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Abstract
Aggressive code optimization on the mobile environment is a difficult endeavor. Bil-

lions of users rely on mobile devices for their daily computing tasks. Yet, they mostly

run poorly optimized code, under-utilizing their already limited processing and energy

resources. Existing optimization approaches, like iterative compilation, perform well

in other domains but fall short on the mobile environment. They either rely on repre-

sentative inputs that are hard to reconstruct, or expose users to slowdowns and crashes.

An ideal solution must be able to perform an optimization search by repeatedly

evaluating different optimization decisions on the same input. That input should be

representative of actual user usage without requiring developers to artificially create it.

Finally, users should never be exposed to slow or crashing evaluations, a quite common

side-effect of iterative compilation. This thesis presents a novel approach with all

above in mind, bringing aggressive code optimization to the mobile environment.

With a transparent capture mechanism, real user inputs can be stored. This mecha-

nism is infrequently invoked and remains unnoticeable from the users. A single capture

is enough to enable offline, input-driven code optimization. It supports C functions as

well as code regions of interactive Android applications. It allows controlling the tim-

ing and frequency of captures, it bails out on imminent high-impact runtime events,

and excludes from captures some immutable data.

A replay-based evaluation mechanism is able to repeatedly restore a captured input

while changing the underlying code. For C programs, it employs compile and link-

time strategies to consistently work despite code transformations. For Android apps, a

novel mechanism was developed, able to replay using different code types. These are

the original Android-compiled code, interpretation, and LLVM-generated code. Addi-

tionally, it works well even in the presence of memory-shuffling security mechanisms.

Capture and replay is fused into an iterative compilation system that uses offline,

replay-based evaluations. Initially, real inputs are captured online, without noticeably

affecting the users. For C and interactive apps, captures required on average 2ms and

15ms respectively. Then, an optimization search is performed by repeatedly replaying

the inputs using different code transformations. As this happens offline, any crashing

or erroneous executions are not affecting the users. C programs became 29% faster

using a random search, while interactive apps became 44% faster using a genetic algo-

rithm and a novel Android backend based on LLVM. Finally, with crowd-sourcing, the

offline evaluation effort was significantly accelerated. Specifically, for the user with

the highest workload the search accelerated by 7 times.
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Lay Summary

Mobile devices are not only limited in terms of processing power and battery capac-

ity, but they also run mostly poorly optimized code. By repeatedly evaluating different

code generation strategies, one can discover faster code than what compilers gener-

ate out of the box. This simple technique, called iterative compilation, despite being

successful in other domains, it struggles to adapt on the mobile environment.

Any iterative compilation approaches that evaluate code when a device is not being

used rely on pre-generated inputs. However, to prepare any realistic inputs in advance

is a non-trivial issue. The approaches that run while a device is actively being used,

operate directly on real inputs. However, the input can arbitrarily change, making the

comparisons between different compilation strategies difficult. On top of that, some

strategies can introduce slowdowns or crashes, affecting the user experience. This

thesis proposes a novel technique that enjoys the benefits of both approaches. When a

device is being used, it stores real inputs without noticeable overheads. And when it

becomes idle, it repeatedly uses the stored inputs for evaluating different compilation

strategies.

Initially, real inputs are captured infrequently. Three different mechanisms have

been developed. The first, minimizes the amount of data to store by saving only the

chunks of memory that are needed by the program. The second improves upon the first

one by keeping within those memory chunks only the bits that contain relevant data.

The third one runs a bit faster, as it does not attempt to minimize the stored data at

all. All three approaches remain unnoticeable from the users as they incur overheads

between 2ms and 15ms. Once an input is captured, it can be replayed several times, as

a means of evaluating different compilation strategies. As this happens at idle times,

any slow or crashing evaluations are not affecting the users. As the same input is

repeatedly used, the comparisons between different strategies are sound.

Systems for C and Android applications were developed. As Android had a few

conservative optimization strategies, a novel aggressive code generation add-on was

implemented. By randomly searching between different compilation strategies, the C

code became 29% faster. With an algorithm based on genetic evolution, the Android

code became 44% faster. Finally, by leveraging multiple users, the time needed to run

iterative compilation was significantly accelerated. New users can utilize the informa-

tion accumulated by the previous ones to find better code in less time. Specifically, the

most busy user was able to finish code evaluations 7x faster.
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Chapter 1

Introduction

More and more of our computing tasks rely on smart mobile devices. With active users

now more than 5.2 billion [GSM20], smartphones are the defining computing medium

of our era. Nevertheless, mobile devices are severely limited, both in terms of pro-

cessing power and battery life. Aggressive performance and energy optimizations are

not only welcome, they are necessary for maintaining the user’s Quality of Experience,

supporting novel capabilities, or providing reasonable levels of autonomy. What we get

instead is poorly optimized software. Even the preeminent mobile platform, Android,

relies on a compiler with just 18 distinct optimizations, an order of magnitude less than

what traditional optimizing compilers offer [GOO20a]. As a result, immense amounts

of performance and energy are wasted impacting the smartphone user’s experience.

Iterative compilation, despite being successfully employed for aggressive optimiza-

tion in several domains, has never been widely adopted in the mobile environment

due to several obstacles. Existing offline approaches rely on representative hardware,

software, and inputs, making them unsuitable for mobile applications. And online ap-

proaches inevitably expose users to sub-optimal, erroneous, or crashing executions.

Despite ultimately resulting in faster code, it is rather unlikely that these side-effects

will be tolerated by the end users, the application developers, or the device and Op-

erating System (OS) manufacturers. This thesis presents a novel fusion of iterative

compilation with a capture and replay system able to enjoy the best of both worlds.

The remainder of this chapter is organized as follows. Section 1.1 demonstrates a

strong motivating example for pursuing iterative compilation on the mobile environ-

ment. Section 1.2 briefly discusses challenges for an input capture and replay mech-

anism suitable for mobile devices. Section 1.3 presents the main contributions of this

work, followed by some publications in Section 1.4. The overall structure of this thesis

1



2 Chapter 1. Introduction

is presented in Section 1.5. Finally, Section 1.6 concludes this chapter.

1.1 Motivation for iterative compilation on mobile sys-

tems

Iterative compilation [KIS+99] is an aggressive code optimization technique that read-

ily outperforms a compiler’s standard optimization levels. It searches through different

combinations of code transformations and transformation parameters, evaluates their

effect on performance, and at the end keeps the best performing set. Multiple ap-

proaches exist to select optimization sequences: randomly, through genetic search,

statistical models [PAR+11], or with the help of a machine learned model [LEA+09a].

Despite having the benefits of iterative compilation clearly demonstrated by the re-

search community, the technique has not been applied in a general way on mobile

systems. The remainder of this section explores why.

1.1.1 Offline compiler optimization

Regardless of the methodology used to optimize an application offline, there is in gen-

eral a reliance on some kind of a representative evaluation system (both hardware and

software), and inputs that are both representative and deterministic. By repeatedly exe-

cuting the application with a deterministic input under different code transformations,

the optimization decisions can be compared directly and the best performing one will

be selected. By using a representative system and representative inputs, there can be

confidence that the chosen optimization strategies will work well under most scenarios.

This simple methodology has proved hard to adapt to mobile systems. There is

no such thing as a representative system where an application can be optimized once

for every other system. Instead, it has to be optimized for each system individually.

And even then, it is hard to create inputs without any involvement from the application

developer. Mobile applications (and interactive applications in general) tend to have

complex inputs, including configuration files, system state, user events, and network

data. Packaging all these in a neat deterministic input that introduces no undesirable

side-effects is a non-trivial problem. Making sure that they are representative is even

harder. Expecting mobile developers to put the effort required to do all these with little

incentive is unrealistic.
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Figure 1.1: Compilation outcome with LLVM version 10 when using 100 randomly gen-

erated optimization sequences for the FFT kernel from the Scimark benchmark suite. A

Google Pixel 4 device was used that ran Android 10. 25% of the sequences result in a

binary that does not behave as expected at runtime. In an online optimization system,

this would directly affect the user experience and might lead to data corruption with

long-term consequences for the user.

1.1.2 Online optimization is risky

An alternative approach is to evaluate compiler optimization decisions online. The

application is compiled using different code transformations and evaluations happen

when the user uses that application by interacting with their device. Evaluating each

decision is just a matter of profiling the application while it is being used. This removes

the problem of identifying representative systems and inputs: the system and the input

are by definition the ones that it is desired to optimize the application for.

While a workable solution in some cases, in the general case online optimization

creates a whole new set of problems. The first is that there is no hard guarantee that

compiler code transformations will not introduce errors. Figure 1.1 shows what hap-

pens when LLVM optimization passes are randomly chosen and subsequently applied

on a benchmark, FFT from Scimark. Only 60 out of the 100 different code transfor-

mation sequences lead to a binary that behaves the way it was supposed to. In 15

cases the optimizations cause the compiler to crash or timeout. This is a manageable

problem. What is not manageable is the other 25 optimization sequences that lead to

compilation errors that only become apparent at runtime, either with a program crash,
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a program timeout, or a wrong output. When encountered in offline optimization, such

code transformation sequences are simply rejected with no other side-effects. But in

an online optimization setup, broken optimizations are visible to the user and affect the

user experience. Even worse, silent errors that cause the program behavior to change

can lead to unwanted changes to permanent state, either local or remote, with long-term

consequences for the user. This is an unacceptable risk.

1.1.3 Online optimization affects the user experience

Broken optimizations are just one part of the wider problem of code transformation

choices being visible to the user. Even if the chosen compiler optimizations lead to

valid binaries, there is a good chance that the new binary will be slower than what the

user expects. Figure 1.2 shows the performance of 50 FFT binaries that were generated

by applying a random sequence of LLVM optimization passes. Performance is relative

to the version produced by the Android compiler. All binary versions are slower than it,

from 15% to as much as 8x slower. Even if this is an initial exploration of the optimiza-

tion space and later optimization choices improve performance, the user will still have

experienced unacceptable levels of slowdown. In practice, as it is showcased in Chap-

ter 6, suboptimal binaries are common even in later stages of an otherwise profitable

optimization process. Such behavior might lead to the user removing the application

or disabling the optimizer, negating the benefit of using iterative compilation.

1.1.4 Online optimization is slow

Even if these limitations are somehow worked around, the fundamental problem re-

mains: there is no control over the context in which optimizations are being evaluated.

The most important component of this context is the input. In offline search, every op-

timization is evaluated on the exact same set of inputs. Program versions that take less

time to perform the same amount of useful work are better, versions that take longer

are worse.

With online search, on the other hand, code transformations are evaluated on what-

ever input happens to be fed to the program. This is not necessarily a problem. If

the program is performing more or less the same amount of work every time and this

is known, using the execution runtime to evaluate different code transformations is a

sound approach. If the amount of useful work performed can be estimated, the work

per unit of time can be used for comparing optimizations evaluated on different inputs.
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Figure 1.2: Speedup over the Android compiler for 50 randomly generated LLVM code

transformation sequences applied on the FFT kernel. Sequences that crash the com-

piler or the execution are discarded. All of them slow down the application relative

to both the Android compiler and LLVM -O3. In the worst case, the program runs 8x

slower. Evaluating these optimization sequences online would have an unacceptable

impact on the user experience.

But in the general case, there is no information about what the program does. The only

way to make online optimization work is to evaluate each optimization a large number

of times with different inputs. If all optimizations are evaluated on a similar sample

of inputs, direct comparisons of execution time will be statistically meaningful. The

problem is this can be a very lengthy process.

Figure 1.3 shows such an approach. It is attempted to estimate the speedup of

LLVM -O1 over -O0 for the FFT kernel using multiple evaluations with different in-

puts drawn from a uniform distribution. This experiment is repeated 10000 times to

capture a wide range of outcomes. The evolution of the speedup estimation for a sin-

gle experiment is shown as a line and the range of likely outcomes as areas. The same

information is provided for the offline case for comparison. While -O1 is clearly better

than -O0, almost doubling performance, the online estimation varies wildly: from al-

most 2x slowdown to 8x speedup. It is not until the 22nd evaluation when the estimated

speedup stops going below 1 and the online approach can reliably decide that -O1 is

better than -O0. It takes another 20 evaluations for the estimation to start stabilizing.

This behavior is not an outlier. In 25% of the repeated experiments, after 25 evaluations
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Figure 1.3: Estimation of the speedup of LLVM -O1 over -O0 for the SciMark FFT

benchmark as the number of evaluations increases. Offline search always uses a

FFT SIZE LARGE input. Online search performs each evaluation with a different ran-

domly selected input between FFT SIZE and FFT SIZE LARGE. Lines represent single

experiments. Areas represent 75% and 95% confidence intervals over 10000 repeated

experiments.
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a speedup below 1 was still being estimated. In 5% of the repeated experiments, more

than 70 evaluations are needed just to determine that -O1 is better and more than 1000

evaluations are needed to reduce its speedup estimation error below 10%. In contrast,

there is very little variation across the 10000 offline evaluation experiments. In 95%

of them, a single measurement is enough (though not statistically safe) to estimate the

speedup within 2% of the real value.

This scenario points towards a 100-1000x increase in evaluation time compared to

an offline approach in order to get a comparable level of confidence in the optimization

decisions. This is very likely an underestimation. Other sources of experimental noise

that cannot be controlled online, such as frequency scaling, thermal throttling, and

contention for resources affect the confidence levels. Skewed distributions of input

sizes and processing times may reduce the confidence even further. Seen in the context

of an iterative compilation system like the ones presented in Chapters 4 and 6, this

would translate into 100k to 1m+ evaluations for each optimized program. For FFT this

means tens of hours of repeated experiments. This is unfeasible. Mobile applications

are typically active for only a few tens of minutes every day and are updated every few

weeks. There is just not enough evaluation time for an online approach.

1.1.5 Beyond online and offline optimization

An ideal optimization approach should combine the best of both worlds: online and

offline iterative compilation. Both a system that can repeatedly use the same inputs to

quickly search the optimization space without affecting the user experience and a sys-

tem where developers do not need to manually build and maintain sets of representative

inputs. With existing approaches optimization decisions will either be suboptimal or

require a level of engineering effort beyond the capabilities of most developers.

This thesis proposes a novel fusion of iterative compilation with a capture and re-

play system to realize an aggressive code optimization approach that is practicable

for the mobile environment. With online transparent input captures, real user inputs

are stored. And with offline replay-based iterative compilation, aggressive optimiza-

tion is performed without ever negatively affecting the users. Finally, with crowd-

sourcing, these offline evaluation efforts are split amongst different users. The next

section presents the challenges for a transparent input capture and replay mechanism.
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1.2 Obstacles for transparent input-capture mechanisms

There needs to be a mechanism able to capture real user inputs online and then replay

them offline under different optimization decisions. Not all of the existing approaches

capture enough information for reconstructing a process in a robust manner. This is

necessary for building an offline evaluation mechanism that uses the same input while

allowing the selection of different code to carry out the execution. And from the ap-

proaches that do capture enough information, none is designed around a low-latency

execution environment.

Such approaches are mainly divided into two categories. The first excessively in-

tercepts the execution as a means of capturing the input at a fine-grain level. This

significantly reduces the capture sizes but it causes unbearable overheads. The second

captures input at a coarser-grain level to minimize the online overheads, however, the

required storage explodes in size. Neither is good. At no time should a user experience

slowdowns from a system whose ultimate goal is to improve performance. In addition,

several captures of different code regions must easily fit on mobile devices, requiring

little amounts of storage.

1.3 Contributions

This thesis enables aggressive code optimization on the highly-restricted mobile envi-

ronment. It is input-driven, user-transparent, requires no developer effort, and can split

the offline optimization search efforts amongst several users. These are accomplished

through the below key contributions:

• Input capture mechanisms for C functions and Android application code regions.

The proposed mechanisms capture inputs of targeted code at different granular-

ity to address the challenges described in Section 1.2. The proposed approaches

are lightweight enough to remain unnoticeable from the users. Captures happen

infrequently and a single one is enough to drive code optimization. On average,

the presented approaches that minimize the capture sizes require 2ms for C pro-

grams and 15ms for Android applications (Chapters 4 and 6 respectively), while

the full capture Android approach requires less than 5ms. Regarding storage,

capturing just the input pages on Android requires 5.06MB of storage on aver-

age. This amounts to only 6% of the application’s total runtime heap memory.

For the more lightweight C runtime, programs required storage between 100KB
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and 200KB, which is at least two orders of magnitude less of the program’s to-

tal virtual memory. The reachable object intersection captures of Android hot

regions decreases the storage requirements by an additional 64%. Once opti-

mization is finished the capture is discarded. Given such low online overheads

that require just a small amount of transient storage, the proposed approach is

suitable even for low-end devices.

• A replay-based evaluation mechanism of different code types and code versions

that gracefully handles the issues of both offline and online iterative compila-

tion approaches, as described in Section 1.1. Each replay operates in the same

environment using the same input from an originally captured execution. This

makes comparisons between different code transformations both sound and rep-

resentative of real user usage. As they happen offline, when the device is idle

and charged, any suboptimal or erroneously optimized evaluations are discarded

without ever causing an inconvenience to the user. With dynamic profiling infor-

mation, extracted offline, each evaluation is verified for correctness. Replaying

evaluations offline allows setting a tighter control over the device environment.

This, combined with robust statistical methodologies, makes execution noise

manageable in the inherently noisy mobile environment.

• A novel iterative compilation system that aggressively optimizes programs for

specific devices, without requiring any developer effort or having a negative im-

pact on the user experience. It uses lightweight online input captures to perform

a replay-based offline iterative compilation, which avoids the shortcomings and

enjoys the benefits of the purely offline and online approaches, presented in Sec-

tion 1.1. With a random search, C programs were improved by 29%. Android

applications, however, had a very limited transformation space to begin with.

A novel LLVM backend for Dalvik code was implemented to that end. On its

own, the backend improved applications by 7%. When combined with a genetic

search and a custom replay-based iterative compilation, applications were im-

proved by 44%. Just 6% less of that was achieved with crowd-sourcing, which

required just a fraction of the time as the search was performed collaboratively

between several users.
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1.4 Publications

Some of the methodologies and the findings in this thesis have been published to the

below conferences:

• Iterative compilation on mobile devices.
Paschalis Mpeis, Pavlos Petoumenos, and Hugh Leather.
ADAPT, HiPEAC (2016), [MPE+16]

• Developer and user-transparent compiler optimization for interactive applications.
Paschalis Mpeis, Pavlos Petoumenos, Kim Hazelwood, and Hugh Leather.
PLDI (2021) [MPE+21]

• Object Intersection Captures on Interactive Apps to Drive a Crowd-Sourced Replay-
Based Compiler Optimization.
Paschalis Mpeis, Pavlos Petoumenos, Kim Hazelwood, and Hugh Leather.
{under submission to TACO Journal}

The source code of the LLVM backend was published as open source software:

• Experimental LLVM backend for Android applications.
GitHub, Apache2.0 license. [MPE21]

1.5 Thesis Structure

This section outlines the structure of the remainder chapters of this thesis.

Chapter 2 provides the required technical background and some fundamental con-

cepts that have been employed throughout this thesis, for either developing solutions

or evaluating them.

Chapter 3 surveys the relevant literature around the topics of iterative compilation,

compiler optimization, as well capture and replay approaches.

Chapter 4 presents a novel approach that makes iterative compilation practical on mo-

bile devices. Initially, it infrequently captures real user inputs online, without causing

noticeable overheads to the users. Then, with a replay-based offline iterative compila-

tion it searches for better code transformations through random search. It can readily

optimize the most time-consuming function of a C program.

Chapter 5 presents the first backend alternative to the default Android one that is

able to generate LLVM bitcode from Dalvik code. It extends the severely limited
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optimization space of Android to unlock aggressive code optimization. Additionally,

it automatically detects code regions that are worth optimizing. It supports multiple

code regions as well multiple methods within those regions. Finally, it implements

some Android-specific optimization passes.

Chapter 6 presents two input capture mechanisms that operate at a different granu-

larity and support the more complex Android runtime. Captures are postponed when

high-impact events are imminent. Code regions that can be accurately replayed are

automatically detected. A novel replay mechanism was also developed, able to replay

different code types. It also works well alongside memory-shuffling security mecha-

nisms. It utilizes the LLVM backend (Chapter 5) for iterative compilation driven by

a genetic search. With dynamic profiling data, extracted offline, it further optimizes

the code and verifies its correctness. Finally, with crowd-sourcing, it splits the offline

evaluation efforts among different users.

Chapter 7 summarizes the findings of this thesis, provides a critical review of the

presented work, and outlines interesting future directions.

1.6 Summary

To enable aggressive compiler optimization for mobile devices any approach must

evaluate different optimization strategies. Both offline and online approaches are un-

suitable for the task. Offline approaches require representative user inputs, applica-

tions, and system/hardware configurations. Online approaches casually introduce sig-

nificant overheads, faulty executions, or require a ridiculous amount of evaluations due

to changing inputs. Existing approaches are either impracticable or significantly af-

fect the user experience. The next chapter presents the relevant technical background,

followed by a literature review. The following three chapters present methodologies

developed to address the above problems.





Chapter 2

Background

2.1 Introduction

This chapter presents some fundamental concepts and details the relevant technical

background to this thesis. Section 2.2 describes the compilation technologies and

methodologies used by the rest of the chapters. Sections 2.3 and 2.4 present relevant

information for the Linux and Android operating systems respectively. Section 2.5 de-

scribes the basic mechanisms behind capture and replay frameworks, and Section 2.6

explains the statistical methodology that was used by the proposed systems or by their

experimental evaluations. Finally, Section 2.7 concludes this chapter.

2.2 Compilers and optimization

Compiler is a program able to transform the source code of another program to a new

format. In many cases that format is a binary representation. Modern compilers consist

of front-ends, middle-ends, and back-ends. A front-end performs syntax and semantic

verification and creates an Intermediate Representation (IR) which is then passed to

the middle-end. The middle-end applies optimizations on the IR and then passes its

output to the back-end. The back-end lowers the code while applying architectural or

processor specific optimizations and finally outputs code for a target machine. A com-

piler infrastructure might incorporate multiple front-ends and back-ends for supporting

different programming languages and architectures respectively. A modern compiler

might also provide a comprehensive Application Programming Interface (API) to fa-

cilitate third-party development of additional front-ends and back-ends, or the creation

of custom passes used for analysis and optimization.

13
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An optimization pass is a code transformation that is applied while the source code

is being transformed from one format to another, aiming to improve particular aspects

of the new format. It might require multiple passes over the source code, some of

which could be just for collecting auxiliary information through code analysis. Trans-

formation passes are most commonly applied on a program’s source code as a means

of improving its performance or for reducing its overall size. Due to the diversity in

programs, a transformation can very well have a neutral or a negative effect on such

aspects, which is why compilers provide a way to enable or disable particular passes

through a known set of optimization flags. For a greater control over the transforma-

tions, these flags can accept parameters for fine tuning the internal compiler heuristics,

e.g. by explicitly instructing the compiler to limit the maximum number of times that

a loop is allowed to be unrolled. Well established compilers have a plethora of such

optimizations.

Optimization flags are often clustered to different optimization levels. Usually there

are 4 levels, ranging from -O0 to -O3. Level -O0 does not perform any code opti-

mizations. Level -O1 applies optimizations that commonly increase performance and

reduce the binary size. Level -O2 is a super-set of the first level as it applies some ad-

ditional, more sophisticated code transformations. The outcome can be more effective

at the cost of higher compilation times. Level -O3 performs even more aggressive opti-

mizations. There is a chance, however, that some of those passes might have a negative

impact instead. There can be additional levels specific for code size reductions, or for

faster mathematical operations (e.g., by trading-off floating-point accuracy).

The optimization space of a compiler comprises all the valid sequences that can

be generated by combining flags that trigger analysis or transformation passes. A

valid sequence generates a binary that once executed produces a correct outcome. A

sequence may contain an arbitrary number of optimization combinations and their tun-

ing parameters. The order within a sequence can be significant, which is known as the

phase ordering problem [ALM+03; COO+02a]. Searching such enormous spaces is

not something trivial. For example, the GCC compiler [GCC20a] has more than 200

optimizations, excluding the architecture specific ones. If assumed that the ordering

is insignificant and that no additional parameters are accepted, such space has a stag-

gering 2200 points. A compiler expert that has studied well the sources of a specific

version of a program might be able to hand-pick from such space. This, however, can

be quite expensive in both terms of money and time.

A multitude of techniques were developed that leverage a compiler’s capabilities
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to ultimately generate optimized code. Profiling is one such technique that gathers

runtime information of a program. One way to extract profiling data of a program is to

use code instrumentation. Such data might contain the number of times a basic block

is executed, or measurements from hardware performance counters of the Central Pro-

cessing Unit (CPU). These counters are built into the hardware and describe various

events like the instructions executed or the cache misses. Tracing is another technique

that gathers profiling information regarding the execution path that was followed in a

program. It can be implemented either by code instrumentation or by sampling the

call stack. The former leads to accurate findings, i.e., can calculate the exact number

of times a method was invoked. As this comes with high overheads, the placement of

instrumentation is quite important [BAL+94]. The latter incurs less overhead at the

cost of decreased accuracy [WHA00], i.e., can estimate which methods the program

spends most of its time executing.

2.2.1 Iterative compilation

Iterative compilation [AAR+97; COO+05; KNI+01; LIM+13] is an optimization tech-

nique that undertakes the task of exploring the code optimization space of a compiler.

Its goal is to find the best optimization sequence for a particular application. The tech-

nique can focus on improving particular aspects of a program like the performance, the

code size, or the energy consumption.

A search algorithm explores the optimization space of a compiler to discover better

optimization strategies by constructing flag sequences. Those sequences are used to

compile an application. Afterwards, the application runs and some execution data are

logged. This procedure is repeated and the execution logs are compared between them

so the technique can deduce the best optimization strategy discovered through search.

Iterative compilation outperforms static optimization approaches as it benefits from

dynamic information. To provide any guarantees for its findings though, it might have

to exhaustively search the optimization space. Additionally, it incurs high overheads

that might be prohibitively expensive, depending on the application domain. Last but

not least, the noise in the timings can further complicate evaluations and comparisons.

The number of times the technique has to iterate depends on the search space.

As it is quite large many approaches have manually pruned it [FUR+02; KIS+99].

Various search algorithms have been developed, from naive randomized approaches

to sophisticated machine learning algorithms [AGA+06; LEA+09a; OGI+17]. Other
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approaches have used profiling information to guide the search algorithms [BOD+98;

SAM16].

Despite the efforts of the research community there are still many unresolved is-

sues when it comes to the applicability and effectiveness of iterative compilation. The

optimization search has to consider several factors. Some of which include the dif-

ferent hardware architectures, changes in the inputs of a program, or even changes in

the program itself. A literature overview of iterative compilation frameworks can be

found in Chapter 3. While the described frameworks tackle some of the known issues,

none of them is applicable for the domain of mobile devices. In such an environment

the programs are frequently updated, the user input can change frequently, and the

high overheads of iterative compilation must not hog the limited processing and power

resources of the device.

2.2.2 LLVM compiler infrastructure

LLVM is a compiler infrastructure that was originally developed at the University of

Illinois [LLV20a]. It allows performing optimizations at various phases of a program,

like during execution, idling, compilation, or linking. The optimizations are applied

to a program through a set of passes [LLV21b] over its source code. Passes are clas-

sified into two main categories. The first one contains the analysis passes that gather

information about the program. The second one, contains transformation passes that

perform code optimization. Most of the transformation passes rely on information

from a previously executed analysis pass.

LLVM supports a variety of front-end programming languages and back-end ma-

chine architectures. It also provides a rich set of compilation libraries, tools, and tool-

chains that allow the development of additional back-ends or front-ends. The tools

used for the implementation of this thesis are described below.

Clang compiler: an LLVM front-end [CLA20] that supports the C programming lan-

guages family (C/C++, Objective-C/C++). clang is mostly compatible [CLA21] with

the GCC compiler driver [GCC20a].

llvm-link tool: a linker at the LLVM bitcode level. It takes as an input several bitcode

files and links them to a single output bitcode file.

opt tool: an interface to the LLVM analysis and optimization passes. It takes LLVM
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bitcode as an input, runs one or more passes, and finally emits either the analysis results

or the optimized bitcode.

llc tool: an assembler that translates the LLVM bitcode to a binary object file. This

contains machine language for a particular architecture and (optionally) a processor.

llc can apply architectural or CPU specific optimizations.

lld tool: a faster drop-in replacement linker for GCC’s linker that can also be useful for

tool-chain developers. It takes as input machine code from one or more binary object

files, links them together, and outputs either a library (shared object) or an executable.

It may optionally link the output object file against other libraries.

2.3 Linux kernel

Linux is a Unix-like OS that is Free and Open Source Software (FOSS). It is the leading

OS on servers, runs on most mobile devices, and has the largest overall installed base.

The remainder of this section describes some of its components that are relevant to this

thesis.

fork and Copy-on-Write: fork is a system call that duplicates an original process.

The original process is called the parent and the duplicated one the child. Both pro-

cesses have separate Virtual Memory Areas (VMAs), which initially point to the same

set of physical pages. A page is duplicated only when either of the processes wants to

modify a common physical page. This is done through the Copy-on-Write mechanism,

transparently and efficiently in the kernel space.

/proc interface: is a pseudo-filesystem that provides an interface (through common

files) to internal data structures of the kernel. Some of these files are writable to allow

controlling or tuning several of the kernel parameters. A process can access its own

VMA mappings and their access permissions by reading the /proc/self/maps, where

self points to the current process id.

Address Space Layout Randomization (ASLR): is a security mechanism that aims

to mitigate exploitation against memory-corruption vulnerabilities. It was originally

developed by Linux, but since then it was implemented in all major OSes. When

loading a program for execution, ASLR ensures that its binary segments (including
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heap, stack, and libraries) are placed into random VMAs, making them hard to predict

during attacks.

2.4 Android mobile OS

Android is a FOSS mobile OS that runs on top of the Linux kernel. Its code base is

known as the Android Open Source Project (AOSP). It consists of several modules that

are all compiled together using the Soong Build System [GOO20f]. Android supports

a variety of devices, mostly mobile, that come with limited processing and battery

resources. The remainder of this section describes the parts of Android that were used

or extended during the implementation of the systems described in this thesis.

2.4.1 Android Applications

Android applications are typically written using Java [ORA20] or the more concise

Kotlin [JET20] programming languages. The original source code is compiled into

Dalvik bytecode and stored following the DEX file format. DEX files can be exe-

cuted on the register-based Dalvik Virtual Machine (DVM). They are compressed and

archived into zip files named Android Application Packages (APKs), along with ad-

ditional multimedia and metadata resources. An APK can then be distributed through

online application stores, like the Google Play Store [GOO21b].

APK files might also contain pre-compiled shared libraries for particular architec-

tures, written using the C/C++ native languages. Mobile developers can utilize the

Native Development Kit (NDK) to create such libraries. The interaction between the

native code and the Android RunTime (ART) is done through the Java Native Interface

(JNI). The CPU intensive methods of an application are typically written into JNI as

the default Android code is not as optimized. The NDK code is linked against the

bionic library [GOO21a], which is an optimized version of the C runtime for Android.

While it is recommended to use the bionic library with the NDK and Android applica-

tions, it is also possible to use it for external, standalone C programs as well (like the

benchmarks used in Chapter 4).

2.4.2 Android Runtime (ART) and compiler

The Android RunTime (ART) is the environment that executes Android applications.

During execution, each application is sand-boxed to ensure that it operates within its
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requested permissions and also that it does not strain the limited computing resources.

The Android compiler is responsible for verifying an application’s bytecode and for

translating parts of it to native code. It also generates any scaffolding code required

for JNI calls. The remainder of this subsection goes into more detail on the internals

of the runtime and the compiler.

2.4.2.1 Compilation strategy adaptations

During the course of this research the Android compilation strategy has undergone

several dramatic shifts. The current version of the compiler is in-line with the proposed

approaches: it may consult profiling data, which are incrementally generated, to restrict

the amount of code that will be compiled. It supports both Just In Time (JIT) and Ahead

Of Time (AOT) compilation.

In the early days, all of the code was interpreted by a DVM. A dex-to-dex compi-

lation pass was applying a few pattern-matching improvements. Then, a JIT compiler

was introduced [AND21a] that transformed the frequently executed code traces from

bytecode to architectural-specific code. Essentially, it was doing line-to-line transla-

tion to machine code instructions for select code traces. Those were limited within

basic blocks, which is a significant limitation in code optimization [COO+86b].

Quick backend.
Full AOT compilation support was introduced with the quick backend. The process

was initiated with the dex2oat compiler driver. On application installs or updates,

dex2oat would AOT compile all of the bytecode found in its APK. The resulting ma-

chine code would be packed in a file, called OAT [AND21c], which adheres to the

Executable and Linkable Format (ELF) file structure. This has increased performance

due to native execution instead of interpretation. However, by keeping the original

bytecode and also translating all of it down to architectural specific machine code, it

required significantly more storage space. Keeping the bytecode was necessary for

debug metadata, as well interpretation in special cases. Another disadvantage was the

extra time needed for AOT compiling everything. This was especially noticeable dur-

ing the Over The Air (OTA) software updates, where a full recompilation of all device

applications was triggered. This operation casually needed several minutes, close to

an hour for some cases. The default compilation strategy was to compile everything.

On low-end devices, the compiler had to restrict the amount of the generated native
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code in order to keep supporting them. This was reducing the high compilation times

and conserving internal flash memory space. The quick backend did not apply any

sophisticated transformations. It was simply expanding the line-to-line translation of

the JIT compiler beyond basic blocks.

Optimizing backend.
Then a more sophisticated backend was introduced, named optimizing. It uses the same

calling convention with the quick backend. As it required more time for compilations,

optimizing was eventually restricted to methods that were found through a profiler. The

intermediate representation of this backend is named HGraph and there is no an API

for it. An example IR is shown at Listing 2.1.

This approach became in line with the compilation approaches presented in Chap-

ters 4 through 6. That is, to put more compilation effort to the methods that dominate

execution time.

1 BasicBlock 0, succ: 1

2 0: ParameterValue [3]

3 1: SuspendCheck

4 2: Goto 1

5 BasicBlock 1, pred: 0, succ: 2

6 3: InstanceFieldGet(0) [4]

7 4: Return(3)

8 BasicBlock 2, pred: 1

9 5: Exit

Listing 2.1: The HGraph IR of an instance method that returns a field of its class. The

field getter is invoked at line 6. Some additional code is generated in this case, like

the exit block (line 8-9) that never gets reached, and a check call for operations that

require suspending the execution, like the garbage collection (line 3).

2.4.2.2 Method execution

ART may execute a method of an application using interpretation or native execution.

For the latter, the code could either be Java Native Interface (JNI) code, or code that

was generated either by the quick or optimizing backends. How a method is executed

depends on several factors, some set ahead of time and some at run time. These include

compilation settings, debug configuration, or runtime information. In ART, the class

representing an Android method object is named ArtMethod.
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2.4.2.3 Runtime optimizations

ART pre-initializes a set of relevant libraries and a heap of objects that are extensively

used by most Android applications. Those are stored in special binary files named

boot.oat and boot.art respectively. Android leverages memory optimizations on

Linux to share common resources to multiple applications. When a device boots, a

special process named zygote initializes the commonly used objects or classes. After-

wards, when applications are launched, zygote is forked and specialized. This saves

both memory and initialization time.

2.5 Capture and replay

Capture and Replay (CR) frameworks have two fundamental phases. During the first

phase, any relevant state of a program is captured to permanent storage. A snapshot

is another term for a capture. It contains any process state that is needed for accu-

rately replaying the original process. On the program’s original execution, that process

state resided on the main and processor memory. Regarding the main memory, the

state could either be in the user or kernel level spaces. Regarding the processor mem-

ory, that state is the register values. The second phase, called a replay or a restore,

loads the stored state of a previously captured execution. This is done by filling the

main memory areas, as well the processor’s registers with the captured data. Then it

proceeds by re-executing the code of the captured program.

There are many use cases for a CR system. One is for process migration [JAN+05].

First, the state of a process is stored on disk before it terminates. Then, the captured

state is transferred to another machine and is loaded into a new process. The ability to

replay a process is also widely used in debugging and testing systems. If a bug can be

reproduced by a replay, then the error’s source can readily be spotted. Some systems

employ CR to increase fault tolerance by preventing bugs from reoccurring. Other

systems that automate testing use replaying to stress test programs [LEI+09; ORS+05].

Chapter 3 describes several CR systems proposed in the literature. Nonetheless, none

have tried to fuse CR with aggressive compiler optimization, in a way that works well

on mobile environments.
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2.6 Statistical methodology

This thesis uses various statistical techniques to cope with the inherently noisy environ-

ment of mobile devices. Background services, caching mechanisms, CPU scheduling,

are some of the factors that contribute to a noisy environment. Such statistical tech-

niques have not been employed only during the experimental evaluation, but were also

used during the optimization search of the approaches presented in Chapters 4 and 6.

When a program is executed the proposed approaches log an observation. Many of

such observations constitute a sample. Many samples, that cover every characteristic

that one would like to understand, constitute a population. The population size is

commonly denoted with an N.

The mean (µ) of the sample is the sum of all the sample’s observations divided

by the sample’s size. The true mean is the mean of the distribution. The variance

of a sample is the average of the observations’ square differences from the mean. It

shows how spread, from the mean, the observations are. The standard deviation (σ)

is the square root of the variance and it is shown in Equation 2.1. The population

size is N and xi are the individual values from the population. If a sample follows a

normal distribution it means that most of its observations are around the mean, while

the rest of the observations follow a symmetrical fashion. The histogram of a normally

distributed sample is known as a bell curve 2.1.

σ =

√
∑( xi−µ)2

N
(2.1)

2.6.1 Outliers

An outlier, is an observation that it is widely separated from the main body of the

distribution. In a mobile environment several factors might cause an outlier. Such

observations can significantly skew the mean of the sample from the true mean. To

remove any outliers the interquartile range method was used, which is shown on the

Equation 2.2 and explained below.

Lower f ence : Q1− c∗ IQR

U pper f ence : Q3+ c∗ IQR
(2.2)

The observations of a distribution can be grouped into 4 equal sections, called

quartiles. The lower quartile (denoted as Q1) is the point where it is greater than
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Figure 2.1: The histogram of a normally distributed sample with a density curve drawn

on top of it. For normal distributions the density curve resembles a bell, as most of the

observations lie around the mean.

the 25% of the sample’s observations. Similarly, the upper quartile (denoted as Q3)

is the point that it is smaller than the 25% of the sample’s observations. Some of

the observations that are smaller than the Q1 or greater than the Q3 can potentially

be outliers. To detect outliers, this technique sets two fences: upper and lower. Any

observations that exceed them are considered as outliers. The interquartile range value

(denoted as IQR) can be calculated by subtracting the Q3 with the Q1. The constant

value, denoted as c, was set to 1.5.
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2.6.2 Confidence intervals

Confidence intervals are calculated from the observations of a sample and they try to

give a reliable estimate for a population’s parameter. The occurrence frequency of the

parameter within the confidence intervals can be modified by setting a confidence level.

On applicable experiments, two-sided confidence intervals were used. These are lower

and upper fences to the mean of samples, as shown by Equation 2.3. X̄ denotes the

sample mean, and it adds and subtracts the margin of error. The critical value (ζ) is

set according to the desired confidence level, the degrees of freedom (D f = N−1), and

alpha (α) that is computed by subtracting the confidence level from 1.

X̄± zα/2
σ√
n (2.3)

2.6.3 Statistical tests

For statistically sound comparisons the two-sided Student’s t-test was used. It is a

statistical test that decides whether the means of two different samples are significantly

different. A null and an alternative hypothesis have to be set. The null hypothesis is

the one that it is desired to be rejected, i.e. the means of the two samples are the same.

Rejecting the null hypothesis means that the alternative hypothesis is accepted, i.e. the

means of the samples are significantly different. Also a confidence level has to be set.

This test requires the samples to follow a normal distribution. The minimum sample

size required by the test is 2 observations. The tests that were used in the proposed

approaches did not assume equal variances of the samples.

Rejecting the null hypothesis does not necessarily mean that the two means are

equal. To argue equivalency two one-sided Student’s t-tests have to be conducted. This

answers whether the difference of the two means is smaller than a constant value. That

value is set by the user and it is called the indifference region. The null hypothesis of

the first test claims that the difference of the two means is smaller than the indifference

region, while the alternative hypothesis supports the opposite. The null hypothesis

of the second test, claims that the difference of the two means is greater than the in-

difference region, while the alternative hypothesis supports the opposite. If both null

hypotheses are rejected, then there is statistical evidence that the two means are equal.

This is because the accepted alternative hypotheses will support that the difference of

the two means falls within the indifference region. The confidence level of the tost test

was set to 90%, since two one-sided t-tests with 95% confidence level were used.
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2.7 Summary

This chapter provided the technical background and some fundamental concepts that

have been employed throughout this thesis. Those relate to compiler optimization

techniques, the LLVM compiler infrastructure, relevant areas of Linux and Android

OSes, to capture and replay basic concepts, and finally to the employed statistical

methodologies. The following chapter presents a literature review that is relevant to

this thesis.





Chapter 3

Related work

3.1 Introduction

This chapter presents a literature review that is relevant to this thesis. It is focused

on two distinct research areas: iterative compilation, and capture and replay systems.

Section 3.2 surveys the research field of iterative compilation and code optimization

approaches. Section 3.3 reviews research on capture and replay systems. Section 3.4

provides the concluding remarks of this chapter.

3.2 Iterative compilation and optimization systems

This section briefly describes several iterative compilation and code optimization ap-

proaches. These include exhaustive search, space-pruning techniques, simple random

approaches, genetic algorithms, online approaches, and machine-learning approaches.

3.2.1 Early approaches

Early iterative compilation systems [GOR+02; LEE+99; MAS87] targeted specific em-

bedded applications. For those systems, the target architecture, the program’s source

code, and the input are all fixed. Better code is discovered with either an one-time

exhaustive optimization search or with a manual hand-tuning performed by a compiler

expert. These are quite costly approaches by today’s standards, in terms of both time

and money. Modern compilers come with a myriad of optimizations and heuristics,

while there are several target architectures and processor designs.

27
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3.2.2 Accelerating search and evaluation through space pruning

Then, several space-pruning approaches were developed to tackle the ever-growing

code transformation space. Some approaches focused only to particular optimization

categories (e.g., loops), while others tried to exclude some of the areas speculated as

non-beneficial.

An approach by Fursin et al. [FUR+02] performs an isolated search for 3 distinct

loop optimizations: padding, tiling, and unrolling. Once the search concludes, the

best findings for each optimization return. Additionally, it generates optimization se-

quences from the findings, as a means of investigating any possible inter-dependencies

between the 3 optimization passes.

Some other approaches rely on static analysis data to reduce the required time for

searching. Such data allow pruning the less rewarding areas of the transformation

space, risking however the exclusion of the optimal solution [SAM16]. An approach

by Bodin et al. [BOD+98] visits only particular points in space as it favors the ones with

higher performance. Kisuki et al. [KIS+99] have presented three search algorithms, the

first of which is similar to the previous approach [BOD+98]. It applies a coarse grid

over the space and iteratively focuses on the rewarding transformations. The second

one chooses a random point in the space and samples the neighboring points. The last

one is a purely random search. In later works [KIS+00], the authors have improved

the grid-based algorithm by focusing only on areas that are within acceptable distances

from the best findings. Still, the search concerns no more than 3 loop optimizations.

Quoting the authors, for embedded programs the offline compilation and evaluation

overheads will “be amortized over the number of systems shipped and the lifetime

of the application”. On mobile devices, however, offline evaluation is not an option

unless the application developers provide a set of neatly packed representative inputs.

In an online scenario, even a single slow or erroneous evaluation can be detrimental to

the user experience. To make matters worse, mobile application code is updated quite

frequently. Given such a short lifetime of application code versions, these side-effects

will have to be repeatedly endured by the users.

COSPpp [LIM+13] is another space pruning technique that searches for optimiza-

tions based on the similarities between programs. Initially, a subset of the optimization

space and a set of programs is used to generate some profiling data. These consist of

hardware performance metrics of two versions of each program. One that is not opti-

mized and another that is optimized with randomly chosen transformation sequences.
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These metrics have proved in the past that they can accurately identify the performance

bottlenecks of programs [UHS+08]. When a new program is encountered, a similar-

ity algorithm compares their performance metrics with the profiling data to drive the

selection of transformations. However, if the initial set of programs or the subset of

the optimization space are not representative in regards to the newly encountered pro-

grams, the selection process would be flawed.

Other approaches have tried to quickly achieve decent but not optimal performance.

The work of Parello et al [PAR+04] aims at steady performance gains across iterations.

A decision tree is built, to which runtime statistics are then fed to drive a transformation

search. Hardware performance counters have been used to extract some statistics, in

a similar way with other systems [LIM+13; LU+04; PAR+11]. On each iteration the

extracted data improves. However, building a decision tree for a particular processor

requires significant effort. The authors have been hand-tuning a set of benchmarks for

several months.

The approach by Purini et al. [PUR+13] aims to create more compiler optimiza-

tions classes than the predefined ones. For example, some compilers have a handful of

standard optimization levels, like the -O1 to -O3 found in GCC. The authors argue that

having a bigger set of classes would yield better results. The number of classes in the

set should be large enough so that every newly encountered program will have at least

one good sequence. Similarly with other works [LIM+13], an initial set of programs

and transformations is picked. Then, by using a similarity metric and sequence clus-

tering algorithms, new transformation-sequence classes are generated. Those can then

be searched without a significant cost. While the findings outperform the predefined

optimization levels, they still lag behind fine-tuning approaches.

Cohen et at. [COH+05] argues that significant performance gains are the result of

complex transformation sequences. To discover more sophisticated sequences they

render the optimization space using a polyhedral representation. This simplifies the

traversal, as the polyhedron encodes the order of code transformations in the repre-

sentation. Any invalid sequences are ruled out. The authors also try to untangle the

interference between different transformations by dividing them into categories based

on the components they modify. These components include: the iteration domain, the

access functions, the data layout, and the scheduling of individual instructions. On the

down side, the proposed approach relies heavily on manual intervention. For example,

the detection of the targeted code regions, or the correctness evaluation of the tested

transformations are performed manually.
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Other approaches [CHE+12; FAN+15] have exploited the Map-Reduce paradigm

to split the evaluation workload in order to accelerate the optimization search in data

centers. A main node instructs several working nodes to evaluate different transfor-

mations. The findings are reported back to the main node in order to advance the

search process. One problem is that the message interception between the main and

the worker nodes can incur high storage overheads for mobile devices. Another, is that

both approaches are applicable only to workloads that are known to operate well in a

Map-Reduce environment.

3.2.3 Genetic Algorithm approaches

To progressively avoid slow code transformations several self-adapting algorithms

have been developed. Almagor et al. [ALM+03] utilized data after exhaustively search-

ing the space as a means of understanding its properties. During the analysis they dis-

covered several local minima, with most of those falling within a 20% of the true opti-

mum. Therefore, they developed a GA, which they improved in their later works [ALM+04]

by removing a handful of weak genomes. They also employ a hill climbing algorithm,

which performs shallower local exploration but with more random points in an attempt

to escape the local minimas. Finally, they have explored a greedy algorithm that views

the transformation space as a Directed Acyclic Graph (DAG) and descended from the

root towards nodes with higher fitness values. From the same research group, Cooper

et al. [COO+99] have also employed a GA for reducing the generated code size. In

later works [COO+02b], the authors have improved upon their hill climbing approach

by applying an adaptive sampling algorithm. This approach takes random samples

from the space, evaluates them, and keeps the statistics. Apart from code size, they

also consider performance and power consumption.

VISTA [KUL+03] is a system that provides an interactive interface for improving

embedded systems using different exploration algorithms. The first is an exhaustive

search, which is applicable only with sufficiently small search spaces. The second is

a GA that uses the number of executed instructions as its fitness function. As it is

explained later in this section, this is not always indicative of better performance. The

last is a permutation search that keeps the length of a sequence static and rearranges

the different flags.

Any approach described in this chapter so far, requires representative inputs in

order to be performed offline. Online evaluation approaches on the other hand, utilize
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real inputs that are user representative by definition. Nevertheless, they bring a whole

new set of problems as explained in the next subsection.

3.2.4 Online approaches

Some online approaches were also developed to tackle some of the unresolved issues.

Fursin et al. [FUR+05] utilizes online phases for speeding up the evaluation of different

transformations. A phase is a time period where the performance for a particular trace

of code remains stable. Therefore, it is both feasible and fair to compare multiple

transformations within a single phase. Initially, a simple algorithm captures the phase

patterns of a program. Then a 3-stage procedure predicts the start of a phase, evaluates

some transformations, and finally verifies that the evaluations happened within the

predicted phase. The last 2 stages can be repeated as long as the program remains

at a particular phase. While such an online system would naturally tackle the input

variance, several points of the space can severely degrade the performance or even

crash the execution. This is why a severely limited subset of the space was used in this

system. Lastly, the main focus of this approach is to accelerate the optimization search.

In contrast, the ideas described in this thesis focus on the performance improvement of

the input programs.

ADORE [LU+04] is another system that exploits a program’s online phases. In

contrast with the previous approaches, ADORE does not iteratively compile. Instead,

it utilizes hardware performance counters to apply its own optimizations: dynamic

register allocation and cache pre-fetching. Its phase detection algorithm continuously

reads measurements from various performance counters in a separate thread from the

main one. When major phase changes are detected, dynamic optimization is applied

to the relevant code traces. As both the phase detection and the dynamic optimization

happen online, this approach incurs considerable overheads for a mobile environment.

In any case, several factors can arbitrarily affect the performance stability in a low-

latency interactive environment, making both phase-prediction approaches [FUR+05;

LU+04] unsuitable for mobile devices.

Dynamo [BAL+00] is another dynamic optimization approach that operates at run-

time. It interprets binaries to dynamically generate optimized native streams. Due to its

online operation, any incurred overheads should not overshadow its potential perfor-

mance gains. Therefore, the optimization effort as well the amount of code it processes

is severely limited. ADAPT [VOS+01] is a competitive approach that tries to decouple
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the overheads from the critical execution path by offloading optimization to idling pro-

cessors or to background threads. In a mobile environment this still consumes precious

processing and energy resources. On top of that, ADAPT relies on manual heuristic

tuning.

3.2.5 Machine learning approaches

Several researchers [AGA+06; CAV+07; CUM+18; FUR+09; KUL+12; LEA+09a]

have employed machine learning to speedup the space exploration, improve the find-

ings, or both. These approaches improve over the GA approaches, as those have to

start afresh for each new program or even segments within a program. The acquired

knowledge is encoded into a model that is inexpensive to operate on newly encoun-

tered programs, while achieving good results. On the other hand, machine learning

approaches require lengthy offline training phases over a set of representative applica-

tions and inputs. Milepost GCC [FUR+08] is a system that integrates machine learning

capabilities to the well-established GCC compiler infrastructure. It aims to automate

the construction of optimizing compilers on general-purpose programming. It focuses

on performance, code size, and energy efficiency.

Cavazos et al. [CAV+07] used logistic regression for predictive modeling. Their

model maps hardware performance counters to beneficial code transformations. It was

found to be particularly effective for applications that had a complicated control flow.

As other researchers noted [ALM+03; COO+02a], the order as well the repetition of

particular flags or flag sequences can alter the quality of any subsequently applied

transformations.

Park et at [PAR+11] have employed linear regression and supervised learning to

predict good optimizations for programs. During training, multiple evaluations are

performed on a set of different input programs to generate three models. On each eval-

uation, a random optimization sequence is used and its performance statistics are col-

lected. Those come from around 30 hardware performance counters. The first model

outputs a prediction regarding the performance of each transformation. The second

one also outputs a prediction given an input transformation sequence complementary

to the performance counters. The third model considers two transformations and pre-

dicts the best performing one. Furthermore, it operates on a restricted transformation

space (e.g., 45 boolean flags) when compared to highly optimizing compilers.

Agakov et al. [AGA+06] have attempted to accelerate the optimization search by
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focusing on areas that are more likely to be beneficial. An initial exhaustive search is

performed on two different platforms as a means of characterizing the space. The pro-

posed approach uses two models. The first is a simple model that considers the product

of the probabilities of all individual transformations in a given sequence. The second

and more sophisticated model utilizes a stationary Markov chain. This considers any

side-effects or inter-dependencies between different optimizations, as the probability

of applying a transformation depends on the previously applied ones.

Ashouri et al. [ASH+17] have tried to mitigate the phase ordering problem by or-

ganizing passes into multiple clusters, instead of trying to find their optimal order by

considering them individually. This significantly alleviates complexity. Applications

are characterized with a vector of dynamic features and are independent from target ar-

chitectures. This vector is encoded into a conventional fixed-length space which allows

traditional machine learning algorithms to be applied.

Kulkarni et al. [KUL+12] presented an approach more directly focused on solving

the phase ordering problem. It employs neuro-evolution to construct an Artificial Neu-

ral Network (ANN) from features found in a program’s methods, and uses it to predict

the most efficient optimization. Subsequently, the features are updated and fed again

to the ANN in order to predict the next optimization point.

Leather et at. [LEA+09a] argue that hand-crafted features are problematic. Some

features might be irrelevant while some others can be effective regardless of whether

they are combined with others. Additionally, the effectiveness of a particular set of

features can vary between different machine learning algorithms. Their solution uses a

hybrid grammatical evolution and genetic search to generate a set of features from the

Abstract Syntax Tree (AST) of a program. The system iteratively builds a list of good

features and utilizes machine learning for their evaluation. The training was focused

on loop unrolling and lasted 2 days.

Machine learning approaches generally require big training data-sets. Predictive

modeling in compiler optimization commonly used only a few well-known bench-

marks. To significantly increase the amount of input programs, Cummins et al. [CUM+17b]

have mined open source repositories and trained a Deep Neural Network (DNN) for

constructing artificial benchmarks. Then, the authors have trained a model over the ar-

tificial benchmarks, which outperforms approaches that use smaller but real data-sets.

In later works, Cummins et al. [CUM+17a] proposed DeepTune. It is an optimization

framework that employs DNNs to completely bypass a feature extraction phase. This

manual phase required human experts to select and tune relevant features. DeepTune
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instead, learns directly from raw source code. Therefore, it is agnostic to compiler,

platform, or optimization problems. It was applied for heterogeneous device mapping

and GPU thread coarsening.

While machine learning approaches significantly improve certain aspects of previ-

ous approaches, they require lengthy training phases that span from days to months.

And this, while most of them consider a fraction of the transformation space. In addi-

tion, offline training phases assume representative inputs.

3.2.6 Other approaches

Any approach that is based on iterative compilation (presented in Section 2.2.1) needs

to repeatedly compile, execute, and time code under different optimizations. Some

optimizations, however, might have substantially different runtime performance than

others. For such cases, a smaller number of evaluations suffices without compromising

statistical soundness. For the rest of the cases, where two code versions might exhibit

similar performance, an increased number of evaluations might be required. Raced

Profiles [LEA+09b] is a statistically robust approach that leverages this property and

utilizes dynamic sample sizes. The benefits against approaches that use fixed execu-

tion samples are twofold. First, sub-optimal code versions are quickly identified and

eliminated. As shown in Chapters 4 and 6, such versions may have a detrimental effect

on performance. Second, the sample sizes of fast and similarly performing versions

are increased, which improves the statistical confidence.

cTuning [FUR+09] is a framework with the aim of re-using auto-tuning tools and

crowd-sourcing of several code sources and meta-information. Its main objective is to

enable different researcher groups to re-use existing optimization knowledge in a uni-

fied and verifiable format. This will ultimately help them in understanding correlations

between similar applications, inputs, and hardware.

ACME [COO+05] have employed virtual executions as a means of reducing the

overheads of iterative compilation. A virtual execution runs the program once and

then makes performance predictions of different transformations without re-executing

the code. The initial run stores a profile of the program that contains the number

of instructions of each basic block, as well its execution frequency. Then, under the

assumption that differently compiled programs with the same input will follow the

same trace of basic blocks, it calculates the total number of instructions that will be

executed. The transformations that are predicted to perform best are the ones that
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result in the lowest number of instructions. However, this is not the case for many

optimizations. As an example, loop unrolling increases the number of instructions in an

effort to reduce loop-related overheads. Another drawback is that ACME cannot make

reliable predictions for transformations that modify the Control Flow Graph (CFG).

3.3 Capture and replay systems

Capture and replay systems is another well studied area with highly active research

and industrial communities. There is a wide variety of applications including auto-

matic test-case extraction, facilitating reproducible and cyclic debugging, process mi-

gration, speculative parallelization, and optimization. This section briefly summarizes

several systems from different domains and emphasizes on the components that are

most relevant to this thesis.

3.3.1 Approaches leveraging additional develop-time context

Some approaches leverage the additional data and flexibility available at the devel-

opment and debugging stages of an application. Leitner et al. [LEI+09] proposed a

technique to automate test case extraction through a CR system. In contrast with com-

petitive approaches [JHA+13; ORS+05; PAT+10; STE+00; XIA+12; XU+07a], an

application’s state is captured only at the point of a crash. During normal execution,

a relevant stack frame is copied on each call-site. If the execution is successful, this

shadow copy of the stack is discarded. Otherwise, any heap elements referenced by

the stack frame are deep-copied and finally all duplicated data are serialized to per-

manent storage. This approach minimizes online overheads as the bulk of the capture

operations only happen after a crash has occurred. The captured data can be restored

afterwards to reproduce the software crash as a means of accelerating the debugging

efforts.

Xia et al. [XIA+12] have proposed a technique that replays a program at an inter-

mediate stage. This enables correlations of program executions at different stages of

the compilation process. It facilitates the compiler writer in detecting software bugs

introduced by any potentially unsafe parallelization transformations. An alternative

approach by Hursey et al. [HUR+10] utilizes thread suspension to accelerate iterative

debugging of High-Performance Computing (HPC) applications. It provides the user

with consistent debugging data over several intermediate states through checkpoint and
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restart operations.

A major obstacle of any development time approach is their requirement to exe-

cute the input application under a special developing or debugging environment. This

additional context is not always available when optimizing applications released by

third party developers to online software stores. When it is available, it can severely

interfere with several code optimizations, which is the use case of the CR approaches

described in this thesis.

3.3.2 Intercepting code at the variable-level

PIN [LUK+05] is a dynamic instrumentation framework that is portable, transparent,

and architecture-independent. It copes well with mixed code or data, variable-length

instructions, and dynamically loaded or generated code. Several systems have been

developed since that are based on PIN. One such system is PinPlay [PAT+10], which

enables input capturing. It was designed for selecting and analyzing simulation check-

points and for facilitating reproducible debugging. By operating at the variable-level,

it minimizes the information that is captured to the absolute minimum that is necessary

for reproducing any non-deterministic events. This comes at a high cost. Every single

memory access needs to be intercepted. Afterwards, a replayer tool recreates the pre-

viously captured program state to enable offline analysis of large program executions

and repeatable analysis of parallel programs. In later works, Patil et al. have proposed

ELFie [PAT+21], a framework that precisely captures code regions and uses them to

create standalone executables. This accelerates analysis over long-running programs,

as the efforts can be focused only to specific portions during the replayed execution.

Once generated, the analysis can be used for simulation, native performance analy-

sis, and dynamic program analysis. ELFie also attempts to replay filesystem I/O, by

allowing write operations on file replicas without modifying the original files.

SCARPE [JOS+07] is a system that uses CR to automate extraction of real-user test

cases. It requires explicit annotation of an application’s subset that is desired to be cap-

tured. During captures, the annotated code will be instrumented to log its interactions

with the rest of the code. Four types of method invocations are logged: when external

or internal functions are called or returned. Additionally, four data interactions are

logged: read or write on external or internal data structures. During replay, the event

log is re-executed in the original order. For any external code there is scaffolding code

that mimics any relevant behavior. Guoqing Xu et al. [XU+07a] proposed another
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variable-granularity capture approach that operates purely at the language level and

was built specifically for Java. It improves over SCARPE as it employs static bytecode

analysis to identify and select application code subsets for capture and replay.

Approaches that rely on variable-level instrumentation can significantly decrease

the amount of captured data. Unfortunately, these savings trade off performance as

they commonly introduce considerable overheads. Such approaches are rendered im-

practicable under several scenarios, including ours that aims to be transparent on the

already limited, in terms of processing and battery sources, mobile environment.

3.3.3 Intercepting framework or peripheral I/O events

VALERA [HU+15] is a system targeting input streams on Android that does not require

kernel modifications. It operates on the Dalvik bytecode that is available through the

APK files of applications, therefore it does not require access to the original sources.

It supports several I/O devices such as the GPS sensor, the camera, or the network. It

relies on manual instrumentation and it is based on an outdated version of the Android

runtime that interprets all of the bytecode. This conceals to some extent the high

instrumentation overheads. In more recent versions of ART, where AOT compilation

realizes native executions, VALERA would incur significant slowdowns.

RERUN [GOM+13] is a time-sensitive record and replay system on Android that

does not modify the Android platform. It focuses on the peculiarities of touch-based

interactions. For example, it captures a touch gesture as a single contiguous action,

rather than as several distinct touch events. It can also replay low-level sensor events.

While it can be used to reproduce bugs or fast-forward executions, it does not store

enough information to recreate a process execution environment, even a partial one.

This makes RERUN unsuitable for standalone replayed executions and unfit as an eval-

uation mechanism of different code transformations.

jRapture [STE+00] is another system that aims to improve software quality by

extracting real-user test cases. It captures several interactions between a Java program

and the system including inputs from the Graphical User Interface (GUI), files, and the

console. Then, it replays those interactions on each captured thread in a time-sensitive

manner. It is heavily coupled to a particular Java implementation as it modifies the Java

API. This modification allows the authors to log certain actions during capture and

replay them afterwards. Similarly with the approach presented in Chapter 6, jRapture

additionally allows an application to be specially instrumented for offline, dynamic
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profiling during replays.

Jha et al. [JHA+13] has proposed another instrumentation-based approach for re-

producing crashes on Android applications. It is focused around the main architectural

blocks that are part of an application’s life-cycle. Those are: Activities, Services, Con-

tent Providers, and Broadcasts. This event-based approach serializes any in-memory

recorded events to permanent storage when a crash occurs.

By intercepting framework or peripheral I/O events, the above approaches can sup-

port specific cases of non-determinism that the proposed solutions in this thesis have

chosen not to. While such capabilities sound compelling, I/O bound code generally

does not respond well to compiler optimization, which is the goal of this thesis. In

addition, such event recording requires a significant amount of specialized instrumen-

tation, which can affect the users’ interactions in the low-latency mobile environment.

3.3.4 Using code-slicing to accelerate replays

Zhang et al. [ZHA+06] have employed dynamic slicing of long running programs to

accelerate the discovery of runtime bugs. The proposed approach prunes irrelevant

captured events, which speeds up replaying without affecting the accuracy of reproduc-

ing a failure. The dynamic slice of a variable is computed by finding all the executed

instructions that have contributed to its value. DrDebug [WAN+14] is another PIN-

based framework. It enables interactive debugging on multi-threaded programs and it

improves upon competitive approaches as it automatically identifies slices within cap-

tured code regions. It initially performs a static code analysis to generate the CFG and

finally extracts a slice by computing the immediate post dominators.

Xu et al. [XU+07b] proposed another technique that operates purely at the language

level through instrumentation, requiring no Java Virtual Machine (JVM) or OS mod-

ifications. With static bytecode analysis, regions that can be accurately replayed are

initially identified. Then, a user manually configures a checkpoint for capturing. Two

bytecode versions of the program are generated: the checkpointing version that stores

relevant runtime information, and the replay version that restores the captured infor-

mation. To set up the input of the replay, this approach follows the control flow from

the beginning of the program, eliminating any statements outside the execution path.

Additionally, it replaces predicates at control-decision making points with boolean val-

ues of the expected outcome. Despite such slicing, there could be scenarios where this

approach can suffer from increased setup overheads.
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Slicing approaches focus only on how to accelerate replays without affecting the

final execution outcome. Therefore, instructions are being removed or replaced to

achieve that. A replay-based evaluation mechanism for different optimization deci-

sions should reflect, as accurately as possible, the efficacy of decisions when those are

applied outside of a replay sandbox. The mechanisms presented in this thesis do not

alter the input code, since such level of intervention would certainly affect the replayed

evaluation accuracy. Nevertheless, evaluations are still accelerated as replays start and

end at distinct code region boundaries.

3.3.5 Specialized hardware and kernel-space approaches

RASP [HER+11] is a system that focuses on speculative parallelization. In contrast

with competitive systems [DIN+07; KEL+09; TIA+08], it requires a specialized hard-

ware for input capturing that is capable of identifying operation violations. When this

happens, a rollback operation to a valid state is performed.

CRAK [ZHO+01] is a CR system that has access to low-level OS operations with-

out requiring application or runtime modifications. It relies, however, on support for

dynamic loading of kernel modules. It can work with parallel programs, as it can re-

store the child and parent relations between several processes. It can also restore open

network connections.

Zap [OSM+02] is another approach based on loadable kernel modules that offers

transparent process migration with low-overheads. It provides a thin virtualization

layer on top of the underlying OS. This enables a mapping between the participat-

ing processes and the utilized OS resources. The migration is realized with a check-

point/restore mechanism that intercepts system calls at the virtualization layer. Zap

additionally allows a complete suspension of a process and its resumption at a later

stage. Cruz [JAN+05] extends Zap by adding replay capabilities for shared memory,

threads, inter-process communication, and sockets. It additionally offers advanced net-

work capabilities, such as restoring the full network state, replicating processes while

modifying IP addresses, and maintaining connection states for several remote clients.

While the ability to replay low-level I/O is impressive and quite useful under sev-

eral scenarios, when it comes to real inputs in interactive mobile applications it can

cause catastrophic consequences to the users. One such example is replaying sensi-

tive operations, like bank transactions, or tunneling private information through the

network.
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3.3.6 Using speculative threads or processes

Several capture and replay systems were developed for solving problems related to

execution parallelism. Ding et al. [DIN+07] have proposed a system that aims at im-

proving coarse-grain parallelism with correctness and efficiency guarantees. It relies

on a manual phase where code regions that can benefit from parallelism are explicitly

marked by the developer. Then, a lead thread executes the program without performing

any speculations. There are also additional speculative threads that execute the code

under potentially unsafe parallelization. The outcome of the speculative execution has

to pass through a verification process. When this step fails, a complete rollback to a

correct, known thread state is performed. The applicability of this approach depends

on the size of the accessed data, instead of the amount of code that is parallelizable.

The mechanism for storing such data is similar to the one presented in this thesis. It is

facilitated by revoking the permissions of the memory pages used by the lead thread.

When the thread wants to access the memory, a page fault is raised. It is immediately

handled by storing at the call-site the relevant pages and restoring their permissions, so

the thread can successfully continue its execution.

Kelsey et al. [KEL+09] has also proposed a similar system for enabling unsafe

parallel optimizations. It slightly improves upon the previous approach as it supports

implicit marking of the parallel regions. It still requires custom code to be injected to

perform correctness verification. The input storing mechanism operates at the process

level. Other than that, it is similar to the approach by Ding et al. [DIN+07].

Copy or Discard (CorD) [TIA+08] is yet another CR framework aimed at specula-

tive parallelization. It uses two distinct thread groups, one for a non-speculative thread,

and another for some speculative threads. It divides the shared memory space between

the threads into 3 partitions, in an attempt to reduce the captured memory state. The

first, is the non-speculative execution memory state that is always correct. The second,

contains the state of the speculative execution. And the third, is a coordination parti-

tion that is used for the synchronization between the two thread groups. Initially, all

the variables (heap or stack) reside in the non-speculative partition. Once a speculative

thread attempts to modify them, they are copied to the second partition.

RecReplay [RON+99] is a system aimed at facilitating cyclic debugging in parallel

programs by detecting data races. Similarly with the approaches presented in this the-

sis, it uses replaying to execute heavy-weight operations without affecting the original

process. Storing all the non-deterministic choices made during a parallel execution
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would allow an accurate replaying, however, it would cause significant execution over-

heads. Since those overheads are harmless on a separate process, the race detection

algorithm runs during replay.

The approaches developed during this thesis for implementing a CR system have

similarities with the above approaches. However, spawning several additional execu-

tion contexts and freezing executions to capture the inputs on-the-spot incurs additional

online overheads that could be avoided.

3.3.7 Other Unix-based user-space approaches

Jockey [SAI05] has implemented a user-space CR library that is linked to a target

Linux process without requiring kernel modifications or patching. It takes periodic

checkpoints for diagnosing long-running programs. Any non-deterministic system

calls and CPU instructions are re-written and recorded, so they can be replayed af-

terwards. As its intended usage is during testing and debugging, it does not prioritize

efficiency. As a result, it introduces noticeable online overheads.

Libckpt [PLA+94] is a Unix CR library that also aims at taking snapshots of long

running programs. In the case of a failure, the program could simply resume from

a stored checkpoint instead of rerunning afresh. It is based on fork checkpointing, a

technique that other CR systems are also using. Additionally, it supports incremental

checkpointing, which omits data in late snapshots if those can be reused from previ-

ous ones. Finally, it allows the users to pass extra information for tuning the capture

operations, like what data can be omitted from a capture or at which point in time it is

preferred to take a snapshot.

CRIU [VIR20] is a CR system based on Linux that does not depend on particular

source languages or runtime environments. Its main drawback is that it captures all of

the application state, dramatically increasing the storage requirements. While this is

necessary for CRIU’s intended usage, which is process migration in data centers, it is

extremely wasteful for mobile devices.

CERE [CAS+15] is another Linux-based approach that identifies codelets, distinct

computationally important areas of code. It uses a page-based mechanism to capture

each codelet’s working set, so that it can replay it in isolation. It differs from the

presented approaches in that it aims to accelerate benchmarking large scientific appli-

cations by breaking them down into a set of very short regions. As such, increased

latency during capture is not a significant problem for CERE. Runtime overheads are
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typically over 20% and as high as 250%. Part of this is due to CERE not using Copy-

on-Write. When a page is first accessed and a page fault is triggered, execution freezes

until CERE copies the page to a temporary buffer, regardless of whether the page will

be modified or not. The approach presented in this thesis leverages Copy-on-Write to

efficiently offload the page duplication to the kernel, which will copy only the modified

pages.

3.4 Summary

This chapter presented a relevant literature review around the topics of iterative com-

pilation, compiler optimization, as well capture and replay systems. The following

three chapters present novel approaches that fill in the gaps of existing approaches, for

creating an optimization approach that is fit for mobile applications.



Chapter 4

Using Capture and Replay to optimize

C programs

4.1 Introduction

Mobile devices are an indispensable part of our daily routines, yet they predominantly

run poorly optimized code. On one hand, their limited computing and energy resources

reinforce the necessity of an optimization framework. On the other hand, it is those

very restrictions that hinder the adoption of code optimization techniques that are well-

established on server and desktop environments.

In this chapter it is investigated whether iterative compilation can be applied on the

highly restricted environment of mobile devices.

The idea of a representative hardware, operating environment, and software stack

on a mobile system to compare different optimizations on application code is unre-

alistic, while creating offline inputs is non-trivial [SEE+14]. Therefore, any offline

approaches are impracticable. While online approaches inherently operate on real in-

puts they introduce unbearable side-effects. Compilation strategies that lead to runtime

crashes or yield wrong computation outputs are not something uncommon when ap-

plying aggressive code optimizations [CUM+18]. In a real setting those will never be

tolerated by mobile device users. Mixing multiple optimizations can also be counter-

productive, introducing prohibitively expensive execution and energy overheads. Even

self-adapting algorithms, which gradually evolve and reduce such overheads, will in-

evitably evaluate significantly slower code during their early learning curves.

This chapter describes an approach that enables iterative compilation for C pro-

grams on mobile devices by overcoming most of the obstacles of existing approaches.

43
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With online input captures, the proposed approach is able to perform offline mass-

evaluations of different code transformations. For each evaluation a targeted function

is replayed using the same input but different compilation strategies. Evaluations hap-

pen at idle times, therefore users do not have to suffer the side-effects of iterative

compilation, which include dramatically slower or even crashing executions.

Initially, the time consuming and computationally intensive functions of C pro-

grams are identified and extracted from the rest of the sources. A single function is

targeted per program and in this chapter it will be either referred to as the hot func-

tion or the hot region. The input to the hot region is then captured by storing only a

minimal set of pages that are actively used while the function runs. Captures happen

transparently to the program without requiring any kernel modifications. They also

remain unnoticed by the users as they incur on average a slowdown of less than 2ms.

When compared to traditional capture approaches, which take a snapshot of the whole

memory, the proposed mechanism achieves space savings between 2 and 3 orders of

magnitude.

Once a capture is taken, the replay mechanism can repeatedly restore the same

input and execute the hot function, which may use differently compiled code. For

compilation, the code transformation space of a compiler is randomly probed. This is a

practicable evaluation mechanism for the mobile environment as executions, including

crashed or significantly slower ones, are performed while a device is idle and charged.

Therefore, users will not have to endure any side-effects of iterative compilation in

order to benefit from its findings.

The effectiveness of the proposed approach is evaluated with an iterative com-

pilation system for C programs. By targeting and replaying only the computation-

ally intensive functions, the evaluations of multiple code transformations are accel-

erated. The presented system is able to outperform the highest optimization level of

Clang [CLA20] by up to 57%.

This chapter is organized as follows. Section 4.2 presents a capture mechanism

for C programs on a mobile architecture. Section 4.3 outlines a replay mechanism for

C functions, able to work in spite of code transformations. Section 4.4 describes the

experimental setup, along with a system implementation for C programs. Section 4.5

evaluates the proposed approach on C programs executed on a mobile device. Finally,

the concluding remarks of this chapter can be found in Section 4.6.
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4.2 Capturing C programs

The main idea behind this thesis is to capture the behavior of a program online, during

a regular invocation, and then accurately replicate it offline, under different compiler

optimization strategies. Any methods that perform I/O or have a non-deterministic

behavior are excluded by the proposed approach. Therefore, capturing a program’s

behavior is the same as capturing its main memory state right before a targeted hot

function is executed. Simple approaches could save all processor registers and every-

thing that resides in the main memory space of a program [VIR20]. This can incur no-

ticeable overheads for mobile users. Firstly, it affects performance as the low-latency

execution flow on a mobile system freezes until everything on the memory space is

dumped to a disk. And secondly, as Chapter 6 will show, this requires an increased

amount of storage as it writes out the entire memory space instead of only the memory

pages that contain the input of a targeted hot function.

The approach introduced by this section re-purposes two kernel mechanisms to

capture only a subset of the memory space with the least amount of overhead. With

a fork right before the invocation of a targeted hot region, a copy of the VMA is

created. The kernel’s efficient Copy-On-Write mechanism will duplicate any pages

that are modified by the hot region, leaving a copy of the memory space in its original

state. The program’s memory pages are also read protected before invoking the hot

region, which will offload the identification of accessed memory pages to the kernel.

When the execution of the hot region has finished, the proposed mechanism simply has

to store the original state of the pages that were accessed. This approach is transparent

to the user and to the program, without requiring any kernel modifications. As shown

in Figure 4.1, it consists of 6 stages and it is described in detail in the remainder of this

section.

1 Initiating a capture:
Code is added to the entry point of a hot region that checks whether a capture should

occur. In that case some preparatory steps are performed, necessary for the identifying

and preserving the original input to the hot region. Since only a single capture is

required to perform an offline iterative compilation search, no additional invocations

of the function are captured during the same run of the program. Chapter 6 describes

how this step is revised for interactive Android applications to allow a greater control

over the capture frequency.
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Figure 4.1: A lightweight capture mechanism stores a partial state of a C process that

enables re-executing a hot region of code at any future point in time. It is transparent

from the users and the program developers. By leveraging the fork and Copy-On-Write

mechanisms, a copy of the original state is preserved in a child process. And with

page read protection and fault-handling the set of read pages can be identified. This

approach minimizes the performance overheads, the storage requirements, as well the

time required to restore the input on each replayed execution.
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2 Forking a child process:
Freezing the execution flow before invoking the hot region until all memory is dumped

to a disk would have wasted precious performance cycles or the limited storage re-

sources of a mobile device. Instead, the proposed approach uses fork to spawn a child

process, which transparently keeps the original input in the child with minimal over-

heads. The virtual memory table is then duplicated for the child, with both child and

parent processes initially pointing to the same set of physical pages. It is only when the

parent attempts to modify a page that a physical page is copied. The copy is assigned

to the parent with the write permissions restored, leaving the child process with the

original content. This process is carried out efficiently by the kernel as a part of the

Copy-On-Write mechanism. This is significantly faster when compared to full capture

approaches, or approaches that manually copy each memory page right before it is

used by the region [CAS+15]. At this step, the child’s priority is set to the minimum

possible value and the process is sent to sleep.

3 Protecting memory pages:
Saving all of the memory pages to disk is quite wasteful and even prohibitive in

practice as several captures of different programs could be simultaneously kept on

a mobile device. Therefore, by identifying and capturing only the set of pages that

are used while the hot region executes, the snapshot sizes can be significantly re-

duced. The /proc/self/maps file, which is part of a pseudo-filesystem on Linux

machines [LIN20], is parsed to get the full list of memory pages that lie in the par-

ent process’s address space. Then, most of these pages are read-protected, which will

cause deliberate page faults once the process attempts to read from them. Those will

trigger a fault handler that is also installed at this point and will perform two actions.

Firstly, it will store the address of the offending memory page in a shared buffer be-

tween the parent and child processes. Secondly, it will restore the relevant access

permissions to that page so that any future read attempts will not trigger another page

fault.

4 Execution of the hot region:
At this point, the parent process can proceed with the execution of the hot region as it

normally would have done. Other than fault handling when the memory pages are first

read, and Copy-On-Write when the memory pages are first written, there is no further



48 Chapter 4. Using Capture and Replay to optimize C programs

overhead. Given that most programs have a decent amount of spatial locality [DEN06],

the storage requirements for the accessed pages should be in the same order of magni-

tude of the memory space that is actually required by the hot function of the program.

This causes the amount of state that is saved to remain low. Similarly, the amount of

page faults and the associated fault handling overheads should also remain low.

5 Ending the hot region:
Once the parent process has finished with the execution of the hot region, it wakes up

the child process. It also restores the access permissions to any memory pages that

are still read-protected and then uninstalls the fault handling mechanism. Finally, the

parent process continues execution, as it normally would have done, to code that comes

after the hot region. If a hot region is invoked multiple times, only the first input will be

stored. In other words, there will not be another capture on any subsequent invocations

of the hot region. Improvements in Chapter 6, make the capture point configurable,

allowing more captures in the same run.

6 Saving the memory state:
Once the child process is awoken it starts spooling memory pages that were marked

as read by the parent to the disk. Since it has the lowest possible priority it will store

pages to disk only when the system has unused processing and I/O capacity. As a

result, there will be no inconvenience for a mobile device user.

Apart from the used memory pages there are some additional data that need to be

captured. This mainly concerns the architectural state of the processor. In particular,

the non-volatile registers and some special registers must be preserved. This is done

through inline assembly, while ensuring that the assembly itself is not interfering with

the register values to be retrieved. This value retrieval happens as the very initial step

of the capture process, with the exception of the Program Counter (PC) register. PC is

instead retrieved later on by the child process, once it is awoken by the parent. It points

to code that lies right before the hot region. That point will serve as the entrypoint of

resuming execution for any future replayed processes.
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4.3 Replaying a C function

For the mass-evaluation of different code transformations of a hot region there needs

to be a mechanism that can create a process with an identical input state with the

captured one. This mechanism, apart from fixing the input, must also work well even

when the underlying code of a hot function is modified by iterative compilation. To

replay a captured hot region, the program’s binary and the saved state must be loaded

into memory. Then, the captured architectural state of the processor is restored, with

the PC register being the last one. Restoring the PC is effectively a jump into the point

in code right before the invocation of the hot region. The function is then re-executed

until completion. The performance statistics can be collected once the replay process

terminates the hot region execution.

The replay mechanism internals are relatively straightforward as it supports only a

single function of a C program. Replaying several methods of interactive applications,

based on the Android runtime, is a more involved process and is described in detail in

Chapter 6. The remainder of this section describes the specialization that is required for

replaying a hot function that can be differently compiled through iterative compilation.

4.3.1 Replaying differently compiled C functions

To compare between different optimization strategies the replay mechanism must suc-

cessfully execute regardless of any code transformations to the underlying binary. Pro-

ducing a valid executable under any code transformation is a delicate process. Most of

the code is untouched, however, changes to the hot function can easily break replaying.

To consistently replay different code, while fixing the input, requires some low-level

tinkering at the assembly and link stages during the generation of the binary.

The system, described in Section 4.4.1, repeatedly builds binaries that contain dif-

ferently transformed code for the hot function. Those binaries, however, easily become

inconsistent with the originally captured input data, crashing the replay process. A first

issue concerns code transformations that result in modifications to function pointers

and addresses of globally accessible variables. A second issue arises when code trans-

formations either increase or decrease the size of the hot function. With some link-time

tinkering and code or binary segment alignment it is ensured that the binaries produced,

despite having different underlying code, will be consistent with the captured state at

all times. The remainder of this section describes how this is achieved.
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Handling function or data pointer changes. For each program, a single hot function

can be modified from code transformations found by the system described in Sec-

tion 4.4.1. This function is compiled into position independent code, a commonly

used option that makes a program’s start-up faster as the dynamic linker has to apply

a minimal set of relocations. Those are applied to the binary sections named Global

Offset Table (GOT) and Procedure Linkage Table (PLT). GOT has entries with offsets

to global or static variables. Each entry is initialized by the dynamic linker. PLT is

used for invoking non-static functions and has entries only for the ones that are called

by the program. These entries are initialized with PC-relative offsets to the function’s

code in the text segment of the binary. Lazy initialization can be performed.

Code transformations can potentially replace particular generic method calls to

faster architectural-specific ones. When this happens, PLT segment entries change,

which causes cascading changes to the GOT segment and any other binary segments

that follow. As a result, the global or static variables and pointers to non-static func-

tions can have different relative addresses to the ones they had during the original cap-

ture. This will crash the replay process, as the restored data will be placed at different

addresses in memory than the ones the new binary expects.

To address this issue an auxiliary object file is built and linked against the hot

function. The object contains a function that is never actually called but it is marked as

being called. In its body it contains calls, with dummy arguments, to any function that

might be introduced by some lowering or architectural-specific code optimizations.

This causes the assembler to include additional entries for these calls in the PLT. As

a result, this section of the binary becomes immutable for any given program. This

workaround introduces no additional overheads during the program’s bootstrap, as the

additional PLT entries will never be lazily initialized.

Handling code size changes of the hot function. Several code transformations might

affect the size of the hot function, either by decreasing or increasing it. This will cause

inconsistencies with the restored state, as the relative offsets to the pointers of any

functions that follow will be shifted. Additionally, and in similarity with the previous

issue, altering the size of the hot function will cause cascading changes to any seg-

ments of the binary that follow the .text segment, which is the one that contains the

program’s code.

With custom address aligning it is ensured that the variable hot function size will

not affect the offsets to any function pointers. This is achieved with padding before
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and after some relevant binary segments, as well right after the hot function, which

is within the .text segment. For the former, a linker script aligns to a two-page

boundary some segments, like the .text, .data, .rodata, and .bss. For the latter, a

dummy method was introduced after the hot function to align the code that comes after

it, also to a two-page boundary. The added method contains a single nop instruction

and requests from the assembler and linker (using the pre-processor) to be aligned, not

to be inlined, and not to be optimized away. This adds enough empty space after the

hot function, and when combined with the link-time padding it allows code expansion

without causing modifications to any function pointers or binary segments that follow.

Additional size checks in the system ensure that this boundary is not violated with a

relevant warning during the optimization search. If this ever happens the system will

not proceed with replaying. The alignment boundary was empirically chosen and no

violations were observed during evaluation. It was set to a 2 page boundary.

4.4 Experimental Setup

The proposed approach was evaluated with a series of experiments on a Motorola

Nexus 6 mobile device that ran Android version 5.1. The device has a Qualcomm

Snapdragon 805 processor that is powered by four 2.7 GHz Krait 405 cores. The cap-

ture and replay mechanism was specific to C programs on the ARM architecture and

was targeting a single hot function. To minimize the performance noise the following

execution environment was imposed. The mobile device was idle. All four cores were

kept online and their execution frequency was hardwired to the maximum available

value. This allowed more precise timings while minimizing the overall time of any

evaluation. Additionally, the maximum setting ensures that no hardware optimizations

are disabled due to lower frequency or voltage scaling [BAO+16]. Finally, the device

temperature was checked before performing any evaluations. If it was above a thresh-

old then the device entered a cool-down period. This minimized the chance of any

interference from thermal throttling. We noticed that this could also be achieved when

the device is placed on a cooling pad, in an air-conditioned room.

The open source BEEBS benchmark suite [BRI20] was used to evaluate the pro-

posed approach. The suite contains programs written in the C language, focused on

embedded systems. Table 4.1 shows the used benchmarks, which contained only de-

terministic calls and were able to successfully link and operate with the bionic li-

brary [GOO21a], which is a more lightweight implementation of the standard C library
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Name Description

ADPCM Adaptive Differential Pulse-Code Modulation decoder

Blowfish Symmetric-key block cipher algorithm

Bubblesort Simple sorting algorithm

Dijkstra Finds the shortest paths between nodes in a graph

FFT Fast Fourier Transform

FIR Filter int data array based on passed int coefficients

Huffbench A data compression benchmark

Table 4.1: C programs from the BEEBS benchmark suite [BRI20] that were linked

against the Bionic library and were used for the experimental evaluation. For each

benchmark a single hot function was identified using Callgrind [VAL20]. Subsequently,

it was extracted from the remainder of the source code. Those functions were then

targeted for optimization by a prototype iterative compilation system.

on Android. A hot function of each benchmark was extracted from the remaining of

its sources, as visualized in 4.2, to allow an integration with the presented iterative

compilation system that is presented in the next section.

With an initial profiling stage using the Callgrind tool [VAL20], the call graph as

well the call frequencies of each program’s function were generated. Using this infor-

mation, the function with the highest execution runtime was identified as the hot func-

tion. Since a single hot function was supported, any callee functions whose source code

was available (i.e, not a library call) were inlined. Finally, the resulting hot function

was extracted from the remaining of the sources in a specific format that the presented

system was expecting.

4.4.1 Iterative compilation system for C programs

For the evaluation of the proposed approach a system for C programs was developed.

As shown in Figure 4.2, a random transformation sequence is extracted from the com-

piler’s space and is used to compile only the hot function of the input program. The hot

function is compiled into its own binary object. The rest of the sources are compiled

using a standard optimization flag of the compiler (i.e, -O3) and stored in a separate

object file. The two object files are linked together using the assembly and link time

strategies as described in Section 4.3.1.

All produced binaries are evaluated using the replay mechanism. Compilations
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Figure 4.2: An iterative compilation system for C programs. To evaluate multiple code

transformations, a single hot function is repeatedly compiled and subsequently linked

to a new binary. The transformations are randomly extracted from the compiler’s space.

Each generated binary will operate over the same input, as the execution of the hot

function will be replayed by restoring previously captured data. Once the hot function

execution finishes the performance statistics are collected as a means of evaluating

different code transformations.

and executions are performed on a mobile device, which ensures that the produced

binary will be optimized for the underlying architecture. The evaluations happen when

a mobile device is idle which minimizes the performance noise. Finally, by focusing

only on a hot region of a program, instead of the entirety of its code, the whole iterative

compilation process is accelerated.
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The iterative compiler uses Clang [CLA20] version 3.6.1. It randomly constructs

code transformations from a list of 60 flags. If the flag accepts any parameters then

those are also randomly selected. In the experiments presented in the next section,

2000 points of the transformation space were randomly probed. Each binary version

was replayed 10 times and outlier removal was performed using the interquartile range

method with a k set to 1.5. The computed final outcome of the tested code transforma-

tions was manually verified for correctness. The performance results between different

transformation sets were compared using a two-side student’s t-test. Where applicable

the 95% confidence intervals were calculated and presented.

4.5 Experimental Results

Three sets of experiments were used to evaluate the proposed approach. The first set

showcases the performance gains that the iterative compilation system can achieve.

The second set examines the one-time execution overheads that are introduced by the

capture mechanism. The third compares the space overheads of the capture mechanism

against traditional approaches.

4.5.1 Optimizing C programs with iterative compilation

The goal of the proposed system was not to improve iterative compilation per se, but

to demonstrate that it now becomes applicable on the restricted mobile device envi-

ronment. Nevertheless, it is important to show that this approach is able to optimize C

programs.

Figure 4.3 shows the speedups of the best binaries that were found by the devel-

oped system for the hot functions of the used benchmarks. All findings were compared

against the -O3 optimization level of Clang, which was used as a baseline. Despite

visiting only a small fraction of the enormous compilation space of Clang, the pro-

posed approach was able to increase the performance of each benchmark. The highest

achieved speedup was 57%, while the lowest was 16%.

4.5.2 Capture overheads of C programs

To push all overheads associated with iterative compilation offline, through replay-

based evaluations, an online captured execution of the C program must precede. There-
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Figure 4.3: Speedup obtained with by the proposed iterative compilation system. The

baseline was the -O3 optimization level of Clang. The findings were discovered by ex-

tracting code transformations sequences from the compiler’s optimization space, using

2000 random probes. The error bars represent 95% confidence intervals.

fore, it is important to establish that capturing the input of a hot function introduces as

little overhead as possible and remains in all cases transparent to the users.

Figure 4.4 shows the execution runtime of the C benchmarks that were executed

normally versus when they had their inputs captured. The overheads introduced by the

proposed mechanism were negligible when compared to the total execution runtime.

The average slowdown was less than 2ms. This amounts to less than 1% of the total

runtime, while the highest was just 1.7%. Most of the overheads come from parsing

the /proc/self/maps file to get the virtual memory areas, and from forking a child

process before executing the hot function. The overheads related to fault-handling

were small, as the total number of page faults were kept low even for memory-intensive

programs. In the worse-case scenario, the number of page faults can be as high as the

number of pages owned by the program. Similarly, the Copy-On-Write mechanism

also had low overheads. Utilizing this mechanism is quite efficient as it is engaged only

when the parent process modifies a page. And even then, the copy operation happens

in the kernel space, transparently to the program making the proposed mechanism fast.
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Figure 4.4: Snapshot overheads that occurred during the one-time capture operation

for the C benchmarks. The darker color shows the execution time of a hot function that

was normally executed and the lighter color shows the execution time when the input to

the function was captured. In any case the introduced slowdown never surpasses 2%

of the total execution runtime, therefore it is unlikely to noticeably affect a mobile device

user in a real life scenario.

Given the negligible overheads introduced by the capture mechanism, it is unlikely

to noticeably affect real mobile device users. This makes the proposed optimization

approach applicable for the mobile environment.

4.5.3 Space savings against full capture approaches

Most of the overheads introduced by the capture mechanism, as explained in the pre-

vious section, were related to operations performed right before the invocation of a hot

function. Those operations were necessary for identifying a minimal set of pages that

are actively used while the hot function runs. For that almost imperceptible overhead,

the proposed capture approach is able to significantly decrease the amount of storage

needed for each input snapshot.

Figure 4.5 visualizes the space savings of the capture mechanism. It stores a min-
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Figure 4.5: Comparing snapshot sizes between full capture approaches against page-

granularity captures for the C benchmarks. The captured information concerns a par-

ticular hot function of a C program. Less than 200KB of data were captured for each

benchmark. Full snapshots require at least two orders of magnitude of additional stor-

age for any of the used benchmarks.

imal set of memory pages that contain all the input the hot function needs. It is com-

pared against a full capture approach that stores the entire state of a C process. The

highest amount of storage needed for replaying a hot function was less than 200KB

of data. Full snapshots contained at least two orders of magnitude of additional in-

formation. FFT was an extreme case where more than 200MB were captured in the

full snapshot. The proposed mechanism had reached space savings of three orders of

magnitude for that particular case.

Minimizing the amount of captured information is important as mobile devices

come with limited internal storage. Easily fitting data from multiple captures to a

mobile device without significantly reducing the available storage of the user means

that potentially sensitive data will never need to be transferred to external or cloud

storage devices.
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4.6 Summary

This chapter investigates whether iterative compilation can be applied to the highly

restricted mobile device environment. It proposes a hybrid approach that combines the

benefits of offline and online approaches to solve several issues that have previously

rendered iterative compilation infeasible for mobile devices. With a single online cap-

ture it is able to perform at a later stage mass-evaluations of code transformations.

Evaluations are done through replaying, which keeps the same input on each replayed

execution. Every evaluation is performed when the device is idle and charged, which

hides any overheads associated with iterative compilation, making the proposed ap-

proach transparent to the users and practicable for the mobile environment.

The capture mechanism minimizes the execution and storage overheads by limiting

the snapshot data to the set of memory pages that contain the input to the hot function.

It does not require any kernel modifications and it is transparent to the users, incurring

less than 2ms slowdown per capture. It conserves two to three orders of magnitude of

storage when compared to full capture approaches [VIR20]. With a single capture, the

replay mechanism can then re-execute a C function, even if its underlying code was

compiled with different code transformations.

A system was implemented to evaluate this approach. The system is able to outper-

form the -O3 optimization level of Clang by 29% on average. This was achieved with

a random-based search over a small fraction of the compiler’s transformation space.

While it is established that iterative compilation can indeed become a practicable

optimization approach for mobile devices, many hurdles remain when considering a

real life scenario. Android device users interact with real Android applications in-

stead of C programs. As such, the capture mechanism requires adaptations to support

such a complex runtime environment. As described in Chapter 6, it should be able to

execute different types of code, including interpretation, JNI code, and dynamically

linked code. At the same time it should be able to reliably operate in the presence of

memory-related security mechanisms. A scalable approach should automatically iden-

tify, recompile, and link a hot region, which may contain complex method call nesting.

Its code should be statically analyzed a priori to decide whether it contains any sources

of non-determinism. Validating the correctness of any applied code transformations

must also be automated, without requiring any effort from the application developers.

This is a non-trivial problem. Finally, the optimization space of the Android compiler

should be expanded, as it currently comes with just a handful of code transformations
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that yield no benefits when combined with iterative compilation.

Chapter 5 describes a considerable implementation effort to develop an LLVM

backend for the Android compiler, which tremendously increases the code optimiza-

tion space for Android applications. Chapter 6 presents a system that utilizes this

LLVM backend. It is able to automatically identify replayable and computationally

intensive code regions of interactive Android applications and capture real user inputs

to them. Two additional capture mechanisms are also introduced. Then, using a novel

replay mechanism, the system can restore the input to create a partial Android applica-

tion process, which has all state required for evaluating several code transformations.

It also automatically performs code correctness verification and it can employ crowd-

sourcing to significantly accelerate the offline optimization search. This approach can

potentially scale to any Android application, without requiring any user or application

developer effort.





Chapter 5

Enabling aggressive code

optimizations for Android applications

5.1 Introduction

With more than 5.2 billion of active users [GSM20], smartphones are definitely the

computing medium of our era. Yet, there is no framework able to aggressively optimize

interactive mobile applications at scale. Even in the preeminent mobile platform, An-

droid, the compiler backend relies on just 18 distinct optimization passes [GOO20b].

When compared to well-established compilers, this transformation space is an order of

magnitude smaller [LAT+04]. As a result, immense amounts of optimization potential

is wasted, under-utilizing the already limited computing and energy resources on the

mobile environment.

This chapter describes the implementation of a full compilation toolchain, based

on LLVM, able to AOT compile interactive Android applications. Prior to this back-

end, the only complete, alternative toolchain for Dalvik code was the default Android

backend, called optimizing. Despite its naming, the default backend is designed to be

conservative rather than highly optimizing. It only applies a handful of optimizations

that are guaranteed to either have a positive impact or no impact at all on any encoun-

tered code. Exhaustively searching such a small space of conservative optimizations

yields no better binaries. A more sophisticated and mature optimization infrastructure

could unlock a tremendous optimization potential for mobile applications.

The system presented in this chapter is the first that enables passing code from

the Android compiler to the LLVM compiler. It focuses optimization to the time con-

suming and computationally intensive code regions that may contain complex method

61
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nesting. The code regions are automatically identified with a sample-based profiler.

The region’s methods are then passed to the LLVM backend to AOT compile them.

Initially the LLVM backend invokes the default Android compiler facilities to generate

its IR, called the HGraph. It then applies to the HGraph the default optimization passes

as Android normally would have done. Despite being conservative, these passes are

specific to ART and therefore can be beneficial. Then, it performs an IR-to-IR trans-

lation to output LLVM bitcode, which exposes Android applications to a significantly

larger code transformation space. In addition to that, a few Android-specific optimiza-

tion passes were developed.

The LLVM backend represents a significant engineering effort with more than

25,000 lines of code. It is released as open source software [MPE21] to allow re-

searchers or compiler enthusiasts to use it and further improve it. Despite being a work

in progress, the backend is able to outperform the Android compiler for most tested

applications. By applying the aggressive -O3 optimization level, the LLVM backend

outperforms Android by 7% on average. Also, some Android-specific optimizations

have improved over generic ones by squeezing as much as 38% of additional speedup.

As the IR-to-IR translation matures, the performance gains are expected to grow even

further. Nevertheless, even a highly optimizing compiler is tuned to be conservative by

default. A more aggressive optimization framework, like the one presented in Chap-

ter 6, could exploit the capabilities of this backend to a much greater extent.

This chapter is organized as follows. Section 5.2 describes how a hot region of an

application is automatically detected. Section 5.3 presents the Android LLVM back-

end that performs an IR-to-IR translation, implements Android-specific optimization

passes, and finally assembles and links the generated code to an Android application.

Section 5.4 describes the experimental setup, followed by Section 5.5 where the im-

plemented backend is evaluated against the Android compiler. Section 5.6 provides

the concluding remarks of this chapter.

5.2 Detecting computationally intensive code regions

Interactive applications consist of multiple asynchronous tasks whose outputs, once

calculated, are presented to the users. Due to the low-latency nature of mobile devices,

these tasks are executed in background threads and occasionally synchronize to a User

Interface (UI) thread to provide a visual update. The computational intensity and the

execution frequency of individual tasks depend on the user’s input and the underlying
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code. Typically, a fraction of the application’s code dominates execution runtime,

which will be referred to from now on as the hot region. In contrast to Chapter 4, a

hot region may consist of multiple method calls that may or may not be inlined. By

focusing exclusively on hot code regions, the overall execution times can be improved

while the compilation times remain within reasonable levels.

The remainder of this section details how a hot region of an Android application is

automatically detected. Subsection 5.2.1 describes a static bytecode analysis pass that

identifies compilable methods. Subsection 5.2.2 describes a one-time profiling process

for detecting optimization worthy methods. Finally, Subsection 5.2.3 describes how

the profiling and static analysis data are combined for identifying the hottest code

regions.

5.2.1 Static bytecode analysis

Initially, with static bytecode analysis the compilable methods are detected. These are

methods that can be successfully compiled and optimized by the LLVM backend. Any

methods that are classified as pathological cases by the Android compiler [AND20]

are excluded from this list. These are methods that the Android compiler itself cannot

process. Therefore, the LLVM backend will not be able to process them either as it

relies on Android compiler’s IR as its input to its translation pass. This is not a major

limitation. As it is shown in Section 5.5, pathological cases usually take a very small

percentage of the execution runtime. Most of the native methods are also excluded

since they are already in a binary format. There are a few exceptions that are converted

into intrinsics, as detailed in Section 5.3.2. Finally, any methods that are not supported

due to current limitations of the LLVM backend are similarly excluded at this stage.

5.2.2 Sample-based profiling

The analysis phase is followed by a lightweight online profiling phase. An application

is invoked using Android’s sample-based profiler in order to generate a trace file of

the execution. By sampling the active stack frames at fixed intervals, the profiler can

estimate the execution time spent on each method. This happens once per application.

A sample-taking thread is executed every 15 seconds and each time it takes samples for

10 seconds. The thread may use a start-up delay, configurable per input application. A

new sample is recorded at a millisecond granularity since only an approximation of the

runtime is actually sufficient. This whole configuration keeps the profiling overheads
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Algorithm 1: Detecting computationally intensive code, named hot regions,

of interactive applications by utilizing static analysis data and runtime execu-

tion traces.
input: methods from a sample-based profile

output: method with biggest compilable region

def estimateRegionRuntime(method):
sum← 0

compilable← compilableRegion(method)

foreach c ∈ compilable do
sum += runtimeExclusive(c)

end
return sum

def compilableRegion(method):
def inner(m, l):

if m /∈ l and IsCompilable(m) then
add(l, m)

foreach c ∈ callees(m) do
inner(c, l)

end

end

list← /0

inner(method, list)

return list

def IsCompilable(method):
if IsPathologicalAndroid(method) then

return false

else
return IsSupportedByLLVM(method)

end

sort(methods, estimateRegionRuntime)

return methods.first
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to a minimum, making this one-time online phase unnoticeable to the device users.

The outcome is a list of the executed methods, their execution time estimates, as well

their execution frequencies.

5.2.3 Combining data to extract hot code regions

Once the profiling data are generated, the computationally intensive hot regions can

be detected. This process is outlined by Algorithm 1. It first computes the compilable

code regions for each method in the trace file. It excludes from these regions any

methods that were identified as non-compilable by consulting the static analysis data.

Then, the total execution runtime of each region is estimated. This is the sum of the

execution runtime of each reachable and compilable method, including the outermost

caller. Each execution runtime is exclusive, meaning it concerns only the operations

that belong directly to the method itself. In other words, any computing cycles spent

during external method calls are excluded.

Once the execution times of compilable regions of each method are estimated, the

most significant one becomes the hot region. This region will be targeted for aggres-

sive optimization. Despite optimizing only a fraction of an application’s code, this

targeted approach decreases the compilation times and binary sizes, while still allow-

ing noticeable performance improvements.

5.3 LLVM backend for Android

This section describes the LLVM backend for Android applications. Prior to this im-

plementation, the only complete compilation toolchain for Dalvik code was the An-

droid compiler’s default backend, which is used throughout the experiments as the

baseline for comparisons. The default backend applies only 18 distinct code trans-

formations [GOO20b] that are considered safe, meaning they might have positive or

no impact at all on any encountered code. Searching exhaustively through this small

transformation space yields no better binaries than the baseline, as it lacks aggressive

code transformations found in well established compilers like LLVM [LAT+04]. The

only alternative approach to fine-tune specific code regions is to rewrite them using

JNI, requiring additional effort from the application developers. Even then, there can

be high overheads proportional to the amount of interactions between the ART and

JNI environments [KUR+01]. With the LLVM compiler backend, the optimization
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strategies for Android applications are significantly increased.

5.3.1 IR-to-IR translation for the generation of LLVM bitcode

LLVM is a mature compiler infrastructure that supports many language front-ends and

machine back-ends. It was lacking however, an Android front-end along with a com-

plete compilation toolchain that supports ART. Such capability could bring tremen-

dous optimization potential to the massive Android ecosystem [GSM20]. Two main

approaches could be followed to implement an LLVM backend for Android. The first

one, is to create a front-end at the Dalvik bytecode level and provide for it full runtime

support. The second is to perform an IR-to-IR translation from Android compiler’s IR

to LLVM bitcode. This was the pursued approach and is explained in the remainder of

this section.

5.3.1.1 Overview of the IR translation

The default compiler backend performs a handful of optimization passes [GOO20b]

that are tailored for ART. As they can improve the effectiveness of any subsequent

code transformations, it is wise to apply those first before applying more sophisticated

optimizations. The proposed approach leverages the Android compiler to achieve that.

Initially, it invokes the default backend to generate its IR, called the HGraph. Then,

it applies the passes as Android normally would have done, and finally performs an

IR-to-IR translation to generate the LLVM bitcode. This approach comes with some

additional benefits. One, is that the runtime support for the backend is simplified. A

subset of the required runtime entrypoints for the LLVM compiled code could uti-

lize the existing ones for the Android compiled code. For the remaining entrypoints,

a similar convention with the Android-compiled code can be followed. That is, to

create assembly stubs that are exposed to LLVM as function pointers with statically

known offsets, which start from the special Thread register. Another benefit is that

any changes that might be introduced from the high-level source code languages (i.e.,

Java or Kotlin) all the way down to the HGraph generation would be available to the

backend without additional effort. Such changes will be implemented at the lexical,

syntax, or semantic analysis phases of the standard Android compilation process. A

minor disadvantage to this, is that any code that is uncompilable by Android will also

be uncompilable by LLVM. Nevertheless, as shown in Section 5.5, these cases repre-

sent a very small percentage of the total execution runtime. Optimizing them would
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Type Description

uint32 t* Method arguments packed in an integer array.

JValue* Store return result in a union.

Thread* Class for managing the current Android Thread.

ArtMethod* Class for managing the current Android Method.

uint32 t Offset to the boot image caches.

Table 5.1: Method arguments of the entrypoint that invokes LLVM code from ART. It

follows a similar calling convention with the default Android code. The first two con-

tain the callee arguments and the return result. The following two are heavily used by

LLVM code to access ART structures (strings, classes, or methods), other caches, or

synchronized objects. The last one is used to access caches that contain immutable

runtime objects.

not have affected the overall performance in a major way anyway. In any case, a front-

end at the bytecode level would require an even greater effort for functionality that was

already well implemented and tested.

5.3.1.2 Entrypoint from ART to LLVM

The first step of the IR translator is to generate an entrypoint for the transition of the

execution flow from ART code to LLVM. This follows a similar calling convention

with the default backend and is shown in Table 5.1. The arguments are packed into a

32 bit integer array. The double and long primitive types are taking two consecutive

slots. The return result, in case of a non void method call, will be stored in a union

that is passed as the second argument to the LLVM code. The Thread and Method ar-

guments will be used for accessing various ART entrypoints, methods, classes, strings,

or other caching mechanisms. Finally, an offset to a special ART cache, called boot

image, will be used to optimize access to immutable objects in some specific cases.

5.3.1.3 Translating HGraph nodes to LLVM bitcode

The Android compiler’s IR is not in a materialized form. Instead, it consists of several

nodes that reside in main memory in a graph-based structure called HGraph. Once the

HGraph of a method is generated, it is then optimized using the same default optimiza-

tion passes that the Android compiler normally runs. Then, the optimized HGraph is

translated into LLVM bitcode. Initially, the LLVM backend generates placeholders for
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the basic blocks, and then for the phis, if any. Subsequently, it visits each basic block

in a post-order traversal and populates the instructions. This IR-to-IR translation is

done by generating code for each node using relevant instructions from the LLVM

API. For any nodes that are not yet supported by the LLVM backend, the compiler

driver will present a relevant message and bail out. The supported instructions follow

the same basic block structure with the HGraph nodes for simplicity, which avoids any

modifications to the branching between the phis and the basic blocks. This facilitates

compiler testing and debugging. Any operation that requires additional branching is

wrapped into a separate method that contains hint metadata for inlining. One such ex-

ample is shown in Listing 5.5. Once all of the instructions are in place, the phi nodes

are populated and the basic blocks are linked with relevant branch instructions.

5.3.2 Android-specific LLVM optimization passes

The LLVM backend implements two Android-specific optimization passes. The first

one attempts to decrease loop overheads by removing check calls that become redun-

dant after specific code transformations. Loops on Android are flooded with additional

check instructions for heavy-weight runtime operations, like garbage collection. The

second one attempts to increase the amount of the generated code by converting spe-

cific JNI calls to LLVM IR.

The garbage collection optimization, named post-unroll, runs after loop restructur-

ing transformation passes. Consider the simple Java code sample on Listing 5.1, that

initializes an array based on a given parameter. When the Android compiler generates

its HGraph, it does not know at compilation time when, if ever, this loop might exit.

Therefore, it is obligated to insert a check call in each loop’s body to transfer control

to the Android runtime. Once the IR-to-IR translation pass runs, it will result in the

LLVM IR shown in Listing 5.2. The loop body contains two instructions that perform

useful work (initializing array indices) and three that relate to operations required for

looping. One of them is the check call, shown as SuspendCheck (line 20). During that

check, the runtime decides whether operations like garbage collection must run, and

does so if needed. A single check per loop is sufficient, but passes like loop unrolling

do not have this knowledge. Therefore, when a loop’s body is duplicated the runtime

check call is also unnecessarily duplicated.

The LLVM backend specially annotates bitcode at the check call, as shown on the

Listing 5.3 (line 2). It also places prediction weights on branches (line 6), in favor of
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skipping the checks. Then, after transformations that duplicate a loop’s body, LLVM

performs an Android-specific simplification pass, shown by Listing 5.4. During that

pass, any redundant checks are eliminated. Those are annotated calls that belong in

duplicated basic blocks. As shown in Section 5.5, this post-unroll simplification pass

can readily extract additional speedup after loop unroll passes. Also, it can potentially

be expanded for eliminating additional loop-related overheads, like some specific cases

of array bounds checking.
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1 public class Demo {

2 double a[] = new double[10];

3

4 void InitArray(double y) {

5 for (int i = 0; i < a.length; i++) {

6 a[i] = y;

7 }

8 }

9 }

Listing 5.1: A Java loop that initializes an array based on the given parameter value.

1 define void @Demo.InitArray(i8* %this , double %value) {

2 entry_llvm:

3 %thread = call i8* asm "mov $0, x19", "=r"() ; Android Thread

4 br label %init_block

5 init_block:

6 %GetObjInstance = ; .. ART entrypoint (offset from %thread)

7 %array = call i8* %GetObjInstance(i32 %array_offset , i8* %this)

8 call void @NullCheck(i8* %array)

9 %array_length= ; .. relevant pointer arithmetic/casting

10 br label %loop_check

11 loop_check:

12 %phi42 = phi i32 [ 0, %init_block ], [ %index , %loop_body]

13 %is_done = icmp uge i32 %phi42 , %array_length

14 br i32 %is_done , label %loop_exit , label %loop_body

15 loop_body:

16 %index_ptr = ; .. relevant pointer arithmetic/casting

17 store double %value , double* %index_ptr

18 %index= add nsw i32 %phi42 , 1 ; loop increment

19 ; Give ART the chance to perform operations like GC

20 call void @SuspendCheck() ;

21 br label %loop_check

22 loop_exit:

23 ret void

24 }

Listing 5.2: LLVM IR generated for the Java code of Listing 5.1. The instructions that

are required for the loop operation itself take 60% all instructions in the loop body

basic block. These are loop-related overheads. On Android specifically, some

additional checks are required, like the call at line 20.
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1 ; Function Attrs: alwaysinline readnone

2 define void @SuspendCheck() #5 !android.check.suspend !1 {

3 entry:

4 %0 = call i16 @LoadStateAndFlags()

5 %1 = icmp eq i16 %0, 0

6 br i1 %1, label %skip , label %test_suspend , !prof !2

7 test_suspend:

8 %entrypointTestSuspend = call i8* @GetEntrypointTestSuspend()

9 call i8* %entrypointTestSuspend()

10 ret void

11 skip:

12 ret void

13 }

14

15 !1 = !{!"android_optimization_suspendcheck"}

16 !2 = !{!"branch_weights", i32 100, i32 0}

Listing 5.3: Specially annotating LLVM bitcode on check-calls for performing heavy-

weight runtime operations (lines 2 & 15). This check call can become redundant

if it resides in a loop body that gets duplicated due to some previously applied

transformations. Branch prediction also becomes biased towards skipping the check

(lines 6 & 16).
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1 LoopUnrollResult llvm::UnrollLoop(

2 Loop *L, UnrollLoopOptions ULO, LoopInfo *LI, ..) {

3

4 // LLVM code for unrolling a loop:

5 // .. unroll body of loop

6 // .. preserve loop -simplified form

7 // .. setup branches to connect new basic blocks

8 // .. merge adjacent blocks if possible

9 // .. simplify unrolled loop:

10 // .... constant propagation

11 // .... dead code elimination

12

13 // post -unroll simplification

14 for (BasicBlock *BB : L->getBlocks()) {

15 // not the original block

16 if (IsDuplicated(BB)) {

17 for (Instruction &I : *BB)

18 if (isa<CallInst >(I))

19 Function *F = cast <CallInst >(I).getCalledFunction();

20 if (F->getMetadata("android.check.suspend"))

21 I->erase();

22 }

23 }

24

25 // .. other code

26 return unroll_result;

27 }

Listing 5.4: Eliminating redundant check-calls of heavy-weight runtime operations, like

garbage collection. This simplification pass runs after transformations that duplicate a

loop’s body. Additional speedups can be extracted on any code that already benefits

from such transformations. This pass runs on specially annotated code.

The second optimization that was implemented tries to increase the amount of the

generated LLVM code by translating some of the JNI methods. This is done by con-

verting particular math-library calls to LLVM IR, either by using LLVM intrinsics, or

by providing an implementation of the method that matches the original code. This

can also be expanded to methods outside of the math library. By doing so, not only it

avoids the overhead of setting and returning from a JNI environment [KUR+01], but

it also increases the amount of code that can be compiled and optimized. With more

available code, compiler optimization only becomes more effective [COO+86a].
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5.3.3 Assembling and running LLVM-generated code

Once the LLVM IR is generated for specific hot regions of code, then it should be op-

timized, assembled, and finally executed in the place of the original Android-compiled

code. The complete compilation toolchain is visualized in Figure 5.1 and is described

in the remainder of this section.

Usually a hot region of an application contains multiple methods. The bitcodes of

these methods are linked together and compiled using the -O3 optimization level. Any

special registers are reserved, like the Thread Register or the garbage collector’s Mark

Register [GOO20c]. Subsequently, the code is assembled and finally linked against

some libraries, including the Android runtime, and C/C++ libraries. Constructors and

initialization routines for the C runtime are also linked at this stage. The output of the

linker is a shared object file that is dynamically linked during an application’s boot-

strap along with its other resources. All these tools were compiled to AOSP modules

from the LLVM sources using the Soong build system [GOO20f] and were subse-

quently shipped to an Android device. They are invoked through an interface that was

baked into the Android compiler driver (dex2oat). At runtime, if there is LLVM code

available for a particular method then it is chosen for carrying out the execution.

5.3.4 Current limitations of the LLVM backend

Despite being able to outperform the Android compiled code for most cases, there is

ample room for improvement in the LLVM backend implementation. There are several

instructions not optimally implemented that rely more often than they should on the

much slower runtime. Improving those can potentially have a noticeable effect on the

runtime performance. This section explores some of these cases.
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Figure 5.1: The LLVM backend implementation is the first alternative compilation

toolchain for Android, able to aggressively optimize Dalvik bytecode through a signif-

icantly larger code optimization space. Initially, an application (APK file) is passed to

the dex2oat compiler driver, which invokes the default backend (optimizing) to generate

its IR. The IR, called HGraph, is then optimized using the default Android optimizations.

Then, an IR-to-IR translation pass transforms the HGraph to LLVM bitcode. The bitcode

is then aggressively optimized by the LLVM backend, using the opt compiler and the llc

assembler. Finally, the resulting binary is linked using lld into a shared object, which

can be invoked at runtime as an alternative to the Android-compiled code.
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1 ; Function Attrs: inlinehint

2 define i8 @InstanceOf(i8* %object , i8* %class) {

3 entry:

4 %thread = call i8* asm "mov $0, x19", "=r"()

5 %isNull = icmp eq i8* %object , null

6 br i1 %isNull , label %_null , label %_not_null

7 _null:

8 ret i8 0

9 _not_null:

10 %object_class = .. ; get object ’s class from LLVM code

11 %isSame = icmp eq i8* %object_class , %class

12 br i1 %isSame , label %_same , label %_diff

13 _same: ; preds = %not_null

14 ret i8 1

15 _diff: ; Slower runtime path

16 %entrypoint = .. ; offset from %thread

17 %InstanceOfSLOW = call i8 %entrypoint(i8* %object , i8* %class)

18 ret i8 %InstanceOf_SLOW

19 }

Listing 5.5: LLVM IR generated for the InstanceOf instruction. It is wrapped into a

method that is hinted for inlining. If the class of the object (object class) is the same

as the input class (class), then all of the code is executed fast inside LLVM. Otherwise,

it calls the much slower runtime (line 17). This is an example of an instruction that is

not fully optimized by the current version of the LLVM backend.

The instructions that have runtime interactions need to access particular ART struc-

tures. This is done through immutable offsets from the Thread Register (TR). That par-

ticular register is initially passed to the LLVM code as an argument to its entrypoint.

Subsequently, it is stored in a physical register that is reserved in LLVM, matching the

default behavior of the Android compiler. Nevertheless, any instructions that utilize

the TR are not as optimized as the Android compiled code. This is because LLVM

currently does not support the notion of Global Register Variables [GCC20b]. Instead,

each time the TR is needed it is accessed through LLVM inline assembly. Despite

applying any relevant inline assembly constraints [LLV20b], the compiler still has

limited semantics over that code. As a result, it fails to correlate and optimize dif-

ferent inlined assembly codes through transformations, such as instruction reordering

or merging. This limitation applies to other specially reserved registers as well, like

the Mark Register. Unsurprisingly, all special registers are frequently used, which is
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why they permanently occupy a physical register in the first place.

Another class of instructions that can be further improved concerns the caching

mechanism of special ART components, such as methods, classes, or strings. Similarly

with special registers, these are frequently used instructions in Android applications.

The machine code generated by the default backend is packed into an OAT file that is

based on ELF, as described in Section 2.4. It has a built-in caching mechanism, which

cannot be directly accessed from the LLVM code. There are three ways of retrieving

an ART component and two of those are utilizing such caching. The first, is through

a special bss segment for any object that might occasionally be moved by the garbage

collector. This segment is not the typical bss segment in ELF files, as the C Runtime

objects are stored separately from the ART objects. The second type concerns objects

whose address is immutable throughout the same run of an application. They are stored

in another special cache called boot image. Lastly, an object might always have to be

retrieved through the runtime. For the last case, LLVM matches the behavior of the

Android compiler. For the first 2 cases, the LLVM backend utilizes a sub-optimal

workaround by indirectly accessing any relevant caches. Additional effort is required

to match the caching efficacy of the Android compiler. Firstly, the OAT files must

embed the LLVM code and also be extended to provide any relevant runtime support.

Secondly, the code generator should emit empty cache-slot placeholders as not all of

the information is statically known. These slots will then have to be populated with

cached objects after the application is bootstrapped.

A third and final example of a not fully optimized instruction is shown in List-

ing 5.5. If the class of the input object (resolved at line 10) does not match the input

class (class at line 2), then some additional checks have to be performed. This trans-

fers the execution flow to line 15, where LLVM proceeds with a slower runtime call.

When this instruction gets fully implemented into LLVM IR, it would walk instead the

class hierarchy of the object without ever having to call the runtime. This increases

the amount of code that LLVM can optimize and decreases the runtime dependencies,

which can result in performance improvements. Similar examples of slower operations

include unimplemented intrinsics that are likewise invoked through the runtime.

5.4 Experimental Setup

The goal of the LLVM backend implementation is to optimize real Android applica-

tions by exposing them to aggressive compilation through a significantly larger code
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Component Type Dependencies Description

libart library - Android Runtime (ART) library

libLLVM library - LLVM library

llvm-link binary libLLVM Links several LLVM bitcode files

opt binary libLLVM Optimizer and analyzer of LLVM bitcode files

llc binary libLLVM Generates assembly from LLVM bitcode files

lld binary libLLVM Linker of assembled objects

libart-compiler library
libart,

libLLVM
Android compiler library

dex2oat binary
libart,

libart-compiler
Android compiler driver

Table 5.2: Listing the binary tools and library dependencies of for the compilation

toolchain and runtime support required for generating and executing LLVM compiled

code from Android applications. Those are overlaid on top of the otherwise read-only

/system folder using modules built by a third-party tool, called Magisk [TOP20].

transformation space. A system was implemented for comparing the LLVM backend

against the default backend of the Android compiler. Both benchmarks and interac-

tive applications were used throughout the experiments. The system runs on Android

10 mobile devices. It was evaluated on a recent Google Pixel 4 device. Its processor

unit is a Qualcomm SDM855 Snapdragon 855. It consists of eight Kryo 485 cores,

each configured with a different maximum clock frequency, ranging from 1.78 GHz

up to 2.84 GHz. To reduce the measurement noise during the experimental evaluation,

the same steps for setting up the execution environment in the previous chapter were

applied here as well (see Section 4.4).

The LLVM backend uses the Android 10 default compiler backend, called optimiz-

ing, to generate the HGraph nodes. Then it performs an IR-to-IR translation which

outputs LLVM bitcode based on LLVM version 10. The LLVM project’s source code

was imported as a new module in the AOSP Soong build system, since other modules

depend on an already included obsolete version of LLVM, version 3.6 as of the time

of writing [AND21d]. A shared library of LLVM was cross-compiled for arm64 along

with any other necessary binary tools and libraries, as shown in Table 5.2. All these

software components were installed on an Android device using a slightly modified

version of an open-source third-party framework, called Magisk [TOP20]. With cus-
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Type Name Description

Scimark

[POZ+04]
FFT Fast Fourrier Transform

SOR Jacobi Successive Over-relaxation

MonteCarlo Estimates π value

Sparse matmult Indirection and addressing

LU Linear algebra kernels

Art Sieve [NIH20] Lists prime numbers

BubbleSort [ALG20] Simple sorting algorithm

SelectionSort [ALG20] Simple sorting algorithm

Linpack [DON+79] Numerical linear algebra

Fibonacci.iter [ISH20] Fibonacci sequence iterative

Fibonacci.recv [ISH20] Fibonacci sequence recursive

Dhrystone [WEI84] Representative general CPU performance

Interactive MaterialLife [SOR20] Game of life

4inaRow [APP20] Puzzle Game

DroidFish [ÖST20] Chess Game

ColorOverflow [VEL20b] Strategic Game

Brainstonz [VEL20a] Board Game

Blokish [SCO20] Board Game

Svarka Calculator [VEL20d] Generates odds for a card game

Reversi Android [FEL20] Board Game

Poker Odds (Vitosha) [VEL20c] Statistical analysis for poker cards

Table 5.3: Android applications used for the experimental evaluation of the LLVM back-

end. They were either benchmark or interactive ones. For benchmarks, the Scimark

benchmark suite was used, as well other benchmarks that have been periodically used

by Google or third parties for the evaluation of the Android compiler. The interactive

applications were found in online software stores.

tom Magisk modules, the new or modified components were overlaid at boot time on

top of the otherwise read-only /system directory on the device. The LLVM library is

linked against the Android compiler.

For the experiments presented in the next section, real Android applications were

used that are categorized into three types, as listed in Table 5.3. The first is the Sci-
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mark benchmark suite. The second, named Art, contains benchmarks that have been

used in the past by Google or third parties for the evaluation of the Android compiler.

The third, named Interactive, contains 9 real interactive Android applications, found in

online software stores like the Google Play [GOO21b] or the F-Droid [F-D21]. The re-

ported speedups are based on 30 evaluations. The plots show 95% confidence intervals

where applicable.

Any random initialization of the used applications is disabled, so that the appli-

cations start in approximately the same state throughout the experiments and perform

a similar workload. This makes it easier to estimate the speedup with any kind of

certainty. For benchmark applications, this is straightforward as the inputs are fixed.

For interactive ones, this is more complicated. The logic of each application is being

followed, in order to bring its state to a similar point each time, including manually

interacting with the application before taking a measurement.

For the execution time measurements of interactive applications deciding the start

and end point of the measurement is a balancing act. For a fair and representative

measurement, the speedup of the interactive applications in this and the next section,

consider also the code that surrounds the hot region, i.e. code that is not optimized by

the system. At the same time it is desired that all time measurements capture similar

behaviors. A longer execution is more likely to be affected by random high impact

events, like GC, or by deviating system and user behavior. As a compromise, a certain

number of iterations of the conceptual main loop of the application is measured. The

main loop is an actual code loop in some cases, a conceptual loop including user inter-

action in others. The clock measuring the thread time is used, which discards waiting

and sleeping time, if any.

Even for a small number of interactive applications, this was a very tedious pro-

cess. This reaffirms one of the motivating cases behind this thesis: deterministic and

repeatable evaluations without replaying are non-trivial and require significant effort

from application developers.

5.5 Experimental Results

The quality of the IR-to-IR translation pass to LLVM bitcode is evaluated against the

default Android compiler with two sets of experiments. The effectiveness of the post-

unroll optimization is evaluated with an additional third set. The first set shows the

amount of code that the LLVM backend is able to process. The effectiveness of the
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applied optimizations is restricted to code that can be translated into LLVM IR. The

second set shows the achieved performance improvements when using the highest op-

timization level of LLVM. The presented speedups show the performance gains over

the entire execution runtime. The results are based on 21 applications, either bench-

marks or real interactive ones. The third and final set compares the effectiveness of the

post-unroll optimization on top of the default loop unrolling pass of LLVM. Different

unroll factors were used on 12 benchmark applications.

5.5.1 Runtime code breakdown
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Figure 5.2: Runtime code breakdown that was measured online with a sample-based

profiler for 12 benchmark (left) and 9 interactive applications (right). Compiled is code

that can be processed by the LLVM backend. Cold is code that falls outside of the hot

region. Uncompilable are pathological code cases that cannot be processed by the

Android backend, and therefore by the LLVM backend. Finally, JNI is code that was

written using the C / C++ language and belongs either to the application or the Android

framework.

Figure 5.2 shows the runtime code breakdown that was measured online using a

sample-based profiler. Compiled is code that the LLVM backend is able to transform

into LLVM bitcode. It may still contain code segments that are executed through the

runtime, like unimplemented intrinsics or not fully implemented instructions. Some

examples of such cases are detailed in Section 5.3.4. Cold, is code that is not worth
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optimizing, therefore it falls outside of the hot region. Uncompilable, is code that is

marked as being a pathological case by the Android compiler backend as it cannot

process it [AND20]. Finally, JNI is code that is written using C or C++ and is already

in a binary form.

For the 12 benchmark applications, the LLVM backend was able to process the

entirety of the code. For the 9 real interactive applications though, the amount of

code that passes through the LLVM backend is more limited. DroidFish has the least

amount of code that is compiled at 14%, while Brainstonz has the highest percentage

of compiled code at 81%. Cold code ranges from 5% to 14%. JNI code takes a higher

portion of the runtime in many cases. The highest amount of native code is executed

by DroidFish, with as much as 72% of the total runtime. The application with the least

amount of JNI code is MaterialLife, with 15% of the runtime. Finally, the code that

cannot be processed by the Android compiler is generally low, ranging from 1% to 3%.

On average, for both benchmarks and real interactive applications, 83% of the run-

time executed code can be compiled by the LLVM backend. However, this percentage

includes cases where code is not optimally implemented yet and resorts more often

than it should to slower runtime routines. As the LLVM backend implementation ma-

tures, it is expected that both the quality and the amount of the compiled code will in-

crease, which will further improve the effectiveness of any subsequently applied code

transformations.

5.5.2 Using LLVM to optimize Android applications

This experiment showcases how a well-established compiler infrastructure, like the

LLVM, is able to improve performance against the Android compiler, which is limited

to a handful of code transformations. The same set of applications with the previous

experiment was used.

Figure 5.3 shows the speedup observed when compiling Android code using the

LLVM backend for benchmark applications. It is compared against the baseline execu-

tion time that users get out of the box, which is based on the default Android compiler

backend. Code generated through the LLVM backend is transformed using -O3, which

represents the highest optimization level that can yield performance improvements on

a wide range of applications.

LLVM is able to outperform the Android baseline in most cases. The performance

ranges from an 11% slowdown to a 66% speedup. Most of the benchmarks had per-



82 Chapter 5. Enabling aggressive code optimizations for Android applications

0.89
0.98

1.05 1.08

0.93
1.06

1.66

1.01
1.11

1.50

0.91

1.18
1.09

1x

F
F

T

S
O

R

M
on

te
C

ar
lo

S
pa

rs
e 

m
at

m
ul

t

LU

S
ie

ve

B
ub

bl
eS

or
t

S
el

ec
tio

nS
or

t

Li
np

ac
k

F
ib

on
ac

ci
.it

er

F
ib

on
ac

ci
.r

ec
v

D
hr

ys
to

ne

G
E

O
M

E
A

N

S
pe

ed
up

− 95% Confidence Intervals

LLVM O3

Figure 5.3: Speedups relative to the default Android backend for 12 benchmark applica-

tions. LLVM code was transformed using the -O3 optimization level. The performance

ranges widely, from an 11% slowdown to a 66% speedup. Most benchmarks had per-

formance improvements, while on average the LLVM backend was able to produce 9%

faster code.

formance improvements with an average speedup of 9%. Two of the benchmarks had

similar performance with the Android compiled code, while three under-performed.

Specifically, FFT, SOR, LU, and Fibonacci.recv had worse execution times. This was

due to having an increased number of instructions that currently have sub-optimal im-

plementations when compared to the code generated by the baseline. On top of that,

almost all of the benchmarks had a significant amount of operations encapsulated in

loops. Despite the implemented post-unroll optimization (described in Section 5.3.2)

LLVM was not able to use it to its advantage. This was due to the fact that the default

compiler heuristics, even in the highest optimization level (i.e., -O3), are quite conser-

vative when it comes to controversial optimizations such as loop unrolling (see next

subsection). As a result, post-unroll never engages.

The speedup of the LLVM backend against the baseline compiler for real interac-

tive applications is shown in Figure 5.4. The performance ranges from a 1% slowdown

to a 9% speedup. All applications, except ColorOverflow, had an improved perfor-

mance with a speedup average of 3%. While this is noticeably lower than the bench-

mark applications, it was due to considering wider runtime regions. This includes
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Figure 5.4: Speedups relative to the default Android backend for 9 real interactive An-

droid applications. LLVM code was transformed using the -O3 optimization level. Perfor-

mance ranged from a 1% slowdown to a 9% speedup, while on average it was improved

by 3%. The reported speedups consider the whole execution runtime of each applica-

tion (see Section 5.5.1). As the IR-to-IR translation pass matures, it is expected that

the performance gains will improve even further.

code that was not optimized by LLVM, as shown by the previous experiment. Other

important factors are the current limitations of the backend (see Section 5.3.4).

5.5.3 Post-unroll GC optimization

The goal of this experiment is twofold. The first is to demonstrate the effectiveness

of the post-unroll GC optimization pass that was presented in Section 5.3.2, on 12

benchmark applications. It runs after transformations that duplicate a loop’s body and

eliminates redundant high-overhead checks. The second, is to show that even a highly

optimizing compiler cannot decide on its own when it comes to applying aggressive

yet controversial optimizations, like loop unrolling.

Figure 5.5 shows speedups for 12 benchmarks when applying loop unrolling with

different factors: 2, 4, 8, and 10. Default is the loop unroll transformation of LLVM

and PostUnroll the additionally implemented pass applied on top of Default. No other

optimizations were enabled. Fibonacci.recv does not have any loops so it is ignored

in this discussion. On average, Default had 29% to 45% speedup, depending on the
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unroll factor. PostUnroll improved performance even further, with noticeable averages

between 42% and 58%. Fibonacci.iter and Sieve are notable examples where unrolling

is very effective with up to 2.15x and 1.82x speedups respectively for Default. Pos-

tUnroll is even better, outperforming Default on each factor, reaching a maximum 30%

of additional performance. Dhrystone on the other hand, does not benefit very much

from unrolling with Default having speedups between 2% and 5%. Even so, PostUn-

roll squeezed additional performance with speedups ranging between 9% and 21%.

Except SOR, on each other benchmark and any unroll factor combination, PostUn-

roll was improving performance. On Sparse matmult in particular, it had remarkable

improvements, while on MonteCarlo it provided a maximum of 38% of additional

performance. SOR was the only benchmark where PostUnroll was suboptimal, giving

away a 5% of the gains from Default. On a quick glance, this does not make much

sense as PostUnroll only eliminates some redundant instructions. However, it is well-

known that transformations affecting code structure or size can often interfere with the

underlying CPU caching mechanisms. This adverse effect was also noticed for around

half of the benchmarks, where speedup dropped as the unroll factor increased to 8 or

10. This affected both Default and PostUnroll.

While it is established that loop unrolling yields significant speedups and PostUn-

roll can readily improve it even further, it is equally important to understand why com-

pilers are hesitant when it comes to applying such controversial transformations. Fig-

ure 5.6 shows the size increments on the same unroll factors and benchmarks with the

previous experiment. None did not perform any unrolling. Fibonacci.recv had no size

changes as it does not contain any loops. Most of the benchmarks were between 9KB

and 13KB in size and had a handful of additional size unit increments. The highest

of those was Sieve with 90% code increase between None and 10 unroll factors. Fi-

bonacci.iter had the lowest increase of 11%. Another observation is that these bench-

marks had similar code sizes despite increasing their unroll factors. This might either

relate to increased constant folding and dead code elimination passes or due to prac-

tical reasons, i.e., compiler’s inability to unroll due to trip count mismatch [LLV21a].

The remaining 4 benchmarks however, have exploded in size. Several loops (some of

which are nested) and more complex code structure can play a significant role. For

their highest unroll counts, Dhrystone became almost 5 times larger, FFT and LU

around 11 times larger, while Linpack more than 17 times larger. This significantly

shifted the average size increases to 8x. With such high storage overheads and with

only static information, a compiler cannot take such high-risk decisions a priori.
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In retrospect, when considering both Figures 5.5 and 5.6, one becomes more con-

fident on whether, and how much, to unroll a loop. Fibonacci.iter for example, de-

spite having the lowest size increase, benefited the most with more than 2x speedup

increases. One could have even decided to unroll it even further. The same applies

for SelectionSort, BubbleSort, Sieve, Sparce matmult, and MonteCarlo. All these had

good ratios between performance gains and code size increments. LU going from 2 to

4 unroll factors, had a 2.5x size increase while performance improved by only 7%. For

Linpack one could have stopped at 2 or 4 unroll factors, depending maybe on storage

size limitations. With FFT and Dhrystone the decision is more obvious, as the size

was steadily increasing while the performance was declining.

The bottom-line is that a compiler cannot take high-risk decisions. Sizes are known

at static time but performance is not. Increasing the unroll factor does not necessarily

mean increased performance, while the size overheads vary wildly. This trade-off is

just one such example. Several other factors key in, while the default heuristics are

tuned for the common case. On Android, given that loops have significantly additional

overheads, PostUnroll should be very effective in nearly all cases. Actually it improved

speedups over the default unrolling for each factor and benchmark that contained loops,

except the bizarre case of SOR. Despite its effectiveness, even the highest optimization

level of LLVM cannot utilize this pass (see Section 5.5.2). This signifies how important

actual evaluations are, and why an adaptive decision-making framework is needed to

guide aggressive optimization of Android applications.
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Figure 5.5: Comparing speedups of loop unrolling when post-unroll optimization is en-

abled or not. Different unroll counts were used against a baseline that is using LLVM

-O0 without any unrolling. In general, loop unrolling was effective in all benchmark ap-

plications, with the notable exception of Fibonacci.recv that does not contain any loops.

The post-unroll optimization, described in Section 5.3.2, outperformed the default unroll

optimization at the remaining 9 out of 10 cases. On average, it was faster on each un-

roll count, providing approximately additional 14% performance on top of loop unrolling,

and a 38% on MonteCarlo with unroll count set to 2.
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Figure 5.6: Comparing binary sizes of LLVM generated code using different loop unroll

factors. No other optimization was applied. None, shown with the lightest shade, did

not perform any unrolling. Most of the benchmarks had less than a handful of size

unit increases for any unroll count. 4 out of 12 benchmarks had considerable size

increases bringing up the average increases of the highest unroll count to a hefty 8x.

Their highest unroll counts ranged from 5x to 15x, with Linpack exploding from 72KB

to 1.2MB. While there can be several scenarios under which the performance gains

outweigh the code size increases, this is a risk compilers are unwilling to take. Even in

their highest optimization levels (e.g., -O3), compilers only hint for unrolling. The hint

must then pass through very conservative heuristics before materializing.
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5.6 Summary

This chapter investigates whether a more aggressive compilation toolchain can gener-

ate better binaries for Android applications. The default Android backend is lacking

sophisticated code transformations as it includes only a handful of generally conser-

vative optimizations. A novel backend was presented, which performs an IR-to-IR

translation from the Android default compiler’s IR to LLVM bitcode. This exposes

interactive applications to a well-established compiler infrastructure and enables ag-

gressive optimizations through a significantly bigger code transformation space.

The time consuming and computationally intensive code regions of applications

are automatically identified without incurring noticeable overheads. Subsequently,

they are targeted for optimization by the LLVM backend. Despite currently provid-

ing several sub-optimal implementations for various instructions, as described in Sec-

tion 5.3.4, the LLVM backend is able to improve 16 out of the 21 tested applications.

The backend was evaluated on real Android applications, both benchmarks and in-

teractive ones. On average the applications were improved by 7%. For the cases where

the LLVM backend under-performed, there was an increased amount of instructions

that are not currently implemented as optimally as the default backend. Additionally,

the implemented post-unroll optimization was not being exploited by LLVM even at

its most aggressive setting. This pass was extremely successful for almost any code

that contained loops, adding in its highest case 38% of additional speedup on top of the

default loop unroll. Yet, the default compiler heuristics are being quite conservative

when it comes to unrolling, as it can cause considerable size overheads while speedups

are not guaranteed. This is one of many examples that show why even a highly opti-

mizing compiler cannot apply aggressive transformations on its own. Regardless, it is

still noteworthy that the implemented backend was able to outperform, for most appli-

cations, a compiler that was purposely built from scratch and tailored to the Android

runtime.

The next chapter presents an optimization framework for real interactive mobile

applications able to take advantage to a much higher extent such a highly optimizing

compiler. It evolves the ideas presented in Chapter 4, while gracefully solving most of

its limitations. It realizes a highly scalable, user and application transparent aggressive

optimizer. As the IR-to-IR translation matures, it is expected that the performance

gains (presented in this and the next chapter) will increase even further.



Chapter 6

Crowd-Sourced, Input-driven

optimization for interactive

applications

6.1 Introduction

Despite being a well-established code optimization technique, iterative compilation

is still impracticable on real Android applications. While the approach presented in

Chapter 4 can operate on the mobile environment, it only works for C benchmarks. Ad-

ditionally, it targets code regions that are manually identified, analyzed, and extracted.

Also, the correctness of the iterative compilation findings are manually verified, re-

quiring a significant effort from application developers. On top of that, interactive

applications are fundamentally different from C programs, operating under a complex

runtime environment that requires different approaches for input capture and replay.

This chapter describes the implementation of an optimization framework tailored

for real Android applications. Two capture mechanisms were implemented. The first

one is based on an adapted Page capture mechanism that works for targeted hot regions

of interactive applications. The new mechanism removes from the captures any mem-

ory pages that were found to be immutable. It also performs heap object intersection

with the captured data, without introducing any additional overheads, to minimize the

capture sizes even further. The second one focuses only on the runtime overheads,

at the cost of higher storage requirements. A capture is now canceled when com-

plex runtime operations might interfere with its time or space complexities. This is

because the capture mechanism, despite being invoked infrequently, aims to always

89
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remain unnoticeable from the users at all times. Several optimizations have also been

implemented. The code regions targeted by the optimizer are now automatically iden-

tified through static bytecode analysis. These regions must be able to replay accurately,

without causing any side-effects while doing so. Additionally, the timing of a capture

as well the capture frequency can be adjusted, which enables captured input diver-

sity. A new replay mechanism was also developed. It starts as a purely C program

and gradually transforms itself into a partial Android process. It works well alongside

memory-shuffling security mechanisms, which are critical components of any mod-

ern operating system, including Android. Once everything is restored, the mechanism

can replay the targeted hot region with different types of code. The first, is Android-

compiled code, which is generated using the default compiler backend. It is used as

one of the baselines during the experimental evaluation and it represents what Android

offers out of the box. The second, is interpretation and it is used to extract information

from the captures in order to automate correctness verification and further optimize

the code. The last, is code generated using the LLVM backend, which was introduced

in the previous chapter. For this last type, the presented system uses several different

binary versions. One that represents the best code LLVM offers out of the box, and

several others that are discovered through genetic search over its transformation space.

Each version is evaluated offline using a replay-based iterative compilation. A pre-

viously captured input is restored for each evaluation through the replay mechanism.

This ensures the region’s workload remains the same, making comparisons between

different code types and versions sound. Evaluations happen offline, while the device

is idle and charged, hiding from the users any side-effects from slower or erroneously

optimized code. This, combined with a tighter control over the device environment,

make the execution noise manageable. Ultimately, GA discovers better transformation

sequences for each input, which are used to optimize the application code. On top of

that, a crowd-sourcing module was implemented to significantly accelerate the offline

evaluation efforts. It allows performing a collaborative search among different users,

splitting the heavyweight evaluations required by iterative compilation. By leveraging

the accumulated evaluation data, participating users can now discover better genomes

at a fraction of the time when compared to individual user searches. This joint-search

enables deeper searches with less effort from each participating user.

The proposed system is evaluated on 21 Android applications. The infrequent cap-

tures remain transparent from the users. The Page capture mechanism (presented at

Chapter 4 and adapted to work for Android applications) and its improvement, called
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Intersection, minimize the capture sizes. Both incur a slowdown of just 15ms on av-

erage. An alternative approach, named Everything, incurs only 4.6ms, as it does not

take any action to minimize the captured state. Page requires 5.06MB of storage, while

Intersection reduces that by an additional 64%. These sizes are manageable even for

lower-end devices, especially when considering that snapshots are discarded once the

optimization search has concluded. The capture Everything approach, requires on av-

erage 165MB of storage and it can be used for the cases where the device storage is

not very limited.

Regarding optimization, the system readily outperforms the Android compiled

code by a significant margin, with a 44% average speedup. The genetic algorithm

kept discovering better genomes for multiple generations. During search, it also evalu-

ated significantly slower code or code that produces a wrong outcome. While those are

simply discarded by the presented offline replay-based evaluation, in an online system

they can be detrimental to the user experience. The joint search achieves only 6% less

performance that the individual user searches, while it requires only a fraction of a

user’s evaluation time. In particular, with 10 users the system was able to accelerate

the search by 7x for the user that had the biggest workload. Additionally, the proposed

approach is able to extract near optimal results even when a user participation lasts

only a handful of minutes.

This chapter is organized as follows. Section 6.2 describes how a replayable hot

region of an application is detected. Section 6.3 describes the capture mechanisms

(Pages / Intersection and Everything) that store inputs of Android application hot re-

gions, at different granularity. It is followed by a novel replay mechanism, described

in Section 6.4. Section 6.4.1 presents how the generated code is automatically verified

for correctness and Section 6.4.2 how it is further optimized with extracted information

from the captures. The optimization search is performed using a genetic algorithm as

described in Section 6.5. All these components, as well the LLVM backend from the

previous section, are fused into a system that is described in Section 6.6. A crowd-

sourcing module that can accelerate the offline evaluations is described in Section 6.7.

The experimental setup can be found in Section 6.8 and the experimental evaluation in

Section 6.9. Finally, the concluding remarks of this chapter are in Section 6.10.
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Algorithm 2: With static Dalvik-bytecode analysis, the methods that might

introduce side-effects when replayed are identified. The identification algo-

rithm is quite conservative. If any of the hot region methods reach a non-

replayable method, then the hot region is excluded altogether. Algorithm 1 is

extended to reflect this.
method: outermost method

def markNonReplayable(method):
def f(m, visited):

if m /∈ visited then
add(visited, m)

if io(m) or blocklist(m) then
m.replayable← False

end
foreach c ∈ m.callees() do

f(c, visited)

if not c.replayable then
m.replayable← False

end

end

end

visited← /0

f(method, visited)



6.2. Detecting replayable code regions 93

6.2 Detecting replayable code regions

The system for C programs presented in Chapter 4 performed a manual inspection

of a program’s source code to ensure that only deterministic input sources are used.

Otherwise, replaying those programs would have made comparisons between different

evaluations as well code correctness verification, manual or not, nearly impossible. For

the small set of chosen benchmarks, each of which consisted of a single function, this

was a relatively easy task. For real applications, however, this process is not trivial and

certainly cannot scale. Applications tend to have complex method call nesting, multi-

ple dependencies on external or runtime-internal calls, or invoke code that is based on

a different environment, like the JNI.

To overcome these limitations, a static analysis pass of the Dalvik bytecode was im-

plemented and integrated into the Android compiler driver. As shown in Algorithm 2,

the proposed approach automatically identifies any sources of non-deterministic input

for a given application. Performing I/O is one example of non-determinism. Replaying

it without any special infrastructure is either impossible or it can lead to an inconsistent

outcome. Writing information to a storage device is even worse since it can corrupt the

application’s permanent state. Emulating such I/O is doable, however, it can incur sig-

nificant overheads given the latency-sensitive environment of interactive applications.

Other excluded sources of non-determinism are calls to clocks and pseudo-random

number generators. Additionally, almost all of the JNI calls are aggressively block-

listed, regardless of whether they can be accurately replayed or not. Determining that

their low-level code does not perform I/O and it is deterministic requires a significant

amount of engineering work that is beyond the scope of this thesis. The only JNI

calls that are not blocklisted are the ones that are replaced with intrinsics by LLVM, as

described in Section 5.3.

6.3 Transparent input capture mechanisms

This section describes the input capture mechanisms that were implemented for inter-

active Android applications. The Page capture mechanism, presented in Section 4.2,

was extended to support the Android runtime. A novel capture mechanism, called

Intersection, significantly decreases the storage requirements of the Pages approach

without requiring additional overheads. It achieves this by intersecting the hot region

reachable objects with the input memory pages identified by the first approach. Fi-
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nally, the capture Everything approach favors a simpler runtime operation with lower

runtime overheads over storage size.

6.3.1 Page-Capture mechanism for interactive Applications

Capturing C programs is relatively straightforward, especially for the benchmarks in

Section 4.4 that consisted of a single function without any external library dependen-

cies. Capturing real Android applications, however, is a more involved process. There

are multiple different resources that need to be loaded like fonts, dictionaries, time-

zone data, among others. There are also many different types of code residing in

special memory-mapped areas. Dalvik bytecode might be stored in APK or JAR files.

It might also be AOT compiled to native code and then stored in some special OAT

files [AND21c]. Some of the regularly used objects in the compiled code might support

caching through separate special ART files. Internal runtime libraries are packed into

custom modules, called APEXes [AND21b], while several shared libraries are loaded

for each application as they inherit from a special process named zygote [GOO20e].

All these resources ultimately reside in the memory address space of an Android ap-

plication and might require special handling during capture. Arbitrarily removing their

read permissions, as a means of identifying the input to a hot region, can potentially

crash the application. On top of that, complex runtime operations, like the garbage

Collection, might interfere with the capture mechanism.

The proposed approach is transparent to the users and application developers as

it requires no manual instrumentation, controls the frequency of taking captures, and

performs space saving optimizations. The remainder of this section explores the re-

quired actions that enable partial input capturing in the first place, followed by some

optimizations.

6.3.1.1 Required changes for the capture mechanism

Entrypoint for capturing and extensions to the fault-handling mechanism.
The ArtMethod structure (see Section 2.4) is extended to support a captured execution

mode. When a capture should occur, a special entrypoint overrides the default one in

order to initiate it. Otherwise, the code is executed as normal. Captures might still bail

out, as explained in the following section. The signal fault manager of ART [GOO20d]

is also extended to handle the deliberate segmentation violations caused by the capture

mechanism. The remaining faults will normally follow the standard handling chain
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until they are eventually served by the appropriate handler.

Specially handling particular main memory areas.
Removing the access rights of some memory pages by read-protecting them might

crash an Android application directly, while still being captured, without ever reaching

the signal fault manager. For captures to succeed, the protection mechanism conserva-

tively chooses to include the entire memory state of areas that were found to be prone

to crashes. Those areas were identified empirically. Some examples include the stack

of the fault handler, the data segments of the ART APEX module and any libraries that

it is directly linked against1, as well as read-write areas of some auxiliary structures

that are managed by the garbage collector.

Canceling captures on high-impact runtime events.
The main priority of the capture mechanism is to remain unnoticed from actual de-

vice users under any circumstances. Therefore, in the case of an imminent garbage

collection, any scheduled captures are canceled. This is because GC algorithms, like

the copying collector, can cause undesired side-effects by moving the allocated heap

objects to different places in memory. This can increase the amount of the page faults

that will then have to be handled, increasing both the runtime overheads as well the

amount of the stored data in a snapshot.

6.3.1.2 Optimizing for performance and storage

Tuning the capture frequency.
Taking multiple snapshots during the same application run is supported, however, just

a single one is sufficient to drive compiler optimization. Since there are plenty of

opportunities to take a snapshot, the frequency of doing so is kept to a low value. This

can be adjusted both per hot region and per application run. Additionally, the proposed

approach allows providing a capture pattern, which can dictate the point in time that

the snapshot should occur. This allows taking snapshots at different input states of an

interactive application.

Saving space from pages that contain immutable data.

1Android Runtime shared library dependencies: cs.android.com/../runtime/Android.bp

https://cs.android.com/android/platform/superproject/+/master:art/runtime/Android.bp;l=416
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A significant portion of the used memory pages is not process specific. Compiled code

is mapped into main memory using immutable text segments. It only changes when

security updates are installed or when an OS update occurs. Fonts and other framework

resources are another example of data that change only during OS updates. These use

main memory mappings that are backed by files. Therefore they can be kept outside of

the snapshots. The replay process can simply remap those files to the relevant places

in memory while restoring the input. On OS updates, the proposed system would have

requested a fresh capture anyway, since the underlying runtime behavior would most

certainly change.

There are also many objects that reside in main memory areas that only change

across different device boots. Those areas are mainly caches of frequently used ART

components (i.e., methods, classes, or objects). They are stored only once and are

reused among different captures that have happened during the same device boot. This

optimization aims to further reduce the storage footprint of the page capture mecha-

nism.

6.3.2 Heap-Object Intersection captures

The Page capture mechanism, presented in Section 6.3.1, identifies memory pages that

have been read by the hot region and captures them in their entirety. This section

presents an improvement over it, able to store significantly less data without causing

any additional overhead to the users. It operates by intersecting any reachable heap

objects with the input memory pages that the Pages approach can identify.

Figure 6.1 visualizes the proposed object intersection mechanism. Similarly with

the Page capture mechanism, it operates after the hot region has executed, on a child

process. As the child process executes with low-priority (see Section 4.2), the inter-

section mechanism will engage only when there are free computing resources, not to

interfere with any other, unrelated user activities. Therefore, it does not cause any

noticeable overheads. Initially, the child process creates a set of root objects that can

be accessed directly from the hot region. Then, it uses this root set to compute the

reachable set of objects. In essence, this set consists of all the objects that are poten-

tially accessible by the region. As a third step, the child intersects any data belonging

to this reachable set with the input pages. Typically, several reachable objects reside

outside the input pages (i.e., O1, ...,On) while many unreachable ones reside inside

the input pages (i.e., U1, ...,Un). This is why the intersection between the reachable
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and input pages is ideal for capture size optimization. Subsequently, any heap-page

data that were marked as unreachable by the region are zeroed-out. To reclaim most

of the erased space, the child compresses these pages [DEU96], and lastly it stores

the reduced input data to permanent storage. Section 7.2 discusses how this approach

overestimates the reachable object set, as some paths of objects that reside in input

pages might be reached through unreachable pages.

Algorithm 3: Object intersection with input pages.
method: hot region’s entry point method

inputPages: pages that were identified as the hot region’s input

def performIntersection(method, inputPages):
roots← getClasses(method)

foreach param ∈ getParameters (method) do
if type(param) /∈ Primitive then

enqueue(roots, param)

end

end
reachableAreas← /0

reachableObjects← findReachable(roots)

foreach obj ∈ sortReferences(reachableObjects) do
if resides(getReference(obj), inputPages) then

start, end← objectBoundaries(obj)

markReachableArea(reachableAreas, start, end)
end

end
zeroOutUnreachableArea(inputPages, reachableAreas)

compress(inputPages)
def findReachable(workQueue):

reachable← /0

while workQueue 6= /0 do
obj← dequeue(workQueue)

insert(reachable, obj)

foreach field ∈ getFields (obj) do
if type(field) /∈ Primitive and field /∈ reachable then

enqueue(workQueue, field)

end

end

end
return reachable

Algorithm 3 outlines in greater detail the intersection mechanism. Initially, the hot

region’s root set is calculated. This includes all the classes as well the parameters of

the hot region’s entry point method. Then, each object in the root set is visited using a

breadth first search traversal, as the Android code hints at better locality. During visit,

objects are added to a reachable set and their references are scheduled (in workQueue)

to be visited afterwards. Once all reachable objects are found, they are sorted based on

their memory addresses before the proposed mechanism iterates over them. For each
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object, it is checked whether it resides inside the input pages and if so the approach

calculates its memory footprint (the beginning and the ending offsets) and marks this

area as potentially reachable by the region. This allows calculating the unreachable

area so it can then be zeroed out. Once it is done, those trimmed pages are compressed,

which now only contain region reachable data, leading to noticeable space savings.

6.3.3 Capture Everything approach

This section introduces another input capture mechanism for interactive applications,

named Everything. This approach favors a simpler runtime operation over capture

sizes. As the name suggests, this approach stores all data present in memory and it was

used as a comparison in evaluation.

The main benefit of this approach is a simpler implementation and operation, which

leads to less runtime overheads. Similarly with page captures, it uses a fork call so

the execution does not have to freeze until all of the original input is stored. This is the

only runtime overhead introduced, as it does not need to analyze and memory-protect

the entire address space, or subsequently handle deliberate segmentation violations that

the previous two mechanisms rely upon. Then it stores all of the data that the program

might use. These data are found by parsing the proc/maps kernel structure [LIN20].

As it will be demonstrated later on, this significantly decreases the online operation

overheads, at the cost, however, of increased storage size.
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Figure 6.1: Reducing capture sizes by intersecting reachable objects with memory

pages containing the input. By visiting the hot region’s parameters and fields, the reach-

able set can be constructed. Most reachable objects typically fall outside of the input

pages (O1, ...,On), while several unreachable objects the opposite (U1, ...,Un). By iden-

tifying the reachable ones inside the Input Pages the space shown as a white area can

be reclaimed.
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6.4 Replaying Android code regions

With all of the state used by the hot region captured, the next step is to use it to recreate

offline the behavior an Android application exhibited online. At its most basic, replay-

ing a previously captured execution is just a matter of reloading the saved state of the

application and jumping into the hot region’s entry point [VIR20]. With the architec-

tural registers and all used memory having the same values as when the hot region

was originally executed, the execution should flow the exact same way. The globally

visible results of the replayed execution should also be the same.

In Chapter 4, the replay mechanism that was presented had some limitations. First,

it was restricted to a single function of a C program that had no external library depen-

dencies. Each time a replay was needed, the restore procedure was initiated through

manual instrumentation. As both the input application and the restore mechanism were

based on the C runtime, replaying was relatively straightforward. For Android appli-

cations though, a different and more involved procedure is required. Once the input

is restored, the mechanism must allow the execution of the hot region using different

code types like interpretation, the original Android-compiled code, and multiple code

versions generated through iterative compilation. Additionally, it must operate well in

the presence of memory-shuffling security mechanisms that are an essential part of any

modern operating system, including Android. The remainder of this section describes

in detail the implementation of the replay mechanism for Android applications.

Replays are initiated through a loader program that gradually transforms itself into

a partial Android process. Only the pages read by the region are restored, which con-

serves storage space and reduces the time needed to set up each replay. Once all

captured pages are put into main memory, any residues of the loader program are

removed. The mechanism works well in the presence of memory-shuffling security

mechanisms by dynamically handling any page collisions that might arise. Once the

processor state is restored, it chooses the type of code to carry out the execution of the

hot region. This whole replay operation is shown in Figure 6.2 and it is composed of

the following steps:

1 Load the captured state:
A program named loader, written in C, undertakes the task of restoring all of the cap-

tured state into main memory. Most of the memory pages are placed directly into the

virtual addresses they originally had while in the capture process. Some pages may
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Figure 6.2: The replay mechanism starts with a C loader program that gradually trans-

forms itself into a partial Android application. The resulting process has an identical

input state with a previously captured process from a hot region’s standpoint. Once ev-

erything is restored, the loader can choose different types and versions of code to carry

out the execution of the hot region. The proposed mechanism works well alongside

ASLR, a memory-shuffling security mechanism that is present on all modern operating

systems.
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map to memory locations already occupied by the loader’s pages because of Address

Space Layout Randomization (ASLR), a security mechanism that randomly shuffles

processes’ memory. To work regardless of ASLR, the proposed mechanism does not

make any assumptions about the address layout of the loader. When captured pages

collide with its context, they are placed into temporary memory locations. Those loca-

tions are chosen so that they do not introduce further collisions. This means consulting

the captured memory layout and choosing locations not used by it. The captured ar-

chitectural state of the processor is also read and stored into a temporary location.

2 Duplicating the break-free method:
To resolve collisions caused by the loader, all of its state must first be discarded before

any captured pages can be relocated to their original position. Simply put, the loader

program must both delete itself and then somehow keep setting up the replay process.

Unfortunately, this cannot be done directly. Therefore, during this step the binary code

of a special position-independent function is duplicated, named break-free, to a non-

colliding area. The break-free function belongs to the loader itself and it is copied

by simply duplicating the relevant bytes from its text-segment.

3 Becoming a partial Android process:
Subsequently, the execution flow jumps to the duplicated break-free function, which

becomes self-contained by switching to its own stack and data segments. At this point,

the transition from a C process to a partial Android one can be completed in three steps.

First, the original loader pages are released. Then, the break-free method consults

some structures found in its data segment to apply relocations of any colliding pages.

Those pages are now placed to the memory locations they had while in the original

capture process. Finally, the break-free method completes the transition to a partial

Android process by restoring the architectural state of the processor. Once the regis-

ters are restored, including the PC, the execution flow transfers from the break-free

method to the Android runtime. If there needs to be a code-mode switch (i.e., from

arm to thumb mode), then it is performed at the same time the PC is set.

4 Choosing code type to execute the hot region:
The final step of the replay mechanism is to choose the code type that will carry out
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the execution of the hot region. Three different code types are supported. The first is

replaying the original Android compiled code. This is used as the evaluation baseline in

the experiments presented in Section 6.9. The second is calling the Android interpreter.

This execution type is used to extract information from captures to enable correctness

verification and further optimization, as it is described in Section 6.4.2. The final code

type is calling a new optimized binary. In this case the binary is also loaded into

memory before the replay process jumps to its entry point. This binary is generated

using the Android LLVM backend, described in Chapter 5.

6.4.1 Automatic code correctness verification

During iterative compilation the compiler is quite often presented with transformation

sequences with which it has not been tested. This may hang or crash the compiler,

or yield a program that crashes or hangs at runtime, or successfully completes but

produces the wrong output. In all these cases the compilation flags must be rejected

and the optimization search must move on to the next point. All but the last case are

easily checked. Catching the wrong output is critical as it might lead to silent data

corruption. It requires verifying the hot region’s observable behavior, which can be a

non-trivial problem especially when it needs to be done automatically and at scale.

The system for C programs, presented in Chapter 4, performs a manual verification

step. During that step, hard-coded tests are manually injected after the call-site of the

hot region to validate the correctness of the return value. In a real scenario, this would

require a significant effort from the application developers. Another severe limitation

is that verifying only the return value is insufficient. This is because the externally

observable behavior of the hot region might very well include modifications to instance

or static fields.

With a special interpreted replay of the hot region a verification map is built, as

visualized in Figure 6.3. To populate this map, the interpreter stores key-value pairs of

memory locations and values for every object field or array element that was modified.

Only the final values are recorded. Any object or array creation is also stored. Finally,

the interpreter records the hot region’s return value.

Together, these data represent the externally observable behavior of the region. Af-

ter each iterative compilation replay, the execution correctness is verified by comparing

the memory of the process against the verification map. This does not require any on-

line instrumentation or manual effort by the application developers. This interpretation
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Figure 6.3: With a special interpreted replay of a hot region, any instructions that relate

to variable writes, method return values, and method invokes, are intercepted. This al-

lows the generation of a verification map that can be used after each replayed execution

of a hot region to verify the correctness of the used code. It is also used to dynamically

extract information for code optimization. Specifically, it can enable aggressive inlining,

speed up virtual and interface calls with speculative devirtualization, and tune branch

prediction.

step is quite slow, but as with iterative compilation it happens when the mobile device

is not otherwise being used, therefore it does not affect the user experience.
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6.4.2 Exploiting capture data for code optimization

1 define void @InvokeSpeculative(i8* %obj) {

2 _entry:

3 %obj_class = ; .. %obj->class_offset

4 switch i32 %obj_class , label %_miss [

5 i32 100, label %_class1

6 i32 101, label %_class2

7 ], !prof !1

8 _class1:

9 call void @Cat.walk(i8* %obj, ..)

10 ret void

11 _class2:

12 ret void

13 call void @Dog.walk(i8* %obj, ..)

14 _miss: ; Do a slower runtime call:

15 %thread = call i8* @LoadThread()

16 ; Resolve the method

17 %AnimalWalk = call i8* %entrypointResolveVirtual(obj, ..)

18 ; allocate & setup arguments

19 %args = alloca [3 x i32], i32 3, align 1

20 %result= alloca %union.jvalue.126

21 ; .. bitcode to setup ART stack frame

22 %7 = call i8* %entrypointLlvmPushArtFrame(..)

23 call void %AnimalWalk(obj, thread , args , result , ..)

24 ; .. bitcode to remove ART stack frame

25 call void %entrypointLlvmPopArtFrame(..)

26 ret void

27 }

28

29 !1 = !{!"branch_weights", i32 30, i32 10, i32 0}

Listing 6.1: With speculative devirtualization, the overheads of virtual or interface call

sites can be optimized. The class of the object is compared to a previously generated

histogram to directly invoke a method without ever leaving LLVM. The histogram

is consulted at compilation time to aggressively inline on the speculated methods.

The switch branch prediction weights are also tuned, according to the frequency

histogram.

An added benefit of being able to replay a captured execution offline is that addi-

tional information can be collected regarding the execution of an application, which
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would have been too costly to perform online. This section describes how this infor-

mation is extracted through interpretation and how it is used to further optimize the

code.

The interpreted replay, presented in the previous section, is extended to collect ad-

ditional profiling data. Such data are used to improve the quality of the code that is gen-

erated by the LLVM backend, as shown in Listing 6.1. In particular, at each virtual or

interface call-sites, the frequency histogram and the actual dispatch types are recorded.

This additional data reflects information from real user inputs and can be used to re-

duce the call overheads. With speculative devirtualization of call sites, aggressive

inlining can be performed, which is quite beneficial in object-oriented programming

languages [SUN+00]. Additionally, branch prediction is tuned on each speculated type

according to the frequency histogram.

6.5 Using a genetic algorithm for optimization search

LLVM has a very large optimization space with almost 200 passes that can be applied

multiple times with a different effect each time that depends on previously as well

subsequently applied passes [COO+02a]. On top of that, it has more than 1300 op-

timization parameters and flags. Applying a pass or changing a flag might improve

performance, but it may also degrade it, produce a faulty binary, or have no effect at

all. What is needed is a quick way to explore the rewarding areas of such a complex

code transformation space.

This section describes an optimization search based on a Genetic Algorithm that

extracts better code transformation sequences to improve an application in terms of

speed and/or code size. It is a well established approach that has worked really well in

the past for similar problems [COO+99; FAT+04; KUL+12; LIN+08].

Genomes encode the sequence of passes, the parameters, and the flags. They may

vary in length to account for different numbers of optimization passes. There are three

different mate selection pipelines. The first chooses mates from the elite genomes only,

the second chooses the fittest individual, and the third one uses a tournament selection.

Once mates are selected, they are crossed over with a single random point. It is ensured

that the resulting genome will be higher in length than a configurable minimum. There

are several mutation operators for different types of genes:

• If a pass is a boolean, then it might be enabled or disabled.

• If a pass accepts a parameter, then it might be modified according to its type.
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• New passes might be introduced.

The amount of mutations is configurable. The genetic algorithm begins with a fixed

population size and progresses until either a threshold number of generations is reached

or a number of generations has elapsed without any improvement over the best per-

forming genome. At the end, a hill-climbing step is performed, which ensures that the

local maximum is reached.

The fitness function focuses primarily on performance, which is measured by re-

playing an application’s hot region, as described in Section 6.4. However, if the perfor-

mance of two different code versions is sufficiently close, then the binary version with

the smaller size is preferred. The full parameters of the genetic algorithm are provided

in Section 6.8.

6.6 System for real Android applications

The goal of this thesis is to optimize applications in the mobile environment. It is done

by comparing the effect of different optimization decisions, without ever negatively af-

fecting the user experience. For sound comparisons, the application needs to perform

the same amount of work each time an optimization is being evaluated, and that work

should also be representative of actual usage. Since performance evaluations can affect

the user experience, they should be performed only offline, when the device is idle and

charged. Any solution must also handle the inherently noisy mobile environment. Ad-

ditionally, the optimization search must be specialized per mobile device, application,

code version, among other factors.

This section describes a system that realizes an input-driven iterative compilation

search, able to optimize real Android applications without imposing unbearable over-

heads to the users. A client-server model is used for orchestrating the optimization

search. Clients are mobile devices that request code transformation sequences and

upload their findings to a server. The server then accumulates information and orches-

trates the whole iterative compilation process. Once finished, the findings are reported

back to the mobile device. A high-level overview of the proposed approach is shown

on Figure 6.4 and is described in more detail in the remainder of this section.

During an initial profiling phase, a hot region is automatically identified. Then,

real user inputs are transparently captured for it. It is followed by an input-driven

offline iterative compilation that is performed as follows. A GA probes the complex

transformation space of a compiler to construct optimization sequences. Those are
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Figure 6.4: A high level overview of a system that operates on real Android applications.

It uses offline iterative compilation that replays real user inputs as a means of evaluating

different code transformations. It repeatedly compiles and replays a hot region with

transformations extracted from the LLVM’s space, found using a GA. On each replay,

it restores previously captured input states. It performs multiple replays per evaluation

and reports the execution times back to the GA. Any transformation that produces a

wrong output is discarded. This whole process is repeated until the GA converges.

then fed to the LLVM opt and llc tools to transform the hot region’s bitcode and

compile to machine code respectively. The captured execution is then replayed using

the generated binaries, in order to evaluate their performance. The GA then advances

to the next generation and continues the process. Each replay has the same input since

the same captured state is restored each time. The soundness of the comparisons is

ensured by performing multiple replays per binary and using statistical methodologies,

as described in Section 5.4. To reduce the random performance variation, the execution

environment of Chapter 4 is used (see Section 4.4).

Using a previously generated verification map, any transformations that lead to a

wrong externally observable behavior of the hot region are discarded automatically,

without requiring any developer efforts.
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A client-server model is used to orchestrate the optimization search. The mobile

devices act as clients. They simply communicate with a server machine, which in-

structs them on how to proceed. To allow multiple users to optimize the same code

region, a hash method is used over a string that contains all of the region methods as

well the application identifier and version. Their iterative compilation findings, which

include execution time and compilation size, are uploaded to the server. They are clas-

sified per device architecture, device model, compiler and OS version, application and

its version, and the device’s user. The server uses all this information to guide the

search. It might generate a new code transformation sequence, using genetic search,

and instruct a mobile device to evaluate it. It might also request a sequence to be

minimized, which is done by removing all transformations that have no effect on the

resulting binary. Finally, once the search for a particular input has finished (including

the hill-climbing step) it reports back to the device the best performing code transfor-

mations.

6.7 Using crowd-sourcing to accelerate the genetic search

By pushing iterative compilation offline, through replay-based evaluations, the pro-

posed approach can hide from the device users the significant overheads associated

with the technique. These include compilations and repeated evaluations, necessary

for statistically meaningful comparisons, several of which have a detrimental effect on

performance. This section describes a scalable, crowd-sourcing architecture to acceler-

ate this offline effort. It performs a collaborative search between several users. As the

evaluation data will now be jointly produced, both a greater search can be performed

and new users can benefit from the findings faster.

Figure 6.5 illustrates how a crowd-sourced collaborative search is performed. Once

several users have had their inputs captured, they can participate in a joint search, as

coordinated by the server, as long as their devices remain idle and charged. At no

time the users send their snapshots to the server. Initially, a device requests the next

genome to evaluate. The server then queries the database for existing evaluation data,

as well the code transformation space of a compiler (i.e., LLVM) to generate the next

evaluation point. As the previous genomes are utilized for the construction of the new

ones, freshly joined users discover better results in less time. The device then proceeds

by compiling and evaluating the genome, utilizing the replay-based evaluation system

presented by the previous section. Finally, the server updates the database with the
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Figure 6.5: Accelerating the GA search with crowd-sourcing. Several idle and charged

devices collaborate for spreading the offline evaluation efforts. Participating client de-

vices communicate with a server which instructs them on what genome to evaluate

next, based on the code transformation space and the previous evaluation data. The

device then evaluates the next point in space and reports the findings to the server,

which finally updates its database.
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findings reported by the device. These include compilation time and size, any runtime

or compilation errors, and of course the evaluation timings. All this data is used to tune

the search for the best genome of a hot region among several users. This approach, as

it will be shown in results, is capable of finding near optimal genomes for most cases,

when compared to individual searches, for a fraction of the total evaluation time.

6.8 Experimental Setup

A system was implemented to evaluate the proposed approach. It uses the same mobile

device and Android applications described in the Section 5.4. It also uses the same

execution environment and statistical methodologies described in Section 4.4. The

remainder of this section provides the additional experimental setup that is specific to

this chapter.

An Android application orchestrates the operations of the proposed optimization

framework. It provides interfaces to the following functionality:

• Run the profiler on a new application

• Schedule and manage input captures

• Perform iterative compilation on captured inputs

• Use the best findings of iterative compilation

The application invokes the LLVM backend that is introduced in Chapter 5 to com-

pile Android application code to LLVM bitcode. It communicates with an Apache

web server through a RESTful API to receive instructions on how to perform the op-

timization search. The server employs a custom GA implementation that utilizes a

document store for managing its data. The GA searches through the enormous space

of the LLVM compiler. It uses 11 generations, the first randomly generated, while the

other 10 are driven by genetic search. Each generation consists of 50 genomes. While

in the first generation, the GA attempts up to three times to replace each genome that

leads to worse performance than both LLVM and Android baselines. This biases the

algorithm towards the more profitable areas of the transformation space. Once the

first generation is complete, the algorithm instructs the mobile device to minimize any

genomes before those participate in a crossover. This is done by removing all the re-

dundant passes. A genome has a 5% probability of undergoing any mutation. If that is

the case, each of its genes mutates with a 5% probability. In some cases, the GA might

produce a binary that was already evaluated. This is called a duplicate binary and there
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Figure 6.6: User availability for a joint optimization search.

is no point in evaluating it again. There might be edge cases where the algorithm (from

one point onward) produces only duplicate binaries. To ensure it always halts we set

the maximum number of allowed duplicate binaries to 100. Each tournament selection

round considers seven candidates with a 90% probability.

The final reported speedups are generated by collecting the execution times of a

hot region outside the replay environment.This guarantees that the findings are not

an artifact of the replay environment. The best performing binary discovered by the

GA earlier is used, however, the application is executed interactively instead of being

replayed.

For the crowd-sourced GA search, a fixed initial population of 200 was used to en-

sure that the same amount of points in space are visited on each run. It was evaluated

using ten Google Pixel 4 devices. Each device represented a different user and each

user had a different input. For the interactive applications, new inputs were generated

using manual interactions. For the benchmark applications, the hot region’s problem

sizes were altered. Once all user inputs for each app were captured, the mobile devices

were programmed to participate collaboratively, in a realistic way. Studies have shown

that most users charge their phones overnight [FER+11], when devices are also con-

veniently idle. Using sleep data [CDC21], a user availability schedule was created, as

visualized by Figure 6.6 . Users joined and exited the search at different times and had
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different availability. User7 had the least participation, as the device initially joined

for a brief period, followed by a break, before joining again for a few more hours.

6.9 Experimental Results

The goal of the system presented in this chapter is to optimize real mobile applications

using iterative compilation without incurring any noticeable overheads to the device

users. The proposed system is evaluated with six sets of experiments that are described

in the remainder of this section.

The first set presents the achieved performance gains, using Android applications

from Table 5.3 to showcase the potential of the proposed approach. The second illus-

trates why an intelligent search over the optimization space is needed for automati-

cally tuning the heuristics of a compiler. It also demonstrates how online approaches,

regardless of whether being self-adapting, potentially introduce unbearable overheads

while searching for better code transformations. Finally, it presents an analysis of the

optimization passes that were found to be best. The third compares the online over-

heads of the proposed input capture mechanisms and the fourth one compares their

storage requirements. The Page capture mechanism is used only for comparison. The

Intersection mechanism improves upon the Pages approach as it further minimizes the

capture sizes, making it applicable even on low-end devices. The capture Everything

approach focuses exclusively on minimizing the runtime overheads. It is demonstrated

that all approaches have transparent online operations from the users. The final set

showcases the offline GA search acceleration when crowd-sourcing the findings from

several users.

6.9.1 Speeding-up Android applications

The proposed approach readily outperforms the Android compiler with aggressive op-

timization through offline, replay-based iterative compilation. This section presents

the performance gains achieved for 21 Android applications. The code breakdown that

is presented by Figure 5.2 is applicable to this experiment as well.

Figure 6.7 shows the speedups achieved for 12 Android benchmark applications.

The binaries are selected by the GA and are evaluated outside the replay environment.

They are compared against two baselines. The first is the default Android compiler,

against which all other speedups are measured, and it represents the performance users
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Figure 6.7: Speedup relative to the Android compiler for 12 benchmark Android appli-

cations. LLVM -O3 performance ranges from a 0.89x slowdown to a 1.66x speedup.

LLVM GA, which uses a replay-based iterative compilation is able to significantly im-

prove execution times. It produces speedups from 1.14x to 2.56x and an average of

62%.

get out of the box. The second one, LLVM -O3, is an aggressive optimization setting

for the LLVM backend, presented in Chapter 5. It represents the best LLVM can do

without any application-specific information.

The proposed optimization framework is shown as LLVM GA. It builds on top of

LLVM -O3, which is described in the previous chapter. It exploits capture data to ag-

gressively inline and tune bitcode, which makes any subsequent optimization passes

more effective. Then, the offline GA search generates progressively better code despite

performing a relatively quick search. It operates with 11 generations at most, each one

having 50 genomes. Despite visiting a tiny fraction of the optimization space, the sys-

tem is able to improve performance over both baselines for all benchmarks, achieving a

noticeable speedup average of 62%. The speedups range from 1.14x for Fibonacci.recv

to 2.56x for Bubblesort, which was the highest overall when considering both bench-

marks and interactive applications.

Figure 6.8 shows the speedups for interactive Android applications. When consid-

ering the hot region in isolation (see Figure 6.9) similar findings were observed. When

considering wider regions that surround the code that was optimized, the speedups
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Figure 6.8: Speedup relative to the Android compiler for 9 interactive Android appli-

cations. The reported results consider code that surrounds the hot region to show the

improvement over the whole application runtime. LLVM -O3 performance ranges from a

0.99x to a 1.09x speedup. LLVM GA uses an offline, replay-based iterative compilation.

It is able to improve performance further, with speedups ranging from 1.07x to 1.54x

and an average speedup of 23%.

range from 7% to 54%. As described in Figure 5.2, the amount of code that benefits

from iterative compilation ranges only between 14% and 81% of the total execution

runtime.

When considering both interactive and benchmark Android applications, the av-

erage speedup is 44%. These findings underestimate the potential of the proposed

approach, as it is held back by the current limitations of the LLVM backend, described

in Section 5.3.4. Nevertheless, it still manages to improve performance significantly,

including for applications like DroidFish where only a small fraction of the execution

runtime can benefit from optimization. With a more mature compiler toolchain it is

expected that these gains will grow even further. Chapter 7 discusses further improve-

ments over the proposed system.

6.9.2 Using a GA for offline optimization search

With a GA search over the huge space of LLVM optimization decisions, the proposed

approach is able to discover code transformations that significantly outperform the
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Figure 6.9: Range of speedups over the Android compiler for the LLVM transformation

sequences selected by the GA. Speedups are estimated through replay for the hot

regions only. The two lines represent the evolution of the best and worst genomes

over time. Vertical grid lines indicate the change from one generation to the next. All

applications benefit from the code optimization search. Application versions worse than

the baseline are common across all applications, in some cases even after multiple

generations.
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Android compiler. This is shown by visualizing how the best genomes evolve over

time. It is also demonstrated that GA, like any other self-adapting algorithm, will

inevitably attempt to evaluate sub-optimal code transformations during search. This

demonstrates that the optimization approaches that rely on online evaluations are not

applicable in the mobile environment. The genome evolution is followed by a detailed

gene analysis, globally and per application, to give some insight into the most relevant

transformation passes.

6.9.2.1 Genome evolution over several generations

Figure 6.9 shows the evolution of the offline GA search in terms of best and worst

genomes over time. In all cases the best binary outperforms the Android baseline. For

almost all applications the genetic search improves performance over time, except for

Blokish where the initial random search discovers the best performing binary. More

than two thirds of the tested applications require multiple generations to discover their

best binary, while a few might have benefited by an even longer search. In detail, six

applications keep getting benefits from search until the very end of the process, ten

stabilized within four to six generations, while the remaining five applications reach

their optimal genome in three or less generations. Overall, the ability to search the

transformation space and evaluate optimization decisions in a robust way provides

clear benefits.

On the other end, several genomes have an extremely detrimental effect on per-

formance with as much as 10x slowdown. If those were to be evaluated online, they

would have had a dramatic effect on the user experience. For the whole first random

generation of FFT and a significant portion of the first generation of Fibonacci.recv,

even the best genomes are worse than the Android baseline. This is not limited to the

early stages of the search. Four applications were still picking sub-optimal transforma-

tions even after more than seven generations, and five applications for three or more

generations. The remaining nine had to enter their second generation to stop evaluating

sub-optimal code. This does not take into consideration the even slower genomes that

were evaluated but discarded during the construction of the first random generation, as

explained in Section 6.8. In any case, only a handful of sub-optimal evaluations would

have been enough to degrade the user experience and render any online approaches

impractical. And still, online approaches have to deal with binaries that might crash at

runtime or successfully execute but silently produce a wrong output.
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6.9.2.2 Analyzing the best genomes of applications

Figure 6.10 shows the flags along with their usage counts of the best genomes across all

applications. They are classified into 11 categories based on the code transformation

that they perform. Each category is emphasized and includes a total sum of the used

passes. The genomes were minimized beforehand to exclude any flags that do not

have an impact on the generated binaries. The impact might be direct, or indirect for

the case of the analysis passes.

Architecture, contains any device architecture or CPU specific passes, for aarch64

and the Kryo processor respectively. Arithmetic, contains passes that perform math-

ematical operations. The passes that modify the control flow graph are grouped into

cfg. Improve, contains the passes that replace or lower particular instructions with

faster equivalent ones. Loop, has all the loop-related optimization passes, except vec-

torization. Invoke, contains the passes that optimize method calls. Memory, has all the

passes that perform memory and pointer arithmetic optimizations. Reduce, are passes

that decrease the number of the generated instructions. Register, are transformations

that relate to register usage. Vector, are passes that relate to enabling or disabling loop

vectorization. Finally, other, contains the remainder of the passes, which might relate

to code analysis, altering binary symbols or sections, link-time optimizations, among

others.

Loop optimization was the most popular flag category. Passes that relate to loop-

unrolling were the most widely used in this category. This is an additional indicator,

in addition to the results of Subsection 5.5.3, of the effectiveness of the post-unroll op-

timization presented in the previous chapter. The next most widely used category was

reduce, followed by cfg. Invoke and memory optimizations come next, followed by the

rest of the categories. CPU-specific optimization, parameterized using --mattr, was

the most widely used flag overall. Those passes included address, literal, arithmetic,

or logical fusing. Method inlining comes second, in par with all the unrolling passes.

It is assisted by the speculative devirtualization optimization that was introduced in

Subsection 6.4.2.

Figure 6.11 visualizes the flag category usage per application. It is overlaid on top

of the average flag category usage, which is shown with a light gray color. It allows

understanding which optimization categories have the most or least relevance to the

underlying code. The best genomes for all applications, except the obvious case of

Fibonacci.recv, include loop optimizations. Around half of the applications have used
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pealing or unrolling, while others include sinking, rotation, extraction, unroll-and-jam,

unswitching, and guard-widening. BubbleSort, MonteCarlo, and ColorOverflow had a

higher number of loop-related optimizations, while Sieve had the highest with a total

of 12 passes. More than half of the applications have used full or partial inlining, with

or without custom thresholds, while FFT, SelectionSort, ColorOverflow and PokerOds

used the most invoke transformation passes. Around a quarter of the applications have

used passes that optimize the instruction scheduling, with DroidFish having the most

improve passes. MaterialLife have used extensively cfg passes. ColorOverflow have

used 12 instruction reduce passes and its genome contained the most passes overall.

Arithmetic passes were mostly used by SOR and DroidFish. Other commonly used

optimizations include global value numbering, sub-expression elimination, pointer

arithmetic optimizations, floating-point improvements, load/store vectorization, and

instruction/function/return merging.
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Figure 6.10: Categorizing the flags of the best GA findings based on the performed

code transformations. The flag usage count across all 21 applications is also shown.
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Figure 6.11: Overlaying the amount of flags used per category (see Figure 6.10) for

each application, on top of the average usage across all 21 applications. The average

usage is depicted with light gray color.
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6.9.3 Transparent input capture mechanisms for Android processes
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Figure 6.12: Breaking down the online capture overheads into 4 categories. All three

capture mechanisms (Pages, Everything, and Intersection) require the entire Fork and

CoW (Copy-On-Write) overheads. However, the capture Everything approach does not

require any of the Page Fault overheads and almost none of the Preparation. Visually,

the total overhead of Everything are the groups shown with the blue shading in the plot.

On average, those are less than 6ms. The overheads of the Pages and Intersection

mechanisms are identical. Visually, they require all four groups shown in the plot, with

an average of 14.3ms and a maximum of roughly 30ms. Despite some higher overhead,

those are still unnoticeable by the users.

Any optimization approach that might temporarily deteriorate the user experience

is hard to justify. The only stage of the proposed system that happens online and

could affect the user is the input capture. Therefore, it is important to establish that

capture runtime overheads are low enough to have a negative effect on the user. This

section presents the runtime overheads for the proposed input capture mechanisms:

Everything, Pages, and Intersection. Intersection is an improvement over the Pages

approach. It incurs the same overheads with Pages, as the extra operations performed

are on a low-priority, child process. The sum of these overheads is 14.3ms on average,

while the maximum was roughly 30ms. The more lightweight capture Everything

approach, requires less than 6ms overhead on average. These runtime overheads are

further broken down into four categories, which are described below.
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Figure 6.12 shows a detailed breakdown of the overheads introduced by the in-

frequently invoked hot region input captures. Fork is the time it takes to call fork

and return. It ranges roughly from 1ms to 6ms, with 3.6 ms on average, depending

on the application and the state that needs to be replicated for the child. CoW is the

overhead caused by the Copy-On-Write mechanism and ranges between roughly 1ms

to 7ms, with less than 1ms on average, depending on the amount of pages that were

modified. These two overhead sources are common for all three mechanisms. Prepara-

tion includes everything that is performed before executing the hot region, except the

fork call. For Pages and Intersection this time is almost entirely spent parsing page

mappings from the /proc pseudo-filesystem and read-protecting pages. It can take

anything between 4ms and 11ms, depending on the number of page map entries that

are processed. Everything does not require any of this preparation, requiring just 1%

of that time. During the execution of the hot region there is an additional overhead

for the Pages and Intersection approaches, due to the handling of the deliberate page

faults. It is usually a very small fraction of the overhead, except for a few cases, like

BubbleSort (16ms) and FFT (10ms). These benchmarks have a large number of input

pages leading to increased Page Faults. CoW, which also occurs when the region runs,

is increased as well for those cases, being around half of the Page Fault overheads.

6.9.4 Capture storage overheads

It is important that the capture mechanism does not hog the mobile device’s limited

storage capacity. While a single capture is not a problem on its own, a realistic sys-

tem would have to work on optimizing multiple applications in parallel with, perhaps,

multiple captures for each application. Making sure that the captured page set is small

enough to allow tens of distinct captures is absolutely necessary. This section compares

the snapshot size requirements for the proposed input capture mechanisms. One that

requires less runtime operation and more storage, as it does not attempt to minimize

capture sizes, against two that store significantly less data.

Figure 6.13 shows the storage overheads for all applications using different capture

granularity. Everything, captures all pages that were marked as active in main mem-

ory by the time the hot region entered. It does not attempt to minimize the capture

data, requiring 165MB on average with the highest being roughly 300MB. As the pre-

vious experiment has illustrated, it operates significantly faster, making this approach

appealing for the cases where the storage is not very limited.
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Figure 6.13: Storage overhead for capturing user inputs at different granularity. Every-

thing, does not make any attempt on minimizing the capture sizes. Pages captures only

the memory pages read by the hot region and decreases sizes by an order of magni-

tude. By intersecting the reachable heap objects with those read pages the required

storage is further decreased, by an additional 64%.
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Figure 6.14: Memory usage of the captured benchmark and interactive applications.

On average, applications utilized 82.6MB of heap data, with FFT having the lowest at

17.4MB and 4inaRow the highest at 202MB. While this represents the majority of an

application’s runtime state, it is insufficient for setting up a working replay environment.

This is because other areas are also needed while executing a hot region. For example,

the GC is operating on an application’s heap data, but to do so it depends on the run-

time’s (ART) memory areas like the stack, its internal heap (different than the application

heap), and its text/code segment. The same applies for any other library dependencies

that an application or the runtime has. Regardless, what the Pages capture mecha-

nism actually stores is just a fraction of the heap space, while the object Intersection

mechanism significantly reduces the required storage even further (see Figure 6.13).
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The Pages approach minimizes the captured data by storing only the unique pages

that have been read by the hot region. More than two thirds of the read pages are not

unique to the process. They represent runtime instances of immutable structures that

are identical across all processes created during the same device boot. A single capture

of these common pages is enough for all apps, which requires 12.6MB of storage. The

average size of unique pages per region is 5.06MB, the smallest is 356KB for Poker

Odds, and the largest is 41MB for 4inaRow. Mostly, it is between 1MB and 5MB and

is in the same order of magnitude as the data the region actively uses.

Figure 6.14 shows the memory utilization by the applications. That is the total

amount of data that resides in the runtime heap, which represents the majority of the

application’s dynamic state. For replays to work, the capture mechanism needs to store

data that reside in other areas as well, which is why the capture Everything approach

always contains more data than the entire heap alone. In any case, when considering

this heap memory area in isolation, the Pages approach captures only a small fraction

of what the capture Everything approach would store. This is because several heap

objects reside outside the hot region input pages.

On average, the heap contained 82.6MB of data (Figure 6.14), while the Pages

approach stored 5.1MB in total (Figure 6.13). The Pages mechanism, despite including

data from other areas as well (apart from the application’s heap), it required only 6%

of what resides in the heap exclusively. Depending on the case, that percentage can

be as low as 0.3%, for example capturing only 0.3MB (see Figure 6.13) out of the

88.4MB (see Figure 6.14) of Poker Odds’s heap space. For 4inaRow, which had both

the highest heap usage and the highest captured size, the proposed approach stored

only 20% of what resided in the heap. For FFT, which had the least amount of runtime

data, it stored 8% of the heap.

Despite these savings, there is still room for improvement. There are several heap

objects that are unreachable by the hot region, and yet reside inside the input pages.

These data are unnecessarily stored by the Pages approach. By doing a reachable object

intersection with the input pages this space can be reclaimed, to reduce even further

the capture sizes. The object Intersection mechanism requires only 3.1MB of storage

on average, 64% less than the Pages approach. It stores an order of magnitude less

data for LU, 7x less for MonteCarlo and DroidFish, and 2x less for most of the other

ones. BubbleSort and 4inaRow were two notable exceptions (still 10% improved) as

they had dense objects in their input heap pages.

The Pages and Intersection capture mechanisms minimize the amount of required
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storage. That level of storage is manageable even for low-end devices, especially given

that this overhead is transient. Once the optimization search has finished for a particu-

lar application, then the capture data can be discarded releasing the storage space back

to the user. Additionally, by reducing the size of the captures, the amount of work

needed to set up a replay is similarly reduced, which speeds up the time required for

mass-evaluating code transformations.

6.9.5 Acceleration of the optimization search with crowd-sourcing

Running iterative compilation offline means that any associated overheads from the

technique will not have a negative impact on the user experience. Nevertheless, a de-

cent evaluation effort must be put before better transformations are discovered. Finding

better genomes with less effort makes the proposed replay-based iterative compilation

approach even more effective.

To evaluate the collaborative GA search, 10 different mobile devices were used,

as described in Section 6.8. Figure 6.15 shows the percentage that each user has con-

tributed to such joint search. The first 3 users joined the search with only a 5-minute

delay between them. As no other user was initially participating, they have contributed

roughly half of the total search effort. The next 3 users also joined with a 5-minute

delay between them, on top of a 30-minute delay from the first batch of users. Col-

lectively they contributed 30%. The last 4 users have contributed a significantly less

22%. User7 had the least contribution as it suspended evaluations when all other 9

users were actively participating.

Figure 6.16 visualizes the time each user has put into the joint search. Each user

had a different contribution. This was due to their different availability for the joint

search (see Figure 6.6), but also due to the different inputs they operated on. Only

a fraction of each user’s availability was required. User7 contributed the least, for

around 30 minutes. The most was 1 hour and 43 minutes by User1, who was the most

active and also operated on bigger workloads for the benchmarks. The difference in the

amount of computations performed by different users is also evident when comparing

Total with SingleUser1. Total is the sum of all user contributions, while SingleUser1 is

the time required for performing a same-length search by User1 individually (without

crowd-sourcing).

The isolated search of User1 required 13 hours and 7 minutes (SingleUser1), while

the total time for joint search between all users required 11 hours and 15 minutes (To-
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Figure 6.15: User participation to the collaborative optimization search for all applica-

tions. Users that joined the search earlier had higher contributions. The least contri-

bution came from User7, who was absent at a period where all of the remaining users

were actively contributing.
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Figure 6.16: User search contribution time alongside with the total time and the average.

SingleUser1 shows the time required by User1 to perform a same-length search on

its own. Users had different contributions as they performed a different amount of

computation. This was due to their different availability (see Figure 6.6) and the different

inputs they operated on. Total shows the sum of all user contributions. It is actually less

than the SingleUser1, as that particular user operated on input that caused increased

workload. On average, the joint search required about an hour, roughly 12x less than

SingleUser1.
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tal). Therefore, in this particular scenario User1 puts less than 12x less effort when

compared to the AVERAGE contribution (SingleUser1 ÷ AVERAGE). When not col-

laborating, 7x less effort is required (SingleUser1 ÷ User1). When considering the

availability time (see Figure 6.6), users were available for roughly 7 hours, with only

16% of that being utilized. These accelerations are enabled by the fact that new users

leverage existing information accumulated by the previous ones. While variation is ex-

pected, as we only present a single run of a specific 10-user scenario, it becomes clear

that the average user contribution time will decrease as the number of users increases,

allowing us to perform deeper searches with less individual user effort.

6.9.6 Speedups for several users of a joint, crowd-sourced opti-

mization search

While the acceleration benefits of a crowd-sourced approach are appealing, it is im-

portant to show that the findings of such collaborative search are still effective. This

section presents the best genomes of a joint GA search among 10 users. It also analyses

the cases where the input was significant.

Figure 6.17 shows the speedups from the joint optimization search of each user’s

exit point. That is the point in time where a participating user has exited the joint

search. In essence, this point represents the best genomes that have been discovered

from each user’s participation periods. The geometric mean of all users and applica-

tions was 39%, only a 6% less than the individual-input search (see Section 6.9.1).

Given the acceleration gains of a collaborative optimization search, this is a quite sat-

isfactory result for a fraction of users’ availability time.

For half of the cases the user input played a significant role in the findings. For FFT,

most of the genomes were the same, except for 3 users that were 80% better than the

individual search ones. A user in Reversi benefited an additional 60% improvement,

while another one for ColorOverflow has tripled its findings. Users in LU, 4inaRow,

and Poker Odds had improvements between 25%-30%. Only 8 cases did not have

much variation between different users. These results collectively indicate that despite

doing a collaborative search among different users, the proposed approach is able to

specialize, in most cases, for each user individually. Fibonacci.iter and MonteCarlo

were two notable exceptions, where a single user deviated a lot from the other ones. In

future work, we will consider either widening or even performing an individual search

for such cases.
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Figure 6.17: Showing the best genomes for each application from a joint search, at

each user’s exit point. That is the point in time where a user has exited the collaborative

search. User7 had two such points with the first shown as a circle outline drawn with

a lighter color. The average speedup is shown with a rhombus. These findings sug-

gest that the input was significant for half of the cases. Although they are not directly

comparable with the single-user search of Section 6.9.1 (i.e., different number of points

visited, plus variation between individual runs), 70% of the user averages were either

better or within 15% of the best single-user genome.
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Over time, the proposed architecture is also able to discover decent genomes within

a handful of minutes. User7, participated for two distinct periods, with the first lasting

only 15 minutes. Nevertheless, the user retrieved for around half of the cases a genome

that was close to its optimal one. It is just for 5 cases it could not outperform the

baseline. This makes the proposed technique effective even for users that participate

just quick-charge device cycles.

6.10 Summary

There are many challenges for building an optimization framework for interactive mo-

bile applications that is scalable, considers real inputs, introduces no overheads to the

users, all without developer assistance. It should automatically identify code regions

that are worth optimizing and can be accurately replayed. The input capture mecha-

nism must work well in a complex runtime environment. The replay-based evaluation

mechanism must repeatedly restore the captured input while being able to execute dif-

ferent code types as well different code versions of a hot region. It should operate even

in the presence of memory-related security mechanisms. The code versions should be

built by quickly exploring the beneficial areas of a compiler’s transformation space.

Finally, the correctness of tested code transformations must be verified automatically.

This chapter presented a system able to operate on interactive Android applications.

By analyzing the bytecode of an application, code regions that are worth optimizing

and can be accurately replayed are identified. Inputs to those regions are automatically

captured on subsequent invocations of the application. Different input capture mecha-

nisms were introduced. The Pages mechanism was reworked to operate on interactive

applications. It minimizes the storage size requirements by storing only the read by the

hot region memory pages. The intersection mechanism improves it by intersecting the

reachable heap objects with the input pages. This significantly reduces capture sizes,

without introducing any additional overheads. The capture Everything approach has

a more lightweight runtime operation, as it does not attempt to minimize the storage

sizes. It is ensured that complex runtime operations, like garbage collection, do not in-

terfere with the capture mechanism. Also, the capture frequency and the capture input

diversity can be controlled while the storage overheads are minimized. Then, offline

iterative compilation can be performed by replaying the captured inputs. The replay

mechanism starts as a vanilla C program and gradually transforms itself into a partial

Android process. It works well in the presence of the ASLR security mechanism. It
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can also replay the hot region using three different types of code. The first is the An-

droid code, which is used as a baseline for comparisons. The second is interpretation

and is used to extract data from the captures to automate correctness verification and

enable further optimizations. The last one is code generated by the LLVM backend.

Multiple versions of LLVM code are evaluated, which are generated by searching the

optimization space using a genetic algorithm. Finally, with crowd-sourcing, the signif-

icant offline evaluation effort can split among different users to enable deeper searchers

at a fraction of the time.

The proposed system was evaluated on 21 real Android applications, either bench-

marks or interactive ones. The Pages and Intersection capture mechanisms introduce a

slowdown of 14.3ms on average. The capture Everything approach requires less than

5ms on average. The Pages approach required 5.1MB of storage, while Intersection

decreases that by an additional 64%. These two approaches allow multiple captures to

be taken even on low-end devices. The capture Everything approach requires 165MB

on average, making it a good fit only for the cases where the storage size is not very

limited.

The replay-based optimization system was able to outperform the Android base-

line for each application. The performance of the tested applications was improved

by 44% on average. For almost all of the applications, the genetic algorithm keeps

improving performance over time. A flag analysis suggested that some optimizations

implemented in this and the previous chapters were exploited to a great extent by the

proposed system. This, along with the significant performance improvements over the

LLVM -O3 baseline, showcase that even a highly optimizing compiler is not enough

on its own. The GA also clearly demonstrates that online approaches, even if they

improve over time, can significantly degrade the user experience. Some of the tested

transformations were as much as 10x slower. Nine applications were still picking

sub-optimal transformations even after three generations, while a few kept testing sub-

optimal genomes to the very end. The collaborative search was just 6% short of the

user-individual searches and required just a fraction of that time. With 10 users, the

search was accelerated by 7x for the user with the highest workload, while another user

was able to extract near optimal results only within a handful of minutes.





Chapter 7

Conclusions

This thesis attempts to address the main obstacles that prevent iterative compilation,

a well-established optimization technique, to be widely adopted on mobile devices.

Chapter 4 presents a lightweight capture mechanism for C functions, able to store real

user inputs without causing noticeable overheads to the users. It also presents an of-

fline replay-based evaluation mechanism that is combined with a random search based

iterative compilation to optimize C programs. Chapter 5 introduces a novel LLVM

backend for Android applications, to address the limited code transformation space

of the default backend. Some Android-specific optimization passes were developed,

along with an analysis pass to automatically detect code regions that are worth optimiz-

ing. Chapter 6 presents different input capture mechanisms that operate on different

granularity and support Android applications. A novel replay mechanism is also intro-

duced. It works well alongside memory-shuffling security mechanisms and supports

executing different code types: Android default code, interpretation, and LLVM gen-

erated code. It is used by an iterative compilation system that automatically identifies

accurately replayable code regions, searches the space using a genetic algorithm, and

performs correctness verification without requiring any developer effort. Finally, with

a crowd-sourcing module it accelerates the offline evaluation efforts.

This chapter is organized as follows. Section 7.1 briefly summarizes the main

contributions of this thesis. Section 7.2 presents a critical analysis of the proposed ap-

proaches. In Section 7.3 there is a discussion on interesting future directions. Finally,

Section 7.4 summarizes this chapter.

135
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7.1 Contributions

The motivation examples presented in Section 1.1 showcase why neither offline nor

online iterative compilation approaches are suitable for the highly restricted mobile

device environment. The challenges of transparent capture and replay mechanisms

were briefly outlined in Section 1.2. The shortcomings of existing systems in both

research areas were reviewed in Chapter 3. The following subsections outline the

main contributions of this thesis that allow iterative compilation to be widely adopted

on mobile systems, by addressing these problems and filling the necessary gaps in the

research literature.

7.1.1 Transparent captures of real user inputs

An offline code transformation evaluation mechanism relies on representative inputs

that are captured online. Despite several existing capture approaches, successfully

deployed in various domains, none was designed around a transformation evaluation

mechanism with the mobile device environment in mind. A lightweight and unnotice-

able online operation is imperative given the low-latency interactions and the limited

computing, storage, and energy resources of mobile devices. Most of the existing ap-

proaches either minimize capture sizes at the cost of significant performance penalties,

or capture at a coarser granularity requiring a considerable amount of storage. Some

omit information that are necessary for an offline evaluation mechanism, while others

introduce avoidable online overheads.

This thesis presented online input capture mechanisms for targeted code regions

that are tailored for a low-latency mobile environment. The mechanisms are lightweight

enough to remain unnoticeable from the users and are infrequently invoked, as a single

capture is enough to drive code optimization. Chapter 4 details a capture mechanism

that targets a hot method for C programs. It re-purposes two kernel mechanisms to

store only a subset of the memory space while minimizing the overheads. Chapter 6

introduces different input capture mechanisms. The first, extends the capture mech-

anism presented in Chapter 4 to support code regions of the more complex Android

applications and provides several improvements. In particular, captures are deferred

on high-impact events that can potentially increase overheads, the capture frequency

can be tuned, and the capture sizes are decreased by omitting immutable data from

the snapshots. The second further minimizes the storage requirements, through heap

object intersection with the accessed by the region memory pages. The last favors a
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more lightweight runtime operation at the cost of higher storage sizes.

The capture mechanisms that minimize the snapshot sizes (Pages / Intersection)

require 11ms for either C programs or Android applications. The mechanism that

does not, requires 4.6ms for Android applications. Regarding storage, C programs,

which are more lightweight than Android applications, required between 100KB and

200KB of storage. This was at least two orders of magnitude less than the program’s

total virtual memory. For Android applications, the Page capture approach required

5.06MB of storage on average. This amounts to only a 6% of the application’s memory,

which refers to the memory pages containing just the runtime heap (e.g., allocated

objects/classes). To fully reconstruct a process, pages from other areas are needed as

well. The object Intersection mechanism decreases the stored data even further, with

an extra 64%. Once code optimization has finished, the capture is discarded. Given

such low online execution overheads that only require a small and transient storage,

the proposed approaches are suitable even for low-end mobile devices. The capture

Everything approach requires 165MB on average, making it fit only for the cases where

storage size is not limited.

7.1.2 Replay-based code transformation evaluation

Once real inputs are transparently captured, the next step is to use them for offline

code transformation evaluations. The captured data have to be repeatedly restored to

re-create for each evaluation a partial process environment for a particular code region.

Each time, the mechanism must be able to consistently replay the region with a fixed

input state while the underlying code for carrying out the execution can change.

Chapter 4 presents a replay evaluation mechanism for C functions. It employs

compile and link time strategies for consistently replaying a function using the same

input but under different optimization decisions. The input will be representative, as

it was captured online, on a real user execution. Since the input is the same, com-

parisons between different decisions will be sound. As evaluations happen offline, at

times when the device is charged and otherwise idle, any suboptimal, crashing, or er-

roneous evaluations can trivially be discarded without ever causing an inconvenience

to the user. Offline evaluations additionally allow a tighter control over the execution

environment. Combined with robust statistical methodologies, the execution noise be-

comes manageable even for the inherently noisy mobile environment.

Chapter 6 evolves the replay mechanism to work for the more complex Android
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runtime. The mechanism is able to replay code regions using different code types and

each region might consist of several methods. The first code type is the default Android

code and is used as a baseline in evaluations. The second is interpretation. This enables

dynamic profiling to be performed offline as a means of extracting information from

the captures that would have been too costly to do online. This information is then

used to provide automatic correctness verification of each evaluated transformation. It

is also used to enable additional code optimizations, like speculative devirtualization.

The final code type is LLVM code, which is utilized by the next contribution (see

Subsection 7.1.3). Finally, the replay mechanism works in the presence of ASLR, a

security mechanism that is present in all modern OSes, including Android.

7.1.3 Realizing iterative compilation on mobile systems.

Iterative compilation has been successfully applied over the years in several domains.

Despite being a well-established optimization technique it has not been widely adopted

on mobile systems. Offline approaches rely on representative hardware, software, and

inputs. This assumption simply does not hold in the mobile environment as there is a

multitude of hardware configurations, different software components are being updated

frequently, and the artificial creation of representative inputs is non-trivial. Online

approaches solve some of these issues, as they inherently operate on real inputs, but

introduce a whole new set of problems. They might expose the user to significantly

slower, crashing, or erroneous executions. On top of all these, input variability can

extremely prolong the evaluation process to a point that is no longer practicable.

Chapter 4 presents a novel iterative compilation system for C functions that uti-

lizes an offline, replay-based evaluation mechanism. Initially, a lightweight mecha-

nism stores real user inputs without causing any noticeable overheads to the users.

Then, an optimization search is performed by replaying offline the captured input un-

der different optimization decisions. The proposed approach avoids the shortcomings

of both purely offline and online approaches. Real user inputs are inherently repre-

sentative and require no developer effort to be collected. Replaying the same inputs

for each iterative compilation evaluation ensures sound comparisons between different

optimization strategies. Doing this whole operation offline guarantees that at no time

a user will be negatively affected by the optimization search.

Chapter 6 presents an iterative compilation system able to optimize interactive An-

droid applications. It automatically identifies code regions that are worth optimizing,
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which may contain multiple methods. With static analysis passes, it ensures that these

regions can both be compiled by the LLVM backend and that they are able to replay

in a deterministic fashion. It significantly increases the code transformation space of

the default Android compiler utilizing the LLVM backend, presented in Chapter 5. It

searches through this now huge space using a genetic algorithm, and automatically

verifies each genome for correctness without requiring any developer effort. Finally,

with a crowd-sourcing module, it allows several users to perform a joint search as a

means of accelerating the offline evaluation efforts.

The proposed techniques were evaluated against C programs and Android appli-

cations. For C programs, the space was probed with a random search improving per-

formance by 29%. For Android applications, the code was generated by the LLVM

backend. On its own, and without utilizing iterative compilation, the LLVM back-

end improved applications by 7%. When utilizing a replay-based iterative compilation

along with a genetic search, the performance of Android applications was improved by

44%. The collaborative GA search was just 6% short of that speedup, which is impres-

sive given the acceleration gains. The user with the highest workload concluded the

search 7x faster versus when not collaborating, and 12x when compared to the average.

Another user was able to discover near-optimal results within a handful of minutes.

7.2 Critical Analysis

This section outlines the most important limitations of the techniques presented by this

thesis.

7.2.1 Capture and Replay mechanism limitations

Specialized Android capture mechanism. To enable capturing of interactive Android

applications the initial capture approach (see Chapter 4) had to change substantially.

As ART had a more complex runtime environment, the page protection mechanism had

to specially handle some virtual memory areas. This additional information, on which

areas to memory-protect and which not, was acquired empirically. While it worked

well, this specialization might need to be reworked on big OS updates.

Parsing serialized kernel structures. The Page capture mechanism operates entirely

on the user space and is unnoticeable from the users. Most of its overhead is spent

for parsing the VMA address space. It is necessary for identifying and protecting
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the relevant memory areas, as well doing the specialization explained by the previous

paragraph. This is done by reading and parsing the /proc/self/maps file, which is

a serialized format of the kernel’s internal VMA structures. Especially on the bigger

64-bit address space of Android applications, this parsing is slow.

Copy-On-Write and memory page protection overheads. These mechanisms are

crucial for both identifying and preserving the original input pages. They are used by

both the Pages and object Intersection capture mechanisms. They are triggered exclu-

sively by user space code, and cause some actions to both user and kernel spaces. As

demonstrated by the following example, these actions are not always optimal. When a

parent process attempts to modify a memory-protected page, a segmentation violation

is raised. This is handled in the user space by restoring the page permissions, so the

parent can proceed to read or write the page. On write operations the Copy-On-Write

mechanism will also be triggered. In that case, another set of actions are performed,

now on the kernel space. The virtual page might now have the relevant permissions,

however the physical page is still marked as non-writable. This is fork’s way of trig-

gering Copy-On-Write. A page fault at the kernel space level is also raised, which is

handled by copying the physical page, making the copy read-writable, and assigning it

to the VMA of the parent process. In a nutshell, when writing a page both a segmen-

tation violation and a page fault is raised and subsequently handled on the user and

kernel spaces respectively.

Unnecessary data in captures and replay setup overheads. Regardless of being per-

formed offline, a faster replay mechanism means more evaluations in less amount of

time. Evaluations are already accelerated, as only the code that is being optimized is

actually being replayed. Nevertheless, setting up less state during replays can decrease

the time required for restoring. The child process can contain more data than what is

actually needed. The Android capture mechanism never protects and therefore never

captures pages containing executable code. For each of those, any relevant files and

offsets are logged and remapped from disk during replay. Despite the file-backed mem-

ory mappings being an optimization regarding the storage space, they may introduce

some overhead during the replay setup as all of those files are re-mapped.

Overestimating the reachable object set in input pages. The intersection mechanism

identifies the reachable objects in the input pages of the runtime heap. These are the

pages that belong to the heap and have been read by the hot region during its execution.

The mechanism then proceeds by removing any unreachable objects that reside in those
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heap pages, before materializing them to disk. The reachable object set, however, is

overestimated in the current version. There might be cases where an object is marked

as reachable without having a valid traversal path. Such path, is one that on each step,

during a traversal from the roots to the object of interest, has any of the intermediate

objects residing only in read pages.

7.2.2 Limitations of the LLVM backend

Being at its infancy, the LLVM backend has several opportunities for improvement.

Several instructions are currently not as optimally implemented as the Android default

backend. Others are either not fully or not at all implemented, relying on much slower

runtime routines. This decreases the amount of code that LLVM can compile, and in-

creases the external runtime calls. Both hinder compiler optimization. Special register

operations are another set of instructions, extensively used by application code, that

cannot fully benefit from optimization passes such as instruction reordering or merg-

ing. Also, the generated LLVM code is not neatly packed into special binary files as the

Android compiled code is, therefore it cannot efficiently access several special caches

for frequently used objects or classes. Section 5.3.4 presents these limitations in more

detail.

7.2.3 Iterative compilation limitations

While it is shown that the proposed optimization mechanisms can operate well on

methods that have deterministic code regions, it is harder to adapt to code that has

inter-mi xed CPU intensive and non-deterministic operations. Smaller code traces can

still be optimized in those cases, however, the bigger the contiguous code blocks the

better when it comes to code optimization. Another limitation is that the input can

change at runtime. When it does, the pre-optimized code might not be as efficient as it

was for the input that it was originally optimized for.

7.3 Future work

This section outlines interesting future directions for the work presented in this thesis.
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7.3.1 Improving the capture and replay mechanism

Despite being unnoticeable from the users, the overheads of the Pages and object Inter-

section capture approaches can be further reduced. A significant amount of the intro-

duced overhead relates to parsing serialized kernel structures for understanding the vir-

tual memory layout. Other overheads include the page protection and handling mech-

anism, as well the Copy-On-Write mechanism. Also, some specialization is needed on

the memory areas that are being protected, otherwise the user space mechanism can

prematurely crash.

With the introduction of a special system call, along with relevant kernel support,

these overheads could be decreased and the mechanism can become independent of the

runtime environment being captured. A high level overview of such call is described as

follows. The system call will create another process, in a paused state, but in contrast

with fork it will not duplicate all of the VMAs. It will still mark the physical pages

of the original process, to cause kernel-space page faults. For each of those faults, it

will update the new process with the relevant virtual page. It will preemptively copy

the pages before they are modified by the parent in the new process, and it will note

whether they are eventually read by the parent. Those that are only written but never

read, will be removed from the new process. Regarding the executable pages, it will

update the VMAs of the new process with the whole area, instead of only the relevant

page. Those will be re-mapped directly from the filesystem during replay, using any

relevant offsets. This will omit from the replay setup any code areas that were not used

during the original execution.

This would require no preparation phase by the capture process. Also, there is no

need to engage the page protection mechanism or do any user-space fault handling.

The new process will gradually get filled with the read pages, the original content of

the written pages, and the used executable areas. Then, the new process will disengage

from the original process. It will be set to low priority and a special text segment will

bootstrap for storing all the data that should be captured. This approach will work

regardless of the runtime environment being captured.

7.3.2 Replaying code on different processing units

The presented capture and replay mechanisms operate on particular CPUs that run on

a Linux OS device. Specifically, the processors based on the arm and arm64 archi-

tectures are supported. By specializing on which registers to store, one could port the
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system to more CPU architectures, like the x86. However, more work is required to

support different processing units, like Graphics Processing Units (GPUs) or a Digital

Processing Units (DSPs). The remainder of this section describes those changes, given

that the device has some relevant Linux kernel support.

To enable replaying code on a CPU, capturing data from two sources is required.

The first is the main memory and the second is the CPU-specific memory (i.e., regis-

ters). The main memory is captured by utilizing OS interfaces to the Memory Manage-

ment Unit (MMU) controller [LIN21b], exposed through the /proc interface [LIN20].

The CPU-specific memory is captured by accessing the registers through some as-

sembly code. In particular, the contents of the non-volatile registers are captured. To

enable replaying of code that runs on different processing units (like a GPU or a DSP),

access to equivalent data sources is required. In particular, to store the device’s mem-

ory one must utilize the Input/Output Memory Management Unit (IOMMU) of the

kernel [LIN21a]. Similarly, the device registers have to be stored. This can be accom-

plished by retrieving the relevant PCI device through an interface [HER21]. By using

such interface, the I/O regions can be computed, which contain the device’s registers.

Then, those can be memory mapped (mmap) in an operation that requires elevated priv-

ileges. Once this is done, the register input data can be retrieved. With an inverse

procedure, the captured data can be restored back to the processing unit at the replay-

ing phase.

7.3.3 Higher quality of the IR-to-IR translation pass

Despite being a work in progress, the LLVM backend outperforms the default An-

droid compiled code for most cases. Nevertheless, the code produced by the LLVM

backend is not as efficient as it could be. Particular JNI methods could be translated

into LLVM bitcode, either by using LLVM intrinsics or by re-writing any relevant

functionality into LLVM IR. This can increase the amount of code that is compiled

and therefore optimized. The post-unroll optimization could be expanded to additional

slow check operations in loops, such as cases where array bounds checking is unneces-

sary. Also, Android compiled code accesses caches faster than LLVM. This is because

it is packed into special OAT files that enable, with some link-time patching, direct

memory accesses to caches of objects, classes, or strings. With additional effort this

mechanism can be ported to LLVM. Finally, LLVM can be extended to support reserv-

ing and re-purposing registers, similar to what the Android compiler does for some
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special purpose registers, like the Thread or the Marking register.

7.3.4 Input-Specialization on the crowd-sourced optimization search

The findings of the collaborative search suggest that the input was significant for many

cases when it came to code optimization. While the approach is capable of doing a

joint search, it can still specialize for individual users when needed. However, this

was not the case for a few of the cases. Particular users deviated a lot from the others.

To improve this, we are considering doing individual user searches, at least to some

extent. The joint GA search could also be extended, to cluster over time different users

according to the genomes that are most effective for them. This will encourage deeper

exploration in areas that might be beneficial for particular user inputs.

7.3.5 Optimizing for common inputs and using at runtime the best

The presented iterative compilation approaches perform an input-driven optimization

search. Therefore, the findings are optimized for a particular input. As these inputs

change, the previously discovered optimized code might not be as efficient. To over-

come this problem, one must maintain different optimized code versions for the fre-

quently encountered inputs and dynamically choose the best one at runtime.

By periodically taking captures of an application, a set of the most frequently en-

countered inputs can be maintained. Running a replay-based iterative compilation on

these inputs will result in a set of pre-optimized binaries for a particular code region.

At runtime, all these pre-optimized versions could be available for carrying out the ex-

ecution of the region. With a lightweight input identification mechanism, the runtime

could predict which version will have the best performance and choose it for execution.

This dynamic optimization is known as code multi-versioning.

7.4 Summary

Neither offline nor online iterative compilation approaches are well suited for the mo-

bile environment. Offline approaches require representative hardware, software, and

inputs. This is an assumption that is hard to make. There are a myriad of hardware

designs, software is constantly being updated, while creating artificial input (represen-

tative or not) is a non-trivial endeavor for mobile applications. Online approaches on



7.4. Summary 145

the other hand, inherently solve some of these issues, however they expose users to

suboptimal or even erroneous executions.

This thesis has presented a novel fusion of iterative compilation with a capture and

replay mechanism. With infrequent captures, real inputs are stored without causing

any noticeable overheads to the users. Then, those are used to drive an offline, replay-

based iterative compilation. The replay mechanism is able to repeatedly execute the

code region with the same input, but under different optimization decisions. As the

input is the same, comparisons between different decisions are sound. As this happens

offline, any suboptimal or erroneous executions never affect the users. This addition-

ally allows a stricter execution environment, which is combined with robust statistical

methodologies to make the execution noise manageable.

The proposed approaches were evaluated on C programs and then were extended

to support Android applications. Different input capture mechanisms were also de-

veloped, able to store input at different granularity. To increase the code transforma-

tion space of the default Android compiler, an LLVM backend was implemented. The

backend was open-sourced to give more researchers the option of producing highly op-

timized code for Android applications. The compilable, replayable, and optimization-

worthy code regions are automatically identified through profiling and static bytecode

analysis. A novel replay mechanism allows performing dynamic profiling offline,

which enables automatic correctness verification, as well further compiler optimiza-

tion. The optimization search is performed using a genetic algorithm. Finally, with

crowd-sourcing, the offline evaluation efforts are significantly accelerated. The pre-

liminary results were promising, and the potential future directions for this research

look very interesting.
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thy, Louis-Noël Pouchet, Fabrice Rastello, and P Sadayappan. “Static

and dynamic frequency scaling on multicore CPUs”. In: ACM Trans-

actions on Architecture and Code Optimization (TACO) 13.4 (2016),

pp. 1–26.

https://cs.android.com/android/platform/superproject/+/master:art/compiler/jit/jit_compiler.cc
https://cs.android.com/android/platform/superproject/+/master:art/compiler/jit/jit_compiler.cc
https://cs.android.com/android/platform/superproject/+/master:art/compiler/jit/jit_compiler.cc
https://source.android.com/devices/tech/ota/apex
https://cs.android.com/android/platform/superproject/+/master:art/runtime/oat.h
https://cs.android.com/android/platform/superproject/+/master:art/runtime/oat.h
https://cs.android.com/android/platform/superproject/+/master:art/runtime/oat.h
https://android.googlesource.com/platform/external/llvm/
https://android.googlesource.com/platform/external/llvm/
https://play.google.com/store/apps/details?id=com.quarzo.fourinarow&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.quarzo.fourinarow&hl=en&gl=US


BIBLIOGRAPHY 149

[BOD+98] François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and

Erven Rohou. “Iterative compilation in a non-linear optimisation space”.

In: Workshop on Profile and Feedback-Directed Compilation. 1998.

[BRI20] University of Bristol. The BEEBS Benchmark Suite. 2020. URL: https:

//github.com/mageec/beebs (visited on 01/11/2021).

[CAS+15] Pablo De Oliveira Castro, Chadi Akel, Eric Petit, Mihail Popov, and

William Jalby. “CERE: LLVM-Based Codelet Extractor and REplayer

for Piecewise Benchmarking and Optimization”. In: ACM Trans. Archit.

Code Optim. 12.1 (Apr. 2015).

[CAV+07] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael

FP O’Boyle, and Olivier Temam. “Rapidly selecting good compiler op-

timizations using performance counters”. In: International Symposium

on Code Generation and Optimization (CGO’07). IEEE. 2007, pp. 185–

197.

[CDC21] CDC. CDC Sleep Statistics for the United States. 2021. URL: https://

www.cdc.gov/sleep/data_statistics.html (visited on 01/11/2021).

[CHE+12] Yang Chen, Shuangde Fang, Lieven Eeckhout, Olivier Temam, and Chengy-

ong Wu. “Iterative optimization for the data center”. In: ACM SIGARCH

Computer Architecture News 40.1 (2012), pp. 49–60.

[CLA20] LLVM Clang. Clang: LLVM front-end for C programs. 2020. URL:

https://clang.llvm.org/ (visited on 01/11/2021).

[CLA21] Clang. Clang compatibility with GCC. 2021. URL: http://clang.

llvm.org/compatibility.html (visited on 01/11/2021).

[COH+05] Albert Cohen, Marc Sigler, Sylvain Girbal, Olivier Temam, David Par-

ello, and Nicolas Vasilache. “Facilitating the search for compositions of

program transformations”. In: Proceedings of the 19th annual interna-

tional conference on Supercomputing - ICS ’05 (2005), p. 151.

[COO+02a] K Cooper, Timothy Harvey, Devika Subramanian, and Linda Torczon.

Compilation order matters. Tech. rep. Technical Report, Rice Univer-

sity, 2002.

[COO+02b] Keith D Cooper, Devika Subramanian, and Linda Torczon. “Adaptive

optimizing compilers for the 21st century”. In: The Journal of Super-

computing 23.1 (2002), pp. 7–22.

https://github.com/mageec/beebs
https://github.com/mageec/beebs
https://www.cdc.gov/sleep/data_statistics.html
https://www.cdc.gov/sleep/data_statistics.html
https://clang.llvm.org/
http://clang.llvm.org/compatibility.html
http://clang.llvm.org/compatibility.html


150 BIBLIOGRAPHY

[COO+05] Keith D Cooper, Alexander Grosul, Timothy J Harvey, Steven Reeves,

Devika Subramanian, Linda Torczon, and Todd Waterman. “ACME:

adaptive compilation made efficient”. In: ACM SIGPLAN Notices 40.7

(2005), pp. 69–77.

[COO+86a] Keith D Cooper, Ken Kennedy, and Linda Torczon. “Interprocedural

optimization: Eliminating unnecessary recompilation”. In: Proceedings

of the 1986 SIGPLAN symposium on Compiler construction. 1986, pp. 58–

67.

[COO+86b] Keith D. Cooper, Ken Kennedy, and Linda Torczon. “The impact of

interprocedural analysis and optimization in the Rn programming envi-

ronment”. In: ACM Transactions on Programming Languages and Sys-

tems 8.4 (Aug. 1986), pp. 491–523.

[COO+99] Keith D Cooper, Philip J Schielke, and Devika Subramanian. “Optimiz-

ing for reduced code space using genetic algorithms”. In: ACM SIG-

PLAN Notices. Vol. 34. 7. ACM. 1999, pp. 1–9.

[CUM+17a] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

“End-to-end deep learning of optimization heuristics”. In: 2017 26th

International Conference on Parallel Architectures and Compilation

Techniques (PACT). IEEE. 2017, pp. 219–232.

[CUM+17b] Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

“Synthesizing benchmarks for predictive modeling”. In: 2017 IEEE/ACM

International Symposium on Code Generation and Optimization (CGO).

IEEE. 2017, pp. 86–99.

[CUM+18] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather.

“Compiler fuzzing through deep learning”. In: Proceedings of the 27th

ACM SIGSOFT International Symposium on Software Testing and Anal-

ysis. ACM. 2018, pp. 95–105.

[DEN06] Peter J Denning. “The locality principle”. In: Communication Networks

And Computer Systems: A Tribute to Professor Erol Gelenbe. World

Scientific, 2006, pp. 43–67.

[DEU96] Peter Deutsch. RFC1951: Deflate compressed data format specification

version 1.3. 1996. URL: https://www.rfc- editor.org/info/

rfc1951 (visited on 01/11/2021).

https://www.rfc-editor.org/info/rfc1951
https://www.rfc-editor.org/info/rfc1951


BIBLIOGRAPHY 151

[DIN+07] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and

Chengliang Zhang. “Software behavior oriented parallelization”. In: ACM

SIGPlan Notices 42.6 (2007), pp. 223–234.

[DON+79] Jack J Dongarra, Cleve Barry Moler, James R Bunch, and Gilbert W

Stewart. LINPACK users’ guide. SIAM, 1979.

[F-D21] F-Droid. F-Droid: FOSS Android application store. 2021. URL: https:

//f-droid.org/ (visited on 01/11/2021).

[FAN+15] Shuangde Fang, Wenwen Xu, Yang Chen, Lieven Eeckhout, Olivier

Temam, Yunji Chen, Chengyong Wu, and Xiaobing Feng. “Practical

iterative optimization for the data center”. In: ACM Transactions on Ar-

chitecture and Code Optimization (TACO) 12.2 (2015), pp. 1–26.

[FAT+04] Deji Fatiregun, Mark Harman, and Robert M Hierons. “Evolving trans-

formation sequences using genetic algorithms”. In: Source Code Anal-

ysis and Manipulation, Fourth IEEE International Workshop on. IEEE.

2004, pp. 65–74.

[FEL20] FelipeRRM. Reversi Android. 2020. URL: https://github.com/

FelipeRRM/AndroidReversi (visited on 01/11/2021).

[FER+11] Denzil Ferreira, Anind K Dey, and Vassilis Kostakos. “Understanding

human-smartphone concerns: a study of battery life”. In: International

Conference on Pervasive Computing. Springer. 2011, pp. 19–33.

[FUR+02] GG Fursin, Michael FP O’Boyle, and Peter MW Knijnenburg. “Evalu-

ating iterative compilation”. In: International Workshop on Languages

and Compilers for Parallel Computing. Springer. 2002, pp. 362–376.

[FUR+05] Grigori Fursin, Albert Cohen, Michael O’Boyle, and Olivier Temam.

“A practical method for quickly evaluating program optimizations”. In:

International conference on high-performance embedded architectures

and compilers. Springer. 2005, pp. 29–46.

[FUR+08] Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru,

Elad Yom-Tov, Ayal Zaks, Bilha Mendelson, Edwin Bonilla, John Thom-

son, Hugh Leather, et al. “MILEPOST GCC: machine learning based

research compiler”. In: GCC Summit. 2008.

https://f-droid.org/
https://f-droid.org/
https://github.com/FelipeRRM/AndroidReversi
https://github.com/FelipeRRM/AndroidReversi


152 BIBLIOGRAPHY

[FUR+09] Grigori Fursin and Olivier Temam. “Collective optimization”. In: In-

ternational Conference on High-Performance Embedded Architectures

and Compilers. Springer. 2009, pp. 34–49.

[GCC20a] GCC. GCC compiler. https://gcc.gnu.org/. 2020. (Visited on

10/01/2020).

[GCC20b] GCC. Global Register Variables. 2020. URL: https://gcc.gnu.org/

onlinedocs/gcc/Global-Register-Variables.html (visited on

01/11/2021).

[GOM+13] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein.

“Reran: Timing-and touch-sensitive record and replay for android”. In:

2013 35th International Conference on Software Engineering (ICSE).

IEEE. 2013, pp. 72–81.

[GOO20a] Google. Android Optimizing compiler backend. 2020. URL: https :

//android.googlesource.com/platform/art/+/refs/tags/

android - 10 . 0 . 0 _ r11 / compiler / optimizing / optimizing _

compiler.cc (visited on 11/01/2020).

[GOO20b] Google. Android Optimizing compiler backend: code transformations.

2020. URL: https://android.googlesource.com/platform/art/

+/refs/tags/android- 10.0.0_r11/compiler/optimizing/

optimization.h#68 (visited on 11/01/2020).

[GOO20c] Google. Android Optimizing compiler backend: special registers. 2020.

URL: https://cs.android.com/android/platform/superproject/

+/master:art/runtime/arch/arm64/registers_arm64.h;l=63

(visited on 11/01/2020).

[GOO20d] Google. Android Runtime fault handler. 2020. URL: https : / / cs .

android.com/android/platform/superproject/+/master:art/

runtime/fault_handler.cc;l=209 (visited on 01/11/2021).

[GOO20e] Google. Android Zygote: A special process for optimizing memory pages

for applications. 2020. URL: https://developer.android.com/

topic/performance/memory- overview#SharingRAM (visited on

01/11/2021).

[GOO20f] Google. Soong build system for the AOSP project. 2020. URL: https:

//source.android.com/setup/build (visited on 01/11/2021).

https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gcc/Global-Register-Variables.html
https://gcc.gnu.org/onlinedocs/gcc/Global-Register-Variables.html
https://android.googlesource.com/platform/art/+/refs/tags/android-10.0.0_r11/compiler/optimizing/optimizing_compiler.cc
https://android.googlesource.com/platform/art/+/refs/tags/android-10.0.0_r11/compiler/optimizing/optimizing_compiler.cc
https://android.googlesource.com/platform/art/+/refs/tags/android-10.0.0_r11/compiler/optimizing/optimizing_compiler.cc
https://android.googlesource.com/platform/art/+/refs/tags/android-10.0.0_r11/compiler/optimizing/optimizing_compiler.cc
https://android.googlesource.com/platform/art/+/refs/tags/android-10.0.0_r11/compiler/optimizing/optimization.h#68
https://android.googlesource.com/platform/art/+/refs/tags/android-10.0.0_r11/compiler/optimizing/optimization.h#68
https://android.googlesource.com/platform/art/+/refs/tags/android-10.0.0_r11/compiler/optimizing/optimization.h#68
https://cs.android.com/android/platform/superproject/+/master:art/runtime/arch/arm64/registers_arm64.h;l=63
https://cs.android.com/android/platform/superproject/+/master:art/runtime/arch/arm64/registers_arm64.h;l=63
https://cs.android.com/android/platform/superproject/+/master:art/runtime/fault_handler.cc;l=209
https://cs.android.com/android/platform/superproject/+/master:art/runtime/fault_handler.cc;l=209
https://cs.android.com/android/platform/superproject/+/master:art/runtime/fault_handler.cc;l=209
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://developer.android.com/topic/performance/memory-overview#SharingRAM
https://source.android.com/setup/build
https://source.android.com/setup/build


BIBLIOGRAPHY 153

[GOO21a] Google. Bionic: Android’s C library, math library, and dynamic linker.

2021. URL: https : / / android . googlesource . com / platform /

bionic/ (visited on 01/11/2021).

[GOO21b] Google. Google Play store: Official Android application store. 2021.

URL: https://play.google.com/store/apps (visited on 01/11/2021).

[GOR+02] Ann Gordon-Ross, Susan Cotterell, and Frank Vahid. “Exploiting fixed

programs in embedded systems: A loop cache example”. In: IEEE Com-

puter Architecture Letters 1.1 (2002), pp. 2–2.

[GSM20] GSM. The Mobile Economy 2020. 2020. URL: https://www.gsma.

com / mobileeconomy / wp - content / uploads / 2020 / 03 / GSMA _

MobileEconomy2020_Global.pdf (visited on 11/12/2020).

[HER+11] Ben Hertzberg and Kunle Olukotun. “Runtime automatic speculative

parallelization”. In: International Symposium on Code Generation and

Optimization (CGO 2011) (Apr. 2011), pp. 64–73.

[HER21] Rob Herring. Generic PCI access library. 2021. URL: https://github.

com/robherring/libpciaccess (visited on 01/11/2021).

[HU+15] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. “Versatile yet lightweight

record-and-replay for android”. In: ACM SIGPLAN Notices 50.10 (2015),

pp. 349–366.

[HUR+10] Joshua Hursey, Chris January, Mark O’Connor, Paul H Hargrove, David

Lecomber, Jeffrey M Squyres, and Andrew Lumsdaine. “Checkpoint/restart-

enabled parallel debugging”. In: European MPI Users’ Group Meeting.

Springer. 2010, pp. 219–228.

[ISH20] Takanori Ishikawa. Fibonacci. 2020. URL: https://gist.github.

com/ishikawa/16670 (visited on 01/11/2021).

[JAN+05] G John Janakiraman, Jose Renato Santos, Dinesh Subhraveti, and Yoshio

Turner. “Cruz: Application-transparent distributed checkpoint-restart on

standard operating systems”. In: 2005 International Conference on De-

pendable Systems and Networks (DSN’05). IEEE. 2005, pp. 260–269.

[JET20] JetBrains. Kotlin programming language. https://kotlinlang.org/.

2020. (Visited on 10/01/2020).

https://android.googlesource.com/platform/bionic/
https://android.googlesource.com/platform/bionic/
https://play.google.com/store/apps
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://www.gsma.com/mobileeconomy/wp-content/uploads/2020/03/GSMA_MobileEconomy2020_Global.pdf
https://github.com/robherring/libpciaccess
https://github.com/robherring/libpciaccess
https://gist.github.com/ishikawa/16670
https://gist.github.com/ishikawa/16670
https://kotlinlang.org/


154 BIBLIOGRAPHY

[JHA+13] Ajay K Jha and Woo J Lee. “Capture and Replay Technique for Re-

producing Crash in Android Applications”. In: Proceedings of the 12th

IASTED International Conference in Software Engineering. 2013, pp. 783–

790.

[JOS+07] Shrinivas Joshi and Alessandro Orso. “SCARPE: A technique and tool

for selective capture and replay of program executions”. In: 2007 IEEE

International Conference on Software Maintenance. IEEE. 2007, pp. 234–

243.

[KEL+09] Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. “Fast

Track: A Software System for Speculative Program Optimization”. In:

2009 International Symposium on Code Generation and Optimization

(Mar. 2009), pp. 157–168.

[KIS+00] Toru Kisuki, P Knijnenburg, M O’Boyle, and H Wijshoff. “Iterative

compilation in program optimization”. In: Proc. CPC’10 (Compilers

for Parallel Computers). Citeseer. 2000, pp. 35–44.

[KIS+99] Toru Kisuki, Peter M Knijnenburg, M O’Boyle, François Bodin, and

Harry A Wijshoff. “A feasibility study in iterative compilation”. In:

High Performance Computing. Springer. 1999, pp. 121–132.

[KNI+01] Peter MW Knijnenburg, Toru Kisuki, and Michael FP O’Boyle. “Itera-

tive compilation”. In: International Workshop on Embedded Computer

Systems. Springer. 2001, pp. 171–187.

[KUL+03] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho,

David Whalley, Jack Davidson, Mark Bailey, Yunheung Paek, and Kyle

Gallivan. “Finding effective optimization phase sequences”. In: ACM

SIGPLAN Notices 38.7 (2003), pp. 12–23.

[KUL+12] Sameer Kulkarni and John Cavazos. “Mitigating the compiler optimiza-

tion phase-ordering problem using machine learning”. In: Proceedings

of the ACM international conference on Object oriented programming

systems languages and applications. 2012, pp. 147–162.

[KUR+01] Dawid Kurzyniec and Vaidy Sunderam. “Efficient cooperation between

Java and native codes–JNI performance benchmark”. In: The 2001 in-

ternational conference on parallel and distributed processing techniques

and applications. Citeseer. 2001.



BIBLIOGRAPHY 155

[LAT+04] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for

lifelong program analysis & transformation”. In: Proceedings of the in-

ternational symposium on Code generation and optimization: feedback-

directed and runtime optimization. IEEE Computer Society. 2004, p. 75.

[LEA+09a] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. “Automatic fea-

ture generation for machine learning based optimizing compilation”. In:

2009 International Symposium on Code Generation and Optimization.

IEEE. 2009, pp. 81–91.

[LEA+09b] Hugh Leather, Michael O’Boyle, and Bruce Worton. “Raced profiles:

efficient selection of competing compiler optimizations”. In: Proceed-

ings of the 2009 ACM SIGPLAN/SIGBED conference on Languages,

compilers, and tools for embedded systems. 2009, pp. 50–59.

[LEE+99] Lea Hwang Lee, Bill Moyer, and John Arends. “Instruction fetch energy

reduction using loop caches for embedded applications with small tight

loops”. In: Proceedings of the 1999 international symposium on Low

power electronics and design. 1999, pp. 267–269.

[LEI+09] Andreas Leitner, Alexander Pretschner, Stefan Mori, Bertrand Meyer,

and Manuel Oriol. “On the Effectiveness of Test Extraction without

Overhead”. In: 2009 International Conference on Software Testing Ver-

ification and Validation (Apr. 2009), pp. 416–425.

[LIM+13] Ewerton Daniel de Lima, Tiago Cariolano de Souza Xavier, Anderson

Faustino da Silva, and Linnyer Beatryz Ruiz. “Compiling for perfor-

mance and power efficiency”. In: 2013 23rd International Workshop on

Power and Timing Modeling, Optimization and Simulation (PATMOS).

IEEE. 2013, pp. 142–149.

[LIN+08] San-Chih Lin, Chi-Kuang Chang, and Nai-Wei Lin. “Automatic selec-

tion of GCC optimization options using a gene weighted genetic al-

gorithm”. In: 2008 13th Asia-Pacific Computer Systems Architecture

Conference. IEEE. 2008, pp. 1–8.

[LIN20] Linux. /proc pseudo-filesystem on Linux. 2020. URL: https://www.

kernel.org/doc/html/latest/filesystems/proc.html (visited

on 01/11/2021).

https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://www.kernel.org/doc/html/latest/filesystems/proc.html


156 BIBLIOGRAPHY

[LIN21a] Linux. Input/Output Memory Management Unit (IOMMU) on Linux.

2021. URL: https://www.kernel.org/doc/html/latest/x86/

intel-iommu.html (visited on 01/11/2021).

[LIN21b] Linux. Memory Management Unit (MMU) on Linux. 2021. URL: https:

//www.kernel.org/doc/html/latest/admin-guide/mm (visited

on 01/11/2021).

[LLV20a] LLVM. LLVM Compiler Intrastructure. http://llvm.org/. 2020.

(Visited on 10/01/2020).

[LLV20b] LLVM. LLVM inline assembly constrains. 2020. URL: https://llvm.

org/docs/LangRef.html#inline-asm-constraint-string (vis-

ited on 01/11/2021).

[LLV21a] LLVM. LLVM Loop unroll optimization pass. 2021. URL: https://

llvm.org/doxygen/LoopUnroll_8cpp_source.html (visited on

01/11/2021).

[LLV21b] LLVM. LLVM Passes. 2021. URL: https://llvm.org/docs/Passes.

html (visited on 01/11/2021).

[LU+04] Jiwei Lu, Howard Chen, Pen-Chung Yew, and Wei-Chung Hsu. “De-

sign and implementation of a lightweight dynamic optimization sys-

tem”. In: Journal of Instruction-Level Parallelism 6.4 (2004), pp. 332–

341.

[LUK+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. “Pin: building customized program analysis tools with dynamic

instrumentation”. In: Acm sigplan notices 40.6 (2005), pp. 190–200.

[MAS87] Henry Massalin. “Superoptimizer: a look at the smallest program”. In:

ACM SIGARCH Computer Architecture News 15.5 (1987), pp. 122–

126.

[MPE+16] Paschalis Mpeis, Pavlos Petoumenos, and Hugh Leather. “Iterative com-

pilation on mobile devices”. In: The 6th International Workshop on

Adaptive Self-tuning Computing System (ADAPT), HiPEAC (2016).

https://www.kernel.org/doc/html/latest/x86/intel-iommu.html
https://www.kernel.org/doc/html/latest/x86/intel-iommu.html
https://www.kernel.org/doc/html/latest/admin-guide/mm
https://www.kernel.org/doc/html/latest/admin-guide/mm
http://llvm.org/
https://llvm.org/docs/LangRef.html#inline-asm-constraint-string
https://llvm.org/docs/LangRef.html#inline-asm-constraint-string
https://llvm.org/doxygen/LoopUnroll_8cpp_source.html
https://llvm.org/doxygen/LoopUnroll_8cpp_source.html
https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html


BIBLIOGRAPHY 157

[MPE+21] Paschalis Mpeis, Pavlos Petoumenos, Kim Hazelwood, and Hugh Leather.

“Developer and user-transparent compiler optimization for interactive

applications”. In: Proceedings of the 42nd ACM SIGPLAN Interna-

tional Conference on Programming Language Design and Implemen-

tation. 2021, pp. 268–281.

[MPE21] Paschalis Mpeis. Experimental LLVM backend for Android applications

(HGraph IR-to-IR translation). 2021. URL: https://github.com/

paschalis/android-llvm/ (visited on 01/11/2021).

[NIH20] NIH. Sieve. 2020. URL: https://imagej.nih.gov/nih- image/

java/benchmarks/sieve.html (visited on 01/11/2021).

[OGI+17] William F Ogilvie, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.

“Minimizing the cost of iterative compilation with active learning”. In:

2017 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO). IEEE. 2017, pp. 245–256.

[ORA20] Oracle. Java programming language. https://www.java.com/. 2020.

(Visited on 10/01/2020).

[ORS+05] Alessandro Orso and Bryan Kennedy. “Selective capture and replay of

program executions”. In: WODA 30.4 (July 2005), p. 1. URL: http:

//portal.acm.org/citation.cfm?doid=1082983.1083251%

20http://dl.acm.org/citation.cfm?id=1083251.

[OSM+02] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. “The

design and implementation of Zap: A system for migrating comput-

ing environments”. In: ACM SIGOPS Operating Systems Review 36.SI

(2002), pp. 361–376.
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