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A disaster response model 

driven by spatial-temporal forecasts  

 

Abstract 

 

In this research, we propose a disaster response model combining preparedness and 

responsiveness strategies. The selective response depends on the level of accuracy that 

our forecasting models can achieve. In order to decide the right geographical space and 

time window of response, forecasts are prepared and assessed through a spatial-

temporal aggregation framework, until we find the optimum level of aggregation. The 

research considers major earthquake data for the period 1985 – 2014. Building on the 

produced forecasts, we develop accordingly a disaster response model. The model is 

dynamic in nature, as it is updated every time a new event is added in the database. Any 

forecasting model can be optimized though the proposed spatial-temporal forecasting 

framework, and as such our results can be easily generalized. This is true for both other 

forecasting methods, as well as in other disaster response contexts. 

 

Keywords: Disaster Response; Forecasting; Spatial Aggregation; Temporal 

Aggregation; Earthquakes; 

 

 

 

 



A disaster response model driven by spatial-temporal forecasts  

 

1. Introduction 

 

The predictability and prediction of major earthquakes has long been the subject of 

intensive research. The seminal works of Lane (1966) and Whittow (1980), for example, 

highlight the semi-predictability of earthquakes, showing that they occur 

intermittently over long periods of time with a tendency not to cluster into short time 

periods.  However, the intensity and timing of an individual earthquake, is very hard 

to predict (Taleb, 2007).   

Questions such as these go 2,500 years back to Ancient Greece when Archimedes 

described the intermittent nature of earthquake occurrences. Most probably, the exact 

timing, location or impact of an earthquake cannot be predicted. Trying to focus to a 

specific location (city/region) and a narrow time interval (day or even week) is 

impossible. Of course, there are regions that are considered more seismic active, based 

on plate tectonic movements. For example, it is much more probable that an earthquake 

of magnitude 5 or greater will occur in Greece compared to UK.   

Even if the areas with high seismic activity are taken as the focus, it is again not possible 

to accurately predict the exact timing or the impact of an earthquake. If the exact 

location and timing of an earthquake cannot be predicted, then what action can be 

taken? In summary, at which scale are earthquakes the least predictable, and conversely, 

at what scale are they most predictable?   
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With reference to impact, one approach is to try and improve existing response systems 

so that communities are better prepared should an earthquake occur.  In order to 

improve such systems it might therefore be possible to use aggregation in terms of both 

time and geographical regions, in order to establish the optimal levels of positioning 

and stock volumes, that will be used for strategic planning. 

In this research, we propose a disaster response model combining preparedness and 

responsiveness strategies. The selective response depends on the level of forecasting 

accuracy that we can achieve. In order to decide the right geographical space and time 

window of response, forecasts are prepared and assessed through a spatial-temporal 

aggregation framework, until we find the optimum level of aggregation.  

The research considers major earthquake data for the period 1985 – 2014. Building on 

the produced forecasts, a disaster response model is built; the model is dynamic in 

nature, as it is updated every time a new event is added in the database. Any forecasting 

model can be optimized though the proposed spatial-temporal forecasting framework, 

and as such our results can be easily generalized, for other forecasting methods and in 

other forecasting (disaster) contexts. 

The rest of the paper is structures as follows: section 2 provides a short literature 

review, while section 3 the empirical results. Section 4 provide the disaster response 

model and policy implications, while the last section concludes and highlights avenues 

for future research.  
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2. Literature Review 

 

Our literature review focuses on disaster response and relief logistics as well as 

earthquake preparedness. We do not focus on listing all possible earthquake 

forecasting models, as our proposed methodology can be applied and improve any 

forecasting model. For a review of the respective latter forecasting literature, the reader 

can follow a series of available articles (Scha fer 2014; Geller 1997; Vere-Jones 1995). 

Furthermore, we do acknowledge that there is a relevant body of literature coming 

from actuarial science, but we do consider this out of the scope of this research and 

direct the interested reader in a series of volumes on predictive modelling techniques, 

theory, applications and case studies in actuarial science (Frees, Derrig & Meyers, 2014; 

2016). 

 

2.1 Disaster Response 

In recent years, academic reviews of humanitarian aid and emergency relief logistics 

have been elevated from essentially descriptive and observational (Pettit and Beresford, 

2009; Kunz and Reiner, 2012; Kovacs and Spens, 2011) to methodological and 

analytical (Naji-Azimi et al, 2012; Paul and MacDonald, 2016; Powell et al, 2016). The 

rapid growth in academic interest in the applied field of humanitarian aid and 

emergency relief logistics, as well as adding energy to the debate, has increased its scale 

and scope.  
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The frequency of occurrence of natural disasters in recent decades has led to a growing 

awareness of their impact on communities and society in general. This, in turn, has 

triggered increased interest in modelling the predictability of the events themselves, 

and assessing the degree to which impact can be mitigated by improved levels of 

preparedness or better responsiveness. Galindo and Batta (2013) and Gutjahr et al 

(2016), for example, have reviewed the growing body of literature in the operational 

research field which has focused on humanitarian aid distribution or emergency relief 

provision.  

It is suggested that, although modelling has become more sophisticated and 

increasingly granular, the underlying pattern of research has not significantly changed. 

Management of disasters in general terms has persisted as one of the main research 

threads (see, for instance Edrissi et al, 2013) and a second thread has followed a case 

approach looking at, for example, Brazil (Alem et al, 2016), Iran (Tofighi et al, 2016) or 

Turkey (Kilci et al, 2015).  

A third branch of research embraces cross-cutting studies such as that by Ozdamar and 

Ertem (2015). These embrace several dimensions which include organizational as well 

as operational parameters. They typically focus on the importance of taking an 

integrated approach in order to fully understand uncertainty. The papers referred to 

above, endeavour to make sense of, and parameterize, a range of challenges which are 

either implicitly, or explicitly, an integral part of the humanitarian logistics problem in 

different circumstances.  
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2.2 Earthquake preparedness 

The goal of emergency response is to provide shelter and assistance to the victims of 

disasters as soon as possible after an emergency occurs.  Pre-positioning of supplies 

at strategic locations is essential in ensuring their availability both when required and 

for faster response (e.g. Rawls and Turnquist 2010; Balcik et al. 2010). It has been 

suggested that in the long run such an approach aids in the reduction of the cost of 

deliveries to those locations due to regular replenishment (Gatignon et al. 2010). 

Many studies have addressed the importance of the preparedness phase and the need 

for pre-positioned warehouses in humanitarian relief logistics, whereas only a small 

number of papers are related to the location decision (e.g. Rawls and Turnquist 2010; 

Campbell and Jones 2011). Gatignon et al. (2010) illustrate the implementation of a 

decentralised model at the International Federation of the Red Cross using the pre-

positioned warehouse concept. Campbell and Jones (2011) use a cost model to examine 

the preposition of supplies and the volume of goods in preparation for a disaster. 

Nevertheless, where the above studies discuss the optimal location based on a single 

criteria (e.g. minimum total costs), the evaluation process for strategic decisions often 

involves several attributes and it is usually necessary to make compromises among 

possibly conflicting tangible and intangible factors (Onut and Soner 2007).  

The multi-criteria decision-making (MCDM) approach has been widely adopted as a 

tool for optimising the location of stocking points for emergency relief goods (see for 

example Roh et al, 2015).  However where and when an emergency event might occur 

has been considered less frequently, yet is a very important part of effective emergency 

response.   
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Prediction of major events in terms of their timing, location and intensity form the focus 

of the research in this paper. In specific terms therefore the research gap is addressed 

by specifically considering the overall pattern of humanitarian relief organizations’ 

strategic stocking locations in both international (macro level) and local (micro) 

contexts in relation to the historic pattern of earthquake occurrence at a global scale. 

One alternative and more recent approach is that major disasters, and most specific 

major earthquakes, can be seen as ‘peaks over threshold’ of a time series that is 

reporting all earthquakes for a period of time (Leadbetter, 1991). To that end, 

Nikolopoulos (2020) advocated for the use of intermittent demand forecasting 

techniques for forecasting such data, and reducing uncertainty when dealing with such 

extreme events. 

Distribution/logistics centre attributes have been discussed by, for example, Li et al. 

(2011) who highlighted parameters such as accessibility, security, connectivity, costs, 

and proximity to customers and suppliers as key to successful logistics. Although this 

research was in the context of commercial operations, all of these measures are 

transferrable to the humanitarian sector. If these measures are superimposed on robust 

event forecasts their value is maximized.   

Locating a pre-positioned warehouse near to the beneficiaries and potential disaster 

location potentially reduces delivery time and cost. However the facility would be 

unusable if it was destroyed due to a disaster. The geographical location of the 

warehouse does not have to be near the disaster prone area, but rather could be in the 

headquarter country or next to a regional office for strategic reasons.  
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Proximity to beneficiaries for a potential warehouse is thus one of the important 

considerations and can be viewed in a similar way with proximity to disaster prone 

areas. Critical to the question of locating emergency response depots, and hence 

materials, is having the best possible understanding of the probability of earthquake 

occurrence as measured by its location, timing and intensity. This can be viewed as a 

three dimensional construct involving X, Y and Z variables which can be assembled into 

a three dimensional model.  

There is substantial literature on probability forecasting which though mostly outside 

earthquake prediction, is useful for improving understanding of such three-

dimensional models.  In the context of weather forecasting, for instance, three-

dimensional models are common and outcomes are in the form of probability forecasts. 

(Palmer, 1999)  Central to the application of probability is the level of aggregation of 

data on both temporal and spatial scales. An example of this is the UK Meteorological 

Office which has developed techniques to understand such uncertainties, called 

ensemble forecasts. In this forecasting procedure simulations are run many times 

rather than just once, with very slight differences in the inputs in order to slightly the 

starting conditions.  

The range of outcomes thus generates a measure of confidence or certainty in the 

overall forecast (Met Office, 2016). While using ensembles gives an indication of 

certainty / uncertainty it also creates a problem in communicating the results. The 

main issue being; how high is the confidence about certain (likely) outcomes in relation 

to the low confidence in (unlikely) outcomes of low probability?  

 

http://www.metoffice.gov.uk/
http://www.metoffice.gov.uk/
http://www.metoffice.gov.uk/
http://www.metoffice.gov.uk/
http://www.metoffice.gov.uk/research/areas/data-assimilation-and-ensembles/ensemble-forecasting
http://www.metoffice.gov.uk/research/areas/data-assimilation-and-ensembles/ensemble-forecasting
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The key measures in the case of earthquakes, and therefore the parameters of concern 

for forecasting are:  location of occurrence (epicentre), intensity (or power), duration, 

depth of the disturbance and proximity to areas of population; this last parameter 

largely determines the impact of the event expressed in terms of material damage or 

loss of life. The United States Geological Survey National Earthquake Information 

Center estimates that over a million earthquakes occur in the world each year (NEIC, 

2016). Many have no impact because they occur in remote areas which are virtually 

uninhabited and beyond the reach of detecting mechanisms.  Table 1 details the 

estimated frequency of earthquakes worldwide, according to magnitude and annual 

average and actual recorded earthquakes.  

Clearly, as the scale of earthquake analysis reduces, the more challenging the forecast 

of ‘when, where and how strong’ becomes.  At a global scale, the total number of 

earthquakes is reasonably constant, but the predictability of the major earthquakes, 

especially at a granular level where locations are specified is low. Although earthquakes 

of magnitude and 6 and above are relatively predictable, earthquakes of magnitudes 

from 2 to 5.9 are much more variable in terms of frequency per annum.  Earthquakes 

of below 2 magnitude are so small that they are often not detected; these can be 

neglected and omitted from any analysis as their impact is negligible.  

In order for aid agencies to be prepared for relief operations it is clear therefore that 

any improvement in the understanding of where and when events are likely to occur 

would improve both locations of pre-positioned warehouse, and from that the speed of 

response.   
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Agencies such as the United Nations High Commission for Refugees (UNHCR) already 

have pre-positioned warehouses which respond to all forms of crisis. (UN, 2015).  

While this paper only considers the most important locations relative to earthquakes it 

is recognised that further development of the research to include other disaster types 

will improve the locational precision of the work.  

 

3. Empirical evaluation 

 

In order to identify the optimal aggregation levels for predicting earthquakes the 

Significant Earthquake Database is used. This database contains information on 

destructive earthquakes which meet at least one of the following criteria:  

• Moderate damage (approximately $1 million or more) 

• 10 or more deaths 

• Magnitude 7.5 or greater 

• Modified Mercalli Intensity X or greater 

• The earthquake generated a tsunami 

This research focuses on earthquake events of the last 30 years, 1985-2014. For each 

earthquake date and country information are available among others. Three temporal 

and three geographical levels of aggregation are considered. These are depicted in 

Table 2. “Region” geographical aggregation level refers to the manual categorisation of 

countries with regard to their relative proximity to tectonic plates’ intersections.  
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For example, Spain, Greece, Turkey, and Algeria belong (among others) in the same 

region which is specified from the junction of the Eurasian and the African plates. In 

total, 16 regions are considered. 

 

Table 1. Annual estimate and actual earthquake occurrences by magnitude 

  

Annual 

estimate of 

earthquake 

occurrence by 

magnitude 

Number of Earthquakes 

Worldwide 

 for 2000 - 2012 Located by the 

US Geological Survey 

Descriptor Magnitude Annual 

average 

Average standar 

Deviaiotn Great 8 or higher 1 1.31 1.03 

Major 7–7.9 17 14.15 3.72 

Strong 6–6.9 134 144.46 23.48 

Moderate 5–5.9 1,319 1646.92 385.67 

Light 4–4.9 c. 13,000 10308.31 2378.78 

Minor 3–3.9 c. 130,000 6671.77 3088.62 

Very minor 2–2.9 c. 1,300,000 4501.15 1461.67 

Source: USGS NEIC (2016) 

Table 2. Aggregation levels considered. 

Temporal Aggregation Geographical Aggregation 

Monthly Country 

Quarterly Region 

Yearly World 
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Subsequently, the data are aggregated in order to take into account all possible 

combinations for temporal and geographical aggregation levels. As a result, monthly, 

quarterly and yearly time series for all country, region and world levels are created. In 

total, nine different aggregation strategies are considered.  To evaluate the suitability 

of these aggregation strategies, a small scale forecasting exercise is performed. The 25 

first years of data (corresponding to 25 up to 300 data points, depending the level of 

temporal aggregation) are used to produce forecasts for the next 5 years (60 months). 

Forecasts are produced using the Simple Exponential Smoothing method where the 

parameters are optimised2. Forecasts are generated at the respective aggregation level; 

e.g. using the quarterly-world data to produce 20 (5 years × 4 quarters) point forecasts 

referring to predictions earthquake events on a global scale. All predictions are then 

disaggregated to a monthly-country level as to evaluate all strategies by equal means.  

Temporal disaggregation takes place assuming equal weights. For example, the yearly 

forecast is equally distributed in 12 monthly forecasts. This assumption makes sense, 

as one would not expect that earthquakes occurrences have seasonal and/or trend 

patterns. Geographical disaggregation is employed using the top-down hierarchical 

strategy (e.g. Gross and Sohl, 1990; Fliedner, 1999). Disaggregation weights that are 

directly calculated from the historical averages of the bottom-level series are selected. 

 

 

                                            
2 Standard smoothing parameter optimisation is applied, through in-sample minimisation of the sum of squared 

one-step-ahead forecasting errors (Makridakis & Hibon, 2000) 
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The produced forecasts are contrasted with the withheld actuals of the last 5 years of 

data. The comparison of the different strategies is based on two error metrics, the 

scaled Mean Error (sME) and the scaled Mean Absolute Error (sMAE)3. The former is a 

good indication of the bias whilst the latter is appropriate for measuring accuracy. Both 

measures are based on the scaled error, which is the signed error scaled by the 

arithmetic mean of the in-sample data: 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 =  
𝑌𝑡+ℎ − 𝐹𝑡+ℎ

(∑ 𝑌𝑖)/𝑛𝑛
𝑖=1

 

where 𝑌𝑡+ℎ  is the actual h-steps-ahead from the forecast origin and 𝐹𝑡+ℎ  is the 

respective point forecast. The scaled absolute error is simply the absolute (unsigned) 

value of the scaled error. sME and same are derived as the simple average (arithmetic 

mean) over horizons (months, 1..60) and series (countries). 

 

3.1 Results 

Tables 3 and 4 present the empirical results of the forecasting exercise. Table 3 presents 

the results of forecast bias, where values closer to zero indicate more unbiased 

behaviour. A minus sign designates over-forecasting, whilst a positive refers to under-

forecasting. Table 4 presents the results based on sMAE, showcasing the forecast 

accuracy of the different strategies. 

                                            
3 Two metrics are considered here, to avoid critisicm if only one was used – one focusing on bias (ME) and one on 

accuracy (MAE). As per the literature findings, using more metrics could lead to different results (Makridakis and 

Hibon, 2000). We do used scaled errors to avoid scaling issues and to be consistent with the latest finding in the 

field as reported and advocated strongly in the seminal paper of Hyndman and Koehler (2006). 
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In order to show the differences between the level of predictability across the nine 

aggregation categories an overall mean for forecast accuracy was determined and the 

difference from the mean either positively or negatively determined. The results of this 

exercise are shown in Table 5. 

From the empirical results presented above, the following observations can be made: 

• All forecasts lead to over-estimation of earthquake frequency; point predictions 

are, on average, larger than the actual number of events.  

• Quarterly temporal aggregation level usually underperforms compared to 

aggregation at both monthly and yearly levels. This is true for both forecast bias 

and forecast accuracy, apart from the bias performance of the quarterly-world 

strategy.   

• Yearly frequency outperforms monthly and quarterly for country and world 

levels.  At a regional level the most accurate forecast is at a monthly frequency.   

• Forecasting at a regional level results in superior forecasting performance 

compared to other geographical levels.  

• The best performance, both in terms of bias and accuracy, is achieved by the 

monthly-regional strategy. 

 

 

.. 
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Table 3. Forecast bias of each aggregation strategy (closer to zero is better). 

Level of aggregation Geographical Aggregation 

Country   Region World 

Temporal 

Aggregation 

Monthly   -0.45 -0.29 -0.66 

Quarterly -0.49 -0.38 -0.65 

Yearly -0.32 -0.32 -0.59 

 

Table 4. Forecast accuracy of each aggregation strategy (lower is better). 

Level of aggregation Geographical Aggregation 

Country   Region World 

Temporal 

Aggregation 

Monthly   2.12 1.96 2.32 

Quarterly 2.16 2.05 2.32 

Yearly 2.00 1.99 2.25 

 

Table 5.  Deviation from Mean Level of Aggregation 

Type of Aggregation Index  Deviation 

from 

Mean 

Geographical Temporal  Mean % 

Country Monthly CM 2.12 -0.47 

 Quarterly CQ 2.16 1.41 

 Yearly CY 2.00 -6.10 

Region Monthly RM 1.96 -7.98 

 Quarterly RQ 2.05 -3.76 

 Yearly RY 1.99 -6.57 

World Monthly WM 2.32 8.92 

 Quarterly WQ 2.32 8.92 

 Yearly WY 2.25 5.63 

Mean 2.13  
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4. A disaster response model  

With the forecasts over-estimating earthquake frequency, this suggests that the 

prediction technique used in this research could be refined further to narrow the gap 

between forecasts and actual. This can be achieved by substituting exponential 

smoothing with a series of more advanced methods as the one participating and 

winning forecasting competitions (Makridakis et al., 2020; Makridakis and Hibon, 2000) 

like for example variants of the Theta method (Nikolopoulos & Thomakos, 2019; 

Asimakopoulos &Nikolopoulos, 2000), and then passing them through a spatial-

temporal aggregation framework (Nikolopoulos, 2020).  While the quarterly measure 

is weaker, the more focused monthly measure is more appropriate for determining the 

most appropriate location for the prepositioning of aid as an agency would need to 

preposition aid in areas where the highest accuracy forecast is.   

Also, it is appropriate that yearly levels of aggregation outperform more granular levels 

of aggregation as it is more likely to be the case that one major event will occur in a 

yearly time period than that one will occur within a specific month.  In order to show 

the practical relevance of the forecasting procedure to the question of aid pre-

positioning, a model is devised (Figure 1) combining levels of resilience, degree of stock 

centralisation, level of stock holding and the deviation of each forecast from the mean.  

Each forecast is placed within the model to show which levels of aggregation are the 

most relevant to the prepositioning concept.  As was previously discussed the most 

appropriate geographical scale is regional and the best temporal scale is yearly.  Thus, 

in populating the model it can be seen that the most robust levels of aggregation are 

regional-monthly (RM), regional-yearly (RY) and country-yearly (CY). 
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This has implications for disaster relief supply chain strategies adopted by decision 

makers. As Figure 1 shows, the country-year, country-monthly (CM) and country-

quarterly (CQ) aggregations of the earthquake data used in the paper required more 

localised strategies; however, if the country-yearly aggregation level is the one that has  

more accurate forecast of these three levels of aggregation, so it could be argued that a 

localised preparedness strategy is required at this level of aggregation, whereas the 

other strategies require a greater degree of stock centralisation.  

All the temporal-world aggregation levels, namely world-yearly (WY), world-monthly 

(WM) and world-quarterly (WQ), have the least accurate forecast, which seems to be 

an indication of the need of a more responsive but centralised strategy. The other three 

aggregation levels, country-monthly, country-quarterly (RQ) and regional-quarterly, 

seem to have smaller deviations from the mean of forecast accuracy values of the nine 

level of temporal-spatial aggregations including in the study. That is a sign that a hybrid 

preparedness-responsiveness strategy is required. 

 

Figure 1. The disaster preparedenes and responsivenees model: Resilience, Stock 

Centralisation, Stock Holding and Forecast Model 
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4.1 Implications for practice 

There is a clear argument for aid pre-positioning and such strategies are already 

followed by a range of organisations, for example the UN and the IFRC.  There are, 

however, a number of factors which need to be considered in the overall picture when 

making decisions on warehouse location, for example facility operations, fixed 

overheads, staffing and stock levels will all add costs.  From a supply chain perspective 

there is also the need to balance the number of facilities against the increase in 

inventory holding costs associated with more facilities. The more important discussion 

therefore relates to how many facilities and which are the most effective locations for 

them.  Earlier modelling based on population suggested that six facilities in Southern 

Europe, South Central Asia, East Asia, South America, Eastern Africa, and South eastern 

Asia (Akkihal, 2006).   

Western USA, Central America and the southwest Pacific are examples of regions which 

are conspicuously absent from this list.  However, this paper provides new light which 

could be used for decision making on network redesign of regional disaster relief 

operations, if other kind of disasters are included in the database and the model is re-

run with those disasters 
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5. Conclusions  

 

The modelling in this paper can guide policymakers and the relief sector in terms of the 

range of supply chain risk mitigation strategies which can be adopted in the context of 

disaster relief distribution. The paper argues that an improvement in the prediction4 

of earthquake events through temporal and geographical aggregation could influence 

the location and size of disaster relief distribution facilities positioned in different 

world regions, the stock policy adopted to supply areas affected by disasters, and how 

disaster relief supply chains respond to such special events.  

The research can be improved further by adding data for additional natural disaster 

types such as tsunami, flooding, drought.  Aggregating across all disaster types would 

produce a more robust, although not necessarily, different network configuration.  A 

combination of hazard type, magnitude, and regional characteristics such as population 

and infrastructure, could improve the disaster "footprint" and assist in predicting 

inventory locations, ultimately improving the relief system (Akkihal, 2006). This points 

towards building a composite natural disaster ‘heat map’ or three-dimensional model 

as being a natural ‘next-step’ for this research.  

 

 

                                            
4 This U-shape in forecasting performance is not surprising from a statistical perspective, where this is commonly 

known as the bias-variance trade-off. Estimation suffers when not enough data is available (high resolution = high 

variance). But estimation also suffers from aggregation (low resolution = high bias). The U-shape finding in this 

research is consistent with this idea. 
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In these closing statements, we feel compelled to clarify the following: this research is 

not for the forecasting method to be used per se, when forecasting earthquakes; this 

can be further improved via switching to other methods. The paper focuses on the 

strategy that follows once we realize our predictability limits, so it is about risk-

mitigation and the disaster relief model that comes after. One could argue that maybe 

we could forecast better if we use extreme value theory or even maybe other 

computational intensive methods (Makridakis et al., 2020) – but this is not what we are 

trying to do here. We have seen evidence in the respective literature that temporal 

aggregation works well in an intermittent demand context (Nikolopoulos et al. 2011, 

Nikolopoulos, 2020), and we use it without having an empirical forecasting 

competition in mind to set – we leave that as future research. 

What we strongly argue however, is that temporal and spatial aggregation can give the 

geographic areas and timeframe within which centralization of resources should take 

place; and that you cannot achieve through the other alternative forecasting methods 

that do not consider aggregation. This latter contribution plus the 

responsiveness/preparedness disaster response model built on that, we consider to be 

the fundamental contribution of this research. We are adamant it will create the 

necessary discourse and discussion on the development of similar models, and we do 

cherish and anticipate such activity. 
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For the future we also leave the questions arisen when considering the outcomes of this 

modelling exercise compared to existing strategies.  The UN network, for example, is 

based on all types of disaster not just earthquakes.  However, should there be 

alternative locations for response to different disaster types or does one network 

covering all disaster types provide a sufficient level of coverage to ensure an effective 

response at all times?  In respect of future research a systematic evaluation of this 

forecast method against alternative forecasting tools and against current in practice in 

disaster relief would be fruitful.   
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