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Abstract: A machine learning approach has been applied to virtual screening for lysine specific
demethylase 1 (LSD1) inhibitors. LSD1 is an important anti-cancer target. Machine learning models
to predict activity were constructed using Morgan molecular fingerprints. The dataset, consisting
of 931 molecules with LSD1 inhibition activity, was obtained from the ChEMBL database. An
evaluation of several candidate algorithms on the main dataset revealed that the support vector
regressor gave the best model, with a coefficient of determination (R2) of 0.703. Virtual screening,
using this model, identified five predicted potent inhibitors from the ZINC database comprising
more than 300,000 molecules. The virtual screening recovered a known inhibitor, RN1, as well as four
compounds where activity against LSD1 had not previously been suggested. Thus, we performed a
machine-learning-enabled virtual screening of LSD1 inhibitors using only the structural information
of the molecules.

Keywords: LSD1; LSD1 inhibitors; machine learning; virtual screening

1. Introduction

Epigenetic mechanisms are fundamental in genome-dependent biological processes.
By performing an important role in regulatory effects, epigenetic mechanisms partici-
pate in gene expression and transcription coordinated by the DNA sequence [1]. These
mechanisms encompass a wide spectrum of biological activities and develop dynamic
regulation in gene transcriptional modulation, genome reprogramming modification, and
homeostatic maintenance [2]. As one of the key epigenetic processes, histone modification
is responsible for part of transcriptional regulation. Lysine-specific histone demethylase
1 (LSD1) is the first histone demethylase discovered to act as a dynamic modulator in
genome transcriptions of cellular processes. This regulation is specifically achieved by
LSD1 catalysing the oxidative demethylation of mono and dimethylated histone H3 at
Lys4 and Lys9 [3]. The methylation of different types of lysine substrates in histone is
attributed to both positive and negative regulatory effects. This regulatory mechanism
targeting methylated histone H3 exhibits activation on transcription when the substrate is
Lys4 and repression when the substrate is Lys9 [4]. Therefore, LSD1 mediates a number
of cellular signaling pathways and participates in key modifications of gene expression.
The high functional diversity of histone methylation in living cells explains the potential
connection between the dysfunction of LSD1 and various pathological conditions, such as
viral diseases and neurodegeneration [5]. The aberrant overexpression of LSD1 has been
closely linked with the tumorigenesis and progression of several cancers [3,5,6]. Under the
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inhibitive state of LSD1, suppressive gene expression against cancers can be activated with
an increased degree of methylation [7,8]. Some biologically potent compounds can induce
the inactivation of LSD1 inhibition, which implies that the chemical suppression of cancer
cells from proliferation, migration, and invasion is feasible [9,10].

Recognized as a promising strategy for cancer treatment, as discussed in an earlier re-
view [11], several potential LSD1 inhibitors have been discovered, including GSK-2879552,
INCB059872, and RG6016, and have progressed to the stage of clinical trials [12–14]. Al-
though current advances facilitate the use of prior knowledge towards the discovery of
new LSD1 inhibitors, rational and effective design remains a challenge. Recently, some
approaches to rational design have exploited structural similarities in both the LSD1 pro-
tein substrate and the known inhibitors. LSD1 is structurally homologous to the members
of the monoamine oxidase family: MAO-A and MAO-B. Based on the homology, it was
hypothesized that an inhibitor of monoamine oxidase might also suppress LSD1 in a similar
manner [15]. The application of protein structure similarity clustering gave similarity scores
between the LSD1 and MAOs, which encouraged work to expand the use of γ-pyrones
inhibitors from MAOs to LSD1 [16].

There have been several computational studies of inhibitors of LSD1, using techniques
such as pharmacophore modelling, 3D-QSAR, and molecular docking. In one study [17],
CoMFA [18] was used to generate a 3D-QSAR model of 41 stilbene derivatives, and
this was supplemented with molecular docking and molecular dynamics simulations. A
similar approach was adopted in a study of some thieno[3,2-b]pyrrole-5-carboxamide
derivatives [19] and in a study of some tranylcypromine derivatives [20]. In a study of
29 5-hydroxypyrazole analogues [21], descriptors derived from molecular docking were
used in multiple linear regression and support vector machines to generate predictive
QSAR models, albeit on a small dataset. 2D- and 3D-QSAR models achieving similar
accuracies (and with the same caveat) have also been built for 54 aminothiazole and
thiazolesulfonamide derivatives [22].

Molecular docking also provides a computational tool to predict binding affinity and
evaluate protein–ligand interactions. Compounds containing a propargylamine warhead
were virtually screened from a library inspired by inhibitors of MAOs, and validated
by docking analysis [9]. The computational tools also helped to extend the chemical
search space to large and diverse compound libraries to realize a high-throughput virtual
screening. By establishing a quantitative structure–activity relationship (QSAR), the ini-
tial hits discovered by computational docking were optimized to have better drug-like
properties [3].

Virtual screening approaches to discover new inhibitors of LSD1 have also been an
area of interest. A template virtualization technique combined with standard similarity
search techniques was reported [23], which led to the discovery of 27 new validated hits, the
best having a potency of 0.2 µM. Another virtual screen based on a pharmacophore model
combined with docking identified 9 validated hits, with micromolar potency [24]. Virtual
screening with a pharmacophore also suggested that compounds with a 3-methylxanthine
scaffold may be a fruitful strategy to pursue [25].

Recently, the rapid development of machine learning has attracted the attention of
researchers in computational chemistry and drug discovery [26–31]. Machine learning
often demands a large quantity of high-quality data to reach a useful level of predictive
accuracy [32]. Compared with traditional fields where machine learning is advantageous,
chemistry-related fields often suffer from the expensive acquisition of chemical data, which
is a bottleneck. In this regard, we turned to publicly available databases to acquire sufficient
data to build a reliable model. We developed a machine learning model using a variety of
algorithms that have not previously been considered. This model is based on a significantly
larger set of molecular structures of LSD1 inhibitors than has previously been considered,
and we utilised the model in virtual screening.
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2. Methods
2.1. Data Collection

A dataset containing compounds targeting LSD1 was assembled from the ChEMBL
database (version 28) [33], comprising the molecule and the inhibition assay result of
each example. The data in ChEMBL, which is open access, are abstracted and curated
from primary scientific literature and comprise compound structures and their biological
activities, which is our particular focus. The molecules were represented by the Simplified
Molecular-Input Line-Entry System (SMILES) [34]. Assay descriptions, along with ChEMBL
documents extracted by indexing the document ID, were used to identify and screen out
the comparable biological activities that exhibit the features of LSD1 inhibition. The activity
measurements were utilized directly in our model and treated as our regression target. The
pChEMBL values were used, because this allows (with some caveats) one to use several
types of bioactivity measurements, including molar concentrations of IC50, XC50, EC50,
AC50, Ki, and Kd, on a negative logarithmic scale [35], as shown in Equation (1), where the
effective value is any of the preceding quantities.

pChEMBL = − log10(E f f ective Value) (1)

Some molecules had multiple measurement results from different assays on the LSD1
inhibition, which might affect the efficiency and performance of machine learning al-
gorithms. Therefore, duplicate structures were removed and the mean value of each
measurement was calculated. The mean value was transformed to a pChEMBL value. A
total of 931 distinct instances are included in the final dataset.

2.2. Molecular Fingerprints

A recent study by Sandfort et al. [36] suggests that the use of structure-based de-
scriptors can lead to a predictive accuracy of activity comparable to that from models
built with numerical quantum descriptors. Thus, in our study, we have focused only on
structural-based descriptors. To provide structured input data for the machine learning
algorithms, the molecules were transformed to one of the molecular fingerprints. The
Morgan fingerprints, developed from Morgan algorithms, were chosen due to their wide
applicability [37]. Using the RDKit package (version 2020.09.1), each SMILES string was
converted to a Morgan bit vector of a predefined length (L) comprising a series of binary
bits. For circular fingerprints, the radius (r) is a key variable, as it encodes the neighbouring
environment around the central atom. The radius determines the number of iterations in
the calculation of the identifier of the central atom. With the increase of the radius, the infor-
mation of the surrounding substructure is increasingly encoded into the identifier [38,39].
Each identifier is updated iteratively to include information on neighbouring atoms (i.e.,
their identifier and bond order). Once the iterations have reached the specified radius,
the identifiers are folded into the length of the bit vector using a hashing function. In this
manner, Morgan fingerprints were calculated for the main dataset with L = 512 and r = 3
for evaluation of the performance of machine learning methods and the construction of a
model for virtual screening for new LSD1 inhibitors.

2.3. Model Construction

Several machine learning algorithms were built and tuned in the scikit-learn package
(version 0.22.2) [40]. A multi-layer perceptron (MLP) was also trained using the PyTorch
package (version 1.8.1) [41] with CUDA (version 10.1) [42] under the Google Colaboratory
environment. The dataset was first randomly divided into a training set and a test set with
a split of about 80:20 (744:187). Based on the training set, for each algorithm, a specified
pool of hyperparameters was optimized with a five-fold cross validation strategy to find
the combination that achieved minimal loss. This strategy maximises the use of limited
data in a relatively small dataset. The test set was excluded from the training and validation
process as a ‘holdout’ dataset and used only to test each model’s predictive capability on
unseen data. The algorithms predict continuous variables, so performance was evaluated
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by the coefficient of determination score (R2) and the root-mean-square error (RMSE). Both
metrics were applied on the training set to evaluate the fitting ability and test set to evaluate
the generalizability of the machine learning model. The fine-tuned algorithm with the
highest R2 and the lowest RMSE on the test set was deployed in the virtual screening.

2.4. Virtual Screening

Using the developed model, virtual screening was applied to the ZINC 15 in-vitro
dataset, which contains 306,347 molecules [43]. Whilst there are many possible libraries
that could be screened, we have focused initially on ZINC 15, which is a particularly well
established and widely used library containing bioactive and drug-like molecules. Each
molecule was represented by Morgan fingerprints. A ‘hit’ in the virtual screen was defined
as a molecule with a predicted pChEMBL value of 7 or more.

3. Results and Discussion
3.1. Characterisation of the Dataset

The molecules in the dataset cover a considerable range of LSD1 inhibitory activity
(Figure 1), which is important for machine learning algorithms to model the quantitative
structure–activity relationship well. Based on an effective IC50 value of 100 nM, 190 com-
pounds (20.4 %) had an activity above 7, while 741 compounds (79.6 %) were below 7.

Figure 1. Distribution of the activities of the molecules in the dataset.

In order to visualize the mapping between the structural features and LSD1 inhibition
in two dimensions, t-distributed Stochastic Neighbour Embedding (t-SNE) was applied,
due to its ability to preserve local data structures from original high dimensional space
while presenting clustering information. This nonlinear dimensionality reduction technique
considers the similarity between the pairs of points in their original high dimensional space
and their target two-dimensional embedding. The t-SNE algorithm minimizes the Kullback–
Leibler divergence between the vector of similarities between pairs in the original high
dimensional space and the pairs embedded in the two-dimensional mapping [44,45]. A
short Euclidean distance between pairs of data points in Figure 2 indicates a significant
extent of structural similarity. Several clusters are evident in the two-dimensional map.

In Figure 2, A, B, and C are marked out as clusters with a clear separation from other
data points. The molecules in Cluster A (Figure 3a) have a common core structure. The
molecules in Cluster B share a common core structure that is distinct from that of Cluster A
(Figure 3b). However, on the periphery of Cluster C, one molecule (Figure 3d) does not
share the core structures of the other molecules in Cluster C. This different molecule also
exhibits the lowest activity of the molecules in Cluster C. Several clusters of molecules
sharing nearly identical core structures and similar activities (denoted by aggregations of
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similar colours in Figure 2 are strong evidence of the existence of a quantitative structure-
activity relationship.

Figure 2. Dimensionality reduction by t-distributed Stochastic Neighbour Embedding (t-SNE) on
fingerprint bit vectors. The colourbar indicates pChEMBL values from 3 (red) to 9 (blue).

Some structural features in Figure 3 are noteworthy. Clusters A and C correspond to
high activity compounds and are, thus, of particular interest. For the common structure in
Cluster A (Figure 3a), the R3 substituent is a five- or six-membered ring with a nitrogen
atom connected to the common structure. For the common structure in Cluster C (Figure 3c),
R1 is located at either the meta or para position of the benzene ring. R2 is also a five- or
six-membered ring with a nitrogen atom connected to the common structure.

Figure 3. Core structures of molecules in Clusters A, B, and C from the t-SNE analysis, shown in
(a–c), respectively. R1 in (c) is shown in the para position, but there are also compounds in this cluster
with R1 in the meta position. (d) shows the full structure of one unusual molecule from Cluster C,
which in fact does not have the core structure shown in (c).

3.2. Performance of the Machine Learning Algorithms

Several commonly used machine learning algorithms were applied for comparison
and evaluation. The predictive ability of each algorithm, shown in Table 1, was evaluated
by the coefficient of determination (R2) and the root-mean-square error (RMSE). Mean
values of R2 and RMSE and their standard deviations were calculated to assess the stability
of the algorithms over different train–test splits of the dataset. The support vector regressor
(SVR) with the radial basis function (RBF) kernel achieved both the highest R2 and the
lowest RMSE on the test set among all optimized models. The SVR slightly outperformed
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the random forest regressor (RF) by 0.8%. As a baseline model, the simple decision tree
regressor (DT) was the least predictive, but the test R2 of 0.42 suggests that the lower bound
for the performance of machine learning models in predicting for this QSAR is actually
quite high. In addition, the models that achieved high predictive accuracy in the test set
also show excellent performance on the training set. The very low standard deviations of
the best two models indicate that the SVR and RF exhibit good stability. Changes to the
training set cause only minor fluctuations in the predictive performance.

Table 1. Mean performance of each algorithm on predicting the pChEMBL value evaluated by the
coefficient of determination (R2) and the root mean square error (RMSE). Standard deviations are
enclosed in brackets.

Algorithm Train R2 Test R2 Train RMSE Test RMSE

K-Neighbours 0.998 (0.001) 0.662 (0.047) 0.051 (0.010) 0.632 (0.051)
Ridge 0.923 (0.005) 0.471 (0.069) 0.306 (0.011) 0.790 (0.059)
Lasso 0.688 (0.009) 0.597 (0.044) 0.616 (0.010) 0.690 (0.044)

Elastic Net 0.821 (0.006) 0.635 (0.047) 0.466 (0.009) 0.656 (0.047)
Gradient Boosting 0.833 (0.007) 0.631 (0.041) 0.450 (0.010) 0.661 (0.040)

Random Forest 0.984 (0.001) 0.695 (0.035) 0.140 (0.004) 0.600 (0.041)
Adaboost 0.582 (0.017) 0.500 (0.034) 0.713 (0.015) 0.769 (0.035)

Extra Trees 0.998 (0.001) 0.459 (0.092) 0.051 (0.010) 0.798 (0.073)
Decision tree 0.931 (0.009) 0.425 (0.090) 0.288 (0.020) 0.823 (0.066)

SVR 0.989 (0.001) 0.703 (0.035) 0.115 (0.005) 0.592 (0.041)
MLP 0.998 (0.001) 0.544 (0.218) 0.052 (0.010) 0.723 (0.127)

An illustrative single training procedure of several machine learning models is dis-
played in Figure 4, which shows the change of R2 with respect to the number of instances
provided to the algorithms. The test set remained unchanged. The two best models, SVR
and RF, are included with a comparison to the DT. Over the first 100 instances imported
to the algorithms, SVR and RF display a similar trend: both algorithms quickly reach an
R2 level of 0.9. Thereafter, the value of R2 remains very stable until the end of the training
process. The R2 for the test set continuously increases with the number of examples, albeit
with slight fluctuations. The convergence of R2 in the training process seems not to hinder
the improvement of test set performance with the inclusion of more instances, which
demonstrates that the algorithms continue to recognize the hidden patterns until the end.
Therefore, this suggests that the machine learning models might improve further, with
additional data.

3.3. Performance on Subsets of the Data

In addition to training on the whole dataset, machine learning algorithms were also
applied to subsets of the original dataset, in order to explore if the algorithms performed
differently on specific structural groups of compounds. Four subsets were selected, and
each is based on a representative core structure of known LSD1 inhibitors, giving four
distinct (but not necessarily mutually exclusive) subsets [1]. Subset 1 contains guanidine
and thiourea derivatives. In the compounds of Subset 2, only selected five or six-membered
heterocyclic ring structures are considered. Subset 3 comprises styrene-centered structures.
Subset 4 includes all tranylcypromine (TCP) derivatives. As shown in Figure 5, the activity
distribution of each subset varies. Subset 4 has the largest fraction of active compounds and
the largest number of instances. Generally, all four subsets cover a wide range of activities.
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Figure 4. Performances on training (solid lines) and test data (dashed lines) of optimized support
vector regressor (blue), random forest regressor (red), and decision tree regressor (grey) evaluated by
the coefficient of determination (R2).

(a) Subset 1 (b) Subset 2

(c) Subset 3 (d) Subset 4

Figure 5. Distribution of the activities in each subset. (a) Subset 1: guanidine and thiourea derivatives.
(b) Subset 2: five or six-membered heterocyclic compounds. (c) Subset 3: styrene derivatives. (d) Subset
4: tranylcypromine (TCP) derivatives.

Table 2 shows the performance of machine learning algorithms (the best two and some
baseline models) on each individual subset. SVR and RF are the best algorithms, except on
Subset 3, in which the ridge regression and SVR perform best. SVR consistently performs
well across all the subsets. On the different subsets, the evaluations show noticeable
fluctuations in R2 and the median RMSE. This may indicate that different subsets of the
data manifest structure–activity relationships to varying extents. However, it may be
that, in some subsets, the reduced quantity of data compared with the main dataset also
impairs the performance of the data-hungry machine learning algorithms. Thus, the
performance on the subsets can be less stable than it is on the larger and more diverse full
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dataset. Therefore, a general machine learning model based on all of the molecules is more
advantageous here than several structural-specific models trained on individual subsets.

Table 2. Mean performance of best two performing and baseline models on predicting the pChEMBL
value, evaluated by the coefficient of determination (R2) and root mean square error (RMSE).

Dataset Algorithm Test R2 Test RMSE

Subset 1 a
RF 0.498 (0.172) 0.651 (0.106)

SVR 0.536 (0.189) 0.623 (0.117)
DT 0.292 (0.247) 0.772 (0.124)

Subset 2 b
RF 0.760 (0.055) 0.499 (0.057)

SVR 0.745 (0.055) 0.516 (0.053)
DT 0.515 (0.133) 0.710 (0.107)

Subset 3 c
Ridge 0.670 (0.141) 0.509 (0.054)
SVR 0.662 (0.143) 0.516 (0.062)
DT 0.379 (0.253) 0.701 (0.108)

Subset 4 d
RF 0.458 (0.069) 0.654 (0.053)

SVR 0.473 (0.081) 0.646 (0.069)
DT 0.112 (0.171) 0.833 (0.069)

a Subset 1: guanidine and thiourea derivatives. b Subset 2: six-membered heterocyclic compounds. c Subset 3:
styrene derivatives. d Subset 4: tranylcypromine (TCP) derivatives.

3.4. Virtual Screening

Virtual screening is our ultimate goal in this study. Molecules were retrieved from the
ZINC 15 in-vitro database [43], which contains over 300,000 structures. The model deployed
was based on SVR, the best performing algorithm. A threshold of activity was set to 7 (i.e.,
an effective IC50 value of 100 nM), empirically specifying a boundary between ‘active’ and
‘inactive’ molecules in our screen. The virtual screening using the machine learning model
resulted in five ‘active’ molecules identified as new structures that were distinct from the
931 molecules in the main dataset. Figure 6 shows the five molecules and their predicted
activities. The molecules are quite diverse, with the highest Tanimoto similarity between
pairs of molecules being 0.208 (Table S2). The drug-likeness of the predicted molecules was
evaluated using Lipinski’s rule of five [46]. Table S1 in the Supplementary Materials shows
that the five molecules comply with all the Lipinski criteria.

There are several key structures and functional groups that may be responsible for
the activity of the identified molecules, and multiple inhibitory functional groups appear
to have been recognized by the algorithm. A five- or six-membered heterocyclic ring,
e.g., tetrahydropyran, piperidine, pyrazole, and piperazine, is present in every molecule.
Compound 1 belongs to the TCP derivatives by molecular structures. TCP is a major well-
known type of irreversible LSD1 inhibitor [47]. The molecule also has a carbonyl piperazine
core that possibly enhances the LSD1 inhibition due to a potential hydrogen bond with
Asp555 [48]. It also acts as a hydrophobic linker [49]. Compound 2 and Compound 3 both
possess the piperidine structure, a functional group that binds to the carboxylate group of
Asp555 and the amide oxygen of Asp540 [50]. In addition, a benzonitrile in the terminal
part of Compound 2 can act as a selective functional group against LSD1 through the
formation of a bridging hydrogen bond with Lys661 [51]. A sulfonamide group, rather than
the more common benzenesulfonamide group, is present in Compound 3, [52], which might
indicate that the simpler sulfonamide derivatives should be a future focus. Compound 4 is
a heteroaromatic imidazole-based structure. The potency of imidazole against LSD1 has
previously been supported by the computational modelling of the binding interactions
with the active site of LSD1 [53].
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Figure 6. Structures and predicted IC50 values (in parentheses) of five molecules produced
from the virtual screening: 1 (ZINC000098052700), 2 (ZINC000022449627), 3 (ZINC000038942511),
4 (ZINC000040414461), and 5 (ZINC000072321648).

All five molecules were predicted to have high activity. However, due to the upper
limit of the activity in the main database, very high values are not likely to be predicted.
In Figure 6, Compound 1 is a previously identified LSD1 inhibitor rediscovered by our
machine learning model; it is also known as RN1 [47]. In the in vitro assessment of LSD1
inhibition, the IC50 value for RN1, as assessed by a horseradish peroxidase (HRP)-coupled
assay, is 70 nM [54]. The value is very close to the predicted value of 65.9 nM, illustrating
the accuracy of the model. As for the remaining four molecules, our virtual screening
indicates their potency against LSD1 for the first time. Two of the compounds are known
to have drug-like properties targeting other biological processes, and may be potential
cases for drug re-purposing. Compound 2, known as T-2328, was previously considered
an antagonist of tachykinin and the neurokinin-1 receptor [55]. Compound 3, also known
as L-366509, has been considered as a potential antagonist of oxytocin or vasopressin [56].
The other two structures, Compounds 4 and 5, have not been previously investigated in
detail in any other pharmaceutical applications. However, this research suggests that they
may be good starting points for the design of new inhibitors of LSD1.

4. Conclusions

In this study, a machine learning model was built using data from ChEMBL to enable
virtual screening for the discovery of inhibitors of LSD1. The model requires only the
structurally based features represented by molecular fingerprints to construct the QSAR
between the candidates and the activity of LSD1 inhibition. The final algorithm was selected
from several prevailing machine learning algorithms. The best performing algorithm, SVR,
reached an average coefficient of determination (R2) on the test set of 0.703 on the main
dataset, which is a good result from a statistical perspective and gave us the confidence to
apply the model in virtual screening. Evaluations on subsets of molecules from the main
datasets illustrated that the performance of SVR was more stable than other algorithms,
but predictive ability did decline on some of the smaller subsets. The model based on the
best performing algorithm was used to discover five molecules with a potential for the
inhibition of LSD1 from a large molecular library. We are currently using the model to
guide the synthesis of some novel compounds with predicted activity against LSD1.
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Supplementary Materials: The following are available online, Table S1: Predicted pChEMBL
values and the Lipinski rule of five properties for the molecules found via virtual screening: 1
(ZINC000098052700), 2 (ZINC000022449627), 3 (ZINC000038942511), 4 (ZINC000040414461), 5
(ZINC000072321648). Table S2: Tanimoto similarities between the molecules identified from virtual
screening. The self-similarity of a molecule is, by construction, 1. Table S3: Datasets constructed from
different Morgan fingerprints. Table S4: Mean performance of each algorithm on the prediction of
pChEMBL values, evaluated by the coefficient of determination (R2) and the root mean square error
(RMSE) on Dataset 2. Standard deviations are enclosed in brackets. Table S5: Mean performance
of each algorithm on the prediction of pChEMBL values, evaluated by the coefficient of determina-
tion (R2) and the root mean square error (RMSE) on Dataset 3. Standard deviations are enclosed
in brackets. Table S6: Hyperparameter grids used for optimization. Table S7: Default values of
hyperparameters used in the algorithms. Table S8: Best hyperparameters for the machine learning
algorithms applied to Dataset 1 (the dataset in the main manuscript). Table S9: Best hyperparameters
for the machine learning algorithms applied to Dataset 2. Table S10: Best hyperparameters for the
machine learning algorithms applied to Dataset 3. Table S11: Mean performance of each algorithm
on the prediction of the pChEMBL values of Subset 1. Standard deviations are enclosed in brackets.
Table S12: Mean performance of each algorithm on the prediction of the pChEMBL values of Subset
2. Standard deviations are enclosed in brackets. Table S13: Mean performance of each algorithm
on the prediction of the pChEMBL values of Subset 3. Standard deviations are enclosed in brackets.
Table S14: Mean performance of each algorithm on the prediction of the pChEMBL values of Subset
4. Standard deviations are enclosed in brackets. Table S15: Best hyperparameters for the machine
learning algorithms applied to Subset 1. Table S16: Best hyperparameters for the machine learning
algorithms applied to Subset 2. Table S17: Best hyperparameters for the machine learning algorithms
applied to Subset 3. Table S18: Best hyperparameters for the machine learning algorithms applied
to Subset 4. Figure S1. Train and test performance of optimized support vector regressor (blue),
random forest regressor (red), and decision tree regressor (grey) evaluated by the root-mean-square
error (RMSE) with dashed lines showing train performances and the solid lines showing test per-
formances, respectively. Figure S2. The neural network architecture applied to a dataset with 512
inputs. Figure S3. Schematic of back propagation in the multi-layer perceptron applied to a dataset
with 512 inputs. Figure S4. Core structures for Subsets 1, 2, 3 and 4, respectively: (a) guanidine and
thiourea derivatives; (b) molecules containing selected five or six-membered heterocycles; (c) styrene
derivatives. (d) tranylcypromine (TCP) derivatives.

Author Contributions: Conceptualization, J.Z., B.T. and J.D.H.; methodology, J.Z. and J.D.H.; soft-
ware, J.Z., T.C., Z.H. and Y.L.; validation, J.Z., B.G.L. and J.D.H.; analysis, J.Z., S.W. and B.T.; data
curation, J.Z.; writing—original draft preparation, J.Z.; writing—review and editing, J.Z., B.T., B.G.L.
and J.D.H.; visualization, J.Z.; supervision, B.T. and J.D.H.; project administration, B.T. and J.D.H.;
funding acquisition, B.T. and J.D.H. All authors have read and agreed to the published version of
the manuscript.

Funding: We acknowledge the financial support from the Ministry of Science and Technology of the
People’s Republic of China under a funding scheme of the National Key RD Program of Intergovern-
mental Kay Projects (Grant No. 2018YFE0101700), the National Natural Science Foundation of China
(No. 22171153 & 21502101), the Ningbo Science and Technology Bureau under CM2025 Programme
(Grant No. 2020Z092), and the Zhejiang Provincial Department of Science and Technology under its
Provincial Key Laboratory Programme (2020E10018). J.H. is supported by the Royal Academy of
Engineering under the Chairs in Emerging Technologies scheme.

Data Availability Statement: The data and scripts for generating the models are available at
https://github.com/JiajunZhou96/ML-for-LSD1 (accessed on 9 November 2021).

Acknowledgments: We thank Yufan Liu from University of Surrey for providing advice on data
visualization and analysis. We are also grateful for access to the University of Nottingham High
Performance Computer.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Sample Availability: Samples of the compounds are not available from the authors.

https://github.com/JiajunZhou96/ML-for-LSD1
https://github.com/JiajunZhou96/ML-for-LSD1


Molecules 2021, 26, 7492 11 of 13

Abbreviations
The following abbreviations are used in this manuscript:

DT Decision tree regressor
HRP Horseradish peroxidase
LSD1 Lysine-specific histone demethylase 1
MAO Monoamine oxidases
MLP Multi-layer perceptron
QSAR Quantitative structure-activity relationship
RBF Radial basis function
RF Random forest regressor
RMSE Root mean square error
SMILES Simplified Molecular-Input Line-Entry System
SVR Support vector regressor
t-SNE t-distributed Stochastic Neighbour Embedding
TCP Tranylcypromine

References
1. Wang, X.; Huang, B.; Suzuki, T.; Liu, X.; Zhan, P. Medicinal chemistry insights in the discovery of novel LSD1 inhibitors.

Epigenomics 2015, 7, 1379–1396. [CrossRef] [PubMed]
2. Lu, W.; Zhang, R.; Jiang, H.; Zhang, H.; Luo, C. Computer-aided drug design in epigenetics. Front. Chem. 2018, 6, 57. [CrossRef]

[PubMed]
3. Sorna, V.; Theisen, E.R.; Stephens, B.; Warner, S.L.; Bearss, D.J.; Vankayalapati, H.; Sharma, S. High-throughput virtual screening

identifies novel N′-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors. J. Med. Chem. 2013,
56, 9496–9508. [CrossRef]

4. Gale, M.; Yan, Q. High-throughput screening to identify inhibitors of lysine demethylases. Epigenomics 2015, 7, 57–65. [CrossRef]
[PubMed]

5. Fu, X.; Zhang, P.; Yu, B. Advances toward LSD1 inhibitors for cancer therapy. Future Med. Chem. 2017, 9, 1227–1242. [CrossRef]
[PubMed]

6. Scoumanne, A.; Chen, X. The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and-
independent manners. J. Biol. Chem. 2007, 282, 15471–15475. [CrossRef]

7. Hayami, S.; Kelly, J.D.; Cho, H.S.; Yoshimatsu, M.; Unoki, M.; Tsunoda, T.; Field, H.I.; Neal, D.E.; Yamaue, H.; Ponder, B.A.; et al.
Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int. J. Cancer
2011, 128, 574–586. [CrossRef]

8. Huang, Y.; Stewart, T.M.; Wu, Y.; Baylin, S.B.; Marton, L.J.; Perkins, B.; Jones, R.J.; Woster, P.M.; Casero, R.A. Novel oligoamine
analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin. Cancer Res. 2009,
15, 7217–7228. [CrossRef] [PubMed]

9. Schmitt, M.L.; Hauser, A.T.; Carlino, L.; Pippel, M.; Schulz-Fincke, J.; Metzger, E.; Willmann, D.; Yiu, T.; Barton, M.; Schule, R.;
et al. Nonpeptidic propargylamines as inhibitors of lysine specific demethylase 1 (LSD1) with cellular activity. J. Med. Chem.
2013, 56, 7334–7342. [CrossRef] [PubMed]

10. Lv, T.; Yuan, D.; Miao, X.; Lv, Y.; Zhan, P.; Shen, X.; Song, Y. Over-expression of LSD1 promotes proliferation, migration and
invasion in non-small cell lung cancer. PLoS ONE 2012, 7, e35065. [CrossRef] [PubMed]

11. McAllister, T.E.; England, K.S.; Hopkinson, R.J.; Brennan, P.E.; Kawamura, A.; Schofield, C.J. Recent progress in histone
demethylase inhibitors. J. Med. Chem. 2016, 59, 1308–1329. [CrossRef]

12. Kruger, R.G.; Mohammad, H.; Smitheman, K.; Cusan, M.; Liu, Y.; Pappalardi, M.; Federowicz, K.; Van Aller, G.; Kasparec, J.;
Tian, X.; et al. Inhibition of LSD1 as a therapeutic strategy for the treatment of acute myeloid leukemia. Blood 2013, 122, 3964.
[CrossRef]

13. Lee, S.H.; Stubbs, M.; Liu, X.M.; Diamond, M.; Dostalik, V.; Ye, M.; Lo, Y.; Favata, M.; Yang, G.; Gallagher, K.; et al. Abstract 4712:
Discovery of INCB059872, a novel FAD-directed LSD1 inhibitor that is effective in preclinical models of human and murine AML.
Cancer Res. 2016, 76, 4712.

14. Milletti, F.; Cheng, W.Y.; Maes, T.; Lunardi, S.; DeMario, M.; Pierceall, W.E.; Mack, F. Abstract 4708: Neuroendocrine gene
transcript expression is associated with efficacy to lysine-specific demethylase-1 inhibitor RG6016 in small cell lung cancer-derived
cell lines. Cancer Res. 2016, 76, 4708.

15. Gooden, D.M.; Schmidt, D.M.; Pollock, J.A.; Kabadi, A.M.; McCafferty, D.G. Facile synthesis of substituted trans-2-
arylcyclopropylamine inhibitors of the human histone demethylase LSD1 and monoamine oxidases A and B. Bioorg. Med. Chem.
Lett. 2008, 18, 3047–3051. [CrossRef] [PubMed]

16. Willmann, D.; Lim, S.; Wetzel, S.; Metzger, E.; Jandausch, A.; Wilk, W.; Jung, M.; Forne, I.; Imhof, A.; Janzer, A.; et al. Impairment of
prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int. J. Cancer 2012, 131, 2704–2709.
[CrossRef] [PubMed]

http://doi.org/10.2217/epi.15.86
http://www.ncbi.nlm.nih.gov/pubmed/26646727
http://dx.doi.org/10.3389/fchem.2018.00057
http://www.ncbi.nlm.nih.gov/pubmed/29594101
http://dx.doi.org/10.1021/jm400870h
http://dx.doi.org/10.2217/epi.14.63
http://www.ncbi.nlm.nih.gov/pubmed/25687466
http://dx.doi.org/10.4155/fmc-2017-0068
http://www.ncbi.nlm.nih.gov/pubmed/28722477
http://dx.doi.org/10.1074/jbc.M701023200
http://dx.doi.org/10.1002/ijc.25349
http://dx.doi.org/10.1158/1078-0432.CCR-09-1293
http://www.ncbi.nlm.nih.gov/pubmed/19934284
http://dx.doi.org/10.1021/jm400792m
http://www.ncbi.nlm.nih.gov/pubmed/24007511
http://dx.doi.org/10.1371/journal.pone.0035065
http://www.ncbi.nlm.nih.gov/pubmed/22493729
http://dx.doi.org/10.1021/acs.jmedchem.5b01758
http://dx.doi.org/10.1182/blood.V122.21.3964.3964
http://dx.doi.org/10.1016/j.bmcl.2008.01.003
http://www.ncbi.nlm.nih.gov/pubmed/18242989
http://dx.doi.org/10.1002/ijc.27555
http://www.ncbi.nlm.nih.gov/pubmed/22447389


Molecules 2021, 26, 7492 12 of 13

17. Xu, Y.; He, Z.; Yang, M.; Gao, Y.; Jin, L.; Wang, M.; Zheng, Y.; Lu, X.; Zhang, S.; Wang, C.; et al. Investigating the Binding Mode
of Reversible LSD1 Inhibitors Derived from Stilbene Derivatives by 3D-QSAR, Molecular Docking, and Molecular Dynamics
Simulation. Molecules 2019, 24, 4479. [CrossRef] [PubMed]

18. Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids
to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959–5967. [CrossRef] [PubMed]

19. Xu, Y.; He, Z.; Liu, H.; Chen, Y.; Gao, Y.; Zhang, S.; Wang, M.; Lu, X.; Wang, C.; Zhao, Z.; et al. 3D-QSAR, molecular docking, and
molecular dynamics simulation study of thieno [3, 2-b] pyrrole-5-carboxamide derivatives as LSD1 inhibitors. RSC Adv. 2020,
10, 6927–6943. [CrossRef]

20. Abdizadeh, R.; Heidarian, E.; Hadizadeh, F.; Abdizadeh, T. QSAR modeling, molecular docking and molecular dynamics
simulations studies of lysine-specific demethylase 1 (Lsd1) inhibitors as anticancer agents. Anti-Cancer Agents Med. Chem. 2021,
21, 987–1018. [CrossRef]

21. Seraj, K.; Asadollahi-Baboli, M. In silico evaluation of 5-hydroxypyrazoles as LSD1 inhibitors based on molecular docking
derived descriptors. J. Mol. Struct. 2019, 1179, 514–524. [CrossRef]

22. Maltarollo, V.G.; Honório, K.M.; Emery, F.S.; Ganesan, A.; Trossini, G.H. Hologram quantitative structure–activity relationship
and comparative molecular interaction field analysis of aminothiazole and thiazolesulfonamide as reversible LSD1 inhibitors.
Future Med. Chem. 2015, 7, 1381–1394. [CrossRef] [PubMed]

23. Bergner, A.; Parel, S.P. Hit expansion approaches using multiple similarity methods and virtualized query structures. J. Chem. Inf.
Model. 2013, 53, 1057–1066. [CrossRef]

24. Zhou, C.; Kang, D.; Xu, Y.; Zhang, L.; Zha, X. Identification of Novel Selective Lysine-Specific Demethylase 1 (LSD1) Inhibitors
Using a Pharmacophore-Based Virtual Screening Combined with Docking. Chem. Biol. Drug Des. 2015, 85, 659–671. [CrossRef]
[PubMed]

25. Sun, X.D.; Zheng, Y.C.; Ma, C.Y.; Yang, J.; Gao, Q.B.; Yan, Y.; Wang, Z.Z.; Li, W.; Zhao, W.; Liu, H.M.; et al. Identifying the novel
inhibitors of lysine-specific demethylase 1 (LSD1) combining pharmacophore-based and structure-based virtual screening. J.
Biomol. Struct. Dyn. 2018, 37, 4200–4214. [CrossRef] [PubMed]

26. Wei, J.; Chu, X.; Sun, X.Y.; Xu, K.; Deng, H.X.; Chen, J.; Wei, Z.; Lei, M. Machine learning in materials science. InfoMat 2019,
1, 338–358. [CrossRef]

27. Goh, G.B.; Siegel, C.; Vishnu, A.; Hodas, N.O.; Baker, N. Chemception: A deep neural network with minimal chemistry
knowledge matches the performance of expert-developed QSAR/QSPR models. arXiv 2017, arXiv:1706.06689.

28. Li, L.; Hoyer, S.; Pederson, R.; Sun, R.; Cubuk, E.D.; Riley, P.; Burke, K. Kohn-Sham equations as regularizer: Building prior
knowledge into machine-learned physics. Phys. Rev. Lett. 2021, 126, 036401. [CrossRef]

29. Singh, S.; Pareek, M.; Changotra, A.; Banerjee, S.; Bhaskararao, B.; Balamurugan, P.; Sunoj, R.B. A unified machine-learning
protocol for asymmetric catalysis as a proof of concept demonstration using asymmetric hydrogenation. Proc. Natl. Acad. Sci.
USA 2020, 117, 1339–1345. [CrossRef]

30. Haywood, A.L.; Redshaw, J.; Gaertner, T.; Taylor, A.; Mason, A.M.; Hirst, J.D. Machine Learning for Chemical Synthesis. In
Machine Learning in Chemistry: The Impact of Artificial Intelligence; The Royal Society of Chemistry: London, UK, 2020; pp. 169–194.

31. Melville, J.L.; Burke, E.K.; Hirst, J.D. Machine learning in virtual screening. Comb. Chem. High Throughput Scr. 2009, 12, 332–343.
[CrossRef]

32. Obermeyer, Z.; Emanuel, E.J. Predicting the future—Big data, machine learning, and clinical medicine. N. Engl. J. Med. 2016,
375, 1216. [CrossRef]

33. Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte,
E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [CrossRef]

34. Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J.
Chem. Inf. Comp. Sci. 1988, 28, 31–36. [CrossRef]

35. Bento, A.P.; Gaulton, A.; Hersey, A.; Bellis, L.J.; Chambers, J.; Davies, M.; Krüger, F.A.; Light, Y.; Mak, L.; McGlinchey, S.; et al.
The ChEMBL bioactivity database: An update. Nucleic Acids Res. 2014, 42, D1083–D1090. [CrossRef] [PubMed]

36. Sandfort, F.; Strieth-Kalthoff, F.; Kühnemund, M.; Beecks, C.; Glorius, F. A structure-based platform for predicting chemical
reactivity. Chem 2020, 6, 1379–1390. [CrossRef]

37. Morgan, H.L. The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts
service. J. Chem. Doc. 1965, 5, 107–113. [CrossRef]

38. Rogers, D.; Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [CrossRef] [PubMed]
39. Haywood, A.L.; Redshaw, J.; Hanson-Heine, M.W.D.; Taylor, A.; Brown, A.; Mason, A.M.; Gaertner, T.; Hirst, J.D. Kernel Methods

for Predicting Yields of Chemical Reactions. J. Chem. Inf. Model. 2021, in press. [CrossRef] [PubMed]
40. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
41. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems; Curran
Associates, Inc.: New York, NY, USA, 2019; pp. 8024–8035.

42. NVIDIA; Vingelmann, P.; Fitzek, F.H. CUDA, release: 10.2.89, 2020. Available online: https://developer.nvidia.com/cuda-toolkit
(accessed on 9 November 2021).

http://dx.doi.org/10.3390/molecules24244479
http://www.ncbi.nlm.nih.gov/pubmed/31817721
http://dx.doi.org/10.1021/ja00226a005
http://www.ncbi.nlm.nih.gov/pubmed/22148765
http://dx.doi.org/10.1039/C9RA10085G
http://dx.doi.org/10.2174/1871520620666200721134010
http://dx.doi.org/10.1016/j.molstruc.2018.11.019
http://dx.doi.org/10.4155/fmc.15.68
http://www.ncbi.nlm.nih.gov/pubmed/26230878
http://dx.doi.org/10.1021/ci400059p
http://dx.doi.org/10.1111/cbdd.12461
http://www.ncbi.nlm.nih.gov/pubmed/25346381
http://dx.doi.org/10.1080/07391102.2018.1538903
http://www.ncbi.nlm.nih.gov/pubmed/30366512
http://dx.doi.org/10.1002/inf2.12028
http://dx.doi.org/10.1103/PhysRevLett.126.036401
http://dx.doi.org/10.1073/pnas.1916392117
http://dx.doi.org/10.2174/138620709788167980
http://dx.doi.org/10.1056/NEJMp1606181
http://dx.doi.org/10.1093/nar/gkw1074
http://dx.doi.org/10.1021/ci00057a005
http://dx.doi.org/10.1093/nar/gkt1031
http://www.ncbi.nlm.nih.gov/pubmed/24214965
http://dx.doi.org/10.1016/j.chempr.2020.02.017
http://dx.doi.org/10.1021/c160017a018
http://dx.doi.org/10.1021/ci100050t
http://www.ncbi.nlm.nih.gov/pubmed/20426451
http://dx.doi.org/10.1021/acs.jcim.1c00699
http://www.ncbi.nlm.nih.gov/pubmed/34699222
https://developer.nvidia.com/cuda-toolkit


Molecules 2021, 26, 7492 13 of 13

43. Sterling, T.; Irwin, J.J. ZINC 15–ligand discovery for everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [CrossRef] [PubMed]
44. Hinton, G.; Roweis, S.T. Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 2002, 15, 833–840.
45. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
46. Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and

permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [CrossRef]
47. Ricq, E.L.; Hooker, J.M.; Haggarty, S.J. Activity-dependent regulation of histone lysine demethylase KDM1A by a putative

thiol/disulfide switch. J. Biol. Chem. 2016, 291, 24756–24767. [CrossRef] [PubMed]
48. Zhang, X.; Huang, H.; Zhang, Z.; Yan, J.; Wu, T.; Yin, W.; Sun, Y.; Wang, X.; Gu, Y.; Zhao, D.; et al. Design, synthesis and biological

evaluation of novel benzofuran derivatives as potent LSD1 inhibitors. Eur. J. Med. Chem. 2021, 220, 113501. [CrossRef] [PubMed]
49. Danqing, Z.; Xu, L.; Xiaojing, P.; Hongmin, L.; Qiurong, Z. Design, Synthesis and Anticancer Activity Studies of Novel

Indole-Pyrimidine Biaryl Derivatives. Chin. J. Org. Chem. 2021, 41, 267–275.
50. Niwa, H.; Sato, S.; Hashimoto, T.; Matsuno, K.; Umehara, T. Crystal Structure of LSD1 in Complex with 4-[5-(Piperidin-4-

ylmethoxy)-2-(p-tolyl) pyridin-3-yl] benzonitrile. Molecules 2018, 23, 1538. [CrossRef] [PubMed]
51. Dai, X.J.; Liu, Y.; Xue, L.P.; Xiong, X.P.; Zhou, Y.; Zheng, Y.C.; Liu, H.M. Reversible Lysine Specific Demethylase 1 (LSD1)

Inhibitors: A Promising Wrench to Impair LSD1. J. Med. Chem. 2021, 64, 2466–2488. [CrossRef]
52. Xi, J.; Xu, S.; Wu, L.; Ma, T.; Liu, R.; Liu, Y.C.; Deng, D.; Gu, Y.; Zhou, J.; Lan, F.; Zha, X. Design, synthesis and biological activity

of 3-oxoamino-benzenesulfonamides as selective and reversible LSD1 inhibitors. Bioorg. Chem. 2017, 72, 182–189. [CrossRef]
[PubMed]

53. Nie, Z.; Shi, L.; Lai, C.; Severin, C.; Xu, J.; Del Rosario, J.R.; Stansfield, R.K.; Cho, R.W.; Kanouni, T.; Veal, J.M.; et al. Structure-
based design and discovery of potent and selective lysine-specific demethylase 1 (LSD1) inhibitors. Bioorg. Med. Chem. Lett. 2019,
29, 103–106. [CrossRef]

54. Neelamegam, R.; Ricq, E.L.; Malvaez, M.; Patnaik, D.; Norton, S.; Carlin, S.M.; Hill, I.T.; Wood, M.A.; Haggarty, S.J.; Hooker, J.M.
Brain-penetrant LSD1 inhibitors can block memory consolidation. ACS Chem. Neurosci. 2012, 3, 120–128. [CrossRef] [PubMed]

55. Lalwani, K.G.; Sudalai, A. A Concise Enantioselective Synthesis of (+)-L-733,060 and (+)-T-2328 via Sequential Proline Catalysis.
Synlett 2016, 27, 1339–1343. [CrossRef]

56. Kuczynski, W.; Pierzynski, P. Use of Antagonist of Oxytocin and/or Vasopressin in Assisted Reproduction. U.S. Patent
Application 11/914,049, 25 December 2008.

http://dx.doi.org/10.1021/acs.jcim.5b00559
http://www.ncbi.nlm.nih.gov/pubmed/26479676
http://dx.doi.org/10.1016/S0169-409X(96)00423-1
http://dx.doi.org/10.1074/jbc.M116.734426
http://www.ncbi.nlm.nih.gov/pubmed/27634040
http://dx.doi.org/10.1016/j.ejmech.2021.113501
http://www.ncbi.nlm.nih.gov/pubmed/33945992
http://dx.doi.org/10.3390/molecules23071538
http://www.ncbi.nlm.nih.gov/pubmed/29949906
http://dx.doi.org/10.1021/acs.jmedchem.0c02176
http://dx.doi.org/10.1016/j.bioorg.2017.04.006
http://www.ncbi.nlm.nih.gov/pubmed/28460360
http://dx.doi.org/10.1016/j.bmcl.2018.11.001
http://dx.doi.org/10.1021/cn200104y
http://www.ncbi.nlm.nih.gov/pubmed/22754608
http://dx.doi.org/10.1002/chin.201644189

	Introduction
	Methods
	Data Collection
	Molecular Fingerprints
	Model Construction
	Virtual Screening

	Results and Discussion
	Characterisation of the Dataset
	Performance of the Machine Learning Algorithms
	Performance on Subsets of the Data
	Virtual Screening

	Conclusions
	References

