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Most primates, including humans, give birth during the inactive phase of the
daily cycle. Practical constraints therefore limit our knowledge of the precise
timing of nocturnal birth in wild diurnal primates and so limit our under-
standing of selective pressures and consequences. We measured maternal
core body temperature (Tb) across 24 births in a population of wild vervet
monkeys using biologgers. We identified distinct perturbations in Tb

during the birth period, including declining Tb during labour and the
rapid recovery of Tb post-parturition. Vervet monkeys typically gave birth
during their inactive phase in synchrony with the nadir of the maternal
nychthemeral Tb rhythm but also showed remarkable inter-individual varia-
bility in their absolute Tb during birth. Our findings support the view that
selection may have favoured a nocturnal timing of primate birth to coincide
with lower night-time Tb and environmental temperatures, which improve
thermal efficiency during birth.
1. Introduction
Most primate births occur during the inactive phase, with diurnal species gen-
erally giving birth at night, and nocturnal species during the day [1–3]. This
conserved timing is argued to benefit new mothers by reducing predation
risk, conspecific harassment and the need to keep up with a travelling group
[1,4–8]. While there are data from captive animals, the obvious practical chal-
lenges mean that we know little about the precise timing of nocturnal
parturition in wild diurnal primates, and the extent to which this might contrib-
ute to our understanding of the selection pressures promoting inactive-phase
birth. Mammalian births are characterized by a decrease in maternal body
temperature (Tb) over the hours of labour and a precipitous increase in Tb in
the hours immediately post-parturition [9–12]. These distinct perturbations
in Tb suggest a means whereby the timing of birth can be accurately gauged
in the absence of direct observation.

In mammals, melatonin release at the end of the active phase appears to
signal the timing of birth [3,13,14]. Although the role of melatonin in regulating
Tb during parturition has not been investigated [3], its role in influencing the
nychthemeral fall in Tb [15,16] suggests that a common factor may regulate
the maternal and environmental thermal conditions to best support birth. The
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maternal thermal environmental is important to the birthing
process [9] and irregular birth conditions can have negative
consequences for neonatal survival and development [17,18].
Low maternal Tb during labour can help protect the fetus
from neuronal injury during hypoxic birth conditions [19,20].

We investigate the possibility that evolution of primate
birth hour may have favoured synchronization with both
the maternal nychthemeral Tb rhythm to maximize thermore-
gulatory efficiency and environmental conditions that reduce
the costs of Tb regulation. We confirm the perturbations in
core Tb associated with the birth process in wild vervet
monkeys (Chlorocebus pygerythrus) and assess the degree to
which hour of birth aligns with the light–dark cycle and
the maternal nychthemeral Tb rhythm [21,22]. Finally, we dis-
cuss the possible thermal costs associated with atypical birth
following our direct observation of two daytime births.
.18:20210574
2. Methods
(a) Data collection
Data were collected between September 2010 and December 2017
from three troops of wild vervet monkeys on the Samara Private
Game Reserve, South Africa. Monkeys were fully habituated to
researchers and could be individually identified. Daily censuses
of troop membership were recorded. Vervet females reach sexual
maturity at approximately 3 years and produce a single offspring
at each reproductive event [23,24]. Vervets are seasonal breeders
and our population’s birth season falls in the austral summer
[25,26]. The birth season coincides with increasing resource
abundance, to support the energetically expensive lactation
period [26,27], but also with higher environmental temperatures
[28]. Mean hourly air temperatures were recorded at a local
weather station and ranged from −8.1°C to 41.6°C (mean =
17.2°C ± 8.3 s.d.).

In a longitudinal study of vervet monkey thermal physiology,
30 adult females (mean body mass = 3.4 kg ± 0.3 s.d.) were
implanted with temperature-sensitive biologgers over a 7-year
period [28–30]. Biologgers instantaneously recorded intra-abdomi-
nal Tb at five-minute intervals. Normal behaviour resumed on the
day after surgery, and no long-term sequelae were observed
because of surgeries. For details of the capture and surgery
procedure, see McFarland et al. [29].

We ran three Bayesian generalized linear mixed models
(GLMMs), specifying a Gaussian distribution, to compare the
(i) minimum night-time Tb of birthing and non-birthing females
(between-subject), (ii) number of hours from sunset that birthing
and non-birthing females took to reach their minimum night-
time Tb and (iii) minimum night-time Tb of birthing females on
the night of birth and seven days prior (within-subject). We
entered minimum night-time Tb and number of hours after
sunset, in turn, as the outcome variable. We entered whether
each female gave birth that night as a predictor variable. Body
mass was entered as a predictor variable to control for its
influence on Tb [29]. GLMMs were run using the ‘brms’ package
in R v. 3.5.0. [31,32]. Full model descriptions, code and results are
provided in the electronic supplementary material.
3. Results
Twenty-four infants were born to 16 mothers implanted with
Tb biologgers. Two of these births were directly witnessed
during routine daytime field observations (figure 1; electronic
supplementary material, Video). For the two daytime births,
we observed an identifiable drop in maternal Tb before
parturition, immediately followed by a precipitous rise in Tb

(table 1 and figure 1). For 17 of the 22 unwitnessed births, we
were able to identify the same distinct post-parturition increase
in maternal Tb that could not otherwise be explained by the
nychthemeral Tb rhythm or activity that might take place at
night (table 1). Fifteen of these 17 births occurred at night,
and two occurred within 1 h of sunset when the mother was
inactive at her sleep site (figure 2). We were unable to identify
the timing of birth for the remaining five births. We excluded
these five births from our analyses, focusing on the
17 inactive-phase births from 14 females.

Birthing females experienced lower night-time Tb minima
than non-birthing females and reached those temperatures
earlier in the night (table 1 and table 2). Birthing females
also experienced lower Tb minima during birth than they
did on a night 7 days prior (tables 1 and 2). For the 17 typical
inactive-phase births, maternal Tb reached a mean low of
35.9°C approximately 2.5 h after sunset (table 1). Maternal
Tb then increased precipitously to a mean of 37.2°C after
1.7 h, whereafter Tb stabilized and followed the normal
nychthemeral rhythm. By contrast, non-birthing females—
over all birth seasons—reached a mean minimum of 36.6°C,
7.7 h after sunset. These females then gradually increased
their Tb over 6.5 h to 38.3°C.

The distinct perturbations of Tb—declining temperatures
during labour and post-parturition recovery—were observed
during both typical inactive-phase and atypical active-phase
births (figure 1). Given that the active-phase births were not
synchronized with the nychthemeral Tb rhythm, the decline
in Tb during labour was more pronounced due to its decline
from a higher active-phase level. Active/diurnal birth 1 took
place in the early morning (7.40 h; figure 1) and coincided
with the coldest time of day when the mother was close to
her Tb bathyphase. The large gradient for dry heat loss to the
environment at this time might explain why this mother
became particularly hypothermic during birth, reaching a Tb

low of 34.4°C. This female was observed eating her placenta
at 07.45, and her post-parturition Tb profile was consistent
with that of nocturnal births. Active/diurnal birth 2 took
place in the middle of the day (11.30; figure 1), coinciding
with the warmest time of the day when the mother was
approaching her Tb acrophase. The challenges associated
with regulating Tb at this time likely explain why this mother
reached a hyperthermic Tb (39.5°C) post-parturition.
4. Discussion
Vervet monkeys typically gave birth during their inactive
phase, with most births occurring at night, consistent with
observations in other diurnal primate species [1–9]. While
there were consistencies in both the timing of birth and
the patterns of maternal Tb during parturition, there was
also substantial inter-individual variability in absolute Tb,
suggesting flexibility in the ‘typical’ thermal conditions of a
successful birth.

Giving birth during the inactive phase facilitates the criti-
cal establishment of the mother–infant link with respect to
nursing, bonding and heat retention, without interference
by conspecifics or troop movements [8,33]. Post-parturition
is a critical period for the infant, when heat lost via the
evaporation of amniotic fluid poses a significant risk of
hypothermia [17,34,35]. To combat the risk of hypothermia,
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neonates engage in non-shivering thermogenesis [36] and gain
heat through maternal body contact as the mother’s Tb returns
to normal [17,37]. Following relatively hypothermic birth con-
ditions, maternal resources are needed to re-establish the
nychthemeral Tb rhythm. Placentophagia has previously
been argued to replenish nutritional losses from pregnancy,
enhance pregnancy-mediated analgesia and prevent the
placenta from attracting predators [38]. We suggest that, in
addition, the specific dynamic action of placentophagia may
also provide the heat needed to recover Tb post-parturition
[39]. Variation in maternal nutritional and energetic demands
at the time of birth could potentially explain the variation in
a tendency for nonhuman primates to eat the placenta [7].

Our observation of two daytime births provides prelimi-
nary insight into possible thermal costs, for both mother and
infant, when the timing of birth deviates from the inactive
phase. We directly witnessed two active-phase births, the
first of which took place in the cool early morning, and the
secondwhich took place in the heat of the day. The distinct per-
turbations of Tb during typical births were similarly observed
during these atypical births, supporting the view that low Tb

during labour is not a by-product of the low nychthemeral Tb

rhythm at night, but rather a distinct phenology associated
with labour. Whereas low Tb during labour is facilitated by
the natural nychthemeral fall of Tb and low environmental
temperatures during night-time births, no such benefits are
experienced during daytime births. The physiological costs of
maternal Tb regulation are therefore likely to be greater
during daytime births, when the mother needs to dissipate
heat at a time of day when she is closer to her acrophase in
nychthemeral Tb, and when the environmental heat load is
higher. Furthermore, when recovering from birth during
warm daytime temperatures, both mother and infant are at
greater risk of post-parturition hyperthermia and dehydration
[21,22]. Infants use evaporative water loss soon after birth, and
given their small body size and relatively high surface area to
volume ratio, are particularly vulnerable to dehydration [40].
It has long been argued and has since become the consen-
sus, that the nocturnal timing of primate births serves
primarily to reduce the risk of predation, conspecific harass-
ment and group-fission, all of which would be more likely if
births occurred during the active phase [1–8]. Our findings
suggest that there may also be important thermal consequences
linked to the timing of primate birth. Together with these socio-
ecological factors, selection may have favoured a nocturnal
birth hour that is synchronized with both the nadir of the
maternal nychthemeral rhythm of Tb and the environmental
conditions that enhance thermoregulatory efficiency across
birth. Coordinating the timing of birth with both the low
nychthemeral Tb rhythm and cool night-time temperatures
reduces the physiological costs of lowering maternal Tb
during labour. Furthermore, a mother doesn’t need to
implement evaporative cooling at night to lower Tb and can
instead relyon less costly dry heat loss.At a timewhenmaternal
resources are at a premium [41], any means by which resources
can be conserved, and physiological processes made less costly,
are likely to improve the welfare of both mother and infant.

If so, then it seems reasonable to suggest that the timing of
birth will be particularly important for smaller, more thermally
labile species, where birth should be more synchronized to the
most thermally advantageous time. Larger-bodied apes appear
to be less constrained to nocturnal births compared tomonkeys
[1]. Furthermore, given that the pelvic inlet to neonatal head
ratio is much tighter, and births are longer and more challen-
ging in monkeys compared to apes [42,43]—it is possible that
apes (excluding humans) may be less constrained by the ther-
mal challenges of birth compared to monkeys. Species that
experience more variable climates (i.e. temperate climates
and/or high-elevation) are likely to have come under greater
environmental selective pressure for the timing of birth, as
they have for reproductive seasonality [27,44]. For seasonal
breeders, the birth season coincides with resource abundance
when environmental temperatures also tend to be high [28].
For these species, the risk of maternal or neonatal hypothermia
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Figure 2. Maternal body temperature at the time of vervet monkey birth (dots) and the average female nychthemeral 24 h body temperature rhythm during the
birth season (black line). Blue dots represent inactive-phase nocturnal births, purple dots the inactive-phase diurnal births and orange dots the observed active-phase
diurnal births. Blue line denotes the average timing of typical inactive-phase births.

Table 2. GLMM results estimating the effect of birth on minimum night-time 24 h body temperature, and the time it took for females to reach that
temperature after sunset.

model
estimate ±
error

95% credible
interval

probability of
direction %

R2

marginal
R2

conditional full model output

minimum body temperature

(between-subject)

0.14 0.63 electronic supplementary

material, table S1

intercept 36.38 ± 0.58 35.21, 37.50 —

gave birth (no/yes) −0.68 ± 0.09 −0.86, −0.50 100

body mass (kg) 0.08 ± 0.17 −0.25, 0.41 68.45

time of minimum Tb (hours

from sunset)

0.29 0.39 electronic supplementary

material, table S2

intercept 11.99 ± 2.51 7.11, 16.84 —

gave birth (no/yes) −4.79 ± 0.60 −5.95, −3.61 100

body mass (kg) −1.25 ± 0.73 −2.67, 0.18 95.78

minimum body temperature

(within-subject)

0.28 0.46 electronic supplementary

material, table S3

intercept 37.98 ± 1.28 35.45, 40.47 —

gave birth (no/yes) −0.44 ± 0.15 −0.74, −0.14 99.67

body mass (kg) −0.49 ± 0.37 −1.20, 0.23 91.08
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during night-time births is relatively low, while the risk of post-
parturition hyperthermia during daytime births is relatively
high. If birth seasonality has selected for periods of food abun-
dance [44], selection for inactive-phase births might reflect the
avoidance of higher daytime heat.

Human births can occur year-round, at all times of the day,
yet still tend to occur more frequently at night [3,21,45], which
may reflect the diurnal ancestry of anthropoid primates [2] and
the nychthemeral timing of births. The importance of the ther-
mal environment for human birth is well recognized, and the
World Health Organization has established guidelines for the
maintenance of a ‘warm-chain’ thermal environment that
minimizes the risk of neonatal hypothermia [46,47]. These
guidelines include keeping the delivery room warm, drying
the infant of amniotic fluid and maintaining skin-to-skin
maternal–neonatal contact. The uncoupling of the ancestral
relationship between birth hour and thematernal nychthemeral
Tb rhythm in humans is likely a consequence of the typically
cool artificial environments of birth places, a greater reliance
on hospital births and medical intervention and the relative
infrequency of non-intervened vaginal delivery [48–50]. None-
theless, the risk of neonatal hypothermia remains a significant
cause of infant morbidity and mortality, especially in develop-
ing countries and during winter months [51,52]. Our findings
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therefore not only offer new insights into the thermal conse-
quences of birth and the evolution of primate birth hour, but
also may provide an evolutionary explanation for some of the
health risks associated with human birth.
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