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Abstract

In late 2019, a novel coronavirus, the SARS-CoV-2 outbreak was identified in Wuhan, China and later spread to
every corner of the globe. Whilst the number of infection-induced deaths in Ghana, West Africa are minimal when
compared with the rest of the world, the impact on the local health service is still significant. Compartmental
models are a useful framework for investigating transmission of diseases in societies. To understand how the
infection will spread and how to limit the outbreak. We have developed a modified SEIR compartmental model
with nine compartments (CoVCom9) to describe the dynamics of SARS-CoV-2 transmission in Ghana. We have
carried out a detailed mathematical analysis of the CoVCom9, including the derivation of the basic reproduction
number, Ry. In particular, we have shown that the disease-free equilibrium is globally asymptotically stable when
Ry < 1 via a candidate Lyapunov function. Using the SARS-CoV-2 reported data for confirmed-positive cases
and deaths from March 13 to August 10, 2020, we have parametrised the CoVCom9 model. The results of this fit
show good agreement with data. We used Latin hypercube sampling-rank correlation coefficient (LHS-PRCC) to
investigate the uncertainty and sensitivity of R since the results derived are significant in controlling the spread of
SARS-CoV-2. We estimate that over this five month period, the basic reproduction number is given by Ry = 3.110,
with the 95% confidence interval being 2.042 < Ro < 3.240, and the mean value being Ry = 2.623. Of the 32
parameters in the model, we find that just six have a significant influence on R, these include the rate of testing,
where an increasing testing rate contributes to the reduction of Ry.

Key words: Transmission model, SARS-CoV-2, Uncertainty, Sensitivity, Mathematical analysis, Monte

Carlo-least squares.

1. Introduction

The recent COVID-19 pandemic has caused a devastating burden on the global economy. Since there are cur-

rently no widely-available vaccines to bring down or reduce the infection levels on the susceptible human population,
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many governmental decision-makers worldwide have resorted to intensive non-pharmaceutical interventions such as
wearing of face-masks, social distancing, cleaning of suspected infected surfaces, avoiding crowded places, the use of
hand sanitizers. These non-pharmaceutical interventions have significantly helped to reduce the risk of transmission
of COVID-19.

Mathematical and statistical modelling tools are important in providing key epidemiological parameters of infec-
tious diseases such as infection or transmission rate, recovery rate, incubation period, isolation and hospitalization
rate, quarantine rate, disease-induced death rate, vaccination rate (with other factors depending on the model
formulation)[1]. Using mathematical models, parametrised to confirmed reported cases of infection, helps esti-
mate the basic reproduction number, Ry which is a crucial epidemiological parameter that determines whether the
infection persists in the population or dies out [2-6].

Nonlinear mathematical models have significantly contributed to the understanding of transmission dynamics
of infectious diseases, see, e.g., [7-11], and the recent COVID-19 pandemic is of no exception [12-23]. Qianying et
al. [24] have proposed and studied a data-driven SEIR type epidemic for the recent COVID-19 outbreak in Wuhan
which captures the effects of governmental actions and individuals’ behaviour. This literature is growing rapidly;
Abou-Ismail [25] has reviewed the fundamentals in SIR/SEIR modelling of the recent COVID-19 outbreak; here we
give a brief overview of literature relevant to our work.

Buonomo [26] describes a susceptible-infected-recovered-infected compartmental model to investigate the effects
of information-dependent vaccination behavior on COVID-19 infections. A simple SEIR COVID-19 epidemic model
with nonlinear incidence rates that capture governmental control has been designed by Rohith and Devika [27] to
examine the dynamics of the infectious disease in India. Pang et al. [28] parametrise a nonlinear SEIHR model to
estimate the value and sensitivity of Ry using data from Wuhan from December 31st, 2019. A classic SEIR epidemic
is used to study the spreading dynamics of the 2019 coronavirus disease in Indonesia [29] using vaccination and
isolation as model parameters. They constructed a Lyapunov function to conduct global stability of the disease-free
equilibrium point. A data-driven epidemiological model that examines the effect of delay in the diagnosis of the
deadly COVID-19 disease is formulated and studied by Rong et al. [30], who estimate parameters and performed
a out global sensitivity analysis of their model parameters on Rg.

A nonlinear SEIQR COVID-19 epidemic model is introduced by Zeb et al. [31] who present a local and global
stability analysis for their model. The spread of COVID-19 in China due to undetected infections in is examined by
Tvorra et al. [32]. Chen et al. [33] propose a model based on dividing the total population into five non-overlapping
classes: susceptible, exposed, infected (symptomatic infection), asymptomatic infected, and recovered. Sardar et al.
[34], investigate the effects of lockdown using an SEIR model. Using reported cases of this highly infectious disease
in some cities and the whole of India, they performed a global sensitivity analysis on the computed Ry.

The exposed and infectious epidemiological classes used in formulating infectious diseases models mentioned
above have been left as abstract concepts. In reality, especially regarding SARS-CoV-2, it is hard to distinguish
between individuals exposed to or infected with SARS-CoV-2, due to the presence of asymptomatic carriers. In this
present study, we introduce two epidemiological classes, which are: (1) an identified group of exposed individuals
suspected to be carriers of SARS-CoV-2 (denoted by @); and, (2) individuals who have been clinically confirmed-
positive for SARS-CoV-2 (denoted by P). Those identified as suspected exposed individuals are denoted by Q



because they are quarantined as required by the COVID-19 protocols in Ghana. Likewise, confirmed-positives
(P) are treated as infectious individuals who have clinically tested positive for SARS-CoV-2. Introducing these
distinctions in the epidemiological classes for SARS-CoV-2 is vital for gaining an understanding of its transmission
dynamics within the Ghanaian population. Using published data from March 13 to August 10, 2020 [35], we
have parametrised our model using a Monte Carlo-least squares technique together with information derived from
literature.

The purpose of this research is to investigate the transmission dynamics of SARS-CoV-2 in Ghana using these
more specific epidemiological classes to estimate the basic reproduction number, Rg. We have used Latin-Hypercube
Sampling-Partial Rank Correlation Coefficient (LHS-PRCC) technique to quantify the uncertainty in Rq as well as
to identify those parameters to which R is most sensitive. We have organised the subsequent sections of the paper
as follows: in Section 2 we present a detailed formulation of an epidemiological model of SARS-CoV-2 transmission
in Ghana, together with corresponding mathematical analysis of the positivity and boundedness of solutions, a
derivation of the basic reproduction number, and global stability analysis of the disease-free equilibrium, which are
given in Section 3. Section 4 is dedicated to parameter estimation and numerical simulation. The uncertainty and
sensitivity analysis of R and its implications are presented in Section 5, together with some simulations predicting
possible future dynamics of the epidemic. Finally, we give a brief discussion and conclusion of the study in Section

6.

2. Formulation of the model

Compartmental models are useful means of qualitatively understanding the dynamics of disease transmissions
within a population [1, 36]. In formulating our compartmental model to gain insight into COVID-19 transmission
dynamics, the total human population is divided into nine distinct epidemiological classes which are summarised
in Table 1. The numbers of individuals in each category is treated as a continuous variable, the classes being:
susceptible, S(t), exposed, E(t), infectious, I(t), quarantined Q(¢), confirmed-positive P(¢), hospitalised in the
ordinary ward H(t), hospitalised in the intensive care unit C(t), self-isolation F'(t) and recovered, R(t). The total

number of individuals in the population is thus given by

N(t)=5(t)+ E(t)+1(t)+ Q(t) + P(t) + H(t) + C(t) + F(t) + R(t). (1)



Table 1
Description of the variables of the CoVCom9 model.

Variable  Description

Total population

Susceptible individuals

Exposed individuals

Infectious individuals

Quarantined individuals
Comfirmed-positive individuals
Hospitalised at ordinary ward individuals
Hospitalised at intensive care individuals

Self-isolation individuals
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Fig. 1. Transmission diagram for the model of COVID-19 involving nine compartments. See Tables 1 and 2 for explanations of the

parameters and variables used in the model, respectively.

Figure 1 summarises the dynamic processes by which individuals pass from one class to another. The suscep-
tible class (S) represents individuals not exposed to the SARS-CoV-2 virus, and the exposed class (F) represents
individuals that have recently been exposed to the SARS-CoV-2 virus so are still in the incubation period and can
infect others (that is, asymptomatic individuals). An individual in an exposed class can infect another person but

with a probability lower than an individual in the infectious class (). This rate of infection is given by the nonlinear



function f which depends on the parameters ¢, ay, as, as, 81, B2, 83. Individuals in an infectious class show clear
symptoms and have high infectivity. These individuals have not yet been clinically confirmed-positive, and thus
can spread the disease to the susceptibles. Individuals in class (Q) are quarantined, that is, individuals identified to
have had contact with an infected individual and so might be carrying the SARS-CoV-2 virus (but this has not yet
been confirmed), this class also includes individuals not infected with SARS-CoV-2 but are quarantined as a result
of enforcement of COVID-19 protocols. These individuals may either enter the susceptible class if test is confirmed
negative or to the confirmed-positive class if confirmed to be infected.

Individuals in the confirmed-positive class (P) are carriers of the SARS-CoV-2 virus who have had clinical
confirmation of this status. These individuals may either enter the intensive care hospitalised class, or be admitted
to the ordinary hospitalised class or enter the self-isolated class after this period. The rates of the these processes
are governed by the parameters v1,v1, p1, p2, p3. The individuals in the ordinary Hospitalised class shows some level
of sickness due to infection that need to be cared for at the ordinary ward. Though there is chance of entering into
recovery class, these individuals’ conditions may deteriorate causing them to enter the intensive care hospitalised
class. Individuals move between these categories with rates determined by ks, k3, d2, 7. These individuals can still
infect other individuals who become exposed through close contact. Individuals in intensive care (C') can still infect
other individuals and have a high risk of dying (rates d;) although improved care conditions may allow transfer to
the ordinary ward (H, at rate 7).

Individuals in the self-isolated class (F') are on medication at home and can still infect other individuals. These
individuals (F') may either enter the recovered class (R, at rate d;) or enter the ordinary hospitalised class (rate d3).
Individuals who have recovered from SARS-CoV-2 virus enter into the recovered class (R) but can be re-infected
since there is no life-long immunity, hence there is a flux from R to S with rate parameter 7. We assume that
individuals in all the compartments can die of COVID-19 (rates d;) in addition to natural death (rate ) with the
exception of the susceptible compartment with only natural death. A summary of all the parameter definitions is

given in Table 2.



Table 2

Description of the CoVCom9 model parameters.

Parameters

Description

A

a2
as
b1
B2
Ba
€1

€2

7

72

v2

P1

P2
p3

K1
K2

K3

01
02

di
d2
ds
dy
o5
96
dr

Recruitment rate

Natural death rate

Transmission rate of infectious individuals (I)

Probability of transmission of exposed individuals (F)

Probability of transmission of quarantined individuals (Q)

Probability of transmission of confirmed-positive infectious individuals (P)
Probability of transmission of hospitalised at ordinary ward individuals (H)
Probability of transmission of hospitalised at intensive care individuals (C')
Probability of transmission of self-isolation at home individuals (F’)
Progression rate of exposed individuals to infectious class per day
Progression rate of exposed individuals to quarantined class per day
Progression rate of infectious individuals to confirmed-positive per day
Recovery rate of infectious individuals per day

Progression rate of quarantined individuals (Q) to confirmed cases (P) per
day

Progression rate of quarantined individuals (Q) to susceptible cases per day
Progression rate of confirmed-positive infectives individuals (P) to hospital
class (H) per day

Progression rate of confirmed-positive (P) to intensive care class (C) per day
Progression rate of confirmed-positive (P) to self-isolation at home (F') class
per day

Recovery rate of hospitalised (H) individual per day

Progression rate of hospitalised (ordinary, H) to intensive care (C) per day
Progression rate of hospitalised (ordinary ward, H) to self-isolation at home
(F') class per day

Recovery rate of self-isolation at home individual per day

Progression rate of self-isolation at home (F’) to hospitalised at ordinary ward
(H) class per day

Progression rate of intensive care to ordinary ward class per day
Progression rate of recovery individuals to susceptible class per day
Disease-induced death rate of exposed individuals per day

Disease-induced death rate of infectious individuals per day
Disease-induced death rate of quarantined individuals per day
Disease-induced death rate of confirmed-positive individuals per day
Disease-induced death rate of intensive care individuals per day
Disease-induced death rate of self-isolated (F') cases per day

Disease-induced death rate of hospitalised individuals per day

The standard form of incidence which is formulated from the basic principles that effective transmission rates

are independent of the population size N for human diseases is used in this study [7, 36]. This principle has

been shown in many studies to be a plausible assumption [7]. If « is the average number of sufficient contacts for



transmission of an individual per unit time, then «I/N is the average number of contacts with infectives per unit
time of one susceptible, and (o /N)S is the incidence. That is, the number of new cases per unit time at time ¢ due
to susceptibles S(¢) becoming infected [7]. We use ¢ to denote the effective transmission rate from an infectious
individual while a1, as, as, 81, B2 and B3 denote the transmission probabilities, of exposed individuals, quarantined
individuals, confirmed-positive individuals, ordinary hospitalised individuals, intensive care hospitalised individuals,
and self-isolated individual, respectively. All these probabilities lie between zero and one. The incidence is therefore

given by

+ 2)

Our COVID-19 model (CoVCom9) is obtained by ‘translating’ the compartmental model summarised in Figure

f(S,E,I,Q,P,H@,F)_<p<a1E+I+a2Q+a3P+ﬂ1H+BZC+B3F>S.

1 into nine coupled ordinary differential equations

s

E:A+’U2U+TR7f(S,E,],Q,P,H,C,F)—/J,S, (3&)
dFE
%:f(SaEaIaQ7P7H7CvF)_(€1+62+/‘L+d1)E7 (3b)
dl
EZQE_(% + 2 + p+do)l, (3¢)
dQ
g =e&FE — (v +vs + p+d3)Q, (3d)
dP
E:%-”rvl@*(m +p2 + p3 + p+da) P, (3e)
dH
E:p1P+77C+52Q—(/{1+/<;2+n3—|—u—0—d5)H, (3f)
dC
o = PP kel = (n+u+de)C, (3g)
dF
E = P3P+I€3H— (51 +(52 +M+d7)F, (3h)
dR .
i Yol +k1H +6F — (1+ p)R, (31)

with ¢ > 0. These are solved subject to the initial conditions
Q(O) =Qy >0, P(O) =Fy >0, H(O) =Hy >0, (4)

In this paper, we will use the acronym CoVCom9 to indicate the nine compartments of the model of SARS-CoV-2
transmission pattern in Ghana given by Equation (3). The epidemiologically feasible region of interest of the model

(3) is the domain defined by
Q= {(S(t)vE(t)J(t)vQ(t%P(t)aH(t)’C(t%F(t),R(t)) ERY :
S+E+I+Q+P+H+C+F+R§2}. (5)

In the following sections we present a mathematical analysis of the model with respect to positivity and bound-
edness of the feasible region, (2, as well as various stability results and the epidemiological threshold of interest. In
the subsequent sections, we discuss a theorem demonstrating that solutions of Equation (3) with initial conditions

(4) in © remain in €.



3. Mathematical analysis of CoVCom9 model

3.1. Positivity, boundedness and invariant region
The CoVCom9 model (3) depicts COVID-19 transmission dynamics in the human population, so it is vital to
show that variables in (3) remain nonnegative and bounded for all time ¢ > 0 and do not leave the epidemiologically

feasible region of interest, 2.

Lemma 1 (Positively Invariant Region). For any given nonnegative initial conditions in Eq. (4), the CoVCom9
model (8) has a nonnegative solution {S(t), E(t),I(t),Q(t), P(t), H(t),C(t),F(t),R(t)} of the system (3) for all

time t > 0 whenever the parameters are non-negative. Moreover

. A
tl;nolo sup N(t) < w (6)
Proof. Considering the first equation of the CoVCom9 model (3), one can clearly see that
ds
— > —(A 7
o = (s, (M)
where
<a1E+I+ a3Q+a4P+ﬁ1H+BQC+ﬁ3F>
A=y
N
Next, integrating Eq. (7), we find .
5() 2 soewp |- [ (0) + uac] 0

Therefore S(t) > 0 for all t > 0.
Following a similar argument, it can be shown that the rest of the model variables have nonnegative solutions
for all time ¢ > 0. That is, E(t) >0, I(t) > 0, Q(t) >0, P(t) >0, H(t) >0, C(t) > 0, F(t) > 0, R(t) > 0, Vt > 0.
Furthermore, we prove that the solutions are bounded. Adding the right-hand side of the CoVCom9 model (3)

yields
dN
E:A—/JN—dE—d]I—dU—dgp—d3H—d4C—d5FSA—/J,N, (9)
Since dN/dt < A — uN, it follows that
. A
tlgglo sup N(t) < w (10)
O

Lemma 2 (Positively Invariant Region). The region defined by the closed set, Q in Eq. (5) is positively invariant

for the model (8) with nonnegative initial conditions (4) whenever the parameters are nonnegative.

Proof. As in Lemma 1, it follows from the summation of all the equations of the CoVCom9 model (3) that

dN
Y < A~ uN. 11
7 S j (11)

Using the initial condition N(0) > 0 and an integrating factor, we have

0< N <2

=3t N(0) exp(—pt), (12)



where N (0) is the initial value of the total population. Thus N(t) < A/u, as t — oco. Therefore all feasible solutions
of system (3) enter the region  defined by (5), which is a positively invariant set of the system (3). This implies
that all solutions in € remain in Q V¢ > 0. It is therefore sufficient to study the dynamics of CoVCom9 model
system (3) in .

O
3.2. The basic reproduction number and existence of equilibria
The CoVCom9 model has a disease-free equilibrium point given by
A
&o = (50,0,0,0,0,0,0,0,0) € Q, So=—. (13)
1

The basic reproduction number is defined as the number of secondary infections produced by a single infectious
individual during the entire infectious period [37]. In this study, the reproduction number defined as the number of
secondary SARS-CoV-2 infections generated by a single active SARS-CoV-2 individual during the entire infectious
period. Mathematically, the basic reproduction number R is the dominant eigenvalue of the next generation matrix
[37, 38]. We apply the method formulation in Van den Driessche and Watmough [37] to obtain an expression of Rg
for the proposed CoVCom9 (3). Let x = (E, 1,Q,P,H,C, F)T, then the system (3) can be written in the form

&~ P 20, (14)
where
[ B+ 1+ aeQ+ azP + B1H + 520 + B3 1) ST
N
0
0
F(x) = 0 ; (15)
0
0
L 0 i
_ . -
—aFE+ml
—6F 4+ mQ
V(x) = —nl—1nQ+npP : (16)
—p1P—nC —6oF + g H
—p2 P — koH 4+ mcC
—psP —ksH +7pF
and _

g =€1 + €2 + p +dy; Tr =7+ +p+da;
TQ =v1 + U2 + p + d3; Tp = p1+ p2+ p3 + p+dy;
T =K1 + Ko + K3 + 1+ ds; o =N+ p+ de;

TEp =01 + 02 + p + dr.



The Jacobian of F(x) and V(x) evaluated at the disease free equilibrium Ej are, respectively,
par @ paz paz pf @by b3
0 0 o0 0 0 0 0
0o 0 o0 0 0 0 0
Jr=|0 0 0 0 0 0 0, (18)
0 0 o0 0 0 0 0
0 0 0 0 0 0 0
0 0 o0 0 0 0 0
—7rE 0 0 0 0 0 0 ]
—€1 g 0 0 0 0 0
—e 0 mg 0 0 0 0
Jv=l0 -y -»n 7ap 0 0 0 (19)
0 0 0 —p1 mg -n =0
0 0 0 —p2 —Ky TC 0
i 0 0 0 —p3 —k3 0 TR
The basic reproduction number, Ryq is given by the dominant eigenvalue of JrJ;, !
Ro=p{ Sy Ly Sanl S (a0 o)
ﬂ1< pPITCTE + 02p3TC + NP2 > <61% n 6201)
Tp \THTCTF — 02K3TC — NK2TF ) \TE T  TE TQ
n B2 <p27TH7TF + Kep1TF + 52(52p3—/€3p2)> ( €171 I €2U1 )
Tp THTCTE — 0aK3To — NKaTR TET]  TETQ
) <P37TH7TC + K3pime + 77(f€3p2—/<&2p3)> < avn  eu >}7
Tp THTCTE — 0oK3TC — NKaTR TET] TETQ
(20)
which can be written as
Ro = Rore + Ror + Rog + Rop + Rox + Roc + Ror, (21)

where the effective reproduction number, R is made up of contributions from secondary infections from the exposed

group E (Rog) generated by asymptomatic individuals; the infected (symptomatic) group I (Ror); asymptomatic

quarantined individuals - class-Q (Rogq); confirmed positive individuals - class

P (Rop); hospitalised cases (H,

Rom); intensive care (C) cases, (Roc); and those self-isolating at home (F, Ror). Equation (20) implies that

intervention strategies of SARS-CoV-2 infections should target those in classes E, I, @, P, H, C, and F.

According to Theorem 3.2 of Van den Driessche and Watmough [37], the disease-free steady state Ej is locally

asymptotically stable if Rg < 1 and unstable if Ry > 1. In the next section we provide stability results for the

disease-free equilibrium state.

10



3.3. Stability of disease free equilibrium (DFE)

In this section, we prove global stability results for the CoVCom9 model (3). The epidemiological implication
of the local stability is that a small number of the infected individuals will not generate large outbreaks so in the
long run, resulting in SARS-CoV-2 dying out provided Ry < 1. The global stability result helps demonstrate that
the disappearance of SARS-CoV-2 disease is independent of the size of the initial subpopulations in the model,
provided Ry < 1 [15]. The global stability of the disease-free equilibrium, Fj is established using a candidate

Lyapunov function.

Theorem 1. The disease-free equilibrium state, Eqy of the CoVCom9 model (3) is globally asymptotically stable in
Q if Ry <1 and unstable if Rg > 1.

Proof. We construct a candidate Lyapunov function (22) for the CoVCom9 model (3) as
V(E,I1,Q,P,H,C,F) = ®1E + &I + $3Q + P4 P + &5 H + $sC + D7 F, (22)

where @;,1 =1,2,---,7 are (as yet unknown) non-negative coefficients. Since all the variables are bounded below
by zero, then so is V. Assuming that the variables are solutions of the model (3), the derivative of V' with respect

to t can be bounded by
dV S
T 2 (@(OqE + 1+ a3Q+agP+ B1H + 32C + B5F) (N) - 7TEE>
+ P <61E — 7T[I> + &3 (€2E — WQQ) + Py ("/1] +v1Q — 7TPP>
+ &5 <p1P +nC + 0o F — wHH> + &g <p2P + ko H — 7r00>
+ &7 (ng + rk3H — 7TFF>
< (¢1<,0Oé1 + Poer + Pyen — 9517TE>E + (@90 + Pum1 — 4527T1>I
+ <¢1900¢3 +P4v1 *453”@) Q+ <¢19044 +P5p1+Psp2 +¢793¢47TP> P
+ <451<P51 + Pghiz + Prrz — gzj57TH>H + (451@52 + P5n — Qseﬂc)C

+ <¢1<P53 + P502 — 4577TF> F, since  S/N < 1.

Requiring the bracketed coefficients of E, I, U, P, H, C, and @ to zero, we obtain expressions for the previously

undetermined parameters @;, which are thus given by

_ e+ P P. — P2 + P4uy
= T _ > 3= _

mr TQ

B =1, Py

+ pLt — + ——

©B2p2 8053P3+ npz  0aps -
TC T T TF °|

1

by = P {SDCVB +
P

(24)

Be — BimeTE + PokoTR + Bakzmo
5TY THTCTE — NRaTp — OakgTe )’

) [(7%)
_ PPt M and @7280534— 502
Ure; Uy

P
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where the parameter groupings . are given by (17).

After some simplifications using (17), the time derivative of the Lyapunov function can be written as

v
—r S7E <R0 - 1) E. (25)

It is now clear that if Ry < 1 then dV/dt < 0. Furthermore, dV/dt = 0if E = 0 and Rg < 1. Thus, when Ry < 1, the
largest compact invariant set in {(S, E I1,Q,P,H,C,F,R) Q| V< 0} is the single state &. LaSalle’s Invariance
Principle then implies that & is globally asymptotically stable in Q2 if Ry < 1. O

4. CoVCom9 model estimation and numerical simulations

4.1. Methodology

In this section, we briefly describe the parameter estimation and numerical simulation process used to investigate
how well the proposed CoVCom9 model (3) agrees with the confirmed cases and deaths in Ghana. Here, we consider
the SARS-CoV-2 confirmed cases and deaths from March 13, 2020 to August 10, 2020 as reported in Ghana. The
data are obtained from Our World in Data [35].

The CoVCom9 model (3) has nine state variables; to obtain the disease-induced mortality (D), we introduce
the extra equation

dD

I =d1E +dyl +d3Q + dyP + dsH + dgC + d7 F, (26)

which introduces no additional parameters. The CoVCom9 model has a total of 35 parameters to estimate using
limited data (confirmed-positive cases and deaths only). This results in identifiability issues causing the non-
convergence of the optimisation of the objective function. We implement the following practical principles to

choose reasonable initial parameter values:

1. Expert review process which involves asking health experts and/or consulting the relevant literature as well
as individuals’ experience of the infection. Accordingly, an estimate of the model parameters, natural birth
rate, u, recruitment rate, A, incubation period, €1, and recovery rate of quarantine/self-isolation at home
individual, é; are obtained. We assumed that the life expectancy of people in Ghana is estimated as 64.35
years [16], then the natural death rate is estimated as p = 1/(64.35 x 365) ~ 4.258 x 1075 per day. The
population of Ghana in 2020 is estimated to be N = 30,960,000 [39], and the recruitment rate of humans
is estimated as A = uN = 1.318 x 103 people per day. The incubation period is 3-7 days, here we choose
€1 = 1/5.88 per day as estimated by Pang et al. [28] which is consistent with the wider literature [40, 41]. The
self-isolated positive-confirmed individuals on medication take 14 days on average to recover, thus we assume
01 = 1/14 per day.

2. Exploring the model using the available data (also known as ‘system exploratory analysis’ (SEA) [42]). This
process helps identify ranges of parameter values where the trajectories of the CoVCom9 are consistent with
the data, and regions of parameter space where trajectories deviate from the times series data of confirmed-
positive cases and deaths. The motivation for this approach is to restrict the ranges of the parameters and so
reduce risk of the Monte Carlo simulation getting trapped at a local optima. Since we have 31 remaining model
parameters to infer, applying this SEA technique yields upper and lower bounds for the model parameters

which are presented in (Table A.1).
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We use a Monte Carlo least squares method to infer model parameter since it is reliable and efficient. This
method seeks to generate the best Monte Carlo estimate (9\1) of the model parameters (6, listed in Table 2) by
minimising the error between the observed data (confirmed-positive cases and deaths), Y'; and the simulated data
from the CoVCom9 model (3), Y;im given by the variables listed in Table 1. Denoting the total number of
data-points by n and using i (1 < ¢ < M) to enumerate the Monte Carlo simulations, we have

n 2
~(4) . sim .
0, :argmelng <Yj—Yj ) , (1=1,2,3,--- | M). (27)
Jj=1

Finally, for the M Monte Carlo samples of 5, we obtain the mean and covariance matrix of the estimator, O

of 0 as

~ 1 )

o 1 L 5 (a0 2\
EM:M1Z<0 —9M><0 —0M> . (29)

i=1

We also give a 95% confidence interval of the Monte Carlo samples {/0\(1) M. as

~%(0.025)  ~%(0.975
(o @ ™). (30)
~#(0.025) ~#(0.975) . (i) .
where 6, and 0, are respectively the @~ in the 2.5% and 97.5% positions of the ordered Monte Carlo

samples {/0\*(1) M.
During parameter estimation, we use a logarithmically transformed parameter vector, log®, since: (i) this
conveniently ensures that all parameters are positive, § > 0; and (ii) this improves the numerical search of the

parameter space across a wide range of 0 [43, 44]. All computations use MATLAB, 2018a .

4.2. Results of CoVCom9 model parameter estimation

Table 3

Estimated initial values of model variables for the system (2 using Monte Carlo least squares (MC-LS) method).

Variables  Initial values 95% Confidence Interval Reference
N 30,955,202 (39]

S 30,954,982

E 214.0 79.49 - 261.3 MC-LS
1 0.346689 0.1959 - 3.579033 MC-LS
Q 2.932 1.732 - 11.85 MC-LS
P 2 [35]

H 0 [35]

(& 0 [35]

F 0 [35]

R 0 [35]

In this section, the results obtained using the Monte Carlo least-squares technique described in Section 4 are

presented. Table 3 shows initial values of the state variables; those for compartments E, I and ) are estimated

13



from the reported data. From Table 3, we infer that while on March 13, 2020 two individuals are reported to be
confirmed-positive of SARS-CoV-2 infection, the corresponding number of individuals in the exposed (E), infectious
(I) and quarantined (@) compartments are approximately 213, 1, and 3 respectively.

Table 4 gives the parameter values obtained together with their confidence intervals. We note that the infectivity
of the individuals in the infected compartment (I) is stronger than the other compartments: in decreasing order,
the infectivities are due to the groups E, F, ), H, C, and P. The overall transmission rate of the SARS-CoV-2
infection in Ghana for the duration of the data considered in this study is ¢ =0.02495 per day, .

Table 4
Estimated values of the model parameters for the system (2) using Monte Carlo least squares (MC-LS) method.

Parameter  Value 95% Confidence Interval Reference
ai 0.8412 (0.2981 , 1.0000) MC-LS
2 0.02495 (0.02300 , 0.03969) MC-LS
as 0.3152 (0.2106 , 0.7553) MC-LS
as 0.05744 (0.02168 , 0.08098) MC-LS
B1 0.2606 (0.09697 , 0.3576) MC-LS
B2 0.1205 (0.06108 , 0.2436) MC-LS
Bs 0.4857 (0.1787 , 0.6772) MC-LS
€1 1/5.882 /7, 1/3) [45]

€2 0.001144 (0.000873 , 0.003217) MC-LS
7 0.01004 (0.008402 , 0.02817) MC-LS
Y2 0.000163 (8.663x1072 , 3.300x10~%) MC-LS
v1 0.000524 (0.000379 , 0.001293) MC-LS
Vg 1.418x10~9 (6.864x10710 | 2.745x1079) MC-LS
p1 0.001971 (0.000749 , 0.002364) MC-LS
P2 5.075x10~6 (2.494x1076 | 9.911x1076) MC-LS
p3 0.004711 (0.001950 , 0.005565) MC-LS
K1 0.008619 (0.005728 , 0.02076) MC-LS
K2 5.844x106 (2.874x107% | 1.150x1077) MC-LS
K3 3.009x10~° (1.488%x107% , 5.949x1075) MC-LS
o1 1/14 (1/23, 1/11) Assumed
32 5.865x107° (2.863x1072 , 1.145x1078) MC-LS
n 9.771x10~—° (4.862x1072 | 0.000194) MC-LS
T 1.538x10~8 (7.741x1079 , 3.096x10~8) MC-LS
dy 7.780x1010 (3.893x10710 | 1.557x107?) MC-LS
da 1.249x 10713 (6.222x10714 | 2.488x1013) MC-LS
ds 0.002877 (0.001032 , 0.003985) MC-LS
dy 6.004x10~10 (2.997x10710 | 1.199x1079) MC-LS
ds 1.392x10712 (6.839x10713 | 2.735x10712) MC-LS
dg 6.967x10714 (3.413x10714 | 1.365x10713) MC-LS
dr 2.455x10~12 (1.201x10712 | 4.804x10~12) MC-LS

The corresponding best fits of the model to the reported data and the two-year simulations based on the
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estimated parameter estimates are shown in Figure 2.
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Fig. 2. Dynamics of CoVCom9 model showing model fit (blue line) and reported data (red and black dots) for (Left panel) daily
numbers of confirmed cases simulated from the CoVCom9 model and the numbers from the report data (Left panel) daily numbers of

confirmed deaths simulated from the CoVCom9 model and the numbers from the report data from March 18, 2020 to August 10, 2020.

The rate at which individuals transfer from Classes E to @ is e = 0.001144, indicating that each day only
0.11% of the individuals exposed to the SARS-CoV-2 infection are identified with the suspicion of carrying the
infection, and can be contact traced and quarantine in order to clinically confirm their status as either positive or
negative of the infection. The rate at which these suspected exposed individuals are confirmed positive is estimated
to be v; = 0.000524. For individuals confirmed-positive with the SARS-CoV-2 infection, we can infer from Table 4
that the rate at which individuals progress to Intensive Care (Class C) is low compared to the rate at which they
progress to either H or F' Classes (standard hospital ward or self-isolating at home), with the rate of progression
from P to F Classes the highest (that is from positive test to home isolation). The recovery rate of individuals
in Class H is estimated as k1 = 0.008619 and the rate at which these individuals losing immunity and becoming
susceptible to the SARS-CoV-2 infection is 7 = 1.538 x 10~8; indicating that the rate of SARS-CoV-2 re-infection
in Ghana is extremely low (full details of parameters and ranges is given in Table 4).

From equation (20) and the parameter estimates in Table 4, the basic reproduction number, Ry, is estimated

to be 3.110. The breakdown of this estimate is given, in decreasing order, by
e primarily, symptomatic individuals (class I, giving Ro; = 2.417),
e hospitalised cases (class H, contributing Rog = 0.212),
e positively tested individuals (class P giving Rop = 0.207),
e infections due asymptomatic cases (class F, giving Rog = 0.123),
e self-isolating individuals (class F' contributing Ror = 0.116),
e intensive care cases (class C, giving Roc = 0.020),

e quarantined individuals (class @ contributing Roq = 0.015).
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The basic reproduction number of COVID-19 based on the proposed CoVCom9 model for Ghana is higher than
that of many other countries, which indicates a greater epidemic risk in Ghana. A recent study by Asamoah et
al. [16] provides a similar estimate of Ry in Ghana of 2.64, differs by only 15% from our estimate. However, the
number of deaths reported in Ghana is low compared to that of other countries in the world. For published values
for other countries, please see [15-17, 31-34, 46-50].

Using the estimated parameter values given in Tables 3 and 4, the one-year simulation transmission dynamics of
the CoVCom9 model offers insight into the SARS-CoV-2 among Ghanaian with respect to the COVID-19 protocols
which are in place in the country. Figure 3 depicts the one-year simulation dynamics for the classes F, I, Q, P, H,

C, F, and deaths (D).
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Fig. 3. One-year simulation dynamics of CoVCom9 model from March 13 2020 where E, I, Q, P, H, C, F' and D are respectively
exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward, hospitalised at intensive care unit, and deaths with

the vertical axis on a log-scale.

As shown in Figure 3, all state variables in the CoVCom9 model show an increasing trend, indicating that Ghana
continuing the same protocols may not be enough to eradicate the SARS-CoV-2 infection. This has been further

complicated by the opening of the borders, meaning that new control measures are needed to mitigate the spread
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(both in and out). Our projections show that with Ghana exercising current COVID-19 protocols the actual cases
substantially exceed those reported (whether hospitalised or only positively tested). We thus expect the exponential
growth to continue.

In the next section we discuss the derivation of the basic reproduction number from the CoVCom9 model, and
identify influential parameters that intervention strategies should focus on in order to control the spread of the

virus.

5. Uncertainty and sensitivity analysis of the basic reproduction number

5.1. Methodology

The proposed CoVCom9 model (3) has many unknown parameters. Due to the limited data available, there
is substantial uncertainty in calibrating the values of the 31 CoVCom9 model (3) parameters [51]. However, in
all cases the ratio of the upper bounds of the 95 % confidence interval is less than five times the lower bound,
and more often four or below, thus so the order of magnitude of all parameters is well established. Since the
intervals are derived using the logarithm of parameter values, and our best estimates lie in the centre of this band,
each upper bound is approximately twice the estimate and the lower bound half of it. This uncertainty in model
parameters results in some variability in the prediction of the basic reproduction number Ry. Latin Hypercube
Sampling-Partial Rank Correlation Coefficient (LHS-PRCC) sensitivity analysis was used to evaluate variabilities
in the basic reproduction number Ry. The LHS-PRCC approach provides an opportunity to examine the entire
parameter space of the CoVCom9 model (3) with computer simulations.

We analyse the impacts of the LHS parameters on the basic reproduction number Ry of the CoVCom9 model
(3) via standard Monte Carlo procedure. The key parameters to which R, given by (20), is most sensitive
are determined using the PRCCs values, suggesting the most effective way of controlling SARS-CoV-2 infection.
Moreover, this analysis also identifies which parameters need to be known precisely when estimating R from data
[51].

The application of the combined LHS-PRCC methodology in infectious disease modelling are fully described

elsewhere, for example, in [51, 52]. This method generally involves:
(i) generating LHS parameters in matrix form, together with a ranking of outcome measures Ry;
(ii) construction of two linear regression models in response to each parameter and outcome measure, and

(iii) computation of a Pearson rank correlation coefficient for the residuals from the two regression models to obtain

the PRCC values for that particular parameter [51, 53].

We induce the correlation between the input parameters using the rank-based method of Iman and Conover [54].
The correlation matrix for the 28 model parameters (listed in Table 2) is obtained from the parameter estimation
in Section 4, where no correlation is assumed between the parameters €; and §; and other parameters, since these

two parameters are not included in the parameter estimation.
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5.2. Results of Analysing the LHS-PRCC for the CoVCom9 model

The result of the uncertainty analysis of the basic reproduction number, Rq (20) of the CoVCom9 obtained by
generating 1000 LHS samples using the Monte Carlo technique is presented in Figure 4. This histogram depicts the
uncertainty in Rg, where the degree of uncertainty quantified via the 95% confidence intervals is indicated by the
dashed lines. Figure 5 shows the distribution of obtained values for Rg, the mean, 5th, and 95th percentiles being
respectively 2.623, 2.042, and 3.240.
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Fig. 4. Uncertainty analysis of the basic reproduction number R depicted by the histogram with plot showing 95% confidence interval
(dashed lines), mean (solid line) and an estimate (red dotted-dashed line) of Ro (20).

Using the best-fit values of all the parameters given in Table 4 yields an estimate of Ry towards the upper end
of the distribution, namely a value of 3.110 (see the red dotted-dashed line). In general, the higher the uncertainty,
the wider the spread of the distribution of Ry. We note that there is some uncertainty in Rg due to the model
parameter estimates in Table 4; however, this is less than for most parameters. In Table 4, for almost all parameters,
the upper and lower 95% confidence intervals differ from the best fit value by a factor of two. However, for Ry, the
upper and lower ends of the interval are with £24% of the mean value; thus overall, the uncertainty in the estimate

of Ry is less than that of the individual parameters.
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Fig. 5. Sensitivity of the basic reproduction number R¢ to changes in the CoVCom9 parameters using PRCC index.
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Figure 5 shows the sensitivity of the reproduction number R to each of the parameters in the underlying model
(3). PRCC assigns each parameter a value between —1 and +1. The magnitude of PRCC shows the parameter
importance while the sign of PRCC gives the direction of the relationship between the input parameter and the
model output of interest. Negative PRCC values mean that as the parameter value increases, the value of the model
output of interest decreases and vice versa. The results of the PRCCs depicted help identify which parameters are
primarily responsible for the uncertainty in R, which suggests those interventions which should be most efficacious
in controlling the spread of the virus by reducing Ry. A PRCC value of zero gives an indication of no association
between the input parameter and model output of interest. The most significant model parameters are those
associated with small p—values (p < 0.05) and large magnitude PRCC values (0.5 < |[PRCC| < 1).

From Figure 5, we identify six parameters as most influential on the basic reproduction number, R, these are:

e ¢ - the transmission rate of infectious individuals,

as - the probability of transmission of quarantined individuals,

a3 - the probability of transmission of confirmed-positive infectious individuals,

€1 - the progression rate of exposed individuals to infectious class

~1 - the progression rate of infectious individuals to confirmed-positive class, and
e v - the progression rate of quarantined individuals to the class of confirmed-positive cases.

In particular, Ry increases with increases in ¢, as and ag, while Ry decreases with increases in €1, v; and v;.
It is therefore critical that intervention strategies should be aimed at decreasing the values of ¢, s and a3 and
increasing the values of €1, v; and v.

These recommendations should not be interpreted as discounting the value of considering efforts to alter other
significant model parameters such as probability of transmission of hospitalised individuals at ordinary ward (1),
the progression rate of exposed individuals to quarantined individuals class (e2), and recovery rate of hospitalised

individual (x1).

5.8. Predicting the effects of lockdown

The simulation presented in Figure 3 show a worrying trend of exponential growth with no sign of plateau or
reduction in the effects of the pandemic. Many countries have implemented a ‘lockdown’, that is regulations to
restrict social interactions and so reduce the spread of the disease. Here, we model the effects of lockdown by a
simple reduction in the parameter ¢, and simulate the spread by solving the model using the standard value of ¢
for the first 350 days, and a lower value of ¢ for the time period 350 < t < 700 days. The results are presented in
Figures 6, 7, 8, for the values ¢ = 0.008, 0.016, 0.004, the first value of ¢ being chosen so as to reduce the expected
value of Ry from 3.110 to 0.995, the threshold required for containment of the epidemic. The second and third
values are chosen to be double and half of this critical value. Note that the vertical scales in Figures 6, 7, and 8 are

not identical.
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Fig. 6. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 68% reduction in ¢, that is, to
@ = 0.008. Here E, I, Q, P, H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at

ordinary ward, hospitalised at intensive care unit, and deaths with the vertical azxis on a log-scale. Ry changes from 3.110 to 0.995.

Figure 6 shows a clear almost instant reduction in the number of exposed people (E), followed by a plateau,
whilst the sizes of most other sub-populations plateau. However, the numbers of hospitalised cases (H and C)
both continue to rise slowly. We see that this strength of lockdown stops the exponential growth. The less severe
lockdown simulated in Figure 7 causes a brief reduction in the number of exposed cases; however, the exponential
growth is quickly resumed, in the size of all sub-populations, albeit with a slightly smaller growth rate. The more
severe lockdown simulated in Figure 8 shows a sudden and sharp reduction in the number of exposed (E), followed
by a steady exponential decrease. The numbers of infected, quarantined and positive cases is also seen to fall
exponentially, whilst the cases of hospitalised, intensive care, and self-isolated all plateau, as the total number of

deaths slowly increases.
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Fig. 7. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 34% reduction in ¢, that is, to
¢ = 0.016. Again, E, I, Q, P, H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at
ordinary ward, hospitalised at intensive care unit, and deaths with the vertical azis on a log-scale. The effect on Ro is a change from

8.110 to 2.053.
It should be noted that these simulations are only a crude model of the effects of lockdown, in reality a lockdown

could cause changes to other parameters, particularly as, ao, as, 1, B2, B3, in the formula (2) for the spread of

the disease. We leave the topic of more detailed models of the effects of lockdown for future work.
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Fig. 8. One-year simulation dynamics of CoVCom9 model from March 18 2020 when there is a 84% reduction in ¢, that it, to
© =0.004. As above, E, I, Q, P, H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at
ordinary ward, hospitalised at intensive care unit, and deaths with the vertical azis on a log-scale. The effect on Ro is a change from

8.110 to 0.498.

6. Discussion and conclusions

We have developed a mathematical model (CoVCom9) in the form of a system of coupled ordinary differential
equations to describe SARS-CoV-2 transmission dynamics in Ghana. This categorises every member of the popu-
lation into one of 9 classes, including various classes well-defined and measurable classes, such as those who have
tested positive for SARS-Cov-2 and are hospitalised (ordinary wards/intensive care), quarantined, etc, as well as
unmeasurable but clinically important classes, such as those who have been exposed to the virus, those who are
infectious but not yet tested positive. We investigated the epidemiological well-posedness of the CoVCom9 model,
shown that solutions remain positive, and analysed the stability of the equilibrium solution. Using a candidate
Lyapunov function, we have shown that the disease-free equilibrium is globally asymptotically stable when the
basic reproduction number is Ry < 1.

Using the reported data [35] from March 13, 2020, to August 10, 2020, for both confirmed-positive cases and
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deaths of SARS-CoV-2 disease, we have parameterised the CoVCom9 model, with other parameters being estimated
based from the literature. During the parameter estimation exercise, we used system exploratory analysis (SEA)
to find practical parameter spaces. The estimated parameter values provided best fits that are in good agreement
with both reported confirmed-positive cases and deaths. Also, the results point that on March 13, 2020, while two
individuals are confirmed-positive, approximately 213, 3, and 1 persons were respectively exposed, quarantined and
infectious.

We have used Latin Hypercube Sampling-Rank Correlation Coefficient (LHS-PRCC) to investigate the uncer-
tainty and sensitivity of the reproduction number Ry. The results derived are of significant epidemiological value
in SARS-CoV-2 control. We estimate that over the period, March-August 2020, the average basic reproduction
number for Ghana was Ry = 3.110, which has the 95% confidence percentile interval (2.042 - 3.240, in approximate
centre of this interval is the mean value of 2.623). From Figure 5, we note that Rg is most sensitive to six model
parameters (@, as, as, €1, 71, and v1 whose effects are detailed in Table 2).

The proposed CoVCom9 model is a result of our effort to gain insight into the vital features of SARS-CoV-
2 transmission dynamics in Ghana. Future work will be focused on extending the model to account for inflow
into other classes due to opening of Ghana’s borders. Further, we will consider time-dependent optimal control
intervention strategies to gain insight into the best strategy for Ghana. Other extensions include the time-dependent

force of infection and the maximum capacity of intensive care units.

CRediT authorship contribution statement

Edward Acheampong: Conceptualization, Investigation, Formal analysis, Numerical simulations, Writing-
original draft, Funding acquisition, Review & editing. Eric Okyere: Formal analysis, Investigation, Writing-
original draft, Review & editing. Samuel Iddi: Investigation, Writing-original draft, Review & editing. Joseph
H. K. Bonney: Investigation, Review & editing. Jonathan A. D. Wattis: Supervision, Funding acquisition,
Investigation, Writing-original draft, Review & editing. Rachel L. Gomes: Supervision, Funding acquisition,

Review & editing. Joshua Kiddy K. Asamoah: Review & editing.
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the study reported in this paper.

Acknowledgements

The authors (EA, JADW and RLG) are thankful for funding provided by the Leverhulme Trust Doctoral
Scholarship (DA214-024), Modelling and Analytics for a Sustainable Society (MASS), and to the University of
Nottingham.

23



Appendix A. Appendix

In Table A.1 we list the parameter values used in the simulations presented in Section 4.

Figures A.1, A.2, A.3 show our predictions for how the subpopulation sizes in the model would have evolved
over time if a lockdown had been imposed as soon as the first cases entered Ghana. These predictions are obtained
by keeping all parameters at the same values as in the main model, and reducing ¢ to the values used in Section
5.3. These graphs should be compared with Figure 3. In Figure A.1 we use ¢ = 0.008, which is chosen to make
our estimate of Rg = 1. We see that this has the effect of bringing the pandemic under some sort of control, but
only over an extremely long timescale. In Figure A.2 we simulate a partial lockdown, that is, reducing ¢ to 0.016 -
which is the midpoint of the standard value ¢ = 0.02495 and that required to reduce Ry to 1. We see that epidemic
still grows, but at a slower rate than with no lockdown. Finally, in Figure A.3, we consider the effect of a much
more severe lockdown, where ¢ is reduced to half that needed for Ry = 1, that is ¢ = 0.004. This suggests that the

epidemic can be controlled and eliminated within a year.
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Table A.1

Estimated initial values model variables and parameters for the system (2.)

Parameters  Min Max

a1 0.245545 1

© 0.012654 0.050619

az 0.210646 0.842586

as 0.020245 0.080978

61 0.089411 0.357644

B 0.060902 0.243607

B3 0.169305 0.677222

€1 1/7 1/3 (a)

€2 0.000873 0.003492

" 0.008402 0.033610

Y2 8.662695x10~° 0.000347

vy 0.000379 0.001517

v 6.863871x 10710 2.745548% 1077
p1 0.000547 0.002188

P2 2.477852x10~6 9.911408x10~6
03 0.001391 0.005565

K1 0.005728 0.022913

K2 2.874618x10~6 1.149847x10~°
K3 1.488217x10~° 5.952870x 105
51 1/23 1/11 (b)

52 2.862673x10~° 1.145069x10~8
n 4.861253x10~5 0.000194

T 7.740808 %102 3.096323x10~8
d1 3.892588x 1010 1.557035x 109
da 6.221547x 1014 2.488619x 1013
ds 0.000996 0.003985

dy 2.996889x 10~10 1.198756x10~°
ds 6.838531x10~13 2.735412x 1012
dg 3.412952x 10~ 1.365181x10~13
dr 1.200917x10~12 4.803667x10712
E 40 300

I 0 10

Q 1 70

(a) denotes literature values and (b) denotes assumed value
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Fig. A.1. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 68% reduction in ¢ to ¢ = 0.008.
Here E, I, Q, P, H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward,

hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale. The effect on Ro is a change from 3.110 to 0.995.
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Fig. A.2. One-year simulation dynamics of CoVCom9 model from March 13 2020 when there is a 34% reduction in ¢ to ¢ = 0.016.
Here E, I, Q, P, H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward,

hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale. The effect on Ro is a change from 3.110 to 2.053.
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Fig. A.3. One-year simulation dynamics of CoVCom9 model from March 18 2020 when there is a 84% reduction in ¢, to ¢ = 0.004.
Here E, I, Q, P, H, C, F and D are respectively exposed, infectious, quarantined, confirmed-positive, hospitalised at ordinary ward,

hospitalised at intensive care unit, and deaths with the vertical axis on a log-scale. The effect on Ro is a change from 3.110 to 0.498.
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