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Abstract

The recent asset pricing literature has largely neglected liquidity risk since the price-impact-based factor shows limited

pricing ability. Using different liquidity factors, this paper evaluates the liquidity-risk-based models together with the non-

liquidity-based ones. With the new testing procedures and the different testing portfolios, we find that the liquidity-augmented

capital asset pricing model (LCAPM) performs well. It yields a significant liquidity risk premium robust to all the other models.

The success of the LCAPM lies in the fact that the trading-discontinuity-based factor captures the systematic nature of liquidity

risk. It shows that liquidity risk is priced highly during the down and turmoil markets, whereas all the other factors examined

exhibit insignificant risk prices when market volatility is high. Our evidence indicates that liquidity risk matters and the LCAPM

is preferable to use for investment decision making, financial market research and regulation.
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1. Introduction

Liquidity has long attracted attention in the finance literature. It shows that liquidity affects asset returns through two dif-

ferent channels: liquidity level effect and liquidity risk effect. The level effect shows that illiquid stocks tend to earn higher

average returns than liquid ones.1 The risk effect reveals that stocks with high exposure to shocks in market liquidity command

a premium relative to stocks with low exposure, inline with the argument about the importance of liquidity risk in asset pricing

(Pástor and Stambaugh, 2003; Acharya and Pedersen, 2005; Liu, 2006; Sadka, 2006; and Lee, 2011). However, recent devel-

opment in asset pricing has largely overlooked liquidity risk. For instance, the developments of the Fama and French (2015)

five-factor model (FF5) and the Hou, Xue, and Zhang (2015) four-factor model (HXZ4) do not consider liquidity risk. This is

because they find that the loadings of assets on the Pástor and Stambaugh (2003) (PS) liquidity factor are close to zero and the

PS factor yields little improvement in model performance. Fama and French (2016), Hou et al. (2017), Momani (2018), and

Ahmed et al. (2019) also use the PS liquidity factor as a representative and show that liquidity risk is not priced. Nevertheless,

there are other liquidity risk factors/models proposed in the literature such as the Sadka (2006) price-impact-based factor and

the Liu (2006) trading-discontinuity-based factor. Therefore, this paper addresses the question: Is liquidity risk negligible for

asset pricing if also considering other liquidity risk factors/models? Specifically, this study explores whether different liquidity

1Examples are Amihud and Mendelson (1986), Brennan and Subrahmanyam (1996), Datar, et al. (1998), Brennan, et al. (1998), Amihud (2002), Liu
(2006), Bekaert, et al. (2007), Hasbrouck (2009), Lou and Sadka (2011), and Corwin and Schultz (2012).
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risk factors or liquidity-risk-based models proposed in the literature perform differently, and whether the liquidity-risk-based

models well explain the cross-section of stock returns in comparison with non-liquidity-risk-based pricing models.

The importance of liquidity risk in asset pricing is economically intuitive. This is because liquidity risk arises from con-

sumption and solvency constraints. When the economy performs poorly, causing market liquidity to dry up, investors may have

to liquidate their investment for consumption. Also, during the bad times, investors with solvency constraints may have to honor

their obligations by converting their investment into cash. If stocks investors hold are highly sensitive to market liquidity shocks,

these forced liquidations can result in significant losses, i.e., investor may have to liquidate their positions at unfairly low prices,

especially during the liquidity crisis. As a result, liquidity risk is likely to affect investors’ decision marking. Unless investors

are expecting to earn high returns, they will not invest in stocks with high exposure to liquidity risk. Indeed, studies show sig-

nificantly impact of fluctuations in market liquidity on the constructions of investment portfolios (Garleanu and Pedersen, 2013;

Dong et al., 2019), the costs of capital (Butler et al., 2005), and the capital structure decisions (Lipson and Mortal, 2009). Why

do researchers find insufficient pricing ability of liquidity risk? The answer may lie in the usual choice of the PS factor/model

as a representative in testing the pricing power of liquidity risk. The PS liquidity factor is constructed based on the price impact

measure of liquidity (i.e., the sensitivity of price changes to trading volume). However, liquidity is multidimensional, including

trading costs, trading impact on price, trading quantity, and trading speed. Hence, the price impact measure may not be able to

fully characterize liquidity. It seems that the empirical evidence supports this claim, e.g., Pástor and Stambaugh (2003) mention

that their price impact measure does not command a significant premium at individual stock level, and Ben-Rephael et al. (2015)

find that the liquidity proxies associated with trading costs and price impact dimensions are not robust to generate a significant

premium. Therefore, different liquidity factors/models can have different pricing abilities.

For liquidity risk factors/models, we investigate three published ones. The first is the PS liquidity factor, which its construc-

tion relies on their liquidity proxy capturing the impact of trading on price, i.e., price impact. The PS liquidity risk model has

four factors: the Fama–French three factors plus the PS liquidity factor. The second is the Sadka (2006) liquidity factor. The

construction of the Sadka factor is also based on the price impact concept. With his liquidity factor, Sadka extends both the capi-

tal asset pricing model (CAPM) and the Fama–French three-factor model (FF3). The third is the Liu (2006) liquidity-augmented

CAPM (LCAPM) with the liquidity risk factor being constructed based on his trading discontinuity measure of liquidity. Be-

cause liquidity is multi-dimensional and different dimension may not be equally important to describe liquidity, liquidity factors

stemmed from different liquidity proxies and the corresponding liquidity extended models are likely to exhibit different power

to capture liquidity risk and to explain the cross-section of expected stock returns. As discussed and empirically confirmed by

Liu (2006), the trading discontinuity measure reflects lock-in risk, captures multi-dimensions of liquidity, and yields the most

pronounced liquidity premium robust to existing models. Therefore, the trading-discontinuity-based liquidity risk model, i.e.,
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the LCAPM, seems likely to have the consistent power to capture liquidity risk and to explain the cross-section of average

returns. For comparison, we also assess the popular or likely to be popular models including the FF3, the momentum-extended

FF3 of Carhart (1997), the HXZ4, and the FF5, which some of these are also included in a series of model evaluation studies

(Fama and French, 2018; Barillas and Shanken, 2018; Ahmed et al., 2018; Barillas et al., 2019; Fall et al., 2019; Hou et al.,

2019; Sha and Gao, 2019).

Empirically, we first test the pricing ability of liquidity-risk-based models. Traditionally, researchers commonly adopt the

Fama–MacBeth two-stage regression procedure with the implicit assumption of correctly specified models. Since there are

many pricing models proposed in the literature (see Harvey et al., 2016), it is unlikely that they are all correctly specified.

Thus, tests based on the assumption of correctly specified models may lead to erroneous inferences, as pointed out by Shanken

and Zhou (2007), Kan et al. (2013), and Gospodinov et al. (2013). Consequently, apart from the traditional test procedure,

we also evaluate the significance of factor risk premiums based on the misspecification-robust standard error of Kan et al.

(2013). In addition, we investigate whether a particular factor in a multifactor model significantly contribute to the model’s

explanatory power. As in Kan et al. (2013), we examine the cross-sectional relation between expected returns and beta risk as

well as covariance risk.2 With different sets of testing portfolios formed on the common firm characteristics the results show

that among the three liquidity factors/models, the trading-discontinuity-based liquidity risk factor of the LCAPM shows stable

pricing ability, i.e., the risk premiums associated with both the beta risk and covariance risk are statistically and economically

significant. Consistently, the LCAPM explains average asset returns well. For the price-impact-based PS and the Sadka (2006)

factors, on the other hand, the premiums related to both the factor loading and the covariance risk tend to be insignificant in

most cases. This is inline with our conjecture and other studies, liquidity factors constructed with different liquidity proxies can

perform differently, and the price-impact-based ones exhibit limited power to account for expected returns. For completeness,

we also test the non-liquidity-risk-based factors/models. In general, the firm characteristics-based factors such as the ones of

FF5 and HXZ4 show good performance against the test portfolios formed on these characteristics. However, there is evidence

that inferences about the pricing ability of certain factors are sensitive to the testing assumptions. Taking the momentum factor

as an example, the significant risk premium becomes insignificant with the 25 size and book-to-market portfolios under the

model misspecification assumption.

Second, we assess the performance of liquidity-risk-based models in comparison with non-liquidity-risk-based pricing mod-

els. Our assessments employ the maximum squared Sharpe ratio metric, Sh2( f ), a testing technique newly proposed by Barillas

and Shanken (2017) and Barillas et al. (2019). Sharpe ratio is a key variable in portfolio theory so that the Sh2( f ) test is not only

2Kan et al. (2013) argue that testing a factor’s pricing ability is different from investigating its contribution to the model’s explanation for average returns.
To examine a factor’s role in improving the model’s explanatory power, one should test whether the factor’s covariance risk price is significantly different from
zero.
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helpful for evaluating model performance, but it is also of interest in making capital allocation decisions. The testing results

show that the LCAPM and the HXZ4 stand out from all the other models considered. The trading-discontinuity-based liquidity

risk factor of the LCAPM yields the largest contribution in improving the Sh2( f ) metric of the HXZ4 and the FF5 across all

competing factors examined.

Additionally, we investigate the performance of pricing factors/models related to different economic conditions measured by

the stock market excess returns and stock market volatility. Studies have documented that liquidity dry-up occurs during periods

of market downturns and large market volatility (e.g., Pástor and Stambaugh, 2003; Liu, 2006; and Hameed et al., 2010). Næs

et al. (2011) argue that, in addition to requiring a premium, liquidity risk pricing should reflect the business cycle. Our

results reveal that the liquidity factor of the LCAPM lends support to the relation between liquidity risk and market conditions:

investors price liquidity risk high during market downturns and turbulent times. In contrast, the price-impact-based liquidity

factors of Pástor and Stambaugh (2003) and Sadka (2006) do not show such a tendency across the different economic states.

In addition, the liquidity factor of the LCAPM yields the highest marginal Sh2( f ) among competing factors when the market

performs poorly. High Sh2( f ) during the falling markets can be viewed as compensation for liquidity providers, as commented

by Hameed et al. (2010). We also explore whether the information captured by the liquidity factors can be subsumed by other

factors. The results show that, under each market condition, none of the other factors/models accounts for the liquidity factor of

the LCAPM, confirming the uniqueness of liquidity risk for asset pricing.

Our study complements existing research on the importance of liquidity risk in asset pricing. Different from many existing

studies that examine the liquidity premium with different liquidity proxies or compare different measures, our focus is on

whether liquidity risk is negligible to explain average stock returns relative to the popular or likely to be popular models. Our

results supplement a series of recent studies on the evaluation of asset pricing models (Fama and French, 2016; Hou et al.,

2017, 2019; Ahmed et al., 2019; Sha and Gao, 2019; Fall et al., 2019; Feng et al., 2020; Li et al., 2019), which either neglect

liquidity risk or use the PS factor as the only representative to capture liquidity risk. With the PS liquidity factor/model, these

studies generally rule out the importance of liquidity risk in asset pricing. In contrast, our results differ from these studies by

showing that the trading-discontinuity-based liquidity factor is robust to all other models considered, implying that liquidity risk

is an essential risk source non-ignorable for asset pricing. Indeed, the corresponding LCAPM performs no worse but generally

better than the commonly and likely to be commonly used models. Our findings have important practical implications since

an adequate pricing model is crucial to corporate investment appraisal, portfolio construction, performance evaluation, and

financial economics research such as tests of market efficiency.

The remainder of the paper is organized as follows. Next section introduces research methods used for empirical analysis.

Section 3 describes the factor models. Section 4 reports the empirical evidence on the factor pricing ability tests. Section 5
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conducts tests based on the Sh2( f ) metric. Section 6 conducts additional tests. Section 7 concludes.

2. Research method

2.1. The framework of Kan et al. (2013)

The linear asset pricing model describes the relation between the excepted return of an asset and systematic risks. With K

risk factors, the arbitrage pricing theory (APT) is:

E(Ri) = γ0 +

K∑
k=1

βi,kγk, i = 1, . . . ,N, (1)

where E(Ri) is the expected return of asset i, βi,k is the factor loading of asset i on factor k, γk is the risk premium associated with

risk factor k, and γ0 is the zero-beta rate. Given the factor values, we can estimate the factor loadings by running the following

time-series regression:

Ri,t = αi +

K∑
k=1

βi,k fk,t + εi,t, t = 1, . . . ,T, (2)

where Ri,t is the month-t return of asset i (our tests use monthly data), fk,t is the month-t value of factor k, and αi is the regression

intercept of asset i.

Let u be an N × 1 vector of expected return on N assets, VN be an N × N covariance matrix of N assets, γ be a (K + 1) × 1

vector consisting of γ0 and γk (k = 1, . . . ,K), X be an N × (K + 1) matrix which equals to [1N , β], where 1N is an N × 1 vector

of ones, and β is an N × K matrix of factor loadings associated with K factors. Then, Eq. (1) can be rewritten as

u = Xγ. (3)

Define W as an N × N weighting matrix, the γ is given by

γ = (X′WX)−1X′Wu, (4)

and the corresponding pricing error is

e = u − Xγ = [IN − X(X′WX)−1X′W]u, (5)

where IN is an N × N identity matrix.

Following Kan et al. (2013), the cross-sectional R2 is computed by

R2 = 1 −
e′We

e′0We0
, (6)

where e0 = [IN − 1N(1′NW1N)−11′NW]u.
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In empirical studies, the cross-sectional R2 is often used to assess the performance of a pricing model. When the model

is correctly specified, R2 = 1 (or e = 0). Kan et al. (2013) derive the asymptotic distribution of sample R squared (R̂2),

which can be used to determine whether the model has the possibility of misspecification.3 An alternative method is the F-

test. For a correctly specified model, Kan et al. (2013) show that the model’s deviation Q̂ = ê′V̂(ê)+ê follows an approximate

F distribution, where V̂(ê) is the estimate of the covariance matrix of sample pricing error ê, and V̂(ê)+ is the corresponding

pseudo-inverse. In our study, we use both methods to conduct specification test.

Traditionally, studies usually focus on whether the factor of interest produces a significant non-zero risk premium estimate.

Kan et al. (2013) emphasize that when examining whether a particular factor can improve the model’s explanatory power, we

can examine the significance of the covariance risk price with respect to the factor. Let C = [1N ,VR f ], where VR f is the N × K

covariance matrix between the returns of testing assets R and factors f . The cross-sectional regression model is:

u = Cλ, (7)

and the covariance risk price λ can be computed by

λ = (C′WC)−1C′Wu. (8)

Under the assumption of misspecified models, Kan et al. (2013) derive the asymptotic distribution for factor loading risk

premium (γ) and covariance risk price (λ) (see the Appendix in their website). They also show that the model misspecification

has a great influence on the asymptotic standard error of γ, especially for factors that have low correlations with testing assets.

In empirical analysis, we evaluate the significance of γ and λ for different factors based on the misspecification-robust standard

errors in Kan et al. (2013), and conduct both the OLS and GLS estimations by letting W take IN and V−1
N , respectively,

2.2. Model comparison based on the squared Sharpe ratio metric

According to Barillas and Shanken (2017), models with traded factors can be compared in terms of the squared Sharpe

ratio metric, Sh2( f ), and a better model should produce a higher estimate of Sh2( f ). As an extension, Barillas et al. (2019)

develop a pairwise comparison method to test whether two models with different Sh2( f ) estimates could give statistically equal

performance.4 To illustrate, suppose that there are two factor models: model A with factors fA and model B with factors fB. We

denote the maximum squared Sharpe ratios of models A and B by Sh2
A( f ) = u′AV−1

A uA and Sh2
B( f ) = u′BV−1

B uB, where uA, uB, VA,

3Since the asymptotic distribution of sample R squared (R̂2) depends on the actual value of R2, Kan et al. (2013) deduce the asymptotic distribution of R̂2

under three cases: (1) R2 = 1, a correctly specified model; (2) R2 = 0, a misspecified model that has no power to explain expected returns; and (3) 0 < R2 < 1,
a misspecified model that has some explanatory power.

4According to Lewellen et al. (2010), evaluating pricing models based on the point estimates of testing measures is unreliable. Therefore, for models with
different measurement estimates, the model performance should be determined by whether the difference in measurement estimates between two models are
significantly different from zero.
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and VB are the means and covariance matrixes of the factors. The corresponding sample estimates are Ŝh
2
A( f ) = û′AV̂−1

A ûA and

Ŝh
2
B( f ) = û′BV̂−1

B ûB. When model A nests model B, we regress the excluded factors (included in A but not in B) on the model

B factors. If the null hypothesis that the regression intercepts are jointly zero is rejected, it indicates that model A outperforms

model B by generating a significantly higher estimate of Sh2( f ). If A and B are non-nested models, Barillas et al. (2019) derive

the asymptotic distribution of the difference Ŝh
2
A( f ) − Ŝh

2
B( f ) under the null hypothesis of Sh2

A( f ) = S h2
B( f ) as follows:

√
T
{ [

Ŝh
2
A( f ) − Ŝh

2
B( f )

]
−

[
Sh2

A( f ) − Sh2
B( f )

] }
∼ N

(
0, E[δ2

t ]
)
, (9)

where δt = 2(mAt − mBt) − (m2
At − m2

Bt) + Sh2
A( f ) − Sh2

B( f ), with mAt = u′AV−1
A ( fAt − uA) and mBt = u′BV−1

B ( fBt − uB).

Barillas et al. (2019) also develop a method to compare multiple models, i.e., testing whether a given model has a sig-

nificantly higher Sh2( f ) than those of a set of competing models. Suppose there are q models. Let d = (d2, . . . , dq), where

di = Sh2
1( f )− Sh2

i ( f ) for i = 2, . . . , q. The corresponding sample estimate is d̂ = (d̂2, . . . , d̂q) with d̂i = Ŝh
2
1( f )− Ŝh

2
i ( f ). The null

hypothesis is that the benchmark model (model 1) performs at least as well as the alternative models 2 to q, that is, H0 : δ ≥ 0q−1.

When the benchmark model is nested by a series of competing models, we construct an expanded model consisting of all factors

from models that nest the benchmark model. If the expanded model outperforms the benchmark model by using the pairwise

comparison method, it implies that one or more nested models dominate the benchmark model.

For non-nested multiple model comparisons, we construct the likelihood ratio (LR) test statistic by

LR = T (d̂ − d̃)′Σ̂−1
d̂

(d̂ − d̃), (10)

where Σ̂d̂ is the covariance matrix of d̂, and d̃ is the optimal solution of the following quadratic problem

min(d̂ − d)′Σ̂−1
d̂

(d̂ − d) s.t. d ≥ 0q−1. (11)

Following the methods in Kan et al. (2013), we employ the asymptotic distribution of LR and the corresponding p-value to

perform statistical analysis.5

3. Pricing models in our tests

Our tests use both liquidity-risk-based and non-liquidity-risk-based pricing models. The following describes these models

(we also investigate the capital asset pricing model, CAPM, but corresponding results are not reported):

(a) The non-liquidity-risk-based pricing models:

5The non-nested multiple model comparison involves a sequence selection process and the appendix in Kan et al.’s (2013) website shows the details.
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• The Fama and French (1993) three-factor model (FF3),

E(Ri) = R f + βi,MKT E(MKT) + βi,SMBE(SMB) + βi,HMLE(HML), (12)

where E(Ri) is the expected rate of return of asset i, R f is the risk-free rate proxied by the one-month T-bill rate,

E(MKT) is the expected value of the market factor, E(SMB) is the expected value of the Fama–French size factor,

and E(HML) is the expected value of the book-to-market factor. The market factor is proxied by the excess return

of the CRSP value-weighted NYSE/AMEX/ARCA/NASDAQ index, the size factor is the return difference between

small stock portfolio and big stock portfolio, and the book-to-market factor is the return difference between high

book-to-market ratio stocks and low book-to-market ratio stocks.

• The four-factor model of Carhart (1997) (C4),

E(Ri) = R f + βi,MKT E(MKT) + βi,SMBE(SMB) + βi,HMLE(HML) + βi,UMDE(UMD), (13)

where E(UMD) is the expected value of the momentum factor, which is constructed as the return difference between

the past price winners and the past price losers.

• The Fama and French (2015) five-factor model (FF5),

E(Ri) = R f + βi,MKT E(MKT) + βi,SMB∗E(SMB∗) + βi,HMLE(HML) + βi,RMW E(RMW) + βi,CMAE(CMA), (14)

where E(RMW) is the expected value of the profitability factor and E(CMA) is the expected value of the investment

factor. The profitability factor is the return difference between the high-profitability stocks and the low-profitability

stocks, and the investment factor is the return difference between the low asset growth stocks and the high asset

growth stocks. In addition, the size factor of the FF5 is constructed slightly different from the one of the FF3, and

we label the size factor of the FF5 as SMB∗.

• The Hou, Xue, and Zhang (2015) four-factor model (HXZ4),

E(Ri) = R f + βi,MKT E(MKT) + βi,MEE(ME) + βi,IAE(IA) + βi,ROEE(ROE), (15)

where ME, IA and ROE are the size, investment and profitability factors of the HXZ4.

(b) The liquidity-risk-based pricing models:

• The Pástor and Stambaugh (2003) four-factor model (PS4trd),

E(Ri) = R f + βi,MKT E(MKT) + βi,SMBE(SMB) + βi,HMLE(HML) + βi,PStrd E(PStrd), (16)
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where PStrd is the PS traded liquidity factor. When assessing the premiums associated with the factor loadings and

covariance risks, we also use the PS non-traded factor (PSinn) with the corresponding model labeled as PS4inn. Pástor

and Stambaugh (2003) construct the two factors using their price impact measure of liquidity.

• The Sadka (2006) two-factor model (S2), which we estimate it with monthly data by running the regression below:

Ri,t − R f ,t = αi + βi,MKTMKT t + βi,SFSFt + εi,t, (17)

where SFt is the month-t value of the Sadka (2006) liquidity factor, which is constructed based on the variable

component of price impact.6 The Sadka factor is non-traded. Sadka (2006) also extends the FF3 with his liquidity

factor. To save place, we do not report the results of the Sadka (2006) liquidity factor extended FF3.

• The liquidity-augmented capital asset pricing model of Liu (2006) (LCAPM),

E(Ri) = R f + βi,MKT E(MKT) + βi,LFE(LF), (18)

where LF is the Liu factor, which is constructed based on his trading-discontinuity measure of liquidity.

Table 1

Descriptive statistics.

Panel A: Means, standard deviations, and t-statistics

MKT SMB HML UMD SMB∗ RMW CMA ME IA ROE LF PSinn PStrd SF

Mean(%) 0.517 0.147 0.357 0.629 0.181 0.271 0.331 0.261 0.408 0.539 0.637 −0.063 0.366 0.008
Std(%) 4.504 3.090 2.886 4.305 3.045 2.230 2.017 3.068 1.870 2.544 3.431 5.597 3.376 0.635
t-statistic 2.811 1.164 3.033 3.581 1.456 2.973 4.017 2.082 5.349 5.189 4.546 −0.276 2.659 0.226

Panel B: Spearman rank correlation

MKT 1.000 0.276 −0.275 −0.110 0.250 −0.217 −0.344 0.247 −0.331 −0.147 −0.694 0.261 −0.039 0.004
SMB 1.000 −0.139 −0.036 0.985 −0.286 −0.136 0.940 −0.159 −0.259 −0.184 0.147 −0.020 0.138
HML 1.000 −0.150 −0.053 −0.182 0.688 −0.017 0.640 −0.267 0.347 −0.072 0.031 0.045
UMD 1.000 −0.039 0.174 −0.038 −0.016 0.027 0.422 0.109 −0.094 0.040 0.124
SMB∗ 1.000 −0.273 −0.084 0.967 −0.108 −0.262 −0.163 0.135 −0.033 0.150
RMW 1.000 −0.184 −0.277 −0.110 0.623 0.172 −0.001 0.054 0.023
CMA 1.000 −0.071 0.908 −0.220 0.407 −0.092 0.021 0.029
ME 1.000 −0.082 −0.195 −0.166 0.121 −0.054 0.146
IA 1.000 −0.080 0.422 −0.077 0.030 −0.005
ROE 1.000 0.098 −0.018 0.007 −0.017
LF 1.000 −0.133 0.023 0.050
PSinn 1.000 0.067 0.097
PStrd 1.000 0.020
SF 1.000

Table 1 reports summary statistics for the monthly factor values over the period 1/1968–12/2017, but the sample period is

from 4/1983–12/2012 if the Sadka (2006) factor is involved. Panel A shows that the factor means, which range from −0.063% to

0.637%, are generally significant except for the size factor (SMB and SMB∗) and the non-traded factors of PSinn and SF. Panel B

shows that the Hou, Xue, and Zhang (2015) size factor is highly correlated with the Fama–French size factor at 0.967, similarly

6Sadka (2006) decomposes liquidity into variable and fixed components, and shows that it is the variable rather than the fixed component capturing the
trading impact on price.
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between their investment factors at 0.908 and between their profitability factors at 0.623. By inspecting the correlations of the

four liquidity factors, there is virtually no correlation between each other, indicating that these liquidity factors capture different

information. In addition, these four liquidity factors show limited correlations with the non-liquidity firm-characteristics-based

factors. The highest correlation between the liquidity factor and the firm-characteristics-based factor is 0.422 between LF and

IA, implying that information captured by the liquidity factors and the non-liquidity factors is not the same.

4. The pricing ability tests of factors

This section examines the pricing ability of factor models following the testing procedure introduced by Kan et al. (2013).

In the first subsection, we estimate the premium related to factor loadings/betas and covariance risk with the commonly used

25 size and book-to-market (25 ME-BE/ME) portfolios. For robustness, we also use the 25 size-momentum portfolios and the

32 size-investment-profitability portfolios.7 These testing portfolios are clearly in favor of supporting the models containing

the corresponding factors such as size, profitability, and investment factors. Based on these testing portfolios, it will be firm

evidence to support the liquidity factors/models if they display comparable performance with those of characteristics-based

factors/models.

4.1. Results based on the 25 ME-BE/ME portfolios

4.1.1. The specification test of factor models

Before conducting pricing tests, we first examine whether the selected models are correctly specified (denoted by R2 = 1)

based on the R2 test and the F-test. Table 2 presents the specification test results for eight factor models under the 25 ME-

BE/ME portfolios. For the OLS estimation in Panel A, the null hypothesis that the model being examined is correctly identified

is rejected by both the R2 test and the F-test at the 5% level of significance for nearly all models. The exceptions are C4 and S2,

which can pass the R2 test in the OLS case. The GLS test is more strict for evaluating pricing models, as argued by Lewellen et

al. (2010). Panel B shows consistent evidence that the GLS R2 of each model is lower than the corresponding OLS R2 estimate.

Also, all models are rejected for the null assumption under GLS as indicated by the approximately zero values of p(R2=1)

and p(Q = 0). Overall, the specification test results indicate that all the eight models examined have the possibility of being

misspecified. Therefore, it is necessary to perform statistical analysis under the assumption of misspecified models.8

7We obtain the monthly returns of the testing portfolios from Kenneth French’s website.
8We also conduct the specification tests using the 25 ME-Mom portfolios and the 32 ME-Inv-OP portfolios (results untabulated). For the 25 ME-Mom

portfolios, only S2 with R2 test, PS4inn and FF5 with F-test pass the test when adopting the OLS method. Applying the 32 ME-Inv-OP portfolios, C4 can pass
the null hypothesis test with both OLS and GLS methods, and S2 can not be rejected by the R2 test from the OLS estimation.

10



Table 2

Specification tests of models.

S2 LCAPM PS4inn PS4trd FF3 C4 FF5 HXZ4

Panel A: OLS

R̂2 0.491 0.396 0.682 0.687 0.642 0.733 0.741 0.697
p(R2 = 1) 0.078 0.000 0.001 0.000 0.000 0.084 0.000 0.000
Q̂ 0.180 0.113 0.076 0.088 0.104 0.062 0.076 0.095
p(Q = 0) 0.000 0.000 0.002 0.000 0.000 0.019 0.001 0.000

Panel B: GLS

R̂2 0.235 0.118 0.279 0.264 0.223 0.346 0.252 0.226
p(R2 = 1) 0.000 0.000 0.001 0.000 0.000 0.005 0.000 0.000
Q̂ 0.175 0.117 0.078 0.094 0.103 0.076 0.088 0.095
p(Q = 0) 0.000 0.000 0.002 0.000 0.000 0.002 0.000 0.000

Note: This table reports results of testing whether a model is correctly specified using sample R2 (R̂2) and F-test statistics (Q̂). The test assets are the monthly returns on the 25

ME-BE/ME portfolios. The p-values of p(R2=1) and p(Q = 0) are for the null hypothesis that a model is correctly identified (i.e., R2 = 1 or Q = 0). We report both the OLS (Panel

A) and GLS (Panel B) cross-sectional regression results. The symbol S2 stands for the Sadka (2006) two-factor model, PS4trd for the FF3 extended by the PS traded liquidity factor,

and PS4inn for the FF3 extended by the PS non-traded liquidity factor.

4.1.2. Risk premiums related to betas

To test whether investors price the risk captured by a proposed factor, we investigate the premium associated with the

loading (i.e., beta) on the factor. A significant premium implies that the factor risk is priced by the market. Table 3 presents

the risk premium (γ) estimates (see equations (3) and (4)) under both OLS and GLS methods. To make inferences, we use the

misspecified t-ratio of Kan et al. (2013), tKRS. For comparison, we also present Shanken (1992) t-ratio (tS ) under the assumption

of correct model specification. For the four liquidity factors examined, the OLS estimates in Panel A show that the trading-

discontinuity-based liquidity risk factor of the LCAPM produces positive and statistically significant risk premium of 0.762%

(tKRS = 3.037). The evidence suggests that investors require a high return to compensate for bearing liquidity risk. In contrast,

other liquidity factors (i.e., the two Pástor–Stambaugh factors of PSinn and PStrd, and the Sadka factor of SF) show weak pricing

ability because the corresponding risk premium estimates are statistically insignificant at the conventional level based on both

tS and tKRS. For the non-liquidity factors examined, factor risk premium estimates associated with HML, ME, RMW and IA are

positive and statistically significant at the 5% level of significance. However, risks related to SMB, SMB∗, CMA and ROE are not

priced because the associated premium estimates are insignificant. Among all factors, the misspecified model assumption shows

obvious effect on the momentum factor, UMD. While the loading on UMD shows significant premium with the tS of 3.58, the

misspecified-robust tKRS of 1.5 indicates insignificant pricing power of UMD. The large difference between tS and tKRS suggests

that UMD has low correlation with the returns of test assets.9 Consistent with early studies (e.g., Kan et al., 2013; Jagannathan

and Wang, 1996; Petkova, 2006), we find that the loading on the market factor MKT is negatively related to expected return in

most model specifications (except for C4). The GLS estimates presented in Table 3, Panel B, largely mirror the OLS results of

Panel A with exceptions associated with ME and RMW, which turn to be insignificant to predict returns.

9According to Kan et al. (2013), for factors that have low correlation with test assets, the tKRS of γ has an obvious change in comparison with tS .
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Table 3
Beta risk premium estimates based on the 25 ME-BE/ME portfolios.

Models γ̂0 γ̂MKT γ̂SMB γ̂SMB∗ γ̂HML γ̂UMD γ̂RMW γ̂CMA γ̂ME γ̂IA γ̂ROE γ̂LF γ̂PS inn
γ̂PStrd

γ̂SF

Panel A: OLS

LCAPM 1.405 −0.334 0.762
(2.134) (−0.664) (3.114)
[2.051] [−0.649] [3.037]

PS4inn 1.515 −0.578 0.107 0.339 1.898
(3.949) (−1.696) (0.833) (2.808) (1.582)
[3.526] [−1.562] [0.807] [2.749] [1.254]

PS4trd 1.470 −0.568 0.118 0.364 1.628
(3.540) (−1.596) (0.921) (2.993) (1.812)
[3.276] [−1.479] [0.908] [3.021] [1.419]

S2 2.014 −0.979 0.222
(2.510) (−1.451) (1.161)
[2.253] [−1.325] [1.019]

FF3 1.621 −0.678 0.090 0.368
(4.512) (−2.062) (0.696) (3.036)
[4.210] [−1.935] [0.700] [3.025]

C4 0.803 0.171 0.106 0.404 2.583
(1.093) (0.403) (0.812) (3.284) (3.580)
[0.630] [0.248] [0.785] [3.364] [1.500]

FF5 1.409 −0.519 0.227 0.329 0.504 −0.093
(3.281) (−1.435) (1.785) (2.732) (2.829) (−0.474)
[2.848] [−1.286] [1.786] [2.668] [2.146] [−0.378]

HXZ4 1.256 −0.358 0.274 0.377 0.411
(2.704) (−0.969) (2.019) (3.161) (1.861)
[2.452] [−0.898] [1.980] [3.203] [1.825]

Panel B: GLS

LCAPM 1.508 −0.571 0.577
(4.089) (−1.727) (3.032)
[3.156] [−1.423] [2.878]

PS4inn 1.800 −0.860 0.147 0.332 1.491
(5.529) (−2.731) (1.162) (2.776) (1.641)
[4.870] [−2.479] [1.159] [2.751] [1.090]

PS4trd 1.687 −0.766 0.151 0.347 1.060
(4.999) (−2.415) (1.190) (2.906) (1.797)
[4.358] [−2.157] [1.192] [2.897] [1.159]

S2 2.362 −1.372 0.198
(7.563) (−3.889) (1.900)
[6.585] [−3.485] [1.213]

FF3 1.797 −0.865 0.150 0.339
(5.817) (−2.843) (1.182) (2.841)
[5.246] [−2.632] [1.184] [2.826]

C4 1.328 −0.381 0.152 0.349 1.755
(3.072) (−1.063) (1.197) (2.920) (3.018)
[2.311] [−0.834] [1.196] [2.913] [1.885]

FF5 1.666 −0.749 0.195 0.341 0.272 0.177
(4.844) (−2.336) (1.550) (2.857) (1.773) (1.007)
[4.111] [−2.060] [1.557] [2.817] [1.293] [0.731]

HXZ4 1.716 −0.800 0.248 0.249 0.287
(4.936) (−2.465) (1.867) (2.232) (1.497)
[4.247] [−2.203] [1.827] [2.112] [1.336]

Note: Based on the 25 ME-BE/ME portfolios, this table presents the risk premium estimates associated with the factor loadings (betas) for eight pricing models. The reported γ̂
estimates are in percentage. Numbers in parentheses are the Shanken (1992) t-ratios (tS ) under correct model specification, and numbers in square brackets are the misspecification-
robust t-ratios of Kan et al. (2013) (tKRS). The t-ratio of γ̂0 is to examine the null hypothesis that the zero-beta rate is equal to zero.

Table 4
Covariance risk price estimates based on the 25 ME-BE/ME portfolios.

Models λ̂0 λ̂MKT λ̂SMB λ̂SMB∗ λ̂HML λ̂UMD λ̂RMW λ̂CMA λ̂ME λ̂IA λ̂ROE λ̂LF λ̂PS inn
λ̂PStrd

λ̂SF

Panel A: OLS

LCAPM 0.014 2.950 9.064
(2.134) (0.685) (1.989)
[2.051] [0.673] [1.970]

PS4inn 0.015 −5.798 2.458 3.459 7.582
(3.949) (−2.259) (1.438) (1.947) (1.767)
[3.526] [−1.822] [1.263] [1.688] [1.348]

PS4trd 0.015 −2.695 2.952 3.080 14.138
(3.540) (−1.304) (1.722) (1.680) (1.777)
[3.276] [−1.163] [1.679] [1.571] [1.375]

S2 0.020 −5.994 61.304
(2.510) (−1.952) (1.298)
[2.253] [−1.869] [1.125]

FF3 0.016 −3.299 2.996 3.638
(4.512) (−1.785) (1.928) (2.192)
[4.210] [−1.680] [1.934] [2.156]

C4 0.008 4.696 1.881 11.635 16.113
(1.093) (1.553) (0.997) (3.929) (3.551)
[0.630] [0.816] [0.890] [2.139] [1.564]

FF5 0.014 −3.279 6.599 8.896 10.847 −13.236
(3.281) (−1.252) (3.465) (1.815) (2.504) (−1.273)
[2.848] [−1.075] [3.282] [1.355] [1.923] [−0.987]

HXZ4 0.013 −0.062 6.039 11.520 8.310
(2.704) (−0.024) (3.006) (2.364) (1.976)
[2.452] [−0.022] [3.014] [2.220] [1.859]

Panel B: GLS

LCAPM 0.015 −0.587 4.399
(4.089) (−0.203) (1.338)
[3.156] [−0.158] [1.065]

PS4inn 0.018 −7.077 3.552 2.861 6.508
(5.529) (−3.192) (2.194) (1.662) (2.004)
[4.870] [−2.517] [1.968] [1.465] [1.310]

PS4trd 0.017 −3.937 3.756 2.784 9.136
(4.999) (−2.165) (2.363) (1.635) (1.748)
[4.358] [−1.862] [2.283] [1.603] [1.127]

S2 0.024 −7.829 57.123
(7.563) (−4.050) (2.128)
[6.585] [−3.647] [1.350]

FF3 0.018 −4.544 4.022 2.974
(5.817) (−2.643) (2.641) (1.820)
[5.246] [−2.441] [2.570] [1.809]

C4 0.013 0.271 3.320 7.873 10.551
(3.072) (0.110) (2.014) (3.230) (2.918)
[2.311] [0.077] [1.882] [2.296] [1.879]

FF5 0.017 −3.639 5.331 3.293 6.061 −1.463
(4.844) (−1.617) (2.971) (0.760) (1.710) (−0.161)
[4.111] [−1.319] [2.744] [0.539] [1.341] [−0.113]

HXZ4 0.017 −3.624 5.771 4.731 5.215
(4.936) (−1.676) (3.073) (1.106) (1.455)
[4.247] [−1.470] [2.968] [1.006] [1.276]

Note: Based on the 25 ME-BE/ME portfolios, this table presents the covariance risk price estimates (λ̂) for the factors of the eight models. Numbers in parentheses are the Shanken
(1992) t-ratios (tS ) under correct model specification, and numbers in square brackets are the misspecification-robust t-ratios of Kan et al. (2013) (tKRS).
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4.1.3. The covariance risk price estimates using the 25 ME-BE/ME portfolios

According to Kan et al. (2013), to examine a factor’s ability in improving models’ explanatory power, one can test whether

the covariance risk price (λ) associated with the factor of interest is statistically significant, see equations (7) and (8). Table

4 reports the covariance risk prices for all the 14 factors examined. The OLS results in Panel A show that the factors that

contribute to models’ explanation power are HML (in FF3 and C4), SMB∗, ME, IA, and LF, as indicated by their significant

covariance risk prices based on misspecification-robust t-ratios, tKRS. The significance of the covariance risk prices associated

with UMD, RMW, and ROE is sensitive to the test assumptions. It appears that the three factors improve the models’ explanatory

power based on the Shanken (1992) t-ratio, but they fail to add significant power to the models’ return explanation based on

the misspecification-robust t-ratios of Kan et al. (2013), tKRS. All the remaining factors generate insignificant covariance risk

prices, indicating that they have limited contribution to explain asset returns. With the GLS estimates of Panel B, the tKRS

statistic reveals that the size factor (SMB∗ and ME) is the only one resulting in the significant covariance risk price estimate

at the 5% level. The results are somewhat inconsistent with the empirical observation that the size premium disappears in the

recent years. We will perform a sub-period analysis later.

4.2. Tests with alternative portfolios

Statistical inferences drawn from pricing model tests are sensitive to the choice of testing asset portfolios. For instance,

Fama and French (2015) find that adding the momentum factor to the FF3 produces trivial change in model performance except

when the testing portfolios are formed on momentum. As a result, we further test the beta risk premium and the covariance

risk premium using two alternative sets of testing portfolios: the 25 size-momentum (ME-Mom) portfolios and the 32 size-

investment-profitability (ME-Inv-OP) portfolios.

4.2.1. The testing results based on the 25 ME-Mom portfolios

Tables 5 and 6 present the factor risk premium and covariance risk price estimated based on the 25 ME-Mom portfolios.

Similar to the results from the 25 ME-BE/ME portfolios, Table 5 shows that among the four liquidity factors, only the one of the

LCAPM (18) shows significant pricing ability with the γ estimates at 0.913% (tKRS = 3.94) and 0.436% (tKRS = 2.466) under

the OLS and GLS methods. By inspecting the covariance risk price estimates reported in Table 6, the liquidity risk factor of the

LCAPM (18) also yields significant λ estimates with both OLS and GLS at 12.964 (tKRS = 2.49) and 7.416 (tS = 2.353). Based

on the tKRS statistics, the PS and Sadka factors again show no significant covariance risk price estimates. The insignificant

estimates of γ and λ associated with the PS and Sadka factors are consistent with other studies. Also, in line with Fama and

French (2015), the momentum factor UMD shows significant pricing power against the 25 size-momentum portfolios. Moreover,

both the beta risk premium and covariance risk price estimates related to ROE are statistically significant, coinciding with the
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argument of Hou et al. (2017) that ROE helps to explain the momentum effect. Finally, the rest of the factors such as SMB,

HML, RMW, and IA exhibit less robust pricing power.

4.2.2. The testing results based on the 32 ME-Inv-OP portfolios

Based on the 32 portfolios formed on size, investment and profitability, we estimate the beta premium γ and the covariance

risk price λ for each of the eight pricing models. These testing portfolios could provide supportive evidence to find significant

estimates of the beta risk premium and covariance risk price associated with the investment and profitability factors. Results in

Tables 7 and 8 show that it is indeed the case. The factors of CMA, IA, RMW and ROE perform well against these ME-Inv-OP

portfolios and yield significant estimates of beta risk premium (γ) and covariance risk price (λ). For the liquidity factors, the

LF of the LCAPM (18) again is the only one that shows statistically significant γ and λ estimates. In addition, the market factor

MKT and the size factor SMB show insignificant pricing ability, and the γ and λ estimates related to UMD and HML (except for

FF5) are significant against these 32 testing portfolios.

4.2.3. Excess return analysis

In this subsection, we impose the theoretical restriction that the zero-beta rate is equal to the risk-free rate. Specifically, for

each factor model, we estimate beta risk premium (γ) and covariance risk price (λ) with the following equations:

E(Ri − R f ) =

K∑
k=1

βi,kγk, (19)

E(Ri − R f ) =

K∑
k=1

cov(Ri, fk)λk. (20)

Similar to the above evidence, untabulated results show that among the four liquidity factors, only the LCAPM-based

liquidity risk premiums are statistically significant under the three sets of portfolios. The momentum factor UMD also shows

significant pricing ability among the non-liquidity risk factors. In addition, with excess returns on the left-hand side, the γ and

λ estimates associated with the market factor MKT are positive and statistically significant in some model specifications, in line

with the evidence of Kan et al. (2013).

Our results so far reveal that the price-impact-based liquidity factors of Pástor and Stambaugh (2003) and Sadka (2006)

generate insignificant liquidity risk premium, in line with early studies of Fama and French (2015, 2016), and Hou et al. (2017).

The possible reason is that the price impact, which captures one of the multidimensions of liquidity, is inaccurate to proxy

for liquidity and fails to produce a robust liquidity premium, as Pástor and Stambaugh (2003) and Ben-Rephael et al. (2015)

showed. Consistent with our conjecture that different liquidity factors constructed with different liquidity measures can perform

differently, the liquidity risk factor of the LCAPM (18), which is constructed with the trading-discontinuity-based measure that
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Table 5
Risk premium estimates based on the 25 ME-Mom portfolios.

Models γ̂0 γ̂MKT γ̂SMB γ̂SMB∗ γ̂HML γ̂UMD γ̂RMW γ̂CMA γ̂ME γ̂IA γ̂ROE γ̂LF γ̂PS inn
γ̂PStrd

γ̂SF

Panel A: OLS

LCAPM 1.174 −0.128 0.913
(1.842) (−0.272) (3.732)
[1.380] [−0.221] [3.940]

PS4inn 2.686 −1.493 0.354 −1.130 4.499
(3.660) (−2.462) (2.236) (−2.597) (3.222)
[2.551] [−1.727] [1.870] [−1.821] [1.320]

PS4trd 2.754 −1.578 0.284 −0.755 −0.833
(4.678) (−3.145) (1.990) (−2.485) (−1.074)
[3.758] [−2.510] [1.991] [−2.275] [−0.343]

S2 1.353 −0.329 0.330
(2.418) (−0.689) (1.647)
[1.955] [−0.583] [1.622]

FF3 2.832 −1.652 0.270 −0.755
(5.057) (−3.426) (1.891) (−2.518)
[4.441] [−2.916] [1.923] [−2.291]

C4 0.515 0.455 0.072 0.591 0.717
(0.233) (0.850) (0.477) (1.698) (4.006)
[0.155] [0.606] [0.408] [1.100] [3.944]

FF5 0.475 0.491 0.349 −0.379 0.226 0.984
(0.151) (0.882) (2.375) (−0.994) (0.649) (2.651)
[0.135] [0.799] [2.258] [−0.696] [0.393] [1.582]

HXZ4 0.448 0.457 0.414 0.186 0.666
(0.114) (0.903) (2.967) (0.719) (3.759)
[0.086] [0.727] [2.828] [0.585] [2.870]

Panel B: GLS

LCAPM 0.902 0.097 0.436
(1.791) (0.287) (2.523)
[1.319] [0.222] [2.466]

PS4inn 2.070 −1.044 0.388 −0.574 1.665
(4.987) (−2.820) (2.768) (−2.205) (1.901)
[3.485] [−2.067] [2.609] [−1.536] [1.053]

PS4trd 1.909 −0.902 0.341 −0.347 −0.456
(4.861) (−2.572) (2.488) (−1.524) (−0.788)
[3.318] [−1.872] [2.431] [−1.191] [−0.450]

S2 1.282 −0.288 −0.076
(3.697) (−0.859) (−0.865)
[3.295] [−0.808] [−0.608]

FF3 1.951 −0.942 0.338 −0.352
(5.105) (−2.728) (2.474) (−1.549)
[3.516] [−2.005] [2.397] [−1.200]

C4 1.344 −0.370 0.260 0.052 0.653
(2.519) (−0.916) (1.868) (0.190) (3.682)
[1.547] [−0.600] [1.651] [0.121] [3.622]

FF5 1.351 −0.382 0.372 −0.542 0.291 0.556
(2.515) (−0.940) (2.691) (−1.842) (1.098) (1.923)
[1.892] [−0.727] [2.754] [−1.513] [0.731] [1.396]

HXZ4 0.765 0.140 0.409 0.208 0.677
(1.101) (0.376) (2.994) (1.118) (4.073)
[0.805] [0.293] [2.953] [0.832] [3.213]

Note: This table presents the risk premium estimates based on the 25 ME-Mom portfolios for eight pricing models. We report parameter estimates γ̂ (%), the Shanken (1992) t-ratio
under correctly specified models (tS in parentheses), and the misspecification-robust t-ratio of Kan et al. (2013) (tKRS in square brackets). The t-ratio of γ̂0 is to examine the null
hypothesis that the excess zero-beta rate is equal to zero.

Table 6
Covariance risk price estimates based on the 25 ME-Mom portfolios.

Models λ̂0 λ̂MKT λ̂SMB λ̂SMB∗ λ̂HML λ̂UMD λ̂RMW λ̂CMA λ̂ME λ̂IA λ̂ROE λ̂LF λ̂PS inn
λ̂PStrd

λ̂SF

Panel A: OLS

LCAPM 0.012 5.948 12.964
(1.842) (1.413) (2.777)
[1.380] [1.146] [2.490]

PS4inn 0.027 −18.599 4.161 −17.451 18.141
(3.660) (−3.413) (1.619) (−2.589) (3.419)
[2.551] [−2.182] [1.268] [−1.705] [1.414]

PS4trd 0.028 −11.093 5.356 −12.322 −7.042
(4.678) (−3.288) (2.702) (−2.566) (−1.021)
[3.758] [−2.632] [2.276] [−1.998] [−0.327]

S2 0.014 −3.301 85.407
(2.418) (−1.345) (1.683)
[1.955] [−1.121] [1.636]

FF3 0.028 −11.467 5.277 −12.880
(5.057) (−3.518) (2.695) (−2.786)
[4.441] [−2.926] [2.257] [−2.334]

C4 0.005 4.787 0.988 10.982 5.940
(0.233) (1.214) (0.489) (1.897) (3.530)
[0.155] [0.813] [0.404] [1.224] [2.235]

FF5 0.005 9.295 5.517 −34.575 16.029 68.080
(0.151) (2.051) (1.642) (−3.883) (1.810) (3.948)
[0.135] [1.600] [1.163] [−2.841] [1.119] [2.488]

HXZ4 0.004 4.154 7.391 9.880 14.346
(0.114) (1.017) (3.662) (0.940) (4.360)
[0.086] [0.769] [3.205] [0.715] [2.738]

Panel B: GLS

LCAPM 0.009 4.243 7.416
(1.791) (1.453) (2.353)
[1.319] [1.076] [1.869]

PS4inn 0.021 −10.759 5.233 −9.102 7.348
(4.987) (−3.563) (2.835) (−2.366) (2.299)
[3.485] [−2.224] [2.321] [−1.544] [1.223]

PS4trd 0.019 −6.528 5.266 −5.652 −3.898
(4.861) (−2.865) (3.087) (−1.686) (−0.763)
[3.318] [−1.998] [2.506] [−1.191] [−0.434]

S2 0.013 −1.050 −17.976
(3.697) (−0.621) (−0.803)
[3.295] [−0.570] [−0.561]

FF3 0.020 −6.749 5.274 −6.008
(5.105) (−3.000) (3.108) (−1.818)
[3.516] [−2.088] [2.502] [−1.303]

C4 0.013 −1.843 3.934 1.617 3.529
(2.519) (−0.640) (2.283) (0.372) (2.577)
[1.547] [−0.391] [1.793] [0.228] [1.697]

FF5 0.014 1.209 7.520 −27.727 13.537 43.712
(2.515) (0.373) (2.747) (−4.267) (2.086) (3.434)
[1.892] [0.295] [2.331] [−3.162] [1.401] [2.526]

HXZ4 0.008 2.320 7.899 8.934 14.083
(1.101) (0.827) (4.202) (1.240) (4.515)
[0.805] [0.579] [3.881] [0.860] [3.099]

Note: This table presents the covariance risk price estimates based on the 25 ME-Mom portfolios for eight pricing models. We report parameter estimates λ̂, the Shanken (1992)
t-ratio under correctly specified models (tS in parentheses), and the misspecification-robust t-ratio of Kan et al. (2013) (tKRS in square brackets).
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Table 7
Factor-loading-related risk premiums estimated using the 32 ME-Inv-OP portfolios.

Models γ̂0 γ̂MKT γ̂SMB γ̂SMB∗ γ̂HML γ̂UMD γ̂RMW γ̂CMA γ̂ME γ̂IA γ̂ROE γ̂LF γ̂PS inn
γ̂PStrd

γ̂SF

Panel A: OLS

LCAPM 1.168 −0.192 1.769
(1.687) (−0.384) (4.420)
[1.666] [−0.384] [4.226]

PS4inn 1.562 −0.622 0.057 0.553 2.249
(4.195) (−1.879) (0.435) (3.490) (1.742)
[2.954] [−1.441] [0.432] [3.157] [1.138]

PS4trd 1.748 −0.813 0.028 0.599 −0.474
(4.827) (−2.466) (0.211) (3.896) (−0.757)
[3.407] [−1.907] [0.208] [3.325] [−0.269]

S2 2.077 −1.096 0.448
(3.308) (−1.933) (1.754)
[2.990] [−1.797] [1.548]

FF3 1.709 −0.782 0.035 0.615
(4.915) (−2.433) (0.268) (4.016)
[3.442] [−1.858] [0.265] [3.594]

C4 0.327 0.612 −0.024 0.775 3.085
(−0.159) (1.379) (−0.181) (4.411) (4.552)
[−0.080] [0.744] [−0.175] [3.849] [2.083]

FF5 0.852 0.056 0.148 0.397 0.342 0.350
(1.762) (0.175) (1.183) (2.279) (3.604) (4.073)
[1.214] [0.134] [1.174] [1.972] [3.317] [4.173]

HXZ4 0.561 0.333 0.278 0.418 0.720
(0.587) (0.979) (2.092) (4.667) (3.888)
[0.417] [0.742] [2.092] [4.533] [3.322]

Panel B: GLS

LCAPM 0.937 −0.002 0.945
(2.102) (−0.006) (3.553)
[1.474] [−0.004] [2.411]

PS4inn 1.142 −0.224 0.055 0.617 0.154
(3.289) (−0.770) (0.427) (4.153) (0.176)
[2.669] [−0.672] [0.419] [3.831] [0.096]

PS4trd 1.121 −0.211 0.058 0.627 0.422
(3.152) (−0.718) (0.445) (4.199) (0.801)
[2.538] [−0.626] [0.438] [3.868] [0.476]

S2 1.628 −0.664 0.182
(5.133) (−1.965) (1.666)
[4.151] [−1.758] [0.912]

FF3 1.145 −0.229 0.054 0.618
(3.310) (−0.787) (0.420) (4.165)
[2.681] [−0.687] [0.412] [3.848]

C4 0.219 0.702 0.031 0.741 2.753
(−0.498) (1.798) (0.239) (4.447) (4.659)
[−0.442] [1.599] [0.236] [4.097] [3.728]

FF5 0.803 0.116 0.150 0.435 0.338 0.385
(1.676) (0.381) (1.198) (2.608) (3.603) (4.503)
[1.399] [0.336] [1.181] [2.284] [3.482] [4.466]

HXZ4 0.557 0.352 0.300 0.469 0.789
(0.608) (1.081) (2.285) (5.397) (4.500)
[0.525] [0.956] [2.224] [5.530] [4.418]

Note: This table presents the beta risk premium (γ) estimates based on the 32 size-investment-profitability (ME-Inv-OP) portfolios for eight pricing models. Numbers in parentheses
are the Shanken (1992) t-ratios under correctly specified models (tS ), and numbers in square brackets are the misspecification-robust t-ratios of Kan et al. (2013) (tKRS). The t-ratio
for γ̂0 tests the null hypothesis that the excess zero-beta rate is equal to zero.

Table 8
Covariance risk price estimates based on the 32 ME-Inv-OP portfolios.

Models λ̂0 λ̂MKT λ̂SMB λ̂SMB∗ λ̂HML λ̂UMD λ̂RMW λ̂CMA λ̂ME λ̂IA λ̂ROE λ̂LF λ̂PS inn
λ̂PStrd

λ̂SF

Panel A: OLS

LCAPM 0.012 12.023 25.556
(1.687) (1.934) (3.072)
[1.666] [1.875] [3.035]

PS4inn 0.016 −6.036 2.218 6.121 8.909
(4.195) (−2.194) (1.271) (2.569) (1.923)
[2.954] [−1.739] [1.021] [2.165] [1.256]

PS4trd 0.017 −3.490 2.954 6.569 −4.489
(4.827) (−1.785) (1.846) (2.984) (−0.812)
[3.407] [−1.330] [1.678] [2.533] [−0.292]

S2 0.021 −7.717 119.455
(3.308) (−2.858) (1.857)
[2.990] [−2.826] [1.658]

FF3 0.017 −3.282 2.959 6.617
(4.915) (−1.730) (1.868) (3.034)
[3.442] [−1.254] [1.689] [2.544]

C4 0.003 9.025 0.164 18.720 20.295
(−0.159) (2.756) (0.079) (5.022) (4.624)
[−0.080] [1.387] [0.058] [2.858] [1.995]

FF5 0.009 2.870 3.852 −0.215 10.342 11.969
(1.762) (1.408) (2.374) (−0.055) (4.213) (2.359)
[1.214] [1.019] [2.109] [−0.047] [3.343] [2.290]

HXZ4 0.006 4.907 6.338 16.965 14.827
(0.587) (2.152) (3.372) (4.449) (4.067)
[0.417] [1.547] [3.175] [3.377] [3.247]

Panel B: GLS

LCAPM 0.009 7.318 14.437
(2.102) (2.038) (2.952)
[1.474] [1.313] [1.840]

PS4inn 0.011 −0.477 2.018 7.791 0.845
(3.289) (−0.232) (1.305) (3.700) (0.273)
[2.669] [−0.162] [1.157] [3.332] [0.148]

PS4trd 0.011 −0.042 2.055 7.771 3.401
(3.152) (−0.024) (1.333) (3.668) (0.732)
[2.538] [−0.020] [1.229] [3.294] [0.436]

S2 0.016 −4.225 49.662
(5.133) (−2.420) (1.783)
[4.151] [−2.144] [0.992]

FF3 0.011 −0.168 2.074 7.801
(3.310) (−0.098) (1.354) (3.708)
[2.681] [−0.081] [1.248] [3.356]

C4 0.002 8.990 0.531 17.860 18.397
(−0.498) (3.099) (0.269) (5.202) (4.790)
[−0.442] [2.599] [0.246] [3.946] [3.170]

FF5 0.008 3.445 3.748 −0.165 10.486 13.269
(1.676) (1.762) (2.316) (−0.044) (4.361) (2.710)
[1.399] [1.523] [2.120] [−0.037] [3.900] [2.496]

HXZ4 0.006 5.363 6.926 18.884 16.221
(0.608) (2.458) (3.684) (5.098) (4.677)
[0.525] [2.167] [3.293] [4.519] [4.322]

Note: This table presents the covariance risk price (λ) estimates based on the 32 size-investment-profitability (ME-Inv-OP) portfolios for eight pricing models. Numbers in parentheses
are the Shanken (1992) t-ratios under correctly specified models (tS ), and numbers in square brackets are the misspecification-robust t-ratios of Kan et al. (2013) (tKRS).
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captures multidimensions of liquidity and yields a robust premium, shows significant liquidity risk/beta premium regardless of

which test statistic, which estimation method, and which set of testing portfolios we use. Covariances of asset returns with

the liquidity risk factor of the LCAPM (18) also show the improvement of the factor to explain stock returns based on any set

of testing portfolios and estimation methods except for the GLS estimate against the 25 ME-ME/BE portfolios. Nevertheless,

the covariance risk premiums of all other factors (except for the size factor) are also insignificant based on the GLS estimates

with the 25 ME-ME/BE portfolios (see Table 4). We also find consistent evidence with Fama and French (2015) that the

firm characteristics-based factors such as momentum, investment, and profitability factors show good performance against the

test portfolios formed on these characteristics. Given the two-factor LCAPM (18) that includes no firm-characteristics-based

factors, which some of them are present in the three-, four-, and five-factor models examined, the significant liquidity risk

premium estimate from the LCAPM against these three sets of testing portfolios provides supportive evidence that liquidity risk

is priced and important for asset pricing.

5. Model performance

In this section, we assess the performance of liquidity-risk-based models in comparison with non-liquidity-risk-based pricing

models based on the squared Sharpe ratio metric, Sh2( f ). First, we construct comparison tests according to the methods proposed

by Barillas and Shanken (2017) and Barillas et al. (2019). Second, we use the Monte Carlo simulation method to check the

robustness of the results. Third, we analyze each factor’s marginal contribution in improving models’ Sh2( f ).10

5.1. Model comparison tests based on the squared Sharpe ratio metric, Sh2( f )

Table 9 presents the results of pairwise comparison test (Panel A) and multiple model comparison test (Panel B) based

on Sh2( f ).11 We observe the top two Sh2( f ) values from the HXZ4 and the LCAPM at 0.169 and 0.133 (see Panel B). The

difference between the top two Sh2( f ) values reported in Panel A is insignificant at 0.037 (p-value = 0.361), indicating that

the HXZ4 and the LCAPM are comparable. The Sh2( f ) differences in Panel A also show that the LCAPM is comparable with

the FF5 (the former has a larger Sh2( f ) than the latter, but the difference is insignificant). In addition, the Sh2( f ) value from

the LCAPM is significantly higher at the 10% level than the ones obtained from the FF3, C4, and the PS4trd. The multiple

model comparison tests with the likelihood ratio (LR) statistics in Panel B provide a consistent picture of the performance of

10The methods of Barillas et al. (2019) are suitable for comparing models with traded factor(s). Thus, we exclude the non-traded factors of Pástor and
Stambaugh (2003) and Sadka (2006).

11Panel A of table 9 presents the bias-adjusted difference in the maximum squared Sharpe ratios between every pair of competitive models. The corresponding
p-value (in parentheses) has different interpretations depending on whether a model is nested relative to its counterpart. Specifically, for the comparison of
nested models, the corresponding p-value is used to determine if the regression intercept of the extra factor on the nested model is zero; whereas for non-nested
models, we report the normal test p-value based on the proposition of Barillas et al. (2019). We also perform the sequence test of Barillas et al. (2019) and
obtain qualitatively similar results, which are untabulated.
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competing models. Of all the models investigated, we only fail to reject the null hypotheses that the LCAPM performs as good

as the HXZ4 and as good as the FF5. Other tests show better performance of the LCAPM relative to the FF3, the C4, and the

PS4trd.

Table 9

Model comparison tests based on the squared Sharpe ratio metric, Sh2( f )

Panel A: Pairwise model comparison

Model PS4trd C4 FF5 LCAPM HXZ4

diff p-value diff p-value diff p-value diff p-value diff p-value

FF3 0.009 (0.015) 0.041 (0.000) 0.061 (0.004) 0.097 (0.001) 0.134 (0.000)
PS4trd 0.032 (0.141) 0.052 (0.027) 0.089 (0.004) 0.125 (0.001)
C4 0.020 (0.446) 0.056 (0.073) 0.093 (0.001)
FF5 0.037 (0.258) 0.073 (0.004)
LCAPM 0.037 (0.361)

Panel B: Multiple model comparison

Model Sh2( f ) n LR p-value

FF3 0.035 3 21.698 0.000
PS4trd 0.044 4 16.021 0.000
C4 0.076 4 12.349 0.002
FF5 0.096 4 9.318 0.008
LCAPM 0.133 4 0.834 0.355
HXZ4 0.169 4 0.000 0.740

Note: Panel A reports the difference (diff) between the Sh2( f ) values of the models in column i and row j. The p-value (in parentheses) is to test the null that the two competing

models have the same Sh2( f ). Panel B reports the results of multiple model comparison tests. In Panel B, the column labeled n shows the number of competing models in each

non-nested model comparison, and the last column shows that p-values corresponding to the likelihood ratio (LR) statistics.

5.2. Monte Carlo simulation results

In order to avoid the influence of the sample selection on our results, in this subsection we undertake a Monte Carlo

simulation test procedure for robustness. In our simulation designs, the factor values are drawn from a normal distribution,

where the mean and variance of the simulated factors are set to the sample mean and variance estimated from the data. The

number of time series observations is set to 600, which is equal to the actual sample size of 600 monthly observations, and all

results are based on 100,000 Monte Carlo replications. Table 10 reports the simulation results. Panel A shows that the mean

and median of the Sh2( f ) difference are similar to the actual sample Sh2( f ) difference for each pairwise comparison. Consistent

with the evidence in Table 9, the two largest Sh2( f ) values are again observed from the HXZ4 and the LCAPM (see Table 10,

Panel B). The LCAPM outperforms the FF5 and the C4 in 77.9% and 94.6% of simulation runs, and outperforms the PS4trd and

the FF3 in 99.8% and 100% of simulation runs. For the multiple model comparison tests, the Monte Carlo simulation results

in Panel B of Table 10 show that the HXZ4 and the LCAPM take the first place among the competing models in 99.97% and

88.29% of the simulation runs. In contrast, the remaining models rank first in no more than 24.76% of simulation runs. Overall,

the Monte Carlo simulation results show consistent evidence that the HXZ4 and the LCAPM perform better than other pricing

models based on the Sh2( f ) metric.
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Table 10

Monte Carlo simulation results.

Panel A: Pairwise model comparison

Model PS4trd C4 FF5 LCAPM HXZ4

Average Median % > 0 Average Median % > 0 Average Median % > 0 Average Median % > 0 Average Median % > 0

FF3 0.012 0.011 100.0 0.045 0.043 100.0 0.069 0.067 100.0 0.095 0.094 100.0 0.140 0.138 100.0
PS4trd 0.033 0.032 96.0 0.057 0.055 99.5 0.083 0.081 99.8 0.127 0.125 100.0
C4 0.024 0.023 82.1 0.049 0.049 94.6 0.094 0.093 100.0
FF5 0.026 0.026 77.9 0.070 0.069 99.9
LCAPM 0.045 0.044 86.6

Panel B: Multiple model comparison

Model Sh2( f ) % > 0

FF3 0.041 0.01
PS4trd 0.051 2.95
C4 0.084 12.37
FF5 0.106 24.76
LCAPM 0.137 88.29
HXZ4 0.178 99.97

Note: Panel A reports the average and median of the Sh2( f ) differences between the models in column i and row j from 100,000 simulations. Panel A also shows the percentage of the

simulation runs in which the difference is positive (% > 0). Panel B reports the simulation results of multiple model comparison tests. The column labeled % > 0 in Panel B shows

the percentage of the simulation runs in which the model dominates competing models.

5.3. The marginal contribution of factors to Sh2( f )

According to Barillas and Shanken (2017), when adding factor i to model f , there is an increase in model f ’s Sh2( f ), and

the increase is factor i’s marginal contribution to Sh2( f ). This increment is calculated by

Sh2( f , i) − Sh2( f ) = a2
i /σ

2
i , (21)

where ai is the intercept in the spanning regression of factor i on the factor(s) of model f , and σi is the standard deviation of the

regression residuals. For empirical tests, to assess factor i’s marginal contribution, we find ai and σi of equation (21) by running

the regression of factor i on the remaining factors. Because of the high correlations between the FF5 factors and the HXZ4

factors, we conduct our analysis separately based on two groups of factors: (i) the FF5 factors plus the non-HXZ4 factors; and

(ii) the HXZ4 factors plus the non-FF5 factors.

Table 11, Panel A shows the results of regressing each of the eight factors (MKT , SMB∗, HML, RMW, CMA, UMD, PStrd

and LF) on the remaining seven factors. Regressing LF on other seven factors produces a significant intercept of 0.6% per

month (t = 5.647), and the corresponding marginal contribution is 0.061, which is the second largest contributor to Sh2( f ).

The largest marginal contribution to Sh2( f ) stems from the market factor, which is expected. After all, all the models examined

are the extensions to the CAPM. The PS traded factor, PStrd, also has a significant intercept of 0.4% per month (t = 2.428)

with a marginal contribution to Sh2( f ) of 0.012, which is the third lowest among the eight factors. The intercepts estimates

of RMW, CMA, and UMD are also significant, but the size factor and the book-to-market factor show insignificant intercept

estimates and trivial marginal contributions to Sh2( f ). This is in accord with the fact that the size effect has disappeared since
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its documentation. The weak performance of HML is in line with Fama and French (2018) who find that HML is negligible.

Table 11

A factor’s marginal contributions to the squared Sharpe ratio Sh2( f ).

Panel A: Pooled regressions consist of MKT , SMB∗, HML, UMD, RMW, CMA, LF and PStrd

Factor a LF PStrd MKT SMB∗ HML RMW CMA UMD t(a) R2 s(e) Sh2( f ) a2/s2(e)

LF 0.006 0.003 −0.424 0.098 0.175 0.133 0.215 0.123 5.647 0.515 0.024 0.207 0.061
PStrd 0.004 0.006 −0.007 −0.004 0.073 −0.019 −0.052 −0.008 2.428 −0.009 0.034 0.207 0.012
MKT 0.011 −0.768 −0.006 0.246 0.138 −0.121 −0.418 0.015 7.836 0.490 0.032 0.207 0.112
SMB∗ 0.002 0.132 −0.002 0.183 0.002 −0.458 −0.063 −0.007 1.223 0.171 0.028 0.207 0.003
HML −0.000 0.117 0.024 0.051 0.001 0.131 0.963 −0.141 −0.201 0.544 0.019 0.207 0.000
RMW 0.003 0.094 −0.007 −0.047 −0.240 0.139 −0.293 0.044 3.371 0.191 0.020 0.207 0.022
CMA 0.002 0.067 −0.008 −0.072 −0.014 0.450 −0.129 0.039 3.041 0.564 0.013 0.207 0.018
UMD 0.004 0.348 −0.011 0.023 −0.015 −0.598 0.178 0.357 2.507 0.129 0.040 0.207 0.013

Panel B: Pooled regressions consist of MKT , ME, IA , ROE, UMD, LF and PStrd

Factor a LF PStrd MKT ME IA ROE UMD t(a) R2 s(e) Sh2( f ) a2/s2(e)

LF 0.006 0.006 −0.445 0.076 0.389 0.005 0.098 5.703 0.494 0.024 0.262 0.065
PStrd 0.004 0.012 −0.006 −0.054 0.030 −0.175 0.032 2.850 0.003 0.034 0.262 0.017
MKT 0.011 −0.785 −0.005 0.235 −0.244 −0.097 0.020 7.749 0.482 0.032 0.262 0.115
ME 0.003 0.099 −0.037 0.175 −0.108 −0.456 0.128 2.589 0.171 0.028 0.262 0.014
IA 0.004 0.183 0.007 −0.065 −0.039 −0.031 −0.021 4.824 0.201 0.017 0.262 0.047
ROE 0.005 0.004 −0.065 −0.039 −0.245 −0.046 0.286 5.259 0.352 0.020 0.262 0.056
UMD −0.000 0.218 0.038 0.025 0.217 −0.099 0.901 −0.225 0.288 0.036 0.262 0.000

Note: Panel A reports the results of the eight factors: the FF5 factors plus the non-HXZ4 factors. Panel B reports the results of the seven factors: the HXZ4 factors plus the non-FF5

factors. For each Panel, we regress each factor on the remaining factors included in the panel. We report the regression intercept estimates (a), t-ratios of the intercept estimates (t(a)),

slope coefficients, R2, standard errors of regression residuals (s(e)), the maximum squared Sharpe ratio (Sh2( f )), and the marginal contribution of each factor to Sh2( f ) (a2/s2(e)).

Table 11, Panel B reports the results of the seven factors, i.e., the HXZ4 factors plus the non-FF5 factors (MKT , ME, IA,

ROE, UMD, PStrd and LF). Similar to the results of Panel A, LF, the liquidity risk factor of the LCAPM (18), once again

has a significant intercept estimate of 0.6% (t = 5.703) per month and produces the largest marginal contribution of 0.065

to Sh2( f ) among all non-market factors. The size factor ME of HXZ4 also has the second lowest marginal contribution to

Sh2( f ), mirroring the size factor of the FF5 in Panel A. Compared with Panel A, a major difference is that the momentum factor

UMD has an insignificant intercept estimate and makes little marginal contribution to Sh2( f ), which appears consistent with the

argument of Hou et al. (2017) that the profitability factor helps to explain the momentum premium.

Overall, the results related to the squared Sharpe ratio (Sh2( f )) in this section show that the LCAPM (18) performs no

worse but generally better than other models examined. The liquidity risk factor LF of the LCAPM yields the largest marginal

contribution in improving models’ Sh2( f ) among all competing factors. The evidence provides support for the significant

liquidity risk premium found in the previous section and for the importance of liquidity risk in asset pricing.

6. Market conditions and subperiods

Previous studies show that changes in market liquidity are closely related to economic conditions (Pástor and Stambaugh

2003; Liu, 2006; Kamara et al., 2008; Hameed et al., 2010; Næs et al., 2011; Switzer and Picard, 2016). Thus, we perform
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further tests by considering different economic conditions and subperiods. We only focus on the liquidity risk-based models to

save space. To further ascertain the uniqueness of liquidity risk, we also extend the FF5 respectively by each of the liquidity

factors examined in this study. We conduct the tests using the 25 ME-BE/ME portfolios and report the OLS estimates of the

factor loading premiums (γ).

6.1. Market conditions and pricing factors/models

We use stock market excess return (Rm − R f ) and stock market volatility (Varm) to proxy for market conditions.12 Table 12

shows that liquidity risk estimated with the LCAPM (18) is significantly priced during the down market (Panel A). The LCAPM-

based liquidity risk premium is also significant at the 10% and 5% levels in both the low- and high-volatility markets (Panel

B). Highly priced liquidity risk during the down market and the market turmoil is consistent with the economic intuition, i.e.,

investors require a high premium in bad times. Other liquidity factors/models, on the other hand, generally show insignificant

liquidity risk premium regardless of whether we classify the market conditions based on the stock market performance or on the

stock market volatility. For the subperiod results, Table 12, Panel C shows that the estimated liquidity risk premiums associated

with the PS traded factor PStrd and the trading-discontinuity-based factor of the LCAPM are significant in the first half of the

sample period. However, the estimated risk premiums related to all risk factors including the FF5 factors tend to be insignificant

in the second half of the sample period. Furthermore, we examine the pricing performance of liquidity factors after controlling

for the FF5 factors (after controlling for the HXZ4 factors, we obtain the similar results, which are not tabulated). Consistently,

the liquidity risk premiums associated with the liquidity risk factor of the LCAPM (18) remain statistically significant after

controlling for the FF5 factors during the down and high-volatility markets. In fact, the risk premium estimates associated with

the FF5 factors are all insignificant during the high-volatility market, indicating that the liquidity risk factor of the LCAPM (18)

captures different information from the FF5 factors. For the two PS liquidity factors and the Sadka factor, they again do not yield

significant liquidity risk premiums after controlling for the FF5 factors, further indicating that the trading-discontinuity-based

liquidity factor of the LCAPM (18) differs from the PS and the Sadka factors. Moreover, we examine the impact of the January

effect on our results by excluding January returns. Untabulated results show that removing January returns from our sample

does not alter our inferences.

Table 12

Factor loading premium estimated with the 25 ME-BE/ME portfolios.

Models γ̂0 γ̂MKT γ̂SMB γ̂SMB∗ γ̂HML γ̂RMW γ̂CMA γ̂LF γ̂PSinn γ̂PStrd γ̂SF

Panel A: Up and down markets

12The excess market return (Rm − R f ) is the return of the CRSP value-weighed NYSE/AMEX/ARCA/NASDAQ stock market index in excess of the one-
month T-bill rate. We use Rm − R f to distinguish the up-market (i.e., Rm − R f > 0) from the down-market (i.e., Rm − R f < 0). Market volatility (Varm) is the
realized return variance of the stock market obtained from Amit Goyal’s website. We divide the market into high- and low-volatility periods according to the
median of the Varm series.
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Table 12 (continued)
Models γ̂0 γ̂MKT γ̂SMB γ̂SMB∗ γ̂HML γ̂RMW γ̂CMA γ̂LF γ̂PSinn γ̂PStrd γ̂SF

Up market, i.e. Rm − R f > 0

LCAPM −0.021 4.073 −0.988
[−0.183] [1.973] [−1.594]

PS4inn 1.313 2.454 0.711 −0.166 −0.985
[1.734] [4.649] [4.271] [−1.116] [−0.514]

PS4trd 1.242 2.506 0.716 −0.177 −0.143
[1.683] [4.928] [4.345] [−1.182] [−0.086]

S2 1.948 2.107 0.663
[0.915] [1.319] [0.681]

FF5+LF 2.315 1.391 0.793 −0.178 −0.192 −0.484 −1.525
[2.447] [1.780] [4.801] [−1.177] [−0.714] [−1.139] [−5.445]

FF5+PSinn 1.331 2.408 0.745 −0.199 −0.123 −0.385 −1.558
[1.444] [3.693] [4.400] [−1.305] [−0.350] [−0.545] [−0.699]

FF5+PStrd 1.408 2.303 0.763 −0.199 −0.041 −0.630 0.080
[1.492] [3.389] [4.589] [−1.323] [−0.126] [−0.878] [0.039]

FF5+SF 1.852 1.899 0.577 −0.245 0.102 −0.916 0.420
[1.634] [2.118] [2.628] [−1.216] [0.198] [−0.775] [1.230]

Down market, i.e. Rm − R f < 0

LCAPM 0.714 −4.011 2.728
[0.420] [−5.283] [5.939]

PS4inn 1.142 −4.628 −0.760 1.151 −2.008
[1.078] [−6.295] [−3.837] [5.755] [−0.852]

PS4trd 1.470 −4.946 −0.786 1.185 −1.143
[1.431] [−6.243] [−3.931] [5.569] [−0.579]

S2 1.738 −4.880 −0.235
[1.123] [−3.729] [−0.298]

FF5+LF −0.621 −2.771 −0.568 1.185 1.531 0.480 2.437
[−1.497] [−3.884] [−2.681] [5.643] [3.032] [1.250] [6.662]

FF5+PSinn 0.562 −4.092 −0.549 1.139 0.880 1.162 −3.195
[0.217] [−5.084] [−2.411] [5.574] [1.561] [2.827] [−1.018]

FF5+PStrd 0.738 −4.216 −0.529 1.139 1.055 1.255 −2.144
[0.456] [−5.381] [−2.505] [5.272] [2.089] [2.870] [−1.281]

FF5+SF −0.368 −3.250 −0.369 1.016 1.696 1.431 −0.788
[−0.725] [−2.760] [−1.434] [3.523] [3.612] [3.115] [−1.715]

Panel B: Low- and high-volatility markets

Low-volatility market

LCAPM 0.949 0.670 0.512
[0.835] [0.959] [1.753]

PS4inn 0.953 0.510 0.211 0.411 0.665
[1.609] [1.314] [1.445] [2.979] [0.172]

PS4trd 1.144 0.293 0.274 0.399 2.382
[1.916] [0.670] [1.872] [2.966] [1.906]

S2 2.715 −0.749 0.232
[3.355] [−1.025] [0.473]

FF5+LF 1.146 0.286 0.314 0.437 0.266 −0.451 −0.353
[0.756] [0.280] [2.155] [3.176] [0.998] [−1.386] [−1.285]

FF5+PSinn 0.731 0.708 0.319 0.415 0.410 −0.384 −2.250
[0.611] [1.237] [2.080] [2.856] [1.351] [−1.085] [−0.411]

FF5+PStrd 1.204 0.231 0.313 0.432 0.222 −0.492 2.129
[1.548] [0.425] [2.079] [3.179] [0.975] [−1.481] [1.861]

FF5+SF 1.929 −0.117 0.214 0.521 0.545 −0.926 0.057
[2.327] [−0.170] [1.153] [2.807] [1.410] [−1.812] [0.237]

High-volatility market

LCAPM 1.407 −0.901 1.000
[1.322] [−1.125] [2.482]

PS4inn 2.002 −1.566 −0.022 0.274 2.121
[3.300] [−2.656] [−0.100] [1.348] [1.421]

PS4trd 2.165 −1.732 −0.043 0.337 0.510
[3.668] [−2.976] [−0.202] [1.660] [0.365]

S2 1.567 −1.234 0.223
[1.086] [−1.111] [0.798]

FF5+LF 1.397 −0.990 0.071 0.246 0.636 0.272 0.851
[1.455] [−1.278] [0.347] [1.223] [1.604] [0.693] [2.546]

FF5+PSinn 1.807 −1.403 0.073 0.249 0.548 0.208 0.951
[2.477] [−2.129] [0.350] [1.231] [1.480] [0.453] [0.443]

FF5+PStrd 1.624 −1.212 0.073 0.249 0.552 0.437 −0.575
[2.520] [−2.038] [0.353] [1.215] [1.542] [0.940] [−0.383]

FF5+SF 1.920 −1.602 0.019 0.155 0.667 0.142 0.096
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Table 12 (continued)
Models γ̂0 γ̂MKT γ̂SMB γ̂SMB∗ γ̂HML γ̂RMW γ̂CMA γ̂LF γ̂PSinn γ̂PStrd γ̂SF

[2.443] [−2.154] [0.078] [0.613] [1.790] [0.350] [0.403]

Panel C: Subperiods

1/1968-12/1992

LCAPM 1.708 −0.643 0.800
[2.932] [−1.235] [3.094]

PS4inn 0.647 0.345 0.116 0.504 3.483
[0.470] [0.538] [0.656] [3.126] [1.826]

PS4trd 0.699 0.265 0.086 0.515 2.003
[0.657] [0.486] [0.491] [3.238] [2.509]

S2 2.610 −1.345 −0.119
[3.452] [−1.627] [−0.333]

FF5+LF 0.190 0.816 0.163 0.529 0.570 −0.137 0.323
[−0.237] [0.900] [0.861] [3.238] [2.310] [−0.337] [1.121]

FF5+PSinn 0.479 0.505 0.174 0.530 0.432 −0.202 2.679
[0.168] [0.830] [0.921] [3.220] [1.555] [−0.531] [1.474]

FF5+PStrd 0.405 0.574 0.153 0.532 0.576 −0.014 1.565
[0.027] [1.030] [0.790] [3.289] [2.421] [−0.042] [1.937]

FF5+SF 1.858 −0.591 −0.161 0.419 0.860 −0.504 0.150
[2.377] [−0.876] [−0.713] [1.738] [3.186] [−1.235] [0.655]

1/1993-12/2017

LCAPM 1.888 −0.841 0.225
[1.962] [−1.048] [0.492]

PS4inn 1.808 −0.894 0.095 0.228 −0.233
[4.444] [−2.172] [0.494] [1.236] [−0.148]

PS4trd 1.728 −0.839 0.112 0.220 0.309
[4.078] [−2.003] [0.589] [1.200] [0.379]

S2 1.477 −0.541 0.256
[1.235] [−0.585] [1.351]

FF5+LF 2.747 −1.872 0.163 0.239 0.177 0.217 0.418
[3.002] [−2.334] [0.899] [1.312] [0.554] [0.681] [1.279]

FF5+PSinn 1.840 −0.941 0.172 0.209 0.440 −0.051 −0.020
[2.755] [−1.591] [0.948] [1.144] [1.517] [−0.147] [−0.011]

FF5+PStrd 1.954 −1.089 0.189 0.217 0.438 −0.174 0.670
[2.555] [−1.598] [1.056] [1.189] [1.524] [−0.397] [0.537]

FF5+SF 2.075 −1.267 0.223 0.293 0.540 −0.069 0.099
[2.889] [−1.930] [1.051] [1.360] [1.462] [−0.164] [0.448]

Note: This table presents the premium estimates associated with the factor loadings. In addition to the original liquidity-risk-based models, our tests also add each of the liquidity

factors to the FF5. The symbol S2 stands for the Sadka (2006) two-factor model, FF5+PStrd for the FF5 extended by the PS traded liquidity factor, and similarly for others. Number

in square brackets are the Kan et al.(2013) t-statistics (tKRS).

6.2. Can competing models explain the liquidity risk factor of the LCAPM (18)?

The previous results suggest that the trading-discontinuity-based liquidity risk factor (LF) and the corresponding LCAPM

perform well relative to other liquidity-risk- and non-liquidity-risk-based models. This raises the natural question: Can com-

peting models explain LF? To address this question, we regress LF on each model’s factors across different economic states

and over two subperiods. A non-zero regression intercept implies that liquidity risk captured by LF has the explanatory power

beyond other factors.

Table 13, Panel A shows that all the five models fail to subsume the trading-discontinuity-based liquidity risk factor (LF) of

the LCAPM (18) over each of the two subperiods. After adjusting for the factors within HXZ4, for instance, the LF remains

significant at 0.5% (t = 3.364) per month over 1968–1992 and 0.9% (t = 6.06) per month over 1993–2017. By inspecting the

results in Panels B and C, all the competing models considered are again not able to account for LF across up and down markets
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as well as high- and low-volatility markets. Consistent with the economic intuition, the price of liquidity risk is high during

market downturns. For example, after adjusting for the FF5, the LF alpha is 0.9% (t = 4.126) per month in the up market,

whereas it is 1.8% (t = 7.945) in the down market.13 Overall, the evidence suggests that the liquidity risk factor of the LCAPM

(18) is robust to any competing models considered. Liquidity risk captured by the liquidity risk factor (LF) of the LCAPM has

the unique power beyond the existing factors to describe the cross-section of average stock returns.

Table 13

Results of regressing LF of the LCAPM on each other model’s factors.

Model α MKT SMB SMB∗ HML UMD RMW CMA ME IA ROE PStrd R2 (%)
Panel A: Subperiods

1/1968–12/1992

FF3 0.005 −0.365 0.273 0.395 52.4
(4.046) (−11.989) (5.988) (7.852)

C4 0.005 −0.365 0.282 0.404 0.033 52.4
(3.667) (−11.990) (6.041) (7.875) (0.892)

FF5 0.003 −0.328 0.303 0.307 0.374 0.390 54.7
(2.127) (−10.728) (6.766) (4.260) (3.832) (3.658)

HXZ4 0.005 −0.347 0.229 0.505 −0.159 49.3
(3.364) (−10.960) (4.677) (5.708) (−2.541)

PS4trd 0.005 −0.354 0.285 0.367 0.142 54.2
(3.871) (−11.781) (6.340) (7.336) (3.501)

1/1993–12/2017

FF3 0.011 −0.623 −0.109 0.118 56.7
(7.393) (−18.025) (−2.369) (2.438)

C4 0.009 −0.548 −0.138 0.184 0.198 62.7
(6.712) (−16.188) (−3.208) (3.992) (6.924)

FF5 0.010 −0.598 −0.154 0.052 −0.029 0.215 57.6
(6.925) (−14.759) (−2.963) (0.787) (−0.403) (2.267)

HXZ4 0.009 −0.545 −0.048 0.290 0.182 58.8
(6.060) (−14.106) (−1.050) (4.049) (3.093)

PS4trd 0.011 −0.617 −0.107 0.115 −0.043 56.8
(7.468) (−17.637) (−2.310) (2.383) (−1.087)

Panel B: Up and down markets

Up market, i.e. Rm − R f > 0

FF3 0.009 −0.563 0.053 0.257 32.3
(4.310) (−10.965) (1.214) (5.126)

C4 0.006 −0.484 0.070 0.343 0.167 37.9
(2.860) (−9.489) (1.679) (6.820) (5.744)

FF5 0.009 −0.540 0.060 0.127 0.090 0.275 33.1
(4.126) (−10.457) (1.246) (1.908) (1.240) (2.677)

HXZ4 0.008 −0.545 0.088 0.416 0.097 32.9
(3.549) (−10.549) (1.867) (5.383) (1.838)

PS4trd 0.009 −0.562 0.054 0.259 −0.027 32.2
(4.323) (−10.939) (1.231) (5.154) (−0.644)

Down market, i.e. Rm − R f < 0

FF3 0.019 −0.261 0.105 0.194 16.0
(8.236) (−5.329) (1.930) (3.797)

C4 0.018 −0.259 0.104 0.206 0.059 16.4
(7.800) (−5.295) (1.915) (3.986) (1.453)

FF5 0.018 −0.197 0.111 0.042 0.225 0.299 21.8
(7.945) (−3.938) (2.075) (0.614) (3.534) (2.906)

HXZ4 0.018 −0.193 0.089 0.381 0.098 18.6
(8.048) (−3.782) (1.674) (4.407) (1.456)

PS4trd 0.019 −0.262 0.106 0.194 0.016 15.7
(8.113) (−5.331) (1.931) (3.783) (0.379)

Panel C: Low- and high-volatility markets

Low-volatility market

13We also regress the traded PS factor (PStrd). Untabulated results show that, except for the full sample period and the high-volatility period, PStrd can be
captured by most of the competing models.
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Table 13 (continued)
Model α MKT SMB SMB∗ HML UMD RMW CMA ME IA ROE PStrd R2 (%)
FF3 0.010 -0.552 -0.001 0.311 47.6

(7.919) (-13.594) (-0.027) (5.800)
C4 0.010 -0.550 0.003 0.332 0.071 47.9

(7.147) (-13.547) (0.063) (6.027) (1.590)
FF5 0.010 -0.515 0.038 0.186 0.211 0.327 49.0

(7.317) (-12.246) (0.734) (2.397) (2.275) (2.885)
HXZ4 0.011 -0.554 -0.017 0.440 -0.042 47.2

(7.658) (-13.444) (-0.314) (5.390) (-0.607)
PS4trd 0.011 -0.566 -0.020 0.311 -0.124 48.8

(8.237) (-13.996) (-0.404) (5.866) (-2.864)

High-volatility market

FF3 0.006 -0.471 0.114 0.207 49.6
(3.854) (-14.847) (2.381) (4.081)

C4 0.005 -0.431 0.114 0.270 0.159 53.8
(3.301) (-13.780) (2.495) (5.401) (5.331)

FF5 0.004 -0.427 0.138 0.044 0.192 0.286 51.5
(2.573) (-12.604) (2.754) (0.669) (2.997) (2.793)

HXZ4 0.004 -0.432 0.145 0.356 0.154 51.3
(2.280) (-13.056) (3.040) (4.334) (2.810)

PS4trd 0.006 -0.473 0.109 0.202 0.050 49.6
(3.628) (-14.896) (2.280) (3.969) (1.195)

Note: Numbers in parentheses are t-statistics.

7. Conclusion

Although researchers and practitioners has long recognized the importance of liquidity risk, recent literature appears to

overlook its role played in asset pricing. The neglect is largely derived from the use of the price-impact-based liquidity factor of

Pástor and Stambaugh (2003) as a representative to assess the explanatory power of liquidity risk. We argue that neglecting the

power of liquidity risk to explain expected stock returns may be premature because there are other liquidity risk factors proposed

in the literature. Thus, this paper first evaluates three liquidity risk factors/models developed by Pástor and Stambaugh (2003),

Sadka (2006), and Liu (2006). The evidence shows that the trading-discontinuity-based liquidity risk factor of Liu (2006)

exhibits significant pricing power and the corresponding LCAPM (18) performs well in explaining the cross-section of expected

stock returns. In contrast, the price-impact-based liquidity factors/models of Pástor and Stambaugh (2003) and Sadka (2006)

lack significant pricing ability. Then, we investigate the performance of the LCAPM in comparison with the commonly used

and newly developed non-liquidity-risk-based models such as the Fama–French three- and five-factor models. The results reveal

that the LCAPM is also preferable to the non-liquidity models examined. Consistent with the economic intuition, liquidity risk

captured by the LCAPM reflects changes in the business cycle. We further demonstrate the irreplaceability of liquidity risk

by showing that the information captured by the trading-discontinuity-based liquidity risk factor cannot be subsumed by all

other factors/models, indicating that the power of liquidity risk goes beyond the existing factors/models to explain asset returns.

Our evidence indicates that the unimportance of liquidity risk the recent studies reveal is an overgeneralization from the use

of only one of the liquidity factors in the model performance evaluation. Overall, the results presented in this paper verify the

importance of liquidity risk in asset pricing, identify the LCAPM as an adequate model, and underscore the practical relevance
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of liquidity risk for corporate investment appraisal, portfolio construction, performance evaluation, and financial economics

research such as tests of market efficiency.
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