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Abstract—Human-centric applications of a single Thermal
Sensor Array (TSA) have performed extremely well in many
areas. However, most of these works have not yet reached the real
applicability stage of the Internet of Things (IoT) applications.
The main limitation of deploying such systems on a large scale is
the challenge of fusing multiple TSAs to cover a wide inspection
area, e.g. smart homes, hospitals and many other domestic
environments. On the other hand, objects that appear in the
low-resolution thermal images acquired from TSA have low
intra-class variations and high inter-class similarities, making
the identification of the overlapping regions through matching
a comparable template image in multiple images very difficult.
This paper proposes a motion-based approach to fuse multiple
TSAs and learn the domestic environment layout to enable
further human-centred IoT applications to run in the cloud.
Besides, a privacy-improvement on utilising these sensors in IoT
applications is proposed. The proposed approach is evaluated
with comprehensive experiments on different sensor placements
and domestic environment conditions. This paper shows an
average performance of 92.5% accuracy using various machine
learning techniques and use case scenarios.

Index Terms—sensor fusion, human-centred approach, Inter-
net of Things, thermal sensor array, machine learning, optical
flow, privacy-preserving approach.

I. INTRODUCTION

HE emerging and necessity for the Internet of Things

(IoT) applied for healthcare applications have gained
increasing attention in recent years. Specifically, in the field
of assistive technologies, various types of IoT devices enable
older adults to live independently in their own homes to
cope with the increasing cost of long-term care demands [/1]].
The sensing technologies applications on these IoT healthcare
devices can be classified into three main categories: first,
wearable-based sensors, which usually require the users to
wear or carry a device perpetually. This is inconvenient for
the elderly, and it is even more difficult to be managed by
older adults with Dementia, e.g. Alzheimer’s disease, as there
is a high probability of forgetting to carry these devices.
On the other hand, there are still outstanding limitations in
designing wearable devices such as energy-efficient, fabrica-
tion and lightweight [2]. Second, ambient sensing devices
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such as Passive Infra-Red (PIR) sensors are installed in a
home environment. Such devices preserve privacy but do not
generally perform well in multi-occupancy home scenarios
[3l. Other privacy-preserving device-free sensing methods,
including Wireless Fidelity (WiFi), Radar, and Radio Fre-
quency Identification (RFID), suffer from notable limitations
in indoor human monitoring applications such as vulnerability
to environmental interference [4]]. Unlike conventional radars,
Millimeter-Wave (mmWave) uses a short wavelength, which
enables its radar to achieve high resolution and small antenna
size, but makes it vulnerable to noise in indoor applications
[S]. Third, vision-based sensing, for example, cameras that
perform very well in real-world scenarios, although it violates
users’ privacy [6]], clearly in domestic environments, e.g.
homes, hospitals, nursing homes etc.

Recently, there has been a growing interest in using Thermal
Sensor Array (TSA) to fine-tune the trade-off between privacy
and performance in domestic environment applications [7]-
[13]. The motivation behind using this sensor in IoT appli-
cations is its advantage to perform well while maintaining
privacy, low cost, and non-contact capabilities. Nevertheless,
most of the works that use the TSA have not yet reached the
deployment stage. This is because the TSA fusion has not been
comprehensively considered for the implementation of IoT
applications. This is a critical flaw in most of the recent work
since the Fields of View (FoV) of the TSA is not wide enough
to cover the entire living spaces such as a home environment
(e.g. the FOV of MLX 90640 TSA sensor is 55° x 35°). Hence,
multiple sensors are required to monitor such environments.
Identifying the overlapping regions between two or more TSA
sensors’ FoV has not yet been explored. This paper explores
the apparent motion pattern of moving objects from multiple
sensors to integrate sensory data and identify overlapping
regions. By doing so, TSA will be applicable in real-world
IoT applications to cover a wide inspection area without the
prerequisite for home layout or sensor placement restrictions.
In summary, the main contributions of this paper include:

e A novel approach to fusing multiple TSAs to cover
wide inspection area to enable further human-centred
applications to run in a central cloud platform;

o The proposed approach can identify overlapping regions
between two or more low-resolution TSAs;

« An improvement for the sensor privacy feature in IoT ap-
plications to avoid the human image being reconstructed
by a third party during data transmission and storage in
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Fig. 1: A schematic diagram of the proposed approach for home layout learning and multiple TSAs fusion through the analysis
of apparent motion pattern of moving subjects in the acquired sensors’ signals.

the cloud;

o The proposed approach is adaptive to work in different
indoor layouts and sensor placements through proposing
an environmental layout learner;

o Comprehensive experiments to validate the proposed
approach on various sensor placements and domestic
environment conditions. In particular, to experimentally
validate the feasibility of optical flow in verifying whether
a subject appearing in two different sensor outputs in
a domestic multi-occupancy environment is the same
person.

The remaining parts of this paper are organised as follows:
in Section |lI] a summary of the related work is presented.
Section explains the proposed framework architecture.
Comprehensive experiments and analysis are presented and
discussed in Sections and [V] followed by pertinent conclu-
sions drawn in Section

II. RELATED WORK

The TSA sensors have recently came in light through emerg-
ing them in responses to global COVID-19 pandemic [14]-
[18]]. Unlike PIR sensors, TSA sensors can detect motionless
warm objects and moving objects with the direction of their
movements within their FoV through employing conventional
PIR motion detectors in what is called thermopile array [19].
Therefore, TSA has also been proposed for several human-
centred applications [20]-[25]]. However, none of these works
discovers the scenarios of using multiple TSA’s. This is a
critical issue, for example, in the occupancy estimation sys-
tems, which utilises TSA [26]]—[31]. This is because humans
located in the overlapping FoV’s of two or more sensors will
be counted as two subjects in the prediction stage, which leads
to a wrong occupancy estimate.

Similarly, there has been recent works on using the TSA on
human activity recognition, and abnormal behaviour detection
[32]-[36]. The approach followed to process the TSA output
is similar to image-processing approaches [37] while the

analytical techniques on individual time intervals, frames, were
different for instance Support Vector Machine (SVM) [12],
Adaptive Boosting [6], [10], K-Nearest Neighbour (KNN)
[30], [38], decision trees [20]], [39], and Kalman filtering
[40], [41]. One of the notable technical challenges reported
in most human-based applications, which use TSA is that
external heat sources have a major negative impact on the
system performance. On the other hand, TSA’s fusion has
not yet been investigated in such applications. Considering
fall as abnormal human behaviour that could happen in an
overlapped area between two sensors (One sensor would not
be sufficient to cover the entire environment, e.g. older adult
home). The proposed systems may trigger two separate fall
alerts incorrectly. Moreover, identifying overlapped regions
between multiple TSAs significantly impacts other human
monitoring applications, including occupancy estimation. The
impact of this can be clearly demonstrated in situations where
a person could be present in the overlapped region of two
sensors, and thus the system might consider them as two
people in the environment rather than one.

The fusion concepts have been applied in various applica-
tions [42]], including biometric authentication systems [43]—
[45]], air pollution monitoring [46]], COVID-19 non-remedial
solutions [47]], surveillance networks [48|], vehicle accident
detection and classification [49]], human emotion monitoring
[50] and many other vital applications.

To summarise, TSA sensors are promising emerging sensing
technologies for human-centric applications due to their low
cost, privacy-preserving and non-contact capabilities. Follow-
ing our previous studies reported in [6], [8] and [13] on
occupancy and human distance estimation to identify the
multi-occupancy environment, human-to-human distance and
human-to-sensor distance using single-based TSA processing,
this paper intends to address the challenge of enabling TSA
to cover a wide inspection area by proposing a free-position
sensor placement and fusion approach, which can identify
overlapping sensor areas from low-resolution thermal images.
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Fig. 2: A visualisation of the relationship between the sensor
FoV’s depth and the inspection area.

III. THERMAL SENSOR ARRAY FUSION FOR 10T
APPLICATION

The proposed approach, which is illustrated in Fig. [T] con-
sists of two main stages. The first stage is called home layout
learner, which enables the flexibility of the proposed approach
to work with different and complicated environments by
estimating the environment layout and the sensors’ placement
in the mean of finding the flow of human movement in their
domestic environment. This is achieved by finding a sensor
reference, which indicates the typical human movement flow
in multiple sensor’s inspection areas and the overlap between
the installed sensors’ FoV by analysing the movement patterns
of a single human subject moving in the environment. Hence,
the home layout learner stage will only run once at the first
time after installation to identify which sensors are interfering
with each other in their FoVs. By doing so, the proposed
approach is not only flexible to work with different home
layouts but also reduce the computational time and resources
needed to cover a large domestic environment, e.g. hospital.
Besides, the environment layout learner is also feasible to
determine the typical human movement flow in a simple
domestic environment, including rooms and large open halls
that may have more than one sensor to cover the inspection
area. After the layout is learnt at the first stage, the second
stage is used for sensor fusion and identification of overlapping
regions between two or more TSA sensors.

A detailed description of the functional phases (multi-
sensor acquisition, pre-processing, motion analysis, sensors
interference learner, and identifying the overlapped regions)
of the two stages is described below.

A. Sensor acquisition

The TSA’s ability to maintain users’ privacy in a domestic
environment, low-cost and contactless features is the impetus
for proposing an enabling technology to fuse multiple TSA for
an IoT application. Besides, the reference rate of the sensor
is between 0.5 Hz and 64 Hz, and this capability makes it
suitable to detect swift human movements. On the other hand,
a single TSA would not be sufficient to cover a wide inspection
area. Fig. 2] shows an illustrative diagram of the relationship
between the sensor’s FoV and the inspection area. It can be
observed from this figure that the inspection area is larger from
a distance. Considering the FoV of the TSA sensor used in

(a)

Fig. 3: The effects of human movement on the acquired ther-
mal scene, (a) a stationary human presence, (b) human hand
movement, (c) thermal noise induced by human movement.

our investigation, MLX9064(ﬂ which is 55° x 35°. The size
of the inspection area at a different distance can be calculated
as follows:

m2><d><tan(FgV> @))

where d is the depth distance in the FoV and m is the inspec-
tion area. Assuming d is 2m, then inspection area m would
be 2.08m x 1.26m. The collected data, which represents
the thermal signature in the FoV, at time ¢ with size C' is
transformed from 1D linear vector x; = [x¢,, ... ,xtC]T to 2D
grid format of 32 x 24 resolution. A colourmap scheme is then
applied on each of the 2D temperature metrics for visualisation
purposes. Fig. [] shows a visual calibration between high and
low-resolution thermal images at a near and far human-sensor
distance for one person and two other persons standing facing
each other. It can be seen from the low-resolution thermal
images shown in Fig.[d] (a) that human identifying information
in the output of TSA is not as clear as the output of the
used high-resolution thermal camera shown in Fig. [F] (b).
Another motivation for using TSA in indoor human monitoring
applications is its cost is much lower than the high-resolution
camera. For instance, the price of a used TSA is about 0.00125
of the price of the used FLIR T6XX camera.

B. Pre-processing

There are notable limitations to proceeding with the human
motion-based feature extraction on the output of this sensor. In
particular, human movement generates a thermal noise in the
background scene, which can bias human motion estimation
by including unwanted background pixels. To illustrate this on
a thermal image of a stationary human subject shown in Fig.
B] (a). Given the movement of the human hand shown in Fig.
[] (b), the acquired thermal image after movement is affected
by thermal noise induced by human movement as highlighted
in Fig. 3] (c).

This is a critical consideration in multiple TSA use case
scenarios from different sensor positions, for example, the
ceiling, where the human would be in direct contact with
a background surface such as the floor would result in pro-
longed thermal noise lingering in multiple acquired thermal
images. To overcome this, an adaptive temperature level-based
thresholding technique to separate the human presence from
the thermal background scene is proposed on Ostu’s method

IThe sensor details can be obtained from the Melexis website:
https://www.melexis.com/en/product/MLX 90640/
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Fig. 4: A visual calibration between thermal imaging using (a)
low-resolution TSA, (b) high-resolution thermal camera.

[51]. Mathematically, the threshold k of separating each 2D
temperature matrix x; into foreground ¢y and background
t, classes should minimise the intra-class variance o2 (k),
defined as a weighted sum of variances of the two classes:

(k) = wi (k)o7, (k) + wi, (k)ay, (k) 2

where wy, and wy, are the probabilities of the foreground and
background classes, respectively separated by k, while o, and
oy, are the intra-class variances of these two classes. The class
probability w;,,wy, (k) is found from the L bins of thermal
image histogram:

wi, (k) = pli) 3)
1=0
L—-1

wi, (k) =Y p(i) 4)
i=k

In a binary classification problem, minimising the intra-
class variance (variation between multiple samples of a class)
is equivalent to maximising the inter-class variance (variation
between classes):

2
= wiy (pe, — )’ + wry (e, — 1)

wi(k) [no(t) — pa (k)]
o)

which is exposed in terms of class probabilities w and class
means p, where s, (k), ¢, (k) and pg represents:

Sy ip(i)
wtf (k‘)

>y (i)

H’tf (k) = (6)

i, (k) = %)

L—1
pi =Y ip(i) ®)
i=0

By computing w and pu iteratively, and %k for each thermal
scene, the algorithm would separate the scene into background
and foreground classes regardless of the human to sensor
distance. Hence, the larger human to sensor distances, the
lower human acquired temperatures. However, the drawback of
this method is when the histogram is not bi-modal distribution
and has, for example, three peaks like a temperature much
higher than that of a human temperature, such as a hot cup of
coffee, as shown in the representative surface diagram of Fig.[3]
(a) and its corresponding thermal image. To avoid this, a mod-
ification before applying this approach is suggested using a
temperature filter to convert temperatures above normal human
temperatures to the minimum temperature of the thermal scene
(not zero, to maintain the variance of human and background
temperatures). This empirical value is set to be 33°C' by the

designated TSA. The filtered value is therefore as follows:

{ Z; for z; <=33
Tt = .

. where
min(xs)  otherwise

z; = FIR

©)

Fig. [ (b) shows an illustrative result of applying this

modification filter on the original acquired thermal scene

shown in Fig. 5] (a), while Fig. 5] (c) shows the result of the
complete pre-processing phase.

C. Motion analysis

The employed human motion analysis is based on extracting
the apparent relative motion vector between a human observer
and the background scene, referred to as the optical flow.
The term optical flow can also refer to the distribution of the
apparent velocities of movement of brightness pattern in the
scene. Technically, the optical flow aims to find the motion
pattern in terms of velocity and direction between a sequence
of two image frames obtained at times ¢ and ¢ + At at each
temperature value in the acquired heat-map (at every pixel
in each pre-processed thermal image). Fig. [6| shows visible
illustrations of extracted motion vectors on different human
movements’ directions. Accordingly, each movement has a
corresponding flow representation. Therefore, it is possible
to use optical flow to determine the direction of human
movements.

In this paper, Horn-Schunk algorithm [52] is used to esti-
mate the flow for the output of TSA in the form of velocity and
direction. The flow of this optical flow algorithm is formulated
as a global energy functional E, which is then minimised. This
function for the 2-D thermal image is given as:

E= // (Lot 1w+ 1) + 02 (|9ulP + | 90)) ] do dy
(10)

Where I, I, I; refer to the derivatives of the thermal image
temperature values along with z, y, and time dimensions,
respectively, V = [u(x,y),v(z,y)]" is the motion vector, and
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Fig. 5: Illustrative results of the proposed pre-processing phase, (a) the original temperature surface plot and its corresponding

heat-map, (b) the result of applying the temperature filter, (c) the result of separating the acquired temperatures into background
and foreground categories.
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Fig. 6: An illustration of the motion vector based on optical
flow, (a) represents vertical movement upwards, (b) horizontal
movement to the right, (c) backward movement, (d) vertical
movement downwards, (e) horizontal movement to the left, (f)
forward movement.

the parameter « is a regularisation constant. Hence, Larger
alpha leads to a smoother flow.

The assumption behind this algorithm is that there is no
significant change in the lighting between two consecutive
frames, which refers to as Brightness Constancy Assumption.
In other words, the colours of the moving thermal objects
should remain the same, regardless of the change in tem-
perature of these objects caused by the evolution of the
sensor to human distance. This justifies our proposed adaptive
thresholding in the pre-processing phase B to keep the human
colours the same in the consecutive thermal image frames
regardless of any potential changes in the human acquired

temparaturs °c

(c)

temperatures. Also, it is able to eliminate the background heat,
which could be a moving thermal noise generated as a result
of human movement.

Fig. [/| shows sample images on applying the optical flow
estimation on the pre-processed thermal images. Fig. [7] (a)
and Fig. [7] (b) show the estimation of the optical flow on
the pre-processed TSA output when the subject is moving
horizontally and when there is a hand movement. Since the
proposed pre-processing technique aims to find a threshold
in the temperature values of the scene regardless of human
presence, the relatively high-intensity pixels (temperature)
from the background scene appear in the foreground scene
of the image in non-human presence scenarios. However, this
does not affect the optical flow estimation because these pixels
have no motion, as shown in Fig. [/| (c). Hence, the length of
each arrow represents the magnitude of the velocity.

D. Sensors interference, overlap learning and fusion

The layout learner uses the motion vectors extracted from
the previous phase to find the sensors that interfere with their
FoV when enrolling on a new domestic environment (sensors
installation). This paper proposes to find the sensors that
interfere with each other and the time of the motion to find the
order of typical human movement flow by a threshold-based
motion trigger for a single occupancy movement. Considering
a small home as an example, it requires four TSAs (57, So,
S3, S4). If S7 and S35 have motion velocities more noticeable
than the non-human presence scenes at the time of acquisition,
this means that these two sensors are interfering with each
other. Besides, the motion sequence order extracted from the
outputs of the installed sensors collected at this stage indicates
sufficient information regarding the layout of the home, which
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Fig. 7: The estimate of optical flow on the pre-processed TSA output, (a) human moving horizontally, (b) human hand

movement, (¢) empty human scene.
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would be used to regulate the arrangement of motion vectors
in the fusion phase for potential human activity recognition
applications.

Additionally, there is another situation about the fusion of
the sensors in the deployment stage: identifying multiple hu-
man subjects occupying the environment is based on matching
the motion vectors between interference sensors at the time of
acquisition to identify the subjects that may appear in multi-
FoVs. This has been achieved through finding the Euclidean
distance between moving objects in the interference sensors
to be used as a feature in a binary classification problem.
Referring to the previous example of a small home with four
sensors (S1, S, S3, S4), which has two interference sensors
S1 and Ss. The matching between the motion vectors will
only be performed for these two sensors and not, e.g. Sy
and Sy, as these sensors do not interfere with each other as
referenced in the enrolment stage. Doing this will reduce the
required computational resources for the matching task and
overcome the situation when similar human movements are
performed simultaneously by different human subjects, e.g.
yoga, meditation, or prayers.

Fig. [ illustrates the proposed TSA’s fusion method of
the extracted motion vectors, which has the exact size of

the TSA heat-map. The output of this fusion method is a
one commutative motion vector with the overlapping motion
from different sensors identified. Hence, the order of these
motion sequences is based on the obtained reference from the
layout learner. Although the TSA sensors do not produce any
identifiable information about people, it may still be a privacy
risk to transfer their output to a centralised cloud platform
to enable further human-centric applications. Therefore, this
paper proposes replacing the TSA output with the motion
vector produced from the fusion method.

IV. EXPERIMENTS

To evaluate the performance of the proposed methodology,
comprehensive experimental work was performed with differ-
ent use cases and scenarios for sensor positions to confirm
the validity of the proposed approach in different sensor
placements. During data collection, the experimental home
environment was in multi-occupancy mode, which means
that a human subject was performing different activities of
daily living, including walking, sitting, standing, and laying
in the bed in the overlapping region of the sensors shown
in Fig. [9] and another person was in a different sensor FoV.
Therefore, this section is focused on experimentally verifying
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Fig. 9: Data collection stage, (a) sensors placed side by side
at 90°, (b) sensors placed opposite each other, (c) sensors on
the same wall, (d) sensor on wall and ceiling.

the capability of the proposed approach on identifying the
sensor overlapped regions through matching different human
presence acquired from different TSA placements and sensor
to human distance on the basis of the moving object motion
analysis. Building on top of this, there would not be any
problem in the case of more than one human subject moving
in a single sensor’s FoVs as the problem arises when the
same moving object (human) appear in two sensors’ output
due to overlapped FoVs. The size of the dataset collected to
conduct these experiments was 1530 image frames. A detailed
description of the experimental results is reported below.

A. Experiment 1

This experiment contains a human subject moving in the
overlapping area of two sensors placed side by side at 90°,
as shown in Fig. El (a). A third sensor was installed in
another room with a different human participant performing
normal activities. The extracted human motion vectors from
these multiple sensors were analysed by finding the distance
between a set of maximum motion velocities for each human
participant in the outputs of the sensors. Fig. [10|(a) shows the
distance between the overlapped and non-overlapped regions
based on human movements.

Finally, the distance is then used as a feature in different
classification algorithms, including Logistic Regression, Sup-
port Vector Machine (SVM), K-Nearest Neighbors (KNN),
and Linear discriminant analysis (LDA). The performances
of these algorithms were 87.9%, 89.6%, 85.2%, 87.9%, re-
spectively. Hence, 10-fold cross-validation is used to avoid
the over-fitting problem and guarantee the trained model’s
generalisation ability.

B. Experiment 2

Similar to the data collection settings of the first experi-
ment, this experiment contains human participants in different
rooms, and the aim is to assess the ability of the proposed
methodology in distinguishing between overlapping and non-
overlapping regions when sensing interference occurs between
opposite sensor positions, as shown in Fig. [9] (b).

It can be observed from the corresponding visual analysis
shown in Fig. (b) is the distance between the magnitude
of velocities for different human subject movements is sig-
nificantly higher than those obtained for the same human
subject at the opposite sensor positions. Utilising this dis-
tance measurement in the classification algorithms achieves
a performance of 92.2%, 92.2%, 89.4%, 90.1% using logistic
regression, SVM, KNN, and LDA, respectively.

C. Experiment 3

The TSAs could be installed on the same wall but at
different heights, as shown in Fig. [9 (c), for example, for
human activity recognition for an adult occupancy with a child
or to always acquire the upper body of an adult person at the
different sensor to human distance.

This experiment intends to assess the proposed methodology
on such a use case scenario. The performance of the proposed
methodology using logistic regression was 96.1%, SVM was
96.1%, KNN was 87.9%, and LDA was 87.1% with 10-folds
cross-validation. The justification behind obtaining a better
performance on this sensor placement scenario is because the

TABLE I: A summary of experimental results on identifying overlapping regions between multiple sensors with different
sensor placements.

Logistic Regression = SVM KNN  Linear Discriminant
Experiment 1 87.9% 89.6% 85.2% 87.9%
Experiment 2 92.2% 922%  89.4% 90.1%
Experiment 3 96.1% 96.1%  87.9% 87.1%
Experiment 4 92.1% 91.4%  89.2% 91.0%
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Fig. 10: Motion analysis between overlapping and non-overlapping FoV’s regions with different human participants using data
obtained from different sensor placements, (a) sensors placed side by side at 90°, (b) sensors placed opposite each other, (c)

sensors on the same wall, (d) sensor on wall and ceiling.

intra-class similarity between the classes is high, as shown in

Fig. [I0] (c).

D. Experiment 4

The last experiment was designed to assess the proposed
methodology on completely different sensor positions, specif-
ically on wall and ceiling sensor placements, as shown in Fig.
[ (d). The performance of using the distance measurement
between the magnitude of velocities of the extracted motion
vectors, which is shown in (d), achieves 92.1% using
logistic regression, 96.1% using SVM, 89.2% using KNN, and
91.0% using LDA.

Table |l] provides a comparison of experimental results on
identifying the overlapping regions using multiple sensors
and different sensor placements. It can be concluded from
these results that the proposed methodology provides excellent
analytical performance with different sensor placements and
human subjects. Besides, identifying the overlap regions from
the same wall placement provides the best performance among
others. In contrast, the worst performance result was reported

in Experiment 1. The rationale behind this lower performance
in the side-by-side sensor placements is that a large portion of
human presence is missing compared to the other investigated
cases, which leads to a loss of motion features for the same
human subject at a given time.

V. ROBUSTNESS ANALYSIS

This section contains three additional experiments to vali-
date the proposed approach’s robustness to enable the fusion
of multiple TSAs into human monitoring applications. The
first experiment aims to validate the proposed technique to
enhance the TSA privacy feature in IoT applications by
replacing temperature values with motion vectors for further
human-centric applications running on the cloud. Since TSA
is proposed in this paper for human-based applications, this
experiment is intended to verify whether human presence
can be determined from motion vectors without having to
transfer temperature values to a central cloud platform. In
this experiment, 218 non-human frame images were collected
from noisy thermal scenes and scenes after the human subject
left and another 209 human presence frame images. The
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Fig. 11: A comparison of human temperature distribution versus the corresponding motion vector for human detection and
localisation application, (a) the pre-processed thermal scene temperature values, (b) the velocity movement magnitudes for the

same acquired thermal scene.

Fig. 12: A data collection stage consists of two simultaneous
placements of TSAs to analyse the effects of a moving-based
thermal noise generated by a domestic heater on the proposed
sensor fusion approach.

performance of utilising the motion vectors in human detection
using the classification approach was 94.9% achieved accuracy
using SVM with 10-folds cross-validation. Hence, this result
was based on the result of motion analysis of each frame
image, and the performance could be boosted by using all
the frame images at a specific time, e.g. every 1 second.

Fig. [IT] (a) shows a sample of the distribution of the human
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Fig. 13: The maximum velocities of the heat generated by a
domestic heater from two different sensor placements versus
a sample of human movement.

temperature values on x and y-axis while Fig. [T1] (b) shows
the corresponding magnitude of velocities for the same pre-
processed image frame. It can be observed from these sample
distributions and experimental results that human detection and
localisation can be computed using motion vectors without
transferring the complete thermal information to the cloud. On
the other hand, some human-centred applications may require
the provision of human temperature values. However, TSA is a
low-resolution sensor, and the acquired temperature varies de-
pending on different conditions, e.g. human to sensor distance
and wearing heavy clothes. Therefore, in such applications, it
is sufficient and private to provide human temperature values
from the acquired scene as features (maximum, minimum,
median, and average) rather than the full picture of human



Fig. 14: A visualisation of optical flow estimation on a series of pre-processed low-resolution frames containing abnormal
human fall activity.

temperature values to avoid human image construction on this
low-resolution sensing approach by a third party.

The second experiment evaluates the feasibility of the
proposed privacy enhancement feature to replace the obtained
TSA’s temperature values with optical flow vectors. Therefore,
this experiment uses only the optical flow vectors without any
temperature values in Activities of Daily Living recognition.
Specifically, to recognise two activities (1) normal human
walking activity and (2) abnormal human fall activity. A
dataset of 673 thermal frames were collected, which consisted
of 226 fall frames and 447 walk frames. The dataset is
divided into 70% for training and 30% for testing. Adding
to this, a Bidirectional LSTM (Bi-LSTM) network [53]] with
Stochastic Gradient Descent with momentum (SGDM) [54]
optimisation algorithm has been utilised to recognise the
activity in a sequence of optical flow vectors. The performance
of classifying a sequence of optical flow vectors into either fall
or walking achieved 94.4% accuracy for the testing dataset.

This very good performance can be justified in representing
the optical flow vectors on a series of pre-processed low-
resolution frames shown in Fig. @ From these frames, it
is apparent that the optical flow can represent the human
motion pattern in terms of velocity and orientation represented
by the length and direction of the arrows in the frames
shown in Fig. respectively. In this specific example, the
pattern of human movements starts from up to down until
it reaches the inactivity state that is demonstrated by the
decrease in human movement velocity in the last few frames.
The ability of the optical flow to describe the human motion
pattern post applying the proposed pre-processing techniques
on the output of the TSA shows the potential to replace
TSA temperature values with optical flow vectors in human
monitoring applications.

The third experiment aimed to further evaluate the proposed
approach’s practicality in a home environment where there
could be circulating convection heat from heating systems.
In this experiment, two sensors were installed on the top and
opposite views of the heater, as shown in Fig. This experi-
ment considered the most complex motion-based thermal noise
scenario by collecting data from the cold-heater state to the

hot state for more than six continuous hours. The total number
of thermal images collected for this experiment is 145,776
frames. Fig. shows the maximum motion velocities of a
subset sample of the collected data from the two heater views
versus a human movement.

Two important observations can be drawn from this experi-
ment. First, motion-based thermal noises do not affect the ap-
plicability of the proposed approach to enable further human-
centric IoT applications. Second, the proposed methodology
for TSA overcomes considerable challenges that appear on
temperature-based image processing techniques with this type
of low-resolution thermal images.

VI. CONCLUSION

Thermal Sensor Array provides low-resolution thermal
imaging, making it an excellent approach for low-cost,
privacy-preserving, and passive human-centric IoT applica-
tions. In contrast to high-resolution imaging, it is difficult
to find a comparable image-based reference to incorporate
multiple TSAs to cover a wide inspection area. This paper
proposes a motion-based approach to integrate multiple TSAs
and identify overlapping regions in the sensors’ field of view.
The efficiency of computing time and resources is achieved
through proposing an environmental layout learner. Further-
more, the paper proposes to replace the temperature values
acquired by the sensors with the extracted motion vectors for
further human activity recognition operating in a centralised
cloud platform to avoid re-configuring the human image by a
third party. Extensive experiments were performed to validate
the proposed approach on different sensor placement and
motion-based thermal noise and a transfer application of the
proposed approach to detect human presence using motion
vectors without any temperature values.

The proposed motion analysis approach is based on station-
ary sensor placement like wall or ceiling. Future work could be
undertaken on a moving sensor placement on the example of
assistive robots for the elderly. Besides, the feasibility of the
proposed privacy enhancement feature to replace the TSA’s
temperature values with the optical flow prior to sending
them to the cloud has been assessed in recognising human



walking and fall patterns. However, fall detection is abnormal
human activity that can occur from standing, sitting or even
unpredicted activity. Therefore, future work can be undertaken
to address a valid issue concerning the users’ accountability
to the system’s decision in human monitoring applications.
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