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Abstract
Regression discontinuity designs (RDDs) have been
developed for the estimation of treatment effects using
observational data, where a treatment is administered
using an externally defined decision rule, linked to a
continuous assignment variable. Typically, RDDs have
been applied to situations where the outcome of inter-
est is continuous and non-temporal. Conversely, RDDs
for time-to-event outcomes have received less attention,
despite such outcomes being common in many appli-
cations. We explore RDDs for a time-to-event outcome
subject to right censoring. An accelerated failure time
(AFT) approach is used to establish a treatment effect
estimate for a fuzzy RDD (where treatment is not always
strictly applied according to the decision rule). This esti-
mation approach is robust to different levels of fuzziness
and unobserved confounding, assessed using simulation
studies and compares favourably to established struc-
tural AFT models. A motivating example is presented
in which models are fitted to estimate the effect of
metformin on mortality and cardiovascular disease rate
using real observational data from UK Primary Care.
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1 INTRODUCTION

Regression discontinuity designs (RDDs) are an approach to the estimation of a treatment effect
in observational studies. An RDD can be applied to situations where a treatment or intervention
is allocated according to an externally imposed and pre-specified guideline that is linked to the
value of a continuous assignment variable and a threshold. The assignment variable is measured
for a subject and the subject should receive treatment if the value of their assignment variable
is greater (or less) than or equal to the pre-specified threshold value. An RDD exploits the fact
that, for subjects with assignment variables close to the threshold, the threshold can be seen as
a randomising device, where groups of subjects whose assignment variable values lie ‘just above’
and ‘just below’ the threshold may, under certain assumptions, be seen as ‘exchangeable’ and
balanced with regard to confounding variables.

As an example, which shall be explored in this paper, in the United Kingdom it has been rec-
ommended that metformin, a medicine used to reduce blood sugar level, be prescribed to patients
who are at risk of diabetes whose haemoglobin A1c (HbA1c) level is at or above the level of 48
mmol/mol. A high level of HbA1c can be an indicator of uncontrolled diabetes which may lead
to serious health complications or death if not treated. In this example, the ‘treatment’ is a pre-
scription of metformin, the ‘assignment variable’ is a patient’s HbA1c level and the treatment
‘threshold’ is an HbA1c level of 48 mmol/mol or above. An effect that we might wish to estimate is
that of metformin on all-cause mortality or perhaps on the occurrence of particular complications.

In general, a treatment guideline is not always adhered to strictly. As such, there may be some
subjects whose assignment variable value lies below the threshold but who receive treatment (and
vice-versa). In this case, the design is referred to as a fuzzy RDD. Otherwise, where there is strict
adherence to the guideline, the design is known as a sharp RDD. In this work, we focus on fuzzy
RDD designs, which are common in medical studies and for which treatment effect estimation
may be more challenging in general. In the metformin example, it may be that some patients
are counter-indicated for metformin, perhaps owing to side effects or co-morbidities. It may be
that some patients would prefer to try other measures to reduce their blood glucose level, such
as changing their diet or lifestyle choices, or that patients who are ‘just below’ the 48 mmol/mol
HbA1c level are prescribed metformin as a precautionary measure.

The RDD was first introduced by Thistlethwaite and Campbell (1960) and has since been used
widely in economics (Angrist et al., 1996; Hahn et al., 2001; Imbens & Angrist, 1994; Imbens &
Kalyanaraman, 2012; Xu, 2017) and political science (Caughey & Sekhon, 2011; Erikson et al.,
2015). Despite the obvious analogy between an RDD and a randomised controlled trial (with the
threshold seen as a randomising device), RDDs have not been used extensively in medical studies
until relatively recently. Most applications of the RDD to medicine have focused on studies where
the outcome of interest has a continuous distribution, such as a normal distribution (see, e.g.
Bor et al., 2014; Geneletti et al., 2015; Law et al., 2017; Linden et al., 2006; O’Keeffe et al., 2014).
A few more recent applications of RDDs when the outcome is binary has also been explored
(Bor et al., 2017; Geneletti et al., 2019; van Leeuwen et al., 2018). Time-to-event outcomes are
important and ubiquitous measures in many medical studies. Despite this, the use of an RDD
with a time-to-event or survival outcome has received little attention. Bor et al. (2014) fitted a
model that used a log hazard ratio to estimate the effect of antiretroviral drugs on mortality in HIV
patients, where antiretrovirals were prescribed according to a decision rule linked to a patient’s
CD4 count. A scaling method was used for the model fit but this was only valid where the event
of interest is rare and the follow-up time short.
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In this paper, we explore approaches for the estimation of a treatment effect in an RDD where
the outcome is a time-to-event. In particular, we focus on treatment effect estimation under the
accelerated failure time (AFT) assumption, an alternative to the popular proportional hazard (PH)
assumption for modelling time-to-event outcomes. An attractive property of the AFT assumption
is that the treatment effect estimate can be interpreted directly in terms of the time-to-event and
the AFT assumption is also more compatible with assumptions required for an RDD. An esti-
mator is derived for an AFT treatment effect in an RDD, using the assumptions made for an
RDD. In addition, we also demonstrate that a spline-based approach may be suitable for situa-
tions where the assignment variable–outcome relationship is non-linear around the threshold.
These estimation approaches are compared to that from a structural AFT (S-AFT) model, com-
monly used in causal inference for time-to-event outcomes in observational studies (Clarke &
Windmeijer, 2010; Didelez et al., 2010; Hernán & Robins, 2006). Using simulation studies, the
RDD estimator is desirable in that it is less sensitive to confounding. An important assumption of
the S-AFT model is that all potential confounders are observed or that unobserved confounders
can be explained by the observed confounders. This is a reasonably strong assumption and,
since it is untestable, the corresponding estimate might be misleading when the assumption is
violated. The RDD approach does not include such a stringent assumption, particularly when the
treatment guideline is adhered to.

This paper is organised as follows: in Section 2, the RDD and its assumptions are outlined. In
Section 3, the RDD-AFT and S-AFT estimators are introduced and described. A simulation study
is carried out in Section 4 to compare estimation approaches. The example on the prescription of
metformin on mortality and cardiovascular disease is presented in Section 5 and a discussion and
conclusions are provided in Section 6.

2 THE REGRESSION DISCONTINUITY DESIGN

In this paper, motivated by the modelling of the effect of metformin on all-cause mortality for
pre-diabetic patients (patients at risk of type 2 diabetes), we develop an RDD for a time-to-event
outcome. We now describe the notation and the modelling assumptions for an RDD with a
time-to-event outcome in detail.

2.1 RDD: variables and assumptions

We define the following variables that will be used in the RDD. The index i denotes the ith sub-
ject for the set of subjects {1, … , N}. In this work, we consider only right censoring for the
time-to-event.

• T∗
i is the true time-to-event and Ci is the time at which right censoring occurs. In a given data

set, the observed ‘time-to-event’ is denoted Ti = min{T∗
i ,Ci}.

• Since either T∗
i or Ci is observed (and not both), we define the event indicator 𝛿i = 1

{
T∗

i < Ci
}

which takes the value 1 if the ith subject’s time-to-event is observed and 0 if the time-to-event
is right censored.

• Xi is the continuous assignment variable and x0 is the treatment threshold, such that the ith

subject should receive treatment if Xi ≥ x0.
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• Zi = 1 {Xi ≥ x0} is threshold indicator, which is equal to 1 (0) if the ith subject’s assignment
variable lies above (below) the threshold.

• Ai is a treatment indicator, such that Ai = 1 if the ith subject receives treatment and 0 otherwise.
• i = i ∪i is a set of confounding variables both observed (i) and unobserved (i).

As noted previously, an RDD considers subjects whose assignment variable values lie ‘just
above’ the threshold to be similar to those whose assignment variable values lie ‘just below’ the
threshold. To quantify this notion, we define a bandwidth, h, such that only those subjects whose
assignment variable values lie within the set [x0 − h, x0 + h] are included in the RDD and used to
estimate the treatment effect at the threshold. Some works have discussed bandwidth selection
and, in particular, choosing the ‘optimal’ bandwidth for an RDD (Calonico et al., 2014; Imbens
& Kalyanaraman, 2012; Ricciardi et al., 2020); however, in this paper, we refrain from a focus
on an optimal bandwidth. In a medical context, it is likely that clinicians would have input into
how similar subjects would be with regard to their assignment variable values, particularly where
these values are clinical indicators or perhaps risk scores. As such, we shall consider RDDs for
a variety of bandwidths and investigate the sensitivity of results to bandwidth choice in a prag-
matic manner, similar to the approach taken in other papers (for example Geneletti et al., 2015;
Geneletti et al., 2019; Li et al., 2015).

In an RDD, inference is typically focused on treatment effect estimation at the threshold. To
identify an effect at the threshold, we make a number of assumptions that should hold. In this
paper, we use a conditional independence framework (Dawid, 1979; Didelez et al., 2010) to outline
these and details of these assumptions are provided in Appendix A. We now consider approaches
for a time-to-event (survival) outcome.

3 RDD FOR A TIME-TO-EVENT

We use an AFT assumption when comparing groups with a time-to-event outcome in an
RDD. First, we outline the general AFT model for groups and will later adapt this for use in
an RDD.

3.1 Accelerated failure time assumption

An AFT model assumes that the time-to-event in the ‘treated’ group is accelerated (or decelerated)
compared to that in the ‘untreated’ group. Formally, the survivor functions for the treated and
untreated in a general AFT model may be expressed as

S(𝜙t |Ai = 1) = S(t |Ai = 0).

Here 𝜙 is termed an ‘acceleration factor’ and it is assumed that, in general, the times taken to
attain the same survival probability in the treated and untreated groups are 𝜙t and t respectively.
As such, 𝜙 is a measure of the difference in the time-to-event between the two groups and, clearly,
𝜙= 1 would suggest no general difference. Typically, a log-linear form may be used where an AFT
assumption is made, with a general model for the time-to-event, Ti, given by

log Ti = 𝛽Ai + 𝜓i. (1)
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Here 𝜓i denotes the (natural) log event time for a subject who does not receive treatment (Ai = 0)
and the acceleration factor is given by 𝜙 = exp(𝛽). We note that other covariates could be easily
added into this model if desired. If the probability distribution of 𝜓i is specified, the parame-
ter 𝛽 may be estimated parametrically. Alternatively, a semi-parametric AFT model may be used
without specifying the distribution of 𝜓i (Buckley & James, 1979; Louis, 1981; Wei, 1992). For a
randomised controlled trial without non-compliance, or a sharp RDD with no unobserved con-
founding, an estimate of 𝜙 reflects the treatment effect at the threshold (subject to the validity of
the AFT model and any distributional assumptions). However, in a fuzzy RDD (essentially sim-
ilar to a randomised controlled trial with non-compliance), estimation of the treatment effect at
the threshold is less straightforward.

Proportional hazards (PH) models are used commonly for inference in analyses involving
time-to-event outcomes. However, PH models may have a limited interpretation when estimating
causal effects, with or without confounding (Aalen et al., 2015; Hernán, 2010; Lange & Hansen,
2011; Martinussen et al., 2020; VanderWeele, 2011). In a PH model, marginal and conditional
hazard ratio estimates may differ considerably and give different causal interpretations, owing
to the non-additive form of the hazard function with respect to the intervention and potential
confounding variables. This may be problematic and lead to the misinterpretation of a treatment
effect (Janes et al., 2010; Martinussen & Vansteelandt, 2013; Sjölander et al., 2016; Sutradhar &
Austin, 2018). Furthermore, for a Cox PH model, the construction of the likelihood function using
risk sets implies that, if the risk is different for different levels of confounding variables, the inde-
pendence of individuals who have not experienced the event of interest by a given time—but
have different levels of confounding variables—may not hold if the confounding variables are not
included in the model or are unknown. In contrast, the AFT model has been used for causal infer-
ence (Huling et al., 2019; Robins, 1992; Robins & Tsiatis, 1991). In particular, the Weibull AFT
model, used in this paper, can be easily formulated as a location-scale model which yields a treat-
ment effect estimate that is collapsible and can be interpreted causally. Furthermore, the AFT
model is used to describe and compare the survivor experience of group(s) using the probability
of survival, which may be more intuitive than comparing survivor experience using hazards.

3.2 RDD-AFT estimator

We now consider an estimator for the acceleration factor at the threshold based on the RDD
assumptions outlined in Appendix A. In RDDs where the outcome is continuous and not a
time-to-event, the local average treatment effect (LATE) has been used extensively for effect esti-
mation at the threshold (Hahn et al., 2001; Imbens & Lemieux, 2008). Essentially, the LATE
involves fitting linear models for the outcome above and below the threshold to estimate the
‘jump’ in the outcome, using only data where the assignment variable, xi lies in the range
[xi − h, x0 + h] for a given bandwidth h. The fuzziness present in an RDD is accounted for by esti-
mating the proportion of subjects who receive treatment above and below the threshold and then
scaling the estimate of the ‘jump’ by the difference in these proportions. That is, the LATE at the
threshold is given by

LATE = 𝛼

𝜋a − 𝜋b

where 𝛼 is the difference in means for the linear models above and below the threshold and 𝜋a −
𝜋b is the difference in the probability of receiving treatment above (a) and below (b) the threshold.
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We note that the AFT model specified in Equation (1) is a linear model and methods used to
estimate the LATE in a standard RDD may be adapted for use in an AFT, as we now outline. A
model that estimates the discontinuity in the time-to-event at the threshold may be written

log Ti = 𝛼1Zi + 𝛼2Xi + 𝛼3XiZi + 𝜓i. (2)

The interaction term between the assignment variable and the threshold indicator may be
dropped if it is assumed that slopes (on the log-scale) are the same above and below the threshold
by setting 𝛼3 = 0. The discontinuity or ‘jump’ at the threshold is measured by 𝛼1. As mentioned
previously, if the distribution of 𝜓i is specified then model parameters may be estimated using
maximum likelihood and accounting for right censoring, where appropriate, and these models
may be fitted easily using standard statistical software (e.g. using the survival package in R
(Therneau, 2021)).

In this paper, we shall assume a Weibull distribution for𝜓i and use maximum likelihood meth-
ods for parameter estimation. In practice, other distributions such as a log-normal or log-logistic
distribution could be fitted and an optimality criteria based on the model residuals can be used
to select the distribution that best fits a data set (Chan et al., 2018).

In a sharp RDD, the estimate of 𝛼1 should be unbiased for the treatment effect at the threshold
on the log-scale (assuming, of course, that the RDD assumptions are satisfied and that the model
is correctly specified). In a fuzzy RDD, direct estimation of 𝛼1 by fitting the model (2) would yield
a biased estimate of the treatment effect at the threshold, owing to the fact that Zi does not nec-
essarily distinguish the treated from the untreated. As such, in a fuzzy RDD, the estimate of the
treatment effect at the threshold on the log-scale may be given by

𝛽RDD = 𝛼1

𝜋a − 𝜋b
.

Here 𝜋a and 𝜋b denote the probability of treatment for subjects with assignment variable values
above and below the threshold, respectively. A proof of this result is provided in Appendix B. The
parameters 𝜋a and 𝜋b may be estimated using logistic regression or another appropriate method.
We now consider a structural AFT model as a method for treatment effect estimation.

3.3 Structural AFT model

Structural models have been considered widely for causal effect estimation in observational or
non-randomised studies (Clarke & Windmeijer, 2010; Didelez et al., 2010; Hernán & Robins, 2006;
Robins et al., 2000; VanderWeele, 2009; Vansteelandt & Goetghebeur, 2003). In particular, the
structural AFT (S-AFT) model has been used for treatment effect estimation where the outcome
is a time-to-event (Hernán et al., 2005). The S-AFT model may be defined easily using a potential
outcomes framework which we now outline. We define a as an indicator such that a = 1 implies
that treatment is assigned and a = 0 that treatment is not assigned. The potential outcomes are
Ti(1) (where a = 1) and Ti(0) (where a = 0) and these represent the time-to-event for the ith sub-
ject where the subject is treated and not treated, respectively. The treatment effect at the subject
level would be ascertained by comparing Ti(1) and Ti(0). However, since these cannot both be
observed, the treatment effect is typically estimated using G-estimation, which involves exploit-
ing the conditional independence between the potential outcomes and the treatment indicator.
Using the AFT assumption, it follows that
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Ti(1) = 𝛾Ti(0)

where 𝛾 is the acceleration factor. For the S-AFT model to be valid, the following assumptions
must hold:

S1 There are no unobserved confounders and treatment allocation is strongly ignorable condi-
tional on observed confounders. This assumption may be written formally as

Ti(1),Ti(0) ⫫ Ai |i.

In words, this assumption implies that the time-to-event outcome for the ith subject, whether
treated or not does not depend on whether or not the subject has actually received treatment
(observed as treated).

S2 The probability of treatment is non-zero, conditional on observed variables. That is

P(Ai = 1 |i) > 0 for all i.

The S-AFT model is not strictly an RDD approach. Instead, the S-AFT method compares the
treated and untreated groups while correcting for effect of confounding using the observed con-
founders and relying on the assumptions presented above. In contrast, the RDD-AFT method
compares the patients above and below the threshold, using the threshold as a quasi-randomising
device, and a treatment effect at the threshold is estimated by adjusting the result of this com-
parison with the probability of compliance to the treatment guideline. Considering the estimates
made by the RDD-AFT and S-AFT models (the RDD-AFT model compares outcomes for levels of
Z and the S-AFT model compares outcomes for levels of A), we note that assumption S1 is simi-
lar to A5 in the RDD assumptions (Appendix A). In addition, assumption S2 is similar to A6. The
S-AFT model would be applicable for an RDD, assuming that there is no unmeasured confound-
ing in the region around the threshold or, alternatively, if any confounding variables present in a
region around the threshold were accounted-for in the S-AFT model. Where these assumptions
are satisfied, the acceleration factor 𝛾 (i.e. the treatment effect at the threshold) may be estimated
using G-estimation (Hernán et al., 2005) G-estimation is well known as a method that may over-
come bias from time-varying confounders when estimating a treatment effect and has been used
with AFT models. It is known that estimation problems may sometimes be encountered when
fitting S-AFT models using G-estimation, owing to the ‘artificial censoring’ procedure used in the
model fitting process (Joffe et al., 2012). An overview of the G-estimation procedure used for the
fitting of the S-AFT model is provided in Appendix C.

We now aim to compare the S-AFT and RDD-AFT approaches using a variety of simulated sce-
narios, before a comparison and application using a real data set on the prescription of metformin
and mortality in UK primary care.

4 SIMULATION STUDY

We consider some scenarios using simulated data in which an RDD would apply, with differ-
ent levels of confounding. In doing so, our aim is to explore and evaluate the use of the S-AFT
and RDD-AFT models for a time-to-event outcome in a fuzzy RDD. The simulation algorithm
and set-up is outlined below. First we shall consider a simple linear relationship between the



8 ADELEKE et al.

assignment variable and the outcome of interest. We shall then consider a simulation scenario
with a non-linear assignment variable–outcome variable relationship where flexible functions of
the assignment variable are considered in the model.

4.1 Simulation algorithm and set-up

We describe the simulation algorithm where M data sets, each of size N, are simulated (M ∈ N,
N ∈ N). As noted previously, the index i denotes a subject with i ∈ {1, … , N}.

Step 1: For each subject, an assignment variable, Xi, is simulated from a continuous uniform
distribution.

Xi ∼ Uniform(0, 1).

Step 2: The threshold is set to be equal to 0.5 and we define the centred assignment variable,
XC

i , and threshold indicators, Zi, as

XC
i = Xi − 0.5;

Zi = 1{XC
i ≥ 0}.

Step 3: A confounding variable, Wi, is simulated from a standard normal distribution

Wi ∼  (0, 1).

Step 4: The probability that the ith subject receives treatment, pi, is given by

log
(

pi

1 − pi

)
= 𝛽0 + 𝛽1Zi + 𝛽2XC

i + 𝛽3Wi. (3)

The parameters of this model are specified to reflect the simulated fuzziness of the design
and the level of confounding with regard to treatment allocation.

Step 5: The treatment indicator, Ai, is simulated as follows

Ai ∼ Bernoulli(pi)

Step 6: The ‘true’ time-to-event is simulated as

log T∗
i = 𝛽4Ai + 𝛽5Wi + 𝜓i. (4)

Here, 𝛽4 defines the treatment effect (on the log-scale), 𝛽5 reflects the correlation
between the time-to-event outcome and the confounder Wi and 𝜓i defines the probabil-
ity distribution for log T∗

i .
Step 7: To incorporate right censoring, a censoring time Ci is simulated. A censoring proba-

bility, pc, and an ‘end-of-study’ time K are specified. A random variable is specified
UC

i ∼ Uniform(0, 1) and Ci is defined as follows

Ci =

{
K if UC

i > pc

∼ Uniform(0,K) if UC
i ≤ pc
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Step 8: The observed time-to-event and event indicators are defined as follows

Ti = min(T∗
i ,Ci)

𝛿i = 1{T∗
i < Ci}

Step 9: Steps 1–8 are repeated N times, to create a data set with N subjects.
Step 10: Steps 1–9 are repeated M times and M data sets, each with N subjects, are obtained.

In this paper, we set 𝛽0 = −2 and 𝛽2 = 2. We set 𝛽4 = log 1.5 so that the acceleration factor is
1.5. We choose the median survival time in the untreated group to be 7 years and, as such, we set

exp(𝜓i) ∼ Weibull
(

log(2)
72 , 2

)
.

For the censoring mechanism, we set the maximum follow-up time as K = 10 and the probabil-
ity of drop-out (right censoring) before 10 years as pc = 0.15. As noted in the simulation algorithm,
𝛽1 denotes the strength of the relationship between the threshold indicator and the probability
of treatment (i.e. the fuzziness of the RDD). In addition, 𝛽3 and 𝛽5 reflect levels of unobserved
confounding with treatment and the time-to-event, respectively. We varied these parameters to
adjust the level of fuzziness and level of confounding, resulting in a range of simulated data sets
using which the methods outlined in Section 3 may be compared. The type of simulation scenar-
ios, to which we refer in our discussion of simulation results, are outlined with parameter choices
in Table 1.

No confounding implies that there is no linear correlation between the confounding vari-
able Wi and both the time-to-event Ti and treatment allocation Ai. The chosen values of 𝛽3 and
𝛽5 result in the Pearson correlation coefficients shown in the columns 𝜌T,W and 𝜌A,W which
allows an assessment of the linear correlation level between variable pairs and, hence, the level
of confounding.

We measure how well the treatment guideline is adhered to using the level of fuzziness of
the design. Where there is a high level of compliance to the treatment guideline, the fuzziness
is weak and a low compliance to the treatment guideline implies that fuzziness is strong. This
is shown in the column P.C. of Table 1. In the case of weak fuzziness, about 80% to 90% of the
patients complied to the treatment guideline, while the probability of compliance to the treatment
guideline is about 55% where fuzziness is strong. We chose N = 2000 and M = 1000. Standard
errors were estimated using bootstrapping, with a bootstrap sample size of 1000.

T A B L E 1 Values of parameters in Equations (3) and (5) for the simulation scenarios with the
corresponding probability of compliance (P.C.) and estimates of correlation coefficients between
T and W (𝜌T,W ) and A and W (𝜌A,W )

Scenario Parameters P.C. 𝝆T,W 𝝆A,W

Weak fuzziness, No Confounding 𝛽1 = 10 𝛽3 = 0 𝛽5 = 0 0.90 0.00 0.00

Weak fuzziness, Low Confounding 𝛽1 = 10 𝛽3 = −1 𝛽5 = 0.3 0.87 0.16 −0.10

Weak fuzziness, High Confounding 𝛽1 = 10 𝛽3 = 2 𝛽5 = 0.7 0.79 0.40 0.22

Strong fuzziness, No Confounding 𝛽1 = 2.5 𝛽3 = 0 𝛽5 = 0 0.57 0.00 0.00

Strong fuzziness, Low Confounding 𝛽1 = 2.5 𝛽3 = −0.5 𝛽5 = 0.3 0.55 0.16 −0.16

Strong fuzziness, High Confounding 𝛽1 = 2.5 𝛽3 = 0.7 𝛽5 = 0.7 0.54 0.41 0.22
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4.2 Simulation study—results

Simulations were carried out using the chosen parameter values stated in Section 4.1. We chose
RDD bandwidths of 0.05, 0.1, 0.15 and 0.2 and fitted both the S-AFT and RDD-AFT models to
estimate the treatment effect at the threshold. We note that the use of the bandwidths results
in a reduction in sample size from N = 2000, with smaller bandwidths using smaller sam-
ple sizes. The probability of censoring (either by drop-out or by not experiencing the event
before the simulated end point of 10 years) was approximately 0.47 for each simulated data
set.

Figure 1 shows box plots that summarise the acceleration factor estimates for each bandwidth,
estimation approach and confounding level where the level of fuzziness is weak. As would be
expected, when there is no confounding both methods yield unbiased estimates of the acceler-
ation factor across all bandwidths. Where there is a low level of unobserved confounding, the
S-AFT method is generally biased for the acceleration factor whereas the RDD-AFT method is
not, with the median RDD-AFT estimate lying close to the true acceleration factor value for all
bandwidths. Similarly, for the scenario where the level of confounding is high, the RDD-AFT
estimate is more desirable than the S-AFT estimate, generally producing an unbiased estimate
of the acceleration factor for all bandwidths. The difference between the S-AFT and RDD-AFT
estimates would be expected for scenarios where confounding occurs, because confounding vari-
ables should be accounted-for for the S-AFT model to be valid. To check the S-AFT model further,
we repeated the simulation study but conditioned on confounders and found that the S-AFT
estimates were less biased, as would be expected, shown by the boxplots for the adjusted S-AFT
estimates in Figures 1 and 2. Numerical summaries of these adjusted S-AFT estimates (and all
other simulations) are shown in Table 2.

Figure 2 shows box plots that summarise the acceleration factor estimates for each bandwidth,
estimation approach and confounding level where the level of fuzziness is strong. Both methods
produce unbiased estimates of the acceleration factor where there is no confounding. For both
the low and high unobserved confounding levels, the S-AFT model yields a biased estimate of the
acceleration factor. In contrast, the RDD-AFT model is less biased and generally provides a more
accurate estimate of the acceleration factor (treatment effect).

In the simulation study, the time-to-event was drawn from a Weibull distribution, which has
a monotonic hazard function. To investigate the sensitivity of the approach to the distributional
assumption, we simulated data from a log-logistic distribution that has a non-monotonic hazard
function and fitted the Weibull RDD-AFT model to the simulated data sets. Results are shown in
Appendix D and these show some bias in the RDD-AFT estimates, which tend to underestimate
the treatment effect at the threshold. However, the bias is smaller as the bandwidth reduces. From
the simulation study, we can conclude that a smaller bandwidth not only reduces the effect of
unobserved confounding, it may also reduce the effect of model mis-specification, subject to the
validity of the RDD assumptions.

4.3 Simulation study—flexible models

We consider a scenario where the relationship between the assignment variable and outcome
is non-linear and a flexible model is used. The simulation algorithm is similar to that given in
Section 4.1, but Step 6. is replaced with the step outlined below, to allow a non-linear relationship
between the ‘true’ time-to-event and the assignment variable.
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F I G U R E 1 Boxplots showing the acceleration factor estimates from the simulation studies to compare
performance of the RDD-AFT and S-AFT approaches for designs with weak fuzziness. The true value of the
acceleration factor is 1.5 (dashed horizontal line). The sample size was 2000 in each simulated data set and
simulations were repeated 1000 times
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F I G U R E 2 Boxplots showing the acceleration factor estimates from the simulation studies to compare
performance of the RDD-AFT and S-AFT approaches for designs with strong fuzziness. The true value of the
acceleration factor is 1.5 (dashed horizontal line). The sample size was 2000 in each simulated data set and
simulations were repeated 1000 times
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T A B L E 2 Estimates, biases, empirical standard errors (ESE), average standard errors (ASE) and 95%
coverage for the log of the acceleration factor from simulation studies to compare performance of the RDD-AFT
and S-AFT approaches. S-AFT denotes the S-AFT model not adjusted for confounders, S-AFT adj. denotes the
S-AFT model adjusted for confounders. The true value of the log of the acceleration factor is log(1.5) = 0.405. The
sample size was 2000 in each simulated data set and simulations were repeated 1000 times

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE
95%
Coverage Estimate Bias ESE ASE

95%
Coverage

No
confounding

Bandwidth = 0.2, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.40 0.01 0.11 0.11 94.0 0.35 0.05 0.17 0.17 93.3

S-AFT 0.41 −0.01 0.19 0.15 94.9 0.40 0.00 0.14 0.11 94.4

Bandwidth = 0.15, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.40 0.01 0.13 0.13 95.8 0.36 0.04 0.20 0.20 94.7

S-AFT 0.42 −0.01 0.19 0.16 95.9 0.41 0.00 0.16 0.13 94.5

Bandwidth = 0.1, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.40 0.01 0.16 0.16 95.9 0.37 0.04 0.25 0.26 95.1

S-AFT 0.42 −0.01 0.23 0.19 95.4 0.41 −0.01 0.19 0.15 93.6

Bandwidth = 0.05, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.40 0.01 0.23 0.24 96.8 0.40 0.01 0.39 0.40 95.2

S-AFT 0.42 −0.01 0.31 0.26 96.0 0.42 −0.02 0.25 0.19 94.6

Low
confounding

Bandwidth = 0.2, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.03 0.12 0.12 94.5 0.34 0.07 0.18 0.19 94.7

S-AFT 0.23 0.17 0.18 0.15 71.8 0.27 0.13 0.15 0.11 75.0

S-AFT adj. 0.40 0.01 0.18 0.15 94.9 0.40 0.00 0.15 0.11 94.4

Bandwidth = 0.15, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.03 0.14 0.14 95.5 0.35 0.06 0.22 0.22 94.5

S-AFT 0.23 0.17 0.20 0.16 74.3 0.27 0.13 0.16 0.13 78.9

S-AFT adj. 0.40 0.01 0.21 0.16 95.6 0.40 0.00 0.16 0.13 94.3

Bandwidth = 0.1, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.03 0.18 0.18 95.9 0.37 0.04 0.28 0.29 95.6

S-AFT 0.23 0.17 0.24 0.19 80.6 0.27 0.13 0.19 0.15 83.5

S-AFT adj. 0.40 0.01 0.25 0.19 95.0 0.40 0.00 0.19 0.15 94.9

Bandwidth = 0.05, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.02 0.26 0.26 96.0 0.38 0.02 0.42 0.44 97.1

S-AFT 0.24 0.16 0.32 0.25 85.9 0.27 0.13 0.25 0.20 87.9

S-AFT adj. 0.41 0.00 0.32 0.25 94.1 0.41 0.00 0.25 0.19 95.2

(Continues)
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T A B L E 2 (Continued)

Weak fuzziness Strong fuzziness

Method Estimate Bias ESE ASE
95%
Coverage Estimate Bias ESE ASE

95%
Coverage

High
confounding

Bandwidth = 0.2, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.02 0.18 0.18 95.1 0.34 0.06 0.28 0.28 95.1

S-AFT 1.01 −0.60 0.19 0.16 6.3 0.97 −0.56 0.18 0.15 6.9

S-AFT adj. 0.22 0.18 0.18 0.15 74.0 0.42 −0.02 0.17 0.13 93.0

Bandwidth = 0.15, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.02 0.21 0.21 95.4 0.35 0.05 0.34 0.34 94.7

S-AFT 1.01 −0.60 0.22 0.18 9.7 0.97 −0.56 0.20 0.16 11.0

S-AFT adj. 0.23 0.18 0.21 0.17 78.2 0.42 −0.02 0.19 0.15 92.0

Bandwidth = 0.1, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.03 0.26 0.26 95.5 0.37 0.04 0.45 0.44 94.9

S-AFT 1.00 −0.60 0.26 0.21 18.0 0.97 −0.56 0.22 0.19 16.7

S-AFT adj. 0.23 0.17 0.24 0.20 82.7 0.42 −0.01 0.21 0.17 93.4

Bandwidth = 0.05, Treatment effect = 0.405, Sample size = 2000

RDD-AFT 0.38 0.02 0.38 0.38 95.5 0.38 0.02 0.67 0.68 95.5

S-AFT 1.02 −0.61 0.32 0.28 37.8 0.98 −0.57 0.30 0.25 31.8

S-AFT adj. 0.24 0.16 0.30 0.25 87.9 0.43 −0.02 0.29 0.23 92.4

Step 6 The ‘true’ time-to-event is simulated as

log T∗
i = f (Xc

i ,Ai) + 𝛽5Wi + 𝜓i, (5)

where

f (Xc
i ,Ai) =

{
1

240

{
(4 − 20Xc

i )(1 − 40Xc
i )(2 − 200Xc

i ) − 8
}
+ 𝛽4 if Ai = 1

−1.5 − 50
{
(Xc

i )
2 − 0.1

}{
(Xc

i )
2 + 0.3

}
if Ai = 0

Here, 𝛽4 defines the treatment effect (on the log-scale), 𝛽5 reflects the correlation between the
time-to-event outcome and the confounder Wi and 𝜓i defines the probability distribution for
log T∗

i . Figure 3 shows a plot the functional relationship between the assignment variable and the
outcome on the log-scale.

To fit a flexible model, we use a natural cubic spline (Hastie & Tibshirani, 1999) to model
the relationship between the outcome and assignment variable (i.e. the numerator of the
log (RDD-AFT) estimator). The number of knots in the spline (V) varied for different band-
width sizes as follows: for h = 0.2, V = 8; for h = 0.15, V = 6; for h = 0.1, V = 4 and for
h = 0.05, V = 2.

Table 3 shows numerical summaries of acceleration factor estimates at the threshold where
data were simulated from the non-linear scenario for all levels of confounding and where
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F I G U R E 3 Plot showing the functional form of the non-linear relationship between the assignment
variable and the outcome for the simulation study considered in Section 4.3

fuzziness is weak or strong. Figure 4 shows boxplots that summarise acceleration factor estimates
for each bandwidth and where the fuzziness level is weak. Figure 5 shows similar boxplots but
where the level of fuzziness is strong.

Examining these results and summaries, across all scenarios, the linear RDD-AFT approach
does not accurately estimate the true acceleration factor as we should expect. In contrast, the
spline-based RDD-AFT model appears to provide an unbiased estimate of the true acceleration
factor across all bandwidths and confounding levels, where fuzziness is weak. Performance of the
spline-based model is also reasonable where fuzziness is strong. However, across all scenarios, we
note that the variability in the spline-based estimates is higher than that for the linear RDD-AFT
estimates. We might expect the variability to be larger with a spline-based model owing to the pos-
sibility of a bias–variance trade-off commonly encountered when fitting splines. We note that the
linear RDD-AFT method improves (in terms of a reduction in bias) as the bandwidth decreases.
This would be expected as the functional form of the assignment variable–outcome variable rela-
tionship varies less over a smaller bandwidth. The linear S-AFT model performs reasonably well
where the bandwidth is small and confounding is low. However, where confounding is high, the
S-AFT model does not estimate the true acceleration factor accurately.

5 EXAMPLE: METFORMIN IN UK PRIMARY CARE

In the United Kingdom, the National Institute for Health and Care Excellence (NICE) has rec-
ommended that metformin, a drug that reduces blood sugar level, is prescribed to adults at risk
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F I G U R E 4 Boxplots showing the acceleration factor estimates from the simulation studies to compare
performance of the standard RDD-AFT and spline-based RDD-AFT approaches for designs with weak fuzziness.
The true value of the acceleration factor is 1.5 (dashed horizontal line). The sample size was 2000 in each
simulated data set and simulations were repeated 1000 times



20 ADELEKE et al.

RDD−AFT Spline
 RDD−AFT

S−AFT

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

h =  0.2

RDD−AFT Spline
 RDD−AFT

S−AFT

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

h =  0.15

RDD−AFT Spline
 RDD−AFT

S−AFT

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

h =  0.1

RDD−AFT Spline
 RDD−AFT

S−AFT

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

h =  0.05

No confounding.

RDD−AFT Spline
 RDD−AFT

S−AFT

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

h =  0.2

RDD−AFT Spline
 RDD−AFT

S−AFT

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

h =  0.15

RDD−AFT Spline
 RDD−AFT

S−AFT

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

h =  0.1

RDD−AFT Spline
 RDD−AFT

S−AFT

1
2

3
4

h =  0.05

Low confounding.

RDD−AFT Spline
 RDD−AFT

S−AFT

0
1

2
3

4
5

6

h =  0.2

RDD−AFT Spline
 RDD−AFT

S−AFT

0
1

2
3

4
5

h =  0.15

RDD−AFT Spline
 RDD−AFT

S−AFT

0
1

2
3

4
5

h =  0.1

RDD−AFT Spline
 RDD−AFT

S−AFT

0
1

2
3

4
5

h =  0.05

High confounding.

F I G U R E 5 Boxplots showing the acceleration factor estimates from the simulation studies to compare
performance of the standard RDD-AFT and spline-based RDD-AFT approaches for designs with strong fuzziness.
The true value of the acceleration factor is 1.5 (dashed horizontal line). The sample size was 2000 in each
simulated data set and simulations were repeated 1000 times
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of developing type 2 diabetes. Specifically, a NICE guideline states that metformin should be con-
sidered as a treatment for patients whose HbA1c level is greater than or equal to 48 mmol/mol
(NICE, 2015). Here, HbA1c is the continuous assignment variable, the threshold is an HbA1c level
of 48mmol/mol and the treatment is metformin. The treatment effect of metformin is to reduce
blood sugar which, in turn, reduces complications that may arise. We aim to explore the effect of
metformin on survival (time to death) and time to a cardiovascular event (myocardial infarction
or stroke) for patients who are at risk of type 2 diabetes (i.e. patients with a high HbA1c level).
We consider a subset of patients from a large data set of patients in UK Primary Care, known as
The Health Improvement Network (THIN) database. The THIN database contains anonymised
data collected at over 500 UK general practices (family doctors) and is representative of the gen-
eral UK population (Blak et al., 2011; Bourke et al., 2004). We use data from 4532 male patients
aged between 40 and 80 years who had their first HbA1c measurement in 2010, who had not been
diagnosed with diabetes previously and whose body mass index (BMI) was less than 30 kg/m2.
The time origin is the time of HbA1c measurement.

Of these 4532 patients, 643 patients had HbA1c values above the threshold and 3889 patients
had HbA1c values below the threshold. Of those patients with HbA1c values above the threshold,
453 (70%) were prescribed metformin whereas, for those with HbA1c values below the threshold,
27 (1%) were prescribed metformin. Hence, it seems plausible that the probability of treatment is
very different above and below the threshold, strengthening the case for the use of an RDD with
these data.

For bandwidth selection, we consider the distributions of potential confounding variables
for patients above and below the threshold. Since the bandwidth should reflect the ‘similarity’
of patients above and below the threshold, our aim is that, within a given bandwidth, distribu-
tions of confounding variables appear similar. The confounders that we consider, after discussion
with epidemiologists, are: age at origin, BMI, low-density lipoprotein (LDL) cholesterol level and
high-density lipoprotein (HDL) cholesterol level. Table 4 shows means and standard deviations
for each of these variables for patients above and below the threshold, of both raw and stan-
dardised variables. Examining Table 4, we see that BMI values and LDL and HDL cholesterol
values are broadly similar for all bandwidths, when comparing groups. For age, patients above
the threshold appear to be slightly older in general than those below the threshold. As such, we
will incorporate age at origin as a covariate when fitting models. In doing this, we are assuming
that the relationship between the treatment and age has been correctly specified—we assume a
simple linear relationship here.

Empirical probabilities of the events of interest are given Table 5. The probability of dying
is similar in patients above and below the threshold across the bandwidths. Table 5 also shows
median time-to-events for patients that experienced the events of interest. For mortality, empirical
probabilities are very similar, above and below the threshold, for all bandwidths. Median times to
death are broadly similar but perhaps slightly higher for subjects below the threshold, especially
as the bandwidth increases. For CVD, the probability of a CVD event appears to be higher overall
for subjects below the threshold. The median time-to-event is also higher for subjects below the
threshold across all bandwidths. This may suggest that CVD event rates and times may differ for
subjects above and below the threshold, perhaps implying that there is a discontinuity in the CVD
event rate at the threshold.

Finally, we apply the methods discussed in Section 3 to the data. Since age appears to be unbal-
anced for patients above and below the threshold, age was included as a covariate in the methods
for modelling both the LATE numerator and denominator. In comparing values of potential con-
founders above and below the threshold, we are seeking to verify that groups of patients above
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T A B L E 4 Sample means and standard deviations (SD) for potential confounding variables (both raw and
standardised) above (Z = 1) and below (Z = 0) the threshold, for various HbA1c bandwidths (h)

h = 10 h = 8 h = 6 h = 5

Factors Mean SD Mean SD Mean SD Mean SD

Age at origin
(years)

Z = 0 60.47 10.27 61.10 10.22 61.46 10.19 61.70 10.22

Z = 1 62.75 9.80 63.04 9.63 62.90 9.85 63.41 9.83

Standardised
age at origin

Z = 0 −0.02 1.00 −0.03 1.01 −0.02 1.00 −0.03 1.01

Z = 1 0.20 0.96 0.17 0.95 0.12 0.97 0.14 0.97

BMI (kg∕m2) Z = 0 25.98 2.66 26.14 2.63 26.23 2.59 26.29 2.62

Z = 1 26.50 2.42 26.50 2.46 26.44 2.56 26.47 2.60

Standardised
BMI

Z = 0 −0.02 1.01 −0.02 1.01 −0.01 1.00 −0.01 1.00

Z = 1 0.18 0.92 0.12 0.94 0.07 0.99 0.06 0.99

LDL Cholesterol
(mmol∕L)

Z = 0 3.20 0.93 3.18 0.94 3.14 0.92 3.15 0.92

Z = 1 3.15 0.87 3.17 0.85 3.19 0.85 3.19 0.86

Standardised
LDL
cholesterol

Z = 0 0.00 0.29 0.00 0.29 0.00 0.29 0.00 0.29

Z = 1 −0.02 0.27 0.00 0.27 0.01 0.27 0.01 0.27

HDL
Cholesterol
(mmol∕L)

Z = 0 1.30 0.37 1.27 0.35 1.25 0.36 1.24 0.36

Z = 1 1.20 0.37 1.20 0.37 1.19 0.35 1.20 0.36

Standardised
HDL
cholesterol

Z = 0 0.01 0.29 0.01 0.28 0.01 0.29 0.01 0.29

Z = 1 −0.07 0.29 −0.05 0.30 −0.04 0.28 −0.03 0.29

T A B L E 5 Empirical probabilities of death and a CVD event, together with sample median
time-to-event (in years) for a variety of bandwidths

Bandwidth: h = 10 h = 8 h = 6 h = 5

Threshold indicator Z 0 1 0 1 0 1 0 1

No. of patients n 1956 202 1172 184 860 155 626 133

Death Probability 0.06 0.06 0.07 0.07 0.08 0.08 0.08 0.09

Median time-to-event (years) 2.97 2.31 2.92 2.31 2.99 2.31 2.72 2.31

CVD Event Probability 0.07 0.04 0.08 0.04 0.07 0.03 0.07 0.03

Median time-to-event (years) 2.58 1.34 2.71 1.18 2.38 1.34 2.38 1.62

and below the threshold are balanced with respect to these variables, as would be expected when
comparing randomised groups in a randomised controlled trial, in line with assumption A5 in
Appendix A. Implicitly, we assume that patients either side of the threshold are exchangeable and
that there is a degree of randomness with regard to where patients’ HbA1c values lie (above or
below the threshold).

Estimates and associated 95% confidence intervals of the acceleration factor for the effect of
metformin prescription on mortality and CVD are presented in Table 6. Standard errors that were
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T A B L E 6 Estimates and 95% confidence intervals for the acceleration factor across varying bandwidths (h)
for the RDD-AFT and S-AFT approaches. n denotes the sample size for the corresponding model

h = 10 h = 8 h = 6 h = 5
Event Method n = 2158 n = 1356 n = 1015 n = 759

All-cause
mortality

RDD-AFT 2.37 (0.65, 8.60) 2.09 (0.42, 10.31) 1.32 (0.31, 5.70) 1.21 (0.22, 6.72)

S-AFT 1.11 (0.16, 7.93) 1.22 (0.20, 7.40) 2.59 (0.43, 15.44) 2.59 (0.41, 16.17)

CVD event RDD-AFT 2.47 (0.59, 10.27) 1.25 (0.26, 6.07) 1.12 (0.11, 11.76) 1.22 (0.07, 19.71)

S-AFT 2.51 (0.34, 18.72) 2.69 (0.34, 21.16) 6.53 (0.92, 46.25) 3.51 (1.25, 9.88)

used to construct the confidence intervals for the RDD-AFT and S-AFT models were computed
using bootstrapping, with a bootstrap sample size of 1000.

Acceleration factor estimates for the two methods are all greater than 1 and this may suggest
that metformin prescription is beneficial for the events considered. That is, patients that receive
metformin prescription have a higher median time-to-event (mortality and CVD) compared to
patients that did not receive the prescription. However, these estimates are not statistically signif-
icant as the confidence bounds include 1 for the two methods. The 95% confidence intervals are
generally wide and this may be because of a reduced sample size when the data are sub-sampled
so that only patients whose HbA1c values lie close to treatment threshold are included in the
RDD. In addition, the number of events observed is low for both deaths and CVD events which
is likely to reduce the precision when estimating parameters of interest.

6 DISCUSSION

In this work, we have focused on methods for an RDD with a time-to-event (survival) outcome
using an AFT approach. Time-to-event outcomes are common in medical scenarios and, in addi-
tion, treatments are increasingly prescribed or administered according to pre-defined, external
guidelines. As such, an RDD approach for time-to-event outcomes is appealing. We have shown
that the assumptions made for a standard RDD may be adapted for use with a time-to-event out-
come using an AFT model. The RDD-AFT model is intuitive in that the treatment effect estimate
obtained may be interpreted directly in terms of the time-to-event.

We have shown that the RDD-AFT approach performs reasonably well, typically yielding an
unbiased treatment effect estimate at the threshold, even when the RDD is fuzzy and there is
confounding. We compared the approach to the commonly used S-AFT model and saw that, as
would be expected, the S-AFT model did not provide an accurate or precise estimate of the treat-
ment effect where confounding was ignored. When confounding variables were conditioned on
in the simulation study, the S-AFT model produced more precise and unbiased estimates of the
treatment effect at the threshold. We note that this relied on conditioning on the correct, and
known, confounding variables. This is straightforward in a simulation study but perhaps not so in
real data sets in which confounders may be unmeasured or unknown. In contrast, the RDD-AFT
method did not rely on the inclusion of confounding variables in the fitted model, even for simu-
lated scenarios in which a high level of confounding was incorporated, and the model treatment
effect estimates were still, generally, unbiased. Despite this, it is still possible to include con-
founding variables in the RDD-AFT model if desired. In addition, we showed that the RDD-AFT
model could be adapted to handle situations where the assignment variable–outcome variable
relationship is non-linear, using a spline-based approach to estimation.



24 ADELEKE et al.

In the metformin prescription example, we compared the RDD-AFT and S-AFT models, con-
trolling for baseline age as confounder. Although estimates from both approaches were imprecise,
perhaps owing to the sample sizes, the point estimate of the acceleration factor was greater than
one, for both time to death and time to a CVD event. The two modelling approaches agreed
on the ‘direction’ of the acceleration factor estimate and yielded estimates reasonably close to
one-another for all bandwidths. This may suggest that the RDD-AFT model would serve as a
useful check in situations where an S-AFT model has been fitted.

The RDD-AFT model is parametric and we examined examples using a Weibull and a
log-logistic distribution. This could be a drawback of the RDD-AFT approach, when compared
to the semi-parametric S-AFT model which requires fewer distributional assumptions. However,
the choice between parametric and non-parametric survival models may be often debated, even
in a non-RDD setting. As with any statistical model, we would recommend that distributional
assumptions are justified or checked before fitting a parametric RDD-AFT model. In addition,
checking that the RDD assumptions are valid is also important.

Overall, we recommend that RDDs be considered more often for time-to-event outcomes, par-
ticularly in medical studies although methods presented may be easily adapted to other fields.
The RDD-AFT method is an approach that is easy to fit using standard statistical software and
that may produce a useful and interpretable estimate of the difference, if any, in the time-to-event
between treated and untreated groups using observational data and a fuzzy RDD.
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A1: The threshold and treatment indicators are not independent.

Ai ⫫∕Zi.

This assumption implies that the threshold rule and the allocation to treatment must be
associated. For a sharp design, this relationship would be deterministic. For a fuzzy design,
there should be an association between Ai and Zi which should be of sufficient strength for
an RDD approach to be valid.

A2: The probability of receiving treatment is discontinuous at the threshold. That is

lim
x↓x0

P(Ai = 1 |Xi = x) ≠ lim
x↑x0

P(Ai = 1 |Xi = x).

This implies that the threshold signifies a separation in the probability of treatment (above
and below) and, coupled with A1, ensures that the strength of association between treatment
and threshold allows an RDD to be used.

A3:

f (t |Xi = x,Zi,A = a) is continuous at x = x0 for a ∈ {0, 1},

where f (.) is the distribution function of the time-to-event. If a treatment effect on
the time-to-event occurs then we should expect a difference in the distribution of the
time-to-event above and below the threshold. Assumption A3 ensures that any ‘jump’ or dif-
ference in the time-to-event distribution at the threshold is due to the treatment and not any
other variable.

A4: The threshold indicator is independent of confounders conditional on the assignment
variable.

Zi ⫫ i |Xi.

This assumption implies that the treatment guideline (threshold rule) cannot be adapted
for individual subjects and we note that this should hold at least within the region of the
threshold.

A5: The threshold indicator and the time-to-event outcome variable are independent conditional
on the other variables.

Ti ⫫ Zi | (Xi,Ai,i).

This assumption ensures that, within a group of exchangeable subjects with assignment
variable values close to the threshold, subjects ought to fall randomly above and below the
treatment threshold. The threshold represents an externally defined decision rule and does
not change based on subject characteristics. We should expect confounding variables to be
distributed similarly amongst groups of subjects above and below the threshold, in an anal-
ogous manner to randomised groups in a randomised controlled trial. In this sense, the
threshold acts as a quasi-randomisation device for a group of subjects whose assignment
variable values lie close enough to the threshold for these subjects to exhibit similar char-
acteristics. In practice, this assumption is likely to hold if there is an association between
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the threshold and treatment assignment and as long as patients are not prescribed (or pre-
scribed) treatment in a systematic manner that ignores the threshold–assignment variable
decision rule. In addition, this assumption implies that the treatment guideline (threshold)
is externally defined and would imply that subjects cannot manipulate their outcome vari-
able so that they would lie above (or below) the treatment threshold. As the outcome is
a time-to-event (and especially in the metformin example where the outcome is all-cause
mortality) this example is likely to hold in many scenarios.

A6: We assume that there is no systematic non-adherence to the treatment guideline. This
assumption implies that there are no healthcare practitioners who would systematically
behave in the opposite way suggested by the threshold rule. In other words, that there is
not a practitioner who would deliberately prescribe treatment to all subjects with assign-
ment variables below the threshold and withhold treatment from subjects with assignment
variable values above the threshold. This assumption would, in general, seem plausible and
especially so in the metformin example discussed in this paper.

A7: Censoring is uninformative. We assume that right censoring would occur at similar rates
(and for similar reasons) above and below the threshold (or, at least, in the subset of subjects
whose assignment variables lie close enough to the threshold to be included in an RDD).

APPENDIX B. DERIVATION OF THE RDD-AFT ESTIMATOR

Consider the model:

log T = 𝛽A + 𝜀 (A1)

𝛽 is the treatment effect of interest. Here, the expectation of 𝜀 is not necessarily zero as it represents
the expected value of log T when treatment is not received.

Fitting the marginal model in Equation (A1) may result in a biased estimate of the treatment
effect, owing to confounding variables. Therefore, we estimate the treatment effect by exploiting
the fact that we have partial information on treatment allocation.

We can represent

lim
x↓x0

E(log T |X = x) = lim
x↓x0

E(log T |X = x,Z = 1) and

lim
x↑x0

E(log T |X = x) = lim
x↑x0

E(log T |X = x,Z = 0).

In subsequent derivations, the limits will be dropped for simplicity: E(log T |Z = 1) will
appear instead of limx↓x0 E(log T |X = x) and E(log T |Z = 0) instead of limx↑x0 E(log T |X = x). It
follows that

E(log T |Z = 1) − E(log T |Z = 0) =E(𝛽A + 𝜀 |Z = 1) − E(𝛽A + 𝜀 |Z = 0)
= 𝛽[E(A |Z = 1) − E(A |Z = 0)]

− [E(𝜀 |Z = 1) − E(𝜀 |Z = 0)]

Substitution of 𝜀 = E(log T |A = 0) yields

E(log T |Z = 1) − E(log T |Z = 0) = 𝛽[E(A |Z = 1) − E(A |Z = 0)]
− [E(log T |A = 0,Z = 1) − E(log T |A = 0,Z = 0)]
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Using Assumption 3, we have

E(log T |A = 0,Z = 1) − E(log T |A = 0,Z = 0) = 0
⟹ E(log T |Z = 1) − E(log T |Z = 0) = 𝛽[E(A |Z = 1) − E(A |Z = 0)].

Therefore, reverting to the original notation including limits,

𝛽 =
limx↓x0 E(log T |X = x) − limx↑x0 E(log T |X = x)

E(A |Z = 1) − E(A |Z = 0)
.

The numerator term is equivalent to the estimate of 𝛼1 in Equation (2) while the denominator
term is the probability of compliance.

APPENDIX C. G-ESTIMATION: OVERVIEW

We define the counterfactual outcomes of receiving and not receiving treatment as T1
i and T0

i ,
respectively. The counterfactual outcome of not receiving the treatment is estimated from the
S-AFT model using the relationship:

T0
i = exp(−𝛾)T1

i . (A2)

We note that if the ith subject did not receive the treatment, then Ti = T0
i whereas Ti = T1

i if the
ith subject received the treatment, where Ti is the observed outcome. Hence Equation (A2) may
be rewritten as:

T0
i (𝛾) = exp(−𝛾Ai)Ti

and T0
i = Ti for subjects who do not receive treatment and T0

i = exp(−𝛾)Ti for those who receive
treatment. We consider T0

i as a function and write T0
i = T0

i (𝛾); the parameter of interest, to be
estimated using G-estimation, is 𝛾 .

A logistic regression model for the probability of treatment, conditional on observed con-
founders and T0

i = T0
i (𝛾) may be written

logit{P(Ai = 1 |i,T0
i (𝛾))} = 𝜃0i + 𝜃1T0

i (𝛾). (A3)

When assumption S1 holds, that is, T0
i (𝛾) is independent of treatment conditional on i, then

𝜃1 = 0. Therefore the G-estimate of 𝛾 is the value of 𝛾 (say, 𝛾∗) that leads to the failure to reject the
null hypothesis that 𝜃1 = 0. The G-estimate can be obtained by minimising the score test statistic
for 𝜃1 = 0 with respect to 𝛾∗. This is equivalent to finding the solution to the estimating equation
(Hernán et al., 2005):

U(𝛾∗) = 0,

where

U(𝛾∗) =
∑

i
T0

i (𝛾
∗)
[
Ai − P(Ai = 1 |i)

]
. (A4)
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Hence, the value 𝛾∗ that solves the estimating equation above is the G-estimate of 𝛾 . The solution
to the estimating in Equation (A4) is computed using the uniroot function in R.

To handle right-censoring using G-estimation, the type of censoring should be considered.
Specifically, we should consider whether censoring occurs owing to a subject dropping out prior
to the end of a study’s follow-up period or if censoring happens because the event of interest has
not occurred by the end of follow-up (administrative censoring). When censoring occurs because
of drop out, inverse probability weighting is used to account for right-censoring. We define an
indicator variable Di, where Di = 0 if the ith subject drops out before the end of the study and
Di = 1 otherwise. The inverse probability weight for censoring is calculated as

W D
i = Di

P(Di = 1 |Xi,Ai)

with W D
i = 0 if Di = 0. The score function (Equation A4) is then adjusted to account for the inverse

probability weight.
For administrative censoring, we specify K to be the end of follow-up time for the study, such

that any subject for whom T0
i (𝛾) ≥ K would have a time-to-event that is right-censored. We define

K(𝛾) as

K(𝛾) =

{
K if 𝛾 ≤ 0;
K exp(−𝛾) if 𝛾 > 0.

Using K(𝛾), we define Δi(𝛾) = 1(T0
i (𝛾) ≥ K(𝛾)). For any subject where Δi(𝛾) = 1, T0

i (𝛾) is replaced
with zero in the estimating equation below (Equation A5). Further explanation regarding the
intuition behind this approach can be found in Hernán et al. (2005)

U(𝛾∗) =
∑

i
W D

i Δi(𝛾∗)
[
Ai − P(Ai = 1 |i)

]
. (A5)

The G-estimate of 𝛾 is then the 𝛾∗ that solves the estimating in Equation (A5) and, typically,
this equation will be solved numerically (for example, using uniroot function in R (R Core
Development Team, 2019)).

APPENDIX D. SIMULATION STUDY RESULTS WHERE THE HAZARD
FUNCTION IS NON-MONOTONIC

The distribution of (𝜓i) in Step 6 of the simulation study presented in Section 4 is simulated from
a logistic distribution:

𝜓i ∼ Logistic[log(7), 0.15].

Therefore, T∗ comes from a log-logistic distribution with scale parameter of 7 and shape param-
eter of 1

0.15
. Since the value of the shape parameter is greater than 1, the hazard function of T∗

is clearly non-monotonic, which implies the Weibull distribution is not appropriate. Figure A1
shows boxplots that summarise simulation study estimates.
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F I G U R E A1 Boxplots showing the acceleration factor estimates from the simulation studies to compare
performance of the RDD-AFT and S-AFT approaches. The true value of the acceleration factor is 1.5 (dashed
horizontal line). The sample size was 2000 in each simulated data set and simulations were repeated 1000 times


