BIOLOGY LETTERS

royalsocietypublishing.org/journal/rsbl

Research

Cite this article: McFarland R, Henzi SP, Fuller A, Hetem RS, Young C, Barrett L. 2022 The thermal consequences of primate birth hour and its evolutionary implications. *Biol. Lett.* **18**: 20210574. https://doi.org/10.1098/rsbl.2021.0574

Received: 1 November 2021 Accepted: 21 December 2021

Subject Areas:

evolution, behaviour

Keywords:

hyperthermia, hypothermia, parturition, reproduction, thermoregulation, vervet monkey

Author for correspondence:

Richard McFarland e-mail: richard.mcfarland@ntu.ac.uk

Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare. c.5770971.

Physiology

The thermal consequences of primate birth hour and its evolutionary implications

Richard McFarland^{1,2}, S. Peter Henzi^{3,4}, Andrea Fuller², Robyn S. Hetem^{2,5}, Christopher Young^{1,4} and Louise Barrett^{2,3}

¹NTU Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK ²Brain Function Research Group, School of Physiology, Faculty of Health Science, University of the Witwatersrand, Johannesburg 2193, South Africa

³Department of Psychology, University of Lethbridge, Lethbridge, Canada T1 K 3M4 ⁴Applied Behavioural Ecology and Ecosystems Research Unit, University of South Africa, FL 1710, South Africa ⁵School of Animal, Plant and Environmental Sciences, Faculty of Science, University of the Witwatersrand, Johannesburg 2000, South Africa

RM, 0000-0001-8245-9269; SPH, 0000-0001-6175-1674; AF, 0000-0001-6370-8151; CY, 0000-0001-8919-2093; LB, 0000-0003-1841-2997

Most primates, including humans, give birth during the inactive phase of the daily cycle. Practical constraints therefore limit our knowledge of the precise timing of nocturnal birth in wild diurnal primates and so limit our understanding of selective pressures and consequences. We measured maternal core body temperature (T_b) across 24 births in a population of wild vervet monkeys using biologgers. We identified distinct perturbations in T_b during the birth period, including declining T_b during labour and the rapid recovery of T_b post-parturition. Vervet monkeys typically gave birth during their inactive phase in synchrony with the nadir of the maternal nychthemeral T_b rhythm but also showed remarkable inter-individual variability in their absolute T_b during birth. Our findings support the view that selection may have favoured a nocturnal timing of primate birth to coincide with lower night-time T_b and environmental temperatures, which improve thermal efficiency during birth.

1. Introduction

Most primate births occur during the inactive phase, with diurnal species generally giving birth at night, and nocturnal species during the day [1–3]. This conserved timing is argued to benefit new mothers by reducing predation risk, conspecific harassment and the need to keep up with a travelling group [1,4–8]. While there are data from captive animals, the obvious practical challenges mean that we know little about the precise timing of nocturnal parturition in wild diurnal primates, and the extent to which this might contribute to our understanding of the selection pressures promoting inactive-phase birth. Mammalian births are characterized by a decrease in maternal body temperature (T_b) over the hours of labour and a precipitous increase in T_b in the hours immediately post-parturition [9–12]. These distinct perturbations in T_b suggest a means whereby the timing of birth can be accurately gauged in the absence of direct observation.

In mammals, melatonin release at the end of the active phase appears to signal the timing of birth [3,13,14]. Although the role of melatonin in regulating T_b during parturition has not been investigated [3], its role in influencing the nychthemeral fall in T_b [15,16] suggests that a common factor may regulate the maternal and environmental thermal conditions to best support birth. The

maternal thermal environmental is important to the birthing process [9] and irregular birth conditions can have negative consequences for neonatal survival and development [17,18]. Low maternal T_b during labour can help protect the fetus from neuronal injury during hypoxic birth conditions [19,20].

We investigate the possibility that evolution of primate birth hour may have favoured synchronization with both the maternal nychthemeral T_b rhythm to maximize thermoregulatory efficiency and environmental conditions that reduce the costs of T_b regulation. We confirm the perturbations in core T_b associated with the birth process in wild vervet monkeys (*Chlorocebus pygerythrus*) and assess the degree to which hour of birth aligns with the light–dark cycle and the maternal nychthemeral T_b rhythm [21,22]. Finally, we discuss the possible thermal costs associated with atypical birth following our direct observation of two daytime births.

2. Methods

(a) Data collection

Data were collected between September 2010 and December 2017 from three troops of wild vervet monkeys on the Samara Private Game Reserve, South Africa. Monkeys were fully habituated to researchers and could be individually identified. Daily censuses of troop membership were recorded. Vervet females reach sexual maturity at approximately 3 years and produce a single offspring at each reproductive event [23,24]. Vervets are seasonal breeders and our population's birth season falls in the austral summer [25,26]. The birth season coincides with increasing resource abundance, to support the energetically expensive lactation period [26,27], but also with higher environmental temperatures [28]. Mean hourly air temperatures were recorded at a local weather station and ranged from -8.1° C to 41.6° C (mean = 17.2° C ± 8.3 s.d.).

In a longitudinal study of vervet monkey thermal physiology, 30 adult females (mean body mass = $3.4 \text{ kg} \pm 0.3 \text{ s.d.}$) were implanted with temperature-sensitive biologgers over a 7-year period [28–30]. Biologgers instantaneously recorded intra-abdominal T_b at five-minute intervals. Normal behaviour resumed on the day after surgery, and no long-term sequelae were observed because of surgeries. For details of the capture and surgery procedure, see McFarland *et al.* [29].

We ran three Bayesian generalized linear mixed models (GLMMs), specifying a Gaussian distribution, to compare the (i) minimum night-time T_b of birthing and non-birthing females (between-subject), (ii) number of hours from sunset that birthing and non-birthing females took to reach their minimum night-time T_b and (iii) minimum night-time T_b of birthing females on the night of birth and seven days prior (within-subject). We entered minimum night-time T_b and number of hours after sunset, in turn, as the outcome variable. We entered whether each female gave birth that night as a predictor variable. Body mass was entered as a predictor variable to control for its influence on T_b [29]. GLMMs were run using the 'brms' package in R v. 3.5.0. [31,32]. Full model descriptions, code and results are provided in the electronic supplementary material.

3. Results

Twenty-four infants were born to 16 mothers implanted with T_b biologgers. Two of these births were directly witnessed during routine daytime field observations (figure 1; electronic supplementary material, Video). For the two daytime births, we observed an identifiable drop in maternal T_b before

parturition, immediately followed by a precipitous rise in T_b (table 1 and figure 1). For 17 of the 22 unwitnessed births, we were able to identify the same distinct post-parturition increase in maternal T_b that could not otherwise be explained by the nychthemeral T_b rhythm or activity that might take place at night (table 1). Fifteen of these 17 births occurred at night, and two occurred within 1 h of sunset when the mother was inactive at her sleep site (figure 2). We were unable to identify the timing of birth for the remaining five births. We excluded these five births from our analyses, focusing on the 17 inactive-phase births from 14 females.

Birthing females experienced lower night-time T_b minima than non-birthing females and reached those temperatures earlier in the night (table 1 and table 2). Birthing females also experienced lower T_b minima during birth than they did on a night 7 days prior (tables 1 and 2). For the 17 typical inactive-phase births, maternal T_b reached a mean low of 35.9°C approximately 2.5 h after sunset (table 1). Maternal T_b then increased precipitously to a mean of 37.2°C after 1.7 h, whereafter T_b stabilized and followed the normal nychthemeral rhythm. By contrast, non-birthing females over all birth seasons—reached a mean minimum of 36.6°C, 7.7 h after sunset. These females then gradually increased their T_b over 6.5 h to 38.3°C.

The distinct perturbations of T_b —declining temperatures during labour and post-parturition recovery-were observed during both typical inactive-phase and atypical active-phase births (figure 1). Given that the active-phase births were not synchronized with the nychthemeral T_b rhythm, the decline in T_b during labour was more pronounced due to its decline from a higher active-phase level. Active/diurnal birth 1 took place in the early morning (7.40 h; figure 1) and coincided with the coldest time of day when the mother was close to her T_b bathyphase. The large gradient for dry heat loss to the environment at this time might explain why this mother became particularly hypothermic during birth, reaching a T_b low of 34.4°C. This female was observed eating her placenta at 07.45, and her post-parturition T_b profile was consistent with that of nocturnal births. Active/diurnal birth 2 took place in the middle of the day (11.30; figure 1), coinciding with the warmest time of the day when the mother was approaching her T_b acrophase. The challenges associated with regulating T_b at this time likely explain why this mother reached a hyperthermic T_b (39.5°C) post-parturition.

4. Discussion

Vervet monkeys typically gave birth during their inactive phase, with most births occurring at night, consistent with observations in other diurnal primate species [1–9]. While there were consistencies in both the timing of birth and the patterns of maternal T_b during parturition, there was also substantial inter-individual variability in absolute T_b , suggesting flexibility in the 'typical' thermal conditions of a successful birth.

Giving birth during the inactive phase facilitates the critical establishment of the mother–infant link with respect to nursing, bonding and heat retention, without interference by conspecifics or troop movements [8,33]. Post-parturition is a critical period for the infant, when heat lost via the evaporation of amniotic fluid poses a significant risk of hypothermia [17,34,35]. To combat the risk of hypothermia,

3

Figure 1. Maternal 72 h body temperature (T_b) rhythms across two diurnal (orange lines) and two nocturnal (blue lines) vervet monkey births. Asterisks denote time of birth. Black lines denote the average non-birthing female time-matched 72 h T_b , and grey lines denote ambient air temperature. Top-left birth was photographed and video recorded (electronic supplementary material, Video).

neonates engage in non-shivering thermogenesis [36] and gain heat through maternal body contact as the mother's T_b returns to normal [17,37]. Following relatively hypothermic birth conditions, maternal resources are needed to re-establish the nychthemeral T_b rhythm. Placentophagia has previously been argued to replenish nutritional losses from pregnancy, enhance pregnancy-mediated analgesia and prevent the placenta from attracting predators [38]. We suggest that, in addition, the specific dynamic action of placentophagia may also provide the heat needed to recover T_b post-parturition [39]. Variation in maternal nutritional and energetic demands at the time of birth could potentially explain the variation in a tendency for nonhuman primates to eat the placenta [7].

Our observation of two daytime births provides preliminary insight into possible thermal costs, for both mother and infant, when the timing of birth deviates from the inactive phase. We directly witnessed two active-phase births, the first of which took place in the cool early morning, and the second which took place in the heat of the day. The distinct perturbations of T_h during typical births were similarly observed during these atypical births, supporting the view that low T_b during labour is not a by-product of the low nychthemeral T_b rhythm at night, but rather a distinct phenology associated with labour. Whereas low T_b during labour is facilitated by the natural nychthemeral fall of T_b and low environmental temperatures during night-time births, no such benefits are experienced during daytime births. The physiological costs of maternal T_b regulation are therefore likely to be greater during daytime births, when the mother needs to dissipate heat at a time of day when she is closer to her acrophase in nychthemeral $T_{b_{\ell}}$ and when the environmental heat load is higher. Furthermore, when recovering from birth during warm daytime temperatures, both mother and infant are at greater risk of post-parturition hyperthermia and dehydration [21,22]. Infants use evaporative water loss soon after birth, and given their small body size and relatively high surface area to volume ratio, are particularly vulnerable to dehydration [40].

It has long been argued and has since become the consensus, that the nocturnal timing of primate births serves primarily to reduce the risk of predation, conspecific harassment and group-fission, all of which would be more likely if births occurred during the active phase [1-8]. Our findings suggest that there may also be important thermal consequences linked to the timing of primate birth. Together with these socioecological factors, selection may have favoured a nocturnal birth hour that is synchronized with both the nadir of the maternal nychthemeral rhythm of T_h and the environmental conditions that enhance thermoregulatory efficiency across birth. Coordinating the timing of birth with both the low nychthemeral T_b rhythm and cool night-time temperatures reduces the physiological costs of lowering maternal T_b during labour. Furthermore, a mother doesn't need to implement evaporative cooling at night to lower T_b and can instead rely on less costly dry heat loss. At a time when maternal resources are at a premium [41], any means by which resources can be conserved, and physiological processes made less costly, are likely to improve the welfare of both mother and infant.

If so, then it seems reasonable to suggest that the timing of birth will be particularly important for smaller, more thermally labile species, where birth should be more synchronized to the most thermally advantageous time. Larger-bodied apes appear to be less constrained to nocturnal births compared to monkeys [1]. Furthermore, given that the pelvic inlet to neonatal head ratio is much tighter, and births are longer and more challenging in monkeys compared to apes [42,43]—it is possible that apes (excluding humans) may be less constrained by the thermal challenges of birth compared to monkeys. Species that experience more variable climates (i.e. temperate climates and/or high-elevation) are likely to have come under greater environmental selective pressure for the timing of birth, as they have for reproductive seasonality [27,44]. For seasonal breeders, the birth season coincides with resource abundance when environmental temperatures also tend to be high [28]. For these species, the risk of maternal or neonatal hypothermia

Downloaded from https://royalsocietypublishing.org/ on 26 January 2022

Table 1. Maternal body temperatures across vervet monkey births.

time oftime offor the line ofbit<							labour							post-parturitio	Ę			
Inter of the off,							time at							time at		Δ low T_b		
	female		date of	time of observed	sunset	sunrise	start of T_b decline h	time of Iow T _b ^a	T_b at start of	low	∆ start of decline to	Δ start of decline to	Δ sunset to low T_b	end of T_b incline	T _b at end of T _b	to end of T _b incline	Δ low T_b to end of T_b	ambient air temperature at
Predue active diurnal 20 km 2014 740 924 730 735 744 -11 15 12.66 000 639 Orea active/durunal 26 km 2016 11.30 18.42 52.8 0.20 12.95 53.9 13.9 53.4 13.0	≘	phase at birth	birth	birth hh.mm	hh.mm	hh.mm	hh.mm	hh.mm	decline °C	T _b °C	low T _b °C	low T _b °C/h	h.m	hh.mm	incline °C	h.m	decline °C	birth °C
Qois active/incluind S Q C 2016 1.30 8.8 0.20 1.31 0.72 1.54 0.35 Qean inactive/incluind 2 G C 2010 183 5.22 1800 130 357 -22 17.10	Penelope	active/diurnal	20 Nov 2014	7.40	19.04	5.10	5.45	7.50	37.5	34.4	-3.1	1.5	12.06	10.00	36.9	2.10	2.5	14.1
Qear Instrictioned 2 0 at 200 18.9 5.2 18.0 9.20 38.7 -2.2 17 0.41 21.40 38.1 Unitation Instrictioned 5 Nov 2010 18.95 515 17.05 20.35 38.8 36.7 -2.1 0.64 21.95 23.0 37.5 Unitation Instrictioned 13 No.2013 18.85 51.4 17.10 11.0 38.5 -3.1 10.4 61.9 23.7 37.5 Video Instrictioned 13 No.2014 18.87 52.4 17.15 19.20 38.7 -3.1 10.4 61.9 23.7 35.7 Annel Instrictioned 21 00.2014 18.86 52.4 17.15 19.20 35.7 35.7 35.7 35.7 Annel Instrictioned 21 00.2014 18.86 52.4 17.15 38.9 35.7 25.0 35.7 35.7 35.7 35.7 <t< th=""><th>Coco</th><th>active/diurnal</th><th>26 Oct 2016</th><th>11.30</th><th>18.42</th><th>5.28</th><th>10.20</th><th>12.05</th><th>38.1</th><th>36.8</th><th>-1.3</th><th>0.7</th><th>17.23</th><th>15.40</th><th>39.5</th><th>3.35</th><th>2.7</th><th>30.6</th></t<>	Coco	active/diurnal	26 Oct 2016	11.30	18.42	5.28	10.20	12.05	38.1	36.8	-1.3	0.7	17.23	15.40	39.5	3.35	2.7	30.6
	Ocean	inactive/noctumal	23 Oct 2010	I	18.39	5.32	18.00	19.20	38.7	36.5	-2.2	1.7	0.41	21.40	38.1	2.20	1.6	12.8
Optice Interferencemal 1 Nov 2012 — 1 8.5 5.4 1.7 1.1 8.6 3.5 -3.1 0.4 6.13 2.35 3.37 Webbox Inactive/Incounnal 1 0 pc 2014 — 18.31 5.44 16.50 19.40 38.9 -3.37 1.1 1.09 2.240 3.73 Webbox Inactive/Incounnal 2 10 ct 2014 — 18.3 5.44 16.50 2.940 38.9 -3.1 1.1 1.09 2.40 3.73 Webbox Inactive/Incounnal 2 10 ct 2014 — 18.46 5.24 17.5 19.20 3.73 2.40 3.73 3.73 Amm Inactive/Incounnal 5 10 ct 2014 — 18.46 5.21 15.5 18.00 3.71 3.83 3.71 3.73 3.73 Amm Inactive/Incounnal 5 10 ct 2014 — 18.47 5.70 2.73 3.73 3.73 Datify Inactive/Incounnal 5 10 ct 2014 —	Uma	inactive/noctumal	5 Nov 2010		18.56	5.15	17.05	20.25	38.8	36.7	-2.1	0.6	1.29	22.20	37.6	1.55	0.9	16.0
Webbox Indefined modernmal 10 bec 2014 — 1831 544 16.50 940 353 —31 11 109 2240 377 Divi< inactive/incorumal 21 0ct 2014 — 1838 534 16.20 2045 387 347 —40 09 207 255 567 Aver inactive/incrumal 21 0ct 2014 — 18.86 5.24 17.15 19.20 379 361 -18 205 367 371 Aver inactive/incrumal 21 0ct 2014 — 18.86 5.22 15.55 18.00 371 363 -2.11 10 29.3 371 Aver inactive/incrumal 5 loc 2014 — 18.87 5.02 21.05 317 363 -2.10 31	Dottie	inactive/noctumal	13 Nov 2012	I	18.57	5.14	17.10	1.10	38.6	35.5	-3.1	0.4	6.13	2.35	37.9	1.25	2.4	13.6
Driv inactive/noctumal 21 Oct 2014 18.3 5.34 6.20 2.04 3.87 -4.0 0.9 2.07 2.55 36.7 Ivvaa inactive/noctumal 31 Oct 2014 18.46 5.24 17.15 19.20 37.9 36.1 -1.8 0.9 0.34 2.07 2.55 37.1 Avven inactive/noctumal 51 Oct 2014 18.46 5.24 17.15 19.20 37.1 10.9 0.9 0.34 2.35 37.1 Avven inactive/noctumal 5 Dec 2014 18.47 5.10 18.50 21.15 38.8 36.5 -2.6 0.6 2.3 2.3 37.1 Daff inactive/noctumal 18 Dec 2014 19.17 5.0 17.40 2.05 38.4 36.5 -2.6 0.6 2.3 2.1 2.3 36.5 Daff inactive/noctumal 18 Dec 2014 19.91 5.0 0.7 0.3	Wokbox	inactive/noctumal	10 Dec 2014	I	18.31	5.44	16.50	19.40	38.9	35.8	-3.1	1.1	1.09	22.40	37.7	3.00	1.9	17.4
\dot{V} value instruction (month) $310 \ cm(1014)$ $ 18.46$ 5.4 17.15 9.20 37.1 20.3 20.3 20.3 37.1 Λ were instructional 2 Nov 2014 $ 18.46$ 5.25 15.55 18.00 38.4 36.3 -21 10 -0.46 19.10 36.7 Λ metric incorronal 6 Nov 2014 $ 18.45$ 51.6 11.6 0.6 0.6 2.4 31.0 36.7 Λ metric incorronal 18 Nov 2014 $ 19.25$ 51.0 11.740 20.20 21.06 0.6 0.6 2.4 31.7 31.0 36.7 Λ metric incorronal 18 Nov 2015 $ 92.0$ 21.0 32.6 22.8 36.0 36.7 36.7 Λ metric incorronal 18 Nov 2015 $ 92.0$ 32.9 32.4 36.7 22.6 23.9 36.7 Λ metrincorronal	Dori	inactive/noctumal	21 Oct 2014		18.38	5.34	16.20	20.45	38.7	34.7	-4.0	0.9	2.07	22.55	36.7	2.10	2.0	18.5
Arwein inactive/dumal Zwo 204 513 1535 1800 384 363 -21 10 -046 9.10 367 Gamella inactive/inclumal 6 wo 2014 1831 518 16500 21.15 388 362 -26 0.6 2.24 23.10 369 Lisa inactive/inclumal 5 ke 2014 19.17 5.07 20.20 21.10 37.5 -0.66 0.6 2.24 23.10 369 Daff inactive/inclumal 18 ke 2014 19.17 5.02 20.20 37.1 36.5 -2.6 0.6 2.34 21.30 369 Daff inactive/inclumal 18 ke 2014 19.21 5.10 18.35 0.20 38.4 35.5 -2.4 0.91 36.7 36.4 Daff inactive/inclumal 18 ke 2014 19.21 5.10 38.5 36.4 35.5 21.4 35.5 21.30 36.4 <th>Tyvara</th> <th>inactive/noctumal</th> <th>31 Oct 2014</th> <th> </th> <th>18.46</th> <th>5.24</th> <th>17.15</th> <th>19.20</th> <th>37.9</th> <th>36.1</th> <th>-1.8</th> <th>0.9</th> <th>0.34</th> <th>20.35</th> <th>37.1</th> <th>1.15</th> <th>1.0</th> <th>11.9</th>	Tyvara	inactive/noctumal	31 Oct 2014		18.46	5.24	17.15	19.20	37.9	36.1	-1.8	0.9	0.34	20.35	37.1	1.15	1.0	11.9
Carmela inactive/hoctumal 6 Nov 2014 — 1851 518 16.50 21.15 38.8 36.2 -2.6 0.6 2.4 23.10 36.9 Lisa inactive/hoctumal 5 Dec 2014 — 19.17 5.07 20.20 21.00 37.1 36.5 -0.6 0.9 1.43 21.30 36.0 Daffy inactive/hoctumal 18 Dec 2014 — 19.25 5.10 18.35 0.50 38.4 36.5 -2.8 0.4 5.5 2.10 36.0 Anven inactive/hoctumal 18 Dec 2014 — 19.25 5.10 18.35 0.50 38.4 36.5 -2.4 0.9 1.21 21.30 36.7 Anven inactive/hoctumal 18 Dec 2014 — 19.25 5.08 18.35 21.10 36.5 2.13 36.7 21.30 36.7 Ho inactive/hoctumal 19 Oct 2016 — 19.35 17.45 22.05 36.7 2.1 2.1	Arwen	inactive/diurnal	2 Nov 2014	I	18.48	5.22	15.55	18.00	38.4	36.3	-2.1	1.0	-0.48	19.10	36.7	1.10	0.4	16.4
Isa inactive/noctumal S Dec 2014 — 19.17 5.07 20.20 21.00 37.1 36.5 -0.6 0.9 1.43 21.30 37.0 Daffy inactive/noctumal 18 Dec 2014 — 19.25 5.10 18.35 0.50 38.4 35.6 -2.8 0.4 5.25 2.10 36.6 Anven inactive/noctumal 18 Nov 2015 — 19.21 5.08 18.35 22.35 38.3 34.7 -3.6 0.9 1.21 21.30 36.7 Dori inactive/noctumal 17 Nov 2015 — 19.32 5.21 8.15 2.110 38.6 36.3 -2.3 0.8 1.21 2.130 36.7 Duri inactive/noctumal 19 Oct 2016 — 19.32 5.21 18.15 2.110 38.7 -2.4 0.9 1.31 0.2 36.4 Duri inactive/noctumal 19 Oct 2016 — 18.35 17.45 2.10 38.7 <td< th=""><th>Carmella</th><th>inactive/noctumal</th><th>6 Nov 2014</th><th>I</th><th>18.51</th><th>5.18</th><th>16.50</th><th>21.15</th><th>38.8</th><th>36.2</th><th>-2.6</th><th>0.6</th><th>2.24</th><th>23.10</th><th>36.9</th><th>1.55</th><th>0.7</th><th>19.4</th></td<>	Carmella	inactive/noctumal	6 Nov 2014	I	18.51	5.18	16.50	21.15	38.8	36.2	-2.6	0.6	2.24	23.10	36.9	1.55	0.7	19.4
Daffy Inactive/noctumal 18 Dec 2014 — 1925 510 1835 0.50 38.4 35.6 — 2.10 36.6 Anven inactive/noctumal 21 Nov 2015 — 19.04 5.10 17.40 20.25 38.4 36.6 — 5.9 1.21 21.30 36.7 Driv inactive/noctumal 12 Nov 2015 — 19.21 5.08 18.35 22.35 38.3 34.7 —3.6 0.9 3.14 0.55 36.4 Driv inactive/noctumal 12 Nov 2015 — 19.21 5.08 18.15 21.10 38.6 36.3 -2.3 0.8 36.4 36.5 36.4 Uburtu inactive/noctumal 19 Ot 2016 — 19.32 5.21 18.15 21.10 38.7 36.3 -2.1 0.55 36.4 36.5 36.4 36.5 37.4 37.5 36.3 37.5 36.3 37.5 36.3 37.5 36.3 37.5 36.3 <th>Lisa</th> <th>inactive/noctumal</th> <th>5 Dec 2014</th> <th> </th> <th>19.17</th> <th>5.07</th> <th>20.20</th> <th>21.00</th> <th>37.1</th> <th>36.5</th> <th>-0.6</th> <th>0.9</th> <th>1.43</th> <th>21.30</th> <th>37.0</th> <th>0.30</th> <th>0.5</th> <th>14.8</th>	Lisa	inactive/noctumal	5 Dec 2014		19.17	5.07	20.20	21.00	37.1	36.5	-0.6	0.9	1.43	21.30	37.0	0.30	0.5	14.8
Arven Inactive/noctumal 21 Nov 2015 — 1904 510 17.40 20.25 38.4 36 -2.4 0.9 1.21 21.30 36.7 Dori inactive/noctumal 12 Nov 2015 — 19.21 5.08 18.35 2.235 38.3 34.7 -3.6 0.9 1.21 21.30 36.4 Dori inactive/noctumal 12 Nov 2015 — 19.22 5.22 18.15 21.10 38.6 36.3 -2.3 0.8 1.38 0.20 38.4 Uburtu inactive/noctumal 19 Oct 2016 — 19.35 5.17.45 22.05 38.2 36.1 -2.1 0.5 32.7 33.7 23.30 37.5 Dori inactive/noctumal 30 Oct 2016 — 18.45 5.24 17.40 21.40 38.7 34.7 -1.4 1.5 23.30 37.5 Orlops inactive/notumal 30 Oct 2016 — 18.49 5.17 10.40 38.7 34.7	Daffy	inactive/nocturnal	18 Dec 2014	I	19.25	5.10	18.35	0.50	38.4	35.6	-2.8	0.4	5.25	2.10	36.6	1.20	1.0	14.1
Dori inactive/nocturnal 12 Nov 2015 — 1921 5.08 18.35 2.235 38.3 34.7 -3.6 0.9 3.14 0.55 36.4 Flo inactive/nocturnal 5 Jan 2016 — 19.32 5.22 18.15 21.10 38.6 36.3 -2.3 0.8 1.38 0.20 38.4 Ubuntu inactive/nocturnal 19 Oct 2016 — 18.38 5.32 17.45 22.05 38.2 36.1 -2.1 0.5 3.37 23.30 37.5 Dori inactive/nocturnal 30 Oct 2016 — 18.38 5.24 17.40 21.40 38.7 34.5 -4.2 1.1 2.55 36.3 Orlops inactive/diurnal 14 Nov 2016 — 18.59 5.13 17.10 18.05 38.1 -1.4 1.5 -0.54 18.40 37.1 Orlops inactive/diurnal 14 Nov 2016 — 19.32 5.21 2.030 2.225 37.8 3	Arwen	inactive/nocturnal	21 Nov 2015	I	19.04	5.10	17.40	20.25	38.4	36	-2.4	0.9	1.21	21.30	36.7	1.05	0.7	10.2
Flo inactive/nocturnal 5 Jan 2016 — 19.22 5.22 18.15 21.10 38.6 36.3 -2.3 0.8 1.38 0.20 38.4 Ubuntu inactive/nocturnal 19 Oct 2016 — 18.38 5.35 17.45 22.05 38.2 36.1 -2.1 0.5 3.27 23.30 37.5 Dori inactive/nocturnal 30 Oct 2016 — 18.45 5.24 17.40 21.40 38.7 34.5 -4.2 1.1 2.55 23.15 36.3 Optive inactive/diumal 14 Nov 2016 — 18.45 5.13 17.10 18.05 38.1 36.7 -1.4 1.5 -0.54 18.40 37.1 Victors inactive/diumal 14 Nov 2016 — 18.59 5.21 20.30 22.52 37.3 36.3 17.40 18.65 37.1 20.9 37.1 Priscilla inactive/diumal 4 Jan 2017 — 19.22 5.21 20.30 <	Dori	inactive/nocturnal	12 Nov 2015	I	19.21	5.08	18.35	22.35	38.3	34.7	-3.6	0.9	3.14	0.55	36.4	2.20	1.7	15.6
Ubuntu inactive/noctumal 19 Oct 2016 — 18.38 5.35 17.45 22.05 38.2 36.1 —2.1 0.5 3.27 23.30 37.5 Dori inactive/noctumal 30 Oct 2016 — 18.45 5.24 17.40 21.40 38.7 34.5 -4.2 1.1 2.55 23.15 36.3 Cyclops inactive/inclumal 14 Nov 2016 — 18.59 5.13 17.10 18.05 38.1 36.7 -1.4 1.5 -0.54 18.40 37.1 Priscilla inactive/noctumal 4 An 2017 — 19.32 5.21 20.30 22.25 37.8 36.1 -1.7 0.9 2.53 0.20 37.3 mean birthing female (inactive phase) 7 7.4 35.9 -5.5 0.9 2.53 0.20 37.3	Flo	inactive/nocturnal	5 Jan 2016	I	19.32	5.22	18.15	21.10	38.6	36.3	-2.3	0.8	1.38	0.20	38.4	3.10	2.1	31.9
Dori inactive/nocturnal 30 ct 2016 — 18.45 5.24 17.40 21.40 38.7 34.5 -4.2 1.1 2.55 23.15 36.3 Gyclops inactive/diumal 14 Nov 2016 — 18.59 5.13 17.10 18.05 38.1 36.7 -1.4 1.5 -0.54 18.40 37.1 Priscilla inactive/diumal 14 Nov 2016 — 19.32 5.21 20.30 22.25 37.8 36.1 -1.7 0.9 2.53 0.20 37.3 mean birthing female (inactive phase) — 17.45 21.04 38.4 35.9 -2.5 0.9 2.28 27.46 37.2	Ubuntu	inactive/nocturnal	19 Oct 2016	I	18.38	5.35	17.45	22.05	38.2	36.1	-2.1	0.5	3.27	23.30	37.5	1.25	1.4	18.5
Cyclops inactive/diumal 14 Nov 2016 - 18.59 5.13 17.10 18.05 38.1 36.7 -1.4 1.5 -0.54 18.40 37.1 Priscilla inactive/noctumal 4 Jan 2017 - 19.32 5.21 20.30 22.25 37.8 36.1 -1.7 0.9 2.53 0.20 37.3 mean birthing female (inactive phase) 17.45 21.04 38.4 35.9 -2.5 0.9 22.46 37.2	Dori	inactive/nocturnal	30 Oct 2016	Ι	18.45	5.24	17.40	21.40	38.7	34.5	-4.2	1.1	2.55	23.15	36.3	1.35	1.8	20.1
Priscilla inactive/nocturnal 4 Jan 2017 — 19.32 5.21 20.30 22.25 37.8 36.1 —1.7 0.9 2.53 0.20 37.3 mean birthing female (inactive phase) 17.45 21.04 38.4 35.9 -2.5 0.9 22.46 37.2	Cyclops	inactive/diurnal	14 Nov 2016	Ι	18.59	5.13	17.10	18.05	38.1	36.7	-1.4	1.5	-0.54	18.40	37.1	0.35	0.4	22.1
mean birthing female (inactive phase) 17,45 21.04 38,4 35,9 –2.5 0,9 2.28 22,46 37.2	Priscilla	inactive/nocturnal	4 Jan 2017	Ι	19.32	5.21	20.30	22.25	37.8	36.1	-1.7	6.0	2.53	0.20	37.3	1.55	1.2	22.8
	mean birthing	l female (inactive ph	ase)				17.45	21.04	38.4	35.9	-2.5	0.9	2.28	22.46	37.2	1.42	1.3	17.4
mean non-birthing female (across all birth seasons) 17.15 03.15 38.6 36.8 —1.8 0.2 14.45 — — —	mean non-bir	thing female (across	all birth seasons)				17.15	03.15	38.6	36.8	-1.8	0.2	14.45		1			

^aEstimated time of parturition for unwitnessed births. Body temperature (I_b) .

4

5

Figure 2. Maternal body temperature at the time of vervet monkey birth (dots) and the average female nychthemeral 24 h body temperature rhythm during the birth season (black line). Blue dots represent inactive-phase nocturnal births, purple dots the inactive-phase diurnal births and orange dots the observed active-phase diurnal births. Blue line denotes the average timing of typical inactive-phase births.

Table 2. GLMM results estimating the effect of birth on minimum night-time 24 h body temperature, and the time it took for females to reach that temperature after sunset.

model	estimate ± error	95% credible interval	probability of direction %	R ² marginal	R ² conditional	full model output
minimum body temperature (between-subject)				0.14	0.63	electronic supplementary material, table S1
intercept	36.38 ± 0.58	35.21, 37.50	—			
gave birth (no/yes)	-0.68 ± 0.09	-0.86, -0.50	100			
body mass (kg)	0.08 ± 0.17	-0.25, 0.41	68.45			
time of minimum T_b (hours				0.29	0.39	electronic supplementary
from sunset)						material, table S2
intercept	11.99 ± 2.51	7.11, 16.84				
gave birth (no/yes)	-4.79 ± 0.60	—5.95, —3.61	100			
body mass (kg)	-1.25 ± 0.73	-2.67, 0.18	95.78			
minimum body temperature (within-subject)				0.28	0.46	electronic supplementary material table S3
intercept	37.98 + 1.28	35.45, 40.47				
gave birth (no/ves)	-0.44 ± 0.15	-0.74, -0.14	99.67			
body mass (kg)	-0.49 ± 0.37	-1.20, 0.23	91.08			
· · · · · · · · · · · · · · · · · · ·						

during night-time births is relatively low, while the risk of postparturition hyperthermia during daytime births is relatively high. If birth seasonality has selected for periods of food abundance [44], selection for inactive-phase births might reflect the avoidance of higher daytime heat.

Human births can occur year-round, at all times of the day, yet still tend to occur more frequently at night [3,21,45], which may reflect the diurnal ancestry of anthropoid primates [2] and the nychthemeral timing of births. The importance of the thermal environment for human birth is well recognized, and the World Health Organization has established guidelines for the maintenance of a 'warm-chain' thermal environment that

minimizes the risk of neonatal hypothermia [46,47]. These guidelines include keeping the delivery room warm, drying the infant of amniotic fluid and maintaining skin-to-skin maternal–neonatal contact. The uncoupling of the ancestral relationship between birth hour and the maternal nychthemeral T_b rhythm in humans is likely a consequence of the typically cool artificial environments of birth places, a greater reliance on hospital births and medical intervention and the relative infrequency of non-intervened vaginal delivery [48–50]. None-theless, the risk of neonatal hypothermia remains a significant cause of infant morbidity and mortality, especially in developing countries and during winter months [51,52]. Our findings

royalsocietypublishing.org/journal/rsbl *Biol. Lett.* **18**: 20210574

6

therefore not only offer new insights into the thermal consequences of birth and the evolution of primate birth hour, but also may provide an evolutionary explanation for some of the health risks associated with human birth.

Ethics. Observational data collection protocols were approved by the University of Lethbridge under the terms of reference of Animal Welfare Protocol 0702 and followed the Association for the Study of Animal Behaviour guidelines for the use of animals in research. All capture and surgical procedures were approved by the University of the Witwatersrand Animal Research Ethics Committee (2010/ 41/04; 2015/04/14B). All protocols conformed to the legal requirements of South Africa.

Data accessibility. All data, R code and full model results are available in the electronic supplementary material.

Authors' contributions. R.M.: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, resources, visualization, writing—original draft and writing—review and

editing; A.F.: conceptualization, funding acquisition, investigation, methodology, resources, writing—review and editing; S.P.H.: conceptualization, data curation, funding acquisition, investigation, methodology, resources and writing—review and editing; R.S.H.: conceptualization, funding acquisition, investigation, methodology, resources and writing—review and editing; C.Y.: investigation, visualization and writing—review and editing; L.B.: conceptualization, data curation, funding acquisition, investigation, methodology, resources and writing—review and editing; L.B.: conceptualization, data curation, funding acquisition, investigation, methodology, resources and writing—review and editing; L.B.: conceptualization, data curation, funding acquisition, investigation, methodology, resources and writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed therein.

Competing interests. We declare we have no competing interests.

Funding. This study was supported by Claude Leon Fellowship (R.M.), NSERC Discovery (S.P.H. and L.B.), Canada Research Chair (L.B.), NRF South Africa (A.F., R.S.H. and S.P.H.) and Carnegie Corp. New York (A.F.).

Acknowledgements. We are grateful to the Tompkins family for permission to work with their monkeys, and to the verveteers and veterinarians for their assistance with data collection and surgeries.

References

- Jolly A. 1972 Hour of birth in primates and man. *Folia Primatol.* 18, 108–121. (doi:10.1159/ 000155472)
- Shively G. 1986 Mitchell, perinatal behavior of anthropoid Primates. In *Comparative primate biology. Behavior, conservation and ecology*, vol. 2A (eds G Mitchell, J Erwin), pp. 245–294. New York, NY: Alan R. Liss Inc.
- McCarthy R, Jungheim ES, Fay JC, Bates K, Herzog ED, England SK. 2019 Riding the rhythm of melatonin through pregnancy to deliver on time. *Front. Endocrinol.* **10**, 616. (doi:10.3389/fendo.2019. 00616)
- Bowden D, Winter P, Ploog D. 1967 Pregnancy and delivery behavior in the squirrel monkeys (*Saimiri sciureus*) and other primates. *Folia Primatol.* 5, 1–42. (doi:10.1159/000161936)
- Takahata Y, Koyama N, Miyamoto N, Okamoto M. 2001 Daytime deliveries observed for the ring-tailed lemurs of the Berenty Reserve, Madagascar. *Primates* 42, 267–271. (doi:10.1007/BF02629642)
- Duboscq J, Neumann C, Perwitasari-Farajallah D, Engelhardt A. 2008 Daytime birth of a baby crested black macaque (*Macaca nigra*) in the wild. *Behav. Proc.* 79, 81–84. (doi:10.1016/j.beproc.2008.04.010)
- Turner SE, Fedigan LM, Nakamichi M, Matthews HD, McKenna K, Nobuhara H, Nobuhara T, Shimizu K. 2010 Birth in free-ranging *Macaca fuscata*. *Int. J. Primatol.* **31**, 15–37. (doi:10.1007/s10764-009-9376-8)
- Nguyen N et al. 2017 Comparative primate obstetrics: observations of 15 diurnal births in wild gelada monkeys (*Theropithecus gelada*) and their implications for understanding human and nonhuman primate birth evolution. Am. J. Phy. Anthropol. 163, 14–29. (doi:10.1002/ajpa.23141)
- Ruppenthal GC, Goodlin BL, Sackett GP. 1983 Perinatal hypothermia and maternal temperature declines during labor in pigtailed macaques (*Macaca nemestrina*). Am. J. Primatol. 4, 81–92. (doi:10.1002/ajp.1350040108)

- Cross T, Threlfall WR, Kline RC. 1992 Body temperature fluctuations in the periparturient horse mare. *Theriogenol.* **37**, 1041–1048. (doi:10.1016/ 0093-691X(92)90102-W)
- Williams CT, Sheriff MJ, Schmutz JA, Kohl F, Tøien Ø, Buck CL, Barnes BM. 2011 Data logging of body temperatures provides precise information on phenology of reproductive events in a free-living arctic hibernator. *J. Comp. Physiol. B.* **181**, 1101–1109. (doi:10.1007/s00360-011-0593-z)
- Abecia JA, María GA, Estévez-Moreno LX, Miranda-De La Lama GC. 2020 Daily rhythms of body temperature around lambing in sheep measured non-invasively. J. Biol. Rhyth. Res. 51, 988–993. (doi:10.1080/09291016.2019.1592352)
- Ducsay CA, Yellon SM. 1991 Photoperiod regulation of uterine activity and melatonin rhythms in the pregnant rhesus macaque. *Biol. Reprod.* 44, 967–974. (doi:10.1095/biolreprod44.6.967)
- Olcese JM. 2020 Melatonin and female reproduction: an expanding universe. *Front. Endocrinol.* **11**, 85. (doi:10.3389/fendo.2020.00085)
- Cagnacci A, Kräuchi K, Wirz-Justice A, Volpe A. 1997 Homeostatic versus circadian effects of melatonin on core body temperature in humans. *J. Biol. Rhythms* 12, 509–517. (doi:10.1177/074873049701200604)
- Lok R. 2019 Daytime melatonin and light independently affect human alertness and body temperature.
 J. Pineal Res. 67, e12583. (doi:10.1111/jpi.12583)
- Nowak R, Porter RH, Lévy F, Orgeur P, Schaal B. 2000 Role of mother–young interactions in the survival of offspring in domestic mammals. *Rev. Repro.* 5, 153–163. (doi:10.1530/ror.0.0050153)
- Penell CE, Palmer L, Knight B, Relton C, Lye S. 2009 Approaches to evaluate gene–environment interactions underlying the developmental origins of health and disease. In *Early life origins of human health and disease* (eds JP Newnham, MG Ross), pp. 205–217. Basel, Switzerland: Karger.
- 19. Kozak W. 1997 Regulated decreases in body temperature. In *Fever: basic mechanisms and*

management (ed. PA Mackowiak), pp. 467–478. Philadelphia, PS: Lippincott-Raven.

- Nishio S Yunoki M, Chen ZF, Anzivino MJ, Lee KS. 2000 lschemic tolerance in the rat neocortex following hypothermic preconditioning. *J. Neurosurg.* 93, 845–851. (doi:10.3171/jns.2000. 93.5.0845)
- Honnebier MBOM, Nathanielsz PW. 1994 Primate parturition and the role of the maternal circadian system. *Eur. J. Obstet.* 55, 193–203. (doi:10.1016/ 0028-2243(94)90038-8)
- Nathanielsz PW. 1998 Comparative studies on the initiation of labor. *Eur. J. Obstet.* 78, 127–132. (doi:10.1016/S0301-2115(98)00058-X)
- Henzi SP, Lucas JW. 1980 Observations on the intertroop movement of adult vervet monkeys (*Cercopithecus aethiops*). Folia Primatol. 33, 220–235. (doi:10.1159/000155936)
- Turner TR, Anapol F, Jolly C. 1997 Growth, development, and sexual dimorphism in vervet monkeys (*Cercopithecus aethiops*) at four sites in Kenya. Am. J. Phys. Anthro. **103**, 19–35. (doi:10. 1002/(SICI)1096-8644(199705)103:1<19::AID-AJPA3>3.0.C0;2-8)
- Rowell TE, Richards SM. 1979 Reproductive strategies of some African monkeys. J. Mammal. 60, 58–69. (doi:10.2307/1379758)
- McFarland R, Barrett L, Boner R, Freeman NJ, Henzi SP. 2014 Behavioral flexibility of vervet monkeys in response to climatic and social variability. *Am. J. Phys. Anthropol.* **154**, 357–364. (doi:10. 1002/ajpa.22518)
- Brockman K, van Schaik CP. 2005 Seasonality and reproductive function. In *Seasonality in primates: studies of living and extinct human and non-human primates*, vol. 44 (eds DK Brockman, CP van Schaik), pp. 269–305. Cambridge, UK: Cambridge University Press.
- McFarland R, Barrett L, Fuller A, Hetem RS, Maloney SK, Mitchell D, Henzi SP. 2020 Keeping cool in the heat: behavioral thermoregulation and body

royalsocietypublishing.org/journal/rsbl *Biol. Lett.* **18**: 20210574

7

temperature patterns in wild vervet monkeys. *Am. J. Phys. Anthropol.* **171**, 407–418. (doi:10. 1002/ajpa.23962)

- McFarland R Fuller A, Hetem RS, Mitchell D, Maloney SK, Henzi SP, Barrett L. 2015 Social integration confers thermal benefits in a gregarious primate. J. Anim. Ecol. 84, 871–878. (doi:10.1111/ 1365-2656.12329)
- McFarland R, Henzi SP, Barrett L, Bonnell T, Fuller A, Young C, Hetem RS. 2021 Fevers and the social costs of acute infection in wild vervet monkeys. *Proc. Natl Acad Sci. USA* **118**, e2107881118. (doi:10. 1073/pnas.2107881118)
- Bürkner PC. 2017 Brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28. (doi:10.18637/jss.v080.i01)
- R Core Team. 2018 *R: a language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing.
- Trevathan WR, McKenna JJ. 1994 Evolutionary environments of human birth and infancy: insights to apply to contemporary life. *Child. Environ.* 11, 88–104.
- 34. Trevathan WR. 2017 *Human birth: an evolutionary perspective*. New York, NY: Routledge.
- Laburn HP. 1996 How does the fetus cope with thermal challenges? *Physiology* **11**, 96–100. (doi:10.1152/physiologyonline.1996. 11.2.96)
- Adamsons K, Towell ME. 1965 Thermal homeostasis in the fetus and newborn. *J. Am. Soc. Anesthesiol.* 26, 531–548. (doi:10.1097/00000542-196507000-00017)
- 37. Lubach GR, Kittrell EMW, Coe CL. 1992 Maternal influences on body temperature in the infant

primate. *Physiol. Behav.* **51**, 987–994. (doi:10.1016/ 0031-9384(92)90082-D)

- Kristal MB, DiPirro JM, Thompson AC. 2012 Placentophagia in humans and nonhuman mammals: causes and consequences. *Ecol. Food Nut.* 51, 177–197. (doi:10.1080/03670244.2012.661325)
- McCue MD. 2006 Specific dynamic action: a century of investigation. *Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.* 144, 381–394. (doi:10.1016/j.cbpa.2006.03.011)
- Fuller A, Mitchell D, Maloney SK, Hetem RS, Fonsêca VF, Meyer LC, van de Ven TM, Snelling EP. 2021 How dryland mammals will respond to climate change: the effects of body size, heat load and a lack of food and water. *J. Exp. Biol.* 224, p.jeb238113. (doi:10.1242/jeb.238113)
- Gittleman JL, Thompson SD. 1988 Energy allocation in mammalian reproduction. *Am. Zool.* 28, 863–875. (doi:10.1093/icb/28.3.863)
- Schultz AH. 1949 Sex differences in the pelves of primates. *Am. J. Phys. Anthropol.* 7, 401–424. (doi:10.1002/ajpa.1330070307)
- Trevathan W. 2015 Primate pelvic anatomy and implications for birth. *Phil. Trans. R. Soc. B* 370, 20140065. (doi:10.1098/rstb.2014.0065)
- Heldstab SA, van Schaik CP, Müller DW, Rensch E, Lackey LB, Zerbe P, Hatt JM, Clauss M, Matsuda I. 2021 Reproductive seasonality in primates: patterns, concepts and unsolved questions. *Biol. Rev.* 96, 66–88. (doi:10.1111/brv.12646)
- King D. 1956 Increased frequency of births in the morning hours. *Science* **123**, 985–986. (doi:10. 1126/science.123.3205.985)
- 46. WHO. 1997 Thermal protection of the newborn: a practical guide. *Maternal health and safe*

motherhood programme (WHO/FHE/MSM/ 97,2). Geneva, Switzerland: World Health Organization. (https://apps.who.int/iris/bitstream/handle/10665/ 63986/WHO?sequence=1)

- Brimdyr K, Cadwell K, Svensson K, Takahashi Y, Nissen E, Widström AM. 2020 The nine stages of skin-to-skin: practical guidelines and insights from four countries. *Matern. Child Nutr.* 16, e13042. (doi:10.1111/mcn.13042)
- Bernis C, Varea C. 2012 Hour of birth and birth assistance: from a primate to a medicalized pattern. *Am. J. Hum. Biol.* 24, 14–21. (doi:10.1002/ajhb. 21228)
- Varea C, Fernández-Cerezo S. 2014 Revisiting the daily human birth pattern: time of delivery at casa de maternidad in Madrid (1887–1892). *Am. J. Hum. Biol.* 26, 707–709. (doi:10.1002/ ajhb.22557)
- Martin P, Cortina-Borja M, Newburn M, Harper G, Gibson R, Dodwell M, Dattani N, Macfarlane A. 2018 Timing of singleton births by onset of labor and mode of birth in NHS maternity units in England, 2005– 2014: a study of linked birth registration, birth notification, and hospital episode data. *PLoS ONE* 13, e0198183. (doi:10.1371/journal.pone.0198183)
- Kumar V, Shearer JC, Kumar A, Darmstadt GL. 2009 Neonatal hypothermia in low resource settings: a review. J. Perinatol. 29, 401–412. (doi:10.1038/jp. 2008.233)
- Lunze K, Bloom DE, Jamison DT, Hamer DH. 2013 The global burden of neonatal hypothermia: systematic review of a major challenge for newborn survival. *BMC Med.* **11**, 1–11. (doi:10.1186/1741-7015-11-24)