
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associated with decline in the adaptive immune system with age (McElhaney

and Effros 2009). Senescent cells secrete inflammatory factors (a state known

as senescence-associated secretory phenotype, SASP) which over time can

damage nearby cells, hence they attract immune system (IS) cells for clearance

(Campisi 2013; Schmeer et al. 2019). This precludes the possibility that

senescent cells are produced at a higher rate in ageing tissue, which would

increase cellular damage, oncogenic mutations, and/or senescence-inducing

events (Sedelnikova et al. 2004; Wang et al. 2009; Hewitt et al. 2012; Campisi

2013). SASP inhibitors such as rapamycin, metformin, or JAK1/2 inhibitors are

also of interest for reducing age/senescence related inflammation, however, their

precise properties and side affects in regards to SASP is still not fully

understood (Kirkland and Tchkonia 2017).

Whether or not the accumulation of senescent cells (and therefore

accumulation of SASP) is causative or a bi-product of ageing is only recently

becoming apparent (Campisi 2013). Clearance of p16 (cyclin-dependent kinase

inhibitor and known marker of senescence) positive cells in progeroid mice, both

throughout life and in later life, delayed age related pathologies and extended

lifespan (Baker et al. 2011). Later, the same experiment was conducted with

naturally aged mice which also extended lifespan, delayed tumourigenesis and

attenuated age-related degeneration of organs (Baker et al. 2016). These

studies indicate that SASP might directly contribute to ageing. However, it

cannot be ruled out that ageing and senescence might mutually influence each

other through a positive feedback loop, exacerbating tissue damage and an

aged phenotype (Schmeer et al. 2019).

Senolytics

The clearance of senescent cells as a potential therapeutic treatment has

stimulated research into compounds that can selectively kill them. Senolytics are

such drugs, which are able to specifically kill senescent cells by inducing
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apoptosis (Kirkland and Tchkonia 2017). The first senolytics were discovered by

Zhu et al. 2015. They hypothesised that since senescent cells are resistant to

apoptosis (Wang 1995), specific senescent cell anti-apoptotic pathways

(SCAPs) exist and are up-regulated to resist apoptosis. Small interfering RNA

were used to screen for and inhibit these SCAPs (Zhu et al. 2015), and were

targeted for drug interventions promoting apoptosis in senescent cells. The most

promising drugs revealed in this study were dasatinib and quercetin, which act

as kinase inhibitors promoting apoptosis and normally used in cancer treatments

(Zhu et al. 2015). Since then, a large number of senolytics have been

discovered, however, their full function and applicability in anti-ageing therapy

needs to be assessed (Mahmoudi, Xu, and Brunet 2019).

A key aspect of ageing is a decline in stem cell population (as mentioned in

Chapter 1.3.), most notably due to senescence. Ablation of senescent cells in

aged stem cell populations is crucial for effective rejuvenation to ensure that

healthy tissue can be renewed. Recent senolytics research showed that the

removal of senescent cells is enough to spur stem cell propagation. ABT263 for

example, is a senoyltic which not only cleared senescent haematopoetic stem

cells (HSCs) of both aged and irradiated mice, but also rejuvenated their HSCs

(Chang et al. 2016). Ruxolitinib (a JAK1/2 inhibitor) showed promise

rejuvenating fat progenitors in mice by clearing senescent cells present (Xu et al.

2015).

A treatment that has shown senyolytic properties and potential for combating

ageing is hyperbaric oxygen therapy (HBOT; Hachmo et al. 2020). HBOT utilises

100% oxygen in an environmental pressure greater than one absolute

atmospheres to increase the concentration of oxygen dissolved in bodily tissues

(Hachmo et al. 2020; Amir and Shai 2020). Certain HBOT-induced hyperoxic

environments mimic the effects of hypoxia, and can promote stem cell

proliferation, mitochondrial biogenesis, neurogenesis and angiogenesis, and

expression of hypoxia induced factor, vascular endothelial growth factor (VEGF)
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and SIRT (Amir and Shai 2020; Hachmo et al. 2020). Repeated, intermittent

HBOT significantly reduced the number of senescent immune system cells and

also increased telomere length of immune system cells in healthy adults aged

65+ (Hachmo et al. 2020). It also up-regulated anti-oxidant genes in response to

increased ROS, which with repeat exposures becomes protective (Amir and

Shai 2020; Hachmo et al. 2020). Since high ROS and mitochondrial dysfunction

have been associated with ageing (López-Otı́n et al. 2013; Singh et al. 2019), it

is possible that HBOT rejuvenates via increased anti-oxidants and better

regulation of ROS (Cimino et al. 2012; Amir and Shai 2020; Hachmo et al.

2020). Unfortunately, telomere length was the only proxy used by Hachmo et al.

to measure biological age, hence further studies (involving DNAm and eAge for

example) are needed to quantify and confirm any rejuvenative properties of

HBOT.

The clearance of senescent cells through treatments and drugs such as

senolytics, have shown promise as an anti-ageing therapies. They may prove

highly effective when combined with other rejuvenative techniques (e.g. CR

mimics). However, more research is needed to properly assess the beneficial

and detrimental side affects of senolytics before they can be used clinically

(Mahmoudi, Xu, and Brunet 2019).

1.6.4 Cellular Reprogramming and Rejuvenation

Single Cell Nuclear Transfer

In 1957, Conrad Waddington postulated that once a cell is fully differentiated, it

cannot revert back to a pluripotent state (Waddington 1957). The first evidence

that cellular differentiation is malleable came shortly after with the development

of somatic cell nuclear transfer (SCNT; Gurdon, Elsdale, and Fischberg 1958;

Gurdon 1962), where a somatic cell nucleus is transferred into an enucleated,

unfertilized egg cell and divides to form an embryo that is genetically identical
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to the donor cell. This demonstrated that cells retain the information to become

pluripotent and that a somatic cell can, in essence, be rejuvenated (Takahashi

and Yamanaka 2016).

Initial cloning experiments with SCNT were conducted with frogs (Gurdon,

Elsdale, and Fischberg 1958; Gurdon 1962). SCNT as a cloning process gained

publicity when it was used to create the first even cloned mammal, “Dolly” the

sheep. An SCNT-derived artificial sheep zygote was implanted into a surrogate

mother, and resulted in the birth of a viable cloned sheep genetically identical

to the initial donor (Wilmut et al. 1997). One of the first questions raised was

regarding the “age” of Dolly’s cells (Marión and Blasco 2010). Did the biological

age of Dolly’s cells match her chAge, or the chAge of her somatic donor? Indeed,

the premature death of Dolly (aged 6.5 years), with normal life expectancy of 12

years for Dolly’s sheep breed, combined with developing osteoarthritis (Sinclair et

al. 2016; Burgstaller and Brem 2017) raised concerns regarding Dolly’s biological

age.

Telomere length was one of the main biomarkers available to measure age

when Dolly was first created (Harley, Futcher, and Greider 1990; Hastie et al.

1990; Lindsey et al. 1991; Frenck, Blackburn, and Shannon 1998). Analysis of

Dolly’s cells revealed that the telomeres were actually shorter by ~20%

compared to age-matched control sheep (Shiels et al. 1999). This observation

initially suggested that SCNT does not reset biological age to zero (Marión and

Blasco 2010). However, analysis of telomeres of other SCNT-derived sheep

(including sheep derived from the same cell line as Dolly) and animals (eg.

mice) had normal telomere lengths for their respective age groups (Wakayama

et al. 2000; Lanza et al. 2000; Tian, Xu, and Yang 2000; Betts 2001; Clark et al.

2003; Sinclair et al. 2016). Indeed, a recent study showed that SCNT of

telomerase haplo-insufficient cells restores telomere length (Sung et al. 2014).

The exact reason Dolly had such anomalous health conditions remains a

mystery, but it is clear that the reprogramming qualities of the ovum hold
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rejuvenative potential that could be applied in anti-ageing therapy.

Induced Pluripotent Stem Cells

Groundbreaking work by Takahashi and Yamanaka in 2006 further proved that

somatic cell identity is indeed re-writable. They showed that over-expression of

four transcription factors (Oct3/4, Sox2, Klf4 and c-Myc, now referred to as the

“Yamanaka factors” or “OSKM” factors) rearranges the epigenetic landscape and

converts somatic cells to a pluripotent state (Takahashi and Yamanaka 2006).

Since the creation of induced pluripotent stem cells (iPSCs) in vitro, it has become

clear that cellular identity is dictated by epigenetic changes, rather than by loss

or alterations of genomic DNA (Singh and Zacouto 2010; Koche et al. 2011). The

process of generating iPSCs has been optimised over the years, and has also

been achieved via chemical induction, rather than gene expression, in mouse

cells (reviewed in Ji et al. 2016; Takeda et al. 2018).

Partial Reprogramming and Epigenetic Rejuvenation

iPSCs offer the promise of directed, personalised therapy (ie. iPSCs grown from

patient cells, minimising incompatibility) for diseases that are currently incurable,

such as neurodegenerative diseases of the central nervous system, heart

infarction, diabetes mellitus, and also liver, lung, and kidney disease varieties

(Moradi et al. 2019). However, ethical and safety considerations have to be met

before iPSCs can be implemented for in vivo procedures (Singh et al. 2015;

Takahashi and Yamanaka 2016; Moradi et al. 2019), primarily regarding cancer

risk. Direct injection of human embryonic stem cells (hESCs) invariably leads to

cancer in mice due to their high proliferation rate and substantial differentiation

potential (Hentze et al. 2009; Abad et al. 2013; Ohnishi et al. 2014; Moradi et al.

2019).

It was presumed that as a cell reverts to a pluripotent state the aged

epigenome is also reset to zero (Singh and Zacouto 2010; Manukyan and Singh
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2012). Indeed, the Horvath clock confirmed that hESCs and iPSCs have an

eAge of zero (Horvath 2013). Moreover, the telomeres of iPSCs are longer than

the parent differentiated cells, and are comparable in length to telomeres of

control hESCs (Marion et al. 2009; Lapasset et al. 2011). Telomere resetting

also occurs when reprogramming senescent somatic cells from both

centinarians, supercentinarians (albeit at a lower incidence) and HGPS samples

(Lapasset et al. 2011; Lee et al. 2020). Oxidative stress, gene expression

profiles and mitochondrial metabolism are also reset and indistinguishable from

hESCs (Lapasset et al. 2011). If the reversal of age can be uncoupled from

complete dedifferentiation, a viable rejuvenation strategy might exist, a process

termed “epigenetic rejuvenation” (Singh and Zacouto 2010; Manukyan and

Singh 2012; Rando and Chang 2012).

To achieve epigenetic rejuvenation via reprogramming factors, one must look

at the intermediate states during dedifferentiation, where cells have started to

epigenetically change (presumably de-age), but have not yet fully

dedifferentiated (ie. lost somatic identity; Singh and Zacouto 2010; Manukyan

and Singh 2012). Partially reprogrammed cells are such examples, which are

isolated between days 7 and 11 during OSKM-induced dedifferentiation but have

not yet lost their cellular identity (Tanabe et al. 2013). Thus, partial

reprogramming is a method of using OSKM factors to revert aged cells to a

younger state. The epigenetic rejuvenation potential of partial reprogramming

with OSKM factors was initially revealed by expressing OSKM+LIN28 in human

senescent fibroblasts, which led to restoration of the high mobility of histone

protein 1β by day 9, a key characteristic of young fibroblasts (Manukyan and

Singh 2014). Ocampo et al. further demonstrated that partial reprogramming,

achieved by transient, periodic induction of OSKM (OSKM expressed for 2 days,

then not expressed for 5 days), ameliorates signs of ageing without complete

loss of cellular identity (Ocampo et al. 2016). They conducted partial

reprogramming first on progeroid mouse fibroblasts and alleviated
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age-associated hallmarks, such as DNA damage, nuclear envelope damage,

dysregulation of histone modifications, stress and senescence associated

factors, and mitochondrial-associated reactive oxygen species (ROS)

production. Similar rejuvenation of dysregulated histone modifications was also

observed when partial reprogramming was conducted on high-passage human

fibroblasts (derived from iPSCs). Moreover, they applied partial reprogramming

in vivo to progeroid mice, and found that not only was their lifespan extended,

but also no cancer or teratomas developed. When repeated in naturally aged

mid-life mice, regenerative capacity of muscle and pancreas after injury was

improved, as well as glucose tolerance (Ocampo et al. 2016).

1.6.5 Treatments That Reduced Biological Age According to

Epigenetic Clocks

Drug Interventions

eAge offers a unique proxy for biological age that allows us to quantifiably

measure the extent of rejuvenation of an anti-ageing treatment. Therefore,

existing candidate therapies and new drugs can be validated experimentally, with

the increase or decrease in eAge providing a measure of their efficacy. For

example, vitamin D-sufficient individuals have a lower eAge acceleration

according to the Horvath clock, and longer LTL (Chen et al. 2019; Vetter et al.

2020). Epigenetic clocks applied to mouse models are also effective at testing

anti-ageing drug candidates. Wang et al. demonstrated this in vivo with their

mouse liver age predictor. They found that CR, rapamycin and Prop1df/df

dwarfism (which also results in up to 1.5 fold life extension) caused significant

age deceleration compared to wild type, untreated age-matched control mice

(Wang et al. 2017). Other studies have also shown CR to reduce age

acceleration in mice according to a mouse (Petkovich et al. 2017) and rat

epigenetic clock (Levine et al. 2020).
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Horvath et al. showed that Rapamycin reduces eAge in humans

keratinocytes, according to the SB clock (Horvath et al. 2019). Furthermore, they

showed that rapamycin in combination with Y-27632 (a rho inhibitor which

promotes cell division) reduces eAge without inhibiting cell proliferation. Both the

rapamycin and rapamycin+Y-27632 treated cells entered replicative senescence

with no increase of eAge. This means the action by which rapamycin reduces

eAge is unrelated to cell proliferation or senescence suppression.

Boroni et al. applied their own skin-specific age predictor (see Chapter 1.4.2,

pg. 15) to three day rapamycin treated fibroblasts from a HGPS patient (Boroni

et al. 2020). They found no significant change in eAge. Cells were incubated

with rapamycin for three days, which might not be enough time induce a

reduction in eAge. When repeated with skin biopsies (from healthy patients)

rather than cell cultures, rapamycin did reduce the eAge of a number of

samples. However, the difference in eAge between treated and non-treated skin

biopies was not significant. Boroni et al. also treated fibroblasts with ABT-263 (a

senolytic) for three days. While the difference in eAge from healthy control cells

was not significant, the treated samples exhibited increased eAge the higher the

senolytic concentration, despite a decrease in senescent cells and expression of

age-associated genes (Boroni et al. 2020). While it is not clear why this

occurred, it does highlight that the mechanisms controlling the epigenetic clock

(or at least, in the case of the Boroni et al. skin clock) do not necessarily

correlate directly with age related gene expression changes.

While the number of eAge related anti-ageing studies conducted with cell

cultures and mouse models is growing, the number conducted in human clinical

trials is sparse. Nonetheless, a preliminary study was conducted by the Horvath

lab, whereby a “immune intervention” was applied to nine nominally healthy men

aged 51-65 over the course of a year (Fahy et al. 2019). The immune

intervention had three components; recombinant human growth hormone

(rhGH), dehydroepiandrosterone (DHEA) and metformin. rhGH is the main

51



CHAPTER 1. LITERATURE REVIEW

component, which has been shown to have thymotrophic and immune

restorative properties (Kelley, Brief, and Westley 1986; Napolitano et al. 2008;

Plana et al. 2011). DHEA is an abundant steroid that declines with age, however

its role as an anti-ageing supplement and potential side effects is still debated

(Samaras et al. 2013). Metformin is a calorie restriction mimic that has shown

anti-ageing properties in model organisms, and reduces incidence of age-related

disease in humans such as cancer (Soukas, Hao, and Wu 2019). Both DHEA

and metformin were also added to minimise any “diabetogenic” effect of rhGH,

since rhGH can increase insulin levels (Marcus et al. 1990). There was a ~1.5

year mean eAge decrease from baseline age after 1 year of treatment (Fahy

et al. 2019). The rate of eAge decrease was -1.6 years/year between 0 and 9

months, and -6.5 years/year between 9 and 12 months for all clocks tested

(Horvath, Hannum, PhenoAge and GrimAge). A reduction of fat in the thymus (a

sign of thymic rejuvenation) was observed, and a decrease in CD38+ monocytes

(increases are associated with age-related inflammation; Camacho-Pereira et al.

2016), and an increase in lymphocytes (Fahy et al. 2019). While the treatment

shows potential as an anti-ageing/immunosenescent therapy, a larger study has

to be conducted to validate Fahy et al.’s findings, particularly the mechanism of

action of their treatment. Growth hormone (GH) has a large variety of biological

effects such as energy homeostasis and metabolism (Vijayakumar, Yakar, and

LeRoith 2011), hence the eAge rejuvenation observed here might be due to

activity independent of restoring the immune system. In addition, this study

highlights the need to carefully explore the role of GH in ageing. Current theories

show that decreased GH lead to decreased IGF-1 and insulin signalling, which

downstream deactivates mTOR and promotes longevity (Singh et al. 2019).

While this has been shown in many animal models such as mouse and worm,

their roles in human ageing are unclear (reviewed in Junnila et al. 2013; Reddy

and Chaiban 2017; Vitale et al. 2019). It appears that human longevity is more

related to insulin sensitivity rather than IGF-1 levels, and the analysis of IGF-1
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levels is confounded by its inverse proportionality to insulin sensitivity (Vitale

et al. 2019; Fahy et al. 2019). Hence, the effects of IGF-1 and insulin need to be

untangled first before rhGH can be used as an anti-ageing therapy (Fahy et al.

2019).

Yamanaka Factor-Induced Rejuvenation

Since Ocampo et al. transiently expressed OSKM in mice (see Chapter 1.6.4,

pg. 46), partial reprogramming has become an exciting avenue for rejuvenative

research. Unfortunately, eAge prediction for mouse was unavailable for Ocampo

et al., hence the exact extent of rejuvenation by partial reprogramming in vivo

has not yet been determined. Understanding the kinetics of partial

reprogramming is essential as an anti-ageing therapy to avoid tumorigenesis.

Sarkar et al. conducted a similar experiment to Ocampo et al. in adult human

dermal fibroblasts and endothelial cells (Sarkar et al. 2020). They transiently

expressed OSKM+LIN28+NANOG (OSKMLN) for four days in aged samples

then analysed gene expression and methylation two days after interruption

(Ocampo et al. by comparison used a doxycyclin-inducable system and forced

expression 2-4 days in cell cultures). Sarkar et al. compared both before and

after treatment eAge and expression with young samples. According to the

Horvath clock, the OSKMLN treatment significantly reduced age in both the

fibroblasts (mean age acceleration = -1.84) and endothelial cells (mean age

acceleration = -4.94), although the effect was more pronounced in the latter. In

both tissue types, RNA-seq analysis revealed that treated cells were

transcriptionally comparable to younger cells rather than the original age cells.

This could also be seen to a certain extent in a PCA analysis where in both

tissues, treated cells tend to cluster closer to young cells than the original aged

cells. Rejuvenative effects were also observed in analysis of other markers in

terms of heterochromatin (HP1γ), lamina (LAP2α), proteosomal activity,

autophagosome formation and mitochondrial ROS. In addition, expression of cell
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identity markers was maintained in the treated cells, meaning no loss of somatic

identity occurred (Sarkar et al. 2020). The main caveat however, is the limited

sample size; three young (25-35 years), three aged (60-90 years) and therefore

three treated samples. A repeat experiment with a larger sample size is required

to correctly assess the rejuvenative potential of partial reprogramming. It should

also be noted that the Horvath clock does not reliably predict the eAge of

fibroblasts (Horvath 2013; Horvath et al. 2018; Horvath et al. 2019). Boroni et al.

developed their own skin-specific eAge predictor (see Chapter 1.4.2, pg. 15) and

tested it on Sarkar et al’s OSKML treated fibroblast dataset (Boroni et al. 2020).

According to their skin clock, three of the four samples declined in eAge after

treatment, while according to the Horvath clock, only two of the samples actually

declined in eAge after treatment. Hence, caution should be taken regarding

which epigenetic clock is chosen for a given experiment.

Stem cell decline in functionality and proliferation is an important hallmark

and potential cause of ageing (see Chapter 1.3, pg. 8). Can partial

reprogramming rejuvenate old stem cells? Sarkar et al. also tested this, by

transplanting young, old, and transient OSKMLN-treated old mouse-derived

skeletal MuSCs into injured muscles of immunocompromised mice. They

observed an improved regenerative ability in the OSKMLN-treated old MuSCs,

comparable to that of the young MuSCs, and no teratomas or neoplastic legions

developed. Improved muscle function was also observed in the muscles grafted

with OSKMLN-treated old MuSCs compared to untreated old MuSCs. Sarkar et

al. repeated the experiment with old (60-80 years) human MuSCs, and found

that they also had a higher proliferative capacity than the untreated cells, and

comparable to young human MuSCs (Sarkar et al. 2020). Taken together, these

results provide further evidence that partial reprogramming has potential as an

anti-ageing therapy, however, more testing is still required to understand the

precise kinetics of the process.

An approach similar to partial reprogramming has recently been used to
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restore the vision of mice (Lu et al. 2020). Lu et al. showed that ectopic

expression of Oct4, Sox2 and Klf4 (OSK) stimulated axon regeneration in an

optic-nerve-crush-injury mouse model and also recovers vision in a glaucoma

mouse model. The regeneration process requires active DNA demethylation

mediated by TET1 and TET2. c-Myc was excluded from their treatment to avoid

teratoma formation, as it is an oncogene that reduces lifespan in mice (Hofmann

et al. 2015). Unfortunately, the regeneration results could not be replicated in

aged mice, only the injury model which is not representative of age-induced

advance vision loss. Unlike Ocampo et al. who cyclically induced OSKM

expression (continuous expression for 2 days out of 7 days), Lu et al. expressed

OSK continuously, and showed that 10-18 months of continuous expression did

not increase tumour incidence. However, no direct measurement of cell identity

or extent of dedifferentiation (eg. somatic or pluripotency genes) was performed.

This makes it difficult to confirm epigenetic rejuvenation is occurring, since it is

possible that cells are becoming more stem-like and are regenerating the tissue,

rather than an age related rejuvenation occurring. This distinction is crucial,

otherwise long term cancer development is still possible if cells are becoming

more stem-like.

Two epigenetic clocks were used to assess the extent of rejuvenation in their

experiments. The retinal ganglion cells (RGCs) eAge were analysed with the

ribosomal clock, which was developed for mice and uses DNAm of ribosomal

DNA to quantify age. The ribosomal clock revealed that while non-OSK-treated

RGCs increased in eAge after injury, the OSK treatment mitigated this effect.

The second eAge predictor used was created in the same study using 38 RRBS

mouse samples varying in age from 1 to 30 months old, and showed a significant

eAge decrease in the treated samples. However, they also included injured mice

and OSK-treated samples in their training. There is the possibility that these

samples, particularly the OSK-treated samples, might bias the clock to predicting

OSK-treated samples. Normally epigenetic clocks are constructed using controls
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only, so that deviations due to a disease or treatment are more apparent. The fact

that they use two separate clocks for two different experiments within the same

study is not optimal, however, it is understandable since RRBS data does not

always capture all CpGs required for eAge prediction at the necessary coverage

(see Chapter 5, pg. 89; Field et al. 2018; Thompson et al. 2018).
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Aims and Hypothesis of Thesis

Epigenetic age prediction has emerged as a powerful tool that has revolutionised

the field of molecular gerontology. It can be used as a proxy to quantify biological

age and test the efficacy of anti-ageing interventions. Partial reprogramming has

shown promise as a treatment to safely reverse ageing whilst retaining the ability

to revert to or maintain original cell identity, both in vivo (Ocampo et al. 2016; Lu

et al. 2020; Alle et al. 2021) and in vitro (Olova et al. 2018a; Sarkar et al. 2020;

Gill et al. 2021). However, key questions regarding this treatment remain. To what

extent are dedifferentiation and epigenetic rejuvenation intertwined? Do partially

reprogrammed cells decrease in biological age and to what extent? What are

the kinetics of epigenetic rejuvenation in relation to tissue identity during partial

reprogramming?

In Chapter 4, I worked with Nelly Olova to answer some of these questions. I

analysed a previously published dataset of fibroblasts reprogramming to iPSCs.

We expected that epigenetic age would decline to zero based on previous work

(Horvath 2013). However, it remained unclear whether eAge would steadily

decline over the time-course, or suddenly drop at a particular time-point. We

also were not sure if gene expression trajectories (somatic and pluripotency

genes) would match the decline trajectory in eAge. We hypothesised two

possible outcomes:
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1. As epigenetic age decreases, fibroblast expression decreases at the same

rate

2. Decrease in epigenetic age and fibroblast expression follow different

trajectories over the time-course.

While eAge is becoming more commonplace as a metric for biological age,

caution must be considered when inferring the biological significance of age

acceleration. eAge acceleration correlates with disease states, but the precise

nature of physiological ageing captured remains unclear (see Chapter 1, Section

1.4.6). Whether the change of methylation is causal to ageing remains to be

shown and herein lies a caveat studying diseases or interventions that directly

affect DNAm. Studying a process that interacts with DNAm might alter age

prediction, without visibly altering the actual ageing trajectory. For example, it is

possible that a global increase or decrease in methylation caused either by

technical errors (Olova et al. 2018b) or mutations in oncogenes (such as

DNMT3A or TET2; Robertson et al. 2019), could result in false positive shifts of

eAge.

To investigate how robust the epigenetic clocks are to global changes in

methylation (see Chapter 5), I tested a number of scenarios using DNAm data

from the Generation Scotland (GS) study (Smith et al. 2006; Smith et al. 2013). I

hypothesised that a global increase or decrease in DNAm will alter eAge

prediction. It was not clear whether a global increase in methylation will increase

age, or vice versa. The null hypothesis here would be that no change in eAge

occurs, which would mean the epigenetic clocks are able to compensate for

global changes in DNAm.

Another advancement in the testing of anti-ageing therapies is the

development of epigenetic clocks for mice (Wang et al. 2017; Petkovich et al.

2017; Stubbs et al. 2017; Meer et al. 2018; Thompson et al. 2018; Han et al.

2018; Han et al. 2020). The majority of these clocks have been developed for

reduced representation bisulphite sequencing (RRBS) data. Unfortunately there
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is high variability in the CpGs captured, because regional genome coverage

differs between protocols and enzymes used (Field et al. 2018; Thompson et al.

2018). Hence, transferability of mouse clocks to external datasets (i.e. datasets

outside of the data used to train the clocks) results in less accurate age

prediction. To improve the accuracy of RRBS-based age prediction, myself and

Qian Zhao aimed to create mouse clocks that use mean percentage methylation

of genomic regions (e.g. 2 kb), rather than individual CpGs, as an input. We

expected that these age predictors would outperform other published mouse

clocks when tested on external datasets.

Overall, this thesis aims, using epigenetic clocks and transcriptional data, to

assess the potential of partial reprogramming as an anti-ageing therapy. It also

aims to improve our understanding of eAge prediction and the tools available to

measure eAge, in the hopes of more accurately capturing biological age.
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Chapter 3

Methods

3.1 Commonly Used Techniques

Computation for each chapter was conducted using programming languages

including R and Bash. Specific programme versions are stated in each chapter.

Many of the chapters have techniques in common, which are evalutated below.

3.1.1 Bisuphite Conversion and DNAm Processing

All results chapters in this thesis analyse DNAm data from other studies. Briefly,

DNAm data are the result of bisulphite (BS) conversion, a process where

unmethylated cytosines (C) are converted to uracil (U, which are amplified as

thymine, T, residues after PCR), and methylated C residues remain protected

(Frommer et al. 1992). In reduced representation bisuphite sequencing (RRBS)

experiments (which are typically used for mouse epigenetic age predictors, see

Chapter 6), BS-converted DNA is digested by MSP1 which cuts genomic DNA at

CpG sites, regardless of their methylation state (Meissner et al. 2005; Gu et al.

2011; Baheti et al. 2016). The resulting fragments are enriched with CpG sites

(capturing ~1% of the genome) and processed with next-generation sequencing

techniques (Meissner et al. 2008a; Gu et al. 2011).

Illumina-based microarrays (BeadChips) such as the 27K, 450K and EPIC
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HumanMethylation arrays are typically used for human epigenetic age prediction

since they robustly measure methylation at similar CpG sites (slight differences

between each array; Field et al. 2018). These arrays contain approximately

27,578, 482,421 and 850,000 CpG sites respectively (Pidsley et al. 2013;

Pidsley et al. 2016). Briefly, BS-converted DNA is applied to an Illumina

BeadChip, where the CpGs hybridise to matching probes within a chip. Each

probe is an oligonucliotide (approx. 50 bp) attached to 3-micron beads inside the

microwells of the BeadChip (Illumina 2015a).

The 450K and EPIC arrays are the most commonly used for epigenetic

clocks, both of which use two bead types; Infinium I and Infinium II (Illumina

2015b). Infinium I has two probe types per CpG; one that is designed to bind to

unmethylated DNA (T present at CpG site), the other to methylated DNA (C

present at CpG site). If unmethylated DNA binds to a probe designed for

unmethylated DNA then ends will complement, and the probe will extend by one

fluorescently tagged nucleotide (Illumina 2015b). If a probe designed for

methylated CpGs binds to an unmethylated CpG (or vice versa), the sequence

will not extend by 1 bp. The BeadChip is then scanned and the ratio between

methylated and unmethylated DNA per locus is calculated. Infinium II uses one

bead type, where the bound CpG to an oligonucleotide, and is determined as

methylated or unmethylated depending on if the single fluorescently-tagged

nucleotide added is an adenine (A) or a guanine (G). If a G is added, then it has

bound to a C, meaning the site is methylated. If an A is added, then the site

present is a T, meaning the CpG is unmethylated (Illumina 2015b). The resulting

signal (β value) is a ratio between methylated and unmethylated signals which

range from 0 (absolutely unmethylated) to 1 (absolutely methylated; Horvath and

Raj 2018).
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3.1.2 Penalised Linear Regression

As reviewed in Chapter 1.4, epigenetic clocks are constructed using CpGs that

have tractable changes with age. These CpGs are selected using penalised

regression models such as elastic net (Zou and Hastie 2005) or least absolute

shrinage operator (LASSO; Tibshirani 1997), which selects a group of CpGs that

have a linear relationship with age in a given training dataset without overfitting

(Horvath and Raj 2018; Field et al. 2018). The resulting linear model is as

follows:

eAge = I + β1X1 + β2X2 + ...+ βmXm (3.1)

where eAge represents the epigenetic age,I is the intercept value where the linear

model would meet the y-axis, β represents the average methylation score of a

particular CpG or genomic region, and X is the coefficient/weight (Hepp et al.

2016; Field et al. 2018). Hence, eAge can be predicted by inputting the β values

from a sample into equation 3.1.

3.1.3 Calculating adj. R2

R2 is a statistical model derived from analyses based on the general linear model,

such as linear regression. It represents the proportion of variance in the outcome

variable (eg. chAge) which is explained by the predictor variables (eg. eAge)

(Miles 2014). In other words, we are investigating what percentage of variance

in chAge can be explained by DNAm/eAge and to find the strength of correlation

between the two. For this type of analysis the adjusted R2 is typically used as it

corrects for population level analysis:

Adj.R2 = 1− (1−R2)((N − 1))/((N − k − 1)) (3.2)

where N represents the number of samples, and k represents the number of

predictors (Miles 2014).
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3.2 Methods for Chapter 4: Partial Reprogramming

Induces Steady Decline in Epigenetic Age

Before Loss of Somatic Identity

3.2.1 Overview of the Ohnuki et al. Experimental Setup and

Datasets

450K DNA methylation array and gene expression microarray data of full HDF

reprogramming time-course was obtained from GSE54848. A schematic of

experimental setup and time points is provided in Fig. 4.1. Briefly, HDF cells

were transfected with EGFP-labelled OSKM on day 0 and cultured in

virus-containing medium for 24 hours, then replaced by 10% FBS-containing

medium for 8 days before replacing with human ESC medium. EGFP (+) cells,

representing the population of successfully transfected cells, which permanently

express the OSKM factors, were sorted by flow cytometry on day 3. Intermediate

reprogrammed cells positive for the pluripotency marker TRA-1-60 were sorted

by magnetic activated cell sorting on days 7, 11, 15, 20 and 28 post-transfection.

Day 28-sorted TRA-1-60 (+) cells were further expanded and samples collected

three more times on each seventh day, i.e. on days 35, 42 and 49. Thus, sorted

and collected cells at each time point were subjected to both gene expression

and DNA methylation array analysis. Microarray gene expression (data available

as LOG2 transformed) was performed for three to four replicates per data point,

whilst DNA methylation data was performed for two to three replicates per time

point.

3.2.2 Predicting eAge

The pre-processed 450K DNA methylation array matrix of average methylation

per CpG site of the full HDF reprogramming time-course was obtained from
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GSE54848 (downloaded using getGEO function from GEOquery package) and

uploaded to the online DNA methylation age calculator to assess eAge:

https://labs.genetics.ucla.edu/horvath/dnamage/ (Horvath 2013). Data

processing including Horvath’s normalisation was performed according to tutorial

guidelines. Missing CpG values were imputed by Horvath’s online DNAm age

calculator. During QC, around 1600 CpGs were lost, therefore methylation data

for each time point contained 26,987 CpG sites out of the suggested 28,587

CpGs, a fact unlikely to have any significant impact on the normalisation or age

prediction. PhenoAge, Skin & Blood, Hannum, Weidner 99 and 3 CpG age

predictors were applied to average methylation values. Missing CpG values were

imputed as zero before applying these age predictors. All ages presented in the

manuscript are calculated eAges, no actual ages of HDF donors were available.

3.2.3 Methylation Age Trajectories

For the Horvath multi-tissue age predictor, a ‘broken stick’ model with two linear

sections was constructed to chart overall change in DNA methylation age over

time between the three HDF cell lines. A linear mixed model was then specified

with a random intercept term for each replicate. A variable break point was set

between the minimum and maximum day, plus and minus a small constant (3

days), respectively. The predicted values from the regression models were plotted

against the measurement day. For all other age predictor plots (Fig. 4.3), mean

eAge was calculated for all samples at each time point (2-3 samples depending

on the time point) and plotted against time during the time-course. Standard

deviation for eAge was also calculated and plotted as error bars at each time

point.
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3.2.4 Gene Clusters and Trajectories

For each gene in a category (e.g. pluripotent gene list), a loess curve with a

span of 0.5 was fitted with the predicted values extracted at each time point. The

predicted values were then normalised within each gene to a value of 1 at the

first time point and a value of 0 and the last time point (and vice versa for the

pluripotent genes). K-means clustering for longitudinal data was applied to

determine the optimal number of trajectories within each gene category. All

analyses were performed in R 3.4.3, using the kml (Genolini et al. 2015), lme4

(Bates et al. 2015), and lmerTest (Kuznetsova, Brockhoff, and

Bojesen Christensen 2016) packages.

3.3 Methods for Chapter 5: How Robust are

Epigenetic Clocks to Global Methylation

Changes?

All computation was conducted in R-3.6.1. All figures were plotted using ggplot2

(ver. 3.3.3; Wickham 2016).

3.3.1 Data Used for Analysis

Generation Scotland (GS) is a large cohort (23,960 individuals) where 94.2%

have at least one other first-degree family member participating in the study (as

previously described in Smith et al. 2006; Smith et al. 2013; Hillary et al. 2020).

Batch one of Generation Scotland (GS1, n=5100, aged 18-94) was used for our

study to minimise batch effects. DNA methylation levels were quantified with

the Illumina HumanMethylationEPIC BeadChip Array on blood samples from GS

participants.
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3.3.2 Sampling from Generation Scotland

Samples for each scenario were obtained randomly from GS using the sample n

function from dplyr ver 1.0.5 (Wickham et al. 2021). Test and control groups do

not overlap in samples, neither do test groups within each scenario. Analysis was

conducted using CpGs for the Horvath, Hannum and S&B clocks only, rather than

using all the sites in the EPIC array.

3.3.3 Age Prediction and Simulating Methylation Changes

Horvath epigenetic age was calculated using the agep function from the R

package Bigmelon (Gorrie-Stone et al. 2019). Hannum (Hannum et al. 2013)

and S&B (Horvath et al. 2018) ages were calculated in R using code provided by

the original studies. A for loop was made in R which applies a relative or

absolute change in methylation to a temporary copy of the methylation array

(clock sites only). Each clock was applied to the altered data, and the output of

ages were stored as a column in a metadata matrix in R.

Relative methylation change was applied by multiplying each mean

percentage methylation (β value, varying between 0 (0%) and 1 (100%)) clock

CpG by a percentage (eg. β*0.9 or 1.1 to get minus or plus 10% methylation

respectively). Absolute methylation change was calculated by adding or

subtracting an absolute percentage value to each clock CpG β (eg. subtracting

or adding 0.1 to get minus or plus 10% methylation respectively). Age

acceleration was calculated by subtracting chAge from predicted eAge. For Fig.

5.1D-E,J-K, the age acceleration was calculated, then mean average age

acceleration for each age group was calclulated and plotted. Only one sample

was aged 90 and was excluded from the mean average age acceleration plots in

Fig. 5.1D-E,J-K. Standard deviation for mean age acceleration was calculated

with plotrix 3.8-1 (Lemon 2006). Statistical comparisons between all test and

control groups were calculated with the Welch’s T-Test in R. Linear regression
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lines in Figures 5.1 and 5.2 were calculated and plotted using ggplot2, and all

individual data points were hidden from the plot (except in Fig. 5.2A,C).

3.4 Methods for Chapter 6: Robust Age Prediction

in Mouse Based on Average Methylation per

Genomic Region

3.4.1 Data Collection

The following mouse RRBS datasets were downloaded from the NCBI Gene

Expression Omnibus (GEO); GSE120137 (n=548; Thompson et al. 2018),

GSE60012 (n=91; Reizel et al. 2015), GSE93957 (n=61; Stubbs et al. 2017),

GSE80672 (n=162; Petkovich et al. 2017), GSE85251 (n=64; Reizel et al. 2018)

and GSE121141 (n=81; Meer et al. 2018). The annotation information

(metadata) of the sequencing samples, such as age and tissue, was

downloaded from the NCBI SRA Run Selector. The unit of the chronological age

is different among datasets, including month and week. For the convenience of

subsequent calculations, all ages in weeks were converted to age in months.

The conversion formula is:

Age(mo) = Age(wk)× 7÷ 30.42 (3.3)

where Age(mo) is an age in months, Age(wk) is an age in weeks which is

multiplied by 7 (week in days), and 30.42 is the average days per month.

3.4.2 Data Processing

The following processes were implemented via bash scripts on Eddie, a high

performance computing cluster with a Linux-based operating system provided by

the University of Edinburgh.

Read adaptors were removed by TrimGalore (ver 0.5.0, –rrbs) which
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combines FastQC (ver 0.11.4) and cutadapt (ver 1.9.1; Krueger 2012). The

following processing steps were conducted with Bismark (ver 0.18.1), a utility

designed to process and map BS-seq data using packages such as bowtie2

(mapping, ver 2.2.6) and samtools (read processing, ver 1.6; Krueger and

Andrews 2011):

1. A bisuphite converted version of GRCm38.p6 reference genome was

created by the Bismark genome preparation module (Krueger 2016).

2. The trimmed reads were aligned to the bisulphite converted genome with

Bismark (settings: –multicore 2 –phred33-quals -N 0 -L 20).

3. The Bismark methylation extractor module then obtained (from BAM files

generated in the second step) the mapped reads and methylation count

information (CpG, CHG and CHH contexts). CHG and CHH sites were

removed.

4. The bismark2bedGraph module was used to extract the methylation

information from CpG context files and convert them to cov files

(bismark.cov.gz) which contain six columns: (1) chromosome number; (2)

start position; (3) end position; (4) percentage of methylated reads in total

reads (β score); (5) the number of methylated reads; (6) the number of

unmethylated reads (Krueger 2016).

3.4.3 Coverage Assessment

To compare whether there was a difference in coverage between all downloaded

datasets (see “Methods: Data Collection” for list of datasets), the number of reads

from the cov files was extracted (using bash and python scripts). The coverage

of each CpG site was calculated as follows:

coverage = methylated read counts+ ummethylated read counts

(3.4)
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The coverage of clock CpGs (Stubbs and Meer clocks) was extracted and

organised into a matrix, which was loaded into R (ver 4.0.3). Each column

represented a CpG site and each row represented a sample. Coverage of clock

sites in different datasets was plotted using ggplot2 (ver. 3.3.3; Wickham 2016)

in R (Fig. 6.1).

3.4.4 Applying Published BS-seq Clocks to Various Datasets

Two single tissue (Wang and Petkovitch) and three multi-tissue (Stubbs, Meer

and Thompson) mouse BS-seq clocks were tested on various datasets. For each

clock, the CpG sites were extracted from a given dataset the clock would be

applied to (Table 6.2). Each clock was ran according to scripts and instructions

from their respective publications, eg. the toRun Imputation.R script provided by

Stubbs et al. (2017) was used to run their clock (Wang et al. 2017; Petkovich

et al. 2017; Stubbs et al. 2017; Meer et al. 2018; Thompson et al. 2018).

To evaluate the results, the adjusted R squared (adj. R2) and median

absolute error (MAE) were calculated, and linear regression lines were

illustrated with ggplot2 in R (Wickham 2016). MAE is the median absolute error

between epigenetic age and the chronological age, where if a test dataset has

an MAE of X, then the age acceleration will differ by less than X in 50% of the

samples (Horvath 2013). The formula is as follows:

MAE = median (|predicted age− chronological age|) (3.5)

3.4.5 Data Filtering

Before constructing an epigenetic clock, the data needed to be filtered. We

choose 3-100 reads per CpG as the filter criteria since sites with less than 3

reads are likely caused by sequencing errors or mapping errors caused by

SNPs. Sites with more than 100 reads could be due to amplification bias.
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3.4.6 Genome Segmentation

Genome segmentation was conducted using SeqMonk (ver 1.47.0; Andrews

2007), an interactive desktop application with a suite of tools for analysing

mapped genomic data. GRCm38 v100 was selected as the reference genome.

Next, the filtered .cov files were imported into SeqMonk, “Define Probe” was

selected in “Data”, and then “Running Windows Generator” was selected to set

the window/region size (probe size) and step size. After setting the probe,

“Bisulphite methylation over features” was selected from “Quantitation Pipelines”

to calculate the average methylation level per window/region. The formula of the

average methylation level is:

methylation score = (
∑
methylation counts)/(

∑
total counts) (3.6)

where counts are the number of corresponding reads in a specific region. This

produced a counts matrix, where samples are columns and rows are genomic

regions, which was exported as a text file. Each dataset (see Methods: Data

Collection 67) was segmented for all window sizes (1-9kb) and were used for

both training and testing the region clocks.

3.4.7 Epigenetic Clock Construction Using LASSO

Each text file of region counts per region clock iteration (generated by SeqMonk)

was loaded into R. All percentage methylation values for each region were

divided by 100, so that 0-1 would represent 0% to 100% respectively. Regions

with NaN (ie. no reads recorded) were removed). Least Absolute Shrinkage and

Selection Operator (LASSO) regression model from the glmnet package (ver

4.1-1; Friedman, Hastie, and Tibshirani 2010) was applied. A list of regions, their

coefficients, and an intercept value is then generated.

Nine regional blood clocks (RBCs) and regional multi-tissue clocks (RMTCs)

were generated (1-9 kb region sizes, Table 6.3). Whole blood from GSE80672

(training=141, test=21; Petkovich et al. 2017) was used to construct the RBC.
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Liver, muscle, spleen, lung, heart, cerebellum and hippocampus tissue from

GSE60012 (Reizel et al. 2015) and GSE85251 (Reizel et al. 2018) was used to

construct the RMTC (training=118, test=13). Only tissues with samples at two

different time points minimum were used, excluding tissues that only had

samples at single time points. The multi-tissue and blood datasets were

randomly partitioned into 90% training and 10 % test using the caret package

(ver 6.0-86; Kuhn 2020) in R.

Each clock was applied to a particular dataset using a for loop written in R. It

extracts each required CpG region (generated from LASSO penalised regresson)

from each sample in the counts matrix (generated from SeqMonk) and multiplies

it with its corresponding weight (generated from the LASSO penalised regression)

as according to equation (3.1). Each iteration of the RBC was applied to the blood

10% test dataset (adj. R2 values were plotted in Fig. 6.2B, left panel) and the

Thompson et al. (2018) 3 mo blood samples (GSE120137) (adj. R2 and MAE

values were recorded in Table 6.3). All iterations of the RMTC was applied to

Stubbs et al. (2017) (GSE93957) and Thompson et al. (2018) (GSE120137), and

their total adj R2 and MAE were recorded in Table 6.3. Each clock generated was

then applied to the 90% training and 10% test data, and their adj. R2 values were

plotted in Fig. 6.2B, right panel.
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Partial Reprogramming Induces

Steady Decline in Epigenetic Age

Before Loss of Somatic Identity

4.1 Introduction

The human ageing process is accompanied by multiple degenerative diseases.

Our understanding of such ageing related disorders is, nevertheless, fragmented,

and the existence and nature of a general underlying cause are still much debated

(Faragher 2015; Gladyshev and Gladyshev 2016). The generation of induced

pluripotent stem cells (iPSCs) allows the reprogramming of somatic cells back to

an embryonic stem cell (ESC) like state with an unlimited regenerative capacity.

This has led to multiple strategies for tissue replacement in degenerative diseases

(Takahashi et al. 2007). Clinical application of iPSCs however, is at its infancy

(Singh et al. 2015; Takahashi and Yamanaka 2016; Moradi et al. 2019), and the

potency of iPSCs bears risks, not least cancer induction. For example, in vivo

experiments with iPSCs have shown that continuous expression of Yamanaka

factors (Oct4, Sox2, Klf4 and c-Myc, thus OSKM) in adult mice invariably leads to

cancer (Hentze et al. 2009; Abad et al. 2013; Ohnishi et al. 2014; Moradi et al.
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2019).

To avoid this risk, a parallel concept of epigenetic rejuvenation has been

proposed: the ageing process in cells can be reversed whilst avoiding

dedifferentiation (Singh and Zacouto 2010; Manukyan and Singh 2012; Rando

and Chang 2012). In other words, an old dysfunctional heart cell could be

rejuvenated without the need for it to be passed through an embryonic/iPSC

state. The concept of epigenetic rejuvenation requires that rejuvenation and

dedifferentiation each follow a distinct pathway. Nevertheless, it is not well

understood whether rejuvenation and dedifferentiation are invariably intertwined,

or instead whether it is possible to manipulate age without risking

dedifferentiation.

The epigenetic rejuvenation potential of partial reprogramming with OSKM

factors was previously shown by the forced expression of OSKM+LIN28 in

senescent human fibroblasts, which led to recovering the high mobility of histone

protein 1β by day 9, a feature characteristic for young fibroblasts (Manukyan and

Singh 2014). Ocampo et al. further demonstrated that partial reprogramming by

transient cyclic induction of OSKM ameliorates signs of ageing and extends

lifespan in progeroid mice, with no resulting teratoma formation (Ocampo et al.

2016). This established partial reprogramming as a promising candidate

intervention for age-related disease. Estimating epigenetic age (eAge), which is

currently the most promising proxy for biological age (Jylhävä, Pedersen, and

Hägg 2017; Wagner 2017), was, however, not possible to measure in mice at the

time of the Ocampo study. This has left the nature (ie.

dedifferentiation/rejuvenation) of the described cellular changes unexplored:

1. Does the epigenetic remodelling seen truly reflect rejuvenation (i.e. a

reduction in cellular/tissue age)? If so, can we observe a decrease in eAge

in partially reprogrammed human cells?

2. What is the extent of rejuvenation upon reaching a partially reprogrammed

state (e.g. years of eAge decrease)?
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3. What are the dynamics of dedifferentiation in early reprogramming?

A major obstacle in understanding the relationship between differentiation

and ageing has been our inability to accurately measure cellular age with a high

correlation to the chronological age (chAge) of the organism. However, over the

last five years a number of age predictors have been developed, the most

accurate of which utilise DNA methylation (known as epigenetic clocks;

Bocklandt et al. 2011; Koch and Wagner 2011; Hannum et al. 2013; Horvath

2013; Weidner et al. 2014; Levine et al. 2018; Lu et al. 2019a; Zhang et al.

2019), with the first multi-tissue age-predictor being the most widely applicable

and used (r=0.96). Referred to as the “Horvath clock”, this clock shows the

highest correlation to chAge, predicting the age (or eAge) of multiple tissues with

a median error of 3.6 years (Horvath 2013). eAge is distinct from and poorly

correlated with other age-related biomarkers, such as cellular proliferation,

senescence and telomere length, which have been shown to correlate

independently with eAge (Lowe, Horvath, and Raj 2016; Marioni et al. 2016;

Kabacik et al. 2018; Horvath et al. 2019; Cypris et al. 2020). Moreover, an

acceleration of eAge as measured by the Horvath clock is associated with a

higher risk of all-cause mortality (Marioni et al. 2015a; Christiansen et al. 2016;

Perna et al. 2016)), premature ageing syndromes (Down and Werner) (Horvath

et al. 2015a; Maierhofer et al. 2017), frailty and menopause (Breitling et al. 2016;

Levine et al. 2016). All of these studies suggest that eAge may capture a degree

of biological ageing.

To delineate the crosstalk of epigenetic rejuvenation and de-differentiation,

here we analysed the dynamics of eAge and somatic gene expression during the

course of iPSC reprogramming of human dermal fibroblasts (HDFs). We observe

onset of a continuous decline of eAge after day 3 from induction with Yamanaka

factors, accompanied by decline, but not loss of somatic gene expression. Our

results suggest a “safe” window within the reprogramming time-course, during

which epigenetic rejuvenation might be achieved without de-differentiation.
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4.2 Results

4.2.1 Epigenetic Age Shows a Continuous Decline After Day

3 of Reprogramming

To understand the dynamics of eAge during reprogramming, we applied

Horvath’s multi-tissue age predictor over a previously published reprogramming

time-course on human dermal fibroblasts (HDFs; Horvath 2013; Ohnuki et al.

2014). After OSKM transfection, successfully transformed subpopulations were

isolated and analysed at regular time points during 49-days for gene expression

and DNA methylation (detailed schematic shown in Fig. 4.1). Epigenetic

rejuvenation, ie. decrease of eAge, commenced between days 3 and 7 after

OSKM transduction in the partially reprogrammed TRA-1-60 (+) cells

(characterised in Tanabe et al. 2013) and continued steadily until day 20, when

eAge was stably reset to zero (Fig. 4.2). A broken stick model (comprising two

linear regressions joined at a break-point), showed a good fit to the observed

data starting from day 3, and measured a steady decrease with 3.8 years per

day until day 20 (SE 0.27, P = 3.8x10-7) (Fig. 4.2). The TRA-1-60 (+) cell

populations at days 7 and 11 have been previously characterised as ‘partially

reprogrammed’ for their high expression of pluripotency markers but also high

reversion rates towards somatic state (Tanabe et al. 2013). Therefore, the

observed eAge decline at days 7 and 11 suggests that partial reprogramming

can indeed be considered a rejuvenation mechanism in human cells.

Horvath’s multi-tissue age predictor is the most accurate and widely used for

various cell types and tissues (Wagner 2017). Nevertheless, we calculated eAge

from alternative DNA methylation-based age predictors: four tissue-specific

clocks (Hannum et al. 2013; Weidner et al. 2014; Horvath et al. 2018), one that

incorporates clinical measures, called PhenoAge (Levine et al. 2018), and

individual CpGs previously correlated with age (Garagnani et al. 2012). All

clocks consistently reached the point of reset to their iPSC eAge at day 20,
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Day 0 Day 3 Days 7, 11, 
15, 20, 28

OCT3/4
KLF4
c-MYC
SOX2-EGFP

OSKM

EGFP (+) TRA-1-60 (+)

450k Methylation array
Gene expression array

HDF

Days 35, 42, 49

iPSC

Figure 4.1: Schematic overview of the experimental setup of Ohnuki et
al iPSC time-course and dataset time points. HDF cells were transfected
with EGFP-labelled OSKM on day 0 and cultured in virus-containing medium
for 24 hours, then replaced by 10% FBS-containing medium for 8 days before
replacing with human ESC medium. EGFP (+) cells, representing the population
of successfully transfected cells, were sorted by flow cytometry on day 3.
Intermediate reprogrammed cells positive for the human pluripotency marker
TRA-1-60 were sorted by magnetic activated cell sorting on days 7, 11, 15, 20 and
28 post-transfection. Day 28-sorted TRA-1-60 (+) cells were further expanded
and samples collected three more times on each seventh day, i.e. on days 35,
42 and 49. The sorted and collected cells at each time point were subjected to
both gene expression and CpG methylation array sequencing. Microarray gene
expression was performed for three to four replicates per data point, whilst DNA
methylation was performed for two to three replicates per time point. Both 450K
DNA methylation array and gene expression microarray datasets were obtained
from GSE54848 (Ohnuki et al. 2014). Figure created by Nelly Olova, based on
Fig. 1A in Ohnuki et al. 2014.
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Figure 4.2: Dynamics of eAge and pluripotent gene expression in a 49-day
HDF reprogramming time-course. Left Y axis: eAge trajectory of Horvath’s
multi-tissue age predictor calculated from DNA methylation arrays from the
following cell populations: day 0 (HDFs), day 3 (OSKM-expressing EGFP (+)
HDFs), day 7, 11, 15, 20 and 28 (human pluripotency marker TRA-1-60 (+) cells
at intermediate stages of reprogramming), and fully reprogrammed iPSCs from
days 35, 42 and 49. Data was fit with a broken stick model composed of two
linear sections. Error bars represent SD. Measured rate (years per day) of eAge
decrease [day 3 - day 20] = -3.8, SE 0.27, P = 3.8x10-7. Right Y axis: Composite
gene expression trajectories of key pluripotency markers, statistically clustered as
per Genolini et al. 2016. Microarray expression data was obtained for the same
time points and cell populations as for eAge. Relative expression values were
LOG2 transformed and presented as arbitrary units starting from ’0’ for ‘day 0’ to
’1’ for ‘day 49’. Error bars represent SD.
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A B

ELOVL2-1 ELOVL2-2 ELOVL2-3F

FHL2-1 FHL2-2 FHL2-3

C

D E

Figure 4.3: eAge trajectories of different DNA methylation-based epigenetic
clocks. (A) Weidner 99 CpG blood-based epigenetic clock (Weidner et al. 2014);
(B) Skin blood clock (Horvath et al. 2018); (C) PhenoAge (Levine et al. 2018); (D)
Hannum blood-based epigenetic clock (Hannum et al. 2013); (E) Weidner 3 CpG
epigenetic clock (Weidner et al. 2014); (F) Individual CpG age predictors found
in CpG islands within the ELOVL2 and FHL2 genes (Garagnani et al. 2012).
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despite the cells not being fully reprogrammed before day 28 (Ohnuki et al.

2014) (Ohnuki et al. 2014) (Fig. 4.3). Again, eAge showed a steady decline from

day 3 to day 20 in the skin blood and Weidner 99 CpG clocks, PhenoAge

declined from day 7 to day 20, while the Hannum and Weidner 3 CpG clocks did

not produce informative trajectories. Overall, eAge values and ‘years’ of

decrease varied between the clocks (actual chAge of HDF donors was not

available for reference; Fig. 4.3). The highest age associated individual CpG

(ELOVL2’s cg16867657) showed a similar trajectory to the Horvath eAge

decline, however, the remaining CpGs produced inconsistent trajectories (Fig.

4.3). The observed differences are not surprising, given the alternative clocks

were validated for blood (Hannum et al. 2013; Weidner et al. 2014), forensic

applications (Horvath et al. 2018), whole organisms (Levine et al. 2018) or

various tissues as for the individual CpGs (Garagnani et al. 2012).

4.2.2 Loss of Somatic Gene Expression is Uncoupled from

Rejuvenation Dynamics and Occurs Step-Wise.

In Ocampo et al. (2016), partial reprogramming was achieved after just two days

of OKSM induction in mice carrying an inducible OSKM transgene. However,

such ‘secondary’ systems for direct reprogramming are known to have up to

50-fold higher efficiency and accelerated kinetics in comparison to virally

transduced in vitro systems (Wernig et al. 2008). To facilitate comparison to

other systems and associate eAge with intermediate states in the

reprogramming trajectory we compared it to gene expression measured in the

same samples. We analysed corresponding microarray expression data for 19

well-established pluripotency marker genes (Table. 4.1 and Fig. 4.4) as a proxy

for reaching a mature pluripotent state (Ginis et al. 2004; Boyer et al. 2005; Cai

et al. 2006; Mallon et al. 2013; Galan et al. 2013). We statistically clustered the

expression patterns of those genes (Genolini et al. 2015), which resulted in two

composite trajectories. These trajectories followed previously described
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Table 4.1: List of pluripotency and fibroblast marker genes used in gene
expression clusters. Key pluripotent marker genes were selected from Ginis et
al. (2004); Cai et al. (2006); Mallon et al. (2013); Galan et al. (2013); Boyer et
al. (2005). Fibroblast marker genes were selected from Kalluri Zeisberg (2006);
Zhou et al. (2016); Janmaat et al. (2015); Pilling et al. (2009); Chang et al.
(2014); Goodpaster et al. (2008); MacFadyen et al. (2005).
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A

B

NANOG REX1 (ZFP42) TRA-1-60/81 (PODXL)

DNMT3ATDGF1 (CRIPTO)DPPA4

UTF1

SALL4

LEFTY2 LEFTY1 TFCP2L1

TERT TERF1 ZIC3 DPPA5

LECT1LIN28bLIN28aDNMT3B

Figure 4.4: Expression of key pluripotency markers in a 49-day HDF
reprogramming time-course. Individual expression dynamics of Cluster 1
genes (early pluripotency markers) in (a) and Cluster 2 genes (late expressing
pluripotency markers) in (b). Values are LOG2 transformed and normalised
between 0 and 1 for ‘day 0’ and ‘day 49’, respectively, based on the average
values between biological replicates for each time point. Dotted line marks CI.
Gene label colours correspond to cluster colours in Fig. 4.2
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ZIC1 MIXL1 FOXA2

SOX1Pou3f2GATA4

SOX17

OTX1

FGF21 FGF6 MEOX1 LHX1

Figure 4.5: Expression trajectories of key developmental genes in a 49-
day HDF reprogramming time-course. Values are LOG2 transformed and
normalised between 0 and 1 for the ‘minimum’ and ‘maximum’ value respectively,
based on the average values between biological replicates for each time point.
Dotted line marks CI.

expression dynamics of early (cluster 1) and late (cluster 2) activated

pluripotency genes (Fig. 4.2; Buganim et al. 2012; Tanabe et al. 2013; Chung

et al. 2014; Takahashi and Yamanaka 2016). Pluripotency gene cluster 1

included NANOG, SALL4, ZFP42, TRA-1-60, UTF1, DPPA4 and LEFTY2, and

their expression increased dramatically within the first 10 days and then

established stable pluripotency expression levels by day 20. In contrast,

pluripotency gene cluster 2 (containing late expressing genes such as LIN28,

ZIC3 and DNMT3B) elevated expression slower and reached stable pluripotency

levels by day 28 (Tanabe et al. 2013; Chung et al. 2014). Interestingly, eAge

reset to zero at the same time that the genes in cluster 1 reached their

pluripotent state levels, which temporally precedes full pluripotency. This also

coincided with a peak in expression of a number of embryonic developmental

genes between days 15 and 20, and might suggest that the reset marks a point

where the cells reach an embryonic-like state but are not yet fully pluripotent

(Table. 4.1 and Fig. 4.5). In summary, eAge decline is observed well within the
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first wave of pluripotency gene expression.

Therapeutic partial reprogramming will depend on rejuvenation with minimal

dedifferentiation, which carries the risk of malignancies. We studied the

dynamics of fibroblast gene down-regulation as a proxy for the loss of somatic

cell identity. The individual trajectories of 19 commonly used fibroblast marker

genes (MacFadyen et al. 2005; Kalluri and Zeisberg 2006; Goodpaster et al.

2008; Pilling et al. 2009; Chang, Li, and Guo 2014; Janmaat et al. 2015; Zhou

et al. 2016 Table. 4.1 and Fig. 4.6) clustered into three composite expression

patterns, two of which (clusters 2 and 3) went into an immediate decline after

OSKM induction (Fig. 4.7). However, one fibroblast-specific cluster (cluster 1)

remained stable in its expression for the first 15 days. Interestingly, after day 7,

fibroblast-specific gene expression in clusters 2 and 3 stopped declining and

plateaued until day 15, coinciding with a peak in expression of senescence

markers between days 11 and 15 (Fig. 4.8). Vimentin (VIM), for example,

remained at 60% of maximal expression until day 15 of reprogramming, similarly

to FAP, CD248 and COL1A2 in cluster 2 (Fig. 4.6). After day 15, fibroblast gene

expression declined rapidly in all three clusters, and only by day 35 had all

reached ESC expression levels, marking a complete loss of somatic identity

(Fig. 4.7). Cluster 1, which contains the well described indicators of fibroblast

identity FSP1, COL3A1 and TGFB2/3 (Kalluri and Zeisberg 2006), showed the

slowest decline, and was also the last to reach ESC expression levels. In

summary, we found that a number of fibroblast specific genes maintained high

expression levels until day 15, by which time a substantial drop in eAge has

been observed.

4.3 Discussion

Epigenetic rejuvenation or the reversal of cellular age, is a promising concept

as it could avoid the oncogenic risks associated with dedifferentiation. Here, we
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Figure 4.6: Expression of key fibroblast somatic markers in a 49-day HDF
reprogramming time-course. Individual expression dynamics of Cluster 1
fibroblast genes (A), Cluster 2 (B) and Cluster 3 genes (C). Values are LOG2
transformed and normalised between 1 and 0 for ‘day 0’ and ‘day 49’, respectively,
based on the average values between biological replicates for each time point.
Dotted line marks CI. Gene label colours correspond to cluster colours in Fig.
4.7. SERPINH1 and CD34 expression could not be fit in any of the above clusters
and are presented separately (D).

84



CHAPTER 4. PARTIAL REPROGRAMMING INDUCES STEADY DECLINE IN
EPIGENETIC AGE BEFORE LOSS OF SOMATIC IDENTITY

)xa
m-ni

m( noisserpxe evitaleR

)sraey( eg
Ae

0.0

0.2

1.0

0.8

0.6

0.4

Somatic gene expression:
Fibroblast gene cluster 1
Fibroblast gene cluster 2
Fibroblast gene cluster 3

0

10

70

60

50

40

30

20

0 11 24 9402 823 7 15 35

Days post OSKM transduction

-0.2

eAge trajectory (mean and SD)
eAge broken stick model

Somatic Partially
Reprogrammed 

Incompletely
Reprogrammed Fully Reprogrammed
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analysed a reprogramming time-course on HDFs and show that eAge declines in

partially reprogrammed cells before their somatic identity is entirely lost.

It is well established that partial reprogramming happens within an early,

reversible phase during the iPSC reprogramming time-course, which involves the

stochastic activation of pluripotency genes. It is followed by a more deterministic

maturation phase with predictable order of gene expression changes, where cell

fate is firmly bound towards pluripotency (Takahashi and Yamanaka 2016; Smith,

Sindhu, and Meissner 2016). Indeed, it has been shown that mouse fibroblasts

fail to become iPSC and revert to their original somatic state if OSKM expression

is discontinued during the initial stochastic phase (Brambrink et al. 2008;

Stadtfeld et al. 2008). Previously, Tanabe et al. (2013) showed that TRA-1-60 (+)

cells at reprogramming days 7 and 11 have not yet reached maturation and are

partially reprogrammed, but our analysis already shows a decrease in their eAge

according to multiple age predictors (Fig. 4.2, Fig. 4.3 and Fig. 4.7). We have

also shown that a large proportion of fibroblast marker genes maintain relatively

high levels of expression until day 15 (Fig. 4.7 and Supplementary Figure 5).

Nearly unchanged levels of expression on day 15 were previously also shown for

a large proportion of somatic genes (Tanabe et al. 2013). Together with

increased senescence gene expression between days 11 and 15 (Fig. 4.8), this

likely contributes to the high propensity of partially reprogrammed TRA-1-60 (+)

cells to revert back to somatic phenotype before day 15 in the time-course

(Tanabe et al. 2013). Interestingly, the step-wise decline of fibroblast gene

expression coinciding with a peak in expression of senescence genes seems to

delay the loss of somatic identity but not the expression of pluripotency genes.

Taken together, the different dynamics between the step-wise fibroblast

expression and the linear decline in eAge further indicate that dedifferentiation

and epigenetic rejuvenation can be uncoupled.

One of the main caveats of this experiment is that, while day 7-11 cells have

been previously characterised as ’partially reprogrammed’ (Tanabe et al. 2013),
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it is not clear exactly what proportion of cells are more highly or perhaps fully

differentiated. NANOG expression reaches its maximum by day 10 (Fig. 4.4), as

do other pluripotency markers, which does not eliminate the possibility of a

subpopulation of cells being highly or fully dedifferentiated. Single-cell RNA

sequencing would help determine which of the sorted TRA-1-60(+) cells are fully

or partially differentiated. The only issue would be determining eAge of the same

single cells. A preprint has been recently released which predicts epigenetic age

at a single cell level (Trapp, Kerepesi, and Gladyshev 2021). This technique

would need to be adapted to analyse RNA expression in the same cells (similar

to scNMT; Clark et al. 2018) to accurately show both the pluripotency state, level

of fibroblast expression (somatic identity) and eAge of a cell.

Our data suggest a window of opportunity within the uncommitted

reprogramming phase, where a decline of eAge happens alongside partial

maintenance of fibroblast gene expression. A deeper understanding of the

kinetics of rejuvenation will be required to master therapeutic partial

reprogramming, since any progress of dedifferentiation, even in a small

subpopulation, carries the risk of malignancies. Our bulk expression analysis

does not allow for a precise definition of the safe rejuvenation boundaries, and

further experiments on a single cell level and in in vivo conditions are needed to

determine a safe epigenetic rejuvenation window in different reprogramming

systems. Upon defining safe boundaries, consideration should also be given to

the steep decline of eAge, which resets to zero well ahead of the establishment

of a pluripotent state, according to a number of age predictors (Fig. 4.3). Most

likely this marks the point of reaching prenatal or embryonic stage, as suggested

by the peak in expression of key developmental genes (Fig. 4.5).

The extent of epigenetic rejuvenation in years (human) or months (mouse),

which can be achieved through partial reprogramming, also needs further

attention and will most likely differ with the different reprogramming systems.

The Horvath clock shows up to 10 years of rejuvenation in Ohnuki et al.’s system
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by day 7 and another 10+ years by day 11. However, the intrinsic median

estimation error of 3.6 years in this age predictor, the varying eAge rejuvenation

values between the different age predictors, and the intra-replicate biological

variation seen from the large error bars, highlight the need for more experiments

and repetitions before this is established with a higher certainty.

Despite the obvious differences in reprogramming kinetics, our results also

suggest that the improvements observed by Ocampo et al. (2016) in their

OSKM-inducible secondary reprogramming system, might be due to epigenetic

rejuvenation. It remains to be shown how stable in time the rejuvenated

phenotype is in either of the systems. Further analysis is also needed regarding

the effect of partial reprogramming on adult stem cells or premalignant cells,

which have already shown a higher propensity of transforming to malignancy

(Abad et al. 2013; Ohnuki et al. 2014). It is possible that a premalignant

phenotype could be attenuated or amplified by partial reprogramming. In

summary, our findings reveal exciting possibilities but also open a number of

questions and highlight areas that need further attention.

88



Chapter 5

How Robust are Epigenetic Clocks

to Global Methylation Changes?

5.1 Introduction

Ageing can be characterised as a progressive, physiological deterioration that

leads to an increased susceptibility to a range of health outcomes, including

cancer, cardiovascular, metabolic and neurodegenerative diseases (López-Otı́n

et al. 2013; Brunet and Berger 2014; Benayoun, Pollina, and Brunet 2015).

Manipulation of nutrient-sensing pathways were identified as regulators of

ageing. These include mechanistic target of rapamycin (mTOR) and

insulin/insulin-like growth factor (IGF) signalling, which have been related to

lifespan extension in mammals such as mice (Weindruch et al. 1986; Blüher,

Kahn, and Kahn 2003; Holzenberger et al. 2003; Pearson et al. 2008; Johnson,

Rabinovitch, and Kaeberlein 2013). Cellular reprogramming experiments have

shown epigenetic rejuvenation in mice and humans might also be possible

(Manukyan and Singh 2014; Ocampo et al. 2016; Olova et al. 2018a; Sarkar

et al. 2020; Lu et al. 2020). Healthspan extending research has been impeded

by the lack of tools to quantify rejuvenation, which requires a biomarker that

confers biological ageing more effectively than chronological age (Baker and

89



CHAPTER 5. HOW ROBUST ARE EPIGENETIC CLOCKS TO GLOBAL
METHYLATION CHANGES?

Sprott 1988).

DNA methylation (DNAm) is an epigenetic mark maintained by three types of

DNA methyltransferase (DNMT): DNMT1, which maintains DNA methylation

patterns during DNA replication (Gruenbaum, Cedar, and Razin 1982; Bestor

and Ingram 1983; Li, Bestor, and Jaenisch 1992; Vilkaitis et al. 2005); and

DNMT3A/B, which de novo methylates both unmethylated and hemi-methylated

DNA, and help initialise the epigenome after fertilisation (Okano et al. 1999;

Jackson et al. 2004; Brunet and Berger 2014). Global demethylation of the

epigenome occurs with increased age (Wilson et al. 1987; Fuke et al. 2004;

Bjornsson et al. 2008). Changes in expression of DNMT3B and DNMT1 with age

have been reported, which could have causal changes to DNAm patterns and

affect eAge prediction (Ciccarone et al. 2016). DNMT3A/B also appear

important for somatic functions, most likely by conducting de novo methylation of

sites missed by DNMT1. For example, loss of function DNMT3A can lead to

age-related clonal haematopoesis (ARCH), which in turn increases risk of

haematological cancers (Ley et al. 2010; Kim et al. 2013; Yasuda et al. 2014;

Herold et al. 2017; Jeong et al. 2018; Abelson and Wang 2018; Robertson et al.

2019; Kurosawa and Iwama 2020). Indeed, global hypomethylation (Feinberg

and Vogelstein 1983; Goelz et al. 1985) and specific hypermethylation of

promoter CpG islands (Esteller et al. 2001; Esteller 2002; Herman and Baylin

2003) are hallmarks of cancer cells.

Over the last decade, various age predictors know as epigenetic clocks have

been developed that utilise DNA methylation. Most epigenetic clocks are built

using a penalised regression algorithm that selects and weights key CpGs

whose hyper- and hypomethylation correlate with age in a linear model across

the adult lifespan, resulting in a predictor of age (Horvath 2013; Horvath and Raj

2018). DNAm outperforms all other biomarkers as a predictor of biological age,

including leukocyte telomere length (LTL) and age associated gene expression

(Benayoun, Pollina, and Brunet 2015; Marioni et al. 2016; Jylhävä, Pedersen,
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and Hägg 2017). The average difference between eAge and chronological age

(age acceleration) is associated with a number of age-related conditions and

diseases, eg. Down’s syndrome and obesity; Horvath et al. 2014; Horvath et al.

2015a; Marioni et al. 2015b; Levine et al. 2015; Horvath and Levine 2015;

Horvath et al. 2016b; Breitling et al. 2016; Maierhofer et al. 2017; Quach et al.

2017; Horvath et al. 2018; Martin-Herranz et al. 2019. However, it remains

unclear how robust epigenetic clocks are to global changes in methylation.

There are a number of ways that changes detected in age acceleration could be

due to false positives. These biases can be grouped in either one of two broad

categories; biological and technical biases.

Biological biases could involve germline or somatic mutations related to DNA

methylation machinery. For example, we have previously found that ARCH

patients with somatic mutations in DNMT3A and ten-eleven translocation (TET)

2 have an increased epigenetic age (Robertson et al. 2019). However, it is

plausible that mutations in these genes cause global methylation changes that

result in inaccurate age prediction, leading to a false eAge acceleration. It is

therefore also possible that similar mutations might be present in any number of

experiments analysing eAge, and could contribute to a false positive result, or

even a false negative. A point mutation in the PWWP region of DNMT3A causes

aberrant hypermethylation at bivalent chromatin in mice (Sendžikaitė et al.

2019), and could conceivably lead to global hypermethylation. Similar somatic

mutations could manifest not only in DNMTs and TETs, but any number of genes

that interact with them. For example, DNMT3L does not directly methylate CpG

sites, but facilitates DNMT3A/B mediated methylation (Hata et al. 2002; Mao

et al. 2020). Technical biases may arise from certain methodological steps such

as the DNA extraction method (which depending on the method, can affect

methylation capture accuracy by 1-3%; Soriano-Tárraga et al. 2013) or the

efficiency of bisulphite (BS) conversion. For example, BS-induced DNA

degradation can cause a depletion of unmethylated cytosines, causing an up to
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10% overestimation of global methylation (Olova et al. 2018b).

In this study, we analysed how susceptible epigenetic clocks are to global

changes in methylation by exploring a variety of scenarios using DNAm data in

participants from the Generation Scotland (GS) study (Smith et al. 2006; Smith

et al. 2013). We show that epigenetic clocks are not impervious to gradual,

global changes in methylation. Discrete alterations in methylation state, caused

by potential biological or technical variables, can have a dramatic impact on

eAge prediction.

5.2 Results

DNA methylation from 5,100 ostensibly healthy participants in the GS study were

gradually hyper- and hypomethylated (between plus and minus 20%), and the

Horvath, Hannum and Skin & Blood (S&B) clocks were applied. Relative

methylation change was calculated by multiplying each percentage methylation

(β) value by a factor (eg. 0.9 or 1.1 to achieve minus or plus 10% respectively,

Fig. 5.1A-F). Absolute methylation change was calculated by adding or

subtracting a percentage value; eg. +/- 0.1 to get plus or minus 10% absolute

methylation (Fig. 5.1G-L). Hypermethylation overall increases eAge, whereas

hypomethylation decreases eAge. There is an inflection point (for example, 20

years old in the Horvath clock) where this relationship tends to reverse, so

individuals less than 20 years old are more likely to have a higher eAge with

greater hypomethylation (Fig. 5.1A,D). This inversion is likely because the

Horvath clock applies a logarithmic transformation to ages <20 years (Horvath

2013; Snir, Farrell, and Pellegrini 2019).The mean age acceleration tends to

decrease as age increases, regardless of methylation status (Fig. 5.1D-F,J-L).

The difference in eAge between hyper/hypomethyated samples and unchanged

samples appears to increase with age in the relative samples, but not in the

absolute samples (Fig. 5.1D-F,J-L). When certain CpG sites reach a saturation
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point (100% hyper- or hypomethylation), the linear model starts to decay. This

can be seen in the Hannum clock (where positive and negative methylation lines

do not increase or decrease in a regular way compared to the other clocks; Fig.

5.1B,E). Absolute changes in methylation also exhibit a similar breakdown of the

linear trend (Fig. 5.1G-L), as absolute increases or decreases in methylation are

more likely to saturate or desaturate/floor certain CpGs.
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Figure 5.1: Epigenetic clocks are not resistant to global changes in
methylation. Statistical comparisons between test and control groups were
calculated with the Welch’s T-Test. (A-C) Relative methylation changes from
+20% to -20% for Horvath (A), Hannum (B) and S&B (C) clocks, epigenetic age
(eAge) plotted on y-axis against chronological age (chAge) on x-axis. (D-F) Mean
age acceleration of each age group in GS1 for Horvath (D), Hannum (E) and S&B
(F) clocks, for relative methylation changes. (G-I) Absolute changes in global
methylation from +20% to -20% for Horvath (G), Hannum (H) and S&B (I) clocks.
(J-L) Mean age acceleration of each age group in GS1 for Horvath (J), Hannum
(K) and S&B (L) clocks, for absolute methylation changes.

A common caveat to consider in eAge studies is the use of small sample

sizes for rare diseases (eg. under 30; Walker et al. 2015; Horvath et al. 2016b;

Maierhofer et al. 2017; Horvath et al. 2018). Two scenarios were created using

random subsets of GS participants aged 30-60 to depict how global methylation

changes could result in false positive differences in age acceleration. In

Scenario 1, 200 samples were unaltered, representing the control group. Test 1

and Test 2 had 20 samples each, and could represent two random test

populations with a rare genetic disorder. These test groups were globally hyper-

or hypomethylated, which represents any possible biological or technical bias

that might occur (eg. DNA methylation machinery mutations, or errors in BS

conversion). In Test 1, global methylation was increased by 20% and Test 2 was

decreased by 20% (Fig. 5.2A). No significant difference in eAge was present

between Test 1 unaltered and control, but there was a nominally significant

difference (p ≤ 0.05) between Test 2 unaltered and controls (Fig. 5.2B). Relative

increases and decreases of 20% caused significant increases and decreases (P

≤ 0.0001) in age acceleration, respectively, compared to the control group (Fig.

5.2A,B). An absolute increase of 20% also caused a significant increase (P ≤

0.0001) from the control (Fig. 5.2C,D). A significant difference (P ≤ 0.001) in

eAge from control was also observed in Test 2 after an absolute decrease of

20% methylation (Fig. 5.2D). In both test groups, linear regression analyses

show no association between chAge and eAge, due to saturation or
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desaturation/flooring of clock CpG sites (Fig. 5.2C).

Alterations in the epigenome as large as 20% are extreme and perhaps

unlikely. We therefore specified a second scenario to demonstrate how a small

change in global methylation can create a significant difference in age

acceleration. 2000 control samples and 500 samples for each test group, aged

30-70, were randomly selected from GS (Fig. 5.2E-H). No significant difference

was present between the unaltered test groups and the control group (Fig.

5.2F,H). A relative 5% methylation increase caused a 0.73 years difference in

eAge between Test 1 and control, which was statistically significant (P ≤ 0.001)

(Fig. 5.2E,F). Similarly, a relative 5% decrease in methylation caused a 0.95

year difference between Test 2 and control which was also statistically significant

(P ≤ 0.001; Fig. 2F). Absolute increases and decreases in methylation also

caused significant increases and decreases in eAge (respectively) from the

control group (Fig. 5.2G,H). The absolute 5% methylation increase caused Test

1 eAge acceleration to be 3.27 years higher than the control (Fig. 5.2H). An

absolute 5% methylation decrease caused Test 2 to decrease by 1.09 years

from control, similar to the relative version.
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Figure 5.2: Global methylation changes can create false positive results.
(A,B) First experiment scenario with relative methylation changes; a control group
(n=200) and two test groups, Test 1 (plus 20%, n=20) and Test 2 (minus 20%,
n=20). (A) The Horvath clock was applied to all three groups, Horvath eAge on
y-axis against chAge on x-axis. (B) Mean age acceleration for relative changes
in Scenario 1. The control, Test 1 unaltered and Test 2 unaltered had mean age
accelerations of 3.54 +/- 0.30, 4.2 +/- 1.05, and 2.66 +/- 1.02 years respectively.
Significant differences (P ≤ 0.001) in age acceleration (7.72 +/- 0.99 years Test 1
and -0.86 +/- 1.08 years Test 2) resulted between the two test groups and control.
(C,D) Absolute methylation change version of scenario 1. The Horvath clock
was applied to all three groups (C), Horvath eAge on y-axis against chAge on
x-axis. (D) Mean age acceleration for relative changes in scenario 1. Significant
difference (P ≤ 0.001) in age acceleration (17.89 +/- 1.04 years Test 1 and 1.38
+/- 1.53 years Test 2) resulted between Test 1 and control, but not between Test
2 and control (D). (E,F) Second experiment scenario; a control group (n=2000)
and two test groups, Test 1 (plus 20%, n=500) and Test 2 (minus 20%, n=500).
(E) The Horvath clock was applied to all three groups, Horvath eAge on y-axis
against chAge on x-axis. (F) Mean age acceleration for relative changes in
Scenario 2. The control, Test 1 unaltered and Test 2 unaltered had mean age
accelerations of 2.81 +/- 0.11, 2.77 +/- 0.52, and 2.82 +/- 0.22 years respectively.
Significant differences (P ≤ 0.001) in age acceleration (3.54 +/- 0.22 years Test
1 and 1.86 +/- 0.22 years -5% Test 2) resulted between the two test groups and
control. (G,H) Absolute version of second experiment scenario. The Horvath
clock was applied to all three groups (G), Horvath eAge on y-axis against chAge
on x-axis. Significant differences (P ≤ 0.001) in age acceleration (2.81 +/- 0.11
years control, 6.08 +/- 0.22 years Test 1 and 1.72 +/- 0.23 years -5% Test 2)
resulted between the two test groups and control (H).

5.3 Discussion

Epigenetic clocks have emerged as tools that provide a proxy measure of

biological age. However, the precise aspects of physiological ageing they

measure is unclear, hence it is still unclear if epigenetic clocks truly capture

biological age. Often, the age acceleration of a test dataset is compared with

larger control datasets. When testing rare genetic disorders, the number of

samples are typically low (eg. under 30; Walker et al. 2015; Horvath et al.

2016b; Maierhofer et al. 2017; Horvath et al. 2018). A significant difference in

age acceleration between cases and control may indicate that the condition

causes a change in biological age.
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We have shown that the epigenetic clock is not robust against global

changes. Global hyper- and hypomethylation can increase and decrease eAge,

respectively. In addition, these differences appears to be more pronounced with

age. We have demonstrated two scenarios that create false positive results due

to a large (+/-20%) or a small (+/-5%) methylation change. Biological and

technical biases could globally increase or decrease methylation, which would

significantly offset eAge prediction and result in false positive results. Somatic

variants in DNA methylation machinery (such as DNMT3A) could cause these

global changes in methylation which result in accelerated eAge (Robertson et al.

2019). Indeed, mutations in NSD1 (Soto syndrome) have been hypothesised to

alter DNAm patterns and affect DNMT3A activity, which therefore increases

eAge (Martin-Herranz et al. 2019).

Technical biases can cause a global change in methylation that could alter

eAge. Difference in BS conversion between experiments results in discrepancies

of methylation readouts. If the conversion rate is too low (due to BS-induced

degradation of unmethylated cytosines), then the methylation signal could be

overestimated by up to 10% (Olova et al. 2018b). This effect might be a

confounding factor when comparing BS experiments between different labs,

resulting in batch effects (eg. studies where case samples are assessed by one

lab, and control samples are obtained online from a variety of sources Horvath

and Levine 2015; Martin-Herranz et al. 2019). Martin-Herranz et al. showed that

various DNAm array datasets cluster based on batch, capturing a degree of

technical variance that might be due to differences in BS conversion

(Martin-Herranz et al. 2019). Sub-optimal BS conversion might also cause false

negative results. For example, 160 of the 353 CpGs hypomethylate with age in

the Pan-Tissue clock (Horvath 2013). Therefore, it is possible that a low

conversion rate would cause these sites to appear hypermethyated and alter the

predicted age to hide any resulting increase or decrease with age. Processing

test and control samples in the same lab/batch will ensure the same protocol for
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conversion and minimise technical biases. Alternatively, when using control and

test samples from different labs, batch effect correction and and composite cell

correction may minimise technical variance (Martin-Herranz et al. 2019).

Increases and decreases in methylation can saturate or desaturate certain

CpGs, at which point the linear model starts to degrade. This might explain why

epigenetic clocks do not function properly with certain conditions. For example,

global hypomethylation (Feinberg and Vogelstein 1983; Goelz et al. 1985) and

hypermethylation of certain promoter CpG islands (Esteller et al. 2001; Esteller

2002; Herman and Baylin 2003) are hallmarks of cancer cells. The epigenetic

clock does not show accelerated ageing in cancer cells (Horvath 2015), which

might be due to global methylation deregulation occurring in a similar manner to

Figure 5.1.

Consistent with other reports for the Horvath and Hannum clocks, we found a

lower average epigenetic age in older individuals (Fig. 5.1D-F,J-L; El Khoury

et al. 2019; Marioni et al. 2019; Martin-Herranz et al. 2019). While a lower

predicted age in older individuals could be due to survivor bias (ie. individuals

who survive to old age may be likely to be healthier), we see in our data that

both global hyper- and hypomethylation decreases age acceleration, but the

effect is exacerbated in the hypomethylated samples. It is possible that this

decrease in eAge acceleration with increasing age is due to saturation of certain

CpGs, which in turn would reduce the “tick rate” of the epigenetic clock (see

Chapter 1.4.5). This has been previously hypothesised by El Khoury et al.

(2019). They note that out of the ten most influential CpGs of the Horvath clock,

three of them might be candidates for CpG saturation since they are normally

highly methylated and expected to increase in methylation with age (El Khoury

et al. 2019). Therefore, certain CpGs may only work until a certain age before

they saturate or desaturate, at which point the linear model degrades and

prediction becomes less accurate, as shown in Figure 5.1.

While this has been an in silico investigation, it would also be interesting to
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corroborate our results in vitro. Heterozygous knock-out, or knock-down, of

DNMT3A/B in human fibroblasts could cause a gradual decrease in global

methylation. Alternatively, an extra copy of DNMT3A/B could be inserted, or

transiently expressed using a viral vector, to cause a global increase in

methylation. Alternatively, chemical treatment using 5-aza-2’-deoxycytidine (a

DNMT inhibitor) can induce global methylation (Jones and Taylor 1980; Chuang

et al. 2005; Ramos et al. 2015). Knock-down, transient expression or chemical

treatment would be the most favourable, as global methylation percentages and

eAge can be calculated pre- and post-treatment, and therefore the exact amount

of global methylation change can measured for each technique.

Since eAge does not correlate with most physiological signs of ageing, such

as cell division, replicative senescence and telomere length (see Chapter 1.4.6

for more detail; Lowe, Horvath, and Raj 2016; Marioni et al. 2016; Kabacik et al.

2018; Horvath et al. 2019; Cypris et al. 2020), it might instead measure aspects

of age-related epigenetic drift/deregulation (Yu et al. 2020)? Demethylation can

occur in either a passive manner (eg. through inhibition of DNMT1 during cell

replication; Wolffe, Jones, and Wade 1999; Mayer et al. 2000), or actively via

methyl-CpG binding domain protein 4 (MBD4; Hendrich et al. 1999) or TET

enzymes (Jin et al. 2014; Ichiyama et al. 2015). However, both theories are

confounded regarding measurable changes in eAge as age increases. There is

little evidence to suggest that active processes, such as TET, directly

demethylate with age and affect eAge prediction (Wallace 2014; Zhang et al.

2016; Yu et al. 2020). eAge can be measured in nonproliferating tissues

(Horvath 2013; Yang et al. 2016; Horvath et al. 2019) which means passive

demethyation is less likely. It is possible that actively dividing tissues accumulate

somatic mutations in DNA methylation machinery during ageing, which result in

epigenetic drift that can be seen as aberrant eAge prediction.

Our study shows that the linear models used to build epigenetic clocks do not

compensate for global changes in methylation. Can the linear model be adapted
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or changed to improve age prediction? The Horvath clock applies a logarithmic

transformation to ages <20 years, and the linear model remains unaltered for

ages >20 years (Horvath 2013; Snir, Farrell, and Pellegrini 2019). Perhaps

further transformation in old age is required for accurate age prediction? Or

specifically building a clock that excludes highly saturated or desaturated CpGs

will result in a more stable predictor? Alternatively, a compensatory approach

might be required for older age groups to account for saturating/desaturating

CpGs (eg. imputing optimal values below 0 or above 1). It is possible that

biological age is intrinsically non-linear in its progression. Therefore, alternate

models may prove more appropriate to predict age and account for

saturating/desaturating CpGs, such as support vector regression (Xu et al. 2015;

Aliferi et al. 2018), or logarithmic/quadratic models (Snir, VonHoldt, and

Pellegrini 2016; Snir, Farrell, and Pellegrini 2019). Similar approaches may

prove useful in providing accurate age prediction that are immune to global

methylation changes.
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Chapter 6

Robust Age Prediction in Mouse

Based on Average Methylation per

Genomic Region

6.1 Introduction

A number of age predictors have been created based on Illumina human DNAm

arrays, which offer precise and reproducible readouts of thousands of CpGs,

resulting in reliable age prediction (Bocklandt et al. 2011; Koch and Wagner

2011; Hannum et al. 2013; Horvath 2013; Weidner et al. 2014; Levine et al.

2018; Lu et al. 2019a; Zhang et al. 2019). The predicted age generated by these

clocks is referred to as epigenetic age (eAge), and the age acceleration

(difference between eAge and chronological age, chAge) is associated with a

number of disease states, conditions and all-cause mortality (Horvath et al.

2014; Horvath 2015; Horvath and Levine 2015; Horvath et al. 2016b; Marioni

et al. 2015a; Chen et al. 2016; Simpkin et al. 2016; Maierhofer et al. 2017;

Horvath et al. 2018; Lu et al. 2019a; Martin-Herranz et al. 2019; Wu et al. 2019;

Higgins-Chen et al. 2020). As a result, eAge has become a popular proxy to

estimate biological age, however, whether it truly predicts biological age is still
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debated (Field et al. 2018).

Epigenetic clocks have also been created for mice, which has paved the way

for quantifying the rejuvenation potential of life-span extending drugs and

therapies (Wang et al. 2017; Petkovich et al. 2017; Stubbs et al. 2017; Meer

et al. 2018; Thompson et al. 2018; Han et al. 2018; Han et al. 2020). Many of

these clocks use reduced representation bisulphite sequencing (RRBS) data,

where bisuphite-converted DNA is digested by MSP1, an enzyme that cuts DNA

at CpG sites, regardless of their methylation state (Meissner et al. 2005; Gu

et al. 2011; Baheti et al. 2016). This process ensures fragments are enriched

with CpG sites, and is a cheaper alternative to whole genome bisuphite

sequencing (WGBS) since it captures only ~1% of the genome (Meissner et al.

2008a; Gu et al. 2011). However, the overlap of CpG sites captured in RRBS

and their coverage, differs between datasets due to differences in protocols and

enzymes used (Field et al. 2018; Thompson et al. 2018). In addition, many of

the bisuphite-sequencing (BS-seq) based clocks were created by pooling

multiple datasets together and dividing into test and training data (i.e. no

out-of-sample testing is conducted). This means RRBS mouse clocks have

limited transferability (i.e. lower accuracy) when applied to studies outside of the

original training data of a given clock.

We have developed RRBS mouse clocks that use average methylation over

large regions (termed regional epigenetic clocks), rather than individual CpGs.

We have demonstrated that a window size between 2 and 6 Kb will generate a

robust epigenetic clock that is transferable across multiple RRBS platforms and

experiments, and outperforms current RRBS mouse clocks, such as the Stubbs

multi-tissue and Petkovich blood clocks.
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Table 6.1: Published bisuphite sequencing mouse clocks and the datasets
used to train them. Datasets highlighted yellow were used to construct the multi-
tissue region clocks (Rizel et al. 2018 was also used but not listed), and the
datasets highlighted red were used to construct the blood region clock.

Clock Reference Cell Types/Tissue 
Used for Training

Samples Used 
for Training GEO Reference

Petkovich Petkovich et al. 
(2017)

Whole blood 141 GSE80672 Petkovich et al. (2017)

Wang Wang et al. 
(2017)

Liver 99 GSE60012 Reizel et al. (2015)

Liver 4 SRA344045
(WGBS)

Gravina et al. (2016)

Liver 4 GSE89275
(WGBS)

Wang et al. (2017)

Stubbs Multi-
Tissue

Stubbs et al. 
(2017)

Liver 7 GSE52268 Cannon et al. (2014)

Liver 50 GSE60012;
GSE93957

Reizel et al. (2015);
Stubbs et al. (2017)

Lung 12 GSE93957 Stubbs et al. (2017)

Heart 12 GSE93957 Stubbs et al. (2017)

Muscle 18 GSE60012 Reizel et al. (2015)

Spleen 10 GSE60012 Reizel et al. (2015)

Cerebellum 8 GSE60012 Reizel et al. (2015)

Cortex 12 GSE93957 Stubbs et al. (2017)

Meer Meer et al. 
(2018)

Whole Blood 125 GSE80672 Petkovich et al. (2017)

Liver 38 GSE60012 Reizel et al. (2015)

Muscle 20 GSE60012 Reizel et al. (2015)

Spleen 8 GSE60012 Reizel et al. (2015)

Cerebellum 6 GSE60012 Reizel et al. (2015)

Pro B cells 3 GSE70538 Orlanski et al. (2016)

Follicular B cells 2 GSE70538 Orlanski et al. (2016)

Liver 10 GSE84573 McCormick et al. (2017)

Cortex 5 GSE84573 McCormick et al. (2017)

Heart 4 GSE84573 McCormick et al. (2017)

Cortex 13 GSE93957 Stubbs et al. (2017)

Heart 11 GSE93957 Stubbs et al. (2017)

Liver 12 GSE93957 Stubbs et al. (2017)

Lung 14 GSE93957 Stubbs et al. (2017)

Cortex 15 GSE121141 Meer et al. (2018)

Heart 18 GSE121141 Meer et al. (2018)

Liver 16 GSE121141 Meer et al. (2018)

Lung 12 GSE121141 Meer et al. (2018)
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6.2 Results

6.2.1 Analysing Published Mouse RRBS Clocks

We first analysed the coverage of the CpGs of two multi-tissue mouse RRBS

clocks (Stubbs and Meer, Table 6.1) in various mouse RRBS datasets (Fig.

6.1A). Coverage of clock sites vary from dataset to dataset. For example, some

sites are consistently higher in coverage than others for all datasets, however,

some might be high in one dataset and low in others. Meer et al. (2018)

consistently had the highest coverage on all clocks, which is expected since

Meer et al. trained their clock using CpGs that were present in most of the

datasets they analysed.

We applied five published BS-seq mouse clocks to various publicly available

datasets (Table 6.2, Fig. 6.1B-F). Clocks applied to their own training data, (eg.

Stubbs and Meer applied to Stubbs et al. 2017 data, Fig. 6.1B,C) had adj. R2

values over 0.6 (Table 6.2). The main exceptions were the Stubbs and Wang

clocks applied to the Reizel et al. (2018) dataset (adj. R2 = 0.90 and 0.69

respectively), which is likely because this dataset was processed by the same

lab of the Reizel et al. (2015) data which was used to train these clocks.

However, clocks applied to datasets outside of their training datasets had adj. R2

values lower than 0.5 (Table 6.2). The Stubbs clock was trained on 0-9 mo

samples, however, it performs less accurately on 9 mo samples in the Stubbs et

al. (2017) data (Fig. 6.1B) and 10 mo samples in Thompson et al. (2018) data

(Fig. 6.1D). The Meer clock performed well on the Thompson et al. (2018) data,

and was particularly accurate on blood (adj. R2=0.89, MAE=1.9, Fig. 6.1E). The

Petkovitch blood clock had a low age acceleration and accuracy (R2=0.41,

MAE=5.69, Fig. 6.1F).
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Figure 6.1: Mouse epigenetic clocks applied to various datasets. (A) Median
coverage of multitissue datasets for CpG sites of two multi-tissue mouse RRBS
clocks. Rows are each clock applied to a particular dataset (columns). For each
plot, x-axis is a particular CpG represented by a line, y-axis is the median number
of reads (coverage) per CpG. Top row; Stubbs clock sites (329 CpGs), Bottom
row; Meer clock sites (435 CpGs). (B-E) Two multi-tissue clocks applied to multi-
tissue datasets. Left panels; epigenetic age (eAge) plotted against chronological
age (chAge) in months (mo). Right panels; absolute error in months. (B,C)
Stubbs clock (B) and Meer clock (C) applied to Stubbs et al. (2017), which was
used to train both clocks. (D,E) Stubbs clock (D) and Meer clock (E) applied to
Thompson et al. (2018), a dataset outside of their training. (F) Petkovitch blood
clock applied to 3 mo blood samples (Thompson et al. 2018).

Table 6.2: Bisulphite sequencing mouse clocks applied to various datasets.
R2 and median absolute error (MAE) values result from the clocks applied to all
tissues in a given dataset. Datasets highlighted yellow were used to construct
the corresponding clock. Datasets in bold were used in the multi-tissue regional
clock.

Mouse clock Datasets clocks were applied to Tissue Total adjusted
 R squared

Total 
MAE GEO accession

Petkovich blood Thompson et al. (2018) Blood (> 3 months old) 0.41 5.68 GSE120137

Thompson et al. (2018) Liver 0.32 5.96 GSE120137
Meer et al. (2018) Liver -0.04 7.09 GSE121141
Stubbs et al. (2017) Liver 0.36 1.94 GSE93957
Reizel et al. (2018) Liver 0.69 0.87 GSE85251
Reizel et al. (2015) Liver 0.62 1.55 GSE60012
Thompson et al. (2018) Blood, liver, lung, muscle 0.33 6.67 GSE120137
Meer et al. (2018) Liver, lung, heart, cortex 0.13 8.03 GSE121141
Stubbs et al. (2017) Liver, lung, heart, cortex 0.78 0.71 GSE93957

Reizel et al. (2018) Hepatocyte, lung, heart, 
hippocampus 0.90 0.33 GSE85251

Reizel et al. (2015) Liver, muscle, cerebellum,
spleen 0.89 0.23 GSE60012

Thompson et al. (2018) Blood, liver, lung, muscle 0.45 3.72 GSE120137
Meer et al. (2018) Liver, lung, heart, cortex 0.75 1.83 GSE121141
Stubbs et al. (2017) Liver, lung, heart, cortex 0.71 0.83 GSE93957

Reizel et al. (2018) Hepatocyte, lung, heart,
hippocampus 0.55 1.36 GSE85251

Reizel et al. (2015) Liver, muscle, cerebellum, 
spleen 0.72 1.16 GSE60012

Thompson et al. (2018) Blood, liver, lung, muscle,
kidney, adipose 0.78 8.77 GSE120137

Meer et al. (2018) Liver, lung, heart, cortex 0.13 4.89 GSE121141
Stubbs et al. (2017) Liver, lung, heart, cortex 0.45 2.49 GSE93957

Reizel et al. (2018) Hepatocyte, lung, heart,
hippocampus 0.47 9.60 GSE85251

Reizel et al. (2015) Liver, muscle, cerebellum, 
spleen 0.51 1.40 GSE60012

  

Wang liver

Stubbs 

Thompson

skcol
C eussiT elgniS

Meer

skcol
C eussiT-itlu

M

6.2.2 Generating Regional Epigenetic Clocks

We next developed mouse RRBS clocks based on average methylation of

particular region or window sizes (eg. 2kb) to see if the resulting clocks were
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more accurate on non-training datasets than published clocks. We segmented

the mouse genome into various sizes (1-9kb) using a running window generator,

and for each segment size we conducted penalised regression against age to

select optimal regions and weights for age prediction (Fig. 6.2A). Nine regional

blood clocks (RBCs) and regional multi-tissue clocks (RMTCs) were generated

(1-9 kb region sizes each, Table 6.3). Whole blood from GSE80672 (aged 3-35

mo, training=141, test=21; Petkovich et al. 2017) was used to construct the RBC.

Liver, muscle, spleen, lung, heart, cerebellum and hippocampus tissue from

GSE60012 (Reizel et al. 2015) and GSE85251 (Reizel et al. 2018) was used to

construct the RMTC (aged 0.23-4.6 mo, training=118, test=13). Only tissues

with samples at two different time points minimum were used, hence tissues that

only had samples at single time points were rejected.

Both the RBC and RMTC had R2 values higher than 0.85 when applied to

their respective training or test data (Fig. 6.2B). When the RBCs and RMTCs

were applied to datasets outside of their training, we found 2 to 6kb segment

sizes produced clocks with the best correlation with age (Fig. 6.2C, Table 6.3).

Performance tends to fluctuate depending on segment size. The blood clock

performed best with a 2kb window when applied to the Thompson et al. (2018)

blood data (Fig. 6.2C, left panel). The MTC clock performed well at 2kb for both

the Stubbs and Thompson multi-tissue datasets (Fig. 6.2C, right panel). The

MTC clock performed best at 4kb on the Stubbs dataset, and better at 5kb with

the Thompson data.
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Figure 6.2: 2 and 4 kb genome window sizes provide robust age prediction
in out-of-sample datasets. (A) Graphical overview of experiment. For both the
multi-tissue and single tissue datasets, a running window generator was applied
to segment the genome of the RRBS training data into various sizes (eg. 2kb).
Segments were trained against age (months, mo) using penalised regression.
Four regional epigenetic clocks were produced; a 2kb and 4kb regional multi-
tissue clock (RMTC), and a 2kb and 4kb regional blood clock (RBC). (B,C)
Adjusted R2 values (y-axis) of each regional clocks (x-axis) epigenetic age
correlated with chronological age in each dataset. (B) Left panel: Various RBCs
applied to the RBC 90% training data (red line) and 10% test data (blue line).
Right panel: RMTC applied to the RMTC 90% training data (red line) and 10%
test data (blue line). (C) Left panel; RBCs applied to Thompson et al. (2018) blood
dataset. Right panel; RMTCs applied to Stubbs et al. (2017) and Thompson et al.
(2018) multi-tissue datasets. (D-I) Regional clocks applied to various datasets.
Left panels; epigenetic age (eAge) plotted against chronological age (chAge)
in months (mo). Right panels; absolute error in months. 2kb and 4kb RMTCs
applied to Stubbs et al. (2017) (D,E, respectively) and Thompson et al. (2018)
(F,G, respectively) datasets. (H,I) 2kb (H) and 4kb (I) RBCs applied to Thompson
et al. (2018) 3 month blood datasets.

We chose 2kb and 4kb segment sizes of the RBC and RMTC to apply to the

Stubbs and Thompson datasets (Fig. 6.2C-H), which were not used to train these

clocks (see Table. 6.3 for all window sizes of RBCs and RMTCs applied to these

datasets). The Stubbs et al. (2017) dataset consisted of mouse cortex, heart, liver

and lung samples aged 0-9 months old. Overall the 4kb clock had the highest adj.

R2 (0.67) and lowest MAE for all tissue types (Fig. 6.2D,E). The Stubbs and Meer

clocks were more accurate than the RMTCs applied to the Stubbs et al. (2017)

data, which is expected since this data was used to train both clocks. However,

the MAE of the 4kb was 1.4 mo for all tissues, which is only ~0.6-0.7 mo greater

than the Stubbs and Meer clocks. In addition, the 4kb RMTC performs accurately

on cortex tissue (adj. R2 = 0.7, MAE = 1.2), which was not included in the training

data for this clock.

The Thompson et al. (2018) multi-tissue dataset consists of blood, liver, lung

and muscle, aged ~2-22 months. Both the 2kb and 4kb RMTCs did not perform

as well on this dataset (Fig. 6.2G,H) than when applied to the younger samples

in the Stubbs dataset, which is not surprising since the RMTCs were trained on
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Table 6.3: Regional blood clocks (RBCs) and regional multi-tissue clocks
(RMTCs) of various window sizes applied to Stubbs et al. (2017) and
Thompson et al. (2018) datasets. Datasets in bold are the regional clocks
presented in Fig. 6.2.

Datasets Clocks Total adjusted 
R squared Total MAE

1kb RMTC 0.526 1.635
2kb RMTC 0.616 1.853
3kb RMTC 0.587 1.355
4kb RMTC 0.672 1.410
5kb RMTC 0.491 1.857
6kb RMTC 0.590 1.492
7kb RMTC 0.589 1.482
8kb RMTC 0.505 1.608
9kb RMTC 0.542 1.531
1kb RMTC 0.417 6.094
2kb RMTC 0.492 4.425
3kb RMTC 0.523 5.844
4kb RMTC 0.519 6.126
5kb RMTC 0.628 5.948
6kb RMTC 0.583 4.421
7kb RMTC 0.503 4.836
8kb RMTC 0.563 5.408
9kb RMTC 0.536 4.248
1kb RBC 0.779 6.161
2kb RBC 0.787 6.055
3kb RBC 0.698 6.223
4kb RBC 0.710 3.599
5kb RBC 0.628 9.767
6kb RBC 0.750 7.307
7kb RBC 0.727 5.359
8kb RBC 0.594 4.309
9kb RBC 0.742 5.539

Stubbs et al. (2017)
GSE93957

Thompson et al. (2018)
GSE120137

Thompson et al. (2018)
 (> 3 months Blood)

GSE120137

young samples. The 2kb segment size was the most optimal for the RMTC when

applied to the Thompson dataset. It had the lowest MAE when applied to liver, but

also performed well with blood, even though no blood samples were included to

train the RMTC. Both the 2k and 4kb RMTCs outperform the Stubbs multi-tissue

clock when applied to the Thompson et al. (2018) data (Fig. 6.1D). The Meer

clock outperformed the RMTCs when applied to the Stubbs et al. (2017) data

which is not surprising since this dataset was included to train the Meer clock.

The Meer clock outperformed both RMTCs for most tissues in the Thompson et

al. (2018) data except muscle. Overall, the RMTCs had higher R2 values for all
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tissues when applied to the Thompson et al. (2018) study than the Meer clock.

Both RBCs had an R2 higher than 0.70 when applied to the Thompson et al.

(2018) <3 month old blood data. While the 2kb blood clock had the highest R2

out of all the other window sizes, the 4kb clock had the lowest MAE of 3.6 mo

(Table. 6.3, Fig. 6.2H,I). The 4kb RMTC also outperforms the Petkovitch blood

clock applied to the Thompson et al. (2018) dataset (Fig. 6.1F) as it had a higher

correlation and lower MAE.

6.3 Discussion

Age prediction utilising RRBS data for accurate age prediction has proven

difficult due to the uneven coverage of CpG sites captured between different

experiments. We have shown that an approach using regions of CpGs can

improve the robustness of age prediction. Using the same dataset used to

create the Petkovitch blood clock, our RBC outperforms this clock when tested

on non-training datasets.

Our RMTCs outperform most multi-tissue predictors when applied to datasets

outside of training data. The only clock that appears to outperform the RMTCs

is the Meer clock. This is likely because Meer et al. constructed their clock only

using CpGs that were present in most of the datasets they analysed (Fig. 6.1A;

Meer et al. 2018). The RTMCs showed transferability to non-training tissue types

(such as cortex and blood). It is possible that age specific genomic regions are

enough to capture biological age regardless of tissue type. The RMTCs also

performed admirably on the 0-9 mo Stubbs et al. (2017) data, and almost as well

as the Stubbs and Meer clocks which were originally trained on this dataset (Fig.

1B,C, Fig. 2D,E).

Interestingly, the trend of the predicted age for the RMTCs applied to young

mice appears to be logarithmic/quadratic (Fig. 6.2D,E. It is possible that eAge

progresses in a non-linear fashion. For example, the epigenetic pacemaker model
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is an epigenetic clock where the predicted age follows a logarithmic trend (Snir,

VonHoldt, and Pellegrini 2016; Snir, Farrell, and Pellegrini 2019). In addition, the

Horvath clock applies a logarithmic transformation to ages <20 years (Horvath

2013; Snir, Farrell, and Pellegrini 2019). The Horvath and Hannum clocks also

under-predicts the age of older individuals (see Chapter 1.4.5; El Khoury et al.

2019). Therefore, eAge/biological age might have a non-linear relationship with

chAge. Training clocks on specific age ranges (eg. the Stubbs clock and our

RMTCs that are trained on under 9 mo mice) might be a more effective approach.

Alternatively, training a clock assuming a non-linear relationship with age, rather

than linear, might produce a more accurate age predictor.

Targeted methods have been developed for mice to reduce the cost that

comes with RRBS and WGBS. The Wagner lab developed a 3 CpG and 15 CpG

clock for multiple platforms (pyrosequencing, droplet digital PCR and barcoded

bisuphite amplicon sequencing), which offered accurate age prediction at few

CpGs for relatively low cost (Han et al. 2018; Han et al. 2020). Techniques such

as this might be more viable for age prediction since they have a higher

coverage at a few CpGs, whereas RRBS experiments vary in coverage

necessary for CpG-specific age prediction (Fig. 6.1). Nonetheless, our regional

genomic clocks have offered a proof in principle that age prediction can be more

effective by accounting for multiple CpGs, which negates the lack of read depth

at key CpGs that would otherwise hinder single CpG-based clocks.
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Discussion

This thesis has covered a number of research questions regarding epigenetics

and ageing. Chapter 1 consisted of a literature review of the current theories of

ageing, rejuvenation and the quantification of biological age. DNAm remains one

of the most accurate biomarkers for ageing, as shown by the accuracy of the

epigenetic clocks. However, it remains unclear whether eAge is a true proxy for

biological age. For example, some studies have shown no correlation between

eAge acceleration and certain diseases or environmental factors, such as type II

diabetes (Horvath et al. 2016a; Grant et al. 2017), heroin use (Kozlenkov et al.

2017), or depression (Starnawska et al. 2019). Why eAge acceleration tracks

with certain age-related disorders and not others is still not well understood.

Difficulties may in part be the fact that there is not a precise, formal definition of

“biological age”, particularly in the context of epigenetic clocks (Field et al.

2018). Epigenetic age predictors also have limitations predicting particular age

ranges. The tick-rate of the epigenetic clock (see Section 1.4.5, pg. 23) appears

to be higher for under 20 year olds, hence the Horvath clock applies a

logarithmic transformation to ages <20 years, while the linear model remains

unaltered for ages >20 years (Horvath 2013; Snir, Farrell, and Pellegrini 2019).

The Horvath and Hannum clocks systematically under predict the age of over 60

years olds in blood (El Khoury et al. 2019). This is could be due to survival bias,

where the lower eAge reflects a lower biological age, which enabled the
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centenarians to live longer. However, since the clocks appear to consistently

under predict older age, this assumption is still in question. Alternatively, this

discrepancy might be the result of a regression to the mean effect, where very

high values (eAges) are underestimated by regression models. It is therefore

possible that epigenetic clocks are limited because they are built using linear

models. Biological age likely does not follow a linear trend. Hence alternate

models such as deep learning and support vector regression (Xu et al. 2015;

Aliferi et al. 2018; Levy et al. 2020; Galkin et al. 2020; Galkin et al. 2021), or

logarithmic models such as the epigenetic pacemaker (Snir, VonHoldt, and

Pellegrini 2016; Snir, Farrell, and Pellegrini 2019) might prove a more effective

alternative to linear models. Clocks trained on specific age groups, such as

PedBE, are valid alternatives that could prove effective (McEwen et al. 2019).

The approach used by Horvath to develop epigenetic clocks has spawned

not only an abundance of similar DNAm age predictors, but also other novel

approaches, such as transcriptional (Peters et al. 2015; Bryois et al. 2017),

proteomic (Tanaka et al. 2018; Lehallier et al. 2019) and cellular

biophysical/biomolecular (Phillip et al. 2017) clocks (see Section 1.5, pg. 34).

Indeed, DNAm can be regressed with health co-factors such as smoking and

alcohol consumption to produce predictors of complex traits and mortality

(McCartney et al. 2018). While DNAm is one of the most accurate and versatile

biomarkers for ageing and disease, our understanding of it is still developing.

eAge by definition is not the same as chAge, yet epigenetic age predictors are

built by training DNAm on chAge in a linear model (Field et al. 2018). Building a

highly accurate predictor of chAge does not necessarily equate to an accurate

predictor of biological age. Therefore, training eAge on chAge alone is not

enough to explain biological age, as demonstrated by composite clocks such as

PhenoAge and GrimAge clocks. Composite clocks (see Section 1.4.4) are

created using CpGs that correlate with metrics of physiological or cellular ageing

(such as c-reactive protein, serum albumin and systolic blood pressure) to train
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in a linear model instead of chAge (Levine 2013; Lu et al. 2019a). Hence,

looking at DNAm in combination with other non-DNAm based biomarkers may

broaden our understanding, predictive power and accuracy of biological ageing

and mortality. Composite clocks such as PhenoAge and GrimAge are first steps

in that direction. Transcription clocks may reveal regulators of biological ageing,

for example, if key ageing genes are found to be linked with eAge either by

correlating with age acceleration or directly with methylation changes of key

clock CpGs.

Partial reprogramming was discussed as a potential rejuvenation strategy

where biological age is reduced by transiently expressed Yamanaka (OSKM)

factors, but cell identity is retained. Ocampo et al. (2016) were the first to show

this was possible in vivo. What remained unclear was the nature of rejuvenation

occurring. Was a subpopulation of cells dedifferentiating, or partially

dedifferentiating and producing a rejuvenative effect to surrounding cells by

being more stem-like? Alternatively, were the cells epigenetically rejuvenated,

meaning that the cells became more youthful without loss of somatic cell

identity? To test these hypotheses, two biomarkers were required to track (i)

biological ageing and (ii) dedifferentiation state.

In Chapter 4, a reprogramming time-course of fibroblasts dedifferentiating to

iPSCs was analysed using a variety of epigenetic clocks and comparing eAge

(biological age) with gene expression. Analysing the declining eAge trajectory in

combination with fibroblast and pluripotency cell markers helped us determine

that eAge does indeed have separate kinetics to dedifferentiation. We also

determined that a safe window may exist during dedifferentiation where

discontinuation of the process may result in rejuvenated cells. We did not

explicitly state boundaries where this window might exist, since our bulk

expression analysis did not allow for precise identification of safe rejuvenation

boundaries. Experiments at a single cell level and in in vivo conditions would

help confirm a safe epigenetic rejuvenation window depending on the
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reprogramming system. However, we observed a steep decline in eAge and

stable expression of somatic genes between days 7 and 15 (Fig. 4.7), which

means stable rejuvenation could occur if dedifferentiation was discontinued

during this time.

A recent preprint might have confirmed this hypothesis, where Gill et al.

transiently expressed OSKM in fibroblasts from middle aged donors and

discontinued expression after 10-17 days (Gill et al. 2021). Between days 10-17,

cells temporarily lose their cell identity and their eAge is reduced. After

discontinuation of OSKM treatment, cells revert back to their original cell identity

and retain their reduction of eAge. Since our study was published (Olova et al.

2018a), other studies have shown similar results. Sarkar et al. transiently

expressed OSKM+LIN28+NANOG (OSKMLN) for four days in aged fibroblasts

and endothelial cells, then analysed gene expression and methylation two days

after halting treatment (Sarkar et al. 2020). Lu et al. showed that ectopic

expression of Oct4, Sox2 and Klf4 (OSK) stimulated axon regeneration and

recovered vision in mice (Lu et al. 2020). Both studies showed a reduction in

eAge after treatment. While Sarkar et al. confirmed somatic identity was

retained in their cell cultures, Lu et al. only analysed whether tumours developed

in their mice, which after 10 months they did not. In both cases, no

measurement of pluripotency markers (eg. TRA-1-60) was conducted, which

means the degree of dedifferentiation of these cells cannot be confirmed. This

highlights the importance of sorting for cells expressing pluripotency markers

(eg. TRA-1-60, as shown in our study Fig. 4.1) when analysing epigenetic

rejuvenation and partial reprogramming. Cells expressing TRA-1-60 are

progressing towards a state of pluripotency. When obtained between days 7-11

of dedifferentiation, somatic gene expression is still high, hence these cells are

characterised as partially reprogrammed (Tanabe et al. 2013). Without

confirming the presence of partially reprogrammed cells, or the degree of

pluripotency more specifically, safe implementation of Yamanaka factors as a

118



CHAPTER 7. DISCUSSION

rejuvenation therapy cannot be ensured.

As reviewed in Chapter 1.4.6, caution still must be considered when

interpreting biological age. It is not yet fully understood what physiological

aspects of ageing the epigenetic clocks are measuring. Chapter 5 showed that

the epigenetic clock is not resistant to global changes in methylation. Steps must

be taken in experiments to account for biological and technical biases that might

cause global methylation, and in turn, eAge offsets. Genotyping for somatic

mutations in DNA methylation machinery might be one solution. Alternatively,

designing an epigenetic clock that does not use, or can account for, saturation or

desaturation of CpGs, might result in a more accurate and robust clock.

Non-linear approaches to building an epigenetic clock might be a solution, ie.

designing a clock that does not assume that eAge/biological age progresses in a

linear fashion.

Finally, in Chapter 6, a proof of principle was presented that uses average

methylation per region, rather than per individual CpG, to improve the robustness

of BS-seq based mouse age prediction. This approach offered a more accurate

blood age predictor than the Petkovich blood clock, and a multi-tissue clock more

accurate than the Stubbs multi-tissue clock.
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cGAS surveillance of micronuclei links genome 
instability to innate immunity
Karen J. Mackenzie1*, Paula Carroll1*, Carol-Anne Martin1, olga Murina1, Adeline Fluteau1, Daniel J. Simpson1, nelly olova1, 
hannah Sutcliffe1, Jacqueline K. Rainger1, Andrea Leitch1, Ruby t. osborn1, Ann P. Wheeler1, Marcin nowotny2, nick Gilbert1, 
tamir Chandra1, Martin A. M. Reijns1 & Andrew P. Jackson1

DNA is strictly compartmentalized within the nucleus to prevent 
autoimmunity1; despite this, cyclic GMP–AMP synthase (cGAS), 
a cytosolic sensor of double-stranded DNA, is activated in 
autoinflammatory disorders and by DNA damage2–6. Precisely 
how cellular DNA gains access to the cytoplasm remains to be 
determined. Here, we report that cGAS localizes to micronuclei 
arising from genome instability in a mouse model of monogenic 
autoinflammation, after exogenous DNA damage and spontaneously 
in human cancer cells. Such micronuclei occur after mis-segregation 
of DNA during cell division and consist of chromatin surrounded 
by its own nuclear membrane. Breakdown of the micronuclear 
envelope, a process associated with chromothripsis7, leads to rapid 
accumulation of cGAS, providing a mechanism by which self-DNA 
becomes exposed to the cytosol. cGAS is activated by chromatin, 
and consistent with a mitotic origin, micronuclei formation and 
the proinflammatory response following DNA damage are cell-
cycle dependent. By combining live-cell laser microdissection with 
single cell transcriptomics, we establish that interferon-stimulated 
gene expression is induced in micronucleated cells. We therefore 
conclude that micronuclei represent an important source of 
immunostimulatory DNA. As micronuclei formed from lagging 
chromosomes also activate this pathway, recognition of micronuclei 
by cGAS may act as a cell-intrinsic immune surveillance mechanism 
that detects a range of neoplasia-inducing processes.

DNA is a key pathogen-associated molecular pattern that is sensed by 
innate immune receptors in the cytosol and endosomal   compartments8, 
so strict compartmentalization of cellular DNA in the nucleus and in 
mitochondria is necessary to avoid sensing of self-DNA1. cGAS is an 
important cytosolic nucleic acid sensor, and double-stranded DNA 
(dsDNA) is its canonical ligand9,10. cGAS activation generates the cyclic 
dinucleotide cyclic GMP–AMP (cGAMP), which in turn induces a 
type I interferon response via the adaptor STING (stimulator of inter-
feron genes)11. Aberrant recognition of immunostimulatory cytosolic 
DNA has been implicated in neoplasia and systemic autoinflammatory 
 diseases12–14, with cGAS- or STING-dependent inflammation associ-
ated with mutations in multiple nucleases15.

One such nuclease, RNase H2, maintains mammalian genome 
 integrity through its role in ribonucleotide excision repair16,  suggesting 
that endogenous DNA damage may generate the nucleic acid ligands 
that are sensed by cGAS. Notably, micronuclei occur at a high  frequency 
in Rnaseh2b−/− Trp53−/− mouse embryonic fibroblasts (MEFs)  
compared with Rnaseh2b+/+ Trp53−/− MEFs16 (Fig. 1a; hereafter 
referred to as Rnaseh2b−/− and Rnaseh2b+/+ MEFs, respectively). 
This led us to consider micronuclei as a potential source of immu-
nostimulatory DNA. Such micronuclei, which have their own nuclear 
envelope (Fig. 1b), arise during mitosis from lagging chromosomal 
DNA and chromatin bridges, as a consequence of unresolved genome 

instability (Fig. 1c, Supplementary Video 1, Extended Data Fig. 1a, b 
and Supplementary Information). Increased micronuclei formation 
was also observed in Rnaseh2bA174T/A174T mice (P =  0.003; Extended 
Data Fig. 1c, d), a model for the autoinflammatory disorder Aicardi-
Goutières syndrome, confirming that micronuclei arise as a result of 
RNase H2 deficiency both in vitro and in vivo, irrespective of p53 status. 
As the interferon-stimulated gene (ISG) upregulation and proinflam-
matory response in both Rnaseh2b−/− MEFs and Rnaseh2bA174T/A174T 
mice is cGAS- and STING-dependent5, accumulation of micronuclear 
DNA correlated with activation of the cGAS and STING pathway. 
Furthermore, investigation of the subcellular localization of cGAS in 
Rnaseh2b−/− MEFs stably expressing GFP–cGAS established that cGAS 
was strongly enriched in micronuclei (Fig. 1d; 83.3 ±  1.4% of micro-
nuclei were GFP–cGAS-positive), whereas GFP alone showed no such 
localization (Extended Data Fig. 1e, f), consistent with cGAS binding 
to micronuclear DNA.

To determine whether localization of cGAS to micronuclei was a 
general phenomenon, exogenous DNA damage was induced in GFP–
cGAS-expressing MEFs. After 1 Gy irradiation, we observed frequent 
localization of cGAS to micronuclei (Fig. 1e), along with a cGAS- 
dependent proinflammatory response. Increased secretion of CCL5 
(a robust indicator of cGAS-dependent ISG responses in MEFs5)  
correlated with increased frequency of micronuclei in both Trp53+/+ and 
Trp53−/− MEFs (Fig. 1f–h). Furthermore, consistent with an increased 
tendency to form micronuclei in Trp53−/− cells, following irradiation 
both micronucleus formation (P =  0.0078) and CCL5 production 
(P =  0.020) were significantly enhanced compared with Trp53+/+ 
cells. ISG transcripts were also induced (Extended Data Fig. 1g)  
at levels comparable to those found in previous studies of genotoxic 
damage2,4.

In human U2OS osteosarcoma epithelial cells, endogenous cGAS was 
detected by immunofluorescence in spontaneously formed micronuclei 
(Extended Data Fig. 1h–j). Strong micronuclear enrichment of cGAS 
contrasted with weak diffuse cytoplasmic localization in cells without 
micronuclei, consistent with endogenous relocalization of cGAS to 
micronuclei. We therefore conclude that cGAS frequently localizes to 
micronuclei, irrespective of the source of DNA damage initiating their 
formation. However, given that a nuclear envelope normally encloses 
micronuclei, it was not clear how cGAS gains access to these structures.

Micronuclear DNA is particularly susceptible to DNA damage,  
leading to chromothripsis7,17. This occurs as a consequence of irrever-
sible nuclear envelope collapse, which arises frequently in micronuclei 
due to defective nuclear lamina organization18. Given that this leads 
to partial loss of compartmentalization, we postulated that membrane 
rupture would also result in relocalization of cGAS to micronuclei, 
to induce a cGAMP-driven proinflammatory response (Fig. 2a). 
Consistent with this, we observed that micronuclei positive for γ H2AX, 
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a marker of DNA damage, contained cGAS more often than those with-
out γ H2AX staining (P =  0.0169, Rnaseh2b−/− MEFs; P =  0.0005, U2OS 
cells; Extended Data Fig. 2a–c). Moreover, co-staining of U2OS cells 
for cGAS and the nuclear protein retinoblastoma (Rb), a marker for 
micronuclei with intact nuclear envelopes18, demonstrated that the 
majority of cGAS-positive micronuclei had ruptured nuclear enve-
lopes (Fig. 2b, c). Loss of an mCherry-tagged nuclear localization 

signal (mCherry–NLS) was also strongly associated with localization 
of cGAS to micronuclei (Extended Data Fig. 3a, b), further supporting 
a link between membrane integrity failure and cGAS relocalization. 
To establish a direct temporal relationship between nuclear envelope 
rupture and cGAS relocalization, we performed live imaging in U2OS 
cells expressing mCherry–NLS and GFP–cGAS (Fig. 2d, Extended Data 
Fig. 3c). cGAS entered the micronuclei rapidly after loss of membrane 
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Figure 1 | cGAS localizes to micronuclei resulting from endogenous or 
exogenous DNA damage. a, Micronuclei form frequently in Rnaseh2b−/− 
MEFs and are associated with genome instability. Percentage of cells with 
micronuclei in two Rnaseh2b+/+ control and two Rnaseh2b−/− MEF lines. 
Mean ±  s.e.m. of n =  3 independent experiments (≥ 500 cells counted per 
line). b, Micronuclear DNA is surrounded by its own nuclear envelope. 
Representative image with Lamin B1 (red) staining the nuclear envelope 
and DAPI (blue) staining DNA. c, Micronuclei form after mitosis as a 
consequence of impaired segregation of DNA during mitosis, originating 
from chromatin bridges and lagging chromosomes or chromatin 
fragments. d, GFP–cGAS localizes to micronuclei in Rnaseh2b−/− MEFs. 
Representative image of GFP–cGAS-expressing Rnaseh2b−/− MEFs.  

e–h, cGAS localizes to micronuclei induced by ionizing radiation  
and is associated with a cGAS-dependent proinflammatory response.  
e, Representative image of GFP–cGAS-positive micronuclei following 1 Gy 
irradiation (IR) in Trp53−/− MEFs. f, Trp53−/−, Trp53+/+ and cGAS−/− 
(also known as Mb21d−/−) (cGAS null) MEFs were irradiated (1 Gy), and 
CCL5 production (g) and percentage of cells with micronuclei (h) assessed 
after 48 h. Mean ±  s.e.m. of n =  2 independent experiments. * P <  0.05,  
* * P <  0.01, * * * P <  0.001, two-tailed t-test; NS, not significant. Scale bars, 
10 μ m. Rnaseh2b+/+ and Rnaseh2b−/− MEFs in this figure and subsequent 
figures are on a Trp53−/− C57BL/6J background (absence of p53 is a 
prerequisite for generation of Rnaseh2b−/− MEFs16).

Figure 2 | cGAS localizes to micronuclei upon nuclear envelope 
rupture. a, Model: micronuclear membrane rupture leads to sensing of 
DNA by cGAS. Micronuclei are susceptible to nuclear envelope collapse, 
which permits cytosolic cGAS access to genomic dsDNA, initiating a 
cGAS–STING-dependent proinflammatory immune response through 
production of the second messenger cGAMP. b, c, Localization of cGAS 
to micronuclei in U2OS cells inversely correlates with localization of Rb, 
which is present only in micronuclei with an intact nuclear envelope. 
b, Representative images. c, Quantification (mean ±  s.e.m. of n =  3 
independent experiments; ≥ 250 micronuclei counted per experiment). 

cGAS+, cGAS-stained micronuclei; Rb+ and Rb−, micronuclei positive or 
negative for Rb staining, respectively. * * *P < 0.001, two-tailed t-test.  
d, Representative stills from live imaging of U2OS cells expressing 
mCherry–NLS and GFP–cGAS. DNA visualized with Hoechst stain. 
Time (min) relative to loss of mCherry–NLS from micronucleus 
(t =  0, micronuclear membrane rupture). Arrows indicate micronuclei 
undergoing rupture. e, Quantification of cGAS signal accumulating 
in micronuclei after loss of nuclear envelope integrity. Relative mean 
fluorescence intensity plotted. Error bars show s.e.m. of n =  11 
micronuclei. Scale bars, 10 μ m.
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integrity, as measured by loss of micronuclear mCherry–NLS (Fig. 2e, 
Supplementary Video 2). We therefore conclude that nuclear envelope 
rupture results in exposure of DNA to the cytoplasmic compartment, 
leading to relocalization of cGAS to micronuclear chromatin.

Activation of cGAS requires dimerization, with each cGAS  monomer 
binding a dsDNA molecule19. Combined, these requirements might 
therefore preclude activation of cGAS that is bound to chromatin. 
In addition, a published model suggests that there would be steric 
clashes between bound DNA molecules and predicts that cGAS 
activation will therefore occur near the ends of dsDNA20. However, 
we reasoned that the flexible nature of DNA could permit cGAS 
dimerization on continuous DNA and chromatin, given the acces-
sibility of linker DNA between nucleosomes. To test whether cGAS 
can be activated by DNA that does not contain free ends, we meas-
ured production of cGAMP by recombinant cGAS in the  presence 
of plasmid DNA using a chromatography-based assay and found 
that cGAMP production was similar in the presence of either cir-
cular DNA or fragmented plasmid DNA (Fig. 3a, b, Extended Data  
Fig. 4a, b), establishing that DNA ends are not required for activation of 
cGAS. Furthermore, supercoiled plasmid DNA induced strong cGAS- 
dependent CCL5 production in MEFs (Extended Data Fig. 4c). We then 
prepared synthetic chromatin and found that cGAS can also bind to 
DNA in the presence of nucleosomes (Extended Data Fig. 5a, b) and 
that this leads to substantial cGAMP production (Fig. 3c, Extended 
Data Fig. 5c). Chromatin isolated from cells also activated recombinant 
cGAS (Extended Data Fig. 5d–g). We therefore conclude that cGAS can 
bind to and be activated by chromatin.

Small DNA fragments detected by antibodies against dsDNA 
have been proposed to leak from sites of DNA damage through the 
interphase nuclear envelope into the cytoplasm and to activate the 
cGAS–STING pathway2,21. In contrast, as micronuclei are generated 
at mitosis, a prediction of our model is that the immune response 
will be cell- cycle dependent. To test this prediction, we induced 
DNA  damage in  MEFs arrested in G0 by serum starvation. Such 
cell-cycle-arrested MEFs still displayed functional cGAS  signalling, 
producing similar amounts of cytokine in response to transfected 
exogenous DNA compared with actively cycling cells (Extended 
Data Fig. 6a, b). However, cell-cycle-arrested MEFs did not form 
micronuclei, nor did they exhibit innate immune activation after 
exposure to equivalent levels of ionizing radiation, despite under-
going equal levels of DNA damage (Fig. 4a–d, Extended Data  
Fig. 6d, e). Therefore, DNA damage is not sufficient by itself to 
 generate innate immune activation in response to ionizing  radiation; 
with the dependence on cell-cycle progression consistent with 
mis-segregated DNA at mitosis being the origin of cGAS activation. 
Quantification of the levels of micronuclear DNA (Extended Data  
Fig. 7) indicates that it would be sufficient to generate a relevant 

cytokine response, also supporting micronuclei as an important 
source of cell-intrinsic immunostimulatory DNA.

We also investigated whether micronuclei initiated by a DNA 
 damage-independent mechanism resulted in similar cGAS reloca-
lization and an associated proinflammatory response. Micronuclei 
containing whole chromosomes were generated through pharmaco-
logical induction of lagging chromosomes by nocodazole treatment7,18 
(Extended Data Fig. 8a, b). This resulted in a substantially increased 
frequency of micronuclei in both MEFs and U2OS cells (Extended 
Data Fig. 8c, d). The number of cGAS-positive micronucleated cells 

Figure 3 | Continuous and chromatinized DNA activate cGAS.  
a, b, Both supercoiled (SC) and fragmented pBluescript (pBS) activate 
recombinant cGAS to produce cGAMP. a, Representative image of thin 
layer chromatography (TLC) detection of cGAMP. b, Quantification 
of cGAMP measured by TLC over time demonstrates no significant 
difference in cGAS activation by open circle (OC), linear or fragmented 

plasmid DNA, with supercoiled DNA showing a slight reduction in 
cGAMP production. Mean ±  s.d., n =  3 independent experiments.  
c, Synthetic chromatin activates cGAS at the same level as herring  
testis (HT) DNA, but slightly less than the corresponding naked  
601 DNA. Quantification of cGAMP measured by TLC. Mean ±  s.d.,  
n =  3 experiments.
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Figure 4 | Innate immune activation after radiation-induced DNA 
damage is cell-cycle dependent. a, Schematic of experimental protocol. 
b, CCL5 production is significantly increased after irradiation in 
cycling (asynchronous) cells, but not in cells arrested in G0 after serum 
starvation. c, The percentage of cells containing micronuclei is increased 
after irradiation in cycling but not G0-arrested cells. Mean ±  s.e.m., 
n =  3 independent experiments. d, Cycling and G0-arrested cells exhibit 
the same level of DNA damage, as measured by formation of γ H2AX 
foci. Mean ±  s.d., n =  2 independent experiments, ≥100 cells analysed 
per condition per experiment. Only 1 Gy quantified, as γ H2AX foci 
overlapped substantially at 5 Gy; see Extended Data Fig. 6). * * P <  0.01,  
* * * P <  0.001, two-tailed t-test; NS, not significant.
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also increased significantly (P =  0.0083; Extended Data Fig. 8e),  
leading us to conclude that nocodazole-induced micronuclei could 
also be detected by endogenous cGAS. Induction of micronuclei by 
 nocodazole also induced a proinflammatory response with significantly 
elevated CCL5 cytokine production in MEFs (P =  0.0008; Extended 
Data Fig. 8f). This response, but no increase in DNA damage, was 
detected from 16 h after  nocodazole  treatment, consistent with a 
post-mitotic origin (Extended Data Fig. 8h, j). We therefore conclude 
that micronuclei arising from mis- segregated chromosomes, as well as 
genome instability, can induce cGAS signalling.

To confirm a direct relationship between micronuclei and cGAS 
pathway activation, we assessed at the single-cell level whether the 
induction of ISGs was specific to micronucleated cells. Forty-eight 
hours after irradiation (1 Gy), we identified individual micronucleated 
cells (MN+ ) and control cells with normal nuclear morphology (MN− )  
microscopically (Extended Data Fig. 9) and isolated them using laser 
capture microdissection for subsequent single-cell mRNA sequencing 
(Fig. 5a). To avoid confounding biases, all cells were collected from the 
same culture dish and processed in parallel, with library preparation 
performed in a single 96-well plate with MN+  and MN−  cells inter-
digitated, and sequencing datasets down-sampled to the same number 
of reads after mapping. For the thirty-five RNA sequencing libraries 
that passed quality control (Extended Data Fig. 9a), we first examined 
a high-confidence list of 11 ISGs that had been previously shown to 
be induced by endogenous genome instability in MEFs5. Six of the 

ISGs were represented in the RNA sequencing data, and strikingly we 
detected transcripts for five of these (Ccl5, Isg15, Ifi27l2a, Samd9l and 
Cxcl10) specifically in micronucleated cells (P =  0.047, Fisher’s exact 
test, Fig. 5b). Examination of pooled cells down-sampled to identical 
numbers of sequence reads aligned to these individual genes confirmed 
differential expression between MN+  and MN−  cells (Fig. 5c).

We next assessed the MN+ -specific upregulation of a large set of 
independently defined type I IFN-induced genes (n =  336 ISGs) on a 
transcriptome-wide basis. We performed a gene set enrichment  analysis 
(GSEA) against genes ranked by z-scores for differential expres-
sion (MN+  versus MN− ) calculated by the Single Cell Differential 
Expression (SCDE) analysis package. GSEA confirmed that expression 
of these ISGs was significantly enriched in the pool of micronucleated 
cells over control cells (Fig. 5d; normalized enrichment score 1.52, 
P =  2.04 ×  10−4). These single-cell analyses were therefore consistent 
with micronucleated cells being the source of DNA damage-induced 
ISGs (Fig. 5e). In conclusion, while the formal possibility remains that 
other dsDNA fragments in cells with micronuclei also activate cGAS, 
this and our other experimental findings strongly implicate micronu-
clei as a substantial source of cell-intrinsic immunostimulatory DNA.

Micronuclear membrane breakdown provides a mechanism 
by which dsDNA is exposed to the cytoplasmic sensor cGAS, with 
 spontaneous rupture being frequent and generally irreversible18. As 
chromatin activates cGAS, physiological ruptures in the primary 
nuclear membrane when cells migrate through tight interstitial spaces 
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Figure 5 | ISG upregulation occurs specifically in micronucleated 
cells following DNA damage. a, Experimental outline: 48 h after 
irradiation (1 Gy) of C57BL/6J MEFs, individual live cells with normal 
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microscopically and excised by laser microdissection. Single-cell 
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p5). d, Transcriptome-wide analysis (GSEA) demonstrates that a set of 
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may also cause transient cGAS activation22,23. Notably, mitotic chromo-
somes are  temporarily exposed to the cytosol, prompting the  important 
unanswered question of how cGAS–STING pathway activation is 
 prevented during cell division. Although cGAS can localize to nuclear 
DNA during mitosis (Extended Data Fig. 10a, b), the transient nature of 
mitosis, hypercompaction of DNA and the peri-chromosomal layer of 
proteins may mitigate against cGAS binding and activation. In  addition, 
post-translational regulation of cGAS or downstream pathway compo-
nents in conjunction with transcriptional silencing of mitotic chromo-
somes could also prevent ISG induction.

Conversely, nuclear membrane breakdown in disease states24 may 
be pathologically relevant. Additionally, other aberrant structures 
generated during cell division may lead to cytosolic DNA exposure. 
For instance, we infrequently observed cGAS on interphase  chromatin 
bridges in Rnaseh2b−/− cells and in U2OS cells (Extended Data  
Fig. 10c, d), so persistent chromatin bridges, such as those arising after 
telomere crisis25, could also activate cGAS. Furthermore, while we 
observed enhanced ISG induction in micronucleated cells, free dsDNA 
fragments, perhaps released at mitosis, might also activate cGAS in  
specific contexts. Therefore, while micronuclei provide a substantial 
source of immunostimulatory DNA, in other pathological contexts 
additional mechanisms that impair nuclear compartment integrity 
may play a role.

Micronuclei frequently form in cancer cells26, and chromosome and 
genome instability are key drivers of neoplasia27,28. Hence, our work 
predicts that cGAS will often become activated by this route during 
neoplastic transformation, leading to cGAS- and STING-dependent 
tumour-suppressive immune responses29,30. Consequently, there may 
be selection pressures during cancer evolution to inactivate cGAS–
STING signalling, providing an additional explanation for its frequent 
inactivation in tumours31, alongside oncogene-mediated silencing 
associated with virally induced neoplasia32. In conclusion, sensing of 
ruptured micronuclei by cGAS represents a cell-intrinsic surveillance 
mechanism that links genome instability to innate immune responses, 
of relevance to both cancer and autoinflammation.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOdS
Mice. The following lines (intercrossed where necessary) were used to provide cells 
and cell lines for this study: C57BL/6J Rnaseh2btm1d/+ (referred to as Rnaseh2b+/−)5, 
C57BL/6J Rnaseh2btm2‐hgu‐A174T (referred to as Rnaseh2bA174T/A174T)5, Trp53tm1tyj/J 
(referred to as Trp53+/−)33 and C57BL/6NTac‐Mb21d1tm1a(EUCOMM)Hmgu/IcsOrl 
(referred to as Mb21d1−/− or cGAS−/−)34. The latter was obtained from the Institute 
Clinique de la Souris via the European Mouse Mutant Archive. All mouse work 
was performed in accordance with UK Home Office regulations under a UK Home 
Office project licence (PPL 60/4424).
Cells and cell culture. C57BL/6J Rnaseh2b−/− Trp53−/− and Rnaseh2b+/+ Trp53−/− 
MEFs were generated from individual embryonic day 10.5 (E10.5) embryos as 
previously described5. C57BL/6NTac Mb21d1−/− MEFs and C57BL/6J (Trp53+/+) 
MEFs were generated from E13.5 embryos. MEFs were maintained in DMEM 
supplemented with 10% fetal bovine serum (FBS), 50 U ml−1 penicillin, 50 μ g ml−1 
streptomycin and 0.1 mM β -mercaptoethanol at 37 °C in 5% CO2 and 3% O2.

U2OS cells were purchased from the European Collection of Authenticated Cell 
Cultures (ECACC, Cat no. 92022711) and maintained in McCoy’s 5A medium 
with l-glutamine (Gibco) supplemented with 10% FBS, 50 U ml−1 penicillin and 
50 μ g ml−1 streptomycin at 37 °C in 5% CO2. All cells were mycoplasma-free, with 
regular checks performed using the Lonza-Mycoalert Mycoplasma Detection Kit.
Generation of stable cell lines. Rnaseh2b+/+ Trp53−/− and Rnaseh2b−/− Trp53−/− 
MEFs and U2OS cells stably expressing GFP or GFP–cGAS were generated as  
follows. GFP–cGAS (the result of cloning the mouse or human cGAS  coding 
sequence into a Gateway-compatible version of pEGFP-C1) and GFP were 
 amplified by PCR and cloned into pMSCV. The resulting pMSCV vectors were 
transfected into Phoenix packaging cells to generate ecotropic or amphotropic viral 
particles35, and retroviral supernatant was used to infect the relevant cell lines in 
the presence of 4 μ g ml−1 polybrene. Cells were selected for stable integration using 
2 μ g ml−1 puromycin, and maintained as a heterogeneous pool of stably expressing 
cells. Stable U2OS GFP–cGAS cells were transfected with pmCherry–NLS (a gift 
from M. Offterdinger, Addgene plasmid 39319)36 using lipofectamine 3000 and 
selected with 500 μ g ml−1 neomycin (G418, Sigma).
Immunofluorescence. Cells were grown on glass coverslips and fixed in 4% 
 paraformaldehyde (PFA) in PBS for 20 min at room temperature. Cells were 
 permeabilized in 0.5% Triton X-100 for 5 min before blocking for 30 min with 
1% BSA in PBS. Coverslips were then incubated with primary antibody for 
1 h,  followed by incubation with a secondary antibody for 45 min. Primary and 
secondary antibodies were diluted in blocking buffer and all incubations were 
performed at room temperature. Coverslips were mounted using Vectashield 
Antifade Mounting Medium with DAPI (Vector Laboratories) and imaged using 
a Photometrics Coolsnap HQ2 CCD camera and a Zeiss Axioplan II fluorescence 
microscope with plan-neofluor objectives and images captured with iVision 
 software (BioVision Technologies). All scoring was performed under blinded 
conditions.

The following antibodies were used for immunofluorescence: cGAS (D1D3G, 
Cell Signalling, 1:200), phospho-histone H2A.X (Ser139) (2577, Cell Signalling, 
1:800), Lamin B1 (ab16048, Abcam, 1:1,000) and Retinoblastoma (554136, BD 
Biosciences, 1:200). Secondary antibodies, anti-mouse-Alexa488 (A11029), 
anti-rabbit-Alexa 488 (A11008) and anti-rabbit-Alexa568 (A11036) (all 
Invitrogen), were used at 1:500 or 1:1,000 dilution.
Determination of micronucleus frequency. After fixation and DAPI staining, the 
percentage of cells with micronuclei was determined by microscopy under blinded 
conditions. Micronuclei were defined as discrete DNA aggregates separate from 
the primary nucleus in cells where interphase primary nuclear morphology was 
normal. Cells with an apoptotic appearance were excluded.
Erythrocyte micronucleus assay. The presence of micronuclei in erythrocytes 
was quantified using previously described methods37. 50 μ l of blood from female 
Rnaseh2bA174T/A174T mice and age-matched (7–8 months old) and sex-matched 
 control C57BL/6J mice was collected and expelled into 250 μ l heparin solution 
(500 USP units per ml PBS) on ice. 180 μ l of this suspension was expelled into 2 ml 
of pre-cooled (− 80 °C) methanol and aggregates removed by robust tube tapping. 
The cell  suspension was incubated at − 80 °C for at least 24 h before staining for 
flow cytometry.

To stain the cells, 12 ml ice-cold saline solution (0.9% w/v NaCl, 5.3 mM 
NaHCO3, pH 7.3) was added to the cell suspension and the tube was inverted to 
mix and placed on ice. Cells were centrifuged at 600g for 5 min at 4 °C, supernatant 
removed and cells resuspended by pipetting. 10 μ l of cells per sample was stained 
with 90 μ l of staining solution containing 79 μ l saline solution, 10 μ l RNase A at 
10 mg ml−1 (Sigma) and 1 μ l rat anti-mouse CD71-FITC (Invitrogen RM5301) 
for 30 min on ice followed by 30 min at room temperature. 1 ml of 1.25 μ g ml−1 

 propidium iodide (Sigma) was added before data acquisition, using an LSR Fortessa 
(BD Biosciences). Data were analysed using FlowJo v.7.6.5 software (Tree Star). As 
the experiment was based on genotypes, no randomization was possible. 

Assessment of immune responses. The concentration of CCL5 in supernatants 
was determined by ELISA (R&D Systems). The cellular response to dsDNA was 
determined using herring testes DNA (HT-DNA) (Sigma) at a final concentration 
of 1 μ g ml−1 (Extended Data Fig. 6) or interferon stimulatory DNA (ISD naked, 
InvivoGen) at a final concentration of 1.33 μ g ml−1 (Extended Data Fig. 8). Cells 
were incubated overnight and transfected the following day using Lipofectamine 
2000/3000 in Opti-MEM reduced serum medium (both Thermo Fisher Scientific). 
The immune response was assessed at 24 h by ELISA using collected supernatant.
Dose response to HT-DNA. C57BL/6J (Trp53+/+) MEFs (5 ×  104 per well) were 
seeded in a 12-well plate, incubated overnight and transfected the following day 
with HT-DNA at the specified concentrations (0–3,000 ng per well; Extended Data 
Fig. 7) using Lipofectamine 3000 in Opti-MEM reduced serum medium (Thermo 
Fisher Scientific). After 6 h the medium was replaced; supernatants were collected 
at 24 h and CCL5 concentrations assessed by ELISA.
RT–qPCR. RNA was extracted from adherent cells using the RNeasy kit (Qiagen) 
per the manufacturer’s instructions and using the included DNase I treatment. 
cDNA was prepared using Superscript III RT and random oligomer primers 
(Thermo Fisher Scientific). qRT–PCR was performed using SYBR Select Master 
Mix (Thermo Fisher Scientific) on an LC480 Real-Time PCR machine (Roche). 
The expression of target genes was normalized to the housekeeping gene Hprt using 
the formula (2− Δ Ct). Supplementary Table 1 shows the primers used.
X-ray irradiation. 1.3 ×  105 cells were seeded per well of a 6-well plate onto glass 
coverslips (Fig. 1). The following day, cells were irradiated for 1 min at a dose rate 
of 1 Gy per min using an X-ray irradiation system (Faxitron 43855D, Faxitron 
X-ray Corporation) operated at 130 kVp. After a further 48 h the culture medium 
was removed and CCL5 concentration assessed by ELISA (R&D systems). Cells 
on coverslips were fixed with 4% PFA in PBS for 20 min at room temperature for 
immunofluorescence imaging.
Live cell imaging. For live cell imaging, Rnaseh2b−/− Trp53−/− MEFs tran-
siently expressing mCherry–H2B or U2OS cells stably expressing GFP–cGAS 
and mCherry–NLS were seeded onto glass-bottomed plates (Greiner Bio One). 
pmCherry–H2B (gift from P. Vagnarelli, Brunel University, London) was trans-
fected by  electroporation with the Neon transfection system (Thermo Fischer 
Scientific) according to the manufacturer’s instructions. Prior to imaging, U2OS 
cells were treated with 200 ng ml−1 nocodazole (Sigma) for 12 h and  additionally 
stained with 0.5 μ M SiR-DNA (Spirochrome). Cells were maintained at 37 °C 
in Leibovitz L-15 medium (Gibco). TRITC, FITC and Cy5 image datasets 
were  collected using a 40×  plan neofluor (0.75NA) objective on an Axiovert 
200  fluorescence microscope (Zeiss) equipped with a Retiga6000 CCD camera 
(Qimaging) or an Axio-Observer Z1 fluorescence microscope (Zeiss) equipped 
with an Evolve EMCCD camera (Photometics). Images were recorded every 
1.5 min over a 4-h period (U2OS cells) or every 5 min over a 16-h period (MEFs) 
using Micromanager (https://open- imaging.com/) and subsequently deconvolved 
using Volocity  software (PerkinElmer).

cGAS recruitment following micronuclear envelope disruption was analysed 
by measuring the mean fluorescence intensity of mCherry–NLS or GFP–cGAS 
over time. The mean fluorescence intensity for a cytoplasmic background of 
matched area was subtracted from the micronuclear signal. The background 
 subtracted fluorescence intensity values were then normalized so that the highest 
 fluorescence intensity was 1 and the lowest fluorescence intensity 0. The time of 
rupture (t =  0) was set at the point of maximal decline in the mean mCherry–
NLS  fluorescence signal. Rupture was observed in n =  40 micronuclei during live 
 imaging  experiments, in 29 of which detectable levels of cGAS were observed 
subsequently, and time of entry was then quantified in 11 of these, where movie 
length was sufficient to follow cGAS accumulation to maximal intensity.
Serum starvation experiments. C57BL/6J (Trp53+/+) MEFs (1.5 ×  105 for asyn-
chronous and 6 ×  105 for serum starvation per well) were seeded into a 6-well 
plate (seeding densities were chosen to achieve similar cell numbers for both 
 conditions at assay endpoint). After 5 h the medium was replaced with low- serum 
medium (0.25% FBS) for serum starvation, and with fresh medium (10% FBS) for 
 asynchronous/cycling cells. After a further 24 h, the medium was again replaced 
with 1.6 ml (0.25% FBS for serum starved cells; 10% FBS for control cells), and 
cells irradiated with 1 or 5 Gy (at 1 Gy per min) (Faxitron 43855D, Faxitron 
X-ray Corporation). After 48 h the supernatants and cells were harvested, CCL5 
 measured by ELISA and RT–qPCR performed.

To assess the immune response of serum-starved cells to HT-DNA, C57BL/6J 
(Trp53+/+) MEFs (1.5 ×  105 per well) were seeded into a 6-well plate and grown 
in 10% or 0.25% FBS-containing medium for 24 h. Cells were then transfected 
with 1 μ g per ml HT-DNA in Opti-MEM using Lipofectamine 3000 (Thermo 
Fisher Scientific). After 6 h the medium was replaced with 10% or 0.25%  
FBS-containing medium, respectively, and 24 h after transfection supernatants 
were taken for ELISA. To ensure differences in cell number (arising from G0 
arrest or irradiation) were not confounders for ELISA results, adherent cells were 
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counted after trypsinization, with ELISA results corrected for final cell number 
per well.

To assess the frequency of micronuclei by immunofluorescence, cells were fixed 
with 4% PFA for 20 min at room temperature and permeabilized with 0.5% Triton 
X-100 for 5 min. Cover slips were mounted with Vectashield (with DAPI) and the 
percentage of cells with discrete micronuclei determined under blinded conditions. 
More than 500 cells per condition per experiment were analysed for micronucleus 
counts. To assess DNA damage by γ H2AX immunofluorescence in serum-starved 
and asynchronous cells after irradiation, 2 ×  105 cells per well of a 6-well plate were 
seeded on coverslips and incubated in normal or 0.25% FBS medium. Cells were 
then irradiated with 1 or 5 Gy, and fixed 2 h later. n >  100 cells per condition per 
experiment (n =  2).
Chromosome mis-segregation assay. Micronuclei induced by chromosome 
mis-segregation were generated pharmacologically by nocodazole treatment as 
described previously7,18. MEFs were plated at 8 ×  105 cells per 100-mm plate, and 
24 h later incubated with 100 ng ml−1 nocodazole (Sigma) for 6 h. Mitotic cells were 
then harvested by shake-off and washed three times with PBS before counting 
and plating. 1 ×  105 mitotic cells were plated per well of a 12-well plate into 800 μ l  
fresh medium. 1.5 ×  104 mitotic cells were concurrently plated onto a coverslip 
in one well of a 12-well plate. After 48 h, culture medium was removed for ELISA 
and cells on coverslips fixed for imaging to determine micronucleus frequency.

To induce micronuclei in U2OS cells, 7 ×  105 cells were seeded per 100-mm 
plate and incubated for 9 h. Cells were then synchronized with 2 mM thymidine 
(ACROS Organics) for 27 h and released by washing twice and replacing with 
fresh medium. After 14 h, U2OS cells were incubated with 100 ng ml−1  nocodazole 
(Sigma) for 6 h and mitotic cells harvested by shake-off. 3 ×  104 mitotic cells  
were plated onto a coverslip in one well of a 12-well plate and incubated for 48 h 
before processing for microscopic analysis.
Chromosome mis-segregation time-course assay. C57BL/6J Trp53−/− MEFs 
(8 ×  105) were plated in 10-cm plates. The next day, cells were incubated with 
100 ng ml−1 nocodazole (Sigma) for 6 h and mitotic cells harvested using the shake-
off method. At this point supernatant was taken for the t =  0 time point. Mitotic 
cells were then plated into a 12-well plate (1 ×  105 per well) or onto coverslips 
(7 ×  104) for immunofluorescence analysis. Asynchronous cells were plated at the 
same number concurrently. Supernatants were taken and coverslips fixed after 6, 
16 and 22 h. Immune response was analysed by ELISA and coverslips were pre- 
extracted on ice using 0.5% Triton X-100 in PBS for 5 min. Cells were then fixed 
with 4% PFA for 15 min at room temperature. After blocking for 30 min with 3% 
BSA at room temperature, γ H2AX Ser139 antibody (05-636 Millipore) was added 
for 2 h at room temperature. Alexa Fluor 568 goat anti-mouse secondary antibody 
(Life technologies) was then applied and incubated for 1 h at room temperature. 
Coverslips were mounted using Vectashield antifade mounting medium with DAPI 
(Vector laboratories) and imaged at room temperature using a Coolsnap HQ CCD 
camera (Photometrics) and a Zeiss Axioplan II fluorescence microscope with  
× 40 and × 63 plan-neofluor objectives and acquired using micromanager  
(http://open-imaging.com/). n ≥  100 cells per condition (n =  1).
siRNA knockdown. Cells were plated at an optimized density (2.5 ×  105 U2OS 
cells per 6-cm dish) before overnight incubation and transfected the following day 
with siRNA oligonucleotides targeting cGAS (Dharmacon, M-015607-01-0005, 
siGENOME 115004) or luciferase (CUUACGCUGAGUACUUCGA, Sigma) at a 
final concentration of 25 nM. Transfections were performed using Oligofectamine 
(Thermo Fisher Scientific) per the manufacturer’s instructions, in Opti-MEM 
reduced-serum medium (Thermo Fisher Scientific). Transfection medium was 
replaced with complete medium after 6 h and protein depletion confirmed 48 h 
post-transfection by immunoblotting.
Immunoblotting. Whole-cell extracts were prepared by lysis and sonication of cells 
in UTB buffer (8 M urea, 50 mM Tris, pH 7.5, 150 mM β -mercaptoethanol, protease 
inhibitor cocktail (Roche)) and subsequently analysed by SDS–PAGE following 
standard procedures. In brief, protein samples (20 μ g) were resolved on a 4–12% 
NuPAGE Novex Bis-Tris mini gel (Thermo Fisher Scientific) and transferred onto 
a nitrocellulose membrane (GE Healthcare Life Sciences). The  following antibodies 
were used for immunoblotting: cGAS (D1D3G, Cell Signalling, 1:1,000) and actin 
(A2066, Sigma, 1:5,000).
cGAS purification. The coding sequence of the enzymatically active portion 
of human cGAS (amino acids 157–522) was cloned into pGEX6P1 and  protein 
expressed overnight at 18 °C by induction with 0.3 mM IPTG in Rosetta-2 cells. 
Cells were lysed by sonication in 25 mM Tris-HCl pH 8, 1 M NaCl, 10%  glycerol, 
0.5% IGEPAL CA-630, 1 mM DTT. GST–cGAS was affinity purified using 
 glutathione sepharose 4B (GE Healthcare Life Sciences) and cGAS released by 
PreScission Protease cleavage in 50 mM Tris-HCl pH 7.5, 0.5 M NaCl, 1 mM MgCl2, 
1 mM DTT.
In vitro assay for cGAS activity. The cGAS enzyme activity assay was performed as 
described11 with minor modifications. Reactions were carried out at 37 °C in 10 μ l 

with 2 μ M recombinant cGAS (amino acids 157–522), 100 ng DNA (or equivalent 
chromatin), 1 mM GTP and 10 μ Ci [α -32P]-ATP in 13.75 mM Tris-HCl pH 7.5, 
37.5 mM NaCl, 4 mM MgCl2. Reactions were stopped by the addition of EDTA. To 
separate ATP and cGAMP, TLC was performed on 10 ×  10-cm HPTLC Silica gel 
60 F254 glass plates (Merck Millipore). Samples were spotted onto the plates and  
separation was performed in n-propanol/ammonium hydroxide/water  
(11:7:2 v/v/v). The plate was air-dried and images collected using phosphorimaging 
screens and the FLA-5100 imaging system (Fujifilm).
Chromatin synthesis and purification. Soluble chromatin was prepared from 
NIH3T3 cells as previously described38,39 but an increased concentration of NP40 
detergent (0.2%) was used in buffer NBB and buffer NBR was replaced by buffer 
NBR2 (buffer NBR modified to contain 1 mM MgCl2 and 1 mM CaCl2). Nuclei were 
resuspended at 20 A260 in buffer NBR2 and digested with MNase (400 units per ml  
nuclei; NEB) for 10 min at room temperature. The reaction was stopped by adding 
EDTA to 10 mM, and nuclei were resuspended in 500 μ l TEP20N (10 mM Tris,  
pH 8; 1 mM EDTA; 20 mM NaCl, 0.5 μ M PMSF, 0.05% NP40) and incubated at 
4 °C overnight. Soluble chromatin was recovered by centrifugation (5 min, 20,000g) 
and purified on a 10–50% step gradient in TEP80 (10 mM Tris, pH 8; 1 mM EDTA; 
80 mM NaCl, 0.5 μ M PMSF) in a SW55 centrifuge tube (Beckman) and  centrifuged 
at 50,000 r.p.m. for 105 min in a SW55 rotor as described40. Chromatin was 
 recovered by upward displacement while monitoring the absorbance at 254 nm in 
10 samples of 0.5 ml. Aliquots of each fraction were analysed for DNA and protein 
to check sample integrity. Peak chromatin fractions were dialysed into TEP80 over-
night and the concentration determined by measuring the absorbance at 260 nm 
in 2 M NaCl, 5 M Urea. Naked DNA was prepared from chromatin by proteinase K  
treatment in 0.25% SDS, 50 mM NaCl, 5 mM EDTA for 2 h at 55 °C, followed by 
phenol/chloroform extraction and ethanol precipitation.

Synthetic chromatin was prepared using standard approaches adapted from 
refs 41, 42. Essentially, a 601 DNA template (25 ×  197 bp 601 DNA) was reconsti-
tuted with purified chicken core histone octamers at a 1:1 molar ratio in TEP2000 
(10 mM Tris, pH 7.5, and 0.2 mM EDTA, 2 M NaCl, 0.5 μ M PMSF) and  dialysed 
from 2 M to 400 mM over 6 h and then into 10 mM NaCl overnight, using a 
Thermofisher microdialysis cap (10,000 MWCO) in a linear gradient maker. 
Chromatin concentration was measured by measuring absorbance at 254 nm and 
reconstitution chromatin was analysed by band-shifts, sucrose gradient sedimen-
tation and nuclease digestion.
Single-cell laser capture microdissection. C57Bl/6J MEFs were irradiated (1 Gy) 
and re-seeded onto 50 mm PEN membrane dishes (Zeiss) 32 h later. Picogreen-
containing medium (Quant-iT PicoGreen dsDNA reagent, 4 μ l per ml) was added 
to the cells 48 h after irradiation to stain DNA, and laser capture microdissection 
(LCM) performed as follows. Micronucleated cells (n =  32) and control cells with 
normal nuclear morphology (n =  28) were identified from the same dish using a 
GFP filter, and LCM of individual cells performed using a Zeiss Palm Microbeam 4 
Microscope. Cells were collected into 5 μ l 0.2% (v/v) Triton X-100, 2 U μ l−1 RNasin 
Ribonuclease Inhibitor (Promega), snap frozen on dry ice and stored at − 80 °C 
until library preparation
cDNA and library preparation. All 60 cells obtained from LCM were processed 
in two batches (until cDNA amplification), with approximately equal numbers of 
MN+  and MN−  cells in each batch, and cDNA from single cells was obtained using 
the Smart-seq2 protocol43 with minor modifications, as described previously44. 
Cells from each batch were processed in LCM-compatible 0.5 ml Eppendorf tubes 
until cDNA amplification and both batches then transferred to a single 96-well 
plates for library generation using Illumina Nextera reagents. Libraries were 
assessed for size distribution on an Agilent Bioanalyser (Agilent Technologies) 
with the DNA HS Kit, and then quantified using a Qubit 2.0 Fluorometer (Thermo 
Fisher Scientific) and the Qubit dsDNA HS Assay Kit. Finally, parallel paired end 
sequencing (2 ×  75 bp) was performed using the NextSeq 500/550 Mid-Output v2 
(150 cycle) Kit on the NextSeq 550 platform (Illumina).
Single-cell RNA sequencing data analysis. Reads were mapped against the 
Ensembl mouse reference genome version GRCm38.p5 with the inclusion of the 
reference for the spike in controls from the ERCC consortium45 using a STAR 
RNA-seq aligner46. For quality control and pre-processing, quantification of 
mapped reads per gene was calculated using Rsubread47. Genes with no  expression 
detected in all cells were excluded. The gene counts were loaded into the R  package 
scater and standard quality control metrics were calculated48. Quality control 
 exclusion criteria were cells with more than 10% of reads mapping to ERCCs or 
fewer than 40,000 reads or fewer than 2,000 genes detected (at least one read per 
gene). For the GSEA analysis, genes were ranked from MN+  to MN−  using a 
z-score calculated with the SCDE R package49. The ranked gene list was loaded 
into GSEA and tested against a list of 336 genes shown to be induced in MEFs 
in response to type I IFN50. For direct comparisons of genes between MN+  and 
MN−  cells in the heatmap and browser shots, mapped reads were imported into 
SeqMonk (https://www.bioinformatics.babraham.ac.uk/projects/seqmonk/) 
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and down-sampled to the same number of reads for every cell. Raw reads were 
counted over genes and genes with at least one read were scored as detected genes. 
Heatmaps were generated using Matrix2png51. The upper part of the heatmap  
(Fig. 5b) shows detected ISGs, from a high confidence list of genome instability 
induced ISGs, calculated as the overlap between genes identified in refs 52 and 5. 
Out of these 11 genes, transcripts for 5 were not detected in any cell. A Fisher’s 
exact test was performed under the null hypothesis that there was no excess of 
transcribed ISGs in MN+  versus MN−  cells. Genome browser shots were taken 
from pooled reads from all MN+  and MN−  cells after pools were down-sampled 
to the same number of reads.
Statistics. All data are plotted as mean values, with variance as s.e.m. unless stated 
otherwise. Statistical analysis was performed using Prism (Graphpad Software 
Inc.). For all quantitative measurements, normal distribution was assumed, with 
t-tests performed, unpaired and two-sided unless otherwise stated. No  statistical 
methods were used to predetermine sample sizes, which were determined 
 empirically from previous experimental experience with similar assays, and/or 
from sizes generally employed in the field.
Data availability. Single-cell RNA sequencing data that support the findings of 
this study have been deposited in GEO with the accession code GSE100771. All 
other data are available upon reasonable request from the  corresponding authors.
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Extended Data Figure 1 | See next page for caption.
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Extended Data Figure 1 | Micronuclei form in RNase H2 deficiency, 
with cGAS localizing to these structures and inducing an ISG response. 
a, Still images of live imaging in Rnaseh2b−/− MEFs, time in minutes; 
t =  0, prophase. Lagging DNA (blue arrowheads) and DNA bridges 
(orange arrowhead) at anaphase can result in interphase micronuclei 
(green arrowheads). b, Chromatin bridges and lagging chromosomal DNA 
(arrows) occur in Rnaseh2b−/− MEFs. Representative fixed cell images. 
c, d, Erythrocyte micronuclei assay37. c, Representative flow cytometry 
plot with quadrants containing reticulocytes and micronucleated 
normochromatic erythrocytes indicated. d, Rnaseh2bA174T/A174T mice 
have a significantly increased frequency of micronucleated erythrocytes. 
Mean ±  s.e.m., n =  3 mice per group; two-tailed t-test, * * P <  0.01.  
e, f, eGFP does not accumulate in micronuclei, whereas the majority of 
micronuclei show strong accumulation of GFP–cGAS. e, Representative 
image of micronucleus-containing Rnaseh2b−/− MEFs stably expressing 
eGFP. f, Quantification of GFP-positive micronuclei for GFP–cGAS-
expressing and GFP-expressing Rnaseh2b−/− MEF lines. Mean ±  s.e.m., 
n =  4 experiments (≥ 500 cells counted per experiment). Scale bars, 10 μ m.  

g, Increased levels of ISG transcripts (Ifit1, Ifit3, Isg15, Cxcl10 and Oas1a) 
were detected in C57BL/6J (Trp53+/+) MEFs 48 h after irradiation. 
Transcript levels were normalized to Hprt. Mean ±  s.e.m., n =  3 
independent experiments. One-way ANOVA, 2 degrees of freedom,  
* P <  0.05. h, Endogenous cytosolic cGAS accumulates in micronuclei in 
U2OS cells. Representative images of cGAS distribution in cells with or 
without micronuclei. Images taken using different exposure times  
(200 vs 700 ms) to visualize weaker cytosolic cGAS signal. i, j, Verification 
of anti-cGAS antibody specificity in human cells. i, The percentage of 
cGAS-positive micronuclei, using anti-cGAS immunofluorescence, was 
determined microscopically after cGAS or luciferase siRNA knockdown. 
Mean ±  s.e.m., n =  2 experiments (500 cells counted per experiment);  
two-tailed t-test. While several commercial cGAS antibodies were 
assessed, specific detection of mouse cGAS by immunofluorescence was 
not possible with these reagents (data not shown). j, Immunoblot after 
siRNA knockdown of cGAS in U2OS cells. siRNA targeting luciferase 
(siLUC) was used as a negative control. Probing with anti-actin antibody 
shows equal loading.
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Extended Data Figure 2 | cGAS localization is associated with DNA 
damage in micronuclei. γ H2AX foci in micronuclei correlate with 
GFP–cGAS localization in Rnaseh2b−/− MEFs and endogenous cGAS 
localization in U2OS cells. a, Representative immunofluorescence images: 
γ H2AX, red; cGAS, green. b, Percentage of γ H2AX-stained micronuclei  
(γ H2AX + ve), either co-stained with cGAS (cGAS + ve), or in which 
cGAS was not detected (cGAS − ve). Rnaseh2b−/− MEFs; ≥500 cells 

counted per experiment. c, Quantification for U2OS cells, ≥250 
micronuclei counted per experiment. Mean ±  s.e.m., n =  3 experiments;  
* P <  0.05, * * * P <  0.001, two-tailed t-test. While our biochemical studies 
demonstrate that unbroken DNA and chromatin are sufficient to activate 
cGAS (Fig. 3, Extended Data Figs 4, 5), the increased accessibility of DNA 
after damage53 could further assist cGAS binding and activation.  
Scale bars, 10 μ m.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



LetterreSeArCH

Extended Data Figure 3 | cGAS localizes to micronuclei upon nuclear 
envelope rupture. a, b, cGAS localization to micronuclei in U2OS cells 
inversely correlates with localization of mCherry–NLS, which is present 
only in micronuclei with an intact nuclear envelope. a, Representative 
images of cells containing micronuclei with disrupted or intact nuclear 
envelopes. b, Percentage of intact and disrupted cGAS-positive 
micronuclei. Mean ±  s.e.m., n =  3 independent experiments (≥ 250 
micronuclei counted per experiment). NLS + ve and NLS − ve,  

mCherry–NLS present in or absent from micronuclei, respectively. cGAS 
+ ve, GFP–cGAS present in micronuclei. * * * P <  0.001, two-tailed t-test. 
c, Single-channel image for representative stills shown in Fig. 2d from live 
imaging of U2OS cells expressing mCherry–NLS and GFP–cGAS. DNA 
visualized with Hoechst stain. Time (min) relative to loss of mCherry–NLS 
from micronucleus (t =  0, micronuclear membrane rupture). Arrows 
indicate micronuclei undergoing rupture. Scale bars, 10 μ m.
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Extended Data Figure 4 | cGAS is activated by circular plasmid DNA.  
a, Plasmid DNA (SC, supercoiled; OC, open circle; linear and fragmented) 
separated by agarose gel electrophoresis. pBluescript II SK(+ ) supercoiled 
plasmid DNA was treated with Nt.BspQI nicking endonuclease to generate 
open circle DNA; with EcoRI to generate a single 3-kb linear fragment;  
or with HpaII to generate 13 fragments between 710 and 26 bp in size.  
b, Supercoiled, open circle, linear and fragmented pBluescript (pBS) DNA 

all activate recombinant cGAS to produce cGAMP. Representative images 
shown. Quantification of n =  3 experiments shown in Fig. 3b. c, Plasmid 
DNA induces cGAS-dependent CCL5 production in MEFs. Wild-type 
and cGAS−/− (Mb21d1−/−) MEFs were transfected with 400 ng HT-DNA 
or supercoiled or linearized pBluescript, and CCL5 production after 24 h 
measured by ELISA. Mean ±  s.e.m., n =  3 independent experiments.
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Extended Data Figure 5 | cGAS is activated by chromatin. a, Agarose 
gel of micrococcal nuclease (MNase)-digested synthetic chromatin 
assembled onto a 601 DNA template indicates that it has a regular 
nucleosomal structure. b, Chromatin and DNA bind recombinant 
cGAS; DNA in wells could be the result of near charge neutrality of 
cGAS–DNA complexes or previously reported cGAS oligomerization. 
Chromatin is stable under cGAS assay conditions, remaining intact 
during incubation in cGAS reaction buffer, as evidenced by the bandshift 
compared to naked DNA. c, Representative TLC image demonstrating 
cGAMP generation by recombinant cGAS in the presence of chromatin. 
d, MNase treatment confirms a nucleosomal ladder pattern for chromatin 
isolated from mouse NIH3T3 cells. e, cGAS binds chromatin, and cellular 
chromatin is stable under cGAS assay conditions. f, g, Cellular chromatin 

activates recombinant cGAS, but at a slower rate than the same amount 
of deproteinized DNA. Representative images shown. Graphs shows 
quantification from n =  3 independent experiments, mean ±  s.d. Reduced 
cGAS activation in vitro by chromatin isolated from cells is expected due 
to the presence of linker histones in addition to the nucleosomal core 
histones, which has been shown to bind part of the linker DNA, reducing 
the available sites for cGAS binding, and the use of MNase during the 
isolation of cellular chromatin. Whereas MNase treatment is needed to 
fragment the chromatin to allow its purification, it will preferentially 
cleave accessible non-protein-bound portions, which will further 
reduce the available sites to which cGAS can bind in the final chromatin 
preparation. However, such nucleosome-free regions are more likely to 
allow efficient binding and activation of cGAS in vivo.
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Extended Data Figure 6 | ISG induction by ionizing radiation is 
abrogated in non-cycling cells. a, Experimental setup: to arrest cells 
in G0, serum was withdrawn 24 h before transfection with HT-DNA, 
and supernatant harvested 24 h later. b, CCL5 production in response 
to transfected HT-DNA was equivalent in cycling and serum starved 
MEFs. Mean ±  s.e.m., n =  2 independent experiments. c, Schematic 
of experimental protocol. d, Cycling and G0-arrested cells exhibit the 
same level of DNA damage as measured by formation of γ H2AX foci. 

Representative images; scale bar, 10 μ m. Quantifications shown in  
Fig. 4d. e, There is no significant increase in ISG transcripts Ifit1, Ifit3, 
Isg15, Cxcl10 and Oas1a for cells arrested in G0 after serum starvation 
(experimental setup as in c). Transcript levels were normalized to Hprt. 
Mean ±  s.e.m. One-way ANOVA, 2 degrees of freedom, n =  3 independent 
experiments; NS, not significant. Compare to Extended Data Fig. 1g, 
showing data for matched cycling cells assessed concurrently.
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Extended Data Figure 7 | Micronuclear DNA is sufficient to account 
for the radiation-induced cytokine response. a, b, Measurement of 
micronuclear DNA content. a, Representative images. DAPI-stained 
primary nuclei and micronuclei surrounded by dotted lines. Scale bar,  
10 μ m. b, Quantification of surface areas of micronuclei and primary 
nuclei 48 h after 1 Gy irradiation. Micronuclear surface area per cell 
9.72 ±  1.46 μ m2, primary nucleus surface area 303 ±  21 μ m2. Horizontal 
line and error bars: mean ±  s.e.m., n =  54 cells. Hence, micronuclear 
content is ~ 3.2% of the total MEF genome after irradiation, equating to 
190 Mbp of DNA. This corresponds to a total of 8.1 ng of micronuclear 
DNA in 105 cells after 1 Gy irradiation (105 diploid mouse cells contain a 
total of 650 ng of genomic DNA, with 39% of cells containing micronuclei, 
Fig. 1h). c, CCL5 response of wild-type C57/BL6 MEFs to ionizing 
radiation plotted in pg per 105 cells. Reanalysis of this dataset (first 
depicted in Fig. 4b) confirms that the prior statistical analysis is robust  
to data normalization on the basis of cell counts at assay endpoint.  
1 Gy of irradiation in cycling MEFs results in 38 ±  5 pg (mean ±  s.d.) of 
CCL5 per 105 cells. * * P <  0.01, two-tailed t-test; NS, not significant.  
d, Dose–response curve of secreted CCL5 in wild-type C57BL/6 
(Trp53+/+) MEFs transfected with serial dilutions of transfected HT-DNA. 

Therefore, around 4 ng of transfected DNA resulted in a similar level of 
cytokine production to c. Mean and 95% confidence interval indicated by 
black and grey dashed lines, respectively. Given the similarity of the two 
estimates, within the same order of magnitude, micronuclear DNA is likely 
to be sufficient to account for the immune response observed. Conversely, 
ionizing radiation would not be expected to generate this quantity of 
small DNA fragments as 1 Gy irradiation generates ~ 40 double strand 
breaks (DSBs)54, and ~ 1,000 base lesions and single-stranded breaks. 
DSBs will have an average separation of 150 Mbp, and will therefore be 
too widely spaced to directly generate small dsDNA fragments. Repair of 
DNA lesions can generate small single-stranded DNA (ssDNA) fragments 
through endonuclease activity. The best characterized fragments are those 
generated by nucleotide excision repair, where endonucleolytic cleavage 
yields 24–32-nucleotide ssDNA fragments55. As such these are not an ideal 
substrate for cGAS activation, and 5 million such lesions per cell would 
have to be generated to produce 4 ng of cytosolic DNA in 105 cells. Hence, 
on the basis of our understanding of the current literature, such DNA 
fragments are likely to be generated at a level that is orders of magnitude 
lower than that of micronuclear DNA after radiation-induced damage.
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Extended Data Figure 8 | Induction of micronuclei originating from 
lagging chromosomes leads to a proinflammatory response, but not 
increased DNA damage in the primary nucleus. a, Model: micronucleus 
formation after nocodazole treatment. b, Schematic of experimental 
protocol. c, d, Percentage of micronucleated cells following nocodazole 
(noc) treatment of Trp53−/− MEFs (c) or U2OS cells (d). Mean ±  s.e.m., 
n =  5 experiments for Trp53−/− MEFs, n =  3 for U2OS cells. e, Percentage 
of U2OS cells with cGAS-positive micronuclei following nocodazole 
treatment. Mean ±  s.e.m., n =  3 experiments. c–e, ≥500 cells counted 
per experiment. f, CCL5 secretion following nocodazole treatment of 
Trp53−/− MEFs. Mean ±  s.e.m. of n =  5 experiments. * * P <  0.01,  
* * * P <  0.001, two-tailed t-test. g–i, Increased CCL5 production after 
nocodazole release is observed after 16 h and not associated with increased 

DNA damage in the primary nucleus. g, Experimental setup: Trp53−/− 
MEFs were arrested with nocodazole for 6 h and mitotic cells harvested by 
mitotic shake-off and re-plated in fresh medium with nocodazole omitted. 
Supernatants and cells were then collected at indicated time points after 
growth in medium. h, Increased CCL5 production was observed from 16 h 
after release from nocodazole block. Technical duplicate, mean ±  s.d.  
Noc (− ), asynchronously grown, plated at the same time as mitotic shake-
off Noc (+ ) cells, arrested with nocodazole. i, No increase in the number 
of γ H2AX foci in the primary nucleus was observed after release from 
nocodazole block. n ≥  100 cells counted per condition. j, k, CCL5 response 
to interferon stimulatory DNA (ISD) is absent in U2OS cells (j) but present 
in MEFs (k). CCL5 measured by ELISA 8 h after transfection with ISD. 
n =  2 experiments for U2OS cells, n =  1 experiment for MEFs.
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Extended Data Figure 9 | Single-cell RNA sequencing quality control 
and microscopy images of individual LCM-captured cells. a, Total gene 
feature counts (reads mapping to a protein coding gene) vs ERCC (RNA 
spike-in) percentage of total counts per cell. Cells with ERCC percentage 
counts > 10% and/or with feature counts < 2,000 were rejected, indicated 
by red shaded regions. b, Summary statistics for 21 micronucleated 
(MN+ ) cells and 14 non-micronucleated (MN− ) cells that passed quality 

control. c, d, Microcopy images of cells captured by LCM that passed 
quality control after single-cell RNA sequencing. Fourteen live cells 
without micronuclei (c) and 21 live cells with micronuclei (d) were isolated 
from the same culture dish using LCM and used for single-cell mRNA 
sequencing. DNA was stained with picogreen dsDNA stain. Cells shown 
are those that passed quality control; numbers indicate the order in which 
cells were captured. Scale bars, 10 μ m.
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Extended Data Figure 10 | cGAS localizes to telophase 
chromosomes and DNA bridges. a, Endogenous cGAS was stained 
by immunofluorescence of U2OS cells in mitosis, showing a diffuse 
staining pattern without accumulation at the DAPI-stained condensed 
chromosomes at metaphase. Two representative images shown. During 
anaphase (and telophase), cGAS staining can be seen on DNA in some 
cells. Overexpressed GFP–cGAS also localizes more widely to mitotic 
DNA in U2OS cells and MEFs (data not shown). b, Quantification of 

cGAS staining during mitosis, by stage. c, Rnaseh2b−/− Trp53−/− MEFs 
stably expressing GFP–cGAS show localization of cGAS at DNA bridges 
(orange arrowheads). d, Endogenous cGAS can also be seen to localize to 
DNA bridges that occasionally occur in U2OS cells. cGAS also localized to 
micronuclei in the same cells (green arrowheads). Interphase chromatin 
bridges with cGAS bound in Rnaseh2b−/− Trp53−/− MEFs 0.08% of 
n =  1,223 cells; U2OS cells 0.06% of n =  1,632 cells. Scale bars, 10 μ m.
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Abstract Regenerative therapy for degenerative spine disorders requires the identification of

cells that can slow down and possibly reverse degenerative processes. Here, we identify an

unanticipated wound-specific notochord sheath cell subpopulation that expresses Wilms Tumor

(WT) 1b following injury in zebrafish. We show that localized damage leads to Wt1b expression in

sheath cells, and that wt1b+cells migrate into the wound to form a stopper-like structure, likely to

maintain structural integrity. Wt1b+sheath cells are distinct in expressing cartilage and vacuolar

genes, and in repressing a Wt1b-p53 transcriptional programme. At the wound, wt1b+and entpd5+

cells constitute separate, tightly-associated subpopulations. Surprisingly, wt1b expression at the

site of injury is maintained even into adult stages in developing vertebrae, which form in an

untypical manner via a cartilage intermediate. Given that notochord cells are retained in adult

intervertebral discs, the identification of novel subpopulations may have important implications for

regenerative spine disorder treatments.

DOI: https://doi.org/10.7554/eLife.30657.001

Introduction
Wilms tumour 1 (WT1) is a zinc finger transcription factor that regulates key developmental stages of

several mesodermal tissues including the kidneys, gonads and coronary vasculature (Hastie, 2017).

In the developing kidney, WT1 is required for the maintenance of mesenchymal nephron progenitors

(Kreidberg et al., 1993; Motamedi et al., 2014) as well as differentiation of these progenitors into

the epithelial components of the nephron (Essafi et al., 2011). In contrast, in the developing heart,

WT1 is expressed in the epicardium (mesothelial lining) and required for the production, via an epi-

thelial to mesenchymal transition (EMT), of coronary vascular progenitors (EPDCs) that migrate into
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the myocardium (Martı́nez-Estrada et al., 2010). Similarly, WT1-expressing mesothelium is the

source of mesenchymal progenitors for specialised cell types within several other developing organs.

These include stellate cells within the liver (Asahina et al., 2011), interstitial cells of Cajal in the intes-

tine (Carmona et al., 2013) and adipocytes within visceral fat depots (Chau et al., 2014). WT1

expression is down-regulated in the epicardium postnatally but reactivated in response to tissue

damage in both mice (Smart et al., 2011) and zebrafish (Schnabel et al., 2011). In both organisms,

this activation of WT1 in response to damage is associated with new rounds of epicardial EMT, lead-

ing to the production of coronary vascular progenitors (Schnabel et al., 2011; Smart et al., 2011).

Given the reactivation of Wt1/wt1b in the damaged epicardium we set out to investigate whether

Wt1 programmes are initiated in response to other sources of tissue damage in zebrafish, and

uncovered a novel Wt1 response to wounding of the notochord. The notochord is a transient embry-

onic structure that provides axial support and signalling information (Stemple, 2005). The notochord

comprises two cell populations, the inner vacuolated cells that provide rigid support to the embryo,

and the outer sheath cells, a single cell epithelial layer that surrounds the vacuolated cells and

secretes components of the extracellular matrix to provide turgor pressure to the vacuolated cells

(Apschner et al., 2011; Ellis et al., 2013). This rigid axial structure becomes functionally replaced

by vertebra of the axial skeleton over time. In zebrafish, a row of metameric mineralized rings, known

as chordacentra, forms around the notochord in an anterior to posterior fashion and constitutes the

first signs of the definitive vertebral column. The chordacentra delineate the future sites where

mature vertebra will form and ossify as the larva grows, while the notochord cells develop into the

nucleus pulposus of the adult intervertebral disc, a soft gel-like tissue that provides cushioning and

flexibility for the spine (Parsons, 1977).

Degeneration of the intervertebral disc leads to extensive back pain, one of the top global causes

of years lived with disability (Lawson and Harfe, 2015). Treatment primarily consists of managing

the pain symptoms, or in more progressed disease includes extensive surgery. One of the major

goals of the tissue-engineering field is to identify cells and tissues that will enable novel regenerative

therapies to slow down and possibly reverse the degenerative process. Here, we uncover a novel

cellular subpopulation in the notochord sheath that emerges at the site of damage and is maintained

until formation of a repaired adult vertebra structure. Surprisingly, this subpopulation expresses

wt1b despite no evidence of wt1b expression in physiological notochord development or ossifica-

tion. Our findings suggest that the zebrafish notochord is protected by a novel wound-specific pro-

gramme that seals the notochord wound in the embryo and contributes to the subsequent adult

vertebra at the injury site.

Results

Wound-specific expression of wt1b in the notochord
Given the expression of wt1b in the regenerating heart, we wanted to explore the expression of wt1

in other regenerating tissues, and began with the tail fin regenerative processes. There are two wt1

paralogues in zebrafish, wt1a and wt1b, and so we performed tail fin amputations on zebrafish lar-

vae 3 days post fertilization (dpf) using Tg(wt1a:gfp) and Tg(wt1b:gfp) transgenic lines (Bollig et al.,

2009; Perner et al., 2007) (Figure 1—figure supplement 1a). Surprisingly, we discovered that tail

fin amputations including partial removal of the notochord triggered a change of cellularity in the

notochord, coupled with the specific, de novo upregulation of GFP in a Tg(wt1b:gfp) transgenic line.

This response was specific to wt1b because we did not observe expression of GFP in the notochord

of Tg(wt1a:gfp) tail fin amputated larvae (Figure 1—figure supplement 1b–f).

Next, we developed a needle-based assay to induce localized damage in the developing zebra-

fish notochord independent of tail fin amputation. Needle injury was induced in 3 dpf Tg(wt1b:gfp)

that had been crossed with casper fish to remove pigmentation and imaged at 72 hr post injury (hpi)

(Figure 1a). Needle induced wounds triggered a similar, albeit stronger wt1b:gfp response com-

pared to the tail fin amputations, that was specifically localised to the site of the wound (Figure 1b).

Time course imaging showed a progressive expansion of the damaged area over 72 hr, with an

increasing expression of GFP signal, concomitant with a change of cellularity in the notochord

(Figure 1c). Importantly, this was not observed in uninjured zebrafish controls (Figure 1c) or in noto-

chord injured Tg(wt1a:gfp) transgenic larvae (data not shown). Histological staining of the damaged

Lopez-Baez et al. eLife 2018;7:e30657. DOI: https://doi.org/10.7554/eLife.30657 2 of 26

Research article Developmental Biology and Stem Cells



area revealed the presence of a subpopulation of cells at the site of injury, which contrasted mor-

phologically with the uniform, vacuolated inner cells of the notochord (Figure 1d). These cells

stained positively for GFP and for endogenous Wt1 protein by immunohistochemistry, validating the

faithful expression of the transgene with endogenous wt1b expression in this response (Figure 1e;

Figure 1—figure supplement 2). Tg(wt1b:gfp) expression was not detected in the notochord out-

side the wound response by immunohistochemistry for GFP or for Wt1 protein (Figure 1—figure

supplement 2). Thus, following notochord injury, an unanticipated expression of wt1b marks a sub-

population of cells that emerges in the notochord and is associated with the wound.

wt1b expressing cells emerge from the notochord sheath
To determine the origin of the wound-specific wt1b+ cells, we examined wt1b expression in the vac-

uolated cells of the notochord, and in notochord sheath cells using two different transgenic lines.

The Tg(SAGFF214A:gfp) transgenic line labels the cytoplasm of the inner vacuolated cells, and the

Tg(R2col2a1a:mCherry) transgenic line labels notochord sheath cells. While col2a1a is expressed in

all notochord cells (Apschner et al., 2011), a Tg(R2col2a1a:mCherry) line had been generated with

a 310 bp conserved regulatory element of the col2a1a promoter that is specifically expressed in the

Figure 1. Notochord injury triggers local and sustained wt1b expression. (a) Schematic of notochord needle-injury protocol. 3 dpf Tg(wt1b:gfp); casper

larvae are injured above the yolk sac (YS; at somite 14 or 15) and followed for 72 hr. (b, c) Images of Tg(wt1b:gfp); casper zebrafish trunk over time

following notochord needle injury, and uninjured matched controls. GFP signal is associated with a change of cellularity in the injured notochord (inset).

n > 10; experimental replicates >10. Scale bar: 100 mm. (d) H and E staining of the injured area at 6 hpi and 24 hpi highlighted the progressive change

in cellularity at the site of the injury (arrow). n = 5; experimental replicates = 1. Scale bar: 20 mm. (e) Immunohistochemistry of the injured area with a-

GFP and a-Wt1 antibodies. n > 10; experimental replicates = 5. Scale bar: 20 mm. dpf = days post fertilization; hpi = hours post injury; H and

E = haematoxylin and eosin.

DOI: https://doi.org/10.7554/eLife.30657.002

The following figure supplements are available for figure 1:

Figure supplement 1. wt1b expression in tail amputated larvae.

DOI: https://doi.org/10.7554/eLife.30657.003

Figure supplement 2. Wt1 and GFP protein expression in the notochord.

DOI: https://doi.org/10.7554/eLife.30657.004
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surrounding notochord sheath cells (Figure 2a) (Dale and Topczewski, 2011; Yamamoto et al.,

2010).

A needle-induced notochord wound in the Tg(SAGFF214A:gfp) transgenic line showed that GFP-

expressing cells were lost rapidly upon injury, creating a gap in the row of vacuolated cells. Eventu-

ally, this gap was filled with new cells by 144 hpi (Figure 2—figure supplement 1a,b). The

SAGFF214A:gfp response was distinct from the wt1b+ response in time (emerging at 72 hpi com-

pared with 24 hpi), size and number (few and large compared with numerous and small), and in cov-

erage of the wound (visible gaps remaining at the site compared with filling the damage site). These

data suggest that wt1b expressing cells are distinct from the vacuolated cells at the site of injury.

Next, we explored the role of the notochord sheath cells in this process. We crossed the Tg

(wt1b:gfp) transgenic line to the Tg(R2col2a1a:mCherry) transgenic line. Live confocal and multipho-

ton imaging revealed wt1b:gfp expression in the R2col2a1a:mCherry notochord sheath cells follow-

ing needle induced notochord damage (Figure 2b–d; Video 1; Figure 2—figure supplement 1c),

and this was supported by imaging of histological sections (Figure 2—figure supplement 1d).

wt1b:gfp co-expression with R2col2a1a:mCherry was visible by 24 hpi in a ring surrounding the noto-

chord vacuolated cells, and by 72 hpi the wt1b:gfp subpopulation of sheath cells had migrated into

central aspects of the notochord to fill the wound and produce a visible stopper-like seal that was

contiguous with the notochord sheath cells, and filled the gap in the notochord caused by the

wound (Figures 1e and 2d).

To validate the co-expression of wt1b:gfp and col2a1a:mCherry in the wounded fish, we FACS

sorted cell populations in the injured versus uninjured larvae isolated from the trunk region

(Figure 2e; 35 larvae pooled per set). Both injured and non-injured larvae contained cells that

expressed either GFP+ only (presumably wt1b:gfp cells of the pronephric duct that were included in

the dissected tissue) or mCherry+ alone, but the wounded fish had significantly increased numbers

of cells that co-expressed wt1b:gfp and col2a1a:mCherry (GFP+mCherry+) (Figure 2—figure supple-

ment 1e).

Our evidence indicates that the notochord wound triggers a unique wt1b+ subpopulation to

emerge in the notochord sheath cells. This wt1b+ sheath cell subpopulation migrates into the wound

and generates a stopper-like structure, possibly to prevent further loss of notochord turgor pressure

and maintain notochord integrity.

Nystatin mediated disruption of vacuolated cells leads to an increase in
wt1b:gfp expression
We tested if the wt1b-response was specific to wounds that involved rupture of the sheath, or if

wt1b expressing cells could be induced upon loss of vacuolated cell integrity alone. Mutations in

caveolin genes lead to collapse of the vacuolated cells, with invasion and replacement from the

notochord sheath (Garcia et al., 2017). We

treated two-day old Tg(wt1b:gfp; R2col2a1a:

mCherry) zebrafish with nystatin, a small mole-

cule that binds sterols. Nystatin treatment lead

to an increase in cellularity of the vacuolated

notochord, similar to the phenotype seen in the

notochord of caveolin mutants (Figure 2—figure

supplement 2). GFP was expressed in a subpop-

ulation of the mCherry-positive sheath cells at

the site of cellularity. Thus, expression of wt1b in

the sheath does not require a physical breach of

the sheath, and wt1b expression may be applica-

ble to a wider range of tissue stress and damage

situations.

Notochord wound cells express
cartilage and mesenchyme genes
To address the molecular process at the site of

the wound, we compared the transcriptome of

Video 1. Time-lapse imaging of two-photon

microscopy of Tg (wt1b:gfp; R2col2a1a:mCherry)

zebrafish larvae following needle injury over 48 hr.

wt1b:gfp expression is upregulated in R2col2a1a:

mCherry expressing notochord sheath cells upon

needle injury, leading to the formation of a stopper like

structure across the wound

DOI: https://doi.org/10.7554/eLife.30657.009

Lopez-Baez et al. eLife 2018;7:e30657. DOI: https://doi.org/10.7554/eLife.30657 4 of 26

Research article Developmental Biology and Stem Cells



Figure 2. wt1b:gfp expressing notochord sheath cells populate the site of injury in the damaged notochords. (a) Schematic diagram of the notochord

and transgenic lines used in this study. The notochord is composed of an inner population of highly vacuolated cells (green arrow; SAGFF214A:gfp),

surrounded by a layer of epithelial-like sheath cells (red arrow; R2col2a1a:mCherry), encapsulated by a thick layer of extracellular basement membrane

(grey arrow). (b) Schematic of experimental design: 3dpf Tg(wt1b:gfp; R2-col2a1a:mCherry); casper larvae were needle-injured and imaged at 0, 24 and

72 hpi. (c) Needle damage led to the formation of a cell-free gap in the layer of notochord sheath cells (0 hpi – injured; dashed line). GFP expression

can be observed in the notochord sheath cells surrounding the area of damage by 24 hpi (inset: cross-sectional view) and these appear to engulf the

injured area by 72 hpi (inset). n > 10; experimental replicates >10. Scale bar: 100 mm. (d) Multiphoton time-lapse imaging of wound site. Initial

upregulation of GFP occurs at eight hpi in the R2-col2a1a:mCherry positive cells (arrow) and propagates across the injured area over the next 40 hr to

form a seal in the notochord. n = 8; experimental replicates = 1. Scale bar: 100 mm. (e) Representative example of FACS analysis of cell populations in

injured and non-injured zebrafish trunk tissue. GFP+mCherry+ double positive cells are present in injured Tg(wt1b:gfp; col2a1a:mCherry) at 72 hpi.

Percentage of fluorescent cells are reported. Note that the dissected tissue can also encompass wt1b:gfp expressing cells in the posterior end of the

pronephric duct (see also Figure 1c). n = 35 larvae per group; experimental replicates = 4. dpf = days post fertilization; hpi = hours post injury.

DOI: https://doi.org/10.7554/eLife.30657.005

The following source data and figure supplements are available for figure 2:

Figure supplement 1. Imaging cell populations at the wound.

DOI: https://doi.org/10.7554/eLife.30657.006

Figure supplement 1—source data 1. Raw data and statistical analyses for Figure 2—figure supplement 1e.

DOI: https://doi.org/10.7554/eLife.30657.008

Figure supplement 2. Nystatin treatment leads to upregulation of wt1b:gfp expression in notochord sheath cells.

DOI: https://doi.org/10.7554/eLife.30657.007
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the trunk region in the injured and uninjured 72 hpi larvae (Figure 3a,b; n = 50 larvae per subset).

Microarray analysis revealed a highly significant 131-fold increase in expression of matrix gla protein

(mgp), a gene that is known to express in chondrocytic zebrafish tissues (Gavaia et al., 2006) and to

be involved in the inhibition of hydroxyapatite production during ectopic bone formation

(Schurgers et al., 2013; Sweatt et al., 2003; Zebboudj et al., 2002) (Figure 3c,d). Other genes

included mesenchymal and cell adhesion markers, such as fn1b, coagulation factors, such as f13a1b,

and immune response genes, such as zgc:92041 and complement c6 (Figure 3d).

The increased expression of mgp and f13a1b genes implicated the de novo acquisition of chon-

drogenic features in the injured tissues. Chondrogenic cells in the endochondral tissues of the cra-

niofacial, fin bud and axial skeletons express mgp (Gavaia et al., 2006) and FXIIIA expression is

localized to the developing chondrogenic mesenchyme of the pectoral fin bud (Deasey et al.,

2012). The expression of cartilage genes was unexpected because ossification around the zebrafish

notochord occurs via the formation the chordacentra, and does not require the establishment of car-

tilage anlagen (Bensimon-Brito et al., 2012; Fleming et al., 2004). To examine the expression of

other chondrogenic genes, we analyzed the top 100 significant genes and found an increase in

expression of sox9b, the master regulator of chondrogenesis, five collagen genes associated with

chondrogenic tissues (col2a1a, col2a1b, col11a2, col9a1 and col9a2), the cartilage-specific extracel-

lular structural protein Aggrecan, a microRNA regulator of chondrogenesis microRNA140 and the

matrix-cell anchor protein chondroadherin (chad) (Figure 3e). To validate these findings at the

molecular level, we isolated sections of damaged and undamaged tissue, and performed qRT-PCR

for matrix gla protein (mgp) and sox9b. We chose these two genes because mgp was highly

expressed in the microarray analysis and important for bone organization, and because Sox9 is a

master cartilage transcription factor. We found mgp and sox9b to be highly upregulated in the

injured tissue compared with the uninjured tissue (Figure 3f,g). Our results reveal that notochord

wounding leads to the formation of a wt1b-positive sheath subpopulation that is characterised by an

unexpected increase in genes associated with cartilage.

Single-cell and 10 cell sequencing of wt1b-expressing sheath cells
To address the molecular nature of the GFP+mCherry+ expressing cells, we performed RNA sequencing

of single-cells and 10 cell pools of FACS sorted GFP+ cells, mCherry+ cells and GFP+mCherry+ cells

from injured zebrafish (3dpi) using the SMARTseq2 protocol (Supplementary file 1; Figure 4—figure

supplement 1) (Kirschner et al., 2017; Picelli et al., 2013). To avoid batch effects, all experimental

conditions were sorted onto the same 96 well plate and processed simultaneously (Baran-Gale et al.,

2017). Sequencing reads were processed using the Scater pipeline (McCarthy et al., 2017). Unbiased

Single cell consensus clustering (SC3) of the whole transcriptomes revealed that the GFP+ cells,

mCherry+ cells and GFP+mCherry+ cells clustered into three distinct subpopulations (SC3 cluster 1:

GFP+, 2: GFP+mCherry+ and 3: mCherry+) (Figure 4a–c) (Kiselev et al., 2017). Single and 10 cell popu-

lations clustering together suggested that sorting conditions led to homogenous 10 cell populations.

Expression of wt1b was detected in SC3 clusters 1 and 2, and col2a1a was expressed in SC3 clusters 2

and 3 (Figure 4b). wt1a transcripts were not detected in any of the SC3 clusters. Together with the

Wt1b antibody immunohistochemistry (Figure 1e, Figure 1—figure supplement 2), detection of wt1b

transcripts in GFP+mCherry+ cells prove endogenous wt1b expression in the notochord damage

response.

To avoid confounding factors, for example different ratios of single to 10 cell trancriptomes,

when calculating differential expression, we used SC3 on the 10 cell populations only. We found con-

sistent clustering of the different cell populations (GFP+, GFP+mCherry+ and mCherry+). Notably,

differential marker gene expression in GFP+mCherry+ cells included the mgp, fn1b and f13a1b

genes (Figure 4c) that were highly upregulated in the wounded tissue (Figure 3d). To validate our

findings, we isolated injured notochord tissue from 3dpi and FACS sorted GFP+, mCherry+ and

GFP+mCherry+ double positive cells, and performed qRT-PCR on sorted cell populations for mgp, a

SC3 cluster 2 cell marker gene. Expression of mgp was selectively enriched in GFP+mCherry+ double

positive cells (Figure 4d).

We next calculated differentially expressed genes between GFP+mCherry+ cells compared with

the mCherry+ cells using SCDE (Kharchenko et al., 2014). Based on the SCDE output genes were

ranked and the ranked list was used with the WEB-based gene set analysis toolkit (WebGestalt) to

explore the functional nature of the GFP+mCherry+ cells compared with the mCherry+ cells
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Figure 3. Cartilage genes are expressed in the notochord-injured zebrafish. (a) Experimental plan: 3 dpf Tg(wt1b:gfp) larvae were needle injured and

grown for 72 hr with uninjured age-matched controls (n = 50 larvae per group). (b) The area around the wt1b:gfp expression was excised at 72 hpi

(dotted area) and RNA was extracted and amplified. A similar area was taken from age-matched uninjured controls. (c) Volcano plot displaying the

differentially expressed genes between injured and non-injured larvae. The y-axis measures the mean expression value of log 10 (p-value) and separates

upregulated from downregulated genes. The x-axis represents the log2 fold change of expression. Significantly upregulated genes are shown as green

circles or dots and downregulated genes are shown as red circles or dots. Green dotted line represents the p-value threshold (p<0.05) and blue dotted

line represents the false discovery rate (FDR) or q-value threshold (q < 0.05). Genes with highest expression change are shown in magnified view. (d)

Table showing the most significantly differentially expressed genes in injured larvae (q < 0.05). Upregulated genes are shown in green and

downregulated genes are shown in red. (e) Table showing cartilage-associated genes that were significantly upregulated in the injured larvae (p<0.05).

(f, g) Results of quantitative real-time PCR (qRT-PCR) of mgp and sox9b. The y-axis indicates the difference between the cycle threshold (Ct) value of

Figure 3 continued on next page
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(Figure 4e). Expression of genes in signaling pathways, such as the TGF-ß pathway were reduced,

while vacuolar and lysosomal pathway components were highly enriched in the GFP+mCherry+ cells

comparing gene sets from multiple databases. To explore the possibility of lysosome activity in

more detail, we performed confocal imaging analysis of the wound site at 7 dpi and observed some

GFP+mCherry+ cells with large inclusions (presumably vacuoles), in the cytoplasm (Figure 4f). This

suggests that some GFP+mCherry+ cells may become vacuolated to replace those lost upon injury.

Next, given the expression of cartilage genes by microarray analysis, we performed gene set enrich-

ment analysis (GSEA) with a list of zebrafish cartilage genes curated in AmiGO (Supplementary file 1b,

1c). Cartilage genes were significantly enriched in the cell cluster 2 (GFP+mCherry+ cells) compared

with cell cluster 3 (mCherry+ cells), suggesting that it is specifically the wt1b-expressing sheath cells that

express genes involved in cartilage formation (Figure 4g).

To explore the role of WT1 in the wound response, we compiled a list of WT1 target genes, and

compared it with the rank order list of RNA transcripts expressed in the GFP+mCherry+ cells by gene

set enrichment analysis (GSEA) (Supplementary file 1b, 1d) (Subramanian et al., 2005). Unexpectedly,

we discovered a set of WT1 regulated genes that were specifically repressed in the GFP+mCherry+ cells

(Figure 4h). WT1 can function with co-factors to repress or activate gene expression, and this new signa-

ture suggests that Wt1b may function as a repressor in the notochord damage response. Next, we per-

formed gene expression analysis for all WT1 co-transcription factors described in (Toska and Roberts,

2014), and found p53 to be most differentially expressed in GFP+mCherry+ cells compared with

mCherry+ cells (Figure 4i,j). GSEA analysis showed that p53 target genes are enriched overall in the

GFP+mCherry+ cell populations (Figure 4k; Supplementary file 1b, 1e), however, when we specifically

analysed the gene expression for those genes that were present in both the WT1 and p53 target gene

list (Supplementary file 1f), we found a strong repression of genes that are regulated by both WT1 and

p53 (Figure 4l). These data uncover an unexpected co-operation between Wt1b and p53 to negatively

regulate a select subset of genes in the wt1b-expressing sheath cell subpopulation during the wound

response.

Vertebra form at the repair site via an unusual cartilage intermediate
The expression of cartilage genes in the wound tissue and in the wt1b-expressing sheath cell sub-

population suggests that the notochord wound may induce a previously unknown and alternative

bone development process. We stained injured and control animals with alcian blue and alizarin red,

which highlight cartilage and bone respectively. Cartilage was clearly visible at the site of injury as

soon as three dpi (Figure 5a). This staining was significantly stronger and distinct from the highly

coordinated segmental cartilage staining that normally occurs during larval development in the

region of the future intervertebral discs, which is clearly visible in both injured and non-injured con-

trols by 14 dpi (Figure 5a). Similarly, the alizarin red dye identified the anterior to posterior forming

chordacentra rings during larval development. However, in injured zebrafish larvae, the normally uni-

form mineralization pattern was interrupted around the site of damage, leading to delayed forma-

tion of the chordacentra at later stages (Figure 5a). By 18 dpi, the injured site began to express

bone matrix, and was visibly flanked by cartilage expressing segments (Figure 5b). This is unusual

because during norm-physiological development of the vertebral elements, cartilage and bone stains

mark distinct regions of the notochord.

Figure 3 continued

the gene of interest and the Ct value of b-actin for mgp and gapdh for sox9b. Note that the y-axis is inverted to ease interpretation. Bars represent

standard deviation from the mean. mgp **p=0.025; sox9b ***p=0.007; paired t-test; Experimental replicates: mgp = 2; sox9b = 1 at 48 hpi, and 1 at 72

hpi (40 embryos pooled per replicate). See Source Data files (Figure 3—source data 1; Figure 3—source data 2).

DOI: https://doi.org/10.7554/eLife.30657.010

The following source data is available for figure 3:

Source data 1. Raw data and statistical analyses for Figure 3f.

DOI: https://doi.org/10.7554/eLife.30657.011

Source data 2. Raw data and statistical analyses for Figure 3g.

DOI: https://doi.org/10.7554/eLife.30657.012
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Figure 4. Single-cell and 10 cell sequencing of wt1b-shealth cell populations. (a) Single-cell and 10 cell SC3 unbiased clustering analysis reveals three

distinct cell populations marked by GFP (cluster 1), mCherry (cluster 3), or GFP and mCherry (cluster 2). (b) GFP, mCherry, wt1b and col2a1a expression

Figure 4 continued on next page
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To evaluate the outcome of the injury in the ossification process, wild-type larvae were injured

and stained using live calcein dye at 21 and 38 dpi (Du et al., 2001). The vertebrae that eventually

formed were often smaller in a given space interval and appeared supernumerary compared with

uninjured age-matched controls (Figure 5c–e).

The notochord patterns spine formation via the activation of various signals, and has been pro-

posed to be an essential component of chordacentra formation (Bensimon-Brito et al., 2012;

Fleming et al., 2004). Entpd5a (ectonucleoside triphosphate diphosphohydrolase 5) is an E-type

NTPase that is expressed in osteoblasts and is essential for skeletal morphogenesis (Huitema et al.,

2012). Recent evidence shows that metameric expression of entpd5a in notochord sheath cells is an

essential requirement for the patterned formation of chordacentra rings (LL-F and SS-M, personal

communication), with entpd5a expression serving as a readout for mineralizing activity

(Huitema et al., 2012). We crossed the Tg(wt1b:gfp) transgenic line to a Tg(entdp5a:pkRed) line

and followed the wound response. wt1b and entpd5a expressing cell populations were closely asso-

ciated at the wound site indicating that mineralizing entpd5a cells may directly contribute to wt1b+-

associated chordacentra response (Figure 6a,b).

Next, we wanted to explore the relationship between entpd5a expression domains and the verte-

brae formation at the wound site. By 5 dpf, metameric entpd5a expression domains are clearly visi-

ble in the anterior notochord. We wounded the notochord in 5 dpf and 7dpf fish either in between

two adjacent entpd5a-expression domains or aimed at the center of an entpd5a-expression domain.

Fish that had been wounded between the entpd5a-expression domains appeared to have normal

vertebrae structures at 25 dpi (n = 6/6). In contrast, damaging the entpd5a-expression domain led

to a supernumerary vertebra at the wound site (n = 4/4; Figure 6—figure supplement 1).

Taken together, these results indicate that wounding alone is not sufficient to alter the vertebrae

number, and that entpd5a expression domains likely play a role in vertebrae formation following

injury. These experiments raise the possibility that the notochord wound assay at 3 dpf disrupts an

as of yet unknown precursor cell population. Up-regulation of entpd5a at the damage site may be

part of a patho-physiological wound repair response that disrupts and/or engages with a precursor

cell population (such as the metameric entpd5a expression) leading to altered vertebra(e) in the

adult.

wt1b+ expression perdures into the adult vertebrae
We noticed that the Tg(wt1b:gfp) transgene expression was always associated with the site of verte-

brae formation in the injured zebrafish that were raised to adulthood. To determine if wt1b

Figure 4 continued

in 10 cell clusters. (c) Top 10 differential gene expression marker genes for 10 cell clusters. (d) Expression of mgp in different cell populations of injured

zebrafish notochords. RNA was isolated from FACS sorted GFP, RFP and GFP/RFP expressing cells of the notochord of Tg(wt1b:gfp; R2-cola2a1a:

mCherry) embryos, and gene expression was determined by qPCR. The y-axis indicates the difference between the cycle threshold (Ct) value of the

gene of interest and the Ct value of beta-actin in injured and uninjured notochord. The y-axis is inverted for ease of interpretation. p-values are

determined by paired t-test. Bars represent standard deviation. mgp: **p=0.035. Experimental replicates = 2. See Source Data file (Figure 4—source

data 1). (e) Bar chart depicting functional analysis of differentially expressed genes between 10 cell SC3 cluster 2 and cluster three against five

databases. Normalised enrichment score (NES, x-axis) calculated using online functional enrichment tool WebGestalt resource. Coloured bars match

specific databases. (f) Images of the wound site seven days post injury in Tg(wt1b:gfp;col2a1a:mCherry); nacre-/- embryos. Arrows indicate vacuole-like

structures. n = 7; experimental replicates: 1. Scale bar: 50 mm. (g) Gene set enrichment analysis (GSEA) of cartilage genes in wt1-expressing sheath cell

(cluster 2) 10 cell group clusters (21 out of 82 genes were positively enriched; NES = 0.90). (h) GSEA of WT1 gene targets in wt1b-expressing sheath cell

(cluster 2) 10 cell group clusters (19 out of 56 target genes were negatively enriched; NES = �1.44). (i) Heatmap of expression of WT1-interacting

partners in 10 cell cluster 2 and cluster 3. (j) p53 RNA expression in 10 cell clusters. (k) GSEA of p53 targets genes in wt1b-expressing sheath cell (cluster

2) 10 cell group clusters (358 out of 1442 genes were positively enriched; NES = 1.17). (l) GSEA of common p53 and WT1 gene targets in wt1b-

expressing sheath cell (cluster 2) 10 cell group clusters (10 out of 19 genes were negatively enriched, NES = �1.11).

DOI: https://doi.org/10.7554/eLife.30657.013

The following source data and figure supplement are available for figure 4:

Source data 1. Raw data and statistical analyses for Figure 4d.

DOI: https://doi.org/10.7554/eLife.30657.015

Figure supplement 1. Quality control for the single-cell and 10 cell RNA sequencing.

DOI: https://doi.org/10.7554/eLife.30657.014
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Figure 5. De novo bone formation occurs via a cartilage intermediate at the site of injury. (a) Alcian blue and Alizarin red staining at the site of injury in

3 and 14 dpi larvae. Ectopic cartilage deposit is indicated by arrow. n > 10; experimental replicates = 8. Scale bar left panels: 400 mm; scale bar right

panels (zoomed images): 200 mm. (b) Alcian blue and Alizarin red staining at the site of injury at 18 dpi indicates the presence of bone and cartilage at

the repair site (blue arrow = cartilage; red arrow = bone). n = 2; experimental replicates = 8. Scale bar: 200 mm. (c) Alcian blue and alizarin red staining

of 30 dpi larvae reveals the formation of a smaller vertebra in the damaged area. n > 10; experimental replicates = 3. Scale bar left panels: 400 mm;

scale bar right panels (zoomed images): 200 mm. (d) Live imaging of calcein stained zebrafish at 21 and 38 dpi in injured and uninjured fish. Vertebrae at

damage site are indicated by yellow asterisks. Black asterisk denotes intestinal fluorescence. n = 5; experimental replicates = 1. Scale bar 21 hpf: 200

mm; scale bar 21 hpf zoomed: 100 mm; scale bar 38 hpf: 200 mm; scale bar 38 hpf zoomed: 100 mm. (e) The relative vertebra size difference (D size)

between vertebrae at the site of injury (injured) and vertebrae in non-injured areas (uninjured). Vertebrae at the site of injury were significantly smaller

than uninjured vertebrae (Unpaired t-test; ***p<0.0001 two-tailed; mean ±SEM uninjured larvae = 0.9506 + /- 0.02102 n = 7; mean ±SEM injured

larvae = 0.7432 + /- 0.0284 n = 7; measurements taken at 30 and 38 dpi).

DOI: https://doi.org/10.7554/eLife.30657.016

Lopez-Baez et al. eLife 2018;7:e30657. DOI: https://doi.org/10.7554/eLife.30657 11 of 26

Research article Developmental Biology and Stem Cells



expression was transient at the wound, or sustained throughout the repair process, we raised needle

injured Tg(wt1b:gfp); casper zebrafish larvae for up to 38 days.

GFP expression was sustained at the wound site, remaining in a small, cellular population at the

site of damage, even as chordacentra developed and mineralized around the notochord over time

(Figure 7). Small GFP expressing cells were further confirmed by a-GFP staining at the site of dam-

age (Figure 7b). Strikingly, the Tg(wt1b:gfp) transgene maintained expression at this site up to 38

dpi (Figure 7c,d,g).

To gain a better understanding of how wt1b:gfp expressing cells engage with the newly forming

vertebrae, we carried out live, confocal imaging of the area of damage (Figure 7e–g). The analysis

revealed the presence of both fused and unfused vertebrae at the damaged site, and the sustained

and strong expression of wt1b:gfp expressing cells associated with the developing vertebra at the

repair site area (Figure 7f), even in fully formed spine structures (Figure 7g).

Taken together these results indicate that wt1b:gfp expressing cells both mark a subpopulation

of cells that are rapidly activated at the site of the wound and also that these cells persist until adult-

hood, possibly orchestrating local vertebrae formation with wound repair.

Discussion
We have uncovered wound-specific cellular heterogeneity in the zebrafish notochord that perdures

throughout the wound healing process and during adult vertebra formation at the injury site (Fig-

ure 8). We discover that wounding leads to localized wt1b expression in the notochord sheath cells

which then invade the site of the injury to form a stopper-like structure, likely to maintain notochord

integrity. We show the specific de novo expression of wt1b in notochord sheath cells following

Figure 6. Distinct and closely associated wt1b and entpd5a subpopulations emerge at the damage site. (a) Live-imaging at the site of notochord injury

in Tg(wt1b:gfp; entpd5a:dkRed) larvae. Expression of wt1b:gfp and entpd5a:pkRed at site of damage (green arrows and red arrows respectively) in

injured and uninjured fish. n > 10; experimental replicates = 5. Scale bar: 50 mm. (b) Cryo-section of the injured area confirms distinct wt1b:gfp and

entpd5a:dkRed subpopulations at site of damage. n > 10; experimental replicates = 2. Scale bar: 20 mm.

DOI: https://doi.org/10.7554/eLife.30657.017

The following figure supplement is available for figure 6:

Figure supplement 1. Needle damage of the entpd5a cell domain leads to supernumerary vertebrae.

DOI: https://doi.org/10.7554/eLife.30657.018
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Figure 7. wt1b expressing cells are closely associated with vertebral development after injury. (a) Images of Tg(wt1b:gfp) zebrafish following needle

injury at 3 dpf and raised to 28 dpi. n > 10; experimental replicates = 4. Scale bar left panels: 100 mm; scale bar right panels: 200 mm. (b) a-GFP staining

of 28 dpi larvae at the site of the healing notochord wound and in the kidney. n = 5; experimental replicates = 1. Scale bar left panels: 50 mm. (c) Image

of fish from Figure 5a,c, stained with alizarin red and imaged for wt1b:gfp expressing cells. GFP positive cells are found within the ectopic vertebra

(white arrow and inset). n = 4; experimental replicates = 1. Scale bar left panels: 100 mm. (d) Long-term follow up of alizarin red stained Tg(wt1b:gfp);

casper larvae shows that chordacentra formation is delayed around the site of injury. GFP cells mark the site of the future vertebra. n = 6; experimental

Figure 7 continued on next page
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wounding, despite an absence of wt1b expression during notochord development (Figure 1e,

Figure 7 continued

replicates = 2. Scale bar: 100 mm; scale bar zoomed images: 50 mm. (e) Confocal imaging of 15, 21 and 28 dpi larvae reveals an overlapping expression

between the wt1b:gfp expressing cells and the forming chordacentra (alizarin red stained) in the injured Tg(wt1b:gfp); casper larvae. n > 10;

experimental replicates = 3. Scale bar: 100 mm. Imaging views are lateral, angled and cross-section view. (f) Confocal imaging highlights the

overlapping presence of bone (alizarin red stained) and wt1b:gfp cells at the wound in 18 dpi larvae (arrow). n > 10; experimental replicates = 3. Scale

bar: 100 mm. (g) Confocal scans of 24 dpi Tg(wt1b:gfp) larvae stained with alizarin red and expressing GFP at the injury site following notochord injury

compared with uninjured control fish. GFP positive cells are present within the vertebrae at the injury site (arrow). Scale bar left fish: 1000 mm; scale bar

on vertebrae images: 100 mm.

DOI: https://doi.org/10.7554/eLife.30657.019

Figure 8. Schematic of the notochord wound response.

DOI: https://doi.org/10.7554/eLife.30657.020

The following source data and figure supplements are available for figure 8:

Figure supplement 1. Generation of wt1b mutant zebrafish.

DOI: https://doi.org/10.7554/eLife.30657.021

Figure supplement 1—source data 1. Raw data and statistical analyses for Figure 8—figure supplement 1h.

DOI: https://doi.org/10.7554/eLife.30657.022
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Figure 1—figure supplement 2).

Very recently, Bagnat and colleagues reported the identification of notochord sheath cells

involved in the replacement of vacuolated cells lost due to motion-dependent mechanical damage

to the notochord in caveolin mutants (Garcia et al., 2017). In this context, sheath cells invade the

vacuolated cell layer and differentiate into vacuolated cells to maintain turgor pressure. While we

observe that most wt1b-expressing cells are tightly associated with a stopper-like (scar-like) structure

from embryo to adult (Figure 7), we find some wt1b expressing cells appear vacuolated at the injury

site at later stages (7 days post injury; Figure 4f), and that wt1b-expressing cells express vacuolar

genes (Figure 4e). We also detected entpd5a expressing cell subpopulations at the wound that are

distinct from wt1b expressing cells (Figure 6). These studies highlight a previously unknown complex

and heterogeneous nature of the sheath cell populations, and suggest that the notochord sheath

can sense and respond to different types of damage. Motion-dependent shear stress in caveolin

mutants causes loss of vacuolated cells that are replaced by new vacuolated cells that arise from the

sheath (Garcia et al., 2017), while acute damage (i.e. needle injury) that encompasses sheath and

vacuolated cell damage, leads to sheath cells forming a seal that marks the site of new cartilage and

vertebra (Figure 8). We show that wt1b expression marks a subpopulation of sheath cells in both

damage responses (Figure 1, Figure 2—figure supplement 2), and suggest that additional factors

are involved in the ultimate fate of wt1b-expressing cells (i.e. vacuolated cells versus scar like

structure).

To address the function of Wt1b in the wound response, we generated a CRISPR-Cas9 genetic

mutant that removes part of the C-terminal zinc-finger domains that are essential for WT1 function

in mammalian systems. We find homozygous wt1b mutant zebrafish show no overt difference from

wild type fish in the wound response (Figure 8; Figure 8—figure supplement 1). However, given

the dramatic up-regulation of wt1b upon wounding, and given the continued expression up to adult

stages, we consider it unlikely that Wt1b has no role in the process. Compensatory mechanisms

have to be considered, and indeed, we find a small, but significant increase in wt1a in wt1bD5/D5

wounded tissue. Furthermore, compensatory mechanisms downstream the Wt1b-p53 axis could

mask a role, and further analysis beyond the scope of this study will be required to fully understand

the functional significance of Wt1b in this subpopulation of cells.

By leveraging gene expression profiling, and single-cell and 10 cell sequencing of the wounded

tissue, we discovered a mechanism for vertebra formation via a cartilage intermediate at the injury

site. This is completely unexpected as in zebrafish, ossification of the chordacentra does not require

the establishment of a cartige anlagen, but form via the direct mineralization of the

fibrous notochord sheath (Bensimon-Brito et al., 2012; Fleming et al., 2015). The activation of

wt1b in sheath cells that migrate towards the center of the notochord is reminiscent of the situation

where wt1b expression is reactivated in epicardial cells that undergo EMT to produce vascular pro-

genitors and migrate into the heart (Martı́nez-Estrada et al., 2010). This raises the question whether

notochord sheath cells may also be mesothelial in nature and if the invading wt1b expressing cells

are produced via an EMT or, perhaps more accurately, a mesothelial to mesenchyme transition.

While wt1b-positive cells express some mesenchymal genes (Figure 3d), we did not find evidence

that these cells express classical gene signatures related to known EMT processes in the damaged

tissue. This may be evidence of an as of yet unknown process in the wound response, or possibly

because the EMT process was primarily completed by the time of our analysis at 3 days post injury.

Surprisingly, we have uncovered a new Wt1b-p53 gene expression signature that is specifically

repressed in wt1b+ sheath cells (Figure 4k). p53 is a transcription factor that in addition to its well-

established role as a tumor suppressor, functions to inhibit premature osteoblast differentiation and

bone remodeling (Liu and Li, 2010). Several lines of evidence support a direct WT1-p53 interaction,

and that p53 can modify activity of WT1 transcriptional activity from an activator to a repressor on

select promoters in vitro (Maheswaran et al., 1995; Maheswaran et al., 1993). However, the in

vivo function for the WT1-p53 interaction is not yet understood, and loss of p53 in wt1-null mutant

mice does not alter the wt1-null phenotype (Menke et al., 2002). Here, we identify a Wt1b-p53 axis

specifically in the repair of a notochord wound. The Wt1b-p53 gene signature includes repression of

genes that regulate osteogenesis in mammals, including myc (a and b), egr1 and igfrb (Piek et al.,

2010; Reumann et al., 2011; Wang et al., 2015). We propose that repair-specific transcription fac-

tors participate in notochord healing by co-ordinating expression of cartilage genes such as sox9

and mgp (Schurgers et al., 2013; Sweatt et al., 2003; Zebboudj et al., 2002), with a Wt1b-p53
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transcriptional axis repressing premature expression of osteogenesis genes in the first few days fol-

lowing wounding. We see entpd5+ notochord sheath cells in the wound area (Figure 6), and since

entpd5 is essential for mineralization, it seems likely that these cells, in conjunction with cartilage for-

mation at the site of injury, play a role in centrum formation (Figure 8). Eventually, smaller vertebra

form at the wound site, and wt1b:gfp cells remain tightly associated with this/these vertebra(e) into

adulthood. This mode of notochord wound healing and vertebra formation may be a salvage struc-

ture to effectively maintain structural integrity of the developing axial skeleton.

Materials and methods

Key resources table

Reagent type
or resource Designation Source or reference Identifiers Additional information

Gene (Danio Rerio) sagff214a NA ZFIN ID: ZDB-ALT-
110315–2

Gene (Danio Rerio) wt1a NA ZFIN ID: ZDB-GENE-
980526–558

Gene (Danio Rerio) col2a1a NA ZFIN ID: ZDB-GENE-
980526–192

Gene (Danio Rerio) entpd5a NA ZFIN ID: ZDB-GENE-
100419–1

Gene (Danio Rerio) sox9b NA ZFIN ID: ZDB-GENE-
001103–2

Gene (Danio Rerio) wt1b NA ZFIN ID: ZDB-GENE-
050420–319

Genetic reagent
(Danio Rerio)

Tg(entpd5:kaede) Geurtzen et al., 2014
doi: 10.1242/dev.105817

ZFIN ID: ZDB-ALT-
150223–1: hu6867

Same BAC used as
Huitema et al. (2012)
(DOI: 10.1073/pnas.1214231110)
with kaede insertion at first
translated ATG

Genetic reagent
(Danio Rerio)

Tg(entpd5:pkRed) This paper ZFIN ID: hu7478 Same BAC used as
Huitema et al. (2012)
(DOI: 10.1073/pnas.1214231110)
with pkRed insertion at first
translated ATG

Genetic reagent
(Danio Rerio)

Tg(SAGFF214a;UAS:gfp) Yamamoto et al. (2010)
DOI: 10.1242/dev.051011

ZFIN ID: ZDB-FISH-
150901–18089

Genetic reagent
(Danio Rerio)

Tg(wt1b:GFP,R2col
2a1a:mCherry)

This paper ZFIN ID: ZDB-ALT-
180105–1; zfin.org:ue401Tg

Genetic reagent
(Danio Rerio)

Tg(wt1a:GFP) Bollig et al. (2009)
DOI: 10.1242/dev.031773

ZFIN ID: ZDB-FISH
-150901–2540

Genetic reagent
(Danio Rerio)

Tg(wt1b:GFP) Perner et al. (2007)
DOI: 10.1016/j.ydbio.2007.06.022

ZFIN ID: ZDB-FISH-
150901–1774

Genetic reagent
(Danio Rerio)

casper White et al. (2008)
DOI: 10.1016/j.stem.2007.11.002

ZFIN ID: ZDB-ALT-990423–22

Genetic reagent
(Danio Rerio)

zebrafish codon
optimised cas9 mRNA

Jao et al. (2013)
DOI: 10.1073/pnas.1308335110

Genetic reagent
(Danio Rerio)

Wt1b p.F319fsX321 this paper ZFIN ID: ZDB-ALT-180
105–2; zfin.org:ue402

zebrafish wt1b mutant line,
mutation is in the exon coding
the zinc finger 2

Genetic reagent Tol2 transposase Kawakami, 2007
DOI: 10.1186/gb-2007–8 s1-s7

Continued on next page
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Continued

Reagent type
or resource Designation Source or reference Identifiers Additional information

Antibody anti-WT1 (rabbit
polyclonal)

This paper, Cambridge Research
Biochemicals antibody production
services

(1:25000); anti-WT1 was
designed using the TARGET
antibody production protocol
from Cambridge Research
Biochemicals using a conserved
protein sequence from the
C-terminal of the zebrafish
Wt1a and Wt1b proteins.

Antibody AlexaFluor 488 antibody
(rabbit polyclonal)

Invitrogen Donkey anti-Rabbit IgG
(H + L) Secondary Antibody,
Alexa
Fluor 488: R37602;
RRID:AB_221544

(1:800)

Antibody anti-GFP (rabbit
polyclonal)

Cell Signaling Technology Cell Signaling Technology:
GFP Antibody (Rabbit): 2555S;
RRID:AB_10692764

(1:1500)

Recombinant DNA
reagent (plasmid)

R2-col2a1a:mCherry Dale and Topczewski (2011)
DOI: 10.1016/j.ydbio.2011.06.020

Sequence-based
reagent

wt1b mutant sgRNA this paper GGTCAGACCTGGAGAAGCGG

Commercial assay
or kit

Dako REAL EnVision
Detection System kit

Dako Dako REAL EnVision
Detection System, Peroxidase
/DAB+,
Rabbit/Mouse: Code
K5007

Commercial assay
or kit

Low Input Quick
Amp Labelling Kit

Agilent Technologies Low Input Quick Amp
Labeling Kit, one-color:
5190–2305

Commercial assay
or kit

Nextera XT DNA Library
Preparation Kit
(96 samples),

Illumina Nextera XT DNA Library
Preparation Kit (96 samples),:
Cat: FC-131–1096

Commercial assay
or kit

4 � 44K Whole Zebrafish
(V3) Genome Oligo
Microarray

Agilent Technologies

Chemical compound,
drug

DPX Mountant for
histology

Sigma-Aldrich DPX Mountant for histology:
06522–100 ML

Chemical compound,
drug

ProLong Gold Antifade
Mountant with DAPI

Invitrogen ProLong Gold Antifade
Mountant with DAPI: P36931

Chemical compound,
drug

Trizol Invitrogen TRIzol Reagent:
15596026

Chemical compound,
drug

FACSmax cell
disassociation solution

Genlantis FACSmax Cell Dissociation
Solution: AMS.T200110

Chemical compound,
drug

OCT compound
Tissue-Tek

Sifam Instruments LTD OCT COMPOUND TISSUE-
TEK: SIFAAGR1180

Chemical compound,
drug

Nystatin Sigma-Aldrich Nystatin powder, BioReagent,
suitable for cell culture:
N6261-500KU

Software, algorithm Color Inspector 3D ImageJ 1.51 n plugin RRID:SCR_002285

Software, algorithm Fiji ImageJ 1.51 n RRID:SCR_002285

Software, algorithm Feature Extraction
Software

Agilent Technologies RRID:SCR_014963

Software, algorithm Rsubread package R-3.3.3; Liao et al. (2013).
DOI: 10.1093/nar/gkt214

RRID:SCR_009803

Software, algorithm SCDE Kharchenko et al. (2014)
DOI: 10.1038/nmeth.2967

RRID:SCR_015952

Continued on next page
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Continued

Reagent type
or resource Designation Source or reference Identifiers Additional information

Software, algorithm SC3 package Kiselev et al. (2017)
DOI: 0.1038/nmeth.4236

RRID:SCR_015953

Software, algorithm Scater package McCarthy et al., 2017
DOI: 10.1093/bioinformatics/btw777

RRID:SCR_015954

Software, algorithm STAR RNA-seq aligner Dobin et al. (2013)
DOI: 10.1093/bioinformatics/bts635

RRID:SCR_015899

Software, algorithm FACSDiva software Version 6.1.3; BD Biosciences RRID:SCR_001456

Software, algorithm Webgestalt Wang et al. (2013)
DOI: 10.1093/nar/gkt439

RRID:SCR_006786

Software, algorithm Rosetta Resolver gene
expression data
analysis system

Rosetta Biosoftware RRID:SCR_008587

Other Alizarin Red Fisher Scientific Alizarin Red S
Sodium Salt25G:11329707

Other Alcian Blue Sigma Alcian Blue 8Gx:
A5268-10G

Zebrafish lines
All experimental procedures were approved by the University of Edinburgh Ethics Committee and

were in accordance with the UK Animals (Scientific Procedures) Act 1986. Transgenic lines for this

study include: Tg(entpd5a:pkRed) (Huitema et al., 2012), Tg(SAGFF214A:GalFF;UAS:gfp)

(Yamamoto et al., 2010), Tg(wt1a:gfp) (Bollig et al., 2009), Tg(wt1b:gfp) (Bollig et al., 2009;

Perner et al., 2007). Many of the studies were performed in a transparent background created by

crossing homozygous Tg(wt1b:gfp) fish to homozygous pigment-free transparent casper fish

(White et al., 2008). The Tg(wt1b:gfp;R2col2a1a:mCherry) line was created by injecting the

R2col2a1a:mCherry construct (Dale and Topczewski, 2011) with a Tol2 transposase (Kawa-

kami, 2007) into Tg(wt1b:gfp;casper) zebrafish embryos, generating Tg(R2col2a1a:mCherry)ue401Tg.

Notochord needle injury and tail amputation assays
For notochord wounds on day 3, larvae were anaesthetised in tricaine, placed sagittally on a petri

dish and either inserted gently with an electrolysis-sharpened tungsten wire or tail amputated at dif-

ferent levels. Injured larvae were transferred to fresh water to recover and observe. Non-injured

age-matched larvae were grown as non-injured controls. For injuries on day 5 and 7 pf larvae, the

notochord wounds were generated using stainless steel insect pins (0.10 mm), under fluorescence

light in a Leica (Germany) M165FC with a 1.0X plan Apo objective. All pictures (brightfield, Kaede

and alizarin red stains) where taken using an Olympus (Japan) szx16 with a 1.5X Plan Apo objective

with a Leica DFC 450C camera.

Whole-mount microscopy
Live and fixed whole-mount time-course and time-lapse experiments were performed using an

AZ100 upright macroscope (Nikon; Japan) using a x2 and x5 lens with a Retiga Exi camera (Qimag-

ing) or Coolsnap HQ2 camera (Photometrics; Tucson, Arizona) or a Leica MZFLIII fluorescence stereo

microscope fitted with a Qimaging Retiga Exi camera. Images were analyzed and processed using

the IPLab Spectrum and Micro-Manager software. Live and fixed whole-mount confocal imaging was

performed using an A1R confocal system (Nikon) using x10 and a x20 lens over a Z-plane range of

80–100 mm (approximate width of the notochord) using a 480 nm laser (GFP), a 520 nm (RFP) and/or

a 561 nm laser (alizarin red). Images were captured and analysed using Nis-Elements C software

(Nikon). Images of the nystatin-treated larvae were acquired by using a 20x lens on the Imaging Plat-

form Dragonfly (Andor Technologies, Belfast UK) with 488 nm (GFP) and 561 nm (RFP) lasers built on

a Nikon TiE microscope body with a Perfect focus system (Nikon Instruments). Z stacks through the

notochord were collected in Spinning Disk 25 mm pinhole mode on the Zyla 4.2 camera using a Bin

of 1 and frame averaging of 1 using Fusion v1.4 software. Data were visualised using Fiji, and
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histograms generated using its Color Inspector 3D plugin. Multiphoton confocal time-lapse imaging

was performed using an SP5 confocal microscope (Leica) equipped with a Ti:Sapphire multiphoton

laser (Spectra Physics; Santa Clara, California) and a three axis motorised stage. For confocal imag-

ing and time-lapse experiments, anaesthetised injured and non-injured larvae were embedded sagit-

tally in a drop of 1% low-melting point agarose prior to imaging, in a specially designed glass insert,

which was covered in a mixture of E3 medium and anaesthetic. All time-lapse imaging was done at

30 or 60- min intervals over 48 hr using an incubation chamber (Solent Scientific; UK) under a con-

stant temperature of 28˚C and larvae were terminated in an overdose of tricaine at the end of each

experiment.

Histology
Zebrafish larvae younger than 20 dpf were culled and fixed overnight in 4% PFA/PBS at 4˚C. The
fixed larvae were washed in PBS, dehydrated in rising methanol/PBS concentrations and cleared in

xylene before being paraffin embedded for sectioning. Older zebrafish were culled and fixed in 4%

PFA/PBS at 4˚C for 3 days with an abdominal incision to ensure tissue penetrance of the fixative

(Walker and Kimmel, 2007; Wojciechowska et al., 2016). Fish were decalcified using 0.5M EDTA

(pH 7.5) for 5 days in a rocker at 4˚C and dehydrated in 70% ethanol at 4˚C. Fish were embedded in

paraffin using a Miles Scientific Tissue TEK VIP automated processor. Embedded larvae and older

zebrafish were sectioned using a Leica RM2235 rotary microtome to a width of 5 mm. Sections were

haematoxylin and eosin (H and E) stained and mounted using DPX mountant for histology (Sigma-

Aldrich; St. Louis, Missouri). For cryosections, zebrafish larvae were embedded in OCT compound

Tissue Tek (Sifam Instruments LTD; UK) and cut to 8 mm following protocols available at www.zfin.

org.

Wt1 zebrafish antibody
The Wt1 antibody was synthesised by Cambridge Research Biochemicals (CRB; UK) antibody pro-

duction services (http://www.crbdiscovery.com/home). The antibody was created using the CRB

TARGET antibody production protocol (https://www.crbdiscovery.com/antibodies/target-antibod-

ies/), which used a HPLC-purified peptide made from the third zinc finger domain of zebrafish Wt1

(CQRKFSRSDHLKTHTRT) to immunise two rabbits. This epitope is found in both Wt1a and Wt1b,

and the antibody is expected to detect both zebrafish Wt1a and Wt1b. The serum from each rabbit

was collected at multiple time points and tested for the presence of Wt1 antibodies using an electro-

phoretic mobility shift assay (EMSA). The purified polyclonal antibody was extracted from the rabbit

serum on the final collection day. Western blot analysis of lysates from zebrafish (24 hpf) revealed a

strong band at approximately 45 kDa, consistent with the size of zebrafish Wt1a/b protein. Immuno-

fluorescence on paraffin-embedded sections with Wt1 antibody (diluted 1:33,000) revealed cell-spe-

cific staining in the kidney and notochord wound site that was depleted by co-incubation of the Wt1

antibody with the Wt1 epitope peptide.

Immunohistochemistry
Slides were de-waxed in xylene and rehydrated through decreasing ethanol washes, before being

incubated in a bleach solution to remove pigment. Antigen-unmasking was performed as previously

described (Patton et al., 2005). with the Dako REAL EnVision Detection System kit (Dako; UK) fol-

lowing manufacturer’s instructions. Slides were incubated overnight at 4˚C with the following anti-

bodies: anti-rabbit a-GFP (1:1,500; Cell Signaling Technology) and anti-rabbit a-WT1 (1:25,000;

Cambridge Research Biochemicals; UK). An Axioplan II fluorescence microscope (Zeiss; Germany)

with a Plan Apochromat objective was used for brightfield imaging of tissue sections. Images were

captured using a Qimaging Micropublisher 3.3mp cooled CCD camera and analysed using the IPLab

Spectrum software.

Immunofluorescence
Slides were processed as described above and blocked in 10% heat inactivated donkey serum for 2

hr. Slides were incubated overnight at 4˚C with a-WT1 (1:33,000) antibody diluted in 1% heat inacti-

vated donkey serum in TBSTw. Slides were incubated for 1 hr in a secondary anti-rabbit AlexaFluor

488 antibody (1:800) (Invitrogen; Carlsbad, California) in 1% heat inactivated donkey serum and
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mounted in ProLong Gold Antifade Mountant with DAPI (Invitrogen) overnight before being imaged

in a fluorescent stereomicroscope.

Tissue staining
Live bone staining was performed using 0.2% (w/v) calcein or using 50 mg/ml alizarin red (Fisher

Scientific; UK) as previously described (Kimmel et al., 2010). For cartilage and bone staining, we

used alcian blue and alizarin red following the protocol outlined in (Walker and Kimmel, 2007) with

modifications from protocols on www.zfin.org. Bone and cartilage staining in fixed larvae was per-

formed on PFA fixed and then methanol dehydrated specimens, treated overnight at 4˚C with

0.02% (weight to volume) alizarin red in 70% ethanol. Specimens were bleached (H2O2) and cleared

before storing in glycerol for imaging.

RNA extraction and microarray analysis
Tg(wt1b:gfp) zebrafish larvae were needle injured and grown to 72 hpi with age-matched non-

injured controls. The area around the site of injury was dissected and transferred into 1 ml of chilled

RNA-later. The samples were centrifuged into a pellet at 4˚C and macerated in 500 ml of Trizol (Invi-

trogen) using a 25G 5/81 ml syringe. RNA was extracted following Trizol manufacturer’s instructions

and eluted into 15 ml of distilled H2O. Extracted RNA was sent to Myltenyi Biotec (Germany) who

conducted the microarray analysis. Injured and non-injured samples were sent in triplicates and the

RNA was amplified and Cy3-labelled using a Low Input Quick Amp Labelling Kit (Agilent

Technologies; UK) following manufacturer’s instructions. The labelled cRNA was hybridised against a

4 � 44K Whole Zebrafish (V3) Genome Oligo Microarray (Agilent Technologies). The microarray

images were processed using the Feature Extraction Software (FES – Agilent Technologies) and dif-

ferential gene expression was determined using the Rosetta Resolver gene expression data analysis

system (Rosetta Biosoftware).

Fluorescence-Activated cell sorting
The trunk region of fifty Tg(wt1b:gfp; R2col2a1a:mCherry) injured larvae and non-injured 72 hpi lar-

vae were dissected and collected separately in cold PBS + 2% fetal calf serum (FCS). Tissue disasso-

ciation was adapted from a previously described protocol (Manoli and Driever, 2012) and

centrifuged cells were collected in FACSmax cell disassociation solution (Genlantis; San Diego, Cali-

fornia). The samples were passed twice through a 40 mm cell strainer, collected in an agar-coated

petri dish on ice and transferred into an eppendorf tube to be sorted by a FACSAria2 SORP instru-

ment (BD Biosciences; UK) equipped with a 405 nm, a 488 nm and a 561 nm laser. Green fluores-

cence was detected using GFP filters 525/50 BP and 488 nm laser, red fluorescence was detected

using 585/15 BP filter and 561 nm laser. Data were analysed using FACSDiva software (BD Bioscien-

ces) Version 6.1.3. For single cell sequencing, single cell or 10 cells were sorted into 96-well plates;

for quantitive realtime PCR (qPCR) analysis, cells were collected by centrifuging at 6000 rpm for 5

min.

wt1b mutant line
The wt1b genetic mutant line was generated by CRISPR/Cas9 with a guide RNA target GGTCA-

GACCTGGAGAAGCGG (on the reverse strand) in the exon of wt1b that encodes zinc finger 2.

Crispr/Cas9 genome editing was carried out following the Joung lab protocol (Hwang et al., 2013),

with injection of a zebrafish codon optimized Cas9 mRNA (Jao et al., 2013). Two founders carrying

germline mutations at the target site were identified: one mutation is a deletion of 12 bp (leading to

an in-frame deletion) and the other is a deletion of 5 bp (wt1bD5)ue402, and was used in this study.

qRT-PCR analysis
RNA extraction, in vitro synthesis and PCR amplification of cDNA were performed using the Smart

Seq2 protocol (Picelli et al., 2014). Amplified cDNA was quantified using a bioanalyzer, and directly

used for qRT-PCR without further dilution of the cDNA template. qPCR was performed in a Roche

LightCycler480 using a SYBR green protocol. DCt (the difference between the cycle threshold (Ct)

value of the gene of interest and the Ct value of ß-actin or gapdh) was used to compare the
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expression level of genes. Statistics (St Dev and paired T-test) were performed using Matlab (Natick,

Massachussets). Primers are listed in Supplementary file 2.

Single-cell and 10 cell sequencing
RNA extraction, in vitro synthesis and PCR amplification of cDNA, and construction of a sequencing

library using the Nextera XT DNA Library Preparation Kit (Illumina; San Diego California) according

to the Smart Seq2 protocol with minor modifications as described before (Picelli et al., 2014).

Libraries were sequenced on a NextSeq Illumina sequencer. Reads were mapped against the

Ensembl Danio rerio reference genome version GRCz10.90 (Ensembl, 2017) with the inclusion of

the reference for the spike in controls from the ERCC consortium, as well as the coding sequence for

EGFP and mCherry, using STAR RNA-seq aligner (Dobin et al., 2013). For quality control and pre-

processing, quantification of mapped reads per gene was calculated using the Rsubread package in

R-3.3.3 (Liao et al., 2013). Genes that were not expressed in any cells were excluded. The gene

counts were loaded as a scater object in R-3.3.3 (using the scater package) and standard quality con-

trol metrics were calculated (McCarthy et al., 2017). Quality control exclusion criteria were cells

with more than 25% of reads mapping to ERCCs or fewer than 100,000 reads or fewer than 1000

genes detected (at least one read per gene) were rejected (see Figure 4—figure supplement 1 and

Supplementary file 1a).

Consensus clustering set to three clusters was conducted on the single and 10 cells using the SC3

package (Kiselev et al., 2017). The 10 cell group was isolated and SC3 consensus clustering set to

three clusters was conducted on these cells alone. Differential expression between cluster 2 and clus-

ter 3 of the SC3 10 cell analysis was conducted using SCDE (Kharchenko et al., 2014). A differential

expression list, ranked from cluster 2 to cluster three according to z-score was used for the GSEA

analysis (Mootha et al., 2003; Subramanian et al., 2005). The differential expression list was tested

against gene lists compiled from online resources (Supplementary file 1b). Functional analysis

between the ranked 10 cell list and online gene lists for gene ontology (biological processes, non-

redundant) and pathways (KEGG, Panther, Reactome and WikiPathway databases were used) using

the online tool WebGestalt and gene set enrichment function (Wang et al., 2013).

Vertebrae size measurements and statistical analysis
The vertebrae size difference in injured zebrafish larvae (age range 30 dpi to 38 dpi) were compared

between vertebrae at the site of injury (injured) and vertebrae outside of the site of injury (uninjured).

Injured vertebrae and uninjured vertebrae were measured and the average length was recorded for

each group. The average lengths were then compared and the relative size difference was calcu-

lated. The relative size difference between each group (injured:uninjured vs. uninjured:uninjured)

was compared using an unpaired t-test.
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A. 2014. WT1 controls antagonistic FGF and BMP-pSMAD pathways in early renal progenitors. Nature
Communications 5:4444. DOI: https://doi.org/10.1038/ncomms5444, PMID: 25031030

Parsons R. 1977. The Vertebrate Body. fifth edition. Philadelphia: W.B.Saunders Company.
Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D,
Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI. 2005. BRAF mutations are sufficient to
promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology 15:249–254.
DOI: https://doi.org/10.1016/j.cub.2005.01.031, PMID: 15694309

Perner B, Englert C, Bollig F. 2007. The Wilms tumor genes wt1a and wt1b control different steps during
formation of the zebrafish pronephros. Developmental Biology 309:87–96. DOI: https://doi.org/10.1016/j.
ydbio.2007.06.022, PMID: 17651719
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Abstract
Induced pluripotent stem cells (IPSCs), with their unlimited regenerative capacity,
carry the promise for tissue replacement to counter age‐related decline. However,
attempts to realize in vivo iPSC have invariably resulted in the formation of ter-
atomas. Partial reprogramming in prematurely aged mice has shown promising
results in alleviating age‐related symptoms without teratoma formation. Does partial
reprogramming lead to rejuvenation (i.e., “younger” cells), rather than dedifferentia-
tion, which bears the risk of cancer? Here, we analyse the dynamics of cellular age
during human iPSC reprogramming and find that partial reprogramming leads to a
reduction in the epigenetic age of cells. We also find that the loss of somatic gene
expression and epigenetic age follows different kinetics, suggesting that they can be
uncoupled and there could be a safe window where rejuvenation can be achieved
with a minimized risk of cancer.
K E YWORD S
aging, aging clock, epigenetic age, iPSC, partial reprogramming, rejuvenation

1 | INTRODUCTION, RESULTS ANDDISCUSSION
The human aging process is accompanied by multiple degenerative
diseases. Our understanding of such aging related disorders is, nev-
ertheless, fragmented, and the existence and nature of a general
underlying cause are still much debated (Faragher, 2015; Gladyshev
& Gladyshev, 2016). The generation of induced pluripotent stem
cells (iPSCs) allows the reprogramming of somatic cells back to an
embryonic stem cell (ESC)‐like state with an unlimited regenerative
capacity. This has led to multiple strategies for tissue replacement in
degenerative diseases (Takahashi et al., 2007). Clinical application of

iPSCs, however, is at its infancy (Singh, Kalsan, Kumar, Saini, &
Chandra, 2015; Soria‐Valles et al., 2015; Takahashi & Yamanaka,
2016), and the potency of iPSCs bears risks, not least cancer induc-
tion. For example, in vivo experiments with iPSCs have shown that
continuous expression of Yamanaka factors (Oct4, Sox2, Klf4 and
c‐Myc, thus OSKM) in adult mice invariably leads to cancer (Abad
et al., 2013; Ohnishi et al., 2014).

To avoid this risk, a parallel concept of epigenetic rejuvenation
has been proposed: the aging process in cells can be reversed whilst
avoiding dedifferentiation (Manukyan & Singh, 2012; Singh &
Zacouto, 2010). In other words, an old dysfunctional heart cell could
be rejuvenated without the need for it to be passed through an
embryonic/iPSC state. The concept of epigenetic rejuvenation
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requires that rejuvenation and dedifferentiation each follow a dis-
tinct pathway. Nevertheless, it is not well understood whether reju-
venation and dedifferentiation are invariably intertwined, or instead
whether it is possible to manipulate age without risking dedifferenti-
ation.

The epigenetic rejuvenation potential of partial reprogramming
with OSKM factors was previously shown by the forced expression
of OSKM+LIN28 in senescent human fibroblasts, which led to recov-
ering the high mobility of histone protein 1β by day 9, a feature
characteristic for young fibroblasts (Manukyan & Singh, 2014).
Ocampo et al. further demonstrated that partial reprogramming by
transient cyclic induction of OSKM ameliorates signs of aging and
extends lifespan in progeroid mice, with no resulting teratoma for-
mation (Ocampo et al., 2016). This established partial reprogramming
as a promising candidate intervention for age‐related disease. Esti-
mating epigenetic age, which is a promising molecular proxy for bio-
logical age (Jylhävä, Pedersen, & Hägg, 2017; Wagner, 2017), was,
however, not possible to measure in mice at the time of the Ocampo
study. This has left the nature (i.e., dedifferentiation/rejuvenation) of
the described cellular changes unexplored:
1. Does the epigenetic remodelling seen truly reflect rejuvenation

(i.e., a reduction in cellular/tissue age)? If so, can we observe a
decrease in epigenetic age in partially reprogrammed human
cells?

2. What is the extent of rejuvenation upon reaching a partially
reprogrammed state (e.g., years of epigenetic age decrease)?

3. What are the dynamics of dedifferentiation in early reprogram-
ming?
A major obstacle in understanding the relation between differ-

entiation and aging has been our inability to accurately measure
cellular age with a high correlation to the chronological age of the
organism. However, over the last five years, a number of age pre-
dictors have been developed, the most accurate of which utilize
DNA methylation (known as epigenetic clocks) (Hannum et al.,
2013; Horvath, 2013; Horvath et al., 2018; Levine et al., 2018;
Weidner et al., 2014), with the first Horvath multitissue age predic-
tor being the most widely applicable and used (r = 0.96). This “Hor-
vath clock” shows the highest correlation to chronological age,
predicting the age (or epigenetic age, eAge) of multiple tissues with
a median error of 3.6 years (Horvath, 2013). eAge is distinct from
and poorly correlated with other age‐related biomarkers, such as
senescence and telomere length, which have been shown to corre-
late independently with the process of aging (Lowe, Horvath, &
Raj, 2016; Marioni et al., 2016). Moreover, an acceleration of epi-
genetic age as measured by the “Horvath clock” is associated with
a higher risk of all‐cause mortality (Christiansen et al., 2016; Mari-
oni et al., 2015; Perna et al., 2016), premature aging syndromes
(Down and Werner) (Horvath et al., 2015; Maierhofer et al., 2017),
frailty and menopause (Breitling et al., 2016; Levine et al., 2016).
All of these studies suggest that eAge may capture a degree of
biological aging.

To understand the dynamics of eAge during reprogramming, we
applied Horvath's multitissue age predictor over a previously pub-
lished reprogramming time course on human dermal fibroblasts
(HDFs) (Horvath, 2013; Ohnuki et al., 2014). After OSKM transfec-
tion, successfully transformed subpopulations were isolated and
analysed at regular time points during 49 days for gene expression
and DNA methylation (detailed schematic shown in Supporting Infor-
mation Figure S1). Epigenetic rejuvenation, that is, decrease in eAge,
commenced between days 3 and 7 after OSKM transduction in the
partially reprogrammed TRA‐1‐60 (+) cells (characterized in Tanabe,
Nakamura, Narita, Takahashi, & Yamanaka, 2013) and continued
steadily until day 20, when eAge was stably reset to zero (Figure 1a).
A broken stick model (comprising two linear regressions joined at a
break point) showed a good fit to the observed data starting from
day 3 and measured a steady decrease with 3.8 years per day until
day 20 (SE 0.27, p = 3.8 × 10−7) (Figure 1a). The TRA‐1‐60 (+) cell
populations at days 7 and 11 have been previously characterized as
“partially reprogrammed” for their high expression of pluripotency
markers but also high reversion rates towards somatic state (Tanabe
et al., 2013). Therefore, the observed eAge decline at days 7 and 11
suggests that partial reprogramming can indeed be considered a reju-
venation mechanism in human cells.

Horvath's multitissue age predictor is the most accurate and
widely used for various cell types and tissues (Wagner, 2017). Nev-
ertheless, we calculated eAge from alternative DNA methylation‐
based age predictors: four tissue‐specific clocks (Hannum et al.,
2013; Horvath et al., 2018; Weidner et al., 2014), one that incorpo-
rates clinical measures, called PhenoAge (Levine et al., 2018), and
individual CpGs previously correlated with age (Garagnani et al.,
2012). All clocks consistently reached the point of reset to their iPSC
eAge at day 20, despite the cells not being fully reprogrammed
before day 28 (Ohnuki et al., 2014) (Supporting Information Fig-
ure S2). Again, eAge showed a steady decline from day 3 to day 20
in the skin and blood and Weidner 99 CpG clocks, PhenoAge
declined from day 7 to day 20, whilst the Hannum and Weidner 3
CpG clocks did not produce informative trajectories. Overall, eAge
values and “years” of decrease varied between the clocks (actual
chronological age of HDF donors is not available for reference) (Sup-
porting Information Figure S2). The highest age associated individual
CpG (ELOVL2’s cg16867657) showed a similar trajectory to the Hor-
vath eAge decline; however, the remaining CpGs produced inconsis-
tent trajectories (Supporting Information Figure S2). The observed
differences are not surprising, given that the alternative clocks were
validated for blood (Hannum et al., 2013; Weidner et al., 2014),
forensic applications (Horvath et al., 2018), whole organisms (Levine
et al., 2018) or various tissues as for the individual CpGs (Garagnani
et al., 2012).

In Ocampo et al. partial reprogramming was achieved after just
two days of OKSM induction in mice carrying an inducible OSKM
transgene (Ocampo et al., 2016). However, such “secondary” systems
for direct reprogramming are known to have up to 50‐fold higher
efficiency and accelerated kinetics in comparison with virally trans-
duced in vitro systems (Wernig et al., 2008). To facilitate comparison
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to other systems and associate eAge with intermediate states in the
reprogramming trajectory, we compared it to gene expression mea-
sured in the same samples. We analysed corresponding microarray
expression data for 19 well‐established pluripotency marker genes
(Table 1 and Supporting Information Figure S3) as a proxy for reach-
ing a mature pluripotent state (Boyer et al., 2005; Cai et al., 2006;
Galan et al., 2013; Ginis et al., 2004; Mallon et al., 2013). We statis-
tically clustered the expression patterns of those genes (Genolini
et al. 2015), which resulted in two composite trajectories. These fol-
lowed previously described expression dynamics of early (cluster 1)
and late (cluster 2) activated pluripotency genes (Figure 1a) (Buganim
et al., 2012; Chung et al., 2014; Takahashi & Yamanaka, 2016; Tan-
abe et al., 2013). Pluripotency gene cluster 1 included NANOG,
SALL4, ZFP42, TRA‐1‐60, UTF1, DPPA4 and LEFTY2, and their expres-
sion increased dramatically within the first 10 days and then estab-
lished stable pluripotency expression levels by day 20. In contrast,
pluripotency gene cluster 2 (containing late expressing genes such as

LIN28, ZIC3 and DNMT3B) elevated expression more slowly and
reached stable pluripotency levels by day 28 (Chung et al., 2014;
Tanabe et al., 2013). Interestingly, eAge resets to zero at the same
time that the genes in cluster 1 reached their pluripotent state
levels, which temporally precedes full pluripotency. This also coin-
cided with a peak in expression of a number of embryonic develop-
mental genes between days 15 and 20, and might suggest that the
reset marks a point where the cells reach an embryonic‐like state
but are not yet fully pluripotent (Table 1 and Supporting Information
Figure S4). In summary, eAge decline is observed well within the first
wave of pluripotency gene expression.

Therapeutic partial reprogramming will depend on rejuvenation
with minimal dedifferentiation, which carries the risk of malignancies.
We studied the dynamics of fibroblast gene downregulation as a
proxy for the loss of somatic cell identity. The individual trajectories
of 19 commonly used fibroblast marker genes (Chang, Li, & Guo,
2014; Goodpaster et al., 2008; Janmaat et al., 2015; Kalluri &
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Zeisberg, 2006; MacFadyen et al., 2005; Pilling, Fan, Huang, Kaul, &
Gomer, 2009; Zhou, Yang, Randall Wickett, & Zhang, 2016) (Table 1
and Supporting Information Figure S5) clustered into three compos-
ite expression patterns, two of which (clusters 2 and 3) went into an
immediate decline after OSKM induction (Figure 1b). However, one
fibroblast‐specific cluster (cluster 1) remained stable in its expression

for the first 15 days. Interestingly, after day 7, fibroblast‐specific
gene expression in clusters 2 and 3 stopped declining and plateaued
until day 15, coinciding with a peak in expression of senescence
markers between days 11 and 15 (Supporting Information Figure S6).
Vimentin (VIM), for example, remained at 60% of maximal expression
until day 15 of reprogramming, similarly to FAP, CD248 and COL1A2

TABLE 1 List of pluripotency and fibroblast marker genes used in gene expression clusters
Marker Gene Protein name Accession Cluster
Pluripotency NANOG Nanog homeobox A_23_P204640 1 (early)
Pluripotency REX1 (ZFP42) Zinc Finger Protein 42 A_23_P395582 1 (early)
Pluripotency TRA−1–60/81 (PODXL) Podocalyxin A_23_P215060 1 (early)
Pluripotency UTF1 Undifferentiated embryonic cell transcription factor 1 A_33_P3294217 1 (early)
Pluripotency DPPA4 Developmental pluripotency associated 4 A_23_P380526 1 (early)
Pluripotency TDGF1 (CRIPTO) Teratocarcinoma‐derived growth factor 1 A_23_P366376 1 (early)
Pluripotency SALL4 Spalt‐like transcription factor 4 A_23_P109072 1 (early)
Pluripotency LEFTY1 Left–right determination factor 1 A_23_P160336 1 (early)
Pluripotency LEFTY2 Left–right determination factor 2 A_23_P137573 1 (early)
Pluripotency DNMT3A DNA methyl‐transferase 3A A_23_P154500 1 (early)
Pluripotency TFCP2L1 Transcription factor CP2‐like 1 A_23_P5301 1 (early)
Pluripotency TERF1 Telomeric repeat binding factor (NIMA‐interacting) 1 A_23_P216149 2 (late)
Pluripotency DPPA5 Developmental pluripotency associated 5 A_32_P233950 2 (late)
Pluripotency TERT Telomerase reverse transcriptase A_23_P110851 2 (late)
Pluripotency ZIC3 Zic family member 3 A_23_P327910 2 (late)
Pluripotency LIN28a LIN28 homolog A A_23_P74895 2 (late)
Pluripotency LIN28b LIN28 homolog B A_33_P3220615 2 (late)
Pluripotency LECT1 Leukocyte cell derived chemotaxin 1 A_23_P25587 2 (late)
Pluripotency DNMT3B DNA methyl‐transferase 3B A_23_P28953 2 (late)
Fibroblast COL3A1 Pro‐collagen a2(III) A_24_P935491 1
Fibroblast FSP‐1 Fibroblast surface protein A_23_P94800 1
Fibroblast TGFB3 Transforming growth factor beta 3 A_23_P88404 1
Fibroblast TGFB2 Transforming growth factor beta 2 A_24_P402438 1
Fibroblast COL1A2 Pro‐collagen a2(I) A_24_P277934 2
Fibroblast ITGA1 Integrin a1b1 (VLA‐1) A_33_P3353791 2
Fibroblast DDR2 Discoidin‐domain‐receptor‐2 A_23_P452 2
Fibroblast P4HA3 Prolyl 4‐hydroxylase A_24_P290286 2
Fibroblast THY1 Thy‐1 cell surface antigen; CD90 A_33_P3280845 2
Fibroblast FAP Fibroblast activation protein A_23_P56746 2
Fibroblast CD248 Endosialin, TEM1 A_33_P3337485 2
Fibroblast VIM Vimentin A_23_P161190 2
Fibroblast COL1A1 Pro‐collagen a1(I) A_33_P3304668 3
Fibroblast ITGA5 Integrin a5b1 A_23_P36562 3
Fibroblast P4HA1 Prolyl 4‐hydroxylase A_33_P3214481 3
Fibroblast P4HA2 Prolyl 4‐hydroxylase A_33_P3394933 3
Fibroblast TGFB1 Transforming growth factor beta 1 A_24_P79054 3
Fibroblast HSP47 Serpin family H member 1, SERPINH1 A_33_P3269203 –

Fibroblast CD34 Hematopoietic progenitor cell antigen A_23_P23829 –

Note. Key pluripotent marker genes were selected from Ginis et al. (2004); Cai et al. (2006); Mallon et al. (2013); Galan et al. (2013); Boyer et al.
(2005). Fibroblast marker genes were selected from Kalluri and Zeisberg (2006); Zhou et al. (2016); Janmaat et al. (2015); Pilling et al. (2009); Chang
et al. (2014); Goodpaster et al. (2008); MacFadyen et al. (2005).
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in cluster 2 (Supporting Information Figure S5). After day 15, fibrob-
last gene expression declined rapidly in all three clusters, and only
by day 35 had all reached ESC expression levels, marking a complete
loss of somatic identity (Figure 1b). Cluster 1, which contains the
well‐described indicators of fibroblast identity FSP1, COL3A1 and
TGFB2/3 (Kalluri & Zeisberg, 2006), showed the slowest decline and
was also the last to reach ESC expression levels. In summary, we
found that a number of fibroblast‐specific genes maintained high
expression levels until day 15, by which time a substantial drop in
eAge has been observed.

Epigenetic rejuvenation or the reversal of cellular age is a
promising concept as it could avoid the oncogenic risks associated
with dedifferentiation. Here, we analysed a reprogramming time‐
course on HDFs and show that eAge declines in partially repro-
grammed cells before their somatic identity is entirely lost.

It is well established that partial reprogramming happens within
an early, reversible phase during the iPSC reprogramming time‐
course, which involves the stochastic activation of pluripotency
genes. It is followed by a more deterministic maturation phase with
predictable order of gene expression changes, where cell fate is
firmly bound towards pluripotency (Smith, Sindhu, & Meissner,
2016; Takahashi & Yamanaka, 2016). Indeed, it has been shown
that mouse fibroblasts fail to become iPSC and revert to their orig-
inal somatic state if OSKM expression is discontinued during the
initial stochastic phase (Brambrink et al., 2008; Stadtfeld, Maherali,
Breault, & Hochedlinger, 2008). Previously, Tanabe et al. showed
that TRA‐1‐60 (+) cells at reprogramming days 7 and 11 have not
yet reached maturation and are partially reprogrammed (Tanabe
et al., 2013) but our analysis already shows a decrease in their
eAge according to multiple age predictors (Figure 1a and Support-
ing Information Figure S2). We have also shown that a large pro-
portion of fibroblast marker genes maintain relatively high levels of
expression until day 15 (Figure 1b and Supporting Information Fig-
ure S5). Nearly, unchanged levels of expression on day 15 were
previously also shown for a large proportion of somatic genes (Tan-
abe et al., 2013). Together with increased senescence gene expres-
sion between days 11 and 15 (Supporting Information Figure S6),
this likely contributes to the high propensity of partially repro-
grammed TRA‐1‐60 (+) cells to revert back to somatic phenotype
before day 15 in the time‐course (Tanabe et al., 2013). Interest-
ingly, the stepwise decline of fibroblast gene expression coinciding
with a peak in expression of senescence genes seems to delay the
loss of somatic identity but not the expression of pluripotency
genes. Taken together, the different dynamics between the
stepwise fibroblast expression and the linear decline in eAge
further indicate that dedifferentiation and epigenetic rejuvenation
can be uncoupled.

Our data suggest a window of opportunity within the uncommit-
ted reprogramming phase, where a decline of eAge happens along-
side partial maintenance of fibroblast gene expression. A deeper
understanding of the kinetics of rejuvenation will be required to
master therapeutic partial reprogramming, since any progress of ded-
ifferentiation, even in a small subpopulation, carries the risk of

malignancies. Our bulk expression analysis does not allow for a pre-
cise definition of the safe rejuvenation boundaries, and further
experiments on a single cell level and in in vivo conditions are
needed to determine a safe epigenetic rejuvenation window in dif-
ferent reprogramming systems. Upon defining safe boundaries, con-
sideration should also be given to the steep decline of eAge, which
resets to zero well ahead of the establishment of a pluripotent state,
according to a number of age predictors (Supporting Information Fig-
ure S2). Most likely, this marks the point of reaching prenatal or
embryonic stage, as suggested by the peak in expression of key
developmental genes (Supporting Information Figure S4).

The extent of epigenetic rejuvenation in years (human) or
months (mouse), which can be achieved through partial reprogram-
ming, also needs further attention and will most likely differ with the
different reprogramming systems. The “Horvath clock” shows up to
10 years of rejuvenation in Ohnuki et al.’s system by day 7 and
another 10 + years by day 11. However, the intrinsic median estima-
tion error of 3.6 years in this age predictor, the varying eAge rejuve-
nation values between the different age predictors and the
intrareplicate biological variation seen from the large error bars high-
light the need for more experiments and repetitions before this is
established with a higher certainty.

Despite the obvious differences in reprogramming kinetics, our
results also suggest that the improvements observed by Ocampo
et al. in their OSKM‐inducible secondary reprogramming system
might be due to epigenetic rejuvenation. It remains to be shown
how stable in time the rejuvenated phenotype is in either of the sys-
tems. Further analysis is also needed regarding the effect of partial
reprogramming on adult stem cells or premalignant cells, which have
already shown a higher propensity of transforming to malignancy
(Abad et al., 2013; Ohnishi et al., 2014). It is possible that a prema-
lignant phenotype could be attenuated or amplified by partial repro-
gramming. In summary, our findings reveal exciting possibilities but
also open a number of questions and highlight areas that need fur-
ther attention.
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in Progression and Regression of Kidney Disease
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ABSTRACT
Background Little is known about the roles of myeloid cell subsets in kidney injury and in the limited ability
of the organ to repair itself. Characterizing these cells based only on surfacemarkers using flow cytometry
might not provide a full phenotypic picture. Defining these cells at the single-cell, transcriptomic level
could reveal myeloid heterogeneity in the progression and regression of kidney disease.

Methods Integrated droplet– and plate-based single-cell RNA sequencing were used in the murine, re-
versible, unilateral ureteric obstruction model to dissect the transcriptomic landscape at the single-cell
level during renal injury and the resolution of fibrosis. Paired blood exchange tracked the fate of mono-
cytes recruited to the injured kidney.

Results A single-cell atlas of the kidney generated using transcriptomics revealed marked changes in the pro-
portion and gene expression of renal cell types during injury and repair. Conventional flow cytometry markers
wouldnothave identified the12myeloid cell subsets.Monocytes recruited to thekidneyearly after injury rapidly
adopt a proinflammatory, profibrotic phenotype that expresses Arg1, before transitioning to become Ccr21

macrophages that accumulate in late injury.Conversely, a novelMmp121macrophagesubset actsduring repair.

Conclusions Complementary technologies identified novel myeloid subtypes, based on transcriptomics in
single cells, that represent therapeutic targets to inhibit progression or promote regression of kidney disease.

JASN 31: 2833–2854, 2020. doi: https://doi.org/10.1681/ASN.2020060806

CKD affects approximately 10% of the global pop-
ulation1 and is a major risk factor for ESKD and
cardiovascular disease.2–4 It is now recognized that
CKD is not always progressive, but that regression
of albuminuria and improvement in renal function
can occur if the injurious stimulus is removed.5–7

Furthermore, regression of established fibrosis,
the best histologic predictor of outcome,8 has
been observed after prolonged normalization of
blood glucose levels after successful pancreas trans-
plantation.9,10 However, the cellular and molecular
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pathways mediating injury regression are poorly understood,
partly because renal biopsies are rarely performed in patients
who are clinically improving.

The innate immune system has been implicated in
both progression and regression of fibrosis in multiple
organs, including the kidney.11–15 Recruitment of proinflam-
matory monocytes16,17 to the injured kidney via CCL1-CCR2
signaling18,19 may exacerbate tissue damage through the re-
lease of proinflammatory factors and by activating myofibro-
blasts. Tissue macrophages are heterogeneous and inherently
plastic, and may adopt different phenotypes in response to
environmental cues. Hence, they may be injurious, but, in
addition, they may mediate repair by scavenging cell debris,
degrading excess extracellular matrix (ECM), and by secret-
ing factors that may promote regeneration of injured
tissue.20–23

Most studies have used panels of cell surface markers to
characterize myeloid cell subsets by flow cytometry; however,
this approach is inherently biased and is unlikely to capture the
full phenotypic spectrum. Recent advances in transcriptomics,
including single-cell RNA sequencing (scRNA-seq), have
facilitated detailed analysis of myeloid cells in the healthy
kidney, and after AKI,24–26 and in other organs.27–31 However,
macrophage heterogeneity during regression of fibrosis in the
kidney remains uncertain. Hence, in this study, we employ
scRNA-seq to characterize myeloid cell subsets in the revers-
ible, unilateral-ureteric-obstruction (R-UUO) model, in
which we32 and others33 have demonstrated regression of
established tubulointerstitial fibrosis after reversal of ob-
struction. We identified myeloid cell subsets that were in-
distinguishable using standard flow cytometry markers, with
the relative proportions of the subsets changing dynamically
during injury and repair. Pseudotime analysis and paired
blood exchange (PBE) support dynamic changes in mono-
cyte and macrophage phenotype in response to induction
and removal of injury. Similar myeloid cell phenotypes are
observed in the human kidney, suggesting they may repre-
sent specific targets to slow progression of CKD or promote
renal repair.

METHODS

Animal Models
All protocols and surgical procedures were approved by the
Animal Ethics Committee, University of Edinburgh. Animal
experiments were conducted in accordance with the United
Kingdom Animals Scientific Procedures Act 1986, under
Home Office project licenses 70/8093 and 70/8867.

R-UUO Model
The R-UUO model was performed as previously described.32

Briefly, 8-week-old male C57BL/6JOlaHsd mice (Enviago)
underwent laparotomy, and the left ureter was isolated and
the distal portion was ligated twice with 6/0 black-braided silk

sutures close to the bladder. In mice that required reversible
ureteric obstruction, a silastic tube was placed around the ure-
ter immediately proximal to the ligature to prevent excessive
dilation. After 7 days of obstruction, the ureter was reanasto-
mosed into the bladder, and the peritoneum and skin were
sutured closed. Mice were euthanized by carbon dioxide nar-
cosis and dislocation of the neck at day 2 (UUO-2) or day 7
(UUO-7) after UUO, or 7 (R-UUO 1 week), 14 (R-UUO
2 weeks), or 28 days (R-UUO 4 weeks) after ureteric rean-
astomosis after 7 days of obstruction. SMART-seq2 studies
used MacGreen mice,34 in which the Csf1r promoter drives
enhanced green fluorescent protein (EGFP) as a reporter
specific to myeloid cells.

PBE
Male C57BL/6NCrl mice, which are homozygous for
CD45.2, were paired with male Ly5.1 mice (Charles River),
which are CD45.1/CD45.2 heterozygotes. Four pairs of mice
were used. The PBE was performed as previously de-
scribed.35 Briefly, all animals had a right jugular venous
catheter inserted before the UUO surgery. At 1 day post-
UUO, 153150-ml aliquots of whole blood were exchanged
between each animal in the pair over a 20-minute period.
Two pairs were euthanized at both 2 and 7 days post-UUO,
and whole blood and kidney tissue (UUO and contralateral
kidney) was harvested.

Immunohistochemistry
Kidney tissue was fixed and formalin-fixed, paraffin-
embedded, 4-mm tissue sections were prepared. Sections
were rehydrated and staining was performed using the Se-
quenza system (Thermo Scientific, Waltham, MA). Sections
were incubated with the avidin/biotin blocking kit (SP2001;
Vector Laboratories) and blocked with serum-free protein
block (X0909; Dako). Tissue sections were incubated with
primary antibody (Supplemental Table 1) diluted in anti-
body diluent (S202230; Dako UK Ltd.), overnight at 4°C, be-
fore incubation with biotinylated secondary antibody
(Supplemental Table 1) for 30 minutes at room temperature.
Vectastain RTU ABC Reagent (PK7100; Vector Laboratories)

Significance Statement

The innate immune system is central to injury and repair in the
kidney, but the heterogeneity of myeloid cell subsets behind these
processes is unknown. Complementary technologies—including
bulk tissue transcriptomics, integrated droplet– and plate-based
single-cell RNA sequencing, and paired blood exchange—resolved
myeloid cell heterogeneity in a murine model of reversible unilateral
ureteric obstruction, creating a single-cell atlas. The identified novel
myeloid subsets could be targeted to ameliorate injury or enhance
repair, including anArg11monocyte subset present during injury and
Mmp121 macrophages present during repair. Standard flow cy-
tometry to detect cell surface markers would have missed these
subsets. Complementary techniques capture the complexity and dy-
namics of monocyte, dendritic cell, and macrophage phenotypes in
the injured and repairing kidney.
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was then applied, followed by incubation with the DAB1
Substrate Chromogen System (K3468; Dako), and then
counterstaining with hematoxylin before dehydration and
mounting with Pertex mounting medium (3808707E; His-
tolab Products AB). The stained section was scanned with a
Zeiss Axio Scan.Z1 Slide Scanner (Carl Zeiss Microscopy).
The percentage of DAB staining per section (n56–8 per
group) was determined by ImageJ.

Immunofluorescence
Slides were de-waxed in xylene (235 minutes), rehydrated,
and antigen retrieved (7 minutes at 60% microwave power).
Slides were allowed to cool at room temperature, mounted in
Sequenza (Thermo Fisher) racks, rinsed twice in PBS, and
blocked for 45 minutes in Gentex block (120 ml) at room
temperature. Primary antibodies were incubated at the con-
centrations in Supplemental Table 1 in antibody diluent
(Abcam) and incubated overnight at 4°C. Slides were then
washed twice with PBS, and secondary antibodies were added
at a concentration of 1:200, diluted in antibody diluent, and
incubated at room temperature for 30 minutes. Slides were
again washed twice with PBS and then blocked with Gentex
block for 45 minutes at room temperature. The second pri-
mary antibody was added to the slides, and incubated at 4°C
overnight. Slides were washed and secondary antibodies ap-
plied. For dual immunofluorescence, the slides were boiled in
10 mM citrate and blocked with serum-free protein block for
1 hour before incubation of the second primary antibody. The
antibodies were visualized by incubation with tyramide red or
green (Perkin Elmer) for 10 minutes. After washing, slides
were mounted with 49,6-diamidino-2-phenylindole (DAPI)
Fluoromount-G (Southern Biotech) and a coverslip was ap-
plied before visualization.

Bone Marrow–Derived Macrophage Culture
The hind legs of C57BL/6JOlaHsd mice were removed before
the skin and underlying muscle were excised with sterile scis-
sors and forceps to isolate the femur. The bone marrow
was then flushed out in DMEM (Gibco) containing 10%
L929 conditioned medium, 10% FCS, and 1% penicillin-
streptomycin. Cell suspensions were cultured for 1 week in
60-ml, sterile Teflon pots at 37°C with 5% carbon dioxide.
Macrophages were then plated into six-well plates, incubated
with 10mg FITC-conjugated collagen (D12052), and left over-
night. Cells were collected and run through flow cytometry to
quantify the FITC signal.

RNA Extraction, Gene Expression, and Bulk RNA-seq
Total RNA from cortical kidney tissue was isolated using
the RNeasy kit (Qiagen, Hilden, Germany), following the
manufacturer’s instructions. For quantitative PCR analysis
of targeted gene expression, cDNA was synthesized from
1 mg of template RNA, using the QuantiTect Reverse Tran-
scription Kit (Qiagen, Venlo, Netherlands). Quantitative PCR
was performed using the PerfeCTa FastMix II Probe Master

(VWR, Lutterworth, United Kingdom) and TaqMan Gene Ex-
pression Assay–specific primers (Life Technologies;
Supplemental Table 2) and normalized to hypoxanthine-
guanine phosphoribosyltransferase.

Before RNA-seq, RNA integrity was checked using Agilent
Nano Chips, and only samples with an RNA integrity number
greater than sevenwere used in subsequent analysis. Fourmice
per group underwent RNA-seq, with the animals selected on
the basis that their Havcr1 gene expression, as determined by
quantitative RT-PCR, was closest to the mean of that group.
A poly(A) library was constructed and run on a HiSeq2500,
using 23100-bp, paired-end (PE) sequencing. FastQC was
used for initial quality control (QC), reads were mapped
to the mm10 transcriptome using RSEM and Bowtie2, and
DESeq2 was used for differential gene expression analysis.
Data were deposited in the National Center for Biotechnology
Information Gene Expression Omnibus database (accession
number GSE145053).

The shinyNGSR package was used to generate gene clusters
in Figure 1C. Genes with an average fragments per kilobase of
transcript per million mapped reads of less than one across
all groups were excluded from analysis. Genes that were not
significantly differentially expressed (DE; adjusted P,0.05,
determined using DESeq2 R package) in any group (compared
with sham) were excluded from analysis. Using the feature-
based clustering module of the shinyNGS package, 7810 genes
were assigned to one of six clusters, based on expression
change between each of the groups.

Kidney Digestion for Flow Cytometry and Single-Cell
Sequencing
Immediately after euthanasia, mice were perfused with 10 ml
PBS. Kidneys were excised, decapsulated, and placed in ice-
cold PBS. Equal portions of renal cortex from each mouse
were finely minced in digest buffer (4.25 mg/ml Collagenase
V [Sigma-Aldrich, St. Louis, MO], 6.25 mg/ml Collagenase
D [Roche, Basel, Switzerland], 10 mg/ml Dispase [Thermo
Scientific], and 300 mg/ml DNase [Roche] in RPMI 1640
[10% FCS, 1% penicillin/streptomycin/L-glutamine]) before
homogenization in gentleMACS C Tubes, using the gentle-
MACS Dissociator (Miltenyi Biotec, Auburn, CA). Samples
were incubated at 37°C with shaking to maximize digestion.
The kidney suspension was then subjected to a second gentle-
MACS homogenization and digestion, neutralized with an
equal volume of FACS buffer (PBS, 2mM EDTA, and 2% FCS).
Kidney cell suspensions were then passed sequentially through
100-, 70-, and 40-mm sieves. Any residual red blood cells were
lysed by Red Blood Cell Lysis Buffer (Sigma-Aldrich). Cells were
resuspended in ice-cold FACS buffer, ready for use.

Flow Cytometry
Single-cell suspensions were incubated with Fc Block (BD
Biosciences, San Jose, CA) and then incubated with precon-
jugated antibodies (Supplemental Table 3) in round-
bottomed plates. Controls were set up, including unstained

JASN 31: 2833–2854, 2020 Renal Myeloid Heterogeneity 2835
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Figure 1. Phases of progression and regression of fibrosis in the R-UUO model are associated with dynamic changes in the renal
transcriptome. (A) Male 6- to 8-week-old C57BL/6J mice underwent either UUO or sham surgery, and were either euthanized 2 days
later, or left obstructed for 7 days and then euthanized, or had their ureter reimplanted to reverse obstruction before euthanasia at 1, 2,
or 4 weeks post UUO (n56–8 per group). (B) Representative images and quantification of fibrosis (collagen III) and fibroblast (PDGFR-b),
myofibroblast (a-smooth muscle actin [a-SMA]), or macrophage (F4/80) accumulation during the R-UUO model. Scale bar, 50 mM.
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cells, beads with single stains of each antibody, and fluoro-
phore minus one controls. DAPI was used to distinguish live
and dead cells. For cellular composition analysis, the following
antibodies were used: CD45, CD31, LTL, PDGFRb, and F4/80.
For SMART-seq2 experiments, cells were incubated with the
antibodies CD45, CD11b, CD11c, F4/80, MHCII, CD206,
CD64, and CD24; with a lineage dump gate including TCRb
(T cells), CD19 (B cells), Siglec-F (eosinophils), and Ly6G
(neutrophils); all conjugated to BV421 and run on the BD
FACS ARIA II. For PBE, blood and tissue were analyzed on
the BD 6L LSRFortessa using the following antibody panels:
for blood, CD45.1, CD45.2, CD3, F4/80, GR-1, CD11b, and
CD19; for kidney tissue, CD45.1, CD45.2, F4/80, Ly6C,
MHCII, CD11b, CD206, CD24, and CD64; with a dump
gate including TCRb, CD19, Siglec-F, and Ly6G. All files
were exported in FCS format and analyzed with FlowJo
software version 10.

Single-Cell Droplet Library Preparation
For scRNA-seq analysis on the 103 Genomics platform,
single-cell suspensions from renal cortex were prepared
from pools of three animals from each group, as outlined by
the 103 Genomics Single Cell 39 Reagent Kit User Guide ver-
sion 2. A total of 50,000 live (DAPI2) cells were sorted on the
BD FACSARIA II. Samples were washed twice in PBS (Sigma),
followed by centrifugation at 500 3 g for 5 minutes at 4°C.
Sample viability was assessed using trypan blue (Sigma) with
an automated cell counter (Bio-Rad), and the appropriate
volume for each sample was calculated. The chip was loaded
with 10,700 cells per lane.

After droplet generation, samples were transferred onto a
prechilled 96-well plate, heat sealed, and reverse transcrip-
tion was performed using a C1000 Touch Thermal Cycler
(Bio-Rad). After reverse transcription, cDNA was recovered
using the 103 Genomics Recovery Agent, and a Silane Dyna-
Bead (Thermo Fisher) cleanupwas performed. Purified cDNA
was amplified and cleaned using SPRIselect beads (Beckman).
Samples were diluted at 4:1 (elution buffer [Qiagen]/cDNA)
and an initial concentration check was performed on a Qubit
fluorometer (Invitrogen) to ensure adequate cDNA concen-
tration. The final cDNA concentration was checked on a
bioanalyzer (Invitrogen).

SMART-seq2 Library Preparation
For the SMART-seq2 experiment, we performed flow cytom-
etry for n53 animals per group, and sequenced one animal per

group. The flow cytometry patterns within each group were
broadly similar, mitigating against the selected animal being
unrepresentative of the group. A single, live (DAPI1), EGFP1
(Csf1r1) cell was sorted into each well of a 96-well plate, and
all fluorochrome information was recorded using the index-
sort capability of the BD FACS ARIA II. Equal numbers of cells
from each time point were sorted into each plate to reduce
batch effect, with 192 cells per time point included in total.
Single cells were processed as previously described.36 Briefly,
cells were lysed immediately in lysis buffer containing 5%
RNase inhibitor and 0.025% Triton X-100. Oligo(dT) primers
were added and reverse transcriptionwas performed. SMART-
seq2 libraries were prepared according to the previously de-
scribed protocol,36 with a few modifications37: at step 5, 0.1ml
of the External RNA Controls Consortium (ERCC) spike-in
mix (10:5 diluted, 4456740; Life Technologies) was addedwith
0.1 ml of 100 mMoligo(dT) primer and 1 ml of dNTP mix and
0.8ml of water, yielding the same concentrations of primer and
oligo as originally reported. Fluidigm protocol (PN 100-7168
M1) was used for tagmentation library generation. The final
cDNA concentration was checked on a bioanalyzer (Agilent).

Sequencing
The 103 libraries were pooled and normalized by molarity
before being sequenced across four lanes on a single Illumina
flow cell. Sequencing was performed on an Illumina HiSeq
platform, with a target of approximately 350 million PE reads
per lane, giving approximately 525 million PE reads per sam-
ple, comprising 23150-bp PE configuration and 8-bp
index reads. The SMART-seq2 libraries were sequenced as
83 96-well plates, which were pooled and sequenced on an
Illumina HiSeq 4000 (50-bp, single-end reads). Data were de-
posited in the National Center for Biotechnology Information
Gene Expression Omnibus database (accession number
GSE140023).

scRNA-seq Analysis
For the droplet-based dataset, the cellranger mkfastq wrap-
per (Cell Ranger Single Cell Software suite 2.1.0, http://
10xgenomics.com) de-multiplexed the Illumina output BCL
files to library-specific FASTQ files. Subsequently, alignment
was performed using the cellranger count function, using
STAR aligner 2.5.1b38 against the Ensembl mouse reference
genome version GRCm38.68. Correction and filtering of cell
bar code and unique molecular identifiers followed, and the
retained bar codes were quantified and used to generate a gene

****P,0.0001 versus sham, #P,0.05 versus UUO, ##P,0.01 versus UUO, ###P,0.001, ####P,0.0001 versus UUO. (C) Unbiased clus-
tering analysis of bulk RNA sequencing data from the renal cortex of mice (n54 per group) during the R-UUO time course identified six
discrete temporal patterns of gene expression. Representative genes and enriched pathways are provided for each cluster. The
number of genes included in each cluster is as follows: Down-regulated 1562; Early injury, 779; Pan-injury, 1479; Late injury, 1619; Late
injury/reversal, 1708; and Reversal specific, 663. Shaded error range is the SD of the mean scaled gene expression for each animal.
Dark and light blue pathways are those demonstrating gene enrichment at a false discovery rate of ,0.05 and .0.05, respectively.
FDR, false discovery rate; IHC, immunohistochemistry; RT-qPCR, quantitative RT-PCR.
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expression matrix. Summary sequencing statistics are pro-
vided in Supplemental Table 4. The SMART-seq2 raw reads
were similarly mapped against the Ensembl mouse reference
genome version GRCm38.68, using the STAR RNA-seq
aligner,38 with the additional inclusion of the sequences for
the ERCC spike-ins.

For our droplet-based dataset, a standard sequence of filter-
ing, highly variable gene selection, dimensionality reduction,
and clustering were performed using the scRNA-seq analysis R
package Seurat (version 2.3.4).39 After alignment and initial pre-
processing, we began our R workflow with 15,046 genes across
7073 cells in our sham group, 16,450 genes across 5088 cells in
our UUO-2 group, 17,368 genes across 7124 cells in our UUO-7
group, and 17,227 genes across 6096 cells in our R-UUO group.
To exclude low-quality cells in both single-cell experiments,
we then filtered cells that expressed ,300 genes and less than
500 unique molecular identifiers, and to exclude probable dou-
blets, cells with.10,000 unique molecular identifiers and,3000
genes were removed. This would have removed the majority of
injured and apoptotic cells.40 We used a mitochondrial filter to
remove cells in which .50% of genes were mitochondrial, con-
sistent with other renal-specific scRNA-seq projects.41,42 This is a
higherfilter thanhas beenused innonrenal single-cell analysis, but
reflects the high mitochondrial content in renal tubular epithelial
cells. Any gene not expressed in at least three cells was removed.

For the SMART-seq2 data, identical metrics were used as
above, but the mitochondrial filter threshold was lowered to
25%, and cells with .25% of reads mapping to the ERCCs
were additionally excluded. After filtering and QC, 15,046
genes across 4540 samples of sham mice, 16,450 genes across
3101 samples of the UUO-2 mice, 17,368 genes across 5563
samples of UUO-7 mice, 17,227 genes across 4308 samples of
the R-UUO mice, and 13,517 genes across 362 samples in the
SMART-seq2 datawere taken forward for analysis, resulting in
92 cells in the sham group, 102 cells in UUO-2, 103 cells in
UUO-7, and 65 cells from the R-UUO group.

Normalization was performed using the Seurat package to
reduce biases introduced by technical variation, sequencing
depth, and capture efficiency. We used the default global-
scaling normalization method “logNormalize,” which nor-
malized gene expression per cell by the total expression and
multiplied the result by a scaling factor before log transforma-
tion. We then scaled the data and regressed out variation be-
tween cells due to the number of unique molecular identifiers
and the percentage of mitochondrial genes.

The expression matrix subsequently underwent dimen-
sionality reduction, using principal component analysis of
the highly variable genes within the dataset. Using Seurat’s
FindVariableGenes function (and computed using the LogVMR
argument) we used log-mean expression values between 0.0125
and three, and a dispersion cutoff of 0.5 to select genes. Principal
component analysis was performed using these selected genes,
and 20 principal componentswere identified for subsequent anal-
ysis in eachdataset, selected bothvisually using the elbow point on
the elbow plot and via the jackstraw method.

Further cluster-based QC was performed in the droplet
data using the density-based spatial clustering algorithm
DBscan, which was used to identify cells on a t-distributed
stochastic neighbor embedding (tSNE) map. We initially set
an eps value of 0.5 and removed clusters with fewer than ten
cells. The remaining cells were then clustered againwith an eps
value of one, followed by removing the clusters with,20 cells.
Of note, this allowed identification of a cluster characterized
by high expression of heat-shock genes, including Fos, Jun,
and Atf3. This cluster was removed because it was considered
to be an artifact of cell stress due to the experimental protocol,
as recently described.43 This procedure removed 158 (3.4%)
cells from a total of 4540 cells in sham mice, 137 (4.4%) of
3101 cells in UUO-2 mice, 167 (3%) of 5563 cells in UUO-7
mice, and 83 (1.9%) of 4308 cells in R-UUO mice.

Clusters were then identified using Seurat’s FindClusters
function, built using the first ten principal components and
a resolution parameter of 1.5. The original Louvain modular-
ity optimization algorithm was used. tSNE (using the Rtsne
package Barnes–Hut implementation) was then used for fur-
ther dimensionality reduction and visualization, which was
run on a reduced dimensional space of the first five to ten
dimensions, using perplexity values of 15–50.

For all single-cell differential expression tests, we used the
Wilcoxon rank-sum test to identify a unique expression
profile for each cluster, with differential expression tested
between each cluster and all other clusters combined. The
FindAllMarkers test, as implemented in Seurat, returns an
“adj_pval” (Bonferroni-adjusted P values) and an “av-
g_logFC” (average log fold change) for each gene. Genes
were ranked in order of average log fold change and visual-
ized using heatmaps.

The process of acquiring the myeloid subsets required a
combination of cluster-based cell pruning and a gene-based
cell filter. The clusters were annotated by cell type, using the
generated DE marker genes, and recognized markers from
known biology and from the single-cell literature to date. All
myeloid clusters were then isolated, renormalized, and re-
scaled as described above, and were processed again through
the pipeline described above, although without the DBscan
QC step. Clustering resolution was lowered for each down-
stream implementation of the FindClusters function, and
again clusters were identified based on DE genes. Any non-
myeloid cell clusters were removed, and the data were, once
again, reprocessed and reclustered. This entire process was
repeated three times in total, with successively higher reso-
lutions used to generate greater numbers of clusters, to co-
erce any nonmyeloid cells into forming distinct clusters that
could be removed as the data became cleaner. The expression
of 52 key nonmyeloid genes was then assessed, and any cell
expressing such genes was removed. Finally, tSNE graphs
were visually inspected, and any unusual clusters were man-
ually selected and DE genes inspected—any stray unwanted
cluster was manually pruned and the data reprocessed as
before.
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Differential Proportion Analysis
Differential proportion analysis was developed to detect
changes in population proportions across groups within
single-cell experiments. The algorithm is described in detail,
along with source code, by Farbehi et al.44 Briefly, this ap-
proach uses a novel permutation-based statistical test to
analyze whether observed changes in proportions of cell pop-
ulations were greater than expected by chance. This approach
attempts to consider sources of technical variation within the
experimental technique, such as differing absolute cell num-
bers within the experiment, cell-type capture bias (a known
feature of current single-cell workflows45), and variation due
to in silico analysis (cluster assignment accuracy, for example).
A proportion table of clusters per phenotype/group is created
from the count table, and the difference in cluster proportion
is compared with a null distribution. This distribution is con-
structed by random permutations of random subsamples of
cluster labels across a random proportion of total cells. A new
proportion table is generated from these data, and the process
is repeated multiple times, with the resulting difference in
cluster proportions across the data forming the null distribu-
tion. The observed distribution is then compared with this
null distribution, and final P values are calculated based on
the minimum P values of any observed increases or decreases
in proportion. As per the original paper,44 we used a w pa-
rameter of 0.1, where lower values will trend toward a stricter
test (fewer significant hits), and higher values trend toward
higher numbers of significant hits.

Assignment to Myeloid Cell Phenotype on the
Immunological Genome Project Consortium
Cluster Identity Predictor (version 246) was used to generate
Spearman correlation values for each cluster within our own
data, as compared with cluster gene signatures with Immuno-
logical Genome Project (ImmGen) mouse immune cell data-
sets based on the entire gene expression dataset. The algorithm
first subsets genes common to both datasets before using a
one-to-many (cluster-to-references) calculation of correlation
coefficients. A single correlation coefficient is calculated for
each reference cell type and for each cluster, allowing each
cluster in our experiment to be analyzed against each known
cell type in the reference file and scored for its overall similar-
ity. To further validate these assignments, we used SingleR27 to
assign myeloid cell classification, using the murine ImmGen
dataset, and create a consensus matrix with our classifications.
Briefly, this pipeline is based on correlating reference bulk-
transcriptomic datasets of pure cell types with single-cell gene
expression. Similarly to the Cluster Identity Predictor, a Spear-
man coefficient was calculated for single-cell gene expression,
with each of the samples in the reference dataset based only on
the variable genes in the reference dataset. This is performed
iteratively until a classification is reached. One myeloid cluster
mapped to a mixture of cells and expressed cell cycle genes,
such as Mki67 and Top2a, consistent with proliferation and
was therefore assigned to the proliferation cluster.

Assignment to Myeloid Phenotype in Recovery from
Ischemia-Reperfusion Injury
To compare the transcriptome from our myeloid cell clusters
with that of myeloid cells in the kidney during recovery from
renal ischemia-reperfusion injury (IRI), we used the datasets
generated by Lever et al.47 and deposited in the Gene Expres-
sion Omnibus (GSE121410). We used SingleR software, as
previously described, to align our macrophage clusters to em-
bryonic and adult resident renal macrophages from healthy
kidneys, and macrophages and infiltrating monocytes in
kidneys from mice 6 days after IRI.

Ligand-Pair Interactions
Heatmaps and dotplots of number of ligand-pair interactions
were generated using the CellphoneDB tool (https://www.
cellphonedb.org/) developed by the Teichmann Lab (Wellcome
Sanger Institute, Cambridge, United Kingdom).48 The lower cut-
off for expression proportion of any ligand or receptor in a given
cell type was set to 10%, and the number of permutations was set
to 1000. The clusters were not subsampled.

Platform Integration
Because our SMART-seq2 library included an index sort,
the transformed FACS data corresponding to each cell was
then exported as .fcs files and analyzed using FlowJo soft-
ware. The index-sort data were then extracted using the in-
dex FlowJo plugin available from FlowJo exchange. These
data were then matched to the cell bar code and imported
as both a separate “protein” assay and as metadata into the
Seurat object to allow for visualization.

Our droplet-based and SMART-seq2 datasets were then
integrated using the “anchoring” approach introduced in
Seurat version 3.49 Here, we created an integrated refer-
ence dataset and transferred the cell type labels onto our
SMART-seq2 data. Briefly, this approach requires identifi-
cation of “anchors” between the datasets, which represent
shared biologic states. This involves jointly reducing the di-
mensionality of both datasets using diagonalized canonic
correlational analysis before searching for mutual nearest
neighbors in the new shared space. The paired cells are treat-
ed as anchors that represented shared biology across the
datasets. Anchors were identified using the default parame-
ters of the FindIntegrationAnchors function, with the argument
dims51:20.

To map the monocyte, dendritic cell (DC), and macro-
phage clusters onto conventional flow cytometry myeloid
cell gates, we used UUO-2, UUO-7, and R-UUO, respectively,
because not all clusters were represented at all time points in
the SMART-seq2 dataset.

Pseudotime Analysis
Lineage reconstruction and pseudotime inference was per-
formed using the slingshot package.50 This method works by
learning cluster relationships in an unsupervised manner and
constructing smooth curves representing the lineage across
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Figure 2. scRNA-seq analysis identifies discrete renal cell types, with dynamic changes in the proportion and transcriptome of each cell
type observed across the R-UUO model. tSNE plots of 17,136 cells from libraries pooled from mice that underwent sham, UUO-2,
UUO-7, or R-UUO (2 weeks) (n53 per time point) classified by (A) cell cluster and (B) time point. (C) Expression of selected marker genes
for each cell classification projected onto tSNE plot. Color scale is log10 expression levels of genes. (D) Relative proportions of cells
assigned to each cluster by time point. Statistical significance derived using differential proportional analysis, with a mean error of 0.1
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two visualized pseudotime dimensions. Briefly, this involved
first creating the raw expression matrix of the subsetted cells
that were classified as “Arg11 monocyte,” “Ly6c21 mono-
cyte,” and “Ccr21 macrophage” by Seurat. This was fol-
lowed by filtering genes not expressed in any cluster with
less than ten cells, and having at least three reads within that
cluster. Full quantile normalization was then performed be-
fore dimensionality reduction using diffusion maps via the
destiny package.51 Next, cells were clustered to allow sling-
shot to infer a global structure of the lineage, using a Gauss-
ian mixture modeling implemented in Mclust,52 revealing
eight underling clusters in the data. Slingshot then construc-
ted the cluster-based minimum spanning tree and fitted the
principal curve.

Pathway Analysis
Gene set enrichment analysis (GSEA) and over-representation
analysis (ORA) were used to identify enriched pathways
based on the DE genes, using WebGestalt (http://www.
webgestalt.org/). For GSEA, we generated a rank for each
gene in the list of DE genes using the formula rank5(average
log fold change)3(2log [adjusted P value]). To perform ORA
of bulk RNA-seq data, significantly DE genes were selected for
the algorithm based on a minimum of two-fold upregulation
(or 50% of baseline for the downregulated genes) against the
appropriate comparator (e.g., UUO-2 versus sham when con-
sidering early injury). Enrichment categories were discarded if
they contained less than five or.2000 genes. These thresholds
were calculated by WebGestalt based on the number of over-
lapping genes between the annotated genes in the category and
the reference gene list for the ORA method. For the GSEA
method, categories were discarded if they contained,15 genes
or.500 genes. The Benjamini–Hochberg method was used to
correct for multiple testing during ORA, and the top ten en-
riched categories—as ranked by false discovery rate—were
selected. The reference gene list used was the Illumina
MouseRef-8. We used pathway gene sets from the protein
analysis through evolutionary relationships, PANTHER
(http://www.pantherdb.org), Reactome, and Kyoto Encyclo-
pedia of Genes and Genomes (https://www.genome.jp/kegg/
) as our reference gene lists.

Statistical Analyses
Animal group size was determined from previous pilot exper-
iments. Comparisons between two unpaired, non-normally
distributed data points were carried out via Mann–Whitney
test. Comparisons between two unpaired, normally distrib-
uted data points were carried out via t test. Comparisons be-
tween multiple groups were performed with one-way ANOVA

with the Tukey multiple comparison test. All statistical anal-
ysis was performed using GraphPad Prism version 10.

RESULTS

Degradation of Excess ECM after Reversal of Ureteric
Obstruction Is Associated with Persistence of Immune
Cells
To determine the pathways that mediate renal injury and re-
pair, we used the murine R-UUO model (Figure 1A). Within
7 days of ureteric obstruction (UUO-7), there was expansion
of interstitial PDGF-b1 cells (Figure 1B), activation to a-smooth
muscle actin1myofibroblasts (Figure 1B, Supplemental Figure 1A),
and collagen deposition (Figure 1B), with induction of tubular
injury markers such as Havcr1 (encodes kidney injury
molecule-1; Figure 1C). After reimplantation of the ureter,
there was a decline in Havcr1 expression, a significant reduc-
tion in interstitial PDGFR-b1 cells with loss of myofibroblastic
phenotype (a-smoothmuscle actin2) (Supplemental Figure 1A),
and a gradual regression of collagen deposition over 4 weeks
(Figure 1B), as has been observed previously.33 Macrophages
(F4/801) accumulated in the kidney during UUO, and persis-
ted through the early stages of R-UUO, before trending toward
baseline levels by 4 weeks after reversal (Figure 1B), consistent
with previous findings in this model.33

We first performed bulk RNA-seq of the renal cortex in the
R-UUO model, which revealed six discrete temporal patterns
of gene expression (Figure 1C, Supplemental Figure 1, B–D,
Supplemental Table 5). Three of the clusters were character-
ized by gene upregulation predominantly during the injury
phase: “early injury” genes (UUO-2 only) were enriched for
damage-associated molecular pattern–Toll-like receptor
(TLR) signaling, MAPK signaling, and oxidative stress path-
ways (Figure 1C); “pan-injury” genes included cell cycle genes
and markers of kidney injury (Havcr1 and Lcn2); and “late
injury” genes (UUO-7) were enriched for ECM components,
ECM crosslinkers, and inhibitors of ECM degradation.

Two clusters were characterized by gene activation predom-
inantly during R-UUO and were enriched for genes implicated
in innate and adaptive immunity (Figure 1C). Remarkably,
five of the top ten genes induced specifically after R-UUO
(Lyz1, Mmp12, Gpnmb, Ccl8, and Retnla; Supplemental
Figure 1, D and E) were also induced in macrophages in
our model of resolution of liver fibrosis.23 Multiple podocyte-
specific genes were also included in the cluster upregulated
during reversal, consistent with the loss of tubular mass and
relative glomerular preservation in this model of predomi-
nantly tubular injury.

over 100,000 iterations. *P,0.05. (E) Violin plots of Egf and Lcn2 (encodes neutrophil gelatinase-associated lipocalin) gene expression
in the loop of Henle/distal convoluted cell cluster. The y axis shows the log-scale normalized read count. a–c, PCT subclusters colored
by shared nearest neighbor; DCT, distal convoluted tubule; LoH, loop of Henle; Mac, macrophage; Mono, monocyte; NK, natural killer
cell; PCT, proximal convoluted tubule; S1, S1 segment.
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Figure 3. scRNA-seq analysis identifies 12 discrete myeloid cell clusters, with dynamic changes in the proportion of cells assigned to
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The patterns of gene expression in the R-UUO model
were consistent with those observed in a rat model of re-
versible diabetes and hypertension (Supplemental Figure 1,
F and G),53 suggesting common mechanisms of injury and
repair across multiple models and organs,23 with regression
of fibrosis being characterized by the presence of a specific
macrophage phenotype.

scRNA-seq Demonstrates Dynamic Changes in the
Proportion of Intrinsic and Immune Cells during the
R-UUO Model
To characterize the heterogeneity of cells during injury and
repair and to ascribe the bulk-transcriptomic changes to spe-
cific cell types, we performed scRNA-seq on single-cell sus-
pensions from the renal cortex of animals at four time points:
baseline, UUO-2, UUO-7, and 2 weeks after R-UUO. Unsu-
pervised clustering of the aggregated data from approximately
17,500 individual transcriptomes identified 15 discrete clus-
ters (Figure 2, A and B, Supplemental Figure 2, A–D,
Supplemental Table 6), which were classified using established
cell-specific markers in murine kidneys (Figure 2C,
Supplemental Figure 2B).41 Because this is the first scRNA-
seq dataset during renal injury and reversal of fibrosis, we
have created an interactive tool for data exploration at
http://www.ruuo-kidney-gene-atlas.com/.

Differential proportional analysis44 determined that, after
UUO, there was a marked reduction in the proportion of cells
derived from the proximal tubule, which partly reversed after
R-UUO (Figure 2D). Additionally, there were dynamic
changes in the tubular transcriptome after UUO, with induction
of injury markers such as Lcn2 (adjusted P51.45 3 102293)
and reduced expression of Egf, a biomarker of tubular cell
health (adjusted P55.67 3 10205) (Figure 2E).54,55 There
was early recruitment of neutrophils and natural killer cells
to the obstructed kidney, followed by expansion of macro-
phages and T cells, which persisted beyond the reversal of ob-
struction, as observed previously in the repair phase in a model
of IRI (Figure 2D).26 The changes in cell proportions were
replicated on flow cytometry using markers of key cell types:
proximal tubule cells (LTL), endothelial cells (CD31), fibro-
blasts/pericytes (PDGFR-b), immune cells (CD45), and
F4/80Hi and F4/80Lo macrophages (Supplemental
Figure 2E). Of note, although we detected a small number
of cells expressing podocyte genes, these were too few to
constitute a discrete cluster, as has been reported previ-
ously.42 This likely reflects the difficulty in isolating single
glomerular cells from whole kidney cortex, whereas extrac-
tion of single nuclei is more efficacious, with small-nuclear
RNA-seq detecting 20-fold more podocytes.42 Similarly, we

may not have captured other glomerular cells, such as endo-
thelial or mesangial cells and monocytes or macrophages,
that are unique to the glomerulus.

scRNA-seq Reveals Myeloid Heterogeneity during
Injury and Repair
Our previous data in the kidney and liver suggest a pivotal role
for the plasticity of myeloid cells in injury and repair.23,53 To
further characterize the myeloid cell heterogeneity and phe-
notype, we repeated the SNN clustering specifically on mye-
loid cells, partitioning these cells into 12 clusters (Figure 3A).
We first assigned clusters as monocytes, macrophages, or DCs
by generating Spearman correlation values for each cluster
as compared with gene signatures of mouse immune cells
obtained from ImmGen (Figure 3B, Supplemental Figure 3,
A and C). We then refined this classification using cluster-
defining DE genes (Supplemental Figure 3B, Supplemental
Table 7) and the following genes encoding cell surface protein
markers that define specific myeloid cell subsets on flow cy-
tometry: Itgam (CD11b), Adgre1 (F4/80), Fcgr1 (CD64), Itgax
(CD11c), and H2-Aa (MHCII) (Figure 3, C and D).

Early Accumulation of Ly6c21 and Arg11 Monocytes
after Ureteric Obstruction
We identified the first of three monocyte clusters as patrolling
monocytes because they expressed Nr4a1 and Itgal, which are
implicated in survival56,57 and adhesion56,58 of CX3CR11/
Ly6C2 patrolling monocytes. We classified the second cluster
as inflammatory Ly6C1 monocytes because they expressed
Ly6c2, Ccr2, F13a1, and Chil3 genes.24 Cells in this cluster in-
creased at UUO-2 (Figures 3, A and E and 4A), indicating early
recruitment of Ly6C1 inflammatory monocytes to the kidney
during injury.

A third cluster uniquely expressed Arg1 (Figure 3, C and D)
and additionally markers of Ly6C1 inflammatory monocytes,
including Ccr2, Chil3, and F13a1, although not Ly6c2 (Figures
3D and 4B). DE genes in this cluster included early response
genes (Ier3, Fos, Jun), hypoxia genes (Hif1a,Vegfa), proinflam-
matory genes (Thbs1, Spp1), profibrotic genes (Tgfb1, Tgfbi),
and genes encoding ECM components (Fn1, Ecm1) or ECM
crosslinkers (Tgm2; Figure 4B). These Arg11 cells were exclu-
sively present at UUO-2 (Figure 3, A and E), and the profi-
brotic gene expression suggested they may initiate fibrosis by
interacting with mesenchymal cells. Accordingly, we deter-
mined expression of ligand-receptor pairs between each
monocyte subset and mesenchymal cells (Figure 4C). More
monocyte ligand–mesenchymal receptor pairs were expressed
in Ly6c21 and Arg11 monocytes than patrolling monocytes.
In addition, compared with the Ly6c21 cells, the Arg11

marker genes in each cluster. The x axis shows the log-scale normalized read count. (D) Heatmap of selected marker gene expression in
each cluster, calculated using Wilcoxon signed-rank test. The color scheme is based on z-score distribution. (E) Relative proportions of
each cell type at each time point. Statistical significance tested using differential proportional analysis with a mean error of 0.1 over
100,000 iterations. *P,0.05. Mac, macrophage; mono, monocyte; IFN, interferon.

JASN 31: 2833–2854, 2020 Renal Myeloid Heterogeneity 2843

www.jasn.org BASIC RESEARCH



cells demonstrated greater potential forFn1-integrin,Pdgfa-Pdgfrß,
and Tnf-Tnfsfr1 signaling to mesenchymal cells. Taken to-
gether, these data suggest Arg11 cells may be derived from
recruited Ly6C1 monocytes that become activated acutely in
the hypoxic and inflammatory milieu of the injured kidney to-
ward a profibrotic phenotype.

Macrophages Adopt Differing Phenotypes during
Injury and Resolution Phases
We identified five clusters (Figure 3B) that expressed genes
consistent with macrophage identity, including those encod-
ing CSF1 receptor (Csf1r), MHCII (H2-Aa), and Cd81, a con-
served marker of renal macrophages (Figure 3, C and D).24

We define a first cluster as quiescent resident macrophages,

detected exclusively in kidneys that underwent sham surgery
or were de-obstructed (Figure 3, A and E). In contrast to other
macrophage clusters, these cells did not express Spp1, which
encodes osteopontin, a marker of activated macrophages59

that promotes renal injury after UUO.60 Although they were
tagged by proximal tubular genes, the expression was much
lower than in tubular cells (Figure 2C); therefore, this likely
represents ambient tubular RNA, which is most prevalent in
sham or R-UUO mice due to the higher proportion of prox-
imal tubular cells (Figure 2D).

A second macrophage cluster expressed high levels ofMrc1
(encodes mannose receptor), and cells from this cluster were
most commonly observed at UUO-7 and, to a lesser extent, at
R-UUO (Figures 3, A and E and 5A). The Mrc11 cells
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expressed multiple scavenger receptors (Mrc1, Fcrls, Stab1),
suggesting a role in scavenging debris/excess ECM
(Figure 3D). In addition, they expressed Igf1, which is upre-
gulated in reparative macrophages in the liver23 and promotes
regression of cirrhosis and liver regeneration,61 and Apoe,
which dampens inflammation62 and promotes regeneration.63

TheMrc11 cells exhibited lower H2-Aa expression, indicating
downregulation of MHCII. This is of interest because resident
renal macrophages downregulate MHCII and adopt a pheno-
type consistent with embryonic macrophages during repair
from acute ischaemia-reperfusion injury (IRI).47 To assess this
further, we compared the transcriptome of our macrophage

clusters with those of embryonic kidney macrophages, resident
renal macrophages before and after IRI, and infiltrative mono-
cytes.47 The transcriptome of the Mrc11 cells most closely
aligned to embryonic macrophages, consistent with reprogram-
ming toward a developmental phenotype to facilitate renal re-
pair (Figure 5B).

A third macrophage cluster predominantly comprised cells
from UUO-7 kidneys. Cells in this cluster expressed Ccr2
(Figure 3D), raising the possibility they may be derived from
Ly6C1/CCR21 monocytes that are recruited to the injured
kidney before transitioning to adopt a transcriptome highly
similar to resident macrophages (Figures 3, C and D and 5B).
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A fourth cluster was uniquely characterized by expression
of IFN-stimulated genes (Figure 3, C and D). Although their
function remains unknown, similar cells have been observed
after injury in other organs, including the heart.28

Intriguingly, a finalmacrophage cluster was observed solely
in kidneys that had undergone R-UUO. These cells were char-
acterized by expression of Mmp12, a macrophage-specific
metalloproteinase, and scavenger receptors (Mrc1, Fcrls), sug-
gesting they may be involved in matrix remodeling (Figures 3,
C and D and 5C). In addition, theMmp121 cluster–expressed
genes implicated in efferocytosis and lipid transport, suggest-
ing they may be involved in clearance of apoptotic cells
(Supplemental Figure 3D). This is in keeping with our pre-
vious work, where Mmp121 expression defines a reparative
macrophage phenotype that mediates regression of liver
fibrosis.23 In response to phagocytosis of collagen (Figure 5D),
bone marrow–derived macrophages upregulated the degrada-
tive enzymes expressed in reparative macrophages including
Mmp12, Gpnmb, and Lyz123 (Figure 5E), suggesting they may
switch to a matrix-degrading phenotype on encountering
scarred matrix. Although theMmp121 cells mapped to mac-
rophages on the ImmGen databases (Figure 3B), they mor-
phologically resembled monocytes and expressed low levels
of F4/80 (Figure 5C) but high levels of Ccr2 (Figure 3C).
Furthermore, their transcriptome most closely aligned to
monocytes infiltrating the kidney during recovery from
IRI (Figure 5B). Taken together, these data suggest they
may be derived from monocytes that adopt a unique
Mmp121 phenotype on encountering a kidney during the re-
parative phase after injury.

DCs Adopt a Migratory Phenotype during Late-Stage
Injury and Resolution
We assigned three clusters as DCs, expressing MHC genes
(H2-Aa) but not macrophage markers (Cd81, C1q;
Figure 3D). One cluster expressed Itgae (encodes CD103),
whereas another expressed Cd209a, consistent with type 1
and type 2 conventional DCs (cDC1, cDC2), respectively.24

cDC1s and cDC2s were proportionally fewer in UUO-7 before
returning during R-UUO (Figure 3, A and E). In contrast, the
third DC cluster, which expressed Ccr7, was not detected in
sham animals, but appeared by UUO-7 and persisted through
R-UUO (Figure 3, A and E). This cluster mapped specifically
to lymph node DCs in the ImmGen database (Supplemental
Figure 3A). Taken together, the data suggest that, after
kidney injury, resident DCs upregulate Ccr7 and this may

promote migration to draining lymph nodes by binding to
CCR19/CCR21.64

Conventional Flow Cytometry Does Not Capture the
Full Heterogeneity of Myeloid Cells
To assess how our scRNA-seq–derived clusters corresponded
to conventional cytometry, we performed scRNA-seq using
plate-based SMART-seq2 technology, which enabled linkage
of each transcriptome to an abundance of cell surface markers
(FACS intensity) using index sorting.65 We repeated the
R-UUO model using MacGreen mice (express EGFP under
the Csf1r promoter) and performed flow cytometry, gating
on CD451MacGreen1TCRb2CD192Ly6G2Siglec-F2 myeloid
cells. There was expansion of the CD11b1F4/80Lo population
at UUO-2, consistent with early recruitment of monocytes in
response to injury (Figure 6A). ByUUO-7,monocyte recruitment
had diminished, but there was an increase in CD11b1F4/80Hi

macrophages, which persisted through 2 weeks after R-UUO
(Figure 6A).

We captured 192 individual CD451MacGreen1TCR1b2

CD192Ly6G2Siglec-F2 myeloid cells from each time point
for scRNA-seq on the SMART-seq2 platform (Figure 6B).
This dataset was then integrated with the original droplet
dataset, with SMART-seq2 cells distributed through every
cluster (Figure 6, B and C). Index linkage demonstrated mod-
erate correlation between the gene and corresponding surface
protein expression in each cluster (Figure 6D). Next, we
mapped the cells from each myeloid cluster onto the mono-
cyte and macrophage gates on flow cytometry (Figure 6E).
Cells from the Ly6c21 and patrolling monocyte clusters
mapped to the CD11b1F4/80Lo monocyte gate, as expected.
Conversely, resident, Mrc11, Ccr21, and IFN-response mac-
rophages all mapped appropriately to the CD11b1F4/80Hi

macrophage gate. Cells from the Arg11 cluster straddled the
monocyte and macrophage gates (Figure 6E), with a propor-
tion of the Arg11 cells colocating with Ccr21 macrophages
in the CD11bHiF4/80Hi region, suggesting they may be tran-
sitioning to Ccr21 macrophages. Furthermore, trajectory
analysis supported transition of Ly6c21 monocytes to Ccr21

macrophages, with Arg11 monocytes representing an inter-
mediate transitional state (Figure 6G). Cells from the
Mmp121 cluster also straddled themonocyte andmacrophage
gates (Figure 6E), consistent with their intermediate F4/80
expression on immunofluorescence (Figure 5B). Cells from
the cDC1 and Ccr71 clusters were CD11b2F4/802, whereas
the cDC2s mapped to the CD11b1F4/80Lo monocyte gate

seq2 protocol before integration with the 103 dataset. (C) Uniform Manifold Approximation and Projection (UMAP) of the combined
103 and SMART-seq2 dataset. (D) Dotplot of cell surface protein and corresponding gene expression in each cluster. The size of the
dot denotes the percentage of cells in each cluster expressing the relevant gene/protein; the intensity of color represents mean gene/
protein expression. (E) Representative flow cytometry plots from UUO-2, UUO-7, and R-UUO (2 weeks) illustrate mapping of cells from
each myeloid cluster onto the CD11b1F4/80Lo monocyte and CD11b1F4/80Hi macrophage gates. (F) Mapping of proliferating cells
(red) at each time point onto the flow cytometry plots. (G) Pseudotime analysis of the transcriptomes of the Ly6c21, Arg11, and Ccr21

clusters. Mac, macrophage; mono, monocyte.
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(Figure 6E). Cells from the proliferating myeloid cluster were
observed predominantly at UUO-2 andmapped to the mono-
cyte and, more particularly, the macrophage gates (Figure 6F).
Consistent with this, the scRNA-seq cell cluster designated as
proliferating cells (express Mki67) predominantly expressed
macrophage markers, with representation of all macrophage
clusters.

Monocytes Recruited Early after UUO Transition to a
Macrophage Phenotype
Pseudotime trajectory analysis and flow cytometry data sug-
gested that Ly6c1 monocytes recruited to the obstructed kid-
ney transitioned to Ccr21 macrophages by UUO-7. To test
this hypothesis, we performed PBE between Ly5.1 mice
(CD45.1/CD45.2 heterozygous) and C57BL6/J mice
(CD45.2 homozygous) (Figure 7A). Immediately after the
PBE, approximately 40% of total CD451 circulating cells
were derived from the donor (Figure 7B). The proportion
of donor-derived circulating monocytes/neutrophils fell rap-
idly to approximately 1% within 24 hours, with negligible
numbers persisting through to UUO-7 (Figure 7C, full gating
strategy in Supplemental Figure 4A). There was a similarly
rapid reduction in the proportion of donor-derived circulat-
ing T and B lymphocytes; however, a small number of donor
lymphocytes persisted in the circulation through UUO-7
(Figure 7C).

To determine the fate of donor monocytes recruited to the
obstructed kidney, we performed flow cytometry on kidney
cell suspensions, gating on CD451CD641TCRb2CD192

Ly6G2Siglec-F2 myeloid cells (Supplemental Figure 4B). At
UUO-2, donor cells were recruited preferentially to the ob-
structed kidney (Figure 7D) and mapped almost exclusively to
the CD11b1F4/80Lo monocyte gate (Figure 7E). Indeed, they
spanned the monocyte “waterfall,” suggesting transition from
Ly6CHi/MHCLo monocytes toward a Ly6CLoMHCIIHi

macrophage-like phenotype Figure 7D). By UUO-7, the
majority of donor cells were located in the CD11b1F4/80Hi

macrophage gate, and they expressed high levels of CCR2
compared with the global macrophage population
(Figure 7F). In combination with the trajectory analysis and
flow cytometry data, these data suggest donor monocytes are
recruited selectively to the obstructed kidney by UUO-2, tran-
sition to a CCR2Hi macrophage by UUO-7, and, hence, are the
likely source of the cells in the Ccr21 macrophage cluster ob-
served at UUO-7 in the scRNA-seq dataset (Figure 3A).

Myeloid Cell Subsets Correlate with Fibrosis in Human
Kidney Disease
We next assessed whether similar myeloid cell phenotypes
were observed in the human kidney using the Human Protein
Atlas (Figure 8A). Cells that stained with F13A1 (marker of
Ly6c21 monocytes) and DOK2 (Arg11 monocytes) were lo-
cated specifically in focal areas of injury/inflammation,
whereas ITGAL (patrolling monocytes) was largely restricted
to cells within the circulation. CD68, a pan-macrophage
marker (including a marker of resident macrophages), was
widely distributed in the healthy kidney, whereas mannose
receptor (Mrc11 macrophages) and CCR2 (Ccr21 macro-
phages) localized to areas of tissue injury. IRF8 and CD209,
markers of types 1 and 2 conventional DCs, respectively, lo-
calized to areas of renal injury, with CCR7 (Ccr71 migratory
DCs) staining a cluster of cells that resembled a tertiary lym-
phoid follicle. Furthermore, in biopsy specimens of healthy
donors and patients with diabetic nephropathy or FSGS
(https://www.nephroseq.org/resource/login.html), expres-
sion of each myeloid marker correlated with expression of
Col1a1 (encodes collagen I; Figure 8B). Expression of
Mmp12 was not detected in the healthy human kidney or in
patients with CKD, which is consistent with the fact that cells
in theMmp121 cluster were specific to the resolution phase of
kidney injury.

DISCUSSION

Our scRNA-seq studies, the first detailed characterization of
myeloid cell heterogeneity in the kidney during progression
and regression of fibrosis, have identified novel monocyte and
macrophage subsets not previously observed in the kidney.

Acute injury induces a novel population of cells that are
transcriptomically aligned to monocytes but that uniquely ex-
press Arg1. Although Arg1 has traditionally been thought of as
a marker of alternative macrophage activation,67 the Arg11

cells do not express other markers of alternative activation,
such as Mrc1 or MHCII-encoding genes, suggesting that
in vitro immune activation assays do not reflect the complex
in vivo milieu. Indeed, the Arg11 cells express proinflamma-
tory and profibrotic genes, and future work should determine
whether specific depletion of these cells could reduce disease
severity. Intriguingly, a novel Mmp121 macrophage subset
emerged specifically during the resolution phase. We have

illustrating approximately 40% of circulating cells were derived from donors after the exchange (CD45.11CD45.21 cells in C57BL/6;
CD45.21/1 cells in Ly5.1 mice). (C) Percentage of circulating immune cells derived from paired donor over the experimental time
course (n54 pairs immediately post-PBE and at UUO-2; n52 pairs at UUO-7). (D) Illustrative flow cytometry plots mapping donor cells
(red) and recipient cells (gray) to the CD11b1F4/80Lo monocyte and CD11b1F4/80Hi macrophage gates, the monocyte waterfall in
obstructed and contralateral kidneys at 2 days post-UUO, and the expression of CCR2 and MHCII 7 days post-UUO. (E) Average
number of donor cells mapping to the CD11b1F4/80Lo monocyte and CD11b1F4/80Hi macrophage gates in obstructed kidneys at 2
and 7 days after UUO. (F) The expression of CCR2 (mean fluorescent intensity, MFI) on the donor cells compared with the host cells
from the CD11b1F4/80Hi macrophage gate in obstructed kidneys 7 days after UUO. n54 per group. *P,0.05 by Mann–Whitney test.
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previously reported a similar macrophage phenotype during
the resolution of liver disease, suggesting common reparative
mechanisms across organs.23 Our in vitro studies suggest that
ingestion of excess ECM or cell debris may be a stimulus for
induction of this phenotype; however, their cellular origin and
role in resolution requires further study because strategies to
induce this phenotype may enhance scar degradation in the

diseased kidney and other organs. To definitively conclude that
theMmp121macrophages we identified are essential to repair,
as our studies infer, functional studies in MMP122/2 mice
demonstrating a lack of repair would be required.

Uniquely, we have integrated plate-based and droplet
scRNA-seq with index linkage to map our myeloid subsets
onto monocyte and macrophage gates on flow cytometry.
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Importantly, the novel myeloid subsets would not have been
identified by conventional markers on flow cytometry, high-
lighting the utility of scRNA-seq to characterize myeloid het-
erogeneity in an unbiased andmore detailed way. Based on the
DE genes in each subset, we suggest a panel of cell surface
markers could be used in combination to differentiate the cells
from each myeloid cluster on flow cytometry (Table 1), with
the caveat that there is only a modest correlation between gene
expression and cell surface marker expression of the corre-
sponding protein.

To track the fate of circulating immune cells recruited to the
kidney, we used PBE, which has previously been used to assess
the effects of donor serum35 but not, to our knowledge, to
track immune cells. By combining PBE, flow cytometry, and
pseudotime analyses, we demonstrate early recruitment of
monocytes specifically to the obstructed kidney and that these
subsequently adopt a macrophage phenotype, but continue to
express CCR2. These results suggest circulating monocytes are
the source of the large Ccr21 macrophage cluster observed at
UUO-7 in the scRNA-seq dataset, which is consistent with
lineage tracing and parabiosis studies after myocardial infarc-
tion.28 Remarkably, although they continue to express Ccr2,
their transcriptome is otherwise almost identical to resident
macrophages. Genetic or pharmacologic inactivation of CCR2
after renal IRI reduces the expansion of F4/801 macrophages
in the kidney and the severity of renal fibrosis, suggesting
CCR21 cells may be detrimental,19 although it is unclear
whether they remain detrimental once they transition to a
macrophage phenotype. One advantage of PBE over parabio-
sis or bone marrow transfer is that the donor cells persist at
large numbers in the circulation for a relatively short time,
and, therefore, enable the tracking of cells at multiple discrete

time points after injury or during resolution of disease. Future
studies using PBE may help determine whether cells in the
Mmp121 cluster are indeed derived from infiltrating mono-
cytes entering a repairing kidney. The short circulating time of
donor cells may also be a limitation of the technique, in that
only a small proportion of recruited cells are derived from the
donor, therefore, a limited number of cells are available for
downstream analysis. Further refinements including perform-
ing several consecutive PBEs may increase the yield.

In summary, by combining multiple complementary tech-
nologies, our studies have identified novel subsets of myeloid
cells, which may also be present in human kidney disease and,
hence, may represent therapeutic targets to inhibit progres-
sion and enhance resolution of kidney disease.
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Table 1. Cell surface markers for assignment of myeloid clusters by flow cytometry

Cluster
F4/80

(Adgre1)
CD11b
(Itgam)

CD64
(Fcgr1)

MR
(Mrc1)

CD40
(Cd40)

CCR2
(Ccr2)

Ly6C
(Ly6c2)

CCR1
(Ccr1)

CD11a
(Itgal)

CD203
(Itgae)

CD209
(Cd209a)

CCR7
(Ccr7)

Resident
macs

111 11 11 1 2 2 2 2 2 2 2

Mrc11 macs 111 111 11 111 2 2 1 2 2 2 2

IFN-
response
macs

111 11 111 1 11 2 2 2 2 2 2 2

Ccr21 macs 11 11 11 1 11 2 2 2 2 2 2

Mmp121

macs
1 1 2 11 1 2 2 2 2 2 2

Ly6c21

monos
2 11 2 2 111 111 1 1 2 2 2

Arg11

monos
2 111 1 2 1 2 111 2 2 2 2

Patrolling
monos

2 1 2 2 2 2 2 111 2 2 2

cDC1 2 2 2 2 2 2 2 2 111 2 2

cDC2 2 11 2 2 2 2 1 2 2 111 2

Ccr71 DCs 2 2 2 2 2 2 2 2 2 2 111

Gene expression (italicised in brackets) of corresponding cell surface proteinmarkers that could be used to assign cells tomyeloid clusters on flow cytometry.Macs,
macrophages; monos, monocytes; IFN, interferon.
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