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We study theoretically the deformation of the Fermi surface (FS) of a three dimensional gas of
Rydberg-dressed 6Li atoms. The laser dressing to high-lying Rydberg D-states results in angle-
dependent soft-core shaped interactions whose anisotropy is described by multiple spherical har-
monics. We show that this can drastically modify the shape of the FS and that its deformation
depends on the interplay between the Fermi momentum kF and the reciprocal momentum k̄ corre-
sponding to the characteristic soft-core radius of the dressing-induced potential. When kF < k̄, the
dressed interaction stretches a spherical FS into an ellipsoid. When kF ≳ k̄, complex deformations
are encountered which exhibit multipolar characteristics. We analyze the formation of Cooper pairs
around the deformed FS, and show that they occupy large orbital angular momentum states (p-, f -
and h-wave) coherently. Our study demonstrates that Rydberg-dressing to high angular momentum
states may pave a route towards the investigation of unconventional Fermi gases, and multiwave
superconductivity.

Introduction.— Fermi surfaces (FSs), describing the
occupation of momentum space by Fermions, lie at the
heart of Fermi liquid theory [1]. Though typically being a
sphere in free space, FSs can be deformed by anisotropic
two-body interactions, resulting in novel physics, man-
ifesting in the nematic phase [2] and the Pomeranchuk
instability [3]. Quantum simulators based on ultracold
atoms provide a flexible platform for realizing Fermi gases
with controllable FS [4]. Spherical FSs have been ob-
served in free [5] and weakly interacting gases [6]. The
spherical symmetry can be broken by anisotropic dipole-
dipole interactions [7–13], and the deformation of the FS
from a sphere to ellipsoid [14–22] has been observed in
polarized dipolar gases [23].

A newly emerged approach to creating long-range in-
teractions is so-called Rydberg-dressing [24–29]: using
off-resonant lasers, the strong van der Waals interaction
between electronically high-lying Rydberg atoms [30–32]
is mapped to the ground-state, yielding an effective in-
teraction between dressed atoms that possesses a charac-
teristic “soft-core” shape. The radius R̄ at which the soft
core occurs [25] and the potential shape can be tuned by
dressing to different Rydberg states [33–37]. Generically,
the collective behavior of the atomic gas is strongly im-
pacted by the soft-core interaction [25, 27, 35, 38]. In
particular, the stability of elementary excitation and the
emergence of supersolidity is connected to R̄. So far ex-
perimental and theoretical studies have mostly focused
on spin [39–41] and Bosonic systems [25–29, 42–44]. In
a recent experiment [45], dressing of the Fermionic 6Li
atoms to Rydberg P -states was demonstrated, which in-

FIG. 1. Anisotropic soft-core interaction through
Rydberg-dressing. (a) Angular dependence of the attrac-
tive, soft-core interaction V (d, θ) in the xz-plane. The inter-
action is stronger (weaker) along the x(z)-axis. The dashed
line shows the circle whose radius is R̄. (b) The Fourier trans-

formed potential Ṽ (k) is attractive at small momentum and
becomes repulsive around k̄ ≈ 5π/(3R̄) (dashed line). (c) Pro-

file of Ṽ (k) cuts along the polar angle θk = 0 (blue dashed),
π/2 (green solid), and π (red dash-dot). We consider n = 40,
V0 ≈ −2π × 2.53 kHz and δ = −2π × 40 MHz. The energy
unit in (a) and (b) is 2π × kHz. See text for details.

deed highlighted new opportunities for the exploration
of correlated many-body phases with Rydberg-dressed
Fermions [46–50].

In this work, we study the FS deformation of a spin
polarized, zero temperature gas of 6Li atoms through
Rydberg-dressing. We find that the emerging long-
range attractive two-body interaction V (r) combines
monopole, dipole and quadrupole components [Fig. 1(a)],
when dressing the ground-state atoms to a high-lying Ry-
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dbergD-state. In momentum space, the interaction Ṽ (k)
is largest at around k(θ) = 5π/3R(θ) with R(θ) being
the angle-dependent soft-core radius [Fig. 1(b)]. When
the Fermi momentum becomes larger than the minimum
k(θ), the FS is strongly deformed and gains multipolar
symmetries. We show that this deformation is accompa-
nied by the formation of Cooper pairs, where p-, f - and
h-wave pairing coexist coherently when multipolar FS
deformation occurs. The p- and f -wave pairing are key
to the superfluidity of 3He [51, 52] and unconventional
superconductors as shown in [53], while h-wave pairing
has, to the best of our knowledge, not been identified in
any other system. Our work shows that Rydberg-dressed
Fermions provide a tunable quantum simulator for in-
vestigating novel FS deformation and nontrivial pairing
states.

Anisotropic Rydberg-dressed interaction.— In
our setting, each Li6 atom consists of the electronic
ground-state |g⟩ = |2S1/2⟩, intermediate state |e⟩ =
|2P3/2⟩ and Rydberg state |r⟩ = |nD5/2⟩ (n denotes
the principal quantum number), as shown in Fig. 2(a).
A probe and a control laser couple the |g⟩ ↔ |e⟩ and
|e⟩ ↔ |r⟩ transitions. This coupling is described by

the single-atom Hamiltonian Ĥ(1) = δp|e⟩⟨e| + (δp +
δc)|r⟩⟨r|+(Ωp/2)(|g⟩⟨e|+ |e⟩⟨g|)+(Ωc/2)(|e⟩⟨r|+ |r⟩⟨e|),
where Ωp (Ωc) and δp (δc) are Rabi frequency and de-
tuning of the probe (control) laser, respectively. The
state |e⟩ can be adiabatically eliminated, provided that
|δp| ≫ |Ωp|, |Ωc|, and |δc|. This leads to an effective

Hamiltonian, Ĥ
(1)
e ≈ ∆|r⟩⟨r| − Ω/2(|g⟩⟨r| + |r⟩⟨g|) with

the effective detuning δ ≈ δp + δc − (Ω2
c −Ω2

p)/(4δp), and
Rabi frequency Ω = ΩpΩc/(2δp).

When excited to the Rydberg state, two atoms in-
teract through the angular dependent van der Waals
(vdW) interaction VvdW(d, θ) = C6(θ)/d

6, where C6(θ)
is the dispersion coefficient, d = |r − r′| the distance
between the atoms (locating at r and r′), and θ the
angle between the atoms and quantization z-axis [see

Fig. 2(b)]. We obtain the two-atom Hamiltonian, Ĥ(2) =

Ĥ
(1)
e (r) + Ĥ

(1)
e (r′) + VvdW(d, θ)|rr⟩⟨rr|. In |nD5/2, 5/2⟩

states of 6Li atoms, the dispersion coefficient can be ex-
pressed in terms of spherical harmonics Ylm(θ) (l is an
even number)

C6(θ) = C0Y00(θ) + C2Y20(θ) + C4Y40(θ), (1)

which consists of monopole, dipole and quadrupole
components [54] with strength [C0, C2, C4] =
[−17.32, 5.98,−0.076]× 10−17n11GHz µm6 [55].

When |∆| ≫ |Ω the ground-state atoms are weakly
coupled to the Rydberg state, such that they experi-
ence a weaker, laser-dressed two-body interaction. The
dressed interaction can be obtained through the conven-
tional fourth order perturbation calculation [25, 56]. One
can also derive the dressed interaction through the pro-
jection operator method [57]. We first define the two-

atom ground-state subspace given by P̂ = |gg⟩⟨gg|. The

FIG. 2. Rydberg dressing. (a) Two-photon dressing
scheme. The probe laser is far and blue detuned whilst the
control laser is on-resonance. The three-level system can be
simplified to a two-level model by adiabatic elimination. The
effective Rabi frequency is Ω = ΩpΩc/(2δp), and the effective
detuning is δ = δp + δc − (Ω2

c − Ω2
p)/(4δp). (b) Illustrate the

displacement between two atoms, and θ is the angle between
the displacement and quantization axis.

effective Hamiltonian in this subspace is,

Ĥeff = P̂ ĤP̂ − P̂ ĤQ̂
1

Q̂ĤQ̂
Q̂ĤP̂ , (2)

where Q̂ = Î− P̂ with Î to be the identity operator. This
results to the dressed interaction potential

V (d, θ) = V0
R6(θ)

d6 +R6(θ)
, (3)

in which the soft-core radius R(θ) = 6
√
C6(θ)/2δ depends

on the state- and angle-dependent dispersion coefficient
C6(θ), and the strength V0 = Ω4/(8δ3). The detuning δ
and the potential depth V0 can be controlled by the dress-
ing laser [55]. When C6(θ) < 0 and δ < 0, the dressed
interaction is attractive everywhere. Moreover, it is of
cylindrical symmetry with respect to z-axis [Fig. 1(a)],
as C6(θ) has no dependence on the azimuth angle [as
m = 0 for all Ylm(θ) of Eq. (1)].
Although V (d, θ) is attractive for all inter-particle

distance d, its Fourier transform, Ṽ (k), is attractive
when k(θk) is small and becomes positive when k(θk) >
1.37π/R(θk) [Fig. 1(b)]. It reaches the maximum around
k(θk) ≈ 5π/3R(θk) [Fig. 1(c)]. As we will show later, the
positive region turns out to be important in determin-
ing the ground-state of the Fermi gas. For convenience,
we will use k̄ ≈ 5π/3R̄ as the characteristic momentum,
where R̄ = R(π/2) is the soft-core radius along the x-axis

[Fig. 1(a)]. Ṽ (k) depends on the modulus |k| as well as
on the polar angle (in k-space) θk. This is in contrast to
dipolar interactions whose Fourier transform is solely a
function of the polar angle [7, 19].

Modelling the Rydberg-dressed 6Li gas.— Our
system is a three dimensional (3D) homogeneous gas of
N dressed 6Li atoms, whose Hamiltonian is given by

H =

∫
dr ψ̂†(r)

[
− ℏ2

2m
∇2 − µ

]
ψ̂†(r)

+

∫∫
drdr′ ψ̂†(r)ψ̂†(r′)V (d, θ)ψ̂(r′)ψ̂(r),

(4)
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where the operator ψ̂(r) annihilates a Fermion with mass
m at position r. The first line of the above Hamiltonian
gives the usual kinetic energy and chemical potential µ.
The second line describes the interaction between two
Fermions at positions r and r′ via the soft-core potential.
Using the plane-wave basis, the Hamiltonian can be re-
expressed as,

H =

∫
d3k

(2π)3

(
ℏ2|k|2

2m
− µ

)
â†kâk

+

∫∫∫
d3k

(2π)3
d3k′

(2π)3
d3q

(2π)3
â†k+qâ

†
k′ Ṽ (q)âk′+qâk,

(5)

where âk =
∫
d3rψ̂(r)e−ik·r (â†k =

∫
d3rψ̂†(r)eik·r) is

the annihilation (creation) operator of a Fermion with
momentum k.
To understand the impact of the anisotropic interac-

tion on the many-body physics, we study the ground-
state of the system within the Hartree-Fock-Bogoliubov
(HFB) approach [21, 58]. Assuming pairing occurs be-
tween particles with momentum k and −k, this al-
lows to write down the BCS wave function |G⟩BCS =∏

k

(
uk + vkâ

†
kâ

†
−k

)
|0⟩. The ground-state is determined

by the approximate HFB Hamiltonian,

HHFB =

∫
d3k

(2π)3
ξkâ

†
kâk +

[
∆(k)â†kâ

†
−k +H.c.

]
, (6)

where ξk = εk + Ue(k) + Ud − µ with εk = ℏ2|k|2/2m
being the kinetic energy of free Fermions. The Hartree
energy Ud = NṼ (0) is a constant and can be ab-
sorbed into the chemical potential. Both the Fock energy

Ue(k) = −
∑

k′ Ṽ (k − k′)⟨â†k′ âk′⟩ and the gap function

∆(k) =
∑

k′ Ṽ (k − k′)⟨â−k′ âk′⟩ depend on Ṽ (k). The

shape of the interaction, i.e. Ṽ (−k) = Ṽ (k), implies
Ue(−k) = Ue(k) and ∆(−k) = −∆(k). In the absence of

two-body interaction, Ṽ (k) = 0, one obtains a spherical
FS of radius kF = (6π2ρ)1/3 (ρ is the real space den-
sity) in momentum space, where the density distribution
is ρ̃0(k) = Θ(|kF − k|) in the ground-state with Θ(·) to
be the Heaviside function. As the variational parameter
uk and vk satisfy

u2k =
1

2

[
1 +

ξk√
ξ2k + |∆k|2

]
, v2k =

1

2

[
1− ξk√

ξ2k + |∆k|2

]
,

we can obtain the BCS ground-state by solving the gap
function self-consistently.

Multipolar FS deformation.— We first illustrate
with examples that the anisotropic Rydberg-dressed in-
teraction can break the spherical symmetry of the FSs
for non-interacting Fermions. In Fig. 3(a1), we show
the momentum distribution for n = 25 (i.e., the atoms
are dressed to the |25D5/2, 5/2⟩ state), which displays a
sharp edge at the FS. The FS is slightly deformed from
a sphere, which is confirmed by a numerical fit of the FS

(a3) (b3) (c3)

FIG. 3. State-dependent FS deformation. Density distri-
bution in momentum space for (a1) n = 25 with R̄ = 1.12 µm,
(b1) n = 35 with R̄ = 2.08 µm, and (c1) n = 55 with
R̄ = 4.77 µm. The corresponding δρ̃(k) is given in the
(a2,b2,c2). The dashed line in the first and second row is the
fitted FS (see SM for details), which locates the momentum
where δρ̃(k) ≈ 0. For n = 25, the deformation of the FS is
described by the spherical harmonics Y20(θk), shown in (a3).
For n = 35 and 55, the FS deformation has complicated mul-
tipolar features, as shown in (b3) and (c3), respectively. Here
kF = 2 µm−1, and other parameters are same with Fig. 1.

based on the conventional mean-field solution (see SM
for details). This anisotropy results from the fact that the
scattering of two atoms does not preserve each of their
orbital angular momenta due to the anisotropic dressed
interaction [59]. However the difference of the momen-
tum distribution from the interaction-free one, given by
δρ̃(k) = ρ̃(k)−ρ̃0(k), is marginal for the low-lying n = 25
state [Fig. 3(a2)].
The momentum distribution changes qualitatively

with increasing principal quantum number n. For
n = 35 [Fig. 3(b1)] and 55 [Fig. 3(c1)], the Fermi
sea is depleted notably around kF . Importantly, the
momentum distributions become strongly anisotropic.
To quantify the anisotropy of ρ̃(k), we first evaluate
its angular distribution by integrating over the radial
part, χ(θk) = 2π/N

∫
ρ̃(k)k2dk with the normaliza-

tion condition
∫ π

0
χ(θk) sin θkdθk = 1. Here, the az-

imuthal angle ϕk has been integrated out straightly
due to the cylindrical symmetry of ρ̃(k). Then the
angular function is expanded in terms of spherical
harmonics, χ(θk) =

∑
l=0,2,4... λlYl0(θk) where λl =∫

χ(θk)Yl0(θk) sin θkdθk [55] is the coefficient of χ(θk)
projected to Yl0(θk). Here, a non-vanishing λl (l > 0)
means that the shape of the FS is not spherical. For
parameters considered in this work, it is found that λl
becomes negligible when l > 6.
The main result of this work is that the shape of the

FS involves multiple λl. As shown in Fig. 4(a), λ2 is
the only non-zero projection coefficient when kF R̄ < 3
(kF ≲ 0.6k̄) and assumes its maximal value around
kF R̄ ≈ 3. In this region, we obtain a dipolar deformation
(l = 2), where the FS is stretched in the kz direction
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FIG. 4. Characterization of the multipolar FS. (a) The
projection coefficient λj (diamond, square, star) and λ′

j (solid,
dotted, dashed) based on the HFB and HF calculation. In the
calculation, we vary R̄ (through n) and fix kF = 2 µm−1. λ2

dominates when kF R̄ < 3 (n < 30). λ4 and λ6 become im-
portant when kF R̄ > 3, where the multipolar FS deformation
emerges. When kF R̄ ≲ 3, the deformation of the FS can also
be characterized by its ellipticity, α = 1−kF (0)/kF (π/2). In
(b) and (c) we show the ellipticity by changing the soft-core
radius R̄ (n) and kF (ρ), respectively. When λ2 dominates,

one finds α ≈ 3
√

5/πλ2/4, establishing a relation of the el-
lipticity and λ2. The numerical data (dots) and perturbation
results (solid) follow the power-law scaling well in the shaded
area. The inset in (b) shows the variance of the density dis-
tribution ρ̃(k). In (b) kF = 2 µm−1 and (c) n = 35. Other
parameters are same with Fig. 1.

[Fig. 3(a3)], and becomes an ellipsoid. When kF R̄ > 3,
the amplitudes of λ4 and λ6 increase while the one for λ2
decreases. In the region 3.5 ≲ kF R̄ ≲ 5, |λ4| and λ6 be-
come comparable to λ2. In this multipolar deformation
regime, mainly three spherical harmonics contribute to
the FS: Y20(θk), Y40(θk) and Y60(θk) [Fig. 3(b3)]. When
further increasing kF R̄ > 6, the value of all λl decreases
and saturates. As |λ4| > |λ6| > |λ2|, this yields a FS
deformation significantly different [Fig. 3(c3)] from the
one shown in Fig. 3(a3).

The depletion of the momentum density becomes sig-
nificant when the multipolar deformation is present. This
leads to an increase of the variance Var(ρ̃) =

∑
k[ρ̃(k)−

ρ̃0(k)]
2/ρ of the momentum distribution, as shown in the

inset of Fig. 4(b). However, when n < 30, the variance
is small and increases only slowly with n. When n > 30,
it increases rapidly and saturates gradually, where the
deformation is given mainly by the λ6 term [Fig. 4(a)].

Scaling in the dipolar deformation regime.—
The value of λ2, which parametrize the FS deformation,
follow a power-law scaling with respect to the system

parameters, such as the interaction strength V0, the den-
sity of atoms ρ and the interaction length R̄. When λ2
dominates, we find that the density distribution changes
rapidly at the FS which gives rise to a modified Fermi
momentum k′

F [Fig. 3(a1)]. This deformation is quanti-
fied by the deviation of k′

F from kF , δkF = k′
F − kF n⃗,

where n⃗ is the unit vector parallel to k′
F . As pairing

is not important here, δkF can be evaluated from the
Hartree-Fock energy [60, 61]

δkF

kF
≈ 1

2EF

∫
d3qṼ (k′

F − q)ρ̃(q). (7)

Assuming ρ̃(q) ≈ ρ̃0(q) and projecting δkF onto spheri-
cal harmonics, this yields

δkF

kF
≈ 4π

3

∑
l=2,4,6

λlYl0(θk), (8)

with λl = 3/(8πEF )
∫∞
0
Fl

(
k/kF R̄

)
Gl (k) dk being the

approximate projection coefficient. Here, we have de-
fined Fl(k) =

∫ π

0
Yl0(θk)V (kR̄, θk) sin θkdθk and Gl(k) =

4ilxj1(k)jl(k), where jl(k) is the spherical Bessel function
of the first kind (see SM).
As shown in Fig. 4(a), the coefficient λ2, obtained from

the perturbative calculation, agrees well with the full-
numerical method up to kF R̄ ≈ 3. In this region, we can
make a Taylor expansion of λ2 in terms of kF R̄, whose
leading term is λ2 ∝ V0(kF R̄)

5/EF [55]. This results in
the power law relations λ2 ∝ R̄3, n11/2, k3F . This scal-
ing matches with the numerical calculations when kF R̄
is small, as shown by the shade area in Fig. 4 (b) and (c).
Experimentally, the predicted scaling can be measured by
tuning the atomic density (kF ) and laser parameters (n
and δ) jointly or separately, which is useful in exploring
the FS deformation and the dressed interaction experi-
mentally. Finally, we note that the peak at kF R̄ ≈ 3
can also be explained within the perturbative treatment
pursued here: F2

[
k/(kF R̄)

]
has a single peak located

at k = kF R̄, and G2(k) oscillates with k, as discussed
in SM [55]. We thus obtain the maximal λ2 when the
peaks of F2(k) and G2(k) coincide at kF R̄ ≈ 3.
Cooper pairing in the multipolar deformation

regime.— In the HFB approach, the gap function ∆(k)
serves as an order parameter of superfluidity. Here the
superfluid is formed by Cooper pairs of two Fermionic
atoms with opposite momenta [21, 59]. In Fig. 5(a),
we show the distribution of the gap function ∆(k) for
n = 35. It is non-zero in a wide region around the
FS where the momentum density differs drastically from
the interaction-free Fermi sea [Fig. 3(b1)]. Here an anti-
symmetry of the gap function is observed along the kz-
axis. For n = 55 [Fig. 5(b)], the pair distribution be-
comes more confined around the FS, and its peak value
increases [Fig. 3(c1)].
To gain further insights of the pairing, we expand the

gap function into partial waves, ∆(k) =
∑

l ∆l(k)Ylm(θk)
with ∆l(k) =

∫
∆(k)Ylm(θk, ϕk)dΩk being the l-wave
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FIG. 5. Cooper pairs of multiple partial waves. Gap
functions ∆(k) for (a) n = 35, and (b) n = 55. The projection
of ∆(k) to the spherical harmonics Yl0 (l odd) for (b) n = 35
and (c) n = 55, respectively. For (c) n = 35, the gap function
is occupied by the p-wave component. For (d) n = 55, it turns
out that f -wave (l = 3) and h-wave (l = 5) pairing become
important as well. (e) The population of various pair states
as a function of quantum number n. Note that f - and h-wave
pairing are non-negligible when n > 40. Other parameters
are the same as that of Fig. 4(b) and (c), respectively.

pair state (l is an odd integer) [59]. As shown in Fig. 5(c),
p-wave pairing is dominant when n = 35. Importantly,
new pairing states emerge when the FS is deformed
strongly. As depicted in Fig. 5(d), f -wave (l = 3) and
h-wave (l = 5) pairing, together with p-wave pairing, are
found when n = 55. A systematic study shows that the
population of the Cooper pairs can be enhanced by dress-
ing to higher (more strongly interacting) Rydberg states.
In Fig. 5(e), the total population of individual pair states,
∆̄l =

∫
d3k∆l(k), is shown. When n increases, the oc-

cupation of p-, f - and h-wave pairs also increases. In
particular, considerable f - and h-wave populations are
obtained when n > 40.
Discussion and outlook.— The quantum simula-

tion of p- and f -wave pairing with ultracold atoms has
attracted much attention due to their importance in un-
derstanding superfluidity in 3He-A [51], 3He-B phase [52],

and unconventional superconductors [53]. It has been
shown that p-wave pairing can be realized with ultra-
cold Fermions with the dipolar interaction [21, 62–65] or
isotropic dressed interaction in 3D [46]. However, f -wave
pairing can only occur in 2D under extra restricted con-
ditions, including Bose-Fermi mixed interactions [66, 67],
excited bands [68], and repulsive Rydberg-dressed inter-
actions [49, 50]. Our results show that an anisotropic
Rydberg-dressed interaction allows to achieve such un-
conventional pairing states in 3D. Moreover it even pro-
vides access to the h-wave pairing channel.

Such h-wave pairing has not been thoroughly stud-
ied and is certainly worth further exploration. The
anisotropic and attractive dressed interaction opens fur-
thermore opportunities to probe novel phases, such as
the nematic phase [2], topological superfluid [64, 69, 70]
and supersolid phases [71, 72], as well as probe non-
equilibrium dynamics driven by long-range anisotropic
interactions [45, 73]. Finally, we remark anisotropic
but repulsive interactions [55] can be obtained in the
Rydberg-dressing of 39K atoms [74]. Such repulsive in-
teraction allows for probing the Kohn-Luttinger mecha-
nism [75–77].
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