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ABSTRACT The present work aims to introduce a nonlinear control scheme that combines intelligent

feedback linearization (FBL) and a model predictive control (MPC) for a pressurized water reactor (PWR).

The nonlinear plant model that is considered in this study is described by the first-principles approach, and it

consists of 38 state variables. First, system identification using a dynamic neural network (DNN) structure

is performed to obtain a standard affine nonlinear system. The quasi-Newton algorithm is employed to

find the best DNN model. Then, an FBL is formulated to address the nonlinearity of the DNN model. An

MPC controller is developed based on the FBL system to improve the system performance. The designed

controller is compared with a linear MPC controller that is based on state-space models to evaluate the

performance of the proposed controller. The proposed approach improves the load-following operation and

offers better disturbance rejection capability than the conventional MPC. In addition, numerical measures

are employed to compare and analyse the performances of the two control strategies.

INDEX TERMS Dynamic neural network, feedback linearization, model predictive control, pressurized

water reactor, nuclear power plant

I. INTRODUCTION

N
UCLEAR power plants (NPPs) are characterized as

complex, nonlinear, time-varying, and constrained sys-

tems. Controlling an NPP is a substantial challenge due to

parameter variations that are caused by fuel burnup and inter-

nal reactivity feedback, among other factors. Moreover, the

daily load cycle variations that are due to the load-following

mode can significantly degrade plant performance. Conven-

tional controllers such as proportional-integral and linear-

quadratic controllers are unable to control a plant effectively

and robustly in an uncertain environment [1], [2]. Thus, it is

necessary to improve the regulation and control strategies to

strengthen the security, reliability, and operability of NPPs.

Receding horizon control, which is better known as model

predictive control (MPC), is a widely employed control

method that has the advantage of handling constraints ef-

fectively in multi-input-multi-output (MIMO) systems. MPC

uses an explicit model for the prediction of the system output

at future time instants and solves an online optimization

problem to obtain the future control input that gets the

system as close as possible to the reference [3]–[5]. MPC has

received considerable attention in nuclear plant control over

the last two decades. An MPC controller is proposed in [6]

for the distribution and power control of a pressurized water

reactor (PWR). A nonlinear MPC controller is designed to

control the power of a research reactor in the presence of

disturbances [7]. Eliasi et al. [8], [9] developed a robust

nonlinear MPC controller to perform a load-following opera-

tion. One of the main drawbacks of these studies is that they

require a precise mathematical model for control design. Al-

though an approximate nuclear reactor model can be obtained

using first-principles techniques, it is expensive to develop

and specific to the process. Recently, subspace-based MPC

techniques have been developed for the PWR reactor control
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[10]–[14]. These methods use linear subspace models that are

obtained directly from the input-output data of the system.

However, they are ineffective over a broad operating range

because they utilize linear models, and therefore, the control

performance can degrade substantially. Multiple predictive

control is proposed in [15] to address the nonlinearities that

are associated with the control of a movable PWR, but the

implementation of such a control strategy is nevertheless

challenging due to its complex structure.

In the past three decades, soft computing techniques, such

as neural network (NN), fuzzy logic (FL), and genetic algo-

rithm (GA), have been employed to control NPPs. The FL

and NN approaches are employed to regulate the temperature

and power of a nuclear reactor [16]–[19]. A fuzzy adaptive

robust optimal controller and an NN-based controller are

designed to control a reactor during load-following operation

[20], [21]. Some studies have applied fuzzy logic-based

PID controllers to enhance the effectiveness of NPPs [22],

[23]. An intelligent reactor core controller is developed by

combining fuzzy approaches and dynamic neural networks

[24]. In [25], a GA optimized PID is applied to the control of

the power level. In a similar context, the particle swarm opti-

mization (PSO) algorithm is used to enhance the control per-

formance [26]. In a recent paper, Elsisi et al. [27] employed

a new optimization algorithm named lightning search algo-

rithm to find the optimal parameters of a variable structure

controller. Fuzzy reasoning techniques and neural network

architectures are also used to enhance MPC performance. For

instance, Liu et al. [28], [29] and Na et al. [30] proposed

MPC strategies based on nonlinear fuzzy models. Recently, a

neural-network-based MPC controller is employed to control

the thermal power of a nuclear superheated-steam supply sys-

tem [31]. The application of machine learning techniques in

the context of optimal MPC tuning has recently been reported

in the literature. In [32], the PSO algorithm is used for the

optimal tuning of a multivariable MPC. In [33], the authors

proposed a tuning method for the MPC parameters for robotic

manipulators. In another recent work [34], the authors put

forward a framework using the newly optimization algorithm

called social ski driver algorithm (SSD) for the tuning of a

nonlinear MPC and the efficacy of the technique is validated

on an autonomous vehicle.

One of the main drawbacks of the nonlinear configurations

is the high computational burden that is associated with

the online solution of the nonlinear programming problem.

The feedback linearization (FBL) approach is employed to

reduce the computational burden of nonlinear techniques.

FBL-based techniques that use empirical nonlinear models

with linear MPC have been proposed in the literature [35],

[36]. Recently, the FBL approach is combined with other

techniques to improve the control performance during the

load-following operation. For instance, an FBL-based robust

controller is developed for controlling core power peaking

during load-following operation [37]. A partial FBL-based

linear active disturbance rejection control is proposed to

improve the transient response during power control [38].

Additionally, a robust observer-based FBL controller is pre-

sented for addressing the disturbances and uncertainties to

which the system is subject [39]. In this study, an FBL-based

integrated nonlinear MPC technique is developed by employ-

ing a dynamic neural network (DNN). For the first time,

a DNN-based FBL is proposed in the context of nonlinear

control of a PWR-type nuclear reactor. The control structure

consists of an FBL approach that is based on an identified

DNN model and an MPC controller to control the linearized

system.

Most of the studies in an NPP control design literature

do not consider the coupling effects among the various sub-

systems, nor do they consider model equations of sensors

and actuators. A realistic study should incorporate control

schemes for the entire NPP process. However, only a few

papers have discussed the control design for whole NPP

system [1], [2], [40], [41]. In this respect, the proposed

FBL-based MPC control strategy is applied to the different

subsystems of the integrated NPP model. The efficacy of the

proposed controller is validated in the MATLAB/Simulink

environment. The proposed control approach is compared

with a state-space based classical MPC controller. The main

contributions of this paper are listed as follows:

• Nonlinear model predictive control using feedback lin-

earization based on dynamic neural networks is pro-

posed to enhance the control performance of a PWR.

• Control of the reactor core, steam generator (SG), pres-

surizer, and turbine are studied.

• Comparison with state-space MPC is performed.

The remainder of the paper is organized as follows: The

plant model is presented in Section II. Section III provides

a brief introduction to the neural network structure and

presents the system identification approach that is used to

estimate the dynamics of the PWR model. Section IV in-

troduces the design of the hybrid control strategy. Section

V presents and discusses the simulation results. The conclu-

sions are presented in Section VI.

II. NON-LINEAR PWR MODEL

A schematic diagram of various components of a typical

PWR plant is shown in Fig. 1. The plant comprises two main

loops: primary and secondary loops. The primary loop con-

sists of a reactor core, steam generator, pressurizer, and reac-

tor coolant pump. The reactor core is suitably described using

a point kinetics model. The reactor core is controlled using

control rods. The coolant that is heated by the reactor core is

pumped to the steam generator, where steam is produced and

supplied to the secondary loop. The pressurizer is modelled

with pressure and level equations. It aims to maintain the

primary system pressure so that there is no boiling in the

primary system. The secondary loop consists of a turbine,

moisture separators and steam reheaters. The turbine model

consists of high-, intermediate-, and low-pressure turbines.

For brevity purposes, only a summary of the reactor core

model is provided here. For a complete description of the
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entire NPP model, the readers are kindly referred to [40]–

[42].

A. POINT KINETICS REACTOR CORE MODEL

The core-neutronic system models the normalized power

and the normalized precursor concentration of six groups of

delayed neutrons. It is expressed as follows:

dPr

dt
=

ρt −
6
∑

i=1

βi

Λ
Pr +

6
∑

i=1

βi

Λ
Cir, (1)

dCir

dt
= λiPr − λiCir, i = 1, 2, . . . 6. (2)

where Pr and Cir denote the normalized power and normal-

ized delayed neutron precursor concentration, respectively;

λi and βi are the decay constant and fraction of delayed

neutrons, respectively; Λ is the prompt neutron lifetime; and

ρt denotes the total reactivity.

B. THERMAL-HYDRAULICS MODEL

The core thermal-hydraulics model comprises two lumps that

represent the coolant node and one lump that represents the

fuel node. The model is expressed as follows:

dTf

dt
= HfPr −

1

τf
(Tf − Tc1) , (3)

dTc1

dt
= HcPr +

1

τc
(Tf − Tc1)−

2

τr
(Tc1 − Tcin) ,(4)

dTc2

dt
= HcPr +

1

τc
(Tf − Tc1)−

2

τr
(Tc2 − Tc1) . (5)

where Tf denotes the fuel temperature; Tc1 and Tc2 denote

the temperatures at coolant nodes 1 and 2, respectively; Hf

and Hc are proportionality constants; and τf , τc, and τr are

system time constants.

C. REACTIVITY MODEL

The variations of the temperatures of the fuel and coolant

introduces internal reactivity feedback into the system. The

reactivity is controlled using control rods, and hence, the total

reactivity is represented as:

ρt = ρrod + ρf + ρc1 + ρc2,

ρt = ρrod + αfTf + αc (Tc1 + Tc2) . (6)

where ρrod, ρf , ρc1, and ρc2 are the reactivities that are

related to the control rod, fuel temperature, and coolant

temperatures at node 1 and 2, respectively; and αf and αc

are temperature coefficients of reactivity due to the fuel

and coolant, respectively. Definitions of various inputs and

outputs for the loops of the PWR are presented in Table 1.

The values of the system parameters are obtained from [40]–

[42].

III. IDENTIFICATION OF THE PWR USING DYNAMIC

NEURAL NETWORK

FIGURE 1: Layout of a typical PWR.

TABLE 1: Definition of PWR model variables

Variable Definition

Pr Reactor core power

Ptur Mechanical power output of the turbine

Qh Rate of heat addition by the heater

lw Pressurizer level

ṁsur Mass surge flow rate

pp Pressurizer pressure

ps Steam generator pressure

utg Input signal to the turbine-governor valve

vrod Control rod speed

wtur Turbine speed

A. DNN STRUCTURE

The dynamic neural network that was introduced in [43]

has notable potential for learning the dynamics of complex

nonlinear systems, whereas static NNs are limited and fail

to realize acceptable modelling and mapping performance.

A dynamic neuron model consists of internal dynamics that

are added to a static neuron, which cause the activity of the

neuron to depend on its internal states. Fig. 2 illustrates the

DNN structure that is used in this work. The equation for the

DNN is:

ẋi = −βixi +
N
∑

j=1

ωijσ (xj)+
m
∑

j=1

γijuj (7)

where βi, ωi, and γi are adjustable weights; xi is the state of

the system; and uj is the input signal. The vectorized form of

(7) is expressed as:

ẋ = −βx+ ωσ (x) + γu (8)

ŷ = Cx (9)

where x corresponds to the coordinates of RN , ω ∈ R
N×N ,

σ (x) =
[

σ (x1) · · · σ (xN )
]T

, γ ∈ R
N×m, u ∈

R
m, C =

[

Ip×p 0p×(N−p)

]

, and β ∈ R
N×N is

a matrix that is diagnosable and has diagonal elements
{

β1 · · · βN

}

.

VOLUME xx, 2021 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2022.3149790, IEEE Access

Amine NAIMI et al.: Nonlinear MPC using intelligent feedback linearization for a PWR-type NPP

FIGURE 2: DNN structure (reprinted from [44]).

B. TRAINING DNNS

Assume that the data has been collected from the process for

the training exercise of the DNNs. Consider a training data

set with M input-output pairs and sampling time Ts:

Zm =
[

y (tk) u (tk)
]

k=1,2··· ,M
(10)

where y (tk) is the measured output; u (tk) is the measured

input; and k is a sampling index. The identification procedure

that uses DNNs is based on a comparison of the plant output

measurement and the simulated output. The objective is to

adjust the model such that the dynamic behaviour of the

model and the real plant is identical. To succeed in this, a

cost function is defined and minimized:

Fm (θ, Zm) =
1

2M

M
∑

k=1

∥y (tk)− ŷ (tk |θ )∥
2

(11)

where ŷ (tk |θ ) is the estimated output; and θ is a vector

parameter. The minimization is performed using an optimiza-

tion algorithm. The training problem can be formulated as a

nonlinear unconstrained optimization problem:

min
θ

Fm (θ, Zm) (12)

The optimization problem (12) can be solved using local

optimization techniques; therefore, the quasi-Newton algo-

rithm is chosen here. Quasi-Newton methods are developed

to solve nonlinear optimization problems. The main principle

of this algorithm is to progress step by step from an initial

point θ0 along with line search directions hk until the optimal

point θopt is obtained. At each iteration, the inverse of the

Hessian matrix Hk is computed to obtain the search direc-

tion. Here, The matrix Hk is obtained using the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [45]:

Hk+1 = Hk +
qkq

T
k

qTk sk
−

Hksks
T
kH

T
k

sTkHksk
(13)

where sk = θk+1 − θk is the parameter change between two

iterations and qk = ∇f (θk+1) − ∇f (θk) is the gradient
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FIGURE 3: Evolution of the cost function versus iteration

number.

change between two iterations. The basic approach of the

algorithm is described as follows:

1) Choose a starting point θ0 and initialize H0.

2) Compute the gradient ∇f (θk) and the search direction

hk = −Hk∇f (θk).
3) Perform a line search from θk in the direction hk using

the following equation: θk+1 = θk + Tshk, where Ts

is the step size.

4) Compute Hk+1 using the BFGS formula (13) and

return to step 2.

C. SYSTEM IDENTIFICATION

The technique that was explained in the previous subsection

is used to identify five different subsystems: a reactor core-

power loop, a steam generator loop, a pressurizer-pressure

loop, a pressurizer-level loop, and a turbine-speed loop. For

simplicity, only the identification of the reactor core-power

loop is discussed here. The remaining loops can be identified

similarly using the corresponding input and output of the

loop. Reactor power loop identification is carried out using

3000 input-output data samples, and the sampling time Ts is

1 second. The control rod speed is considered as a random

step input signal and the reactor power as an output signal.

DNN training is performed with the help of the quasi-Newton

algorithm. The optimal model that is obtained is a 2nd order

system. The identified DNN model that is obtained for the

reactor is presented in (14-16).The evolution curves for the

cost function is shown in Fig. 3. Fig. 4 shows the training

and validation outputs that are employed for the system iden-

tification exercise. It is observed the obtained DNN model

accurately tracks the reactor power. A similar procedure is

applied to all other loops, and the DNN models that are

obtained for each subsystem are also found to be of 2nd order.

The inputs and outputs that are used for the training of the

DNNs are presented in detail in Table 2. The DNN models

for the other loops are presented in Appendix A.
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FIGURE 4: Trajectories of the measured and estimated nor-

malized reactor power signals.

[
ẋ1

ẋ2

]

= −

[
β1 0
0 β2

]

︸ ︷︷ ︸

βr

[
x1

x2

]

+

[
ω11 ω12

ω21 ω22

]

︸ ︷︷ ︸

ωr

[
σ (x1)
σ (x2)

]

+

[
γ1
γ2

]

︸︷︷ ︸

γr

vrod

(14)

y1 = Cr

[
x1

x2

]

=
[
1 0

]
[
x1

x2

]

= x1 (15)

where x1 and x2 are the output and hidden state, respectively,

of DNN1 and βr, ωr and γr are the adjustable weights

with respect to DNN1. The parameter values of DNN1 are

represented as follows:

βr =

[
0.0516 0

0 +0.1027

]

;ωr =

[
0.4523 0.0539
−0.141 0.0536

]

;

γr =
[
0.1152 −0.0734

]T
; (16)

TABLE 2: Inputs and outputs that are used for identification

Case Input Output DNN order

Reactor core (DNN1) vrod Pr 2
Steam generator (DNN2) utg ps 2

Pressurizer pressure (DNN3) Qheat pp 2
Pressurizer level (DNN4) ṁsur lw 2
Turbine speed (DNN5) utg wtur 2

IV. CONTROLLER IMPLEMENTATION

Two controllers are implemented, namely, an MPC controller

that is based on the linear state-space model, which is also

known as the state-space MPC (SS-MPC), and an MPC

controller that is based on FBL and DNN (MPC-FBL-DNN).

The performance of the proposed controller (MPC-FBL-

DNN) is compared with that of the SS-MPC controller. The

two controllers are tested under identical operating condi-

tions.

A. MODEL PREDICTIVE CONTROL

In this study, the MPC approach [35] is employed to control

the feedback-linearized system. It uses a discrete-time linear

state-space model of the open-loop process. The resulting

process model is expressed as:

xr(t+ 1) = Axr(t) +Bur(t), (17)

yr(t) = Cyxr(t), (18)

zr(t) = Czxr(t). (19)

where xr represents the state vector at the time t, ur(t) repre-

sents the vector of inputs, and yr(t) and zr(t) are the vector

of the measured outputs and the vector of the outputs that

are to be controlled, respectively. In this study, the controller

employs a steady-state Kalman filter. It can be expressed as:

x̂r(t+ 1|t) = Ax̂r(t|t− 1) +Bur(t) +Kr êr(t|t), (20)

ŷr(t|t− 1) = Cyx̂r(t|t− 1), (21)

ẑr(t|t− 1)) = Czx̂r(t|t− 1), (22)

where x̂r(t + 1|t) represents the estimated state vector that

depends on the conditions at time t; ŷr(t|t − 1) is the

estimated output vector; Kr is the Kalman gain matrix, which

is chosen to minimize the estimation error variance; and

êr(t|t) is the error that is estimated, which is expressed as

êr(t|t) = yr(t)− ŷr(t|t− 1). The MPC algorithm computes

the control move at each sampling instance t, which ensures

the minimization of the cost function that has the form:

J(t) =

Np
∑

i=1

∥ẑr (t+ i|t)− rr (t+ i|t)∥
2
Qr(i)

+

Nu−1
∑

i=0

∥δur (t+ i|t)∥
2
Rr(i)

(23)

subject to the control constraints:

umax(t) ≥ ur(t+ i− 1|t) ≥ umin(t), (24)

δumax(t) ≥ δur(t+ i− 1|t) ≥ δumin(t), (25)

zmax ≥ zr(t+ j|t) ≥ zmin(t), (26)

where Np and Nu are the prediction and control horizons,

respectively; i = 1, 2, ..., Nu and j = 1, 2, ..., Np; ẑr(t+ i|t)
is the predicted controlled input; rr(t + i|t) is the refer-

ence; and Rr(i) and Qr(i) represent the input and output

weight matrices, respectively. The prediction horizon Np is

increased to enhance the system performance. The control

horizon Nu is set in such manner as Nu ≤ 0.2 Np [46].
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FIGURE 5: Structure of the control strategy.

B. PROPOSED MPC-FBL-DNN CONTROL APPROACH

The FBL uses DNN models to produce a control law

that removes the system nonlinearities. The MPC controller

that was discussed previously is applied afterwards to the

feedback-linearized plant to achieve improved performance.

Fig. 5 presents a schematic diagram of the designed con-

troller. The FBL approach is based on the DNN models that

are of the following form:

{

ẋ = f (x) + g (x)u,
y = h (x) ,

(27)

where x represents the state vector, u is the control input and

y is the controlled output; f(x) and g(x) are vector fields

in the state space; and h(x) is a scalar function of x. The

Lie derivative of the function h(x) with respect to f(x) is

expressed as follows [43]:

Lfh(x) =
∂h(x)

∂x
f(x), (28)

Lk
fh(x) = Lf (L

k−1
f h(x)), (29)

L0
fh(x) = h(x), (30)

Likewise, for the case of the vector field g

LgLfh (x) =
∂Lfh(x)

∂x
g(x), (31)

The system presents a relative degree re if:

{

LgL
k
fh (x) = 0,

LgL
re−1
f h (x) ̸= 0,

(32)

Based on this relative degree condition and DNN1 (14-16),

the system relative degree is found to be re = 1. Hence, the

system is feedback linearizable, and the FBL control law can

be expressed as follows:

u = R (x) + S (x) v (33)

where v is the virtual control input and R(x) and S(x) are

given by:

R (x) = −E (x)
−1

F (x) (34)

S (x) = E (x)
−1

(35)

with

E (x) =










λ̂1re1 0 . . . 0

0 λ̂2re2 . . . 0
...

...
. . .

...

0 0 . . . λ̂prep










C (x) (36)

=








λ̂1re1Lg1L
re1−1

f h (x) . . . λ̂1re1LgpL
re1−1

f h1 (x)
...

. . .
...

λ̂prepLg1L
rep−1

f hp (x) . . . λ̂prepLgpL
rep−1

f hp (x)








p×p

(37)

and

F (x) =



















re1
∑

k=0

λ̂1kL
k
fh1 (x)

...
rep
∑

k=0

λ̂pkL
k
fhp (x)



















p×1

(38)

u =
v − λ0x1 + λ1(β1x1 − ω11σ(x1)− ω12σ(x2))

λ1γ1
(39)

where, the parameter λ̂1k corresponds to an arbitrary value.

λ0 and λ1 are tuned to have the similar static gain and

constant time with respect to DNN1 for the linearized system.

Then, a linear MPC controller is added to the outer control

loop, as illustrated in the block diagram in Fig.5.

V. SIMULATION RESULTS

Simulations are carried out to assess the performance of the

proposed controller on the nonlinear PWR model. The plant

is initially presumed to operate at a steady state. The five

control loops of the PWR are studied here: the reactor, steam

generator, pressurizer pressure and level, and turbine loop. In

all cases, the MPC-FBL-DNN controller is compared with

the SS-MPC controller. In this study, external disturbances

are considered and are injected into the control signal for

each loop. The considered disturbance (ζ(t)) is a sinusoid

signal with a magnitude of ζ0. This disturbance is represented

as follows [2]:

ζ(t) = ζ0sin(10
−1t) (40)

To analyse the control performance, two numerical mea-

sures are computed: the percentage-root mean square error

(PRMSE), which is used to obtain the error between the sys-

tem state and the reference trajectory, and the total variation

of input (TVI), which is employed to analyse the control

action effect on the input. These are expressed as follows:

PRMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ri)
2
× 100% (41)

TV I =
N
∑

i=1

|ui+1 − ui| (42)
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FIGURE 6: Trajectories of the reactor power signals during

the load-following mode of operation

A. REACTOR POWER LOOP

The reactor loop is assessed in the context of a load-following

procedure in the presence of disturbances. A disturbance

(ζ(t)) is injected into the rod speed and with a magnitude

of ζ0 = 10−3. The reference setpoint to be followed by the

reactor is detailed as follows: the plant is initially assumed

to be at fractional full-power (FFP). The demand is main-

tained at FFP for 200 seconds. Then, it is reduced to 0.8

FFP in 100 seconds and maintained at 0.8 FFP for 300

seconds. Finally, it returns to its initial value. Fig. 6 shows the

tracking performances of the controllers. The reactor power
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FIGURE 7: Trajectories of the output and input signals

during a set-point change in the SG pressure.

response is shown in Fig. 6a. It is observed that the SS-MPC

controller fails to deal with the disturbances, as it presents

bounded variations with a constant amplitude that remains

within 0.25% of the reference. The MPC-FBL-DNN con-

troller realizes a better tracking accuracy and does not exhibit

oscillations. The control rod speed and reactivity variations

are shown in Fig. 6b and 6c, respectively. It is observed that

the control input of the SS-MPC controller is affected by

the disturbances because it contains oscillations. These are

not recommended and can damage the actuator [40]. Table

3 presents the values of the PRMSE and TVI measures that

are computed to evaluate the performance of the controllers.

The PRMSE measure is computed using the reactor power

measure and the power set-point. TVI is computed from

the control rod speed. It is observed that the MPC-FBL-

DNN controller has a lower PRMSE value than the SS-MPC

controller, and there is indeed an approximately one order

of magnitude difference between the PRMSE values of the

two controllers. Both controllers require similar control effort

with respect to TVI, although the MPC-FBL-DNN controller

is subject to fewer variations in the control signal.

B. STEAM GENERATOR LOOP

The proposed controller is tested for a reference change in the

steam pressure in the presence of disturbances. A disturbance
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(ζ(t)) with a magnitude of ζ0 = 5.10−4 is added to the steam

generator actuator. Fig. 7 shows the performances of the two

controllers. The steam pressure and control signal responses

are shown in Fig. 7a and 7b, respectively. Although both con-

trollers are able to follow the reference value, the MPC-FBL-

DNN controller does so 3 seconds sooner and is disturbance-

free. The SS-MPC controller is observed to be affected by

the disturbances, as it exhibits sustained oscillations with a

constant amplitude that remains within 0.8% of the refer-

ence. The control efforts of both controllers are comparable;

however, oscillations in the control signal are noticeable for

the SS-MPC controller. For this case, the PRMSE measure

is computed based on the steam pressure measure and the

pressure reference. TVI is computed from the control signal

to the turbine governor valve. The control efforts of both

controllers are similar in terms of TVI. However, the MPC-

FBL-DNN controller offers better tracking performance and

produces less error in terms of PRMSE. The MPC-FBL-

DNN controller has a PRMSE that is approximately half of

an order of magnitude lower than that of the PRMSE of the

SS-MPC controller.

C. PRESSURIZER PRESSURE LOOP

The pressurizer pressure is controlled by the actuation of a

bank of heaters. The controllers are evaluated for a reference

change in the pressurizer pressure and in the presence of

disturbances. A disturbance (ζ(t)) is introduced into the

pressurizer actuator with a magnitude of ζ0 = 5.10−1. The

performances of the controllers are shown in Fig. 8, and the

variation in the pressurizer pressure is depicted in Fig.8a. It

is found that the SS-MPC controller is less accurate than the

MPC-FBL-DNN controller. This is particularly noticeable in

the ramp-up period (100 to 200 seconds), where the SS-MPC

controller is subject to a static error of 8%. Moreover, the SS-

MPC controller is observed to be slower, as it needs 5 more

seconds to reach stability and it presents a peak overshoot

ratio of 2%. The control signal response is shown in Fig.8b.

The control effort of the SS-MPC controller is found to be

more important for the SS-MPC, as the control signal is

subject to bounded variations. The PRMSE and TVI values

confirm that the MPC-FBL-DNN controller outperforms the

SS-MPC controller. In addition to producing less error, the

MPC-FBL-DNN exerts significantly less control effort and is

able to deal with the disturbances with success.

D. PRESSURIZER LEVEL

A pressurizer level controller aims to maintain the water

level of the reactor coolant system. The pressurizer level

controllers are evaluated in the presence of disturbances.

The same disturbance signal as in V-C is injected into the

pressurizer level actuator. Fig. 9 shows the responses of the

controllers to a set-point change in the pressurizer level.

The pressurizer level response is shown in Fig. 9a. The

MPC-FBL-DNN controller has a better tracking accuracy

and reaches the demand faster than the SS-MPC controller.

In addition to being slower, the SS-MPC controller presents
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FIGURE 8: Trajectories of the output and input signals in the

pressurizer pressure

a peak overshoot ratio of 0.6% and settles with residual oscil-

lations. The control signal variation is shown in Fig. 9b. The

SS-MPC controller presents bounded variations, whereas the

MPC-FBL-DNN exerts less control effort. Based on Table 3,

the MPC-FBL-DNN controller has a better setpoint tracking

with the smallest PRMSE value. The PRMSE of the MPC-

FBL-DNN controller is less than that of the SS-MPC con-

troller by an order of magnitude. The proposed controller

also exerts slightly fewer control efforts with respect to TVI.

The MPC-FBL-DNN controller is found to produce two

times less control variation than the SS-MPC controller. The

PRMSE is computed from the pressurizer level and the level

demand. The TVI measure is computed using the mass surge

flow rate.

E. TURBINE SPEED LOOP

The performance of the turbine speed loop is evaluated in

the load-following mode and the load-rejection mode in the

presence of disturbances. A disturbance (ζ(t)) is added to

the actuator with a magnitude of ζ0 = 10−4 . Fig. 10 shows

the simulation results of the controllers in the load-following

mode. The turbine output trajectory is shown in Fig. 10a.

The turbine output for the MPC-FBL-DNN controller tracks

the reference steadily, whereas the turbine output for the

SS-MPC controller requires more time to track the setpoint.
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FIGURE 9: Trajectories of the output and input signals in the

pressurizer level.

The SS-MPC controller reaches the 0.9 FFP at 485 seconds,

whereas the MPC-FBL-DNN controller reaches it 85 seconds

earlier. The simulation results for the load rejection mode

are shown in Fig. 11. The response of the turbine output

is shown in Fig. 11a. In addition to being slower, the SS-

MPC controller is subject to an undershoot ratio of 0.6%

at 500 seconds. The responses of the turbine speed and

control signal are shown in Fig. 11 and 11b, respectively. The

MPC-FBL-DNN exerts more control efforts for the system

output to follow the power level change faster with mini-

mum error. The mechanical power demand and the turbine

output are used to compute the PRMSE measure. TVI is

computed from the control signal to the turbine governor

valve. The PRMSE and TVI values from Table 3 confirm

the outstanding performance of the proposed controller. The

MPC-FBL-DNN controller has a better tracking precision in

terms of PRMSE. The PRMSE value of the MPC-FBL-DNN

controller is indeed half of an order of magnitude lower than

that of the SS-MPC controller. In addition, the MPC-FBL-

DNN controller is found to produce fewer variations in the

control signal.

VI. CONCLUSIONS

A hybrid control technique that integrates a DNN-based

FBL approach with MPC for the control of a PWR-type
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FIGURE 10: Trajectories of the turbine signals during load-

following mode.

nuclear plant has been presented. The simulation results

show that the proposed controller offers improved tracking

performance and enhanced robustness under bounded dis-

turbances. The efficacy of the proposed control architecture

has been validated for the reactor core, steam generator,

pressurizer pressure and level, and turbine subsystems. The

proposed controller has been compared with the state-space

based conventional MPC and the control performance have

been validated using two numerical measures. The proposed
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FIGURE 11: Trajectories of turbine signals during transient

load-rejection.

technique has a better tracking accuracy and exerts less

control efforts than the conventional technique. Furthermore,

the designed control law has demonstrated to handle the

disturbances effectively, whereas the conventional MPC fails

in doing so. Future works involve the development of a fault-

tolerant control scheme that can integrate the process failures

that are due to defective sensors and actuators.

APPENDIX. A

The obtained DNN models are described in detail as follows:

TABLE 3: Comparison of the control techniques

Case Technique PRMSE TVI

Reactor
SS-MPC 2.173× 10−1 2.762× 10−2

MPC-FBL-DNN 6.924× 10−2 2.425× 10−2

Steam generator
SS-MPC 9.754× 10−1 5.490× 10−2

MPC-FBL-DNN 3.138× 10−2 5.266× 10−2

Pressurizer pressure
SS-MPC 2.075× 10−1 2.187× 101

MPC-FBL-DNN 4.403× 10−2 1.672× 101

Pressurizer level
SS-MPC 2.522× 10−1 7.128× 100

MPC-FBL-DNN 2.496× 10−2 4.717× 100

Turbine
SS-MPC 3.122× 100 4.487× 100

MPC-FBL-DNN 9.3× 10−1 4.439× 100

DNN2:
[

ẋ3

ẋ4

]

= −

[

2.26 0
0 0.13

] [

x3

x4

]

+

[

0.11 −2.01
0.26 0.31

] [

σ (x3)
σ (x4)

]

+

[

−0.34
0.10

]

utg

(43)

y2 =
[

1 0
]

[

x3

x4

]

= x3 (44)

DNN3:
[

ẋ5

ẋ6

]

= −

[

0.002 0
0 1.09

] [

x5

x6

]

+

[

0.003 −0.001
0.15 1.3450

] [

σ (x5)
σ (x6)

]

+

[

0.0089
−0.7986

]

Qheat

(45)

y3 =
[

1 0
]

[

x5

x6

]

= x5 (46)

DNN4:
[

ẋ7

ẋ8

]

= −

[

0.03 0
0 0.17

] [

x7

x8

]

+

[

−0.038 −0.028
0.02 0.116

] [

σ (x7)
σ (x8)

]

+

[

0.030
−0.034

]

ṁsur

(47)

y4 =
[

1 0
]

[

x7

x8

]

= x7 (48)

DNN5:
[

ẋ9

ẋ10

]

= −

[

0.06 0
0 0.048

] [

x9

x10

]

+

[

0.08 0.03
−0.03 0.01

] [

σ (x9)
σ (x10)

]

+

[

0.02
0.06

]

utg

(49)

y5 =
[

1 0
]

[

x9

x10

]

= x9 (50)

where

x3: output state of DNN2

x4: hidden state of DNN2

x5: output state of DNN3

x6: hidden state of DNN3

x7: output state of DNN4

x8: hidden state of DNN4

x9: output state of DNN5

x10: hidden state of DNN5
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