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We propose a multimode modulation scheme for continuous-variable (CV) quantum communications,

which we call quantum pattern encoding. In this setting, classical information can be encoded into mul-

timode patterns of discretely modulated coherent states, which form instances of a communicable image

space. Communicators can devise arbitrarily complex encoding schemes that are degenerate and highly

nonuniform, such that communication is likened to the task of pattern recognition. We explore initial com-

munication schemes that exploit these techniques and that lead to an increased encoding complexity. We

discuss the impact that this has on the role of a near-term quantum eavesdropper; formulating new realistic

classes of attacks and secure communication rates.

DOI: 10.1103/PRXQuantum.3.010311

I. INTRODUCTION

The rapid maturation of the field of quantum communi-

cations [1,2] promises to make it one of the first technolo-

gies to be featured in the upcoming quantum revolution.

By exploiting quantum information-theoretic protocols

[3–5], we can assure provably secure communication

based on underlying physical principles. Protocols that

utilize continuous-variable (CV) quantum systems [6–8]

(such as bosonic modes) form a particularly promising area

of research [9], due to their high performance, near-term

practical feasibility, and potential for large-scale deploy-

ment using current telecommunication infrastructures.

There exist a wide variety of protocols derived from

CV encodings, many of which rely on a continuous-

modulation (Gaussian) of various Gaussian states [10–15].

Over the years, rigorous security proofs have been

obtained for these protocols, alongside theoretical and/or

experimental evidence of their efficacy [16–18]. How-

ever, the study of discretely modulated CV systems is

also of significant interest, where finite-dimensional enti-

ties are embedded into infinite-dimensional Hilbert spaces

[19–24]. Such discrete-modulation schemes present sim-

plifications over Gaussian modulation with regard to state

preparation and data processing.
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Alternative modulation schemes can be devised when

considering multiple bosonic modes. The use of multi-

mode technologies has been shown to be advantageous

in a number of quantum communication settings [25–27],

where communicable symbols are encoded into multiple

modes, or via repeated channel usage. In Refs. [28–30], the

authors study the utility of highly symmetric collections of

multimode binary-modulated coherent states, the optimal

discrimination of which is easier to obtain globally rather

than locally. In this way, highly efficient communication

schemes can be based on the packaging of d-ary variables

into multimode coherent states.

Yet, multimode encoding invites a further abstraction.

Let us define a quantum pattern as a m-mode coherent

state undergoing local k-ary modulations. It is possible to

construct a collection of quantum patterns that belong to

a global image space, forming a subset of all km possible

patterns that exist. Each element of this image space can

be endowed with a particular classification that encodes

a communicable symbol; embedding information not into

local modulations but into an abstract classification process

associated with pattern features.

This marks a significant departure from any form of

encoding used in standard communications. If informa-

tion can be encoded into conceptual properties of a

coherent-pattern space, it is possible to impose extreme

classification degeneracies and nonlinearities, aligning the

tasks of communication and pattern recognition very

closely. Codes can be designed that exploit specific multi-

mode technologies or embed extractable features into vast

data sets. Furthermore, the recent integration of modern

machine-learning tools within quantum hypothesis test-

ing [31–34] further encourages an application of these

methods to quantum communication.
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The introduction of quantum pattern encoding also

raises interesting questions about realistic eavesdroppers

and security. While unconditional security must consider

an eavesdropper with unlimited resources, perfect quantum

memories and a full working knowledge of the protocol,

these assumptions may not realistically hold in the pres-

ence of overwhelmingly complex (possibly data-driven)

codes. Hence the application of versatile machine-learning

enhanced encoders and/or receivers may be used to cast

doubt on the knowledge of an attacker and improve com-

munication rates. This makes it nontrivial to consider sce-

narios of information asymmetry between trusted parties

and eavesdroppers. In this work, we explore this asym-

metry by devising new weaker classes of eavesdropper

attacks that may emerge within the pattern-communication

regime.

This paper proceeds as follows. In Sec. II, we explic-

itly introduce coherent quantum patterns. In Sec. II C,

we provide a general approach to studying secure com-

munication, establishing a hierarchy of rates based on

eavesdropper resources. In Sec. III, we devise two binary

pattern-encoding schemes and illustrate their performance

over pure-loss channels. Finally, we provide concluding

discussions and possible future investigative paths.

II. QUANTUM PATTERN COMMUNICATION

A. Coherent quantum patterns

Let us formally introduce the concept of a coher-

ent quantum pattern. This is a discrete ensemble of

coherent states that undergo k-ary modulation. Let i =
{i1, i2, . . . , im} denote an m-length string, where each ele-

ment of the string is a random variable that can occupy k

unique values, ij ∈ {0, . . . , k − 1}. This string (or pattern)

can be used to generate a corresponding coherent-pattern

state given by

|αi〉 := |αi1〉 ⊗ |αi2〉 ⊗ . . . ⊗ |αim〉 =
m
⊗

j =1

|αij 〉 ,

where |αij 〉 ∈ {|α0〉 , |α1〉 , . . . , |αk−1〉}. (1)

For example, if k = 2, then we are employing a binary

modulation on each local mode. In this case, one can utilize

binary-phase-shift keying (BPSK) so that each local coher-

ent state |αij 〉 will take the form |αij 〉 ∈ {|
√

NS〉 , |−
√

NS〉};
or binary amplitude modulation (BAM), where |αij 〉 ∈
{|0〉 , |

√
NS〉}, where NS denotes the mean number of pho-

tons transmitted in each state [7].

A coherent-pattern state |αi〉 represents a single state

generated by the pattern i. However, our goal is to create a

basis for quantum communication and we therefore require

much more than just a single i. To this end, we define

an image space as a collection of many k-ary patterns,

which are used to generate a potentially vast collection

of coherent-pattern states. More precisely, an N -element

image space can be used to generate a corresponding

collection of coherent-pattern states,

U := {i1, i2, . . . , iN } → {|α〉i}i∈U . (2)

This collection of states can then be used to create a

basis for quantum communications. For m-mode patterns

undergoing k-ary local modulations, the set of all possible

patterns contains km elements.

Crucially, coherent patterns can be used to formu-

late a mapping between a d-dimensional alphabet A =
{1, . . . , d}, which contains symbols used to construct secret

keys, and an image space U . Each pattern i ∈ U can be

used to represent a symbol from the alphabet, which is the

same as assigning a specific classification c ∈ A to each

pattern. The formal mapping between an image space and

an alphabet is described by a code book C, which formally

takes the form

C :=
{(

c(i); |αi〉
)
∣

∣c(i) ∈ A, i ∈ U
}

, (3)

where c(i) = c ∈ A is the classification of a pattern i. The

alphabet and code book thus completely characterize the

pattern-modulation scheme; a sender (Alice) may transmit

pattern states to a receiver (Bob) who must then discrim-

inate the incoming pattern and its classification can be

inferred by consulting with the shared code book. We may

refer to a pattern-encoding setup using the alphabet-and-

code-book tuple (A, C).

The construction of an image space U is incredibly flex-

ible. It is by no means compulsory that the alphabet and

image space are of the same dimension |A| = |U |, i.e., the

encoding need not be a one-to-one mapping between pat-

terns i ∈ U and symbols c ∈ A. In general, each symbol

maps to a subset of the image space, c �→ {i ∈ B(c)} ⊂ U ,

meaning that an image space can be decomposed accord-

ing to class-equivalent subsets,

U =
⋃

c∈A
B(c), B(c) = {i ∈ U |c(i) = c}. (4)

Each subset B(c) is filled with many potential code

words of varying forms; however, they should all pos-

sess abstract features that allow them to be classified as

belonging to the class c. Furthermore, these subsets do not

necessarily have a well-defined size but in reality we must

possess a finite set of samples from which classifiers can

draw expertise. For a d-dimensional alphabet, if each class

of pattern state is transmitted with equal a priori proba-

bility pc = 1/d, then the probability of transmitting any

single pattern is pc(i) = 1/(d|B(c(i))|). An encoding of this

form is called degenerate and is explored in subsequent

sections.
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B. Practical aspects

We may consider two realizations of quantum pattern

transmissions, corresponding to one-dimensional (1D) and

two-dimensional (2D) patterns. This depends entirely on

the spatiotemporal configuration in which one is interested.

A 1D pattern transmission corresponds to single-shot mul-

timode communications: Alice encodes information into

quantum states that are simultaneously transmitted over m

spatial modes to Bob. Hence, any symbol is transmitted via

the single use of each spatial mode. However, this may be

quite restrictive, as the use of large pattern encodings leads

to a potentially unfeasible number of spatial modes.

Instead, Alice may perform 2D pattern transmissions,

achieved by introducing temporal extensions of each spa-

tial mode; corresponding to multishot communications.

Alice and Bob now communicate over a fixed time period

of T seconds, discretizing this period into time bins. Alice

transmits information sequentially over m′ spatial modes

and m′′ temporal modes, such that each transmission point

in space and time corresponds to a k-ary variable. This

allows Alice to construct an m = (m′ × m′′) length pattern.

Importantly, any 2D pattern using identical m′ spatial

modes and m′′ temporal modes can always be expanded

to a 1D pattern with exclusively m spatial modes and vice

versa. This is provided through an assumption of uniform

channels; if the multichannel is not uniform, then degen-

erate channels can be pooled together or expanded in a

similar way.

C. Pattern-modulated CV QKD, communication rates,

and security

Standard discretely modulated continuous-variable

quantum key distribution (CV QKD) uses phase- and/or

amplitude-encoded coherent states that form a constel-

lation. Alice randomly generates and transmits coherent

states from this constellation to Bob, followed by parame-

ter estimation, privacy amplification, error correction, etc.

in order to establish a secret key. In this protocol, the map-

ping between each discretely modulated coherent state and

its binary presentation is public. This means that if an

attacker (Eve) intercepts a state and correctly discriminates

it as a particular coherent state from the constellation, she

can correctly extract its binary representation use for key

generation.

Quantum pattern communication is a generalized mod-

ulation scheme where we possess a mapping between an

abstract image space of coherent-pattern states {αi}i∈U and

a set of corresponding symbols, contained in the code

book C. The relationship between a quantum pattern and

its symbol in the code book may be highly nonlinear and

degenerate, as it is encoded into global multimodal fea-

tures. This produces a communication basis that is used

for key distribution, i.e., Alice randomly generates quan-

tum patterns from the image space that are transmitted and

discriminated by Bob, followed by the standard CV-QKD

steps in order to establish a secret key.

Like many other discretely modulated bosonic com-

munication schemes, evaluating the efficacy (secure com-

munication rate) of pattern-based protocols can be very

demanding. In a best-case scenario, we would study infor-

mation transmission over thermal-loss channels. However,

the addition of thermal noise to the already non-Gaussian

ensemble of discretely modulated coherent states requires

treatment in an infinite-dimensional multimode Fock space

that is computationally infeasible. For this reason, we

restrict our studies to bosonic pure-loss channels Eη, with

transmissivity η as an initial step in the study of this topic.

For the transmission of m-mode pattern states, we assume

that these channels are uniform, such that Em
η :=

⊗m
j =1 Eη

[35]. Here, we study secure quantum communication rates

assuming the use of CV QKD in direct reconciliation. Thus

we focus on a one-way sender (Alice) to receiver (Bob)

scheme, subject to an eavesdropper (Eve).

Consider the use of an encoding scheme (A, C) using

Eq. (3) over uniform pure-loss channels. In the asymp-

totic regime of many exchanged signals, we may quantify

the performance of a communication protocol through the

following secure transmission rate [36,37]:

R := IAB − IAE , (5)

where IAB is the mutual information between the parties

Alice and Bob, while IAE measures Eve’s ability to extract

information from the protocol (we also assume ideal rec-

onciliation of data for Alice and Bob). The form of IXY for

the respective parties depends on multiple factors; in par-

ticular, Eve’s performance depends directly on the level of

threat that she poses.

The maximum amount of classical information acces-

sible to Bob or Eve is upper bounded by their Holevo

information. Assuming that all symbols are transmitted

with equal a priori probability pc(i) and defining α
η

i
:=

|ηαi〉〈ηαi|, we may write

IAB ≤ χAB(η), IAE ≤ χAE(1 − η), (6)

χ(η) := S

(

∑

i∈U
pc(i)α

η

i

)

−
∑

i∈U
pc(i)S(α

η

i
), (7)

where S(·) denotes the von Neumann entropy. Eve’s max-

imum potential threat is safely quantified by the Holevo

bound χAE , making communication unconditionally secure

provided that IAB ≥ χAE . This bound assumes that Eve

applies a beam-splitter attack, followed by perfect storage

of the stolen modes in a quantum memory prior to infor-

mation extraction (an entangling-cloner attack). While

this is compulsory to ensure unconditional security, it is

not always a realistic assumption on behalf of near-term

quantum eavesdroppers.
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Pattern encoding introduces a novel twist on tradi-

tional security assumptions. Typical quantum communi-

cation scenarios (discretely or continuously modulated)

embed classical information in such a way that the map-

ping between quantum states and their classical symbols

is either public or reliably inferred by an interceptor. For

instance, if Eve intercepts the communications of a four-

state phase-encoded protocol, even if a priori unknown,

the encoding can be easily inferred over a number of

transmissions.

If one utilizes pattern encoding, this inference is no

longer a trivial assumption but an additional obstacle for

Eve to overcome. Alice and Bob either (i) engage in a

precommunication secure training protocol in order to con-

struct an effective classifier for an encoding scheme [38,39]

or (ii) share a preagreed precise code book to be used for

communication. The increased complexity of the encod-

ing scheme means that in a practical setting, it is extremely

unlikely that Eve will have, or deduce, perfect knowledge

of the code book. This invites a new class of weak but real-

istic attacks on a pattern-communication protocol, which

we label approximate attacks. These attacks emerge from

asymmetry between the predetermined encoding chosen

by Alice and Bob (A, C), and that to which Eve has access,

(AE , CE). In this way, we may establish a new hierarchy

of eavesdropper threats, from approximate to collective

attacks.

D. Mutual information

Consider a pattern encoding (A, C), where C is con-

structed from some appropriate image space U . Alice

transmits a pattern iA with classification c(iA). Bob has

full knowledge of the encoding scheme and can there-

fore optimize his (generally quantum) measurements such

that any incoming noisy pattern iB is classified according

to a set of optimized positive operator-valued measures

(POVMs) �̃ :=
{

�̃c(i)

}

c(i)∈A. Measurements of this form

�̃ are designed in such a way that discrimination of the

pattern i ∈ U and classification c(i) ∈ A are combined in

a cohesive process and may be achieved via fully coher-

ent quantum algorithms. That is, an input pattern would

be processed by an optimized quantum circuit followed by

some projective measurement onto the assigned class. For

highly complex or nonlinear encodings, this task is best

addressed by quantum machine learning [40,41].

Yet, in the absence of fully coherent class measure-

ments, this task can be more simply split into quantum

pattern discrimination � := {�i}i∈U followed by classical

postprocessing via a classifier c̃, such that c̃(i) ∈ A denotes

the class prediction of a pattern i according to this clas-

sifier. Indeed, this classification process aligns itself with

near-term realistic resources, providing access to powerful

modern pattern-recognition tools. The goal of communi-

cation is to maximize the probability that the classifier’s

prediction of the received pattern is equal to the class of

the initial pattern, i.e., c̃(iB) ≈ c(iA). Imposing a choice of

classifier c̃, the conditional probabilities take the form

pc̃(cB|cA) =
∑

iA∈B(cA),iB∈B(cB)

pc̃(cB|iB)Tr
[

�iB
α

η

iA

]

, (8)

pc̃(cA|cB) =
pc̃(cA, cB)

pc̃(cB)
=

pc̃(cB|cA)
∑

cA∈A pc̃(cB|cA)
, (9)

where the second line follows from Bayes theorem.

Assuming that a pattern class is transmitted with a

probability equal to that of any other class, the mutual

information between Alice and Bob then takes the form

I
�,c̃
AB (η) = log(|A|) +

∑

cA,cB∈A
pc̃(cA, cB) log[pc̃(cA|cB)].

(10)

Throughout this work, log is taken as base 2. This

quantifies Alice’s and Bob’s information retrieval given

Bob’s perfect knowledge of the encoding and the split

measurement-classification process using the POVM set �

and the statistical classifier c̃. It also provides an alternative

way to upper bound the mutual information in the absence

of coherent class measurements,

IAB ≤ max
�,c̃

(

I
�,c̃
AB

)

≤ max
�̃

(

I �̃

AB

)

≤ χAB. (11)

When a one-to-one encoding is used, pattern classifi-

cations and the patterns themselves are equivalent and,

therefore, Eq. (10) simplifies without the need for a classi-

fier.

E. Security hierarchy

We are now in a position to develop a security hierarchy.

Consider communication such that Alice and Bob utilize

an encoding (A, C), achieving the realistic transmission

rate in Eq. (10). We now introduce an eavesdropper with a

(potentially different) encoding (AE , CE). Enhanced secu-

rity hinges on the asymmetry between these and we discuss

this hierarchy in order of decreasing threat.

As discussed, unconditional security is guaranteed

through the assumption of Eve’s access to quantum mem-

ories and perfect knowledge of the encoding such that

(AE , CE) = (A, C). In this general setting of collective

attacks and perfect knowledge, the rate can be lower

bounded according to

Rcoll = I
�,c̃
AB (η) − χAE(1 − η). (12)

Hence, under collective attacks, communication is only

secured via high transmissivity, η > 0.5 [1]. A more real-

istic rate for near-term technologies (but less secure) is
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achieved by removing Eve’s ability to extract the acces-

sible information. Granting Bob and Eve identical mea-

surement apparatus and classifiers (�B, c̃B) = (�E , c̃E) =
(�, c̃), then we may consider a rate proposed by individual

attacks,

Rind = I
�,c̃
AB (η) − I

�,c̃
AE (1 − η) ≥ Rcoll. (13)

Bob’s and Eve’s performances are symmetric with

respect to transmissivity; therefore, secure communication

is limited to η ≥ 0.5 [1].

We may consider weaker classes of attacks by remov-

ing this symmetry. There exist scenarios where Eve will

not possess perfect knowledge of the encoding scheme,

(AE , CE) �= (A, C), due to the complexity of the pattern-

communication regime. This can be hugely detrimental

to Eve, as even minute inaccuracies in her code book or

alphabet can have a significant impact on her informa-

tion retrieval. Generally, Eve’s ignorance of the correct

encoding leads to a code book of the form

CE =
{[

c(i); |αi〉
]
∣

∣c(i) ∈ AE , i ∈ UE

}

, (14)

where UE �= U is a suboptimal image space of potential

pattern states and may be larger or smaller than U , depend-

ing on the scenario. We define an approximate attack as an

individual attack by an eavesdropper who possesses only

partial knowledge of the encoding. We denote approximate

attack rates using R̃ and once more progress in order of

decreasing threat.

Consider a degenerate encoding scheme (A, C) and an

approximate attack in which Eve is aware of the alphabet-

to-code-book mapping but possesses a suboptimal image

space of potential patterns. That is, AE = A, but for the

image space

UE =
⋃

c∈A
BE(c), ∃c ∈ A s.t |BE(c)| < |B(c)|, (15)

where B(c) are subspaces of class-equivalent patterns as

in Eq. (4). That is, Eve is missing potential elements of the

degenerate image space. In the limit of maximum igno-

rance, Eve possesses only one example of each class code

word |BE(c)| = 1, ∀c ∈ A. Since Eve is still knowledge-

able of the encoding, she may optimize her measurement

apparatus (�E = �). But the diminished image space ren-

ders her classifier c̃E inferior with respect to Bob’s, since

there is less expertise to draw from the reduced image

space UE . More formally, Eve’s expected error rate of clas-

sification over a set of pattern transmissions i ∈ V may be

substantially worse than Bob’s:

EV

{

p
[

c(i)|i,UE

]}

< EV [p(c(i)|i,U)] . (16)

We label this as a diminished approximate attack, leading

to the new rate

R̃dim = I
�,c̃
AB (η) − I

�,c̃E
AE (1 − η) ≥ Rind. (17)

To summarize, this is a form of individual attack in

which Eve’s resources limit her ability to optimize a clas-

sifier. For one-to-one pattern encodings, there exists only

one example of each class code word anyway; hence this

attack is no longer approximate and R̃dim = Rind.

The previous attack assumes that Eve still retains knowl-

edge of the code word to symbol mapping; however, for

larger code spaces and alphabets, it is possible to construct

pattern embeddings that are close to indistinguishable from

other codes. This makes code-book and/or alphabet infer-

ence extremely difficult. Consider an approximate attack

such that Eve is in possession of suboptimal image space

that is larger than Alice’s and Bob’s U ⊂ UE and must

use this to infer the correct encoding to retrieve any infor-

mation. Since UE is larger than U , it contains potentially

invalid patterns, meaning that �E and c̃E will also become

suboptimal. Furthermore, the attack is now probabilistic,

since there is a chance that she will infer an incorrect

encoding. Given that Eve can successfully learn (A, C)

with some probability pdec, we obtain the rate

R̃pr = I
�,c̃
AB (η) − pdec

[

I
�E ,c̃E
AE (1 − η)

]

≥ Rind. (18)

This is a probabilistic approximate attack and it

describes a situation in which code-word-to-alphabet map-

pings cannot be trivially obtained by an eavesdropper. For

large multimode encodings, pdec can be made extremely

small, depending on how much encoding information has

been leaked to Eve. This formulates our weakest class

of attack for pattern communications, allowing for the

hierarchy

Rcoll ≤ Rind ≤ R̃dim ≤ R̃pr. (19)

III. PATTERN-ENCODING SCHEMES

In this section, we offer a pair of simple introductory

examples of binary-pattern-modulated quantum commu-

nications, setting k = 2 and utilizing BPSK to construct

our coherent-pattern bases. That is, we construct m-mode

coherent quantum patterns |αi〉 =
⊗m

j =1 |αij 〉 using a local

binary modulation on each mode, such that each local

coherent state is attributed to a background state so that

ij = 0 and |α0〉 = |−
√

NS〉, or a target state so that ij = 1

and |α1〉 = |
√

NS〉. We illustrate how the abstraction to

global encoding can severely impact the threat of a near-

term eavesdropper, studying the hierarchy of rates depicted

in Eq. (19).
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A. Localized-TPF pattern modulation

It is known that the discrimination of ensembles of

quantum states with geometrical uniform symmetry (GUS)

can be enhanced through the use of joint quantum measure-

ments [42]. An ensemble of quantum states {pi; ρi}n
i=1 (a

collection of states ρi, each of which occurs with probabil-

ity pi) possesses GUS if pi = 1/n and there exists a set of

symmetry unitaries {Si}n
i=1 that can transform each state ρi

into another state from the ensemble, ρi = Siρ0S
†
i and S0 =

I , where I is the identity. In the case of GUS ensembles of

pure coherent states, “pretty good measurements” (PGMs)

have been proven to be optimal discriminatory measure-

ments [30]. This means that GUS ensembles of coherent

states transmitted through pure-loss channels (which retain

the purity of input states Eη(|α〉〈α|) = |ηα〉〈ηα|) can be

optimally discriminated via PGMs.

Motivated by this fact, and inspired by the channel-

position-finding (CPF) formalism developed for quantum

channel discrimination [43], here we introduce the concept

of k-target position finding (k-TPF). This is an encod-

ing scheme based on the use of image spaces U
m,k
TPF that

describe the set of all m-length binary patterns that possess

exactly k-target modulated states. For example, if k = 1,

then the image space U
m,1
TPF denotes the ensemble of m-

mode coherent states with a single target state, against a

backdrop of (m − 1) background states. For an explicit

example, take m = 3; we could then construct the image

spaces

U
3,1
TPF := {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}, (20)

U
3,2
TPF := {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}. (21)

This form of image space can be used to generate GUS

coherent-pattern ensembles for communication between

Alice and Bob, as explored in Ref. [28].

1. Pattern-modulation scheme

We may now outline a potential pattern-modulation

scheme over uniform m-length multichannels. Alice and

Bob wish to globally encode information onto their m-

mode patterns by means of two characteristics; locality and

TPF properties (number of target modes). Any m-mode

coherent pattern can be divided into an n-partite locality

structure that identifies particular regions of the pattern

state that will have specific characteristics. This partition-

ing can be described by a disjoint partition set S that

collects specific modes within the pattern. More precisely,

we can construct this disjoint partition set as

S = {s1, s2, . . . , sn} =
n
⋃

j =1

{sj }, (22)

1 ≤ |sj | ≤ m, and sj ∩ sk = ∅, ∀j �= k. (23)

Importantly, {1, . . . , m} ⊆ S , meaning that all m modes

are accounted for in the locality structure. Meanwhile,

Eq. (24) ensures that only mode labels from 1 to m are con-

sidered and that all subcollections of modes sj are pairwise

disjoint.

Concurrently, Alice and Bob can assign a k-TPF prop-

erty to each subcollection of modes. They may construct

a k-TPF partition set K that informs them of how many

target modulated states are permitted within any particular

subregion of the quantum pattern state specified by S . This

partition set takes the form

K = {k1, . . . , kj , . . . , kn}, kj ∈ {1, . . . , |s|j − 1}. (24)

This then ensures that a given subpattern sj will contain

exactly kj target modes. Note that kj ∈ {1, . . . , |s|j − 1}
ensures that at least a binary variable is encoded into each

subpattern. Finally, Alice and Bob can impose a cardinal-

ity condition on their choice of target numbers in each

subregion. Letting Ck
n = n!/k!(n − k)! be the binomial

coefficient, then they may impose the condition

C
k1
|s1| × C

k2
|s2| × . . . × C

kn
|sn| =

r
∏

j =1

C
kj

|sj | = �, (25)

to ensure that they can communicate exactly � bits per

global transmission.

A global image space can thus be constructed

according to

U
S,K
TPF = U

|s|1,k1
TPF ∪ . . . ∪ U

|s|n,kn
TPF =

n
⋃

j =1

U
|s|j ,kj

TPF , (26)

as a concatenation of all the kj -TPF image spaces of each

subpattern. Hence, we can define a one-to-one encoding in

conjunction with these partition sets, with a �-dimensional

alphabet A = {1, . . . , �} and the following code book:

C =
{

(

c; |αi〉
)
∣

∣c ∈ A, i ∈ U
S,K
TPF

}

. (27)

We label this a localized-target position-finding (LTPF)

encoding scheme. Given this information, Bob can

always optimize his measurement apparatus using optimal

POVMs over specific subpatterns of the global message,

in order to discriminate and decode the transmission. Let

us define {�m,k
i

}
i∈Uk

TPF
as the optimal set of PGMs for dis-

criminating an m-mode k-TPF pure-state ensemble. Then,

for an (S ,K) encoding scheme, we utilize the following
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FIG. 1. The LTPF modulation scheme using m-mode coher-

ent quantum patterns. This illustrates an example for m = 11,

where the locality structure is described by a disjoint collection

of modes S = {{1, 5, 8}, {2, 3, 6, 9, 10}, {4, 7, 11}} and an associ-

ated k-TPF property assigned to each collection of modes, where

K = {1, 2, 1}. This means that the subset s1 will always have

k1 = 1 target modulated states within its pattern region, s2 will

have k2 = 2, and s2 will have k3 = 1. An image space U
S ,K
TPF can

then be generated according to these properties. The vast space of

possible configurations puts Eve at a disadvantage if she cannot

determine the precise modulation scheme.

set of optimal POVMs:

�
S,K = {�i}i∈US,K

TPF
, �

S,K
i

=
n
⊗

j =1

�
|sj |,kj

i
sj , (28)

where i
sj denotes the subpattern corresponding to the

modes contained in the j th partition, sj [for an example of

this communication setup, see Fig. 2(a)].

As an example, let us consider Fig. 1(a). This depicts an

m = 11 mode coherent-pattern space with a specific tripar-

tite locality structure S = {s1, s2, s3}, where |s1| = |s3| = 3

and |s2| = 5. We can attribute a k-TPF property to each

of these subregions, which will inform Bob how many

target modulated modes he should expect within each sub-

region. If this information can be concealed from Eve,

then secure rates can be enhanced by encoding information

asymmetry.

2. Secure rates

Measurement outcome probabilities can be assessed for

PGMs by means of Gram matrices. Here, we define G[U ]

as the Gram matrix of an ensemble of lossy coherent-

pattern states that form the image space U :

G[U ]i,i′ = 〈ηαi|ηαi
′〉 , i, i

′ ∈ U . (29)

The square root of the Gram matrix of a pure-state

ensemble can be used to derive conditional probabilities

of PGM measurement outcomes. For local subpatterns of

transmission states,

p(i
sj

B |isj

A ) =
{

[

√

G
(

U
|sj |,kj

TPF

)

]

i
sj
A

i
sj
B

}2

. (30)

Using Bayes theorem to find the converse conditional

probabilities p(i
sj

A |isj

B ), the conditional probability of Alice

having transmitted a global pattern iA given that Bob

reconstructed the global pattern iB is given by

p(iA|iB) = p
(

n
⋂

j =1

i
sj

A

∣

∣

∣

n
⋂

j =1

i
sj

B

)

=
n
∏

j =1

p(i
sj

A |isj

B ). (31)

The mutual information can then be computed as

I�
S,K

AB := log � +
∑

iA,iB∈US,K
TPF

p(iA, iB) log [p(iA|iB)] .

(32)

This allows us to write the secure communication rates

from Eqs. (12) and (13), under collective and individual

(a)

s1

s2

s3

s1

s2

s3

?

iE

iB

Eve
BobAlice

(S,K)

η

(c)(b)
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0.5
Rind

Rcoll

Transmissivity-η

NS = 0.25 1.0

FIG. 2. (a) An illustration of LTPF pattern communica-

tion using the encoding scheme (S ,K) = ({s1, s2, s3}, {1, 2, 1})
described in Fig. 1. (b) A description of the behavior with

respect to transmissivity of the optimized mutual information

between Alice and Bob (dashed) and the secure communica-

tion rate under probabilistic attacks R̃pr (solid). (c) A description

of secure communication rates from Eqs. (33)–(34) considering

nonapproximate attacks, in which Eve possesses information and

resources that are as good or better than those of Alice and Bob.
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FIG. 3. (a) A description of pattern communication using a

degenerate code book. Alice and Bob possess some degenerate

code book CAB, while Eve possesses a potentially inferior code

book CE ⊆ CAB. Local measurements are employed in conjunc-

tion with a classifier. (b) An example of degenerate coding using

the MNIST handwritten-digit data set, with d ∈ {0, . . . , 9} sym-

bols encoded into coherent patterns that explicitly “draw” these

digits.

attacks, respectively:

Rcoll = I�
S,K

AB (η) − χAE(1 − η), (33)

Rind = I�
S,K

AB (η) − I�
S,K

AE (1 − η). (34)

These rates assume that Eve has full knowledge of the

encoding scheme (S ,K) and can be seen in Fig. 2(c)

for the specific encoding (S ,K) = ({s1, s2, s3}, {1, 2, 1}).
These rates are, of course, secure for η � 0.5.

When considering a large number of modes m, there is

a superexponentially increasing number of ways in which

S and K can be chosen (see Appendix B2). Therefore, it is

nontrivial to consider a scenario in which Eve is not in full

possession of this code book, due to its highly degenerate

characteristics.

The most threatening approximate attack is probabilistic

and is a situation in which Eve has deduced S (the locality

structure) but is unaware of K (the TPF of each subpat-

tern). In this case, Eve must optimize her measurement

apparatus in order to comply with S but without impos-

ing any bias on K. If she is biased, then she risks utilizing

an image space that is missing essential code words from

the real code book. Therefore, her best strategy is to uti-

lize a larger potential image space that is compliant with

S; then Eve should assume that the number of target states

that she measures in each subpattern is consistent with the

real K. That is, Eve must infer K directly from her mea-

surements. Hence, Eve constructs an image space that is a

concatenation of all S-locality adhering patterns:

US

TPF =
n
⋃

j =1

(

U
|sj |,1
TPF ∪ . . . ∪ U

|sj |,|sj |−1

TPF

)

. (35)

Eve’s image space (and thus the coherent-state ensem-

ble) no longer satisfies GUS since the k-TPF properties of

each pattern region are now variable. However, she may

still use PGMs, as the requirement that the k-TPF property

of each pattern region falls within kj ∈ {1, . . . , |sj | − 1}
means that she can rule out some invalid patterns, allowing

her to outperform local measurements. Eve’s measurement

operators are thus

�
S = {�i}i∈US

TPF
, �S

i
=

n
⊗

j =1

�
|sj |,{1,...,|sj |−1}
i
sj . (36)

To analyze Eve’s maximum mutual information, we

can use Gram matrices in accordance with the suboptimal

image space from Eq. (35), such that

I�
S

AE := log � +
∑

iA∈US,K
TPF ,iE∈US

TPF

p(iA, iE)

× log [p(iA|iE)] . (37)

Eve’s unbiased strategy means that she may still dis-

criminate patterns that do not exist within the correct

code book, leading to the inferior conditional entropy term

above.

Furthermore, Eve will only obtain this information I�
S

AE

probabilistically, since it relies on her ability to correctly

infer the k-TPF properties of the pattern space, K. The

probability of successful inference can also be computed

via the Gram matrices of all the potential k-TPF subpat-

tern ensembles, which we label p
K|S
dec (see Appendix A).

Ultimately, her approximate attack results in the following

secure communication rate:

R̃pr = I�
S,K

AB (η) − p
K|S
dec

[

I�
S

AE (1 − η)

]

. (38)

Note that Eve’s nonbiased approach is much more effec-

tive than any guessing-type scheme, since the number of

ways in which Eve could choose K for large m would

quickly force p
K|S
dec → 0.

Results for R̃pr are shown in Fig. 2(b). The undesir-

able contribution of invalid pattern states in US
TPF clearly

degrades Eve’s information retrieval, resulting in a secure

rate over much larger transmissivity intervals. These

secure regions may be as low as η ∼ 0.1 for signal energies

NS = 0.25. As the mean photon number NS is increased,

Eve’s inference abilities improve, causing the protocol to

once more become less secure at lower transmissivities.
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B. Degenerate encoding and pattern recognition

The previous pattern-modulation-scheme example uti-

lizes a one-to-one encoding, attempting to exploit informa-

tion asymmetry between Bob and Eve in order to obtain

superior discriminatory measurements. In the following,

we take a data-driven approach in which information is

packaged through classifiable degenerate patterns. It is

then meaningful to consider a diminished approximate

attack, such that overwhelming amounts of data have

forced Eve into a limited resource position.

1. Pattern-modulation scheme

As an example, we use the MNIST data set to con-

struct a degenerate pattern-encoding method. This contains

a data set of m = 28 × 28 pixel images i, which can be

classified as a decimal handwritten digit, formulating a

ten-symbol alphabet A = {0, . . . , 9}. The typical data set

is gray scale but the images can be polarized so as to

represent the modulation of a binary-coherent-state basis.

Here, we utilize the MNIST training set T = {cj ; ij }j to

formulate our code book, which contains an image space

of |T | = 60 000 patterns, each of which has been prela-

beled with an exact classifier, c. Clearly, |T | ≫ A, leading

to a vastly degenerate code book:

C =
{(

c(i); |αi〉
)∣

∣[c(i]; i) ∈ T
}

. (39)

The modulation scheme proceeds as follows. Symbols

can be encoded by “drawing” a handwritten digit using

binary-modulated coherent states. Alice can randomly gen-

erate and transmit these patterns to Bob through multimode

pure-loss channels, who then uses a set of measurements �

to generate a noisy reconstruction of the pattern. Bob can

consult with his code book C and a (possibly pretrained)

classifier c̃T (the efficiency of which is dependent on the

quality of T ) in order to decode the pattern. Simultane-

ously, we may consider an eavesdropper who applies a

global beam-splitter attack to steal information and may

offer a variety of security threats based on her resources.

The large number of modes m = 784 and the nonunifor-

mity of MNIST patterns makes it very difficult to deter-

mine optimal measurements. This, of course, motivates

the use of local receivers assisted by statistical classifiers.

Hence, we assume that Bob performs local Helstrom mea-

surements (e.g., via a Dolinar receiver [44]), denoting the

associated POVM as �
⊗ :=

⊗m
j =1 �ij . Noisy patterns can

be simulated by performing single-pixel bit flips on each

mode in a transmitted pattern with probability,

pmode
err =

1 −
√

1 − e−κηNS

2
, (40)

where κ = 4 (κ = 1) for BPSK (BAM).

There is a plethora of potential classifiers that can be

used in this communication setting, ranging from simple

nearest-neighbor classifiers to more sophisticated convo-

lutional neural networks (CNNs). In this work, we utilize

shallow CNNs that act as neural decoders. CNNs are a

very popular tool for image processing and pattern recog-

nition, due to their high-performance classification accu-

racies even amidst noisy inputs, and therefore pose as an

excellent model classifier for Bob and/or Eve [31].

2. Secure rates

The MNIST data set also contains an evaluation set

V = {ck; ik}k with |V| = 10 000 patterns and their precise

classification. Importantly, these are completely indepen-

dent samples from the training set, V ∩ T = ∅, and can

therefore be used to empirically simulate and evaluate

communication over |V| transmissions.

Let cA and cB denote the class of Alice’s transmission

and the class inferred by Bob’s classification procedure,

respectively: cA, cB ∈ {0, . . . , 9}. The conditional probabil-

ity of having transmitted a message with classification cA,

given that Bob has used a classifier c̃ to infer cB, can be

approximated using V :

p(cA|cB) =
p(cA, cB)

p(cB)
≈
∑

(c(i);i)∈V δ[c(i), cA]δ[c̃T (i), cB]
∑

(c(i);i)∈V δ[c̃T (i), cB]
,

(41)

where δ is a Kronecker delta function δ(cj , ck) = 1 if and

only if the classifications cj = ck. Using these approxi-

mate probability distributions, we may compute the mutual

information between Alice and Bob:

I
�

⊗,c̃T
AB ≈ log 10 −

∑

cA,cB∈A
p(cA, cB) log [p(cA|cB)] . (42)

This approximates their average mutual information

over |V| transmissions and can be seen in Fig. 4(a).

The role of an eavesdropper can now be investigated.

Once again, in a worst-case scenario, Eve may capture and

store her share of all incident modes in a quantum mem-

ory and extract the accessible information via an optimal

collective attack. For such a large degenerate ensemble

of quantum states, this is an expensive and potentially

unrealistic tactic (certainly for near-term technologies).

Furthermore, computation of the Holevo information in

this context is extremely demanding for the same reasons

and thus we leave this security consideration to future

studies [45].

Alternatively, we may consider the impact of indi-

vidual attacks. In an informationally symmetric setting,

Eve is aware of the code-word-to-alphabet mapping and

possesses an identical code book CE = C. The secure
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FIG. 4. MNIST degenerate-pattern communication. (a) The

simulated mutual information (blue) and symmetric rate from

Eq. (43) (green). (b) A computation of the rate under minimum

approximate attacks given in Eq. (44). Both Bob and Eve employ

the use of CNN decoders and we consider communication of

patterns with NS ∈ {0.25, 0.5, 1.5, 3.0}, with simulated commu-

nication rates computed over |V| = 10 000 transmissions and

averaged over 20 simulations.

communication rate will thus follow Eq. (13)

Rind = I
�

⊗,c̃T
AB (η) − I

�
⊗,c̃T

AE (1 − η). (43)

This symmetric rate is shown in Fig. 4(a), which fol-

lows the typical behavior for communication in direct

reconciliation and only admits security for η ≥ 0.5.

However, for a code book of this magnitude, it is not

trivial to assume that an arbitrary eavesdropper can obtain

perfect encoding knowledge. Indeed, it is nontrivial to

consider scenarios such that (i) Eve does not possess the

same resources as Bob TE �= T or (ii) Eve does not possess

the code book at all. We may simulate rates based on the

assumption in (i) and outline a generic adaptive protocol

for Eve’s worst-case scenario in (ii).

The assumption that Eve possesses the code-book map-

ping but only partial resources leads to a diminished

approximate attack, where Eve’s training set may now be

considered as a subset TE ⊂ T . This separation in training-

set quality will render Eve’s classifier c̃TE
inferior with

respect to Bob’s c̃T , especially when |T | ≫ |TE|. This

results in a rate described by

R̃dim = I
�

⊗,c̃T
AB (η) − I

�
⊗,c̃TE

AE (1 − η). (44)

For an eavesdropper who is solely aware of the code-

word mapping, he or she will only possess single examples

of each code word such that |B(c)| = 1, ∀c, and their train-

ing set |TE| = 10. This defines a minimum approximate

attack, since this is the minimum amount of informa-

tion Eve needs to apply a deterministic attack. Results

for this rate are shown in Fig. 4(b). As expected, Eve’s

restricted resources lead to a dramatically more secure pro-

tocol, allowing Alice and Bob to communicate securely at

much lower transmissivities. As the mean photon energy

NS is increased, the rate begins to plateau with respect

to transmissivity; improvements in Eve’s single-mode dis-

crimination are incapable of boosting her classification

performance until η ∼ 0. This lets Alice and Bob achieve

a near-constant nonzero rate within a large window of

transmissivities.

Finally, one can consider the strategy of a completely

ignorant eavesdropper. Now Eve knows nothing about the

encoding and must construct her own code book in order to

extract any information at all. To do so, Eve must observe

transmissions from the evaluation set and try to infer an

approximate alphabet Ã and its respective code-word map-

pings. This can be achieved (albeit with some difficulty

when transmissions are particularly noisy) by means of a

data-clustering algorithm over the span of many transmis-

sions and can then be used to devise an approximate code

book and classifier. This will result in a probabilistic form

of Eq. (44) with a decoding error associated with alphabet

inference. In the limit of many transmissions, this strategy

may have some success but will still result in a very secure

rate for Alice and Bob.

IV. DISCUSSION AND CONCLUSIONS

We investigate a multimode modulation scheme for

bosonic quantum communications. We show that is pos-

sible to encode information into multimode coherent states

that are discretely modulated according to specific struc-

tures, which we name quantum patterns. Likening the

task of communication with pattern recognition, we study

abstract encodings based on collections of coherent quan-

tum patterns that may possess extreme degeneracies and

nonlinearities. From this, interesting questions regarding

practical and/or realistic security emerge. We elucidate
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these general arguments with some example pattern encod-

ings, one of which exploits eavesdropper ignorance to

obtain superior quantum measurements, while the other

employs degenerate coding in order to capitalize on an

eavesdropper’s limited resources.

These methods and results are informative to the fact

that multimode encoded information can be used to intro-

duce serious complications for eavesdroppers. In partic-

ular, the versatility of trainable classifiers in cooperation

with arbitrarily complex (even adaptive) coding schemes

could be used to introduce novel layers of security in

quantum communication protocols.

There are clearly many immediate possible develop-

ments, such as the explicit investigation of k-ary modu-

lated patterns and the extension to reverse reconciliation

protocols. It would also be valuable to better understand

the abilities of an eavesdropper when exposed to a large

degenerate code. If an attacker’s resources for pattern

inference can be securely limited, then their threat can

be minimized, even when in possession of a quantum

memory. This would require an upper bound on Eve’s clas-

sification power via generally quantum resources, given

that she has extracted the accessible information. Analyses

from Refs. [40,41] may be of use for this.

In this work, we focus on the use of quantum patterns

constructed from coherent states. This is carried out as an

expedient translation from the most common and practical

CV-QKD protocols. Furthermore, coherent-state discrim-

ination and its error rates are well understood. Yet, in

general, quantum pattern states can be constructed using

any kind of locally modulated states, such as thermal

states, squeezed states, etc. To this end, it would be inter-

esting to explore the incorporation of entangled quantum

pattern states, which would exploit nonlocal modulations

to construct global patterns. Entanglement assistance is

well known to be a powerful resource for quantum com-

munications [46–49] and in this setting it might be possible

to introduce further complications for eavesdroppers.

Most importantly, the use of pattern encoding in order to

enhance secure protocols against collective attacks (rather

than individual) offers the greatest reward. Devising a

secure training protocol for the classifiers of trusted parties

would allow for the benefits of approximate attacks to be

realized within this stricter framework. The covert incor-

poration of information asymmetry between users and

eavesdroppers in QKD could be of great benefit to security,

representing a fascinating future investigative path.
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APPENDIX A: DISCRIMINATION VIA PGMS

Consider an ensemble of coherent-pattern states through

a uniform lossy multichannel {pi; α
η

i
}i∈U , where U is an

image space and assuming equal a priori probabilities for

each pattern to occur pi = 1/|U | for all i ∈ U . Since the

ensemble consists of pure states |αη

i
〉, we can use its Gram

matrix in order to study the effectiveness of discrimination

using PGMs, the elements of which take the form

G[U ]i,i′ = 〈ηαi|ηαi
′〉 . (A1)

The average error probability of discrimination is then

given by

perr[U ] := 1 −
1

|U |

( |U |
∑

i=1

λ
1
2
i

)2

, (A2)

where {λi}|U |
i=1 are the eigenvalues of the Gram matrix. This

represents the average error probability of discriminating

any pattern i ∈ U from all the other patterns in this image

space.

APPENDIX B: DECODING LTPF MODULATION

SCHEMES

In this appendix, we derive important quantities used

in the study of LTPF encoding schemes. In particular, we

derive Eve’s decoding probability of the k-TPF partition

set K given that she has knowledge of S , used in the

main text to compute Alice’s and Bob’s secure rate under

probabilistic attack. Furthermore, we discuss the degener-

acy of LTPF encodings, which preclude (or make difficult)

effective inference methods of S or K.

1. Probability of inferring K given S

Consider LTPF pattern communication as in the main

text, where the modulation scheme is completely charac-

terized by a locality partition set S (which describes how

Alice and Bob choose regions within the pattern states to

encode information) and a k-TPF partition set K (which

describes how many target modes and background modes

will be present within any given subregion of the pattern

states). If Eve has knowledge of S but not K, then her

information retrieval is disadvantaged, as she cannot fully

optimize her discriminatory measurements. But worse than

this, Eve must deduce the properties of the K if she is

to steal any information at all, as it is required to prop-

erly decode any encoded classical information from her

collected states.
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Let us consider Eve’s scenario. Alice generates m-

mode coherent-pattern states according to the modula-

tion scheme (S ,K), which Eve intercepts. Since Eve has

knowledge of S , she knows that she should apply |sj |-
mode PGMs over each subpattern of the global state that

she recovers from the beam splitter. The problem is that

she is unable to fully optimize these measurements because

she does not know the precise number of target modu-

lated modes kj within each subpattern state. As discussed

in Sec. III A, we know that valid target numbers in a pattern

region sj belong to the set of values k = {1, . . . , |s|j − 1}
to ensure that at least a binary variable is encoded in

each subpattern. Hence, Eve must utilize measurements

that account for a variable amount of target modes at each

subpattern. This nonbiased approach means that she must

consider her output ensemble to be generated by the image

space

US

TPF =
n
⋃

j =1

|sj |−1
⋃

k=1

U
|sj |,k
TPF , (B1)

as in Eq. (35) in the main text. This image space con-

tains �(sj ) :=
∑|sj |−1

i=1 Ci
|s|j potential output states at each

subpattern.

Eve performs these measurement to discriminate the

pattern states. However, she must further infer kj over each

subregion sj in order to decode the transmissions into their

binary representations. In the absence of prior knowledge

of K, we consider Eve’s strategy to be direct inference of

kj from her discrimination. That is, if Alice transmits a

subpattern i
sj

A with kj target modulated modes that Eve dis-

criminates as i
sj

E with k̃j target modulations, she must infer

that k̃j is the correct value in the encoding scheme. This

allows Eve to build up an approximate k-TPF partition set

K̃ = {k̃1, . . . , k̃N } associated with each transmission.

The question is thus: What is the probability that Eve

correctly infers K̃ = K? This is equivalent to asking: What

is the probability that Eve discriminates her intercepted

pattern state as belonging to the correct image space U
S,K
TPF ?

Consider a single subpattern sj with a true number of tar-

get modulations kj . The average error probability of Eve

inferring a target modulation k̃j is equal to

p(k̃j |kj , sj ) =
∑

i
sj
A

∈U
|sj |,kj
TPF

∑

i
sj
E ∈U

|sj |,k̃j
TPF

p(i
sj

E |isj

A )

|U |sj |,kj

TPF |
. (B2)

Since we are using PGMs and coherent pattern states trans-

mitted through pure-loss channels, we can replace the

conditional probability p(i
sj

E |isj

A ) with its computable value

p(i
sj

E |isj

A ) = Tr

[

�
i
sj
E

α
1−η

i
sj
A

]

, (B3)

=
[

(
√

G
[

US
TPF

]

)

i
sj
A

i
sj
E

]2

. (B4)

Therefore, the average success probability of Eve infer-

ring kj can be computed by summing the error probabilities

p(k̃j |kj , sj ) over all the values that she believes k̃j could

possibly take. More precisely,

p
kj |sj

dec := 1 −
|sj |−1
∑

k̃j =1

p(k̃j |kj , sj ). (B5)

Since she has to do this for all subpatterns, we can

then finally compute the successful decoding probability

of inferring K directly from her measurements:

p
K|S
dec :=

n
∏

j =1

p
kj |sj

dec . (B6)

Hence, p
K|S
dec is the success probability of inferring K

through PGM measurements that are nonbiased to the

number of target modes in each subregion sj , given that

the locality structure S is already known. There may exist

more sophisticated methods that Eve can employ to more

accurately infer the partition set K. Nonetheless, this offers

an insightful inspection into the effects that information

asymmetry has on communicators and attackers.

2. Degeneracy of LTPF encoding schemes

Here, we briefly summarize the degeneracy properties of

LTPF encoding schemes and the number of ways in which

a specific (S ,K) pair can be chosen over m mode patterns.

A partition of m ∈ N into n parts is defined as an ordered

vector x = {x1, . . . , xn}, where xj ∈ N, x1 ≥ . . . ≥ xn > 0

and
∑n

j =1 xj = m. We denote this as x ⊢n m. Given the

multinomial coefficient

M x

m = M x1...,xn
m :=

n
∏

j =1

C
xj

m−
∑j

k=1
xk

, (B7)

we define a modification that discards permutations that

are invariant under the shuffling of subpatterns [50]:

M̃ x

m =
M x

m
∏max(x)

l=1

[
∑r

k=1 δ(xk, l)
]

!
, (B8)

where δ(x, y) is an integer Kronecker delta function.
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The number of ways in which one may choose a locality

partition set S over m modes may be calculated using the

above formalism, summing over all possible combinations

and partitions. A simpler computation is given by the asso-

ciated Stirling numbers of the second kind, which count the

number of ways to partition m modes into n parts with min-

imum subset size k. These numbers obey the recurrence

relation

Sm
k (n) = nSm−1

k (n) + Ck−1
m−1Sm−k

k (n − 1). (B9)

Restricting subpattern dimensions to 2 ≤ |sj | ≤ m (to

ensure that all subpatterns can encode at least 1 bit), then

the degeneracy of S is

GS :=
⌊m/2⌋
∑

n=1

Sm
2 (n) =

⌊m/2⌋
∑

n=1

∑

x⊢nm

M̃ x

m. (B10)

The parallel freedom of locality and TPF-partition sets

expands the space of encodings even further. For each sub-

pattern sj ∈ S , there will exist
∏n

j =1(|sj | − 1) choices of

kj target modulations, with the constraints of 2 ≤ |sj | ≤
m and k ∈ {1, . . . , |sj | − 1}. The total degeneracy of all

possible schemes is then given by

GS,K :=
⌊m/2⌋
∑

n=1

∑

x⊢nm

M̃ x

m

n
∏

j =1

(xj − 1). (B11)

It is also useful to determine conditional degeneracies,

GS|K and GK|S , based on some leaked information that Eve

may have obtained. If Eve is aware of K = {k1, k2, . . . , kn}
only, she can still glean some information about S . Due

to K, Eve can infer the number of subpatterns n and also

the minimum size of the j th subpattern, xmin(j ) = kj + 1.

Alternatively, if Eve is only aware of S , then she can sig-

nificantly narrow the space of possible K. She knows that

it consists of n elements and she is aware of the maximum

and minimum target numbers of each subpattern. We can

then summarize the conditional degeneracies:

GS|K :=
∑

x⊢nm,
xj ≥kj +1,∀j

M̃ x

m, GK|S :=
n
∏

j =1

(|sj | − 1).

(B12)

In general, GS|K ≫ GK|S ; hence it is always more secure

to keep S secret. Regardless, one can always choose a

locality structure S that maximizes this degeneracy. Inter-

estingly, one finds that constraining the number of sub-

pattern sizes as |sj | ∈ {4, 5} and maximizing the number

of subpatterns with |sj | = 5 produces the desired result.

Defining the function

gK|S(m)

:=

⎧

⎪

⎨

⎪

⎩

m − 1, if 2 ≤ m ≤ 7,

4m/5, if (m
5

∈ N) ∧ (m > 7),

4⌈m/5⌉ ( 3
4

)5−(m mod 5)
, otherwise,

(B13)

we can write

GK|S ≤ max
S

GK|S = gK|S(m). (B14)
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