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ABSTRACT20

The striatum’s complex microcircuit is made by connections within and between its D1- and D2-receptor21

expressing projection neurons and at least five species of interneuron. Precise knowledge of this circuit22

is likely essential to understanding striatum’s functional roles and its dysfunction in a wide range23

of movement and cognitive disorders. We introduce here a Bayesian approach to mapping neuron24

connectivity using intracellular recording data, which lets us simultaneously evaluate the probability of25

connection between neuron types, the strength of evidence for it, and its dependence on distance. Using26

it to synthesise a complete map of the mouse striatum, we find strong evidence for two asymmetries: a27

selective asymmetry of projection neuron connections, with D2 neurons connecting twice as densely to28

other projection neurons than do D1 neurons, but neither subtype preferentially connecting to another; and29

a length-scale asymmetry, with interneuron connection probabilities remaining non-negligible at more30

than twice the distance of projection neuron connections. We further show our Bayesian approach can31

evaluate evidence for wiring changes, using data from the developing striatum and a mouse model of32

Huntington’s disease. By quantifying the uncertainty in our knowledge of the microcircuit, our approach33

reveals a wide range of potential striatal wiring diagrams consistent with current data.34

SIGNIFICANCE STATEMENT35

To properly understand a neuronal circuit’s function, it is important to have an accurate picture of the rate36

of connection between individual neurons and how this rate changes with the distance separating pairs of37

neurons. We present a Bayesian method for extracting this information from experimental data and apply38

it to the mouse striatum, a subcortical structure involved in learning and decision-making, which is made39

up of a variety of different projection neurons and interneurons. Our resulting statistical map reveals not40

just the most robust estimates of the probability of connection between neuron types, but also the strength41

of evidence for them, and their dependence on distance.42

INTRODUCTION43

As the input of the basal ganglia circuit, the striatum has been ascribed key computational roles in action44

selection (Redgrave et al., 1999; Gurney et al., 2001a; Liénard and Girard, 2014), decision making45

(Bogacz and Gurney, 2007; Ding and Gold, 2010, 2012; Yartsev et al., 2018), and reinforcement learning46

(Reynolds et al., 2001; Samejima et al., 2005; Bornstein and Daw, 2011; Khamassi and Humphries, 2012;47

Gurney et al., 2015). Within the striatum is a microcircuit comprising the GABAergic spiny projection48

neurons (SPNs), which make up to 97% of striatal neurons in the rat (Oorschot, 2013), and at least five49

species of predominantly GABAergic interneurons (Burke et al., 2017; Tepper et al., 2018). These SPNs50
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divide into two populations that express either the D1 or D2-type of dopamine receptors (Gerfen et al.,51

1990; Gerfen and Surmeier, 2011). Projections from the D1 and D2 SPN populations respectively form the52

striatonigral and striatopallidal pathways (Gerfen et al., 1990; Kreitzer, 2009; Gerfen and Surmeier, 2011),53

through which they influence dynamics throughout the basal ganglia and beyond. The microcircuit’s54

connections onto the D1 and D2 SPNs are then a potentially major actor in sculpting the output of this55

nucleus, and thus the computations ascribed to it.56

One key to understanding the role of the microcircuit in the computations of striatum is knowing57

the relative influence of one neuron type on another (Alexander and Wickens, 1993; Hjorth et al., 2009;58

Humphries et al., 2009; Lau et al., 2010; Ponzi and Wickens, 2010; Klaus et al., 2011; Damodaran et al.,59

2014). Two broad influences of this microcircuit on the output of SPNs are well-known: the feedforward60

inhibition by GABAergic interneurons, and feedback inhibition by lateral connections between the SPNs61

(Plenz, 2003; Tepper et al., 2004, 2008; Humphries et al., 2010). But to understand how all elements of62

the striatum’s microcircuit influence its output requires a full account of the microcircuit’s wiring, which63

we currently lack. To address this problem, here we synthesise data from pairwise intracellular recording64

studies to generate a statistically-rigorous and comprehensive map of the wiring probabilities between the65

key neuron species of the mouse striatum.66

A key issue in estimating connection probabilities from intracellular recording data is that recording67

studies report a single probability for each connection type, given by the rate of successful connections68

between two types of neuron, without providing any measures of uncertainty. In this paper, we solve this69

problem by introducing a Bayesian approach to estimating the probability of connection between neuron70

types using pairwise intracellular recording data, which allows us to draw rigorous conclusions about71

the strength of evidence for claims about the microcircuit. Using this approach on data from the mouse72

striatum, we show that the previously reported asymmetry between the rates at which D1 and D2 neurons73

make connections is robust, with D2 SPNs having roughly twice the connection rate of D1 SPNs; but74

contrary to previous claims we also show there is no evidence for an asymmetry in the rates at which they75

receive connections, and so there is no preferential target for D1 or D2 SPNs. We then demonstrate a new76

method for using single measurements of connection rates to estimate distance-dependent probabilities77

and their uncertainty. Using these methods to analyse both SPN and interneuron connectivity, we complete78

our Bayesian map of the connectivity of the mouse striatum. Finally, we demonstrate how our Bayesian79

approach lets us quantify and test changes to that microcircuit map: we test the claim that D1 SPN80

connections are altered in a mouse model of Huntington’s disease, and find no evidence for it; and, using81

recent data from Krajeski et al. (2019), we show the selective asymmetry of D1 and D2 SPNs appears at82

different stages during development. Our Bayesian approach thus simultaneously evaluates the probability83
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of connection between neuron types, its dependence on distance, and the strength of evidence for it,84

creating a solid foundation for theories of striatal computation.85

MATERIALS AND METHODS86

Data processing87

We extracted data on pairwise connections from intracellular recordings of striatal neurons from a database88

of studies. The full set of data we extracted is given in Table 1. Because of the way Taverna et al. (2008)89

gave their results, namely reporting the number of connected pairs and specifying if any were bidirectional90

instead of reporting the number of connections, the number of tests for non-mixed pairs we use in this91

paper is doubled compared to the original study. For instance, when Taverna et al. (2008) say they found92

5 connected pairs out of 19 pairs of D1 neurons, we interpret this as 5 connections out of 38 tests, to be93

consistent with the mixed D1 and D2 pairs which by necessity are unidirectional (a D1→ D2 connection94

can only be tested in one direction or it becomes a D2→ D1 connection). This was also the case for the95

data of Cepeda et al. (2013) on SPN connections in wild-type and Huntington’s disease model mice.96

Bayesian inference of connection probabilities97

A single experimental test for determining whether one neuron connects to another will yield either a98

positive or negative result, so that it is equivalent to a Bernoulli test with a success rate p, the unknown99

probability of connection we are trying to infer. When analysing a whole study consisting of several of100

these tests, we assume that each test is independent and shares the same success rate p with the others.101

Thus, the study as a whole can be described using a binomial distribution:102

P(X = k|p) =
(

n
k

)
pk(1− p)n−k (1)

where k is the number of connected pairs and n the total number of tested pairs of that type. In this103

way, the binomial distribution provides a likelihood for the data given p.104

Our goal is to estimate this p, the probability of connection, and the uncertainty of that estimate.

According to Bayes theorem, the posterior distribution for p can be determined by:

fposterior(p) ∝ P(X = k|p) fprior(p) (2)

given a prior fprior(p), which is a probability distribution describing our initial beliefs about the105

possible value of p. Finding a posterior for the success rate of a binomial distribution is a well known106

problem in Bayesian inference and the prior distribution used in this case is a beta distribution:107
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fprior(p;a,b) =
pa−1(1− p)b−1

B(a,b)
(3)

with a and b the parameters determining the shape of the prior, and B(a,b) the so-called Beta function.108

The main advantage of this type of prior, known as the conjugate prior of binomial distributions, is109

that the posterior that results from combining this prior with a likelihood in the form of a binomial110

distribution simply turns out to be a new beta distribution with updated parameters (sparing us the trouble111

of renormalising the right hand side of equation 2 to get a proper probability density function):112

fposterior(p) = fprior(p;a+ k,b+n− k) (4)

In other words, to determine the posterior we simply have to add the number of successful tests k to a,113

and the number of unsuccessful tests n− k to b.114

Consequently, obtaining the posterior distribution is a single line of code. In MATLAB, this is115

posterior = betapdf(p, a + k, b + n-k) with p a vector of probabilities of connection116

for which we want the corresponding probability density value, and a and b the shape parameters of the117

initial prior.118

Design of the prior based on previous literature119

In the Results, we test a set of standard priors for the Beta distribution, the uniform prior (a = b = 1), the120

Jeffreys prior (a = b = 0.5), and the Haldane prior (a = b = 0). We also test a prior based on previous121

literature of connections between SPNs, which we derive here. Knowing its mean µ and variance v, the122

shape parameters of a beta distribution are:123

a = µ

(
µ(1−µ)

v
−1
)

(5)

b = (1−µ)

(
µ(1−µ)

v
−1
)

(6)

Previous studies that did not differentiate the D1 and D2 subtypes have shown that SPNs connect124

to one another at a mean rate of 0.12 (Czubayko and Plenz, 2002; Tunstall et al., 2002; Koos et al.,125

2004; Taverna et al., 2004), leaving us with a decision to make about the desired variance of the prior.126

Despite their thoroughness (325 tested pairs in Koos et al. (2004)), we could not directly use a beta127

distribution based on the number of pairs in the initial studies, as the resulting variance, which would128

reflect uncertainty attached to the measurement of the average connection rate between all types of pairs,129

would be so small that the new evidence with SPN subtype distinction would be unable to significantly130

affect the posterior. Indeed, the desired variance should reflect the fact that the average connection rate of131
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0.12 masks the potential existence of four distinct connection rates for each pair. We were unable to find a132

principled way of deriving this desired variance and, for this reason, different values of variance were133

tested before settling for 0.005 which gives the corresponding beta distribution a shape that makes such a134

prior both sufficiently informative as to be interesting without being completely insensitive to the addition135

of new data. Setting µ = 0.12 and v = 0.005, we find a = 2.56 and b = 18.12.136

Inferring distance-dependent probabilities of connection from point estimates137

Intracellular recording studies typically report a maximum distance of pairwise recording, so our point138

estimate p of the probability of connection is then actually an integral over any distance-dependent139

probability of connection. We show here how we can derive estimates for the distance-dependent140

probability of connection from these point estimates, using simple models.141

We assume that the probability of connection from a source neuron to a target neuron at distance r

away is an exponentially decreasing function of distance:

P(connection|distance = r) = e−β r, (7)

with decay parameter β . While a simple model, its advantage for us is its dependence on a single142

parameter β , which we show below can be inferred directly from our point estimate p, giving us a full143

posterior distribution for β too. Thus, while the model for P(connection|distance) is user-defined, we use144

our Bayesian inference approach to both fit the model’s parameter and obtain its uncertainty (indeed our145

approach is sufficiently general that any one parameter model could be used for P(connection|distance)).146

Our goal here is to estimate the length scale of the decay of connectivity, particularly so that we147

may compare the scales between different types of connection, rather than find a detailed model of the148

distance-dependence decay of the probability of connections. Finding the most accurate models would149

require both having the exact distances between all pairs of sampled neurons (for example, all pairs of D1150

SPNs sampled), which are often not readily available, and solving a range of issues, including: finding151

suitable models to fit the data; finding appropriate methods to fit the models to the data; determining152

whether the data has sufficient power to fit each model; determining whether the data has sufficient153

power to decide between different models; and determining whether the data has sufficient power to154

accurately recover the parameters of each model. The specific distance-dependent model of a particular155

type of connection in the striatum is thus a considerable piece of work, beyond our scope here. Moreover,156

it is unlikely in any case to markedly change the estimated length-scale over which the probability of157

connection decays, as we expect distance-dependence to decay exponentially: models of connectivity in158

the striatum derived from overlapping models of dendrites and axons (Humphries et al., 2010; Hjorth159
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et al., 2020) and data from cortical slices (Levy and Reyes, 2012) and cultures (Barral and Reyes, 2016)160

all show that probabilities of connection between neurons exponentially decrease with distance. Our161

exponential model is thus a reasonable choice.162

Given our model for P(connection|distance), we now want to find the mapping p(β ) between a given

point-estimate probability of connection p and the decay parameter β . The mapping between p and β can

be expressed as:

p(β ) =
∫ R

0
fsamp(r)e−β rdr, (8)

which is the product of the probability fsamp(r) of experimenters selecting a neuron at distance r from163

another, and of the probability of these neurons being connected knowing r (equation 7), integrated over164

all possible values of r (see Figure 3 C for a visual depiction of what equation 8 means). R is the maximum165

distance at which the experimenters recorded their pairs of neurons.166

Taking a central neuron as a reference point, we start by looking for a distribution for r, the distance

between that central neuron and other neurons chosen for testing. By definition of a probability density

function, fsamp(r) must be such that the probability that r is found between two arbitrary values r1 and

r1 +∆r is:

P(r1 < r < r1 +∆r) =
∫ r1+∆r

r1

fsamp(r)dr (9)

This probability distribution for distance depends on how the experimenters sampled their pairs. We167

consider two models for fsamp(r). Our first model is that, given a starting neuron, experimenters are168

equally likely to sample any target neuron within their maximum recording radius – we call this model169

fequi. Our second model is that, from the starting neuron, experimenters will sample its nearest neighbour170

– we call this model fNN . Next we derive the fequi model, and describe the fNN model below.171

The equiprobable sampling model172

For a given distance r1 from a central neuron, the probability of selecting a neuron within the volume173

bounded by r1 and r1 +∆r is also equal to the ratio of the expected number of neurons found within it174

over the expected number of neurons in the total volume:175

P(r1 < r < r1 +∆r) =
N.V (r1)

N.Vtot
(10)

with V (r1) the subvolume bounded by r1 and r1 +∆r, Vtot the total volume and N the density of176

SPNs of whichever given type experimenters are currently trying to sample. Note that N cancels out in177

the fraction, which implies that the probability distribution for distance is, counter-intuitively perhaps,178

independent of post-synaptic SPN subtype, as long as the density is constant everywhere. According to179
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the reported methods of the two studies we evaluate for SPN connections, experimenters selected neurons180

within the same field of focus at a maximum distance R of either 50µm (Taverna et al., 2008) or 100µm181

(Planert et al., 2010) which means that the total volume of interest is a cylinder of height h, corresponding182

to the depth of the field of focus, and the subvolume is a hollow cylinder, as depicted in Figure 3B:183

Vtot = hπR2 (11)

V (r1) = hπ((r1 +∆r)2− r2
1) = 2πr1h∆r+πh∆r2 (12)

If we now combine the general definition of a probability density function (equation 9) with this184

particular equiprobable sampling assumption, we now have:185

∫ r1+∆r

r1

fequi(r)dr =
2r1∆r+∆r2

R2 (13)

which we can solve to find fequi by differentiating the right hand side of the equation to obtain:186

fequi(r) =
2r
R2 (14)

So that finally, by plugging equation 14 into equation 8 we obtain:187

p(β ) =
2

R2

∫ R

0
re−β rdr (15)

which can be used to create a mapping from β to p, p(β ).188

The nearest-neighbour sampling model189

To derive the nearest-neighbour model, we will consider the case where experimenters only patched pairs190

of neurons, ignoring the fact that Planert et al. (2010) would also patch triplets or quadruplets, and we191

will assume that they always patched the closest neuron within the maximum distance they set themselves.192

This means that we are looking for the density function for the nearest neighbour, fNN(r).193

Because information about the nearest neighbour distribution was hard to find, we reproduce its194

derivation here, basing ourselves on Krider and Kehoe (2004), in case such a derivation would be of195

interest to others. Such a density function must satisfy:196

fNN(r) = (1−
∫ r

0
fNN(x)dx)2πrhN (16)

which states that the probability density that the nearest neuron is found at distance r is the product of197
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the probability that the first neuron is not in fact found at a shorter distance from the central neuron (the198

first element in brackets on the right hand side) and of the probability that there is a neuron between r and199

r+dr. This latter probability is itself the product of the infinitesimal cylindrical volume found between200

r and r+dr, i.e. 2πrhdr with h (µm) the height of the cylinder, and N (µm−3) the average density of201

neurons. If we now differentiate fNN(r), we get:202

d fNN

dr
=−

d(
∫ r

0 fNN(x)dx)
dr

2πrhN +(1−
∫ r

0
fNN(x)dx)2πhN (17)

According to Leibniz’ rule, we get on the one hand:203

d(
∫ r

0 fNN(x)dx)
dr

= fNN(r) (18)

We can also substitute the term in brackets in the second half of equation 17, thanks to the following204

rewriting of equation 16:205

1−
∫ r

0
fNN(x)dx =

fNN(r)
2πrhN

(19)

After these substitutions and factoring by fNN , we can now rewrite equation 17:206

d fNN

dr
= fNN(r)(

1
r
−2πrhN) (20)

d fNN

fNN
= (

1
r
−2πrhN)dr (21)

ln( fNN(r)) = ln(r)−πhNr2 + constant (22)

ln(
fNN(r)

r
) =−πhNr2 + constant (23)

fNN(r) = kre−πhNr2
(24)

with k, the normalisation constant. Usually, k is defined so that integrating fNN between 0 and infinity207

is equal to 1, i.e. the nearest neighbour must be somewhere in that interval. In our particular case however,208

experimenters set themselves a maximum distance of either 50 or 100µm, meaning that the closest neuron209

must be closer than this distance (if there was no neuron closer than this, experimenters would simply210

look for another pair). In other words, k is such that:211

k
∫ R

0
re−πr2hNdr = 1 (25)

which ultimately gives us:212
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k =
2πhN

1− e−πR2hN
(26)

As previously, we can now combine these probabilities of sampling a neuron at a given distance with213

the probability of connection given distance (Equation 8) to find the overall probability of connection:214

p(β ) =
∫ R

0
P(connection|distance = r). fNN(r)dr = k

∫ R

0
re−r(πrhN+β )dr (27)

which gives us a new mapping between p and β .215

Unlike the equiprobable model, the nearest-neighbours model depends on both the density of neurons216

N and the depth of the sampling plane h. Given that we have collapsed probabilities of connection based217

on the nature of the presynaptic neuron, we simply use an overall SPN density in the mouse brain of218

80500 per mm3 following the convention of Hjorth et al. (2020) who chose this number based on the work219

of Rosen and Williams (2001) (and which is close to the estimated density of 84900 per mm3 in the rat220

brain (Oorschot, 1996)). As for h, the experimenters tell us that neurons were sampled in the same field221

of focus which would correspond to a height with an order of magnitude of a tenth or even a hundredth222

of micrometer. However, given that for a neuron to be in the same field of focus as another, it suffices223

that some part of its soma, whose diameter is between 10 and 20 µm in mice according to Gagnon et al.224

(2017), intersects this very small volume, we can expect h to be much larger in practice. Because of this225

uncertainty, we used three different values of h to get three different nearest-neighbour distributions: 0.1226

µm, 1 µm and 10 µm.227

Transformation of posterior distributions228

Having obtained the mapping p(β ) between p and β , we can go a step further and find a full distribution229

(a posterior) for β , by transforming the posteriors we have previously obtained for p, fp(p), into posteriors230

for β , fβ (β ). By definition of a density function, for any possible values a and b of β , we have:231

∫ b

a
fβ (β )dβ = P(a < β < b) (28)

Thanks to the mapping from β to p (which is monotonically decreasing), we can also write:232

P(a < β < b) = P(p(b)< p < p(a)) =−
∫ p(b)

p(a)
fp(p)d p (29)

Finally, integration by substitution tells us:233

−
∫ p(b)

p(a)
fp(p)d p =−

∫ b

a
fp(p(β ))

d p(β )
dβ

dβ (30)
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Hence, by identification with equation 28:234

fβ (β ) =− fp(p(β ))
d p(β )

dβ
(31)

In order to draw fβ , we converted regularly interpolated values of β into the corresponding values of235

p using equation 15 for the equiprobable sampling model or equation 27 for the nearest-neighbour model.236

Obtaining the derivative of p with respect to β in equation 31 depended on the sampling process. In237

the case of equiprobable sampling, after an integration by parts of equation 15, we arrive at the following238

expression of p(β ):239

p(β ) =
−2
R2β

(Re−βR +
1
β

e−βR− 1
β
) (32)

which can be differentiated with respect to β :240

d p(β )
dβ

=
2

R2β 3 (e
−βR((Rβ +1)2 +1)−2) (33)

However, in the case of the nearest-neighbour distribution, we were unable to find a closed-form for241

d p(β )
dβ

, and resorted to a numerical approximation based on the regularly interpolated values of β and the242

corresponding values of p given by equation 27.243

Code availability244

All code used for this work was written with MATLAB. The code necessary for the Bayesian analysis of245

p, the transformation of fp(p) to fβ (β ) and the Monte Carlo simulations depicted in Figure 4 C and D is246

available on the Github account of the Humphries lab: https://github.com/Humphries-Lab/247

Bayesian-map-of-striatum-circuitry.248

RESULTS249

Patch clamp data on connection rates between SPNs250

We begin by reviewing key data on the connections within and between the D1- and D2-type SPNs, which251

we will also use to motivate our Bayesian approach. Previous studies by Taverna et al. (2008) and Planert252

et al. (2010) collected data on pairwise connections between SPN subtypes in slices obtained from both253

the dorsal and ventral striatum of mice. The subtype of the SPNs was determined by targeted expression254

of EGFP under the control of either a D1 or D2 receptor promoter sequence for Taverna et al. (2008) and255

of only a D1 receptor promoter for Planert et al. (2010). Non-labelled SPNs were then assumed to belong256

to whichever group was not meant to be labelled in this particular animal and electrophysiological criteria257
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were used to exclude interneurons. After choosing a pair of neighbouring cells, no further apart than 50258

µm, Taverna et al. (2008) detected connections in current-clamp mode by injecting a depolarising current259

step in the first – potentially presynaptic – neuron of the pair, and measuring depolarising postsynaptic260

potentials in the second one. This procedure was then repeated the other way around. Planert et al. (2010)261

recorded up to four neighbouring neurons simultaneously, with a larger maximum intersomatic distance262

of 100 µm, and detected connections by stimulating one neuron with a train of depolarising pulses to263

generate action potentials in the presynaptic neuron and recording the potential postsynaptic responses of264

the other neurons.265

In both studies, the ratio of successful tests to the total number of tests (Table 1) was then reported as266

an estimate p̂ for the true probability of connection between these types of neuron (plotted as the bars in267

Figure 1A and B), in accordance with frequentist inference about a proportion. As they are estimates,268

they come with a level of uncertainty about the true proportion that depends on sample size, which here is269

the number of pairs that were tested. In a frequentist approach, this uncertainty would usually be given by270

a confidence interval.271

However, typically, intracellular recording studies do not report any estimate for the uncertainty272

surrounding their measurements of p̂, and recent theoretical studies of striatum (Burke et al., 2017; Hjorth273

et al., 2020; Bahuguna et al., 2015) have simply used the raw values p̂ from Taverna et al. (2008) and274

Planert et al. (2010) to construct their models, supposing in particular that the probability of D1 to D1275

connections is about twice as likely as D1 to D2 connections. When we do compute confidence intervals,276

such as the Wilson confidence interval for binomial proportions (Brown et al., 2001) that we add ourselves277

in Figure 1A and B, we find that, given the relatively small sample sizes, the confidence intervals overlap278

considerably.279

Bayesian inference of connection probabilities280

As we have just explained, frequentist inference gives us a single point estimate p̂ for the probability of281

connection, normally surrounded by a confidence interval which may be too large to be of any practical282

use and also, because it is flat, may give the illusion that the true value of p might be anywhere within283

this interval with equal probability. By contrast, Bayesian inference is more informative because it gives284

us a full probability density function fp(p), called the posterior, telling us exactly how likely every285

possible value of p actually is, given the collected data. In this way, even when confidence intervals286

overlap as is the case for practically all the SPN to SPN connections here (Figure 1A and B), which in287

a frequentist interpretation would lead us to dismiss the difference as non-significant without insight as288

to whether this is due to insufficient data or a true non-difference (Dienes, 2014; Makin and De Xivry,289

2019), Bayesian inference gives us a much clearer picture of what the data can tell us. We introduce here290
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Figure 1. Probability of lateral connections between SPNs estimated using either frequentist or
Bayesian methods. A-B Frequentist estimates of the probabilities of connection computed from
intracellular recording data, and our computed 95% Wilson confidence intervals. C-D Posterior
probability density functions for the probability of connection using a Bayesian approach. Coloured bars
underneath the plot represent the 95% credibility intervals corresponding to each probability density
function. Inset: shape of the prior, a uniform distribution. E-F Posterior probability density functions
using the Jeffreys prior. G-H Posterior probability density functions using a prior based on previous
literature with mean equal to 0.12 and variance equal to 0.005.
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Study Pair k n a b p̂MAP 95% credibility interval

Taverna et al. (2008)

D1 SPN→ D1 SPN 5 38 7.56 51.12 0.116 [0.057, 0.225]
D1 SPN→ D2 SPN 3 47 5.56 62.12 0.069 [0.030, 0.158]
D2 SPN→ D1 SPN 13 47 15.56 52.12 0.222 [0.138, 0.336]
D2 SPN→ D2 SPN 14 78 16.56 82.12 0.161 [0.101, 0.247]

D1 SPN→ SPN 8 85 10.56 95.12 0.092 [0.051, 0.164]
D2 SPN→ SPN 27 125 29.56 1116.12 0.199 [0.142, 0.272]

Planert et al. (2010)

D1 SPN→ D1 SPN 3 43 5.56 58.12 0.074 [0.032, 0.167]
D1 SPN→ D2 SPN 3 66 5.56 81.12 0.054 [0.023, 0.124]
D2 SPN→ D1 SPN 10 80 12.56 88.12 0.117 [0.068, 0.196]
D2 SPN→ D2 SPN 7 31 9.56 42.12 0.172 [0.093, 0.300]

D1 SPN→ SPN 6 109 8.56 121.12 0.059 [0.030, 0.114]
D2 SPN→ SPN 17 111 19.56 112.12 0.143 [0.093, 0.214]
FS→ D1 SPN 8 9 9 2 0.889 [0.555, 0.975]
FS→ D2 SPN 6 9 7 4 0.667 [0.348, 0.878]

Gittis et al. (2010)

FS→ D1 SPN 48 90 49 43 0.533 [0.431, 0.633]
FS→ D2 SPN 27 77 28 51 0.351 [0.253, 0.462]

FS→ FS 7 12 8 6 0.583 [0.316, 0.808]
FS→ PLTS * 2 21 3 20 0.095 [0.029, 0.292]

FS→ Ach 0 3 1 4 0 [0, 0.602]
PLTS→MSN 2 60 3 59 0.033 [0.010, 0.114]
PLTS→ PLTS 0 26 1 27 0 [0, 0.13]
PLTS→ FS * 0 20 1 21 0 [0, 0.161]
PLTS→ Ach 0 10 1 11 0 [0, 0.285]

Dorst et al. (2020) TH→ Ach 13 50 14 38 0.260 [0.159, 0.396]
Ach→ TH 11 41 12 31 0.268 [0.157, 0.420]

Ibáñez-Sandoval et al. (2011) NGF→ SPN 25 29 26 5 0.862 [0.693, 0.944]

English et al. (2012) Ach→ NGF 8 14 9 7 0.571 [0.323, 0.787]
NGF→ Ach 3 14 4 12 0.214 [0.078, 0.481]

Table 1. Pairwise connection data from mice used to build the Bayesian map of the striatum
microcircuit, alongside Bayesian estimates of the connection probabilities. k: number of connected pairs
in that study; n number of sampled pairs; a,b parameters of the resulting Beta distribution for the
posterior of p using either the literature prior for SPN connections or a uniform prior for interneurons as
explained in the main text; p̂MAP, the MAP estimate of p.
Abbreviations for neuron names: SPN : Spiny Projection Neuron; FS: Fast Spiking interneuron, PLTS:
Persistent Low Threshold Spiking interneuron; Ach: Cholinergic interneuron; TH: Tyrosyne-Hydroxylase
interneuron; NGF: (NPY-expressing) NeuroGliaForm interneuron.
* Data concerning FS→ PLTS and PLTS→ FS connections from Gittis et al. (2010) was pooled with
that of Szydlowski et al. (2013).
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a simple Bayesian approach to calculating the full posterior fp(p) for each type of connection from any291

pair-wise intracellular recording data.292

As we show in the Methods, for these data, Bayesian inference turns out to be simple. Given the

number of pairwise tests n, and the number of successful connections k, the posterior for p is a Beta

distribution with updated shape parameters:

fposterior(p) = Beta(p;a+ k,b+n− k), (34)

given initial values for its two parameters a and b. These initial values define the prior distribution for p,293

which reflects our initial beliefs about the possible values of p.294

For instance, if we had initial values of a and b equal to 1, and we were looking at the data concerning295

D1 → D1 connections obtained by Taverna et al. (2008) (see Table 1) with n = 38 tests and k = 5296

connections found, then we would obtain a = 6 and b = 34, and the resulting posterior would be the one297

depicted in Figure 1C (light blue curve). Depending on our assumptions, different values of a and b can298

be used to give the prior a desired shape. We begin with the common choice of the uniform distribution in299

which p could be anywhere between 0 and 1 with equal probability, achieved by setting a = b = 1 as in300

the example just given.301

Study pair uniform Jeffreys literature

Taverna et al. (2008)

D1→ D1 0.132 0.122 0.116
D1→ D2 0.064 0.054 0.069
D2→ D1 0.277 0.272 0.222
D2→ D2 0.179 0.175 0.161

Planert et al. (2010)

D1→ D1 0.070 0.060 0.074
D1→ D2 0.045 0.038 0.054
D2→ D1 0.125 0.120 0.117
D2→ D2 0.226 0.217 0.172

Table 2. Maximum A Posteriori (MAP) estimates for the different probabilities of connection between
SPNs, using different priors and different experimental studies. The “literature” prior is based on data on
pairwise connections from intracellular recording studies that predated techniques for identifying types of
SPN, as explained in the main text.

Using this prior in combination with the data of Taverna et al. (2008) gives us the posterior curves302

shown in Figure 1C. Once obtained, we can revert, if necessary, to a more frequentist standpoint by303

extracting from these density functions a single point estimate p̂, typically the Maximum A Posteriori304

value or MAP which is simply the value of p for which fp(p) is maximum, and a credibility interval305

around that MAP, which is the Bayesian equivalent of a confidence interval. The MAPs concentrate306

around relatively low values of p and their exact values, which are given in Table 2, lie between 0.06307

for D1→ D2 pairs and 0.28 for D2→ D1 pairs. The uncertainty surrounding p is given by the width308
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of the posteriors and of the 95% credibility intervals underneath the curves. For the data from Taverna309

et al. (2008), the connections with the smallest credibility interval of about 0.1 are the D1→ D2 pairs310

while the least well resolved connections are the D2→ D1 pairs for which the credibility interval spans311

roughly 0.2. By contrast, when we apply the uniform prior to the data of Planert et al. (2010), the D2→312

D1 connections have the smallest uncertainty and the D2→ D2 connections the largest (Figure 1D).313

The fact that we used the same prior for all pairs of neuron types reflects our initial belief that314

there is no difference in the probability of connection between pairs. To overcome this belief requires315

a sufficient amount of evidence, and we can start comparing the different probabilities of connection316

visually by looking at how much the different posteriors overlap. Based on Figure 1C for example, it317

seems that in the data of Taverna et al. (2008) probabilities of connection segregate depending on the318

nature of the presynaptic neuron in the pair. The posteriors involving presynaptic D1 neurons overlap319

considerably with one another, and their region of highest density is lower than for presynaptic D2 neurons320

who also show great overlap, while there is much less overlap between pairs with different presynaptic321

neurons. This becomes even more obvious when looking at the 95% credibility intervals drawn underneath322

the curves which show more or less overlap depending on the nature of the presynaptic neuron: the323

credibility intervals for pairs with a presynaptic D1 neuron share an overlapping interval roughly covering324

probabilities of 0.05 to 0.15, while the overlapping interval for connections with a presynaptic D2 SPN325

ranges between probabilities of about 0.20 to 0.28. A similar pattern repeats itself in the data of Planert326

et al. (2010) (Figure 1D) although the exact values of the overlapping regions are shifted towards 0327

compared to Taverna et al. (2008), an effect which is potentially due to maximum distance of sampling328

as explained later. This opens the possibility that there is indeed an asymmetry in terms of probability329

of connection that is dependent on the subtype of the presynaptic neuron, with no or little effect of the330

postsynaptic target subtype, something we will explore more thoroughly later.331

One of the main advantages of Bayesian inference is that it forces researchers to be explicit about their332

priors and gives them the opportunity to choose appropriate ones. In order to illustrate this, we applied333

three further priors to the experimental data. Firstly, the so-called non-informative Jeffreys prior sets334

a = b = 1/2. An intuitive way of understanding this prior is to picture ourselves at the very beginning335

of the experiment, waiting for the result of the very first paired stimulation and recording. This test will336

either be successful or not, meaning that the shape of the prior should give most and equal weight to these337

two outcomes (inset of Figure 1E). Figures 1E and F show the posteriors that result from using this prior338

and we can see how they are practically identical to the posteriors obtained with a uniform prior. This was339

also the case when using the Haldane prior for which a and b equal 0 (not shown).340

Our third prior is based on prior data, for Bayesian inference also provides us with a principled341
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way of integrating previous knowledge into the prior. Earlier work (Taverna et al., 2004; Czubayko342

and Plenz, 2002; Koos et al., 2004) quantified the rate of lateral connections between SPNs without343

distinguishing SPN subtypes and concluded that lateral connections occurred at a rate of about 0.12.344

Using this information, we can design a beta distribution with a mean of 0.12 and an arbitrary variance of345

0.005 (see Methods) which serves as our third and final prior shown in the inset of Figure 1G. Although346

the posteriors are more clearly different from the ones obtained with the uniform and Jeffreys prior they347

still look very similar. In fact, we find that the MAP values for a given type of connection (Table 2) are348

very close whatever the choice of prior, and the previous observation that the curves seem to segregate349

according to the subtype of the presynaptic neuron is valid in every case. On the other hand, because this350

prior is more informative than the two previous ones, uncertainty is reduced, as witnessed by the smaller351

credibility intervals. Given this robustness to the different priors, we shall henceforth exclusively use the352

prior based on previous literature when analysing connections between SPNs.353

D1 neurons make fewer connections than D2 neurons354

We previously observed that D1 neurons seem to make fewer connections than D2 neurons without355

necessarily targeting one subtype over the other, based on how the posterior distributions appear to356

segregate by presynaptic subtype in Figure 1. We can go beyond this qualitative analysis by calculating357

a density function f∆ for the difference between two probabilities of connection. For instance, if we’re358

interested in the difference in the probability of connection between D1→ D1 and D1→ D2 pairs (Figure359

2A), using the posterior distributions fD1→D1(p) and fD1→D2(p), we can find the density function for360

∆(D1→D1)−(D1→D2) by:361

f∆(D1→D1)−(D1→D2)(∆ = k) =
∫ min(1,1−k)

max(0,−k)
fD1→D1(p = x+ k) fD1→D2(p = x)dx (35)

with the bounds of the integral such that x+ k lies between 0 and 1. We can then calculate the362

probability that ∆(D1→D1)−(D1→D2) is smaller than 0 by integrating this distribution between -1 and 0 (or363

calculate if it is greater than 0 by integrating the distribution between 0 and 1). By contrast, the frequentist364

strategy would be to compute a p-value giving the probability of getting an experimental result at least as365

extreme as the one observed assuming the null hypothesis of no difference in connection probabilities366

(i.e. ∆ = 0), whereas the Bayesian approach allows us to calculate the probability that ∆ is less than (or367

greater than) 0 given experimental results. Thus whereas the p-value tells us how surprising the actual368

data is if we accept the null hypothesis, the Bayesian approach can quantify precisely how unlikely the369

null hypothesis actually is.370

We applied this method to answer the question: do SPNs of either kind preferentially target SPNs of a371
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Figure 2. Comparison of the probabilities of connections between different SPN combinations. A
Density function for the difference in the probabilities of connection in pairs with a presynaptic D1
neuron using data from Taverna et al. (2008). B Density function for the difference in the probabilities of
connection in pairs with a presynaptic D2 neuron using data from Taverna et al. (2008). C Posterior
density functions for the probabilities of connection collapsed according to the presynaptic neuron
subtype. Bars underneath the curves correspond to the 95% credibility intervals. D Density function for
the difference in connection probability between pairs with a presynaptic D1 neuron and pairs with a
presynaptic D2 neuron. E-H Same as A-D, using data from Planert et al. (2010).
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certain subtype? In particular, based on their point estimates of connection probabilities, Taverna et al.372

(2008) have claimed that D1 neurons prefer to connect to other D1 neurons than to D2 neurons, a claim373

used in the computational study by Burke et al. (2017). As evidenced in Figures 2A and E which plot the374

density functions for ∆(D1→D1)−(D1→D2) according to the data by Taverna et al. (2008) and Planert et al.375

(2010) respectively, this is not the case as both density functions include 0 among their most likely values.376

In fact, the probability that ∆(D1→D1)−(D1→D2) is smaller than 0 is equal to 0.19 and 0.30 in Taverna et al.377

(2008) and Planert et al. (2010) respectively. Similarly, we do not find any difference when looking378

at whether D2 neurons have a preference for a particular postsynaptic neuron subtype (see Figures 2B379

and F for the density functions of ∆(D2→D2)−(D2→D1)): for Taverna et al. (2008), the probability that380

∆(D2→D2)−(D2→D1) is larger than 0 is 0.16, and the probability that it is smaller than 0 is 0.17 for Planert381

et al. (2010). We thus find no evidence that SPNs of one subtype (D1 or D2) preferentially target a certain382

subtype.383

Having established that rates of connection are not different for a given presynaptic neuron subtype,384

we can collapse the data according to the subtype of the presynaptic neuron to answer another question:385

are D1 neurons more or less likely to make connections overall than D2 neurons? To do this, we simply386

add up the total number of tested pairs and connections found for the same presynaptic neuron type387

(e.g. for D1 SPNs: nD1→SPN = nD1→D1 +nD1→D2 and similarly for k). In essence, this is equivalent to388

considering the posterior of one connection rate as the prior for connections with that same presynaptic389

neuron subtype, e.g. fD1→D1(p) is the prior for fD1→SPN(p). Figures 2C and G show the posterior390

distributions for the collapsed datasets, and both studies agree that D1 SPNs are less likely than D2 SPNs391

to make connections to other SPNs. The MAP values for connection rates from D1 neurons is 0.092 and392

0.059 in Taverna et al. (2008) and Planert et al. (2010) respectively, versus 0.199 and 0.143 for connection393

rates from D2 neurons. If we look at the density function for the difference between the probability of394

connections for D1 and D2 neurons (Figure 2 D and H), the MAPs for f∆(D1→SPN)−(D2→SPN)
are -0.11 and395

-0.08 for Taverna et al. (2008) and Planert et al. (2010) respectively, while in both cases the probability that396

∆(D1→SPN)−(D2→SPN) is less than 0 is equal to 0.99. Thus, both studies contain very convincing evidence397

that D2 neurons are about twice as likely as D1 neurons to make connections to another SPN.398

Probability of connection as a function of distance399

So far, when considering data on SPN connections from Taverna et al. (2008) and Planert et al. (2010)400

we have been careful to analyse each study separately, resisting the temptation of combining the two401

into a more powerful dataset. We were justified in being so careful since the two experiments used402

different maximum intersomatic distances between neurons, namely 50 µm in the study of Taverna et al.403

(2008) and 100 µm in that of Planert et al. (2010). Given that probability of connection between neurons404
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Figure 3. Estimating the probability of connection as a function of distance. A Density function for the
difference in connection rates for a given presynaptic SPN type between the Taverna et al. and Planert et
al. studies. B Experimenters chose their neurons within a certain maximum distance Rmax which defined
a thin cylindrical volume of interest (here we draw the top of that cylinder). In the case of equiprobable
sampling, the probability of choosing neurons further away increases as the infinitesimal volume
corresponding to that distance increases as a linear function of r. C The probability of finding a
connected pair of neurons depends on two different processes. Firstly, the process of connection,
modelled by the probability of connection between two neurons given the distance between them, which
we postulate decays exponentially; secondly, the process of sampling neurons in the experiment,
modelled as the probability of selecting another neuron at a given distance from a starting neuron. We
explore here two different scenarios for the sampling process: an equiprobable scenario in which neurons
within a determined volume are selected randomly, and a nearest-neighbour scenario in which the
selected neuron is whichever is the closest within the maximum distance set by the experimenters. The
overall rate of connection reported by the experimenters then corresponds to the integral (shaded areas) of
the product of these two probability models. Hence, differences in sampling processes can cause different
rates of connection, even if the probability of connection given distance is the same.
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typically decreases with distance (Hellwig, 2000; Humphries et al., 2010), sampling within a larger area405

around a neuron will probably cause a decrease in the ratio of connected pairs. Indeed, if we compare406

the probability of D1 or D2 neurons making lateral connections between the two experiments, we find407

that these probabilities tend to be larger in Taverna et al. (2008) which has the smaller sampling area, as408

illustrated by the corresponding density functions shown in Figure 3A. We thus introduce here a method409

for estimating the distance-dependent probability of connection between neurons types from data on410

neuron pairs recorded between some known maximum separation; our first use of this method is then to411

see whether it the distance-dependence is consistent between the two studies of SPN connectivity.412

To do this, we start by positing that this decrease obeys a simple exponential decay function:

P(connection|distance = r) = e−β r (36)

with β the decay parameter of unknown value, and r (for radius) the distance separating the two

neurons. Ideally, to estimate this β parameter would require knowledge about the exact distance between

every recorded pair of neurons, from which we could directly fit the model, but with simple assumptions

on the sampling method used by experimenters, we can find an alternative way of converting values of β

into p. Since the distance between each sampled pair of neurons in an experiment is in fact unknown to

us, we shall consider it as a random variable. We can now express p as a function of β as

p(β ) =
∫ R

0
fsamp(r)e−β rdr, (37)

which is the product of the probability fsamp(r) of experimenters selecting a neuron at distance r from413

another, and of the probability of these neurons being connected knowing r (equation 36) integrated414

over all possible values of r (see Figure 3 C for a visual depiction of what equation 37 means). R is the415

maximum distance at which the experimenters are sampling neurons, equal to 50 or 100 µm in Taverna416

et al. (2008) and Planert et al. (2010) respectively. We now need to find fsamp(r).417

418

A simple model for fsamp would be that, given a certain volume surrounding a central neuron, the

probability of sampling any given neuron in that volume is equiprobable for all neurons (Figure 3B) – we

call this model fequi . With this assumption, we obtain the solution (see Methods):

p(β ) =
2

R2

∫ R

0
re−β rdr (38)

which gives us the corresponding value of p for any desired value of β . As we have posteriors fp(p) for419
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the probability of connection between two types of neuron, we can now transform these into posteriors420

for β , fβ (β ) through parameter substitution using equation 38 (see Methods).421

Probability of connection decreases faster for D1 than for D2 neurons422

We apply this method to the posteriors for the probabilities of connection collapsed according to the423

subtype of the presynaptic SPN and obtain the posteriors for the decay rate β shown in Figure 4A and424

B for D1 and D2 neurons respectively. Despite not being perfect, there is a good level of agreement425

between the two studies, which give estimates in the same ballpark. In both cases, although the posteriors426

do not overlap much, they do in fact lie quite close to each other providing us with a continuous, albeit427

broad, range of possible values . In the case of D1 neurons, the decay rate is expected to be in a region428

between 0.03 and 0.13 µm−1. The exponential decay curves representing the probability of connection as429

a function of distance for a decay rate equal to the MAP of each study (which are given in Table 3) are430

also shown in the inset of Figure 4A, and it is evident that they are extremely close to one another. As for431

D2 neurons (Figure 4B), the decay rate is smaller, as expected given that we have already shown that the432

overall probability of connection is higher for these neurons, ranging between 0.02 and 0.07 µm−1.433

To get a better idea of how consistent the results are between the Taverna et al. (2008) and Planert et al.434

(2010) datasets, we used Monte Carlo simulations to try and recover the number of observations made by435

each experiment with its own value of R using the β value that seems most likely given the two posterior436

curves, i.e. the intersection of the two posterior curves (black dotted lines in Figure 4A,B). We ran 10000437

virtual experiments by generating random distances between pairs of neurons (according to equation 14438

in the Methods) and the maximum distance R used by that study, and then deciding whether they were in439

fact connected according to the probability of connection of equation 36. We generated the same number440

of pairs as tested in each study and then reported the number of times we obtained the exact same number441

of positive results (red bars in the histograms of Figure 4C and D). For instance, setting an intermediate442

decay rate of 0.075 µm−1 for D1 neurons, and generating 10000 replications of the experiment of Taverna443

et al. (2008) which recorded 85 pairs of SPNs with a D1 presynaptic neuron, we obtained more than 500444

simulations where exactly 8 pairs were connected, which is the number originally reported (Figure 4C left445

figure). In all four cases, we managed to replicate the original results relatively often, proving that the best446

estimates for β are reasonable. As a sanity check, we also used the decay rate MAPs for one subtype to447

try and replicate the results of the other subtype and found it much harder if not impossible to replicate the448

results, verifying that the decay rates have to be different for the two types of SPNs (results not shown).449

If we compare the estimates between the two datasets more critically, there is a clear bias for the450

posterior curves extracted from Taverna et al. (2008) to be shifted to the right compared to the posterior451

curves from Planert et al. (2010) (Figure 4A and B). Indeed, if we refer to the insets in Figure 4A and452
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Figure 4. Estimates for the distance-dependence of connection probability between SPNs A & B
Posterior density functions for the decay parameter of an exponential function representing the
probability that a D1 or D2 neuron connects to a neighbouring neuron. Bars underneath represent 95%
credibility intervals. Vertical black dashed line indicates the value of β at the maximum intersection of
the two posteriors. Inset: Probabilities of connection given distance using the MAP values from the decay
rate posteriors. C & D Monte Carlo simulations in which the best intersection estimate of β from A & B
is used to try and replicate the exact experimental results of Taverna et al. (2008) (left) and Planert et al.
(2010) (right) concerning pairs with a D1 presynaptic neuron (C) or a presynaptic D2 neuron (D). The
exact results obtained by the experimenters correspond to the red bars and given between brackets
underneath the bar graphs. E & F Density functions for the difference in decay rates between the two
studies.
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Study Pair β̂MAP (µm−1) 95% Credibility Interval

Taverna et al. (2008) D1 SPN→ SPN 0.084 [0.064, 0.125]
D2 SPN→ SPN 0.054 [0.043, 0.070]

Planert et al. (2010)

D1 SPN→ SPN 0.053 [0.040, 0.082]
D2 SPN→ SPN 0.033 [0.026, 0.045]
FSI→ D1 SPN 0.002 [0.0004, 0.009]
FSI→ D2 SPN 0.006 [0.002, 0.017]

Gittis et al. (2010)
FSI→ D1 SPN 0.004 [0.003, 0.005]
FSI→ D2 SPN 0.007 [0.005, 0.009]

FSI→ FSI 0.003 [0.001, 0.008]
Ibáñez-Sandoval et al. (2011) NGF→ SPN 0.002 [0.001, 0.006]

Table 3. MAPs and 95% credibility intervals (in µm−1) of the posterior curves for β .

B, the best estimate of β according to the study by Taverna et al. (2008) would predict a 50% drop in453

probability of connection every 8 µm for D1 neurons versus every 13 µm according to the study by454

Planert et al. (2010). In the case of D2 neurons, the difference between the two exponential curves is even455

greater, with a half distance of 13µm versus 21 µm according to Taverna et al. (2008) and Planert et al.456

(2010) respectively. Furthermore, the density functions for the difference in posteriors between the two457

studies both lie predominantly in the positive domain (Figure 4E and F) and the probability that the decay458

rate is larger in the Taverna than Planert data is 0.967 and 0.996 for βD1→SPN and βD2→SPN respectively.459

Though the disagreement between the data-sets is small, it is nonetheless consistent.460

Biased neuron sampling could explain differences between datasets461

One potential explanation is that the sampling of neuron pairs was more complex than the equiprobable462

sampling model we first assumed. In this section, we explore this possibility by considering a model463

for fsamp where, rather than choose neurons equiprobably within a visible area surrounding a neuron,464

experimenters preferentially tested neurons which were closer to one another to maximise the probability465

of detecting connections.466

To explore this model, we used the same probability of connection given distance (Equation 36) in

combination with a new density function fNN for the probability of the distance to the nearest neighbour,

to derive a new mapping from p to β . We found the resulting mapping to be (Methods):

p(β ) = k
∫ R

0
re−r(πrhN+β )dr, (39)

where k is a normalising constant. Contrary to the previous equiprobable sampling model (Equation 38),467

where these parameters cancelled out, this mapping depends on N, the density of SPNs in the striatum, and468

h, the height of the cylinder in which sampling takes place. We used here an estimate of the SPN density469

in mice of 80500 per mm3, and tested three different values of h to get three different nearest-neighbour470
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Figure 5. Density functions for the decay parameter assuming a nearest-neighbour model of neuron
selection for different values of the depth h of the sampling region. A Density function for β for D1
neurons when h = 0.1µm. B Density function for β for D2 neurons when h = 0.1µm. C-D Same as A-B
for h = 1µm. E-F Same as A-B for h = 10µm.
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distributions: 0.1 µm, 1 µm and 10 µm. We then use this mapping to transform the posteriors for p into471

posteriors for β as before (Methods).472

The first column of Figure 5 shows the resulting posteriors for D1 neurons. The picture for h = 0.1µm473

is not so different from that obtained under the equiprobable sampling hypothesis, but for greater values474

of h, the posteriors overlap far more. In particular, for h equal to 1 µm the posterior curves practically475

coincide. Similarly for D2 neurons, h = 0.1µm does not much improve the agreement between the two476

studies, but greater values of h do (Figure 5, second column). This approach successfully illustrates how a477

tendency to select neurons closer together might account for the discrepancy observed in estimates of the478

decay parameter using the simpler equiprobable sampling model. Moreover, this analysis shows how the479

details of data sampling matter when estimating connectivity statistics from intracellular recording data.480

Fast Spiking interneurons preferentially connect to D1 SPNs481

We now turn to completing our Bayesian map of the striatal microcircuit by evaluating the connections of482

different species of interneurons to the SPNs and to each other – we present the full map in the Discussion483

(Figure 10). Three main types of interneurons are commonly documented (Kreitzer, 2009): Fast Spiking484

(FS), Persistent Low Threshold Spiking (PLTS), and cholinergic (Ach) interneurons. We will also include485

in this list tyrosine-hydroxylase (TH) and NPY-NGF interneurons because of their relationship to Ach486

interneurons, which is crucial to the function of the cholinergic component of the circuitry (Ibáñez-487

Sandoval et al., 2011; English et al., 2012; Dorst et al., 2020). We took data on pairwise intracellular488

recordings of these interneuron types from the range of studies listed in Table 1, and determined Bayesian489

posteriors for p as previously. Unlike for the SPNs we did not have prior studies of the interneuron490

connections to help us design a prior, so we relied on a uniform prior instead.491

We focus first on FS interneurons that project to the SPNs, using intracellular recording data from492

Planert et al. (2010) and Gittis et al. (2010). The posteriors we obtain for Planert et al. (2010) (Figure493

6B) are consistent with quite high connection probabilities: the MAPs are 0.67 and 0.89 for connections494

to D2 and D1 neurons respectively. However, the small size of the samples means that the range of495

possible values is also broad (95% credibility intervals: D2, [0.35, 0.88]; D1, [0.56, 0.98]). Fortunately,496

the study of Gittis et al. (2010) is based on a much larger sample resulting in narrower posteriors shown497

in Figure 6A. Thanks to these narrower posterior curves, it is possible to conclude that FS interneurons498

preferentially target D1 neurons. In fact, when we integrate ∆FS→D1−FS→D2 (Figure 6A inset), we find499

the probability that FS interneurons prefer to connect to D1 neurons is greater than 0.99.500

The two studies seem to disagree as Planert et al. (2010) gives much higher estimates of p, but this501

is resolved by taking into account the maximum distance used by the two studies, 100 µm for Planert502

et al. (2010) and 250 µm for Gittis et al. (2010). Indeed, if we convert the posteriors for p into posteriors503
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Figure 6. Bayesian analysis of connection probabilities of FS interneurons onto D1 and D2 SPNs. A
Connection probabilities of fast spiking (FS) interneurons connecting to D1 and D2 SPNs according to
the data of Gittis et al. (2010) who set a maximum distance of 250 µm between neurons. Inset: density
function for the difference in probability of connection. B As for panel A, according to the data of Planert
et al. (2010) who used a maximum distance of 100 µm instead. C Posterior density functions for the
decay rate of probability of connection for FS→ D1 pairs assuming equiprobable sampling of neurons. D
Probabilities of connection given distance for three different values of β corresponding to the MAP
estimates of each study and the intersection of the two posterior curves. E-F Same for FS→D2 pairs as C
and D respectively. Because the MAP estimate for Planert et al. (2010) coincides with the intersection of
the two posteriors, only two exponential decays are tested in F.
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for the exponential decay rate β of the probability of connection given distance, with the assumption of504

equiprobable sampling as previously explained, we obtain posteriors which very largely overlap (Figure505

6C and E; Table 3) thus reconciling the two studies. In line with the already discussed overall smaller rate506

of connection to D2 neurons, the probability of connection drops much faster as distance increases for507

connections to D2 neurons (dropping to 50% after about 100 µm, see Figure 6F) than for connections to D1508

neurons (50% connection rates occurring at a distance of at least 200 µm, see Figure 6D). Consequently,509

there are at least two length-scales in the striatal microcircuit, with connections between SPNs falling510

to 50% probability within a few tens of micrometers (Figure 4A,B), but connections to SPNs from FS511

interneurons falling to 50% probability at a hundred micrometers or more (Figure 6D,F).512

PLTS interneurons make few local connections in striatum513

We turn now to the connections that FS interneurons make on other interneurons of the striatum. To514

assess these, we analysed data from Gittis et al. (2010) on connections FS interneurons make to PLTS,515

cholinergic, and other FS interneurons (Figure 7A). Their data on connections between FS and PLTS516

interneurons were pooled with the data on the same connections from Szydlowski et al. (2013): We517

checked that the data from the two studies were in agreement by calculating posteriors separately for each518

study and found the density functions for the difference between the posteriors (∆) for both directions519

(FS→PLTS and PLTS→FS) included 0 among their most likely values (results not shown).520

We see from these data that the probability of connection from FS interneurons to PLTS interneurons521

is low ( p̂MAP = 0.10) but uncertainty regarding these connections is quite large (95% credibility interval =522

[0.03, 0.29]), while the probability of connection to cholinergic interneurons is even more uncertain with a523

credibility interval ranging from 0 to 0.60 and therefore requires more investigation. Connections between524

FS interneurons are relatively common (p̂MAP = 0.58) but with broad uncertainty (95% credibility interval525

= [0.32, 0.81]). While this broad uncertainty in p translates into a broad uncertainty for the decay rate β526

of the probability of connection given the distance between a pair of FS interneurons (Figure 7B), we527

see that the distance-dependence for pairs of FS interneurons is similar to that for connections of FS528

interneurons to SPNs with a half-distance for connection probability as a function of distance of about529

200 µm for β̂MAP = 0.003µm−1. Unfortunately, Szydlowski et al. (2013) do not provide a maximum530

distance which prevents us from transforming fp(p) for FS→ PLTS pairs into the corresponding fβ (β ).531

The combined data of Gittis et al. (2010) and Szydlowski et al. (2013) (Figure 7C) shows no evidence532

that PLTS interneurons connect locally to other interneurons (p̂MAP = 0 for all pairs), but connections to533

SPNs, although sparse, are clearly established within a maximum distance of 250 µm (p̂MAP = 0.033, 95%534

credibility interval = [0.010, 0.114]). Compared to FS interneurons, there is less uncertainty concerning535

the rates of connection for these PLTS interneurons, as evidenced by the smaller credibility intervals536
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Figure 7. Bayesian analysis of connection probabilities between striatal interneurons using a uniform
prior. A Posterior density functions for FS interneurons connections onto other interneurons according to
the data of Gittis et al. (2010). B Posterior density functions for the decay rate of probability of
connection for FS→ FS pairs assuming equiprobable sampling of neurons. Inset: Exponential decay
function for the probability of connection between pairs of FS interneurons corresponding to the MAP
estimate of the decay rate. C Posterior density functions for PLTS interneuron connections onto other
interneurons according to the data of Gittis et al. (2010). D Posterior density functions for connections
between cholinergic and TH interneurons according to data from Dorst et al. (2020). E Posterior density
functions for connections between cholinergic interneurons, NGF interneurons and SPNs according to the
data of English et al. (2012) and Ibáñez-Sandoval et al. (2011). F Posterior density functions for the
decay rate of the probability of connection for NGF→ SPN pairs assuming equiprobable sampling of
neurons. Inset: Exponential decay function for the probability of connection between NGF→ SPN pairs
corresponding to the MAP estimate of the decay rate in E.
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shown in Figure 7C. It remains to be seen whether there is an asymmetry in connection probability to D1537

and D2 SPNs as the experimenters did not make this distinction when testing PLTS→ SPN connections.538

Further evidence that the effect of cholinergic interneurons onto SPNs is mediated by539

GABA interneurons540

A recent study (Dorst et al., 2020) reported intracellular recording data on connections between cholin-541

ergic interneurons and the subtype of GABAergic interneurons that express tyrosyne-hydroxylase (TH542

interneurons) (see Table 1). When we apply our Bayesian method to this dataset (Figure 7D), we find that543

TH and cholinergic interneurons connect reciprocally to one another quite frequently and with practically544

equal probabilities ( p̂Ach→T H = 0.268, p̂T H→Ach = 0.260), with uncertainty estimates which are relatively545

good compared to other interneuron connections (95% credibility interval = [0.159, 0.396] for TH→ Ach546

connections, and [0.157, 0.420] for Ach→ TH connections).547

The activity of cholinergic interneurons indirectly affects SPNs via at least one type of GABAergic548

interneuron (English et al., 2012). To examine this route, we combine pairwise intracellular recording data549

from English et al. (2012) on connections between cholinergic interneurons and NPY-NGF interneurons,550

with data from Ibáñez-Sandoval et al. (2011) on connections from NPY-NGF interneurons to SPNs. Our551

analysis (Figure 7E), reveals that cholinergic neurons connect frequently to NPY-NGF interneurons,552

which in turn connect very frequently to SPNs, making them an effective relay of cholinergic signals; this553

relay may also be regulated by the NPY-NGF interneurons frequent feedback connections on cholinergic554

interneurons. Furthermore, given that Ibáñez-Sandoval et al. (2011) used a maximum distance between555

neurons of 100 µm, it is possible to transform the posteriors for the probability of NGF→ SPN into556

posteriors for the exponential decay rate β of probability of connection given distance. The MAP of β is557

the lowest we have found at about 0.002 µm−1 (Figure 7F; Table 3). This means that even at a distance of558

100 µm from an NGF interneuron, an SPN still has a 0.8 probability of receiving a connection from this559

interneuron, which partly explains the effectiveness of the cholinergic system in regulating SPN activity.560

Evidence used to compare SPN sub-type connection rates in wild type and Huntington’s561

disease mice is insufficient562

To this point we have used our Bayesian approach to evaluate the probability of connection, the evidence563

for it, and (where possible) its dependence on the distance between neurons for every unique connection564

within the striatal microcircuit (for which there is extant data). We turn now to showing how our Bayesian565

approach lets us not just construct a map of the microcircuit, but also quantitatively test evidence for566

changes in the microcircuit. To do so, in this section we evaluate evidence that connections between567

SPNs change in a mouse model of Huntington’s disease (Cepeda et al., 2013); in the following section we568
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Figure 8. Bayesian analysis of the study by Cepeda et al. (2013), comparing the probability of lateral
SPN connections in wild type mice and a model of Huntington’s disease. A Posterior density functions
for the probabilities of connection in the wild type mice using a uniform prior. Bars underneath represent
the 95% credibility intervals. The curves for D2→ D1 and D1→ D2 coincide exactly. B Posterior
density functions for Huntington’s disease animals using a uniform prior. The curves for D2→ D1 and
D1→ D2 also coincide exactly. C Probability density function for the difference in probabilities of
connection for D1→ D1 pairs between the two animal groups. D-F Same as A-C using the prior based
on the past literature.
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Data Pair k n Prior p̂MAP 95% credibility interval

Wild type

D1 SPN→ D1 SPN 4 14 Uniform 0.286 [0.118, 0.551]
Literature 0.170 [0.079, 0.333]

D1 SPN→ D2 SPN 2 10 Uniform 0.200 [0.060, 0.518]
Literature 0.124 [0.048, 0.292]

D2 SPN→ D1 SPN 2 10 Uniform 0.200 [0.060, 0.518]
Literature 0.124 [0.048, 0.292]

D2 SPN→ D2 SPN 4 14 Uniform 0.143 [0.043, 0.405]
Literature 0.109 [0.042, 0.260]

HD model

D1 SPN→ D1 SPN 7 22 Uniform 0.318 [0.164, 0.529]
Literature 0.210 [0.14, 0.359]

D1 SPN→ D2 SPN 1 6 Uniform 0.167 [0.037, 0.579]
Literature 0.104 [0.035, 0.283]

D2 SPN→ D1 SPN 1 6 Uniform 0.167 [0.037, 0.579]
Literature 0.104 [0.035, 0.283]

D2 SPN→ D2 SPN 0 14 Uniform 0 [0, 0.218]
Literature 0.048 [0.013, 0.180]

Table 4. Experimental data from wild type and HD model mice from Cepeda et al. (2013), alongside
results of the Bayesian analysis using either a uniform or literature prior. For each type of connection, k is
the number of connections that were found and n the total number of tested connections. HD:
Huntington’s disease.

evaluate evidence for how connections between SPNs change over development.569

The study of Cepeda et al. (2013) used smaller samples of identified SPN pairs than the (Taverna et al.,570

2008) and (Planert et al., 2010) studies of SPN connectivity (see Table 4) and consequently the resulting571

posteriors are notably impacted by the choice of the prior (Figure 8A and D). Indeed, the posterior curves572

obtained from the data of Cepeda et al. (2013) with a uniform prior or the prior based on previous literature573

look very different, contrary to those of Taverna et al. (2008) (compare Figures 1C and G) and Planert574

et al. (2010) (compare Figures 1G and H). In particular, the posteriors for wild-type mice obtained from575

the prior based on the previous literature look very similar to the initial prior (Figure 8D) simply because576

of the small number of samples. Independently of the choice of prior, the posteriors overlap so much that577

it is not possible to confirm the rates of connection differ between any pairs of SPNs in the wild type mice578

(Figures 8A and D). Given how broad the posteriors are, we infer that this lack of difference is due to579

insufficient data rather than a true absence of difference.580

Crucially, this lack of data is also true when comparing connection rates between the wild type and581

Huntington’s model mice (Figure 8A-B or D-E). We find no evidence to support one of the conclusions582

reached by the authors that D1→ D1 connections are more likely in the Huntington’s model than wild-583

type mice. Indeed, if we plot the density functions for the difference in probabilities of connection for D1584

→ D1 pairs between the two animal groups, we can see that it is very probable for this difference to be585

0, but also any other value ranging from roughly -0.3 to 0.3 if we use a uniform prior (Figure 8C) or a586

slightly more conservative -0.2 to 0.15 using the prior based on previous literature (Figure 8F).587
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D2 SPN connection asymmetries appear during development588

The development of connections between SPNs and their asymmetry can be tracked through postnatal589

development thanks to a recent study by Krajeski et al. (2019) who measured the probability of connection590

for different SPN pairs at three different stages of post-natal mouse development. The researchers reported591

that D1 neurons established lateral connections earlier than D2 neurons (a reproduction of these results592

with our added Wilson confidence intervals is shown in Figure 9A-C). We used our Bayesian approach to593

check this conclusion against the uncertainty in the experimental data, and provide further details of the594

development of the striatal microcircuit.595

In order to apply our Bayesian method to this data we resort to the uniform prior, since we have596

no particular expectation about these connection rates at these stages of development, and obtain the597

posteriors for each combination of neurons shown in Figure 9D-F. We have also tested the Jeffreys prior598

and obtained practically identical results (not shown). We can see that D1 neurons have already made599

some connections in the first 3-6 days of postnatal development (P3-6; Figure 9D), but it is hard to say600

from inspecting the posteriors at each subsequent developmental stage (P9-12 and P21-28) whether the601

connections made by D1 SPNs continue to develop or have already finished by P3-6 (Figure 9E and F). If602

we instead look at the difference in posteriors ( f∆) between consecutive developmental stages (Figure 9 G603

and H), we see some evidence that connections made by D1 neurons continue to develop, with respective604

probabilities of 0.81 (P3-6 to P9-12) and 0.77 (P9-12 to P21-28) that the connection density of D1 neurons605

increases (probabilities again found by integrating f∆ between 0 and 1). Comparing the earliest (P3-6)606

and latest (P21-28) stages gave a similar probability of 0.85 that D1 connections increased (not shown).607

For presynaptic D2 neurons on the other hand, it is clear that no or very few connections are present at608

P3-6, and that they gradually appear later (Figure 9D-F). Computing the difference in posteriors ( f∆) for609

P(D2→ D2) and P(D2→ D1) between consecutive stages (Figure 9 G and H), we find the probability610

that D2 SPNs increase their connection density is 0.95 between P3-6 and P9-12 and 0.92 between P9-12611

and P21-28, indicating a gradual development of these connections up to postnatal days 21-28. By also612

calculating f∆((D2→D1)−(D2→D2)) at each of these three stages (plotted as insets in Figure 9 D-F), we613

find good evidence that D2 neurons first connect to other D2 neurons before connecting to D1 neurons,614

supporting the claim by the authors of the original article (Krajeski et al., 2019). Notably, our analyses in615

this paper have thus shown that while there is no evidence for a difference in the probability of pre-synaptic616

D2 SPNs connecting to D1 or D2 SPNs in the adult striatum (Figure 2B,F), there is evidence that the D2617

→ D1 and D2→ D2 connections develop at different rates.618

Our finding of strong evidence that D1 neurons are less likely to receive connections from SPNs than619

D2 neurons, both in adults (Figure 2) and at later stages of development (Figure 9), implies a role for620
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Figure 9. Post-natal development of the lateral connections of SPNs using data from Krajeski et al.
(2019). A-C Point estimates of the probabilities of connection at different developmental stages from
Krajeski et al. (2019). We add here the 95% Wilson confidence intervals. D-F Posterior probability
density functions for the probability of connections between SPNs at each developmental stage. Coloured
bars underneath the plot represent the 95% credibility intervals. A uniform prior as in Figure 1C is used.
Inset: Density function for the difference in probability of connection for pairs with a D2 presynaptic
neuron. G-H Density functions for the difference in connection probabilities for each pair of neuron
types between consecutive stages of postnatal development.
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active wiring processes in the developing striatum. We considered a simple model of a passive wiring621

process in which the contact of an axon from a first neuron onto the dendrite of a second neuron is622

determined only by the probability that an axon segment and a dendritic segment simultaneously occupy623

the same location (Liley and Wright, 1994; Kalisman et al., 2003; Humphries et al., 2010). For SPNs624

we have the repeated observation that D1 SPNs have denser dendritic trees for the same volume as D2625

SPNs (Gertler et al., 2008; Fujiyama et al., 2011; Gagnon et al., 2017). A passive wiring model would626

thus predict that D1 SPN dendrites receive more axonal contacts than D2 SPN dendrites from the same627

pre-synaptic type of SPN.628

If this were true, we would expect to find in our analyses here that the asymmetry of connection rates629

would depend on the type of the postsynaptic neuron, when we instead find it depends on the type of630

presynaptic neuron; and we would expect D1→ D1 connections to be quite numerous when in fact these631

are quite rare. Together with our confirmation that the data of Krajeski et al. (2019) show D1 and D2632

neurons develop their connections at a different rate, our analyses thus suggest that there is an active633

wiring process in striatal development that causes either an underexpression of connections to D1 SPNs,634

or overexpression of connections to D2 SPNs.635

DISCUSSION636

We presented a Bayesian inference approach to analysing connectivity using intracellular recording data,637

and applied it to reconstruct the microcircuit of the striatum from an exhaustive survey of data from638

pairwise intracellular recordings. None of these data have had any assessment of the uncertainty in their639

connection estimates or of the strength of evidence they provide. Our new approach allows us to now640

draw rigorous conclusions about the strength of evidence for claims about the microcircuit, and in turn641

synthesise these data into as complete a map as the data allow.642

A Bayesian map of the striatal microcircuit in mice643

Figure 10 synthesises the complete map we obtained of the striatal microcircuit in mice. It emphasises644

our key results: first, there is strong evidence of a connection asymmetry that depends on the type of645

presynaptic SPN – namely that D2 SPNs are roughly twice as likely to contact another SPN as D1 SPNs646

– but no evidence of an asymmetry that depends on the type of postsynaptic SPNs; second, that there647

is strong evidence for FS interneurons preferentially connecting to D1 SPNs; third that there is strong648

evidence of dense projections from NPY-NGF interneurons to SPNs, likely as dense or denser than those649

from FS interneurons; and, finally, that connections between SPNs occur on much shorter length-scales650

than the connections made by interneurons.651

For ease of interpretation, Figure 10 summarises each connection probability as the best point estimate652
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Figure 10. Map of the striatum microcircuitry based on the MAP estimates for p and, when a maximum
intersomatic distance was available, the decay rate β assuming equiprobable sampling. Line thickness is
indicative of the relative probability of these connections. Connections between and within SPN subtypes
are assumed to be the same for a given presynaptic subtype, as established in the main text, and the two
different estimates for p correspond to the two different maximum distances used in Taverna et al. (2008)
and Planert et al. (2010). Modellers wishing to use this map should beware of the relative population size
of these different neurons. For instance, although the probability of connection between SPNs is
relatively small compared to connections from FS interneurons, this is potentially counterbalanced by the
much greater number of SPNs within a given volume (Humphries et al., 2010). The map also necessarily
omits known connections for which there are no appropriate intracellular recording data.

we can obtain (namely, the MAP of the corresponding posterior distribution). But of course we now have653

the full posterior distributions underlying these estimates, and some of these are broad – for example,654

the connection probability from NGF to Ach interneurons has a 95% credible interval twice as wide as655

its best (MAP) estimate (Table 1). Our posterior distributions thus reveal that a wide range of potential656

striatal wirings are consistent with current data.657

From this it follows that any model of the striatum should sample its connection probabilities from658

these posteriors to understand the robustness of the results. It is now well established that parameters of659

neural models fall into two classes: those whose precise values are critical to the resulting predictions660

of a model, and those a model is not sensitive to (Panas et al., 2015; Ponce-Alvarez et al., 2020). And661

it is likely that striatal dynamics are indeed sensitive to variations in the probabilities and distances of662

connections (Humphries et al., 2010; Spreizer et al., 2017). Thus, we propose computational researchers663

change their usual practice of setting a single value for connection parameters, and instead sample from664

the posterior distribution on each run of their model – to this end, we give the complete form of all our665

posteriors for p in Table 1 and our confidence intervals for the decay parameter β in Table 3.666
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Extending the microcircuit map667

Constructing our map also revealed or reemphasised further research questions. First, because the available668

experimental data are drawn from across the striatum, the map is silent on anatomical issues such as669

whether connection probabilities differ between the patch and matrix compartments of the striatum or670

between different regions of the striatum. Second, we lack data on the connectivity of some types of striatal671

interneuron thought distinct to those examined here, including the calretinin-expressing interneurons672

and rare subtypes of 5HT3a-expressing interneurons (Tepper et al., 2018). Also omitted are the known673

connections from ACh interneurons to SPNs. As these synapses use muscarinic receptors, and so are674

metabotropic, they do not evoke postsynaptic currents detectable by the simultaneous stimulation and675

recording technique used in the studies relied upon here. However, new techniques such as induced676

overexpression of G-protein activated ion channels (Mamaligas and Ford, 2016) may allow the future677

quantification of connection rates. An advantage of our approach is that any new data on pairwise678

recording data in the striatum can build directly on our analyses, by either updating the posteriors we679

arrived at, or by estimating new posteriors for connections that lack data at present.680

Third, we emphasise that this is a map of the local microcircuit, for the connections from a source681

neuron to other types of neurons in its neighbourhood. Our distance-dependent probability model assumes682

that connection probability falls monotonically with distance within the neighbourhood. However, sub-683

types of interneurons that send axons longer distances (Tepper et al., 2018) could violate this assumption,684

such as reports of PLTS interneurons with an axon that spans a distance of over 1mm making infrequent685

bouquets of terminals (Kawaguchi, 1993). More detailed knowledge of these long-distance connections686

would allow for a more complete map of striatal connectivity. Moreover, our approach requires a single687

parameter model of the distance-dependent probability, so assumes exponential decay... as p(connection)688

must decay over distance, this is fine; but more detailed....689

Finally, this is a map of connectivity: full knowledge of the influence of one neuron type on another690

requires data on the strength of the different connections, which may in turn depend on where on the691

target neuron they fall (Oorschot et al., 2013; Du et al., 2017).692

Implications for theories of the striatum693

Ever since the paper by Jaeger et al. (1994) which reported finding no functional lateral connections among694

SPNs, computational modelling of the striatum and wider basal ganglia moved away from earlier lateral695

inhibition models implementing a winner-takes-all strategy where these connections took centre stage696

(Groves, 1983) towards a predominantly feedforward view (Plenz, 2003; Tepper et al., 2004). According697

to these feedforward models (for example Mink (1996); Gurney et al. (2001b); Frank (2005); Leblois698

et al. (2006); Humphries et al. (2006)), the output of the striatum is entirely determined by the pattern of699
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its cortical inputs modulated by the strength of the different cortico-striatal synapses.700

Our Bayesian map of the striatal microcircuit provides further evidence that this feedforward model is701

limited because the striatum’s internal circuit is crucial in shaping its outputs. In the classic direct-indirect702

pathway model of the basal ganglia (Alexander and Crutcher, 1990), the D1 and D2 SPNs respectively703

form the populations originating the direct and indirect pathways to the basal ganglia output nuclei, D1704

SPNs sending direct axonal projections, and the D2 SPNs projecting first to the globus pallidus, which705

relays to the output nuclei. We have shown that data on connections between D1 and D2 SPNs (Taverna706

et al., 2008; Planert et al., 2010) provides strong evidence for D2 SPNs making more connections to other707

SPNs than D1 SPNs. Some models and theories have interpreted these data as showing that the indirect708

pathway will dominate the direct pathway output (Bahuguna et al., 2015; Burke et al., 2017). However,709

that the same data provide no evidence of an asymmetry in the preferred targets of D1 or D2 SPNs further710

suggests there is not a selective inhibition of the D1 SPNs by D2 SPNs, but that the D2 SPNs are as711

equally likely to inhibit themselves as D1 SPNs. As such, the nature of the interaction of the direct and712

indirect pathways, and hence their response to cortical and thalamic inputs, remains unclear.713

Microcircuit mapping can be used anywhere in the brain714

We showed a range of advantages that our Bayesian approach has over more traditional frequentist715

approaches. One is that it replaces a single point estimate surrounded by a flat confidence interval by a716

posterior distribution covering all the possible values, so that overlaps between connection rates become717

immediately apparent. Second, as argued in Dienes (2014), when differences between connection rates718

are non-significant, Bayesian methods allow us to distinguish between cases where the data is insufficient719

to draw a conclusion from cases where there really is no difference. For instance, the posteriors for720

connection rates in the study of Cepeda et al. (2013) strongly overlap (Figure 8), but because the posteriors721

are so broad, we know this is due to insufficient data rather than evidence of no difference. On the contrary,722

when we failed to find a difference in connection rates for different postsynaptic targets of the D1 and D2723

SPNs, the posteriors are sufficiently narrow for us to confidently conclude that such a difference is either724

absent or quite small (Figure 2). Third, when making comparisons between probabilities of connection,725

we can use the full posteriors to compute an explicit probability that the difference is less than or greater726

than zero. A final advantage of Bayesian inference is the use of priors to incorporate past results, as we727

did for the connections between SPNs, or test our starting assumptions, as we did by showing our SPN728

connection results were robust to the choice of prior distribution.729

Our approach can easily be applied to any brain regions where paired recording experiments have730

taken place, such as the recent study of Ellender et al. (2019) on how the embryonic origin of cortical731

neurons influences their connection probabilities. Indeed, obtaining the posterior distributions given k732
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positive tests of connection and n− k negative tests requires a single line of MATLAB or Python thanks733

to built-in functions (Methods). Consequently, not only are these Bayesian methods easily applicable734

to intracellular recording data from any brain region, but also may be a rare case where it easier to be735

Bayesian than frequentist.736
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