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Abstract
1.	 Lianas (woody vines) are abundant and diverse, particularly in tropical ecosys-

tems. Lianas use trees for structural support to reach the forest canopy, often 
putting leaves above their host tree. Thus they are major parts of many forest 
canopies. Yet, relatively little is known about distributions of lianas in tropical 
forest canopies, because studying those canopies is challenging. This knowledge 
gap is urgent to address because lianas compete strongly with trees, reduce for-
est carbon uptake and are thought to be increasing, at least in the Neotropics.

2.	 Lianas can be difficult to study using traditional field methods. Their pliable 
stems often twist and loop through the understorey, making it difficult to as-
sess their structure and biomass, and the sizes and locations of their crowns. 
Furthermore, liana stems are commonly omitted from standard field surveys. 
Remote sensing of lianas can help overcome some of these obstacles and can 
provide critical insights into liana ecology, but to date there has been no system-
atic assessment of that contribution.

3.	 We review progress in studying liana ecology using ground-based, airborne and 
space-borne remote sensing in four key areas: (i) spatial and temporal distri-
butions, (ii) structure and biomass, (iii) responses to environmental conditions 
and (iv) diversity. This demonstrates the great potential of remote sensing for 
rapid advances in our knowledge and understanding of liana ecology. We then 
look ahead, to the possibilities offered by new and future advances. We specifi-
cally consider the data requirements, the role of technological advances and the 
types of methods and experimental designs that should be prioritised.

4.	 Synthesis. The particular characteristics of the liana growth form make lianas 
difficult to study by ground-based field methods. However, remote sensing is 
well suited to collecting data on lianas. Our review shows that remote sensing 
is an emerging tool for the study of lianas, and will continue to improve with re-
cent developments in sensor and platform technology. It is surprising, therefore, 
how little liana ecology research has utilised remote sensing to date—this should 
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1  |  INTRODUC TION

Advances in remote sensing now allow the study of tropical for-
ests at local, regional and global scales. Importantly, remote sens-
ing enables the study of the difficult-to-access forest canopy layer. 
This helps quantify above-ground biomass and diversity (e.g. Asner 
et al., 2017; Saatchi et al., 2011), as well as responses of tropical for-
ests to environmental change and human disturbances (e.g. Reiche, 
Verbesselt, Hoekman, & Herold, 2015; Wigneron et al., 2020). The 
vast majority of remote sensing research in tropical forests has fo-
cussed exclusively on trees (e.g. Gillespie, Foody, Rocchini, Giorgi, 
& Saatchi, 2008; Saatchi et al., 2011; Wigneron et al., 2020), which 
overlooks the fact that tropical forests contain many plant growth 
forms. For example, lianas (woody vines) commonly contribute 25% 
of the rooted woody stems and 35% of the woody plant species 
(Gentry, 1991; Schnitzer et al., 2012; Schnitzer & Bongers, 2002; van 
der Heijden, Schnitzer, Powers, & Phillips, 2013). They are a particu-
larly common feature of tropical canopies (Chandler, van der Heijden, 
Boyd, Cutler, et al., 2010; Ingwell, Joseph Wright, Becklund, Hubbell, 
& Schnitzer, 2010; Waite, van der Heijden, Field, & Boyd, 2019).

Unlike trees, lianas are not self-supporting past their juvenile 
stage, and instead use the structure of adjacent trees to reach the 
forest canopy (Putz, 1984; Stevens, 1987). Due to their lack of self-
supporting architecture, few lianas reach diameters greater than 
10 cm (Schnitzer et al., 2012). However, their stem lengths can be 
very long, and most lianas ≥2 cm diameter have already reached the 
forest canopy (Kurzel, Schnitzer, & Carson, 2006). Moreover, lianas 
often support a large leaf area relative to their diameter (Hegarty 
& Caballé, 1991; Medina-Vega, Bongers, Schnitzer, & Sterck, 2021; 
Putz, 1983) and can contribute 40% of the forest leaf area (van der 
Heijden et al.,  2013). Lianas therefore contribute disproportion-
ately (relative to stem diameter) to forest canopy productivity and 
leaf area (van der Heijden et al., 2013; van der Heijden, Powers, & 
Schnitzer, 2015).

As liana–tree competition is often stronger than tree–tree com-
petition (Tobin, Wright, Mangan, & Schnitzer,  2012), trees host-
ing lianas tend to experience reduced growth (van der Heijden 
& Phillips, 2009), increased mortality risk (Ingwell et al.,  2010; 
Phillips et al.,  2005) and reduced reproductive success (García 
León, Martínez Izquierdo, Mello, Powers, & Schnitzer, 2018). Lianas 
thereby negatively affect the forest carbon balance and cycle (van 
der Heijden et al., 2013, 2015) and ecosystem productivity (Meunier 
et al., 2022), as well as gap-phase regeneration and forest succes-
sion (Estrada-Villegas, Hall, Breugel, & Schnitzer,  2020; Schnitzer, 
Dalling, & Carson,  2000). However, lianas maintain faunal diver-
sity and may contribute to complex trophic interactions in tropical 

forests (Schnitzer, 2018). As lianas influence many ecosystem pro-
cesses in tropical forests (Collins, Wright, & Wurzburger,  2016; 
Hättenschwiler, Tiunov, & Scheu, 2005; Reichstein, Bahn, Mahecha, 
Kattge, & Baldocchi,  2014), studying lianas is important. Such re-
search not only provides further insight into lianas themselves, but 
also fundamentally improves our understanding of the functioning 
and diversity of the entire tropical ecosystem (Schnitzer, 2018).

The recent realisation that lianas are important contributors 
to tropical forest dynamics and processes highlights the need to 
develop methods for measuring and monitoring them. However, 
tropical forests are complex and often hard-to-access ecosys-
tems, presenting numerous difficulties for field-based research 
(Balzotti, Petersen, Terry, Scherer, & Golden,  2010). Traditionally, 
liana-focussed studies have utilised time- and labour-intensive, 
field-based data collection methods that rely on human surveying 
from the ground (van der Heijden, Feldpausch, de la Herrero, van 
der Velden, & Phillips,  2010), usually in field plots. Although liana 
stem diameters can be measured accurately from the ground, lim-
ited visibility means that assessing liana occupancy in the canopy is 
exceedingly difficult and error-prone (Waite et al., 2019). In short, 
although the need for data on lianas is clear, the status quo on liana 
data capture does not meet this demand.

Remote sensing offers new solutions that can complement and 
expand upon ground-based field methods, providing data on lianas 
that have been previously obscured or unobserved. Remote sensing 
provides a synoptic view of tropical forests at greater spatial and 
temporal scales than ground-based measurements (Foody,  2003; 
Lechner, Foody, & Boyd,  2020) and allows measurements of the 
plant life forms within them (Calders et al., 2020). It also enables im-
proved repeatability at lower operational cost per unit area (Carr & 
Slyder, 2018; Watts, Ambrosia, & Hinkley, 2012). Recent advances in 
both the spectral and spatial domains of airborne, space-borne and 
ground-based remote sensing may therefore offer critical insights 
into lianas' geography and levels of forest canopy infestation, and 
the changes in their canopy infestation over time. These are chal-
lenging with traditional ground-based measurements.

While liana ecology would benefit from remote sensing to meet 
pressing information needs, efforts to make remote sense of lianas 
are still limited in number (see Table 1). Furthermore, to date there 
has been no systematic assessment of how remote sensing can con-
tribute to these needs. This review aims to (1) facilitate understand-
ing of the possibilities and challenges to studying lianas offered by 
current and future remote sensing technology, and (2) outline how 
remote sensing can advance tropical forest ecology by elucidating 
the role of lianas in tropical forests. For simplicity, herein we make 
(remote) sense of lianas with respect to four main areas of liana 

rapidly change if urgent knowledge gaps are to be addressed. In short, liana ecol-
ogy needs remote sensing.

K E Y W O R D S
forest canopies, global change ecology, lianas, remote sensing, tropical forests
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TA B L E  1  Overview of main sensors and platforms used in studies using remote sensing for liana ecology to date. Each study is referred to 
in the main text

Sensor Platform Citation

UniSpec Spectral Analysis System (306–1138 nm 
@ <10 nm sampling)

Laboratory analysis Castro-Esau, Sánchez-Azofeifa, and Caelli (2004)

UniSpec Spectral Analysis System (306–1138 nm 
@ <10 nm sampling)

Laboratory analysis Guzmán and Sánchez-Azofeifa (2021)

1.	UniSpec Spectral Analysis System (306–
1138 nm @ <10 nm sampling);

2.	Agilent 4100 ExoScan Fourier Transform Infra-
Red (FTIR) spectrometer (8000–11,000 nm 
across 301 wavebands)

Laboratory analysis Guzmán, Rivard, and Sánchez-Azofeifa (2018)

ASD FieldspecFR Spectrometer (350–2500 nm @ 
1.4 nm sampling between 350 and 1050 nm 
and 2 nm between 1000 and 2500 nm)

Field Sampling by hand Hesketh and Sánchez-Azofeifa (2012)

ASD FieldspecFR Spectrometer (350–2500 nm @ 
1.4 nm sampling between 350 and 1050 nm 
and 2 nm between 1000 and 2500 nm)

Field sampling by hand Kalacska, Bohlman, Sanchez-Azofeifa, Castro-Esau, 
and Caelli (2007)

Portable Spectrometer (400–1100 nm @ 10 nm 
sampling)

Field sampling by hand Sánchez-Azofeifa et al. (2009)

RIEGLVZ400 terrestrial laser scanner (multiple 
return time-of-flight; narrow infrared laser 
beam @ 1550 nm)

Field sampling using tripod Bao, Moorthy, and Verbeeck (2018)

RIEGLVZ400 terrestrial laser scanner (multiple 
return time-of-flight; narrow infrared laser 
beam @ 1550 nm)

Field sampling using tripod Krishna Moorthy, Bao, Calders, Schnitzer, and 
Verbeeck (2019)

RIEGLVZ400 terrestrial laser scanner (multiple 
return time-of-flight; narrow infrared laser 
beam @ 1550 nm)

Field sampling using tripod Krishna Moorthy, Raumonen, Van den Bulcke, 
Calders, and Verbeeck (2020)

UniSpec Spectral Analysis System (306–1138 nm 
@ <10 nm sampling)

Construction Crane Sánchez-Azofeifa and Castro-Esau (2006)

Integrated three-waveband (RGB) high- quality 
Sony EXMOR 1/2.3″ 12- megapixel camera, 
with a narrow 94° field of view lens (35 mm 
format equivalent: 20 mm)

DJI Phantom 3 Advanced 
Quadcopter UAV

Waite et al. (2019)

Micasense RedEdge 3 camera with five 
wavebands (@ 475 nm; 560 nm; red 668 nm; 
717 nm and 840 nm)

RotorKonzept® RK-8x multicopter 
UAV

Li, Campos-Vargas, Marzahn, and 
Sanchez-Azofeifa (2018)

1.	Micasense RedEdge 3 camera with 5 
wavebands (@ 475 nm; 560 nm; red 668 nm; 
717 nm and 840 nm);

2.	FLIR TAU® 2 FLIR 640 broadband camera (@ 
7500 to 13,500 nm).

RotorKonzept® RK-8x multicopter 
UAV

Yuan, Laakso, Marzahn, and 
Sanchez-Azofeifa (2019)

1.	Leica ALS50-II - 8 W class 4 laser with 
radiation at 1064 nm recording up to four 
discrete returns for each emitted pulse. 
Twenty-two centimetre pulse footprint and 
point density ranging between 2.80 and 3.16 
per m2;

2.	Specim FENIX hyperspectral sensor (380–
2500 nm), with 448 contiguous channels, 
sampled at (2.9 nm) in the visible-to-near 
infrared (VNIR) ranged from 380 to 970 nm 
with a spectral resolution of 3.5 nm; in the 
shortwave infrared (SWIR) spectra were 
sampled (5.7 nm) from 970 to 2500 nm with a 
spectral resolution of 12 nm

UK’s Natural Environmental 
Research Council’s Airborne 
Research Facility

(NERC-ARF) Dornier 228–201 
airplane, flying at 65.6–71.6 ms−1 
at an altitude of 2335–2429 m

Chandler, van der Heijden, Boyd, Cutler, et al. (2021)
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ecology: (i) spatial and temporal liana distributions; (ii) liana structure 
and biomass; (iii) responses of lianas to environmental conditions; 
and (iv) liana species diversity. Measuring and monitoring these four 
areas can be largely achieved by airborne and space-borne sensors. 
Remote sensing can also be performed below the canopy (e.g. from 
the forest floor); this can be linked to the above-canopy view to bet-
ter understand the distribution of lianas throughout all the forest 
strata (Figure 1).

2  |  SPATIAL AND TEMPOR AL 
DISTRIBUTIONS OF LIANA S

2.1  |  Why use remote sensing?

Liana distributions vary considerably between forests, both within 
and among continents (DeWalt et al.,  2015; DeWalt et al.,  2010; 
Gentry,  1991; Schnitzer,  2005; van der Heijden & Phillips,  2008, 
2009). Similarly, although lianas have proliferated across the 
Neotropics (Phillips et al., 2002; Schnitzer & Bongers, 2011), there 
is some evidence that this may not be a universal trend across the 
tropics (Bongers, Ewango, Sande, & Poorter,  2020; Schnitzer & 
Bongers, 2011; Wright, Sun, Pickering, Fletcher, & Chen, 2015). We 
know very little about current trends in liana abundance through 

time across the tropics. The drivers responsible for changes in liana 
abundance are also largely unknown, although several putative 
mechanisms have been put forward (Parolari et al., 2020; Schnitzer 
& Bongers, 2011).

It is important to know what drives spatial and temporal vari-
ation in liana distribution because lianas reduce the ability of both 
mature and secondary tropical forests to absorb and store carbon 
(Estrada-Villegas et al., 2020; Tymen et al., 2016; van der Heijden 
& Phillips, 2009; van der Heijden et al.,  2015; van der Heijden, 
Powers, & Schnitzer,  2019). These liana-induced changes in the 
carbon balance of tropical forests probably differ across forests, so 
we need data both within forests and across the tropics. For exam-
ple, liana–tree competition is greatest in younger forests (Estrada-
Villegas et al., 2020) and may depend on liana abundance (Durán & 
Gianoli, 2013). Increasing our knowledge about what drives spatial 
and temporal distributions in liana abundance across tropical forests 
will therefore improve our understanding of liana ecology and bioge-
ography. Changes in liana abundance may have a knock-on effect on 
the carbon sink function of tropical forests, with potentially import-
ant ramifications for global change (van der Heijden et al., 2015). So 
better data on lianas will also help us generalise about liana-induced 
effects on the carbon dynamics of tropical forests.

Our knowledge of liana distributions comes from rather 
few field-based liana studies with limited spatial coverage and 

Sensor Platform Citation

1.	Full-spectral range (visible-to-shortwave 
infrared) imaging spectrometer spectral 
radiance in 481 contiguous channels spanning 
the 252–2648 nm wavelength range;

2.	Visible-to-near infrared (VNIR) imaging 
spectrometer, The VNIR imaging spectrometer 
collects 288 contiguous spectral bands over a 
smaller range (365–1052 nm);

3.	Full waveform light detection and ranging 
(LiDAR)—a dual laser, scanning waveform 
system capable of operating at 500,000 laser 
shots per second. The LiDAR point density 
was 2 shots m−2

Carnegie Airborne Observatory
(CAO) Airborne Taxonomic Mapping 

System (AToMS)

Marvin, Asner, and Schnitzer (2016)

1.	Hyperion hyperspectral sensor (400–2500 nm) 
across 220 wavebands at a spatial resolution 
of 30 m;

2.	ETM+ multispectral sensor with eight 
wavebands across 400–2400 nm and 10,700–
12,700 nm and spatial resolutions of 15 m 
(panchromatic); 30 m (visible/NIR/SWIR) and 
60 m (thermal)

1. EO-1 satellite
2. Landsat-7 satellite

Foster, Townsend, and Zganjar (2008)

TM multispectral sensor with seven spectral 
bands across 450–2350 nm and 1040–
1250 nm and spatial resolutions of 30 m in 
the reflective bands and 120 m in the thermal 
band

Landsat-5 satellite Tymen et al. (2016)

Multispectral Instrument (MSI) hyperspectral 
sensor with 13 wavebands across 443–
2190 nm) and spatial resolutions of 10, 20 
and 60 m

Sentinel-2 satellite Chandler, van der Heijden, Boyd, & Foody (2021)

TA B L E  1  (Continued)
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relatively long census intervals (e.g. Ingwell et al., 2010; Wright 
et al.,  2015). This information is biased, focussing predomi-
nantly on large lianas (≥ 10  cm diameter; Phillips et al.,  2002) 
and the Neotropics (Phillips et al.,  2002; van der Heijden & 
Phillips,  2008). These data limitations also restrict our ability 
to understand the effects of lianas on tropical forest function-
ing. Disturbance history (via Landsat; Pflugmacher, Cohen, & 
Kennedy, 2012) and drought (via metrics like standardised pre-
cipitation evaporation index [SPEI]; Marín, Julio, Dante Arturo, & 
Daniel Jose, 2018) can be remotely sensed. Together with other 
environmental variables, these can be correlated with spatial or 
temporal changes in liana abundance. Using remote sensing to 
map and monitor lianas over much broader geographical scales, 
including across environmental gradients and forest types, and 
with higher temporal frequency, than is currently possible with 
field-based studies alone, is therefore key for advancing liana 
ecology.

2.2  |  Current remote sensing progress

Some excellent progress to facilitate remote sensing of spatial and 
temporal liana distributions has been made over the last decade. 
One important advance is in the ability to discriminate lianas from 
trees. The ability of the sensors to detect liana infestation in the 
forest canopy determines the feasibility of utilising the contigu-
ous and frequent coverage afforded by remote sensors, especially 
those that are space-borne. In particular, the view from above must 
have sufficiently fine spatial resolution. Several studies have now 
indicated that lianas can indeed be differentiated from trees in the 
spectral domain. Despite some overlap between liana and tree spec-
tra, most studies indicate that liana leaves, on average, have higher 
reflectance around 550 nm (green) and 2500 nm (short-wave infra-
red; SWIR), and present more distinctive peaks and troughs than 
trees in the medium and longwave infrared region (MLWIR: 3000–
14,000  nm). Meanwhile, trees may have higher reflectance in the 

F I G U R E  1  To make remote sense 
of lianas, different combinations of 
sensors and platforms are (to be) used. 
For example: Spatial and temporal liana 
distributions (section 2) can benefit from 
Sentinel-2 satellite data (Chandler, van 
der Heijden, Boyd, & Foody, 2021; see 
panel [a]) and airborne hyper-spectral 
and LiDAR data (e.g. Chandler, van der 
Heijden, Boyd, Cutler, et al., 2021; see 
[b]). Insight into liana species diversity 
(section 5) may come from UAV data 
(e.g. Waite et al., 2019; see [c]). For liana 
structure and biomass measures (section 
3), terrestrial laser scanning (e.g. Krishna 
Moorthy et al., 2020; see [d]) is useful. 
For understanding responses of lianas 
to environmental conditions (section 4) 
a proximal sensor mounted on a pole or 
work using a field spectroradiometer 
may provide suitable data—See (d). The 
examples given here are not exhaustive; 
selection of suitable remote sensing 
approaches will be determined by 
underpinning data available, access to 
relevant technologies and method and 
experimental design

(b)

(c)

(d)

(a)
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near infrared (NIR: 800–1200 nm) (Castro-Esau et al., 2004; Guzmán 
& Sanchez-Azofeifa, 2021; Guzmán et al., 2018; Hesketh & Sánchez-
Azofeifa, 2012; Kalacska et al., 2007; Sánchez-Azofeifa et al., 2011; 
Sánchez-Azofeifa & Castro-Esau, 2006; Figure 2a, b). Most of these 
leaf-level differences remain discernible at the canopy scale, which 
allows differentiation between liana-infested and liana-free trees in 
remotely sensed imagery (Chandler, van der Heijden, Boyd, Cutler, 
et al., 2021; Marvin et al., 2016; Figure 2c).

The differences in tree and liana spectral response have been 
used to provide landscape-scale maps of liana presence in tree cano-
pies based on differences in spectral reflectance between liana-free 
and liana-infested tree canopies. By combining hyperspectral data 
and LiDAR data from an airborne sensor within a machine learning 
framework, high liana presence could be accurately mapped in the 
forest canopy of seasonally dry forests (Marvin et al., 2016). This can 
also be done in aseasonal forests where spectral properties of liana 
and tree leaves tend to converge (Avalos, Mulkey, & Kitajima, 1999; 
Chandler, van der Heijden, Boyd, Cutler, et al.,  2021). The latter 
is particularly important as it indicates the potential to estimate 
liana abundance in tropical forests world-wide (Chandler, van der 
Heijden, Boyd, Cutler, et al.,  2021) and should enable landscape-
scale comparisons of liana infestation across different forest land-
scapes. However, more subtle differences in liana infestation have 
so far proved more difficult to discern (Marvin et al., 2016; Chandler, 
van der Heijden, Boyd, Cutler, et al., 2021). Multispectral or hyper-
spectral data may also assist in assessing the drivers of spatial distri-
bution of liana infestation on the landscape scale by using variables 
such as disturbance, forest structural and topographical measures as 
predictor variables (cf. Marvin et al., 2016). With repeated sampling, 
the rates of change in liana abundance across large swaths of trop-
ical forests can be assessed, and insights gained into the potential 
drivers.

Opportunities for measuring liana presence and degree of liana in-
festation have arisen through the recent proliferation of unoccupied 

aerial vehicle (UAV) or drone technology, one of the more affordable 
and accessible remote sensing platforms. Lianas have been success-
fully detected in forest canopies and gaps by using UAVs fitted with 
standard cameras because of the ultra-fine resolution, down to cen-
timetre, of the imagery obtained (Waite et al., 2019). Using visible to 
NIR (Li et al., 2018) and thermal sensors (Yuan et al., 2019) has also 
proved successful. Waite et al. (2019) went beyond detecting liana 
presence in tree canopies, also assessing the degree of liana infes-
tation in tree canopies. Although the spatial extent over which UAV 
technology can be used for monitoring liana presence is limited, its 
main advantages lie in its capacity for high-frequency deployment 
to monitor temporal changes in liana infestation, its utility during 
cloudy conditions (by flying under the clouds) and its usefulness in 
calibrating the imagery acquired by airborne and satellite sensors.

Whereas both occupied and unoccupied airborne sensors have 
the potential to provide fine resolution imagery to detect liana pres-
ence and abundance, they are realistically limited to landscape-scale 
studies (<10,000  km2). At larger scales (e.g. regional, continental, 
global), satellites remain the only platform with the capacity for com-
prehensive and temporally frequent assessment of liana infestation. 
Given the relatively coarse resolution, only a few studies have used 
satellite data to identify liana infestation and assess temporal pat-
terns in liana infestation (e.g. Foster et al., 2008 – EO-1 Hyperion 
and Landsat TM and ETM+, Tymen et al., 2016 – Landsat TM). These 
studies were either based on dry season images and/or limited to 
detecting liana-dominated patches. It is unclear whether these tech-
niques can feasibly be transferred to assess liana infestation across 
broad geographical scales. In an exploratory study, Chandler, van der 
Heijden, Boyd & Foody  (2021) demonstrated that liana infestation 
was positively related to Sentinel-2 MSI greenness (at 10 m spatial 
resolution) across primary and selectively logged aseasonal forest of 
Sabah, Borneo. Given the temporal frequency afforded by the con-
stellation of Sentinel-2 satellites (and other constellation systems 
with similarly fine spatial resolutions, e.g. PlanetScope, Pléiades 

F I G U R E  2  Characteristic reflectance 
spectra: (a) visible (VIS) to near-infrared 
(NIR) to short-wave infrared (SWIR; 
adapted from Kalacska et al., 2007) 
reflectance of liana and tree leaves; (b) 
mid- to long-wave infrared (MLWIR; 
adapted from Guzmán & Sanchez-
Azofeifa, 2021) of liana and tree leaves; 
(c) VIS–NIR-SWIR reflectance for liana-
infested (≥75% crown covered by lianas) 
and liana-free tree crowns (adapted from 
Chandler, van der Heijden, Boyd, Cutler, 
et al., 2021). Black arrows in (a) indicate 
the areas where literature indicates there 
is greatest spectral separability between 
liana (orange lines) and tree (blue lines) 
leaves

(a) (b)

(c)
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Neo), this bodes well for monitoring infestation across regions and 
continents in the future. Importantly, it improves the chances of 
cloud-free data at desired repeat rates, for example, prior to, within 
and after an ENSO event.

2.3  |  Remote sensing challenges and aspirations

To measure liana distributions over time and space, cutting-edge 
space-borne systems with improved spatial resolution, coupled with 
enhanced spectral and radiometric resolution, are essential. The 
coarse resolution of many freely available satellite datasets, such 
as Landsat and Sentinel-2, can be problematic as one single pixel 
may be occupied by multiple tree crowns. In a single pixel, the liana 
spectral signal itself may be unclear because liana infestation can 
be patchy and a single tree crown can be infested by multiple liana 
species. Furthermore, forests growing in different environmental 
regimes have different reflectance; this makes it harder to detect 
liana infestation over larger geographical scales, especially if differ-
ences in reflectance between liana-infested and non-infested pixels 
are smaller than differences between forest types. For this purpose, 
textural and contextual information can be important sources of in-
formation beyond the spectral (Mather & Koch, 2011). Cloud-free 
satellite data from tropical forests can be also difficult to obtain 
(Foster et al., 2008; Tymen et al., 2016), which may limit the ability 
to assess changes in liana infestation, depending on the temporal 
resolution of the system.

Despite this set of challenges, several satellite sensor develop-
ments hold promise for improved liana detection. These include 
hyperspectral missions such as DESIS and PRISMA. Others on the 
horizon promise routine capture of hyperspectral data (e.g. https://
news.satne​ws.com/2021/03/18/pixxe​l-to-build​-world​s-highe​
st-resol​ution​-hyper​spect​ral-satel​lite-array/) and capture of ther-
mal emission from canopies at a much finer spatial resolution than 
currently (e.g. from Landsat TIRS, Terra ASTER). These tend to be 
commercial satellites (e.g. Satellite Vu - https://www.satel​litevu.
com/), so they would need substantial investment to be used at 
the continental scales for which they would bring most benefit to 
liana ecology (https://news.monga​bay.com/2020/09/new-partn​er-
ship-​bring​s-high-resol​ution​-satel​lite-image​ry-of-the-tropi​cs-to-all/). 
Nonetheless, these could be used locally to use spectral data across 
the spectrum, at high spatial resolution: (i) for measuring liana infes-
tation, (ii) for monitoring areas of known liana infestation to better 
understand their dynamics and function and iii) to serve as a data 
input for scaling from plots to other satellites. Occupied and unoc-
cupied platforms carrying a suite of sensors would also be useful 
here. NASA Goddard’s G-LiHT—an airborne system with LiDAR, 
Hyperspectral and Thermal Imaging (Cook et al., 2013)—is one such 
example and was designed to simultaneously estimate biochemical 
and structural data from forests.

To improve liana detection from remotely sensed data, a critical 
component is appropriate ground truthing data. We need to expand 
the underpinning data on liana distributions, both geographically 

and temporally. The key challenge is how to do this efficiently and, 
for optimal impact, within a framework that enables data sharing for 
mutual collaboration between all involved. Existing plot networks 
and initiatives could be used for this purpose. Currently, the only 
exclusively liana-focussed plot network is the Global Liana Database 
(DeWalt et al., 2015). In addition, some tree-focussed networks con-
tain standardised liana measurements across plots, such as stems 
≥10  cm (e.g. Phillips et al.,  2002) or crown occupancy index (e.g. 
van der Heijden et al.,  2010). These include ForestGEO (Davies 
et al., 2021) and ForestPlots.net (2021). Although these plots are 
often used to support remote sensing studies (e.g. Marselis et al., 
2020), even plots as large as 50 ha may be too small for airborne 
and satellite-based remote sensing (Réjou-Méchain et al.,  2014). 
Additional investigation to determine standards for appropriate plot 
sizes and/or shapes for liana and tree censuses would, therefore, be 
beneficial.

3  |  LIANA STRUC TURE AND BIOMA SS

3.1  |  Why use remote sensing?

To better understand the role that lianas play in the carbon balance 
and cycle of tropical forests, we must be able to accurately quantify 
liana biomass. The negative effects of lianas on tree above-ground 
biomass and biomass growth in tropical forests are well-established 
(van der Heijden et al., 2013, 2015). However, evidence that lianas 
themselves do not offset all the displacement of tree carbon that 
they cause (van der Heijden et al., 2013) is generally based on both 
assumptions of liana biomass allocation patterns and liana allometric 
models to calculate liana biomass and biomass change.

Our ability to accurately quantify the contribution of lianas to 
above-ground biomass and biomass change in forests is constrained 
by the limited number of studies investigating liana allometry (Addo-
Fordjour & Rahmad, 2013a, 2013b; Gehring, Park, & Denich, 2004; 
Schnitzer, DeWalt, & Chave,  2006). Liana biomass estimates di-
verge considerably, depending on the allometric model used (Miao, 
Koerner, Medjibe, & Poulsen, 2016). The estimates are usually based 
on small numbers of liana stems, and hence only sparsely replicate 
across species, and include very limited numbers of large lianas 
(Schnitzer et al., 2006). The large variation in liana allometric models 
between studies may also indicate that liana allometry and biomass 
allocation patterns change with species identity, climate, edaphic 
conditions, disturbance history and/or forest type (Schnitzer 
et al., 2006; Smith-Martin, Xu, Medvigy, Schnitzer, & Powers, 2020).

Lianas are often assumed to allocate more biomass to leaves than 
to stems (Castellanos, Mooney, Bullock, Jones, & Robichaux, 1989; 
Putz,  1983; van der Heijden et al.,  2015, 2019; Wyka, Oleksyn, 
Karolewski, & Schnitzer, 2013). However, recent research has in-
dicated that lianas may invest proportionally as much biomass in 
stems as trees do by making up what they miss in stem diameter 
by extended stem length (Smith-Martin et al., 2020). The relation-
ship between diameter and biomass may therefore not be as strong 

https://news.satnews.com/2021/03/18/pixxel-to-build-worlds-highest-resolution-hyperspectral-satellite-array/
https://news.satnews.com/2021/03/18/pixxel-to-build-worlds-highest-resolution-hyperspectral-satellite-array/
https://news.satnews.com/2021/03/18/pixxel-to-build-worlds-highest-resolution-hyperspectral-satellite-array/
https://www.satellitevu.com/
https://www.satellitevu.com/
https://news.mongabay.com/2020/09/new-partnership-brings-high-resolution-satellite-imagery-of-the-tropics-to-all/
https://news.mongabay.com/2020/09/new-partnership-brings-high-resolution-satellite-imagery-of-the-tropics-to-all/
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for lianas as it is for trees (Krishna Moorthy et al., 2020; Schnitzer 
et al.,  2006; Figure  3b). Consequently, above-ground liana bio-
mass estimates based on diameter measurements may be subject 
to considerable error. Due to the complex growth form of lianas 
(Figure 3), liana length is much more difficult to measure in the field 
than liana diameter. However, to accurately quantify the contribu-
tions of lianas to forest biomass, and to fully understand the role 
of lianas in forest processes, we urgently need more information 
on liana structure and biomass allocation patterns from a range of 
forests world-wide. This plays to the strengths of remote sensing 
technologies and methods, because they can more directly mea-
sure liana biomass.

3.2  |  Contribution of remote sensing—Current 
progress and aspirations

Terrestrial laser scanning (TLS) can be used to measure structural 
parameters such as height, diameter, above-ground wood volume 
and leaf area index (LAI) from LiDAR-derived 3D point clouds 
(Atkins et al.,  2018; Béland, Baldocchi, Widlowski, Fournier, & 
Verstraete, 2014; Calders et al., 2015; Strahler et al., 2008). This 
remote sensing technique has advanced swiftly in the last decade 
(Calders et al.,  2020; Dassot, Constant, & Fournier, 2011; Owen, 

Flynn, & Lines, 2021; Richardson, Monika Moskal, & Bakker, 2014). 
Although the use of this technology to study lianas has lagged be-
hind that for trees (Krishna Moorthy et al., 2019), TLS now enables 
us to distinguish liana stems from trees in point cloud data with 
great precision and accuracy (Bao et al.,  2018; Krishna Moorthy 
et al., 2019). Thus, TLS is progressing the study of liana allometry 
and quantification of liana biomass (Krishna Moorthy et al., 2020). 
Liana extraction from co-registered point clouds is still challeng-
ing (Krishna Moorthy et al., 2019), but work in French Guiana has 
shown that by obtaining detailed information on liana structure 
below the canopy, TLS methods may provide more accurate liana 
biomass estimations than traditional field-based methods (Krishna 
Moorthy et al., 2020).

A TLS-based methodology, in combination with a machine 
learning-based algorithm to semi-automatically extract liana 
woody points from plot-level TLS data, could facilitate long-term, 
reliable monitoring of liana wood volume. This would enhance un-
derstanding of the dynamics of plot-based liana infestation, struc-
ture and biomass (Krishna Moorthy et al.,  2019; Krishna Moorthy 
et al.,  2020). Currently, the main problem with TLS data is that 
occlusion prevents detection of smaller liana structures, such as 
small branches or leaves, in the forest canopy. However, combining 
TLS data with top-of-the canopy measures from airborne or UAV 
platforms to assess liana leaf area has the potential to assess the 

F I G U R E  3  TLS imagery of four lianas from Nourages, French Guiana, having similar diameters (6 or 10 cm), but exhibiting different 
structures, length and biomass, which illustrates the complex and variable growth form of lianas compared to trees (adapted from Krishna-
Moorthi et al. 2020). Please note, although the liana infesting tree 4 is shorter compared to the liana in tree 3, its higher wood density, 
slightly larger diameter and slower taper results in it having a higher biomass
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complete above-ground liana structure. This could be an invaluable 
tool to comprehensively investigate allometric scaling relationships 
in lianas (cf. Krishna-Moorthy et al.  2020). It would enable us, for 
example, to include both diameter and length (or length only) in allo-
metric relationships to calculate liana biomass.

4  |  LIANA RESPONSES TO 
ENVIRONMENTAL CONDITIONS

4.1  |  Why use remote sensing?

Our understanding of how lianas respond to their environment has 
increased over the last few decades. However, there are two main 
areas where our understanding is still lacking, but which are impor-
tant to understand and predict how changing environmental condi-
tions may affect lianas in the future. The first concerns the response 
of lianas to elevated atmospheric CO2 conditions, which is one of 
the hypotheses for the observed liana proliferation (e.g. Schnitzer 
& Bongers,  2011). Although some CO2 enrichment experiments 
have shown a strong response of lianas to elevated CO2 (Granados 
& Körner, 2002; Marvin, Winter, Burnham, & Schnitzer, 2015; Zotz, 
Cueni, & Korner, 2006), not all studies have shown a stronger ef-
fect for lianas than trees (e.g. Marvin et al., 2015). Furthermore, 
if lianas are not proliferating in the Palaeotropics (we are not yet 
sure), then the role of CO2 may be limited, or may be offset by 
other mechanisms regionally. How lianas respond to elevated CO2 
concentrations, whether their response is different from trees, and 
whether this could be a direct driver of liana proliferation in some 
parts of the tropics, are therefore questions in need of further 
research.

The second area concerns the role of water stress. Climate 
change is expected to increase this in many parts of the tropics, 
and numerous studies have shown that lianas grow well during pe-
riods of prolonged water stress (Cai, Schnitzer, & Bongers, 2009; 
Chen et al., 2015; Maréchaux, Bartlett, Iribar, Sack, & Chave, 2017; 
Schnitzer & van der Heijden, 2019; van der Heijden et al., 2019; Zhu 
& Cao, 2010). Lianas may deal with drought by tapping into deeper 
water sources (e.g. Chen et al.,  2015; Holbrook & Putz,  1996) or 
by efficiently capturing any precipitation in the dry season (De 
Deurwaerder et al.,  2018; Smith-Martin et al.,  2020). They may 
also reach maximum photosynthesis early in the day, and then close 
their stomata to prevent water loss during the hottest parts of the 
day (Schnitzer, 2018). However, the exact strategies employed by 
lianas to thrive during periods of drought stress remain unknown. 
Similarly, the limits to the water stress advantage to lianas are not 
clear—some types of drought conditions may favour lianas while 
others may not.

To assess such liana responses to environmental conditions, and 
to compare them with co-occurring trees, often needs monitoring 
of many individuals with high temporal frequency. Remote sensing, 
which allows routine measurements, including in areas of restricted 
access, offers huge promise.

4.2  |  Contribution of remote sensing—Current 
progress and aspirations

Responses to water stress and CO2 are evident in the leaf spectral 
reflectance (Chemura, Mutanga, & Dube, 2017; Chou et al., 2017; 
Gray, Dermody, & Delucia,  2010; Ihuoma & Madramootoo,  2019; 
Nunes et al., 2019; Figure 2a). Indeed, hyperspectral remote sens-
ing is showing promise for estimating photosynthesis in periods of 
stress (Barnes et al., 2017). The use of proximal sensors to record 
frequent spectral information above the forest canopy could pro-
vide information on the timing of water uptake and photosynthe-
sis. Furthermore, high-resolution hyperspectral (visible through to 
thermal wavelengths) data can be used to monitor, for example, 
evapotranspiration of lianas and trees in drought and free air CO2 
enrichment (FACE) experiments in which lianas are present, or dur-
ing natural phenomena such as El Nino events (e.g. van der Heijden 
et al., 2019). This allows us to investigate whether lianas and trees 
differ in their responses to environmental change. Combining data 
on liana growth, survival, reproduction, recruitment and leaf phenol-
ogy with data from remote sensing could therefore prove essential 
in understanding which environmental conditions favour lianas over 
trees.

Building up remote sensing capability in the already-running ex-
perimental plots that feature lianas (serendipitously or otherwise) 
would be extremely beneficial. Data from networks of sensors 
can be combined with the detailed ground measurements already 
being made. As part of this, we can build understanding of optimal 
scaling methods and any links between remotely sensed responses 
observed below the canopy and above the canopy. Protocols for 
remotely sensed measurements of lianas can be developed (in the 
same way as for other metrics and traits of forests, e.g. Duncanson 
et al., 2021). These can be combined with research to harness the 
potential for liana ecology of upcoming, novel space-borne sys-
tems (e.g. FLEX (Drusch et al., 2017), EnMAP (Guanter et al., 2015), 
Zhuhai-1 (Jiang et al., 2019) and GEDI (Dubayah et al., 2020)).

5  |  LIANA SPECIES DIVERSIT Y

5.1  |  Why use remote sensing?

A key challenge in ecology is to increase our understanding of the 
mechanisms behind the broad-scale species distributions and com-
position (Schnitzer, 2018). However, we still know little about what 
controls liana species diversity and composition across space and 
time. Most of what we know comes from small plot-based studies 
(many 0.1 ha), several larger plots of up to 50 ha (DeWalt et al., 2010; 
Gentry, 1991; Schnitzer et al., 2012) and field occurrence collections 
(Meyer, Kissling, Lohmann, Hortal, & Diniz-Filho,  2020). However, 
the spatial coverage of these studies is limited and studies focus-
sing on temporal patterns of liana diversity and composition are still 
scarce (Caballé & Martin, 2001; Swaine & Grace, 2007). With global 
warming driving pronounced changes in both climatic conditions 
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and disturbance across the tropics (Garcia, Cabeza, Rahbek, & 
Araujo, 2014), investigating the responses of liana species to these 
changes is crucial if we are to predict future liana species distribu-
tions. Furthermore, we do not yet know whether the liana prolif-
eration observed in Neotropical forests is consistent across taxa, 
or instead driven by the proliferation of certain taxa only. Including 
lianas in biodiversity mapping would also aid conservation efforts: 
despite their importance for forest composition and diversity, lia-
nas are still typically overlooked in management, conservation and 
restoration actions. If liana species do diverge in their response to 
changing environmental conditions, phylogenetic differences in 
liana communities may help explain the different rates of liana pro-
liferation across the world (Schnitzer & Bongers, 2011).

Plot-based studies are limited in the extent to which they can 
meet these research needs. Field identification of lianas is often 
difficult and time-consuming, as fruits and flowers of lianas, which 
are often needed for identification, are typically high up in the for-
est canopy. Furthermore, most liana species are locally rare (e.g. 
Mascaro, Schnitzer, & Carson, 2004), and therefore absent from rel-
atively small field plots. Remote sensing offers the potential for wall-
to-wall assessments, and for those to be repeated quite frequently. 
The view of the top of the canopy makes species identification from 
flowers and fruits feasible, given sufficient image resolution. Remote 
sensing technologies would therefore enable liana diversity mapping 
across the landscape and over time, leading to a step-change in our 
understanding of the contribution of lianas to plant diversity in the 
tropics.

5.2  |  Contribution of remote sensing—Current 
progress and aspirations

Remote sensing technologies, in combination with machine learning 
algorithms, have been used to map tree species richness and compo-
sition, and also distributions of individual tree species in tropical for-
est canopies, mainly based on differences in spectral patterns (e.g. 
Féret & Asner, 2012; Ferreira, Wagner, Aragão, Shimabukuro, & de 
Souza Filho, 2019; Foody & Cutler, 2006). There is some evidence 
that liana species can be differentiated from each other, as well as 
from tree species, based on their spectral reflectance (Hesketh & 
Sánchez-Azofeifa, 2012). However, there have, so far, been no at-
tempts to use remote sensing to either map liana diversity or identify 
liana species. Reasons include the difficulties of reliably distinguish-
ing tree from liana leaves in the forest canopy, and of differentiating 
between liana species—multiple liana species can be present in the 
crown of a single tree.

Building an accessible database of foliar reflectance spectra of 
the most abundant liana species would allow us to assess whether 
lianas species can be uniquely identified by their spectra, and 
which aspects of those spectra are phylogenetically conserved (e.g. 
Meireles et al., 2020). Both would aid in measuring liana diversity 
and forest-level species diversity. Our current knowledge on spec-
tral properties of lianas comes mainly from deploying field-based 

instrumentation within forests (e.g. as per Nunes et al.,  2019 on 
trees), destructively sampling to enable laboratory-based measure-
ments (Asner & Martin, 2012) and extracting spectra from airborne 
hyperspectral instrumentation (Chandler, van der Heijden, Boyd, 
Cutler, et al., 2021; Marvin et al., 2016). In the latter, the extracted 
spectra are often not linked to specific liana species, so are of lim-
ited use. Overall, spectral knowledge across liana species is currently 
lacking. Existing spectral libraries, such as the ECOSTRESS spectral 
library (https://specl​ib.jpl.nasa.gov/; Meerdink et al., 2019), the 
EcoSIS database (https://ecosis.org/) and the USGS spectral library 
(Kokaly et al., 2017), do not contain any liana species and only a very 
limited number of tropical tree species. Furthermore, many leaf and 
canopy traits vary systematically among plant groups in relation to 
life history and leaf phenology, but this variation may be small in 
comparison to the large variability due to interspecific, intraspecific, 
phenotypic and ontogenetic differences within natural vegetation 
(Detto & Xu, 2020; Werden et al., 2018; Wu et al., 2018). Thus, en-
hancing the knowledge base of spectral responses of both lianas and 
trees is a research priority.

We can improve and tailor the design of liana-specific remote-
sensing platforms and sensors. This is best done iteratively, as we 
develop our knowledge of liana diversity and liana structural and 
functional properties. In some cases, specific liana/tree assemblages 
may be discerned at specific wavelength combinations, and thus in-
form custom-built systems—either for proximal or airborne/space-
borne sensing. This approach is common at European flux sites, 
where the goal is to fuse eddy covariance and tower-based optical 
measurements (Balzarolo et al.,  2011). The optical measurements 
are made by multi- or hyperspectral systems, which incorporate dis-
crete wavebands, each sensitive to a specific vegetation parameter. 
Existing systems, such as the Cropscan and Cimel radiometers, could 
be adapted and customised, or novel sensors produced to be able to 
detect and differentiate between liana species (e.g. use of light emit-
ting diodes for monitoring vegetation reflectance in narrow spectral 
bands—Ryu et al., 2010). The manufacture of remote sensing sys-
tems is becoming ever more democratised through expansion in ca-
pability and access to UAVs, cubesats, etc (Baena et al., 2018; Santilli 
et al., 2018). This should enable us to adapt existing technologies for 
detecting lianas in general, or liana species specifically. Increasing 
spectral data will also allow radiative transfer modelling, which will 
help to increase our understanding of what might be possible using 
remote sensing (Meunier et al., 2020; Visser et al., unpublished data). 
This would guide next steps in a much more informed fashion.

6  |  SO, C AN WE MAKE REMOTE SENSE 
OF LIANA S?

The short answer is not quite yet. The long answer is more nuanced. 
We argue that current remote sensing capability should play a key 
role in liana ecology, and this will be enhanced by future develop-
ments. Remote sensing will help fill many of the knowledge gaps 
in liana ecology by enabling research at unprecedented spatial and 

https://speclib.jpl.nasa.gov/;
https://ecosis.org/
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temporal scales, and in detail. However, we have also indicated 
where the use of remote sensing in liana ecology requires further 
technological innovations, methods and experimental design or un-
derpinning field-based data. In particular, three principal sets of un-
derpinning data are required for advancing remote sensing of lianas: 
(i) spectral reflectance data for a wide range of liana species; and 
field-based measurements of (ii) liana traits, such as leaf and wood 
traits, and (iii) liana abundance, diameter and species identity across 
sites. Additionally, various types of remotely sensed baseline data 
would be useful; for example, there are very few TLS data on trees 
infested with lianas.

The slow but important increase in capture of tropical forest by 
ultra-fine resolution remote sensing technologies, such as TLS and 
UAVs, still mostly relies on visual interpretation of the data to ex-
tract meaningful metrics relating to liana ecology. Sharing of these 
datasets would be beneficial, and would aid development of com-
putational methods for more automated extraction of liana metrics. 
These data are required to train models of the interactions between 
the liana property of interest and the remote sensing data being 
used. Once these models are established, they can be applied to pro-
duce liana data across the rest of the remotely sensed datasets used. 
If the models are fully calibrated, extrapolation can be achieved be-
yond the time periods and locations used for model training.

This review focusses on four key areas of liana ecology, but as 
our understanding of the ecological systems within which lianas 
thrive increases, this will also open up novel possibilities for use 
of remote sensing to improve our understanding of liana ecology. 
For example, a role for radar systems is not immediately obvious at 
present. However, ground-penetrating radar (e.g. Zou et al., 2020) 
may prove useful for understanding the effects of lianas on below-
ground processes, of which little is currently known. We expect that 
the ability to accurately map liana abundance over time, in combina-
tion with future missions to estimate biomass in tropical forests (e.g. 
BIOMASS - Quegan et al., 2019), will be particularly useful for un-
derstanding the effects of lianas on forest structure and biomass. In 
turn, such studies could inform liana ecology directly. Furthermore, 
improvements in identifying tree and liana species using remote 
sensing will enable monitoring of liana-driven changes in forest spe-
cies composition. Understanding of all these liana impacts is essen-
tial for better predicting the fate of tropical forests, their diversity 
and their carbon balance in a changing climate.

Efforts to overcome current constraints need liana ecologists 
and remote sensing experts to collaborate to make (remote) sense 
of both lianas and tropical forests as a whole. In the long term, de-
termining the optimal remote sensing approaches for liana ecology 
will need innovation in methods to extract the required information 
from the data and understand its quality, in conjunction with ap-
propriate experimental designs to collect underpinning ground data. 
This requires developments in areas such as pattern recognition, 
data fusion and super-resolution analyses (e.g. Kaya et al., 2019; Ling 
et al., 2020). Recent advances in spatial data science using machine 
learning and deep learning algorithms (Ma et al., 2019), and mech-
anistic models (e.g. Meunier et al., 2020), offer new opportunities 

to improve existing methods and develop new ones specifically for 
liana ecology. However, we should not underestimate the challenges 
involved. For example, some of the machine learning methods are 
data hungry and require data that we still do not have, while the 
more black-box methods are challenging to interpret (Rudin, 2019). 
Nonetheless, as the number of studies using remote sensing for 
liana ecology increases, these techniques may help improve trans-
ferability to other contexts of models developed for particular cli-
matic conditions and floristic compositions (e.g. Foody, Boyd, & 
Cutler, 2003). If all this were accomplished, might there be a call for 
a liana ecology-specific satellite sensor? This would be a major leap 
forward from regarding lianas as an impediment to remote sensing 
of tropical forests, benefitting not only liana ecology but also the 
general field of tropical ecology.

It is fair to say that, to date, remote sensing of tropical forests has 
mainly ignored lianas. This is problematic because lianas affect for-
est dynamics and can respond differently than trees to changes en-
vironmental conditions (e.g. Schnitzer et al., 2000; van der Heijden 
et al., 2019); and the presence of lianas may alter the signal of the 
forest being remotely sensed (e.g. Chandler, van der Heijden, Boyd, 
Cutler, et al., 2021; Figure 2). In turn, lianas may distort efforts to 
remotely sense tropical forests, leading to potentially large mea-
surement error in the biophysical parameters of trees, given that the 
ground data used to validate remote sensing data have tended not 
to take lianas into account. Satellite-observed changes in spectral re-
flectance in response to climatic changes (e.g. Saleska, Didan, Huete, 
& Da Rocha,  2007) may therefore be complicated (cf. Anderson 
et al., 2010) by the differential responses of lianas and trees. Given 
that lianas are here to stay, we hope this review prompts much 
needed activity within a new sub-field of remote sensing, or is it 
ecology.
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