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t

019, a novel coronavirus, the SARS-CoV-2 outbreak was identified in Wuhan, China and later sp

ner of the globe. Whilst the number of infection-induced deaths in Ghana, West Africa are minim

d with the rest of the world, the impact on the local health service is still significant. Compar

re a useful framework for investigating transmission of diseases in societies. To understand h

will spread and how to limit the outbreak. We have developed a modified SEIR compartmenta

e compartments (CoVCom9) to describe the dynamics of SARS-CoV-2 transmission in Ghana. W

ut a detailed mathematical analysis of the CoVCom9, including the derivation of the basic repro

R0. In particular, we have shown that the disease-free equilibrium is globally asymptotically stab

via a candidate Lyapunov function. Using the SARS-CoV-2 reported data for confirmed-positi

hs from March 13 to August 10, 2020, we have parametrised the CoVCom9 model. The results o

d agreement with data. We used Latin hypercube sampling-rank correlation coefficient (LHS-PR

te the uncertainty and sensitivity of R0 since the results derived are significant in controlling the s

oV-2. We estimate that over this five month period, the basic reproduction number is given by R0 =

95% confidence interval being 2.042 ≤ R0 ≤ 3.240, and the mean value being R0 = 2.623. O

ers in the model, we find that just six have a significant influence on R0, these include the rate of

increasing testing rate contributes to the reduction of R0.

ds: Transmission model, SARS-CoV-2, Uncertainty, Sensitivity, Mathematical analysis, Monte

st squares.

duction

ecent COVID-19 pandemic has caused a devastating burden on the global economy. Since there

widely-available vaccines to bring down or reduce the infection levels on the susceptible human pop

sponding authors
addresses: Edward.Acheampong1@nottingham.ac.uk/eoacheampong@ug.edu.gh (Edward Acheampong),
re@uenr.edu.gh (Eric Okyere), siddi@ug.edu.gh (Samuel Iddi), KBonney@noguchi.ug.edu.gh (Joseph H. K. Bon
Wattis@nottingham.ac.uk (Jonathan A. D. Wattis), Rachel.Gomes@nottingham.ac.uk (Rachel L. Gomes),
ua@gmail.com (Joshua Kiddy K. Asamoah)
ubmitted to XXXX December 27, 2021



Journal Pre-proof

many go such as

wearing e use of

hand san mission

of COVI

Math of infec-

tious dis lization

rate, qua e model

formulat lps esti-

mate the ther the

infection

Nonli ynamics

of infecti nying et

al. [24] h Wuhan

which ca rapidly;

Abou-Ism here we

give a br

Buon e effects

of inform c model

with non [27] to

examine odel to

estimate pidemic

is used t ion and

isolation ase-free

equilibriu s of the

deadly C rformed

a out glo

A no d global

stability ined by

Ivorra et lapping

classes: s ar et al.

[34], inve disease

in some

The ntioned

above ha tinguish

between . In this

present s ividuals

suspecte firmed-

positive d by Q
Jo
ur

na
l P

re
-p

ro
of

vernmental decision-makers worldwide have resorted to intensive non-pharmaceutical interventions

of face-masks, social distancing, cleaning of suspected infected surfaces, avoiding crowded places, th

itizers. These non-pharmaceutical interventions have significantly helped to reduce the risk of trans

D-19.

ematical and statistical modelling tools are important in providing key epidemiological parameters

eases such as infection or transmission rate, recovery rate, incubation period, isolation and hospita

rantine rate, disease-induced death rate, vaccination rate (with other factors depending on th

ion)[1]. Using mathematical models, parametrised to confirmed reported cases of infection, he

basic reproduction number, R0 which is a crucial epidemiological parameter that determines whe

persists in the population or dies out [2–6].

near mathematical models have significantly contributed to the understanding of transmission d

ous diseases, see, e.g., [7–11], and the recent COVID-19 pandemic is of no exception [12–23]. Qia

ave proposed and studied a data-driven SEIR type epidemic for the recent COVID-19 outbreak in

ptures the effects of governmental actions and individuals’ behaviour. This literature is growing

ail [25] has reviewed the fundamentals in SIR/SEIR modelling of the recent COVID-19 outbreak;

ief overview of literature relevant to our work.

omo [26] describes a susceptible-infected-recovered-infected compartmental model to investigate th

ation-dependent vaccination behavior on COVID-19 infections. A simple SEIR COVID-19 epidemi

linear incidence rates that capture governmental control has been designed by Rohith and Devika

the dynamics of the infectious disease in India. Pang et al. [28] parametrise a nonlinear SEIHR m

the value and sensitivity of R0 using data from Wuhan from December 31st, 2019. A classic SEIR e

o study the spreading dynamics of the 2019 coronavirus disease in Indonesia [29] using vaccinat

as model parameters. They constructed a Lyapunov function to conduct global stability of the dise

m point. A data-driven epidemiological model that examines the effect of delay in the diagnosi

OVID-19 disease is formulated and studied by Rong et al. [30], who estimate parameters and pe

bal sensitivity analysis of their model parameters on R0.

nlinear SEIQR COVID-19 epidemic model is introduced by Zeb et al. [31] who present a local an

analysis for their model. The spread of COVID-19 in China due to undetected infections in is exam

al. [32]. Chen et al. [33] propose a model based on dividing the total population into five non-over

usceptible, exposed, infected (symptomatic infection), asymptomatic infected, and recovered. Sard

stigate the effects of lockdown using an SEIR model. Using reported cases of this highly infectious

cities and the whole of India, they performed a global sensitivity analysis on the computed R0.

exposed and infectious epidemiological classes used in formulating infectious diseases models me

ve been left as abstract concepts. In reality, especially regarding SARS-CoV-2, it is hard to dis

individuals exposed to or infected with SARS-CoV-2, due to the presence of asymptomatic carriers

tudy, we introduce two epidemiological classes, which are: (1) an identified group of exposed ind

d to be carriers of SARS-CoV-2 (denoted by Q); and, (2) individuals who have been clinically con

for SARS-CoV-2 (denoted by P ). Those identified as suspected exposed individuals are denote
2
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they are quarantined as required by the COVID-19 protocols in Ghana. Likewise, confirmed-p

treated as infectious individuals who have clinically tested positive for SARS-CoV-2. Introducin

ns in the epidemiological classes for SARS-CoV-2 is vital for gaining an understanding of its trans

s within the Ghanaian population. Using published data from March 13 to August 10, 2020

ametrised our model using a Monte Carlo-least squares technique together with information deriv

e.

urpose of this research is to investigate the transmission dynamics of SARS-CoV-2 in Ghana usin

cific epidemiological classes to estimate the basic reproduction number, R0. We have used Latin-Hy

-Partial Rank Correlation Coefficient (LHS-PRCC) technique to quantify the uncertainty in R0 a

fy those parameters to which R0 is most sensitive. We have organised the subsequent sections of th

s: in Section 2 we present a detailed formulation of an epidemiological model of SARS-CoV-2 trans

a, together with corresponding mathematical analysis of the positivity and boundedness of solu

n of the basic reproduction number, and global stability analysis of the disease-free equilibrium, w

Section 3. Section 4 is dedicated to parameter estimation and numerical simulation. The uncertai

y analysis of R0 and its implications are presented in Section 5, together with some simulations pr

future dynamics of the epidemic. Finally, we give a brief discussion and conclusion of the study in

ulation of the model

artmental models are useful means of qualitatively understanding the dynamics of disease transm

population [1, 36]. In formulating our compartmental model to gain insight into COVID-19 trans

s, the total human population is divided into nine distinct epidemiological classes which are sum

1. The numbers of individuals in each category is treated as a continuous variable, the classe

le, S(t), exposed, E(t), infectious, I(t), quarantined Q(t), confirmed-positive P (t), hospitalised

ward H(t), hospitalised in the intensive care unit C(t), self-isolation F (t) and recovered, R(t). T

of individuals in the population is thus given by

N(t) = S(t) + E(t) + I(t) +Q(t) + P (t) +H(t) + C(t) + F (t) +R(t).
3
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ble 1

scription of the variables of the CoVCom9 model.

Variable Description

N Total population

S Susceptible individuals

E Exposed individuals

I Infectious individuals

Q Quarantined individuals

P Comfirmed-positive individuals

H Hospitalised at ordinary ward individuals

C Hospitalised at intensive care individuals

F Self-isolation individuals

R Recovered individuals

ransmission diagram for the model of COVID-19 involving nine compartments. See Tables 1 and 2 for explanatio

s and variables used in the model, respectively.

e 1 summarises the dynamic processes by which individuals pass from one class to another. The

s (S) represents individuals not exposed to the SARS-CoV-2 virus, and the exposed class (E) re

ls that have recently been exposed to the SARS-CoV-2 virus so are still in the incubation period

hers (that is, asymptomatic individuals). An individual in an exposed class can infect another per

obability lower than an individual in the infectious class (I). This rate of infection is given by the n
4
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f which depends on the parameters ϕ, α1, α2, α3, β1, β2, β3. Individuals in an infectious class sho

s and have high infectivity. These individuals have not yet been clinically confirmed-positive, a

d the disease to the susceptibles. Individuals in class (Q) are quarantined, that is, individuals iden

contact with an infected individual and so might be carrying the SARS-CoV-2 virus (but this has

firmed), this class also includes individuals not infected with SARS-CoV-2 but are quarantined as

ement of COVID-19 protocols. These individuals may either enter the susceptible class if test is co

or to the confirmed-positive class if confirmed to be infected.

iduals in the confirmed-positive class (P ) are carriers of the SARS-CoV-2 virus who have had

tion of this status. These individuals may either enter the intensive care hospitalised class, or be a

dinary hospitalised class or enter the self-isolated class after this period. The rates of the these p

ned by the parameters γ1, v1, ρ1, ρ2, ρ3. The individuals in the ordinary Hospitalised class shows so

ss due to infection that need to be cared for at the ordinary ward. Though there is chance of enter

class, these individuals’ conditions may deteriorate causing them to enter the intensive care hosp

dividuals move between these categories with rates determined by κ2, κ3, δ2, η. These individuals

er individuals who become exposed through close contact. Individuals in intensive care (C) can st

ividuals and have a high risk of dying (rates dj) although improved care conditions may allow tra

ary ward (H, at rate η).

iduals in the self-isolated class (F ) are on medication at home and can still infect other individuals

ls (F ) may either enter the recovered class (R, at rate δ1) or enter the ordinary hospitalised class (

als who have recovered from SARS-CoV-2 virus enter into the recovered class (R) but can be re-

re is no life-long immunity, hence there is a flux from R to S with rate parameter τ . We assu

ls in all the compartments can die of COVID-19 (rates dj) in addition to natural death (rate µ) w

of the susceptible compartment with only natural death. A summary of all the parameter defin

Table 2.
5
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ion of the CoVCom9 model parameters.

Parameters Description

Λ Recruitment rate

µ Natural death rate

ϕ Transmission rate of infectious individuals (I)

α1 Probability of transmission of exposed individuals (E)

α2 Probability of transmission of quarantined individuals (Q)

α3 Probability of transmission of confirmed-positive infectious individuals (P )

β1 Probability of transmission of hospitalised at ordinary ward individuals (H)

β2 Probability of transmission of hospitalised at intensive care individuals (C)

β3 Probability of transmission of self-isolation at home individuals (F )

ε1 Progression rate of exposed individuals to infectious class per day

ε2 Progression rate of exposed individuals to quarantined class per day

γ1 Progression rate of infectious individuals to confirmed-positive per day

γ2 Recovery rate of infectious individuals per day

υ1 Progression rate of quarantined individuals (Q) to confirmed cases (P ) per

day

υ2 Progression rate of quarantined individuals (Q) to susceptible cases per day

ρ1 Progression rate of confirmed-positive infectives individuals (P ) to hospital

class (H) per day

ρ2 Progression rate of confirmed-positive (P ) to intensive care class (C) per day

ρ3 Progression rate of confirmed-positive (P ) to self-isolation at home (F ) class

per day

κ1 Recovery rate of hospitalised (H) individual per day

κ2 Progression rate of hospitalised (ordinary, H) to intensive care (C) per day

κ3 Progression rate of hospitalised (ordinary ward, H) to self-isolation at home

(F ) class per day

δ1 Recovery rate of self-isolation at home individual per day

δ2 Progression rate of self-isolation at home (F ) to hospitalised at ordinary ward

(H) class per day

η Progression rate of intensive care to ordinary ward class per day

τ Progression rate of recovery individuals to susceptible class per day

d1 Disease-induced death rate of exposed individuals per day

d2 Disease-induced death rate of infectious individuals per day

d3 Disease-induced death rate of quarantined individuals per day

d4 Disease-induced death rate of confirmed-positive individuals per day

σ5 Disease-induced death rate of intensive care individuals per day

δ6 Disease-induced death rate of self-isolated (F ) cases per day

d7 Disease-induced death rate of hospitalised individuals per day

tandard form of incidence which is formulated from the basic principles that effective transmissi

pendent of the population size N for human diseases is used in this study [7, 36]. This princ

wn in many studies to be a plausible assumption [7]. If α is the average number of sufficient cont
6
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sion of an individual per unit time, then αI/N is the average number of contacts with infectives

ne susceptible, and (αI/N)S is the incidence. That is, the number of new cases per unit time at tim

tibles S(t) becoming infected [7]. We use ϕ to denote the effective transmission rate from an in

l while α1, α2, α3, β1, β2 and β3 denote the transmission probabilities, of exposed individuals, quar

ls, confirmed-positive individuals, ordinary hospitalised individuals, intensive care hospitalised indi

isolated individual, respectively. All these probabilities lie between zero and one. The incidence is t

f(S,E, I,Q, P,H,C, F ) = ϕ

(
α1E + I + α2Q+ α3P + β1H + β2C + β3F

N

)
S.

OVID-19 model (CoVCom9) is obtained by ‘translating’ the compartmental model summarised in

ne coupled ordinary differential equations

dS

dt
= Λ + υ2U + τR− f(S,E, I,Q, P,H,C, F )− µS,

dE

dt
= f(S,E, I,Q, P,H,C, F )− (ε1 + ε2 + µ+ d1)E,

dI

dt
= ε1E − (γ1 + γ2 + µ+ d2)I,

dQ

dt
= ε2E − (υ1 + υ2 + µ+ d3)Q,

dP

dt
= γ1I + υ1Q− (ρ1 + ρ2 + ρ3 + µ+ d4)P,

dH

dt
= ρ1P + ηC + δ2Q− (κ1 + κ2 + κ3 + µ+ d5)H,

dC

dt
= ρ2P + κ2H − (η + µ+ d6)C,

dF

dt
= ρ3P + κ3H − (δ1 + δ2 + µ+ d7)F,

dR

dt
= γ2I + κ1H + δ1F − (τ + µ)R,

0. These are solved subject to the initial conditions

S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,

Q(0) = Q0 ≥ 0, P (0) = P0 ≥ 0, H(0) = H0 ≥ 0,

C(0) = C0 ≥ 0, F (0) = F0 ≥ 0, R(0) = R0 ≥ 0.

aper, we will use the acronym CoVCom9 to indicate the nine compartments of the model of SARS

sion pattern in Ghana given by Equation (3). The epidemiologically feasible region of interest of th

domain defined by

Ω =

{
(S(t), E(t), I(t), Q(t), P (t), H(t), C(t), F (t), R(t)) ∈ R9

+ :

S + E + I +Q+ P +H + C + F +R ≤ Λ

µ

}
.

e following sections we present a mathematical analysis of the model with respect to positivity and

f the feasible region, Ω, as well as various stability results and the epidemiological threshold of inte

equent sections, we discuss a theorem demonstrating that solutions of Equation (3) with initial co

remain in Ω.
7
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ematical analysis of CoVCom9 model

itivity, boundedness and invariant region

oVCom9 model (3) depicts COVID-19 transmission dynamics in the human population, so it is

t variables in (3) remain nonnegative and bounded for all time t ≥ 0 and do not leave the epidemio

egion of interest, Ω.

1 (Positively Invariant Region). For any given nonnegative initial conditions in Eq. (4), the Co

) has a nonnegative solution {S(t), E(t), I(t), Q(t), P (t), H(t), C(t), F (t), R(t)} of the system (3)

0 whenever the parameters are non-negative. Moreover

lim
t→∞

supN(t) ≤ Λ

µ
.

onsidering the first equation of the CoVCom9 model (3), one can clearly see that

dS

dt
≥ −(λ+ µ)S,

λ = ϕ

(
α1E + I + α3Q+ α4P + β1H + β2C + β3F

N

)

egrating Eq. (7), we find

S(t) ≥ S0 exp

[
−
∫ t

o

(λ(ζ) + µ)dζ

]

e S(t) ≥ 0 for all t ≥ 0.

ing a similar argument, it can be shown that the rest of the model variables have nonnegative s

e t ≥ 0. That is, E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, P (t) ≥ 0, H(t) ≥ 0, C(t) ≥ 0, F (t) ≥ 0, R(t) ≥ 0,

ermore, we prove that the solutions are bounded. Adding the right-hand side of the CoVCom9 m

dN

dt
= Λ− µN − dE − d1I − dU − d2P − d3H − d4C − d5F ≤ Λ− µN,

/dt ≤ Λ− µN , it follows that

lim
t→∞

supN(t) ≤ Λ

µ
.

2 (Positively Invariant Region). The region defined by the closed set, Ω in Eq. (5) is positively in

odel (3) with nonnegative initial conditions (4) whenever the parameters are nonnegative.

s in Lemma 1, it follows from the summation of all the equations of the CoVCom9 model (3) tha

dN

dt
≤ Λ− µN.

e initial condition N(0) > 0 and an integrating factor, we have

0 ≤ N(t) ≤ Λ

µ
+N(0) exp(−µt),
8
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(0) is the initial value of the total population. Thus N(t) ≤ Λ/µ, as t→∞. Therefore all feasible s

(3) enter the region Ω defined by (5), which is a positively invariant set of the system (3). This

solutions in Ω remain in Ω ∀t ≥ 0. It is therefore sufficient to study the dynamics of CoVCom

3) in Ω.

basic reproduction number and existence of equilibria

oVCom9 model has a disease-free equilibrium point given by

E0 = (S0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ Ω, S0 =
Λ

µ
.

c reproduction number is defined as the number of secondary infections produced by a single in

l during the entire infectious period [37]. In this study, the reproduction number defined as the nu

y SARS-CoV-2 infections generated by a single active SARS-CoV-2 individual during the entire in

athematically, the basic reproduction numberR0 is the dominant eigenvalue of the next generation

We apply the method formulation in Van den Driessche and Watmough [37] to obtain an expressio

roposed CoVCom9 (3). Let x =
(
E, I,Q, P,H,C, F

)T
, then the system (3) can be written in the

dx

dt
= F(x)− V(x),

F(x) =




ϕ(α1E + I + α2Q+ α3P + β1H + β2C + β3F )S

N

0

0

0

0

0

0




,

V(x) =




πEE

−ε1E + πII

−ε2E + πQQ

−γ1I − ν1Q+ πPP

−ρ1P − ηC − δ2F + πHH

−ρ2P − κ2H + πCC

−ρ3P − κ3H + πFF




.

πE =ε1 + ε2 + µ+ d1; πI = γ1 + γ2 + µ+ d2;

πQ =υ1 + υ2 + µ+ d3; πP = ρ1 + ρ2 + ρ3 + µ+ d4;

πH =κ1 + κ2 + κ3 + µ+ d5; πC = η + µ+ d6;

π =δ + δ + µ+ d .
F 1 2 7

9
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bian of F(x) and V(x) evaluated at the disease free equilibrium E0 are, respectively,

JF =




ϕα1 ϕ ϕα2 ϕα3 ϕβ1 ϕβ2 ϕβ3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




,

JV =




πE 0 0 0 0 0 0

−ε1 πI 0 0 0 0 0

−ε2 0 πQ 0 0 0 0

0 −γ1 −ν1 πP 0 0 0

0 0 0 −ρ1 πH −η −δ2
0 0 0 −ρ2 −κ2 πC 0

0 0 0 −ρ3 −κ3 0 πF




.

c reproduction number, R0 is given by the dominant eigenvalue of JFJ
−1
V

R0 = ϕ

{
α1

πE
+

ε1
πEπI

+
α2ε2
πEπQ

+
α3

πP

(
ε1γ1
πEπI

+
ε2υ1
πEπQ

)

+
β1
πP

(
ρ1πCπF + δ2ρ3πC + ηρ2πF
πHπCπF − δ2κ3πC − ηκ2πF

)(
ε1
πE

γ1
πI

+
ε2
πE

υ1
πQ

)

+
β2
πP

(
ρ2πHπF + κ2ρ1πF + δ2(κ2ρ3−κ3ρ2)

πHπCπF − δ2κ3πC − ηκ2πF

)(
ε1γ1
πEπI

+
ε2υ1
πEπQ

)

+
β3
πP

(
ρ3πHπC + κ3ρ1πC + η(κ3ρ2−κ2ρ3)

πHπCπF − δ2κ3πC − ηκ2πF

)(
ε1γ1
πEπI

+
ε2υ1
πEπQ

)}
,

n be written as

R0 = R0E +R0I +R0Q +R0P +R0H +R0C +R0F ,

e effective reproduction number, R0 is made up of contributions from secondary infections from the

(R0E) generated by asymptomatic individuals; the infected (symptomatic) group I (R0I); asymp

ned individuals - class-Q (R0Q); confirmed positive individuals - class P (R0P ); hospitalised ca

tensive care (C) cases, (R0C); and those self-isolating at home (F , R0F ). Equation (20) impl

ion strategies of SARS-CoV-2 infections should target those in classes E, I, Q, P , H, C, and F .

rding to Theorem 3.2 of Van den Driessche and Watmough [37], the disease-free steady state E0 i

tically stable if R0 < 1 and unstable if R0 > 1. In the next section we provide stability results

ree equilibrium state.
10
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ility of disease free equilibrium (DFE)

is section, we prove global stability results for the CoVCom9 model (3). The epidemiological imp

cal stability is that a small number of the infected individuals will not generate large outbreaks s

, resulting in SARS-CoV-2 dying out provided R0 < 1. The global stability result helps demonstr

pearance of SARS-CoV-2 disease is independent of the size of the initial subpopulations in the

R0 < 1 [15]. The global stability of the disease-free equilibrium, E0 is established using a ca

v function.

1. The disease-free equilibrium state, E0 of the CoVCom9 model (3) is globally asymptotically s

< 1 and unstable if R0 > 1.

e construct a candidate Lyapunov function (22) for the CoVCom9 model (3) as

V (E, I,Q, P,H,C, F ) = Φ1E + Φ2I + Φ3Q+ Φ4P + Φ5H + Φ6C + Φ7F,

, i = 1, 2, · · · , 7 are (as yet unknown) non-negative coefficients. Since all the variables are bounde

then so is V . Assuming that the variables are solutions of the model (3), the derivative of V with

be bounded by

dV

dt
= Φ1

(
ϕ
(
α1E + I + α2Q+ α3P + β1H + β2C + β3F

)( S
N

)
− πEE

)

+ Φ2

(
ε1E − πII

)
+ Φ3

(
ε2E − πQQ

)
+ Φ4

(
γ1I + υ1Q− πPP

)

+ Φ5

(
ρ1P + ηC + δ2F − πHH

)
+ Φ6

(
ρ2P + κ2H − πCC

)

+ Φ7

(
ρ3P + κ3H − πFF

)

≤
(
Φ1ϕα1 + Φ2ε1 + Φ3ε2 − Φ1πE

)
E +

(
Φ1ϕ+ Φ4γ1 − Φ2πI

)
I

+

(
Φ1ϕα3+Φ4υ1−Φ3πQ

)
Q+

(
Φ1θα4+Φ5ρ1+Φ6ρ2+Φ7ρ3−Φ4πP

)
P

+

(
Φ1ϕβ1 + Φ6κ2 + Φ7κ3 − Φ5πH

)
H +

(
Φ1ϕβ2 + Φ5η − Φ6πC

)
C

+

(
Φ1ϕβ3 + Φ5δ2 − Φ7πF

)
F, since S/N < 1.

g the bracketed coefficients of E, I, U , P , H, C, and Q to zero, we obtain expressions for the pr

ined parameters Φi, which are thus given by

Φ1 = 1, Φ2 =
ϕ+ Φ4γ1

πI
, Φ3 =

ϕα2 + Φ4υ1
πQ

,

Φ4 =
1

πP

[
ϕα3 +

ϕβ2ρ2
πC

+
ϕβ3ρ3
πQ

+

(
ρ1 +

ηρ2
πC

+
δ2ρ3
πF

)
Φ5

]
,

Φ5 = ϕ

(
β1πCπF + β2κ2πF + β3κ3πC
πHπCπF − ηκ2πF − δ2κ3πC

)
,

Φ6 =
ϕβ2 + Φ5η

, and Φ7 =
ϕβ3 + Φ5δ2

,

πC πF

11
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e parameter groupings π∗ are given by (17).

some simplifications using (17), the time derivative of the Lyapunov function can be written as

dV

dt
≤ πE

(
R0 − 1

)
E.

clear that ifR0 < 1 then dV/dt ≤ 0. Furthermore, dV/dt = 0 if E = 0 andR0 < 1. Thus, whenR0

ompact invariant set in
{

(S,E, I,Q, P,H,C, F,R) ∈ Ω | V̇ ≤ 0
}

is the single state E0. LaSalle’s In

then implies that E0 is globally asymptotically stable in Ω if R0 < 1.

Com9 model estimation and numerical simulations

hodology

is section, we briefly describe the parameter estimation and numerical simulation process used to inv

the proposed CoVCom9 model (3) agrees with the confirmed cases and deaths in Ghana. Here, we

S-CoV-2 confirmed cases and deaths from March 13, 2020 to August 10, 2020 as reported in Gha

obtained from Our World in Data [35].

CoVCom9 model (3) has nine state variables; to obtain the disease-induced mortality (D), we in

equation
dD

dt
= d1E + d2I + d3Q+ d4P + d5H + d6C + d7F,

troduces no additional parameters. The CoVCom9 model has a total of 35 parameters to estima

ata (confirmed-positive cases and deaths only). This results in identifiability issues causing t

nce of the optimisation of the objective function. We implement the following practical princ

asonable initial parameter values:

pert review process which involves asking health experts and/or consulting the relevant literature

individuals’ experience of the infection. Accordingly, an estimate of the model parameters, natur

e, µ, recruitment rate, Λ, incubation period, ε1, and recovery rate of quarantine/self-isolation a

ividual, δ1 are obtained. We assumed that the life expectancy of people in Ghana is estimated

rs [16], then the natural death rate is estimated as µ = 1/(64.35 × 365) ≈ 4.258 × 10−5 per da

ulation of Ghana in 2020 is estimated to be N = 30, 960, 000 [39], and the recruitment rate of

stimated as Λ = µN ≈ 1.318 × 103 people per day. The incubation period is 3–7 days, here we

= 1/5.88 per day as estimated by Pang et al. [28] which is consistent with the wider literature [40, 4

f-isolated positive-confirmed individuals on medication take 14 days on average to recover, thus we

= 1/14 per day.

ploring the model using the available data (also known as ‘system exploratory analysis’ (SEA) [42

cess helps identify ranges of parameter values where the trajectories of the CoVCom9 are consiste

data, and regions of parameter space where trajectories deviate from the times series data of con

itive cases and deaths. The motivation for this approach is to restrict the ranges of the parameter

uce risk of the Monte Carlo simulation getting trapped at a local optima. Since we have 31 remainin

ameters to infer, applying this SEA technique yields upper and lower bounds for the model par

ich are presented in (Table A.1).
12
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se a Monte Carlo least squares method to infer model parameter since it is reliable and efficien

seeks to generate the best Monte Carlo estimate (θ̂j) of the model parameters (θ, listed in Tab

ng the error between the observed data (confirmed-positive cases and deaths), Y j and the simulat

CoVCom9 model (3), Y sim
j given by the variables listed in Table 1. Denoting the total nu

nts by n and using i (1 ≤ i ≤M) to enumerate the Monte Carlo simulations, we have

θ̂
(i)

j = arg min
θ

n∑

j=1

(
Y j − Y sim

j

)2

, (i = 1, 2, 3, · · · ,M).

ly, for the M Monte Carlo samples of θ̂, we obtain the mean and covariance matrix of the estima

θ̂M =
1

M

M∑

i=1

θ̂
(i)
,

Σ̂M =
1

M − 1

M∑

i=1

(
θ̂
(i) − θ̂M

)(
θ̂
(i) − θ̂M

)T
.

give a 95% confidence interval of the Monte Carlo samples {θ̂(i)}Mi=1 as
(
θ̂
∗(0.025)
M , θ̂

∗(0.975)
M

)
,

(0.025)
and θ̂

∗(0.975)
M are respectively the θ̂

∗(i)
in the 2.5% and 97.5% positions of the ordered Mon

{θ̂∗(i)}Mi=1.

g parameter estimation, we use a logarithmically transformed parameter vector, log θ, since:

ntly ensures that all parameters are positive, θ > 0; and (ii) this improves the numerical searc

er space across a wide range of θ [43, 44]. All computations use MATLAB, 2018a .

ults of CoVCom9 model parameter estimation

ble 3

timated initial values of model variables for the system (2 using Monte Carlo least squares (MC-LS) method).

Variables Initial values 95% Confidence Interval Reference

N 30,955,202 [39]

S 30,954,982

E 214.0 79.49 - 261.3 MC-LS

I 0.346689 0.1959 - 3.579033 MC-LS

Q 2.932 1.732 - 11.85 MC-LS

P 2 [35]

H 0 [35]

C 0 [35]

F 0 [35]

R 0 [35]

is section, the results obtained using the Monte Carlo least-squares technique described in Sectio

. Table 3 shows initial values of the state variables; those for compartments E, I and Q are es
13
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reported data. From Table 3, we infer that while on March 13, 2020 two individuals are reporte

d-positive of SARS-CoV-2 infection, the corresponding number of individuals in the exposed (E), in

uarantined (Q) compartments are approximately 213, 1, and 3 respectively.

4 gives the parameter values obtained together with their confidence intervals. We note that the in

dividuals in the infected compartment (I) is stronger than the other compartments: in decreasin

tivities are due to the groups E, F , Q, H, C, and P . The overall transmission rate of the SARS

in Ghana for the duration of the data considered in this study is ϕ =0.02495 per day, .

ed values of the model parameters for the system (2) using Monte Carlo least squares (MC-LS) method.

Parameter Value 95% Confidence Interval Reference

α1 0.8412 (0.2981 , 1.0000) MC-LS

ϕ 0.02495 (0.02300 , 0.03969) MC-LS

α2 0.3152 (0.2106 , 0.7553) MC-LS

α3 0.05744 (0.02168 , 0.08098) MC-LS

β1 0.2606 (0.09697 , 0.3576) MC-LS

β2 0.1205 (0.06108 , 0.2436) MC-LS

β3 0.4857 (0.1787 , 0.6772) MC-LS

ε1 1/5.882 (1/7 , 1/3) [45]

ε2 0.001144 (0.000873 , 0.003217) MC-LS

γ1 0.01004 (0.008402 , 0.02817) MC-LS

γ2 0.000163 (8.663×10−5 , 3.300×10−4) MC-LS

υ1 0.000524 (0.000379 , 0.001293) MC-LS

υ2 1.418×10−9 (6.864×10−10 , 2.745×10−9) MC-LS

ρ1 0.001971 (0.000749 , 0.002364) MC-LS

ρ2 5.075×10−6 (2.494×10−6 , 9.911×10−6) MC-LS

ρ3 0.004711 (0.001950 , 0.005565) MC-LS

κ1 0.008619 (0.005728 , 0.02076) MC-LS

κ2 5.844×10−6 (2.874×10−6 , 1.150×10−5) MC-LS

κ3 3.009×10−5 (1.488×10−5 , 5.949×10−5) MC-LS

δ1 1/14 (1/23 , 1/11) Assumed

δ2 5.865×10−9 (2.863×10−9 , 1.145×10−8) MC-LS

η 9.771×10−5 (4.862×10−5 , 0.000194) MC-LS

τ 1.538×10−8 (7.741×10−9 , 3.096×10−8) MC-LS

d1 7.780×10−10 (3.893×10−10 , 1.557×10−9) MC-LS

d2 1.249×10−13 (6.222×10−14 , 2.488×10−13) MC-LS

d3 0.002877 (0.001032 , 0.003985) MC-LS

d4 6.004×10−10 (2.997×10−10 , 1.199×10−9) MC-LS

d5 1.392×10−12 (6.839×10−13 , 2.735×10−12) MC-LS

d6 6.967×10−14 (3.413×10−14 , 1.365×10−13) MC-LS

d7 2.455×10−12 (1.201×10−12 , 4.804×10−12) MC-LS

corresponding best fits of the model to the reported data and the two-year simulations based
14
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d parameter estimates are shown in Figure 2.

ynamics of CoVCom9 model showing model fit (blue line) and reported data (red and black dots) for (Left pan

f confirmed cases simulated from the CoVCom9 model and the numbers from the report data (Left panel) daily nu

deaths simulated from the CoVCom9 model and the numbers from the report data from March 13, 2020 to August

rate at which individuals transfer from Classes E to Q is ε2 = 0.001144, indicating that each d

the individuals exposed to the SARS-CoV-2 infection are identified with the suspicion of carry

, and can be contact traced and quarantine in order to clinically confirm their status as either po

of the infection. The rate at which these suspected exposed individuals are confirmed positive is es

= 0.000524. For individuals confirmed-positive with the SARS-CoV-2 infection, we can infer from

rate at which individuals progress to Intensive Care (Class C) is low compared to the rate at wh

to either H or F Classes (standard hospital ward or self-isolating at home), with the rate of pro

to F Classes the highest (that is from positive test to home isolation). The recovery rate of ind

H is estimated as κ1 = 0.008619 and the rate at which these individuals losing immunity and b

le to the SARS-CoV-2 infection is τ = 1.538× 10−8; indicating that the rate of SARS-CoV-2 re-i

is extremely low (full details of parameters and ranges is given in Table 4).

equation (20) and the parameter estimates in Table 4, the basic reproduction number, R0, is es

10. The breakdown of this estimate is given, in decreasing order, by

marily, symptomatic individuals (class I, giving R0I = 2.417),

pitalised cases (class H, contributing R0H = 0.212),

itively tested individuals (class P giving R0P = 0.207),

ections due asymptomatic cases (class E, giving R0E = 0.123),

f-isolating individuals (class F contributing R0F = 0.116),

ensive care cases (class C, giving R0C = 0.020),

rantined individuals (class Q contributing R = 0.015).
0Q

15
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c reproduction number of COVID-19 based on the proposed CoVCom9 model for Ghana is high

any other countries, which indicates a greater epidemic risk in Ghana. A recent study by Asam

rovides a similar estimate of R0 in Ghana of 2.64, differs by only 15% from our estimate. Howe

of deaths reported in Ghana is low compared to that of other countries in the world. For publishe

countries, please see [15–17, 31–34, 46–50].

the estimated parameter values given in Tables 3 and 4, the one-year simulation transmission dyn

Com9 model offers insight into the SARS-CoV-2 among Ghanaian with respect to the COVID-19 p

e in place in the country. Figure 3 depicts the one-year simulation dynamics for the classes E, I, Q

d deaths (D).

ne-year simulation dynamics of CoVCom9 model from March 13 2020 where E, I, Q, P , H, C, F and D are re

fectious, quarantined, confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and de

l axis on a log-scale.

own in Figure 3, all state variables in the CoVCom9 model show an increasing trend, indicating tha

g the same protocols may not be enough to eradicate the SARS-CoV-2 infection. This has been

ted by the opening of the borders, meaning that new control measures are needed to mitigate the
16
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and out). Our projections show that with Ghana exercising current COVID-19 protocols the actu

ially exceed those reported (whether hospitalised or only positively tested). We thus expect the exp

o continue.

e next section we discuss the derivation of the basic reproduction number from the CoVCom9 mo

influential parameters that intervention strategies should focus on in order to control the sprea

rtainty and sensitivity analysis of the basic reproduction number

hodology

proposed CoVCom9 model (3) has many unknown parameters. Due to the limited data availabl

ntial uncertainty in calibrating the values of the 31 CoVCom9 model (3) parameters [51]. How

the ratio of the upper bounds of the 95 % confidence interval is less than five times the lower

e often four or below, thus so the order of magnitude of all parameters is well established. S

are derived using the logarithm of parameter values, and our best estimates lie in the centre of th

er bound is approximately twice the estimate and the lower bound half of it. This uncertainty i

ers results in some variability in the prediction of the basic reproduction number R0. Latin Hy

-Partial Rank Correlation Coefficient (LHS-PRCC) sensitivity analysis was used to evaluate vari

sic reproduction number R0. The LHS-PRCC approach provides an opportunity to examine th

er space of the CoVCom9 model (3) with computer simulations.

nalyse the impacts of the LHS parameters on the basic reproduction number R0 of the CoVCom

tandard Monte Carlo procedure. The key parameters to which R0, given by (20), is most s

mined using the PRCCs values, suggesting the most effective way of controlling SARS-CoV-2 in

r, this analysis also identifies which parameters need to be known precisely when estimating R0 fr

application of the combined LHS-PRCC methodology in infectious disease modelling are fully d

e, for example, in [51, 52]. This method generally involves:

rating LHS parameters in matrix form, together with a ranking of outcome measures R0;

truction of two linear regression models in response to each parameter and outcome measure, and

putation of a Pearson rank correlation coefficient for the residuals from the two regression models t

PRCC values for that particular parameter [51, 53].

ce the correlation between the input parameters using the rank-based method of Iman and Cono

elation matrix for the 28 model parameters (listed in Table 2) is obtained from the parameter est

n 4, where no correlation is assumed between the parameters ε1 and δ1 and other parameters, sin

meters are not included in the parameter estimation.
17
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ults of Analysing the LHS-PRCC for the CoVCom9 model

esult of the uncertainty analysis of the basic reproduction number, R0 (20) of the CoVCom9 obta

g 1000 LHS samples using the Monte Carlo technique is presented in Figure 4. This histogram dep

ty in R0, where the degree of uncertainty quantified via the 95% confidence intervals is indicated

ines. Figure 5 shows the distribution of obtained values for R0, the mean, 5th, and 95th percentil

ely 2.623, 2.042, and 3.240.

ncertainty analysis of the basic reproduction number R0 depicted by the histogram with plot showing 95% confidenc

nes), mean (solid line) and an estimate (red dotted-dashed line) of R0 (20).

the best-fit values of all the parameters given in Table 4 yields an estimate of R0 towards the up

stribution, namely a value of 3.110 (see the red dotted-dashed line). In general, the higher the unce

r the spread of the distribution of R0. We note that there is some uncertainty in R0 due to th

er estimates in Table 4; however, this is less than for most parameters. In Table 4, for almost all para

r and lower 95% confidence intervals differ from the best fit value by a factor of two. However, for

d lower ends of the interval are with ±24% of the mean value; thus overall, the uncertainty in the e

less than that of the individual parameters.

ensitivity of the basic reproduction number R0 to changes in the CoVCom9 parameters using PRCC index.
18
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e 5 shows the sensitivity of the reproduction number R0 to each of the parameters in the underlyin

C assigns each parameter a value between −1 and +1. The magnitude of PRCC shows the pa

ce while the sign of PRCC gives the direction of the relationship between the input parameter

tput of interest. Negative PRCC values mean that as the parameter value increases, the value of th

f interest decreases and vice versa. The results of the PRCCs depicted help identify which parame

responsible for the uncertainty in R0, which suggests those interventions which should be most effi

lling the spread of the virus by reducing R0. A PRCC value of zero gives an indication of no ass

the input parameter and model output of interest. The most significant model parameters a

d with small p−values (p < 0.05) and large magnitude PRCC values (0.5 ≤ |PRCC| ≤ 1).

Figure 5, we identify six parameters as most influential on the basic reproduction number, R0, th

the transmission rate of infectious individuals,

- the probability of transmission of quarantined individuals,

- the probability of transmission of confirmed-positive infectious individuals,

- the progression rate of exposed individuals to infectious class

- the progression rate of infectious individuals to confirmed-positive class, and

- the progression rate of quarantined individuals to the class of confirmed-positive cases.

ular, R0 increases with increases in ϕ, α2 and α3, while R0 decreases with increases in ε1, γ1

efore critical that intervention strategies should be aimed at decreasing the values of ϕ, α2 and

g the values of ε1, γ1 and υ1.

e recommendations should not be interpreted as discounting the value of considering efforts to alt

t model parameters such as probability of transmission of hospitalised individuals at ordinary wa

ression rate of exposed individuals to quarantined individuals class (ε2), and recovery rate of hosp

l (κ1).

icting the effects of lockdown

imulation presented in Figure 3 show a worrying trend of exponential growth with no sign of pla

in the effects of the pandemic. Many countries have implemented a ‘lockdown’, that is regula

ocial interactions and so reduce the spread of the disease. Here, we model the effects of lockdow

duction in the parameter ϕ, and simulate the spread by solving the model using the standard va

rst 350 days, and a lower value of ϕ for the time period 350 ≤ t ≤ 700 days. The results are pres

, 7, 8, for the values ϕ = 0.008, 0.016, 0.004, the first value of ϕ being chosen so as to reduce the e

R0 from 3.110 to 0.995, the threshold required for containment of the epidemic. The second an

e chosen to be double and half of this critical value. Note that the vertical scales in Figures 6, 7, a

ical.
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ne-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 68% reduction in ϕ, t

. Here E, I, Q, P , H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospi

ard, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale. R0 changes from 3.110 to

e 6 shows a clear almost instant reduction in the number of exposed people (E), followed by a

e sizes of most other sub-populations plateau. However, the numbers of hospitalised cases (H

tinue to rise slowly. We see that this strength of lockdown stops the exponential growth. The les

simulated in Figure 7 causes a brief reduction in the number of exposed cases; however, the exp

s quickly resumed, in the size of all sub-populations, albeit with a slightly smaller growth rate. T

ckdown simulated in Figure 8 shows a sudden and sharp reduction in the number of exposed (E),

ady exponential decrease. The numbers of infected, quarantined and positive cases is also seen

ially, whilst the cases of hospitalised, intensive care, and self-isolated all plateau, as the total nu

owly increases.
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ne-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 34% reduction in ϕ, t

. Again, E, I, Q, P , H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospi

ard, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale. The effect on R0 is a cha

.053.

uld be noted that these simulations are only a crude model of the effects of lockdown, in reality a lo

use changes to other parameters, particularly α1, α2, α3, β1, β2, β3, in the formula (2) for the sp

se. We leave the topic of more detailed models of the effects of lockdown for future work.
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ne-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 84% reduction in ϕ, t

. As above, E, I, Q, P , H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospi

ard, hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale. The effect on R0 is a cha

.498.

ussion and conclusions

ave developed a mathematical model (CoVCom9) in the form of a system of coupled ordinary diff

s to describe SARS-CoV-2 transmission dynamics in Ghana. This categorises every member of th

to one of 9 classes, including various classes well-defined and measurable classes, such as those w

sitive for SARS-Cov-2 and are hospitalised (ordinary wards/intensive care), quarantined, etc, as

rable but clinically important classes, such as those who have been exposed to the virus, those

s but not yet tested positive. We investigated the epidemiological well-posedness of the CoVCom9

at solutions remain positive, and analysed the stability of the equilibrium solution. Using a ca

v function, we have shown that the disease-free equilibrium is globally asymptotically stable w

roduction number is R0 < 1.

the reported data [35] from March 13, 2020, to August 10, 2020, for both confirmed-positive ca
22
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SARS-CoV-2 disease, we have parameterised the CoVCom9 model, with other parameters being es

m the literature. During the parameter estimation exercise, we used system exploratory analysi

ractical parameter spaces. The estimated parameter values provided best fits that are in good ag

h reported confirmed-positive cases and deaths. Also, the results point that on March 13, 2020, w

ls are confirmed-positive, approximately 213, 3, and 1 persons were respectively exposed, quaranti

s.

ave used Latin Hypercube Sampling-Rank Correlation Coefficient (LHS-PRCC) to investigate th

d sensitivity of the reproduction number R0. The results derived are of significant epidemiologic

-CoV-2 control. We estimate that over the period, March-August 2020, the average basic repro

for Ghana was R0 = 3.110, which has the 95% confidence percentile interval (2.042 - 3.240, in appr

this interval is the mean value of 2.623). From Figure 5, we note that R0 is most sensitive to si

ers (ϕ, α2, α3, ε1, γ1, and υ1 whose effects are detailed in Table 2).

proposed CoVCom9 model is a result of our effort to gain insight into the vital features of SAR

ission dynamics in Ghana. Future work will be focused on extending the model to account fo

r classes due to opening of Ghana’s borders. Further, we will consider time-dependent optimal

ion strategies to gain insight into the best strategy for Ghana. Other extensions include the time-de

nfection and the maximum capacity of intensive care units.
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ix A. Appendix

ble A.1 we list the parameter values used in the simulations presented in Section 4.

es A.1, A.2, A.3 show our predictions for how the subpopulation sizes in the model would have

e if a lockdown had been imposed as soon as the first cases entered Ghana. These predictions are o

ng all parameters at the same values as in the main model, and reducing ϕ to the values used in

se graphs should be compared with Figure 3. In Figure A.1 we use ϕ = 0.008, which is chosen

ate of R0 = 1. We see that this has the effect of bringing the pandemic under some sort of cont

an extremely long timescale. In Figure A.2 we simulate a partial lockdown, that is, reducing ϕ to

the midpoint of the standard value ϕ = 0.02495 and that required to reduce R0 to 1. We see that e

s, but at a slower rate than with no lockdown. Finally, in Figure A.3, we consider the effect of

ere lockdown, where ϕ is reduced to half that needed for R0 = 1, that is ϕ = 0.004. This suggests

can be controlled and eliminated within a year.
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ble A.1

timated initial values model variables and parameters for the system (2.)

Parameters Min Max

α1 0.245545 1

ϕ 0.012654 0.050619

α2 0.210646 0.842586

α3 0.020245 0.080978

β1 0.089411 0.357644

β2 0.060902 0.243607

β3 0.169305 0.677222

ε1 1/7 1/3 (a)

ε2 0.000873 0.003492

γ1 0.008402 0.033610

γ2 8.662695×10−5 0.000347

υ1 0.000379 0.001517

υ2 6.863871×10−10 2.745548×10−9

ρ1 0.000547 0.002188

ρ2 2.477852×10−6 9.911408×10−6

ρ3 0.001391 0.005565

κ1 0.005728 0.022913

κ2 2.874618×10−6 1.149847×10−5

κ3 1.488217×10−5 5.952870×10−5

δ1 1/23 1/11 (b)

δ2 2.862673×10−9 1.145069×10−8

η 4.861253×10−5 0.000194

τ 7.740808×10−9 3.096323×10−8

d1 3.892588×10−10 1.557035×10−9

d2 6.221547×10−14 2.488619×10−13

d3 0.000996 0.003985

d4 2.996889×10−10 1.198756×10−9

d5 6.838531×10−13 2.735412×10−12

d6 3.412952×10−14 1.365181×10−13

d7 1.200917×10−12 4.803667×10−12

E 40 300

I 0 10

Q 1 70

(a) denotes literature values and (b) denotes assumed value
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One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 68% reduction in ϕ to ϕ

, Q, P , H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordin

d at intensive care unit, and deaths with the vertical axis on a log-scale. The effect on R0 is a change from 3.110
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Fig. A.2. = 0.016.

Here E, I ary ward,

hospitalise to 2.053.
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One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 34% reduction in ϕ to ϕ

, Q, P , H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordin

d at intensive care unit, and deaths with the vertical axis on a log-scale. The effect on R0 is a change from 3.110
27
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Fig. A.3. = 0.004.

Here E, I ary ward,

hospitalise to 0.498.
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