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Infectious disease transmission models require assumptions about
how the pathogen spreads between individuals. These assump-
tions may be somewhat arbitrary, particularly when it comes
to describing how transmission varies between individuals of
different types or in different locations, and may in turn lead to
incorrect conclusions or policy decisions. We develop a general
Bayesian nonparametric framework for transmission modeling
that removes the need to make such specific assumptions with
regard to the infection process. We use multioutput Gaussian
process prior distributions to model different infection rates in
populations containing multiple types of individuals. Further chal-
lenges arise because the transmission process itself is unobserved,
and large outbreaks can be computationally demanding to an-
alyze. We address these issues by data augmentation and a
suitable efficient approximation method. Simulation studies using
synthetic data demonstrate that our framework gives accurate
results. We analyze an outbreak of foot and mouth disease in the
United Kingdom, quantifying the spatial transmission mechanism
between farms with different combinations of livestock.

multioutput Gaussian processes | disease transmission models | foot and
mouth disease | spatial epidemic models

The field of mathematical modeling of infectious diseases has
grown significantly in the past three decades. This has led to

a substantial increase in our understanding of the epidemiology
and control of many diseases. The current COVID-19 pandemic
has highlighted that the ability to unravel the dynamics of the
spread of infectious diseases is profoundly important for design-
ing effective control strategies, as well as assessing existing ones.

Disease spread contains inherent randomness, and capturing
this aspect necessitates the use of stochastic models. The over-
whelming majority of stochastic epidemic models are parametric.
Such models are defined using specific probability distributions,
fully specified by a finite set of parameters, which encapsulate
assumptions about how transmission occurs in a population and
what happens to individuals that become infected. In some cases
the underlying model assumptions have biological or epidemi-
ological justification. For example, data from case studies may
suggest a suitable distribution for the time period during which
individuals remain infectious (1). However, such justifications do
not always exist, especially with respect to assumptions for the
infection process. For example, spatial epidemic models typically
assume that the transmission of the pathogen from one individual
to another is a function of the distance between them, but the
exact form of this function is often chosen rather arbitrarily. Non-
spatial models with different types of individuals often include
assumptions about how transmission potential varies with type,
such as age or vaccination status. Such arbitrary assumptions can
have material consequences, leading to erroneous scientific con-
clusions, underestimation of the uncertainty around estimates of
key quantities, and misleading predictions (2).

An alternative to parametric epidemic modeling is to adopt a
nonparametric approach in which the specific finite-parameter
probability distributions in parametric models are replaced
by infinite-parameter versions. This avoids having to make

particular model assumptions and enables the modeling exercise
to be far more data driven. Although general nonparametric
statistical theory has a long history, there has been relatively
little work to adapt the ideas to epidemic modeling. To date, most
attention has been directed toward estimation of how infection
rates vary over time, in both classical (3, 4) and Bayesian (5–7)
statistical frameworks.

In this paper we develop nonparametric stochastic epidemic
models that allow transmission potential to vary between individ-
uals. This is a wide class of models that include spatial models,
multitype models, and models on static networks. Fitting such
models to data is a nontrivial exercise, due to the facts that the
transmission process itself is unobserved in reality and that the
models are inherently infinite dimensional. We develop computa-
tional methods for fitting the models to data in a Bayesian statis-
tical framework, making use of data augmentation Markov chain
Monte Carlo (MCMC) methods and suitable approximations.

We use our methods to enhance understanding of the mech-
anisms of foot and mouth disease (FMD) transmission. Disease
among livestock can cause severe economic consequences to the
agriculture industry, concern to consumers, and the culling of
millions of animals. In the 2001 FMD outbreak in the United
Kingdom, over 6 million animals were culled with a cost to
the public and private purse of over £8 billion (8). Numerous
studies have used parametric epidemic models to analyze data
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on disease outbreaks among livestock (9–18), often with a view to
understanding the spatial spread of disease, determining factors
that affect the potential infectivity or susceptibility of farms, and
assessing existing or proposed control measures. Our approach
dispenses with the need for the underlying transmission assump-
tions of parametric models, instead allowing the analysis to be
driven by evidence in the data.

Methods
Epidemic Model. We now describe an epidemic model that
generalizes the classical continuous-time susceptible–infective–
removed (SIR) model (19). Consider a closed population
containing N individuals labeled 1, . . . ,N . Each individual j has
a set of covariates φj , such as location or type, which remains
unchanged throughout the epidemic.

At any time, each individual is susceptible to the disease,
infected with the disease and infective, or removed, meaning
that they have had the disease but are now unable to infect
others. In practice, removal may refer to isolation, natural recov-
ery and immunity, or death, depending on the pathogen being
modeled. Removed individuals cannot be reinfected. Initially,
the population is entirely susceptible other than a few infectives.
Infective individuals remain so for a time period drawn from
some specified nonnegative probability distribution, after which
they enter the removed class. The infectious periods of different
individuals are assumed to be mutually independent.

During the infectious period, an infective individual i has
contacts with any given susceptible individual j in the population
at times given by the points of a Poisson process of rate β̃ij .
If a contact occurs, then j immediately becomes infective. The
Poisson processes corresponding to different pairs of individuals
are assumed to be mutually independent. We assume that β̃ij =
βij (φi ,φj ) for some function βij . The epidemic ends when there
are no more infectives remaining.

Nonparametric Modeling. The overwhelming majority of epi-
demic models of the kind just described specify the infection rate
functions βij explicitly by assuming a particular parametric form.
Conversely, in this paper we attempt to estimate such functions
nonparametrically in a Bayesian framework. Technically, this
involves assigning prior distributions to the set of possible βij

functions and then using an MCMC algorithm to sample from
the resulting posterior distributions, given observed data from
an epidemic outbreak.

For the remainder of this paper we focus on multitype suscep-
tibility models (20) in which individuals can have varying suscep-
tibility to the disease, but are assumed to be equally infectious if
infected. Specifically, we assume that each individual is one of a
possible p types labeled 1, . . . , p and that βij = β(k) if j is type k,
k = 1, . . . , p. However, our methods can equally be applied in a
more general setting.

Multioutput Gaussian Processes. To fit the epidemic model to data
in a Bayesian framework, we must assign a prior distribution to
the vector of functions (β(1), . . . ,β(p)), which can be naturally
achieved by using multioutput Gaussian processes (GPs). Recall
that if a real-valued function f has a GP distribution, then for any
vector (x1, . . . , xn) of values in the domain of f, (f (x1), . . . , f (xn))
has a multivariate normal distribution specified by its mean
function, μ, and positive definite covariance matrix function Σ,
where

μ(xi) = E[f (xi)],

Σi,j (xi , xj ) = E[(f (xi)− μ(xi))(f (xj )− μ(xj ))],

and we denote this by f ∼ GP
(
μ, Σ

)
.

Although our methodology applies to any choice of Σ, we
henceforth focus on the squared exponential covariance function
k(·, ·) in which f has domain R and

Σi,j (xi , xj ) = k(xi , xj ; α, l),

k(xi , xj ; α, l) = α2 exp
{
− (xi − xj )

2

l2

}
,

where α and l are the hyperparameters of the GP, known re-
spectively as the variance and the length scale. Multioutput
GPs extend these ideas in a natural way to multiple functions
f (1), . . . , f (p) by introducing covariance between the functions.

In our setting, each input value xk will be a real-valued function
of a covariate pair (φi ,φj ), for example, the distance between i
and j. As functions with GP distributions are real valued we use
a nonnegative function g, typically g = exp, to transform samples
from the GP into nonnegative infection rate functions by defining

β(j) = g
(
f (j)

)
, j = 1 . . . , p.

We now use this approach to define three different models.
The multioutput covariance model. For the multioutput covari-
ance (MOC) model, we place a joint GP prior distribution on
the functions f (1), . . . f (p). Specifically, we assume that⎛

⎜⎜⎜⎝
f (1)

f (2)

...
f (p)

⎞
⎟⎟⎟⎠∼ GP

⎛
⎜⎜⎜⎝0,

⎛
⎜⎜⎜⎝

Σ(1,1) · · · ρ1,pΣ
(1,p)

ρ2,1Σ
(2,1) · · · ρ2,pΣ

(2,p)

...
...

ρp,1Σ
(p,1) · · · Σ(p,p)

⎞
⎟⎟⎟⎠
⎞
⎟⎟⎟⎠ ,

so that for any input vector (x1, . . . , xn), where xi = (x
(1)
i , . . . ,

x
(p)
i ), Σ(a,b)

i,j (x
(a)
i , x

(b)
j ) = k(x

(a)
i , x

(b)
j ;α, l) and ρj ,k is a measure

of the correlation between f (j) and f (k) satisfying −1≤ ρj ,k ≤
1 and ρj ,k = ρk ,j for k �= j . Note that we assume all covariance
functions have the same length-scale hyperparameter; this is not
necessary, but in practical applications of the kind we consider,
data are typically insufficient to estimate numerous length-scale
parameters.
The independent GP model. Setting ρj ,k = 0 for all j and k gives
rise to an independent GP (IGP) model for which it is assumed
that there is no relationship between the infection rates acting on
different types of individuals a priori. An advantage of this model
is its simplicity, because we do not have to specify the relationship
between f (j) and f (k). We may also allow the p independent GPs
to have their own length scales.
The discrepancy-based model. In the discrepancy-based (DB)
model we first set f (1) as a baseline, to which we assign a GP
prior with mean zero and covariance matrix Σ(1)

j ,k . For j = 2, . . . p
we then assume that

f (j) = f (1) + u(j), u(j) ∼ GP
(
0, Σ

(j)
j ,k

)
,

where u(j) represents the discrepancy between f (j) and f (1), with
f (1), u(2), . . . , u(p) assumed to be mutually independent. We fur-
ther assume that Σ(j)

j ,k (xj , xk ) = k(xj , xk ; α, lj ), for j = 1, . . . p, so
that in particular the discrepancies have individual length scales.
When fitted to data, this model enables a direct comparison
between infection rates of different types of individuals to be
made, which can be useful for policy makers.

Data and Likelihood Function. Consider an outbreak of disease
among a population of N individuals, n of which were infected.
We assume that we observe the removal times of the n in-
fected individuals, but not their infection times. In practice, the
likelihood of the observed removal times under our model is
analytically and computationally intractable. This is because the
calculation involves integrating over the unobserved infection
times, which lie in a nontrivial subset of R

n . Following ref. 21
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we proceed by introducing the unobserved infection times in a
data-augmentation framework, which in turn yields a tractable
data-augmented likelihood.

Label the infected individuals 1, . . . ,n by their removal
time and the remaining individuals n + 1, . . . ,N arbitrarily.
We denote the infection and removal time of individual j
by ij and rj , respectively, and assume that the epidemic
starts with a single infective individual labeled ω. Define i =
{i1, . . . , iω−1, iω+1, . . . , iN } to be the set of infection times
excluding the initial infection time iω and r = {r1, . . . , rN } to
be the set of removal times where r1 < r2 < . . . < rN . If an
individual j has not been infected, we set ij = rj =∞. We assume
the population consists of p � N types of individuals labeled
1, . . . , p and define cj to be the type of individual j.

In the following, we assume that infectious periods follow a
Gamma distribution, although our methods can easily be adapted
for any other choice. We also assume that the infection rate
from individual j to individual k is β(ck )(xj ,k ), where xj ,k =
D(φj ,φk )≥ 0 for some specified function D. In practice, D will
be some measure of distance between individuals j and k. We then
have the data-augmented likelihood function

π(i, r|β(1), . . . ,β(p),λ, γ,ω, iω) =

n∏
j=1

h(rj − ij |λ, γ)

×
n∏

j=1
j �=ω

⎛
⎝∑

k∈Yj

β(cj )(xk ,j )

⎞
⎠ exp

{
−

n∑
j=1

N∑
k=1

β(ck )(xj ,k )δj ,k

}
,

where h(·|λ, γ) denotes the probability density function of a
Gamma distribution with shape and rate parameters λ and γ,
respectively; Yj denotes the set of individuals who are infective
at time ij , excluding j; and δj ,k = min(rj , ik )− min(ij , ik ).

The likelihood function consists of three parts. The first part is
the likelihood of the infectious periods of all infected individuals.
The second part accounts for individuals becoming infected, and
the third part is the probability of individuals avoiding infection
throughout the epidemic. Note that δj ,k is the time during which
individual k avoids infection from individual j.

Bayesian Inference and Prior Distributions. Since it is typically diffi-
cult to accurately estimate both the shape and rate parameters of
a Gamma infectious period distribution given data on removals
alone, we follow ref. 12 and treat the shape parameter λ as fixed
and known. In our applications, the GP variance hyperparameter
α can also be hard to estimate and so this is also assumed to
be known. Our main objective is then to estimate the infec-
tion rate functions β = (β(1), . . . ,β(p)), which are specified by
the corresponding GP length-scale hyperparameters l1, . . . , lm
(where m = 1 or m = p depending on the choice of GP prior
model) and, for the MOC model, the correlation parameters ρ=
{ρj ,k}. We also estimate the infectious period distribution rate
parameter γ, the unobserved infection times, and the parameters
relating to the initial infected individual, ω and iω . By assigning
mutually independent prior distributions in the natural manner,
the posterior density is specified by

π(β, l1, . . . , lm ,ρ, γ, i,ω, iω|r,λ)
∝ π(i, r|β,λ, γ,ω, iω)π(β|l1, . . . , lm ,ρ)

× π(l1) · · ·π(lm)π(ρ)π(γ)π(ω)π(iω|ω).
[1]

Let Exp(a) denote an exponential random variable with mean
a−1. We assume a priori that lj ∼ Exp(χlj ), γ ∼ Exp(χγ), that
ω is uniformly distributed on {1, . . . ,n}, and that r1 − iω ∼
Exp(χω). For the MOC model, we assume that the ρj ,k are
independently uniformly distributed on [−1, 1] a priori. Further
details can be found in SI Appendix.

Posterior Computation via MCMC. We use a bespoke data-
augmentation MCMC algorithm to sample from the posterior
distribution, an outline of which is shown in Algorithm 1 and in
which step 3 is necessary only if the MOC model is used. Details
are given in SI Appendix.
Algorithm 1. Basic structure of the MCMC algorithms:

1) Initialize the chain with values γ(0), β(0), l (0)1 , . . . , l
(0)
m , ρ(0),

i(0), ω(0), and i
(0)
ω .

Repeat the following steps:
2) Update β using a Metropolis–Hastings step;
3) Update ρ using a Metropolis–Hastings step;
4) Update GP hyperparameters using a Metropolis–Hasting

step;
5) Update γ using a Gibbs step;
6) Update ω and an infection time iω|ω using a Metropolis–

Hastings step;
7) Choose an infection time at random and update it using a

Metropolis–Hastings step.

Mean Projection Approximation. Computing the term π(β|l1, . . . ,
lm ,ρ) in Eq. 1 requires evaluation of the probability density
function of a multivariate normal distribution, which in turn
requires computing the inverse of its covariance matrix. This
can be computationally demanding in high dimensions (22–24);
in our setting, we found population sizes of more than about
N = 300 individuals to be problematic. To resolve this issue we
used the mean projection approximation (MPA). MPA essentially
works by using a subset of the original dataset that is suitably
representative of the original one (e.g., its size is sufficiently large
and its elements are suitably placed across the entire domain to
capture the features of β), inferring the infection rate functions
given this subset, and then projecting the result onto the full
dataset to obtain β. Full details are given in SI Appendix.

Results
We demonstrate our methods using simulated and real data.
Our focus is the spread of disease in livestock settings, where
individuals in the epidemic model correspond to farms in some
geographic region. Code to reproduce this analysis in R and C is
available at github.com/rowlandseymour/BNP_4_HMSEM.

Synthetic Data for Two Types. We carried out a simulation study
to test our methods in the setting of multiple types of individuals.
The locations of 1,000 farms were randomly generated on a unit
square, half being type 0, and half type 1. We simulated 250
epidemic outbreaks using the infection rates

β̃ij =

{
β(0)(dij ) = β0 exp{−3dij} if farm j is type 0
β(1)(dij ) = β1 exp{−2dij} if farm j is type 1,

[2]

where dij denotes the Euclidean distance between farms i and
j, with β0 = 0.005, β1 = 0.001, and γ = 3. We used our methods
to infer the model parameters for each dataset, with fixed GP
hyperparameters α= 6 for all models and length scales l = 5
for the MOC and IGP models. The latter was done because we
encountered some numerical instabilities when trying to estimate
l separately.

The results for the infection rate functions are shown in Fig. 1
and Table 1. Broadly speaking, all three models are able to
successfully estimate the true infection rate functions given the
available data. There is more uncertainty for the estimation of
the type 1 infection rate function β(1), which is to be expected
since β(1)(d) is considerably less than β(0)(d) for typical d in the
simulated datasets, and hence fewer type 1 farms get infected.
To assess the results for the infection times, we use the relative
error in the sum of the infection times. This is defined, for a
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A

B

Fig. 1. Synthetic data: Median estimates of the infection rate functions un-
der each model compared to the true infection rate function. (A) Estimates
for the type 0 infection rate. (B) Estimates for the type 1 infection rate.

single simulated dataset, as ī = (S − Ŝ)/S , where S denotes the
true sum of infection times of infected farms and Ŝ is its median
estimate from the MCMC output. As shown in Table 1, the
relative error for all methods is small, which demonstrates that
our method for inferring infection times gives accurate results.
More numerical comparisons are given in SI Appendix, Table S1.

Foot and Mouth Disease. In 2001 there was a large outbreak of
FMD in sheep and cattle farms in the United Kingdom, resulting
in over 2,000 cases of disease and the slaughter of over 6 million
animals. In the county of Cumbria, which was the most affected
area, there were 5,436 farms consisting of N1 = 1, 061 sheep
farms, N2 = 1, 064 cattle farms, and N3 = 3, 253 farms with both
sheep and cattle. Of these farms, n = 1, 021 were infected in-
cluding 8% of sheep farms, 13% of cattle farms, and 24% of
farms where both sheep and cattle were present. We focus on
the Cumbria data.

The 2001 UK FMD outbreak has been studied extensively
in the modeling literature (9, 11, 12, 18, 25) with a particular
focus on proposing and fitting models where the infection rate
between farms is assumed to depend on the Euclidean distance
between them, as well as the number of the different types of
animals on each farm. However, the proposed models have strict
parametric assumptions with regard to the functional form of the
spatial dependency and the effect of the numbers of animals of
different types in each farm. Given that such models are often
used during the course of an outbreak to inform policy making,
it is important to consider data-driven alternatives such as the
Bayesian nonparametric approach described above, which avoids
the need to make arbitrary assumptions about infection rate
functions.

We split the farms into three types: sheep farms, cattle farms,
and farms with both sheep and cattle. As the number farms of
each type differs considerably, we standardize the rates by the
number of farms of that type by defining

β̃jk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
N1

exp
(
f (1)(dj ,k )

)
if k is a sheep-only farm,

1
N2

exp
(
f (2)(dj ,k )

)
if k is a cattle-only farm,

1
N3

exp
(
f (3)(dj ,k )

)
if k has sheep and cattle,

where the f functions are assigned GP prior distributions as
described above and where dj ,k denotes the distance between
farms j and k. We set GP hyperparameters as α= 6 and l = 8.5
for all models, motivated by the results of a simpler analysis
described in ref. 26. We ran all MCMC algorithms for 25,000
iterations, discarding the first 5,000 as a burn-in period. This took
around 1 d to complete using the University of Nottingham High
Performance Computing Service.
MOC model. We used the MOC model with two correlation pa-
rameters, assuming the correlation between the sheep-only and
sheep-and-cattle farms is the same as the correlation between the
cattle-only and sheep-and-cattle farms. The results in Fig. 2 show
that farms with both sheep and cattle are more susceptible to
contracting the disease than farms with only one type of animal.
With regard to the shape of the infection rate functions, the
function for sheep-and-cattle farms decays more quickly than the
other two functions, and for farms of all types the probability of
an infected farm infecting a susceptible farm farther than 7 km
away is negligible.

Fig. 2A shows strong similarity between the infection rate
functions for sheep-only and cattle-only farms. Fig. 2B shows
the correlation between these two functions is high and the
95% credible interval is (0.914, 0.982). The correlation between
the functions for farms with one type of animal and for farms
with both types of animals is not as high, but still indicates
considerable positive correlation [95% CI: (0.652, 0.891)]. The
posterior median for the infectious period distribution rate pa-
rameter γ is 0.508, which gives an expected infectious period of
7.86 d. This is in line with estimates reported in refs. 12 and 27,
namely 7.55 and 7.69 d, respectively, obtained using parametric
methods.
Discrepancy-based model. The results are shown in Fig. 3 and
are similar to those for the MOC model. In contrast to the MOC
model, we can compare the functions to a baseline, chosen to
be the infection rate function for sheep-only farms. Fig. 3 shows
that there is little difference for cattle-only farms, but that the
infection rate function for sheep-and-cattle farms is significantly
higher than the sheep-only infection rate function for distances
less than around 3 km. The posterior median for γ is 0.517 [95%
CI:(0.469, 0.570)], which gives an average infectious period of
7.74 d.

Table 1. Medians and 95% credible intervals for the model pa-
rameters using the three models, compared to the true model
parameters

Model Parameter Study median 95% credible interval

IGP β0 0.00446 (0.00257, 0.00859)
β1 0.000920 (0.00415, 0.00180)
γ 3.13 (2.41, 3.92)
ĩ −0.0111 (–0.0791, 0.0470)

MOC β0 0.00484 (0.00273, 0.00782)
β1 0.00113 (0.000644, 0.00191)
γ 3.07 (2.39, 3.89)
ĩ −0.00757 (–0.0839, 0.0514)
ρ 0.762 (0.495, 0.856)

DB β0 0.00430 (0.00223, 0.0808)
β1 0.00126 (0.000562, 0.00250)
γ 3.11 (2.43, 4.02)
ĩ −0.00989 (–0.102, 0.0505)
l1 5.05 (2.49, 10.7)
l2 6.87 (2.14, 16.3)

4 of 6 PNAS
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Fig. 2. Results of the MOC model applied to the FMD dataset. (A) Posterior
medians and 95% credible intervals for the infection rate functions. (B) The
posterior distributions for the correlation parameters ρ1 and ρ2.

Assessing Disease Control Strategies. We implemented a further
simulation study, the details of which are given in SI Appendix,
section 4A, to demonstrate the benefits of our Bayesian non-
parametric framework by directly comparing it to a parametric
approach. We chose 1,000 farms uniformly at random from
the 2001 UK FMD data and simulated an outbreak assuming
that all farms were of the same type and with infection rate
β̃ij = βij (dij ) = 0.3× 0.0015(1 + (dij − 2)2)−1 + 0.7× 0.0015
(1 + dij )

−1, where dij denotes the Euclidean distance between
farms i and j. This infection rate is a weighted mixture of
two parametric functions: a logistic and a heavy-tailed Cauchy
function with the latter allowing for long-range transmission
(12). Infectious periods were assumed to be Gamma distributed
with mean 6 d and SD 3.46 d. The simulated outbreak lasted
57 d and 782 farms were infected. We fitted six models, the
only difference between them being the assumption about the
functional form of the infection rate function (Table 2). We
fixed the infectious period distribution shape parameter as λ= 3
and inferred the rate parameter γ, assuming γ ∼ Exp(0.01) a
priori. The results show that only the Bayesian nonparametric
model (M6) can detect the mixture nature of the true infection
rate (SI Appendix, Fig. S1). This feature has important practical
implications in terms of implementing control measures, because
prevention of short-range infections is typically achieved by
different means from those required to prevent long-range
infections.

Following ref. 28, we investigated the predicted efficacy of a
ring-culling strategy as a disease control measure, full details
of which can be found in SI Appendix. The results in Table 2
show the resulting predicted mean final size and probability of
a severe outbreak, the latter defined as one in which 10% of
farms were infected. Model M1 is the true model, and models
M2 and M4 estimate the probability of a severe outbreak fairly
well but fail to predict the correct final size. Model M2 correctly
estimates the infection rate over short distances, but the infection
rate function decays more slowly than that in the true model.

0 2 4 6 8 100.
00

0
0.

01
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0.
02

0

distance (km)

β
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Both

Fig. 3. Results of the DB model applied to the FMD dataset: Posterior
medians and 95% credible intervals for the infection rate functions.

Models M3 and M5 have better estimates of final size but do
not estimate the outbreak probability well. The existence of long-
range transmission in the simulated data causes the decay rate pa-
rameter in model M3 to be underestimated, and in consequence
the infection rate over short distances in the model is an order of
magnitude smaller than in the true model. Thus, using modelsM2

to M4 for planning purposes would inevitably lead to misleading
conclusions. Conversely, our nonparametric approach matches
the results from the true model M1 for both mean final size and
the probability of a severe outbreak and does so without having
to specify the parametric form of the infection rate function. An
additional simulation study that further demonstrates the benefit
of our approach is given in SI Appendix, section 4B.

Discussion
We have presented a framework for Bayesian nonparametric in-
ference for infection rate functions in individual-level stochastic
epidemic models. Although motivated by models for livestock
diseases, the methodology is applicable to a wide class of epi-
demic models, including household models, network models, and
age-structured models. The key benefit of our approach is that
it removes the need to make specific parametric assumptions
about infection rate functions. Instead, we need only make more
general assumptions, such as the smoothness of the function we
wish to infer. We have also demonstrated that our approach
can be used successfully for large datasets by employing MPA
methods.

Our methods are based on multioutput GPs, which allows us
to incorporate a priori beliefs that there is a shared structure
between the infection rates for individuals of different types. The
multioutput covariance model assumes the infection rates for
individual types are correlated, whereas the discrepancy-based
model enables the infection rate for each type to be compared to
a baseline infection rate. The independent GP model is a simpler

Table 2. Assessing disease control strategies: Results of the ring-
culling strategy and time taken to run the MCMC algorithm

Mean Severe
final outbreak Time,

Model Infection function (βij) size probability min

M1 0.3 × θ1
θ2+(dij−θ3)2 + 370 0.634 10

0.7 × θ1
θ4+dij

M2
λ1

λ2+dij
575 0.609 2

M3 ν1 exp(−ν2dij) 402 0.450 2
M4

σ1
σ2+d2

ij
274 0.645 2

M5
ψ1

ψ2+(dij−ψ3)2 391 0.511 5

M6 exp(f(dij)) 362 0.590 60
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model to which we can compare the MOC and DB models, which
assumes that the infection rate functions for different types are
mutually independent.

A key practical difference between the MOC and DB models
is the intended audience. From a mathematical viewpoint, being
able to characterize the covariance between two functions is
useful and the MOC framework allows us to do this. It also
allows us to describe the relationship between two types with one
correlation parameter, ρ. However, such information may be less
interpretable to practitioners than direct comparisons between
infection rate functions, as provided by the DB model.

Our methods can be computationally intensive in practice. Up-
dating the length-scale parameter is a bottleneck in the MCMC
algorithm as this step involves decomposing and inverting a
covariance matrix, and there is also considerable correlation
between the infection rate function and length-scale parameter
samples. Issues can also arise via the data-augmentation MCMC
scheme due to inherent correlations between the unobserved

infection times and the model parameters. There are various
potential approaches to dealing with these computational diffi-
culties, one of which is to use the approximate-likelihood method
described in ref. 29 to remove the need for data augmentation.
This in turn would increase the utility of our methods for real-
time inference during an outbreak. Furthermore, it would also be
of interest to demonstrate the utility of our modeling framework
in different contexts beyond spatial epidemic models, such as
static network diffusion processes (30).

Data Availability. Code and synthetic data have been deposited in Github
(https:// github.com/rowlandseymour/BNP_4_HMSEM). Great Britain’s (GB)
farm demography data is available at a national level by contacting GB’s
Animal and Plant Health Agency at enquiries@apha.gov.uk.
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