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We study theoretically a novel Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate
(BEC) crossover of two-specie ions in a three-dimensional quantum plasma at zero temperature.
Central to this crossover is an effective short-ranged, attractive interaction potential between the
ions shielded by the surrounding degenerate electrons. The interaction range and magnitude can
be tuned non-monotonically by varying the carrier density of the quantum plasma. Low-energy
collisions between two ions are characterized by the s-wave scattering length when the interaction
range and the inter-ion spacing are comparable. We show that the s-wave scattering length can
be changed from −∞ to ∞, leading to a BCS-BEC crossover driven purely by the plasma density.
Through numerical and analytical calculations, we find that the quantum acoustic waves in the
plasma exhibit distinct dispersion relations in the different regimes, providing a route to probe the
crossover. Our study shows that the quantum plasma may offer a new platform to quantum simulate
the BEC-BCS crossover and exotic phases with added tunability that might be difficult to achieve
in conventional solid-state systems and ultracold atom gases.

I. INTRODUCTION

In recent years, there is a growing interest in the study
of ultracold plasmas, which can be created through pho-
toionizing laser-cooled atoms just above the ionization
limit. Shielded by the low-energy electron, the effective
two-body interactions between ions are qualitatively dif-
ferent from the bare Coulomb interaction. In particu-
lar, a strong coupling regime is obtained when the ef-
fective interaction dominates the thermal motions [1–
4]. The Shukla-Eliasson attractive potential between
screened ions has been predicted with a quantum hy-
drodynamic model [5–7], where the plasma density is ex-
pected to be similar to the one in the interiors of plan-
ets. Importantly the potential can be controlled by the
plasma density and temperature, such that the inter-ion
separation can be brought down to atomic dimensions [5–
10], additionally due to the quantum statistics [11] and
diffraction effects [12]. Previous studies have investi-
gated classical phases, e.g., clustering and crystallization
of ions, due to the attractive potential [6, 13, 14]. Den-
sities and spin states of ions constituting the plasmas
can be tuned, too. Such controllability has proven to be
useful and provides a viable route to manipulate intrinsi-
cally different phases of interacting many-body systems.
A very successful example is ultracold gases of neutral
atoms [15] where the low-energy s-wave scattering can
be manipulated by magnetically induced Feshbach reso-
nances between a pair of atoms [16–18]. By varying the
s-wave scattering length from −∞ to +∞, a Bardeen-
Cooper-Schrieffer (BCS) phase to Bose-Einstein conden-
sate (BEC) crossover is induced [17, 19–33]. Therefore an
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interesting question is, whether the controllability avail-
able in the quantum plasma platform permits to explore
quantum many-body states at degenerate temperatures.
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Figure 1. (Color online) Schematic illustration the BCS-
unitary-BEC regimes. Binding potentials between two ions are
shown in the upper row. The depth of the potential depends on
the plasma density, which also changes 1/kF a with kF and a to
be the Fermi momentum and s-wave scattering length. BCS-BEC
crossover of ion pairs is induced by this short-range attractive po-
tential. The orange (blue) spheres represent 4He+ ions in spin up
(down) state and the gray dots are electrons. The Thomas-Fermi
screening length of the ion sphere is 1/qs ≈ 0.1/kF − 0.5/kF . See
text for details.

In this work we study the BCS-BEC crossover of two
species (spin up and down) ions in the ultracold quan-
tum plasma. Gauss units are adopted throughout the
paper. The screened, short-range attractive potential
between ion pairs shielded by surrounding degenerate
electrons is a crucial element driving this crossover. As
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shown in Fig. 1, the depth and range of the screened po-
tential can be controlled by modifying densities of the
plasma. We show that the inter-ion spacing and range
of the screened potential are in the same order of magni-
tude, such that the s-wave interaction characterizes the
interaction between spin-up and spin-down states. The
s-wave scattering length can be varied from −∞ to +∞
by changing the plasma density, which plays the role
of a magnetic field in the Feshbach resonance of neu-
tral atoms. Consequentially, the ions form Cooper pairs
and BEC, determined by vastly different pairing order
parameters. The quantum acoustic waves exhibit dis-
tinct dispersion relations between unpaired and paired
ion configurations through the BCS-BEC crossover. Our
study shows that BCS-BEC crossover could be explored
in the ultracold quantum plasma in a controlled fash-
ion [5, 34]. Due to the very high density, the quantum
plasma platform may furthermore allow to quantum sim-
ulate superfluid, and novel pairing states encountered in
nuclear systems [35, 36].

II. THE SCREENED POTENTIAL AND
S-WAVE SCATTERING LENGTH

We consider a quantum plasma consisting of equal den-
sity (n0) degenerate electrons (mass me, charge −e) and
4He+ ions (mass m, charge e) at zero temperature, where
e is the elementary charge. Due to the screening effect
of the electron, the isotropic electric potential φ(r) [5]
between two ions (separation r = |r|) is given by

φ(r) =
e

2r

[
(1 + ib)e−q+r + (1− ib)e−q−r

]
, (1)

where q± =
(
qs/
√

4α
) [

(
√

4α+ 1)1/2 ± i(
√

4α− 1)1/2
]

and b = 1/
√

4α− 1 in which α = ~2ω2
ep/4m

2
ec

4
e0 and

ωep =
√

4πe2n0/me represent the quantum recoil pa-
rameter and electron plasma frequency. Here ce0 =√

n0

me

d2[n0εe(n0)]
dn2

0
, qs = ωep/ce0, kF = (3π2n0)1/3 and

εe(n0) are the sound velocity, inverse Thomas-Fermi
screening length, Fermi wave number and ground-state
energy of non-interacting electrons, correspondingly. The
lengthy but analytical expression of εe(n0) is given in Ap-
pendix A.

A unique property of the screened potential is that its
shape can be changed by varying parameter α through
the plasma density, which will be discussed in the follow-
ing section. For example, the potential has the familiar
Thomas-Fermi profile when α→ 0. Crucially important,
the landscape of the potential changes dramatically when
α > 1/4. A Shukla-Elliason type attractive potential [5–
7] is obtained, where φ(r) is negative around the potential
minimum at distance d, depicted in Fig. 2(a). One can
increase the attractive potential depth φ(d) by decreas-
ing α. Note that the electric potential between spin-up
and spin-down states and intra-spin states of the ion can
be universally described by φ(r), due to the dressing of

the surrounding degenerate electrons in the plasma, as
discussed in Appendix A and B.

With the screened potential at hand, we study low-
energy collisions between the spin-up and spin-down
species of the ions at zero temperature. The correspond-
ing interaction is captured by the Hamiltonian [34, 37],

H = − ~2

2m
∇2 + eφ+ µ, (2)

where ∇2 is the three dimensional Laplace operator, and
µ is the ion chemical potential.
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Figure 2. (Color online) Short-range attractive potential
and s-wave scattering length. (a) The screened potential
φ(r) is tuned by varying α (through the density n0 = 1020, 2 ×
1022, and 1024cm−3, respectively to α ≈ 70, 12, and 3). Decreasing
α (increasing n0), the potential supports the BCS-unitary-BEC
crossover. (b) The s-wave scattering length as a function of the
binding potential depth, |φ(d)|, with the equilibrium distance d at
which the potential takes its minimum value. (c) The dependence
of α on the scattering length a (1/kF a). (d) The normalized order
parameter ∆/EF as a function of 1/kF a.

At zero temperature, the range of the inter-ion po-
tential (∼ 1/kF ) approaches to the average ion distance

(n
−1/3
0 ), permitting us to focus on the s-wave scattering

between the two spin states [20]. The s-wave scatter-
ing length a as a function of the potential depth φ(d) is
shown in Fig. 2(b). Increasing φ(d), the s-wave scatter-
ing length changes from negative to positive. More im-
portantly, the scattering length reaches ±∞ at around
φ(d) ≈ 6× 10−4. As φ(d) and α are related, one can also
control the scattering length by changing α [Fig. 2(c)],
where 1/kFa crosses zero when α ≈ 12. Such shape is
similar to that in cold atomic Fermi gases, where the s-
wave scattering length is modified through, e.g., magnetic
Feshbach resonance [23, 38–40].



3

III. FORMATION OF BCS AND BEC STATES

The BCS and BEC states due to the long-range part of
the Coulomb interaction have been considered in exciton
condensates [41]. Inspired by the analogue with Feshbach
resonances in cold atomic gases, we will show that spin-
up and spin-down ion species form Cooper pairs due to
the s-wave interaction [15, 18]. Depending on the scatter-
ing length, the order parameter ∆ for Cooper pairs of the
spin-up and spin-down ions can be evaluated through [42]

1

kFa
=

(
1 +

∆2

E2
F

)1/4

P1/2

(
−1/

√
1 +

∆2

E2
F

)
, (3)

where P1/2(x) is the fractional-order Legendre function,

and EF = ~2k2
F /2m is the Fermi energy. A non-zero

order parameter indicates that a spin-up and a spin-down
ion form a pair, such that the plasma is in a BCS state
[15, 18]. As bosonic particles, the Cooper pairs can form
a BEC when they are deeply bound, |∆| � 1 [43].

It is necessary to discuss the suitability of Eq. (3) for
pairing of fermionic ions in a quantum plasma with a
short-range interaction. In this work, it is true that we
have focused on the most simple situation where only the
s-wave scattering is examined with a short-range interac-
tion like Refs.[20, 42]. This is reasonable when the s-wave
scattering length (a) is larger or comparable to the range
(d) of the inter-particle potential [see Fig. 3(b) below],
especially on the BEC side where the order parameter
is non-negligible. When the average distance between
the quantum ions is larger than the s-wave scattering
length, the low-energy scattering will largely not probe
the details of the potential at short ranges, which is the
requirement that Eq. (3) is a suitable approximation.

The order parameter as a function of 1/kFa is shown
in Fig. 2(d). When 1/kFa is negative, ∆/EF is rather
small overall, leading to the BCS region. Increasing
1/kFa → 0, we enter the so-called unitary regime [18],
where |a| is far larger than the average ion spacing, i.e.
n0|a|3 � 1. Here ∆/EF becomes non-negligible, which
signatures the formation of a bound state (molecule)
of the ion pair [44]. Strikingly, the three dimensional
plasma is scale invariance in the unitary regime due
to |a| → ∞, giving rise to conservation laws governed
by the continuous symmetry [45]. Further increasing
1/kFa > 0, the order parameter increases rapidly. The
pairs are bound deeply into bosonic molecules, forming
a BEC [18]. We emphasize that the different regimes
are fully determined by the tunable screened poten-
tial. As the examples shown in Fig. 2(a-c), the BEC
state of the pairs is achieved through tuning α → 3
(|φ(d)| = 8.3 × 10−4). The unitary regime can be re-
alized when α ≈ 12 (|φ(d)| ≈ 6 × 10−4). We can obtain
the BCS of the ions when α ≈ 70 (|φ(d)| = 2.4× 10−4).

IV. TUNING THE SCREENED POTENTIAL
VIA PLASMA DENSITY

So far, we have identified the dependence of the var-
ious states on parameters of the screened potential. In
the following, we will show that such dependence can be
readily achieved by changing the plasma density n0. This
density dependence is rooted in the fact that the elec-
tron sound velocity ce0 depends nonlinearly on n0, which
determines the quantum recoil α, and substantially the
shape of the screened potential. It is found the depth of
the screened potential φ(d) increases with increasing n0

[Fig. 3(a)]. Here φ(d) changes from around −2.4× 10−4

at n0 = 1020cm−3 (BCS) to 8.3×10−4 at n0 = 1024cm−3

(BEC) monotonically, then decrease with further increas-
ing n0 to 3×1024cm−3, which is sufficiently large to probe
the BCS-BEC crossover [Fig. 2(b)]. By increasing the
density, parameter d decreases monotonically. On the
BEC side, d is smaller or comparable to the s-wave scat-
tering length (a), as shown in Fig. 3(b). On the other
hand, the average spacing between ions is larger than
both d and a the BEC and BCS region. For example,
the average spacing is 10−8 cm when n0 = 1024 cm−3

(BEC regime), while d ≈ 10−8 cm and a ≈ 0.6 × 10−8

cm. In the BCS region, the average spacing is 2.15×10−7

cm when n0 = 1020 cm−3, where d ≈ 10−7 cm, and
a ≈ −2 × 10−8 cm. These data are consistent with the
assumption, i.e. only considering the s-wave scattering
process used in the calculation. This assumption should
be a good approximation in the BEC and BCS region at
zero temperature.

The main result of this work is that the BCS-unitary-
BEC crossover can be obtained by changing the plasma
density. We find α can be varied in 2 ∼ 70 when the
plasma density changes from n0 = 3 × 1024 to 1020cm−3

[Fig. 3(c)]. This tunability, in turn, leads to considerable
flexibility to control the s-wave scattering length. Our
numerical simulations show that the unitary regime is
obtained when n0 ≈ 2× 1022cm−3, where the scattering
length a → ±∞, depicted in Fig. 3(d). Away from the
unitary regime, the scattering length is finite and neg-
ative in the low-density region, such that the ions are
in the BCS state. The ions form a degenerate BEC of
deeply bound ion pairs [see also Fig. 2(b) and (d)] in a
high-density region, where the scattering length is finite
and positive. Density-dependent BCS-BEC crossover has
predicted in a neutral system at the mean-field level[46].
Our results further show the existence of this crossover
in a quantum plasma, which could become a different
application field of the BCS-BEC crossover.

We want to point out that the novel BCS-BEC
crossover emerges in the strongly coupling regime of the
quantum plasma [34, 47–52]. The quantum coupling con-
stant of the screened Coulomb potential is given by the
ratio of the average potential to Fermi kinetic energy,

i.e. the Brueckner parameter [34], ri ≡ 1
kF aB

∝ |eφ(d)|
EF

,

with aB = ~2/e2m being the effective Bohr radius. The
Brueckner parameter decreases with increasing n0, yield-
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Figure 3. (Color online) Tuning the screened potential via
the plasma density. We show (a) the minimum potential φ(d),
(b) the corresponding d compared to the s-wave scattering length a,
(c) the quantum recoil parameter α, and (d) the normalized s-wave
scattering length kF a as a function of the plasma density n0. The
tunability provided by the screened potential allows us to realize
the BCS-BEC crossover.

ing ri ≈ 103−104 at n0 ∼ 1024−1020. An interaction-free
(ideal) quantum plasma of ions is obtained for ri � 1

[ |eφ(d)|
EF

� 1]. The more interesting strong coupling

regime is reached around ri ≈ 104, which may contain
regions of liquid-like and crystalline behavior and bound
states [34], where the kinetic energy of the ions plays only
a minor role. As shown above, it is in such parameter re-
gion that the screened potential gives rise to the BCS,
unitary, and BEC states.

V. STATE DEPENDENT ACOUSTIC WAVES

Phonon excitation (acoustic wave) exhibits sensitive
dependence on the state of the ions (i.e. BCS and BEC).
The dispersion relation of the phonon across the BCS-
BEC regime can be obtained universally through the ki-
netic equation formalism [43],

ω2 =
s2

12(ω, q, µ,∆)

s11(ω, q, µ,∆)s22(ω, q, µ,∆)
, (4)

where ω and q are the frequency and wave num-
ber in the plasma with pairs. The integrals
s11(ω, q, µ,∆), s22(ω, q, µ,∆) and s22(ω, q, µ,∆) enter the
linear response function of the plasma [43], whose explicit
forms are presented in Appendix A. Eq. (4) shows ap-
parently that the phonon frequency varies with ∆, along
with other parameters.

On the other hand, ions with identical spins may not
form pairs, but lead to phonon excitations that have dif-

ferent dispersion relations, given by

ω2
0 =

4e

m
L(d) sin2

(
qd

2

)
+ c2i0q

2 +
~2q4

4m2
, (5)

with L(d) = d2φ(r)
dr2 |r=d is the radial Laplacian of the

screened potential and ci0 is the sound velocity of the
ions. In this situation the frequency ω0 depends solely
on the density [through d, ci0 and L(d)]. It has been
theoretically predicted and experimentally justified that,
the phonons are found to obey a dispersion relation that
assumes a Thomas-Fermi or Yukawa inter-particle poten-
tial [53–55]. The Yukawa potential can be given by Eq.
(A17) for α −→ 0.
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Figure 4. (Color online) Phonon dispersion in different
regimes. Phonon frequency ω/ωip and ω0/ωip (normalized by

the ion plasma frequency ωip =
√

4πe2n0/m) when varying (a)
1/kF a and (b) n0. It is found that the frequency is higher in
the paired plasma. Phonon dispersion in the (c) BCS, (d) uni-
tary and (e) BEC regime. Other parameters are (c) 1/kF a = −1
(n0 = 2× 1019 cm−3), (d) 1/kF a = 0 (n0 = 2× 1022 cm−3), and
(e) 1/kF a = 1 (n0 = 4× 1023 cm−3).

Phonon frequencies at given wavenumber q are dis-
played in Fig. 4(a) and (b) by varying the scattering
length and density, correspondingly. Both ω and ω0 de-
pend on 1/kFa as well as plasma density n0 nonlinearly.
At a given q, a general feature is ω > ω0, as shown in
the figure. Phonon excitation can be achieved with laser
or ion beam compression [56], providing a way to experi-
mentally measure the state and density-dependent acous-
tic waves. In the following, we examine the dispersion of
the phonon mode at different scattering lengths (density)
in detail. On the BCS side (a < 0), ω increases linearly
with q when q is small, and approaches 2∆ in the pair-
breaking continuum limit [43] when q > qc = 2

√
2mµ,

depicted in Fig. 4(c). As scattering length a is fixed,
the order parameter ∆ is a constant, giving the maxi-
mal frequency ωmax = 2∆. In this limit, the presence
of the Fermi sea of the quantum ions makes the forma-
tion of pairs difficult due to the Pauli principle. The
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behavior in the dispersion relation is a unique feature of
the ultracold quantum plasma since the paired fermions
interact through the short-range, screened potential in-
stead of the long-range Coulomb potential. Here ω0 is
slightly smaller than ω at low momentum due to the
weak but non-negligible order parameter. Further in-
creasing q > qc, we find ω0 becomes larger. Different
from ω → 2∆ in the pair-breaking regime, ω0 does not
have an upper bound and increases quadratically with
increasing q due to the quantum pressure of ions [see the
last term in Eq. (5)].

At the unitary (1/|kFa| = 0), phonon frequencies of
the paired ions increase almost linearly with increasing
q [Fig. 4(d)], similar to ideal phonon modes. It will
eventually reach the pair-breaking limit (not shown in
the figure). In comparison, ω0 is always smaller than ω
when q/kF < 1. Though ω0 becomes larger due to the
quadratic term in Eq. (5), ω increases more rapidly with
q, and succeeds ω0 considerably at high momentum re-
gion. Deep in the BEC regime, ω linearly increases with q
when q � kF . However, the dispersion is quadratic con-
cerning q at a larger value, as shown in Fig. 4(e). The
excitation spectra are similar to the one found in molec-
ular condensates, where these paired ions behave as ele-
mentary bosons [22]. In comparison, ω0 is sinusoidal and
always smaller than ω when q/kF ≤ 5. The dependence
of phonon dispersions on the scatterring length, quali-
tatively agrees with that reported in Ref.[57] within the
random-phase approximation method in the field of cold
atoms. Thus, our result contributes to expanding the
existing knowledge of BCS-BEC crossover from atomic
systems to positive ion systems.

The above analysis shows that the formation of ion
pairs can alter the dispersion relation of the phonons,
which provides a feasible route for experimental test on
this specific kind of BCS-BEC crossover. The dispersion
relations of phonon excitations could be experimentally
measured using the laser-excitation method introduced
by Nunomura et. al [54, 55]. In their experiments, parti-
cles are imaged by a charge-coupled device video camera.
Images are recorded on a videocassette recorder tape at
30 frames per second, where each particle’s coordinates
can be identified. The real and imaginary parts of the
wave vector have been obtained by fitting the phase shift
and amplitude decay of the waves as functions of parti-
cle distance from analyzing particle motions. Their ex-
perimental results agree well with theory [53] applicable
to strongly coupled screened Coulomb crystals with a
Thomas-Fermi or Yukawa potential.

VI. CONCLUSIONS

We have studied the BCS-BEC crossover in an ultra-
cold ion plasma interacting through a short-range, attrac-

tive screened potential arising due to the collective quan-
tum behavior of the surrounding electron. The plasma
density can control the depth and range of the screened
potential. Focusing on a regime where the mean ion sep-
aration and the characteristic range of the potential are
on the same order of magnitude, the s-wave scattering
length between two different spin states of the ions can
be varied from −∞ to +∞. We have shown that this
allows the formation of BCS, unitary, and BEC states
of ions in different spin states. Significantly the phonon
excitation in the plasma strongly depends on the order
parameter ∆, offering a route to probe the presence of
the Cooper pairs. Our study reveals a novel mechanism
to achieve the BCS-BEC crossover in ultracold quantum
plasma, complimenting the Feshbach resonance typically
employed in ultracold gases of neutral atoms. Our study
might open a new window to explore many-body physics,
scale invariance as well as carry out quantum simulation
of superfluid states of nuclear matters with the ultracold,
quantum plasma [2–4].

In the present study, we have focused on the s-wave
scattering of the quantum plasma at zero temperature.
When the density of the plasma is high, i.e. deep in
the BEC regime, it might become necessary to consider
higher partial waves e.g. p-wave scattering [58, 59], as
the two-body collision could be affected by the struc-
ture of the potential at short distances. In this case, the
simple treatment (i.e. pairing order parameter obtained
from Eq. (3)) will not be sufficient. One can explore the
underlying phases using BCS theory that taking into ac-
count of non-zero momentum contributions [60, 61]. The
BCS theory provides a mean-field framework to not only
describe the s-wave and p-wave pairing, but also to study
phases at finite temperatures [17]. The respective phases
and their dependence on the parameter of the electric
potential are worth to pursuing in the future.
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limit, no characteristic length is set by the interparticle-
potential since its acoustic wave scattering length a di-
verges a → ±∞. The energy per particle of a homo-
geneous two-component Fermi gas at unitary must then
depend on the only length characterizing the system (av-
erage particle distance, 1/kF ), with the Fermi wave num-

ber kF =
(
3π2n0

)1/3
.

The chemical potential µs is related to the ground
state energy per particle εs(ns) at zero temperature,

µs = d(nsεs(ns))
dns

, with density ns and mass ms. The
extended Thomas-Fermi density functional theory and
an analytical fitting formula are used to define εs(ns) as
follows. First, according to the extended Thomas-Fermi
density functional theory [30], εs(ns) and µs(ns) at uni-
tary are proportional to those of an ideal Fermi gas,

εs(ns) =
3

5
ξEFs, µs(ns) = ξEFs, (A1)

where EFs = ~2k2
F /2ms (~ is the Plank constant), and ξ

is the Bertsch parameter representing the universal char-
acter. Existed results for the Bertsch parameter ξ deter-
mined by experiments, analytic and simulation calcula-
tions are in the range of [0.2−0.9], where ξ = 0.42−0.46
gives a better fit among these theoretical and experimen-
tal results [30, 32, 44, 62, 63], and ξ = 1 represents a
noninteracting Fermi gas (ideal Fermi gas). In this work
we take ξ = 0.42 through the whole paper.

α1 α2 α3 β1 β2

BCS ξ 2(1− α1)/π 9πα2/10 1.4328 α2α3β1

BEC ξ 2α1/π 54πα2/25 0.1126 3α2α3β1

Table I. The value of fitting parameters at BCS state and
BEC state, respectively.

Second, a reliable analytical fitting formula [32] is used
for the BCS and BEC sides,

εs(ns) =
3

5
EFsf(1/kFa),

f(1/kFa) = α1 − α2 arctan

(
α3

kFa

β1 + |1/kFa|
β2 + |1/kFa|

)
, (A2)

which is consistent with the Padé approximation
method [31]. The fitting parameters are different between
BCS side and BEC side, as shown in Table I. According
to the definition of f(1/kFa), the chemical potential µs
can be written in the form of

µs =
d(nsεs(ns))

dns
= EFs[f(1/kFa)− 1

5kFa
f ′(1/kFa)].

(A3)
The nature of fermionic states has significant conse-

quences for the statistical properties of many-particle
systems in quantum plasmas. The Pauli exclusion princi-
ple forbids identical fermions occupying the same single-
particle state. As a result, the chemical potential of
fermionic particles is defined as adding Fermi particles

to a system at zero temperature if these particles occupy
higher energy levels (assuming that all lower ones are
occupied). So it gives rise to a drastic increase of the
per-particle energy [εs(ns) ∝ EFs ] and chemical poten-

tial [µs(ns) ∝ EFs] due to EFs ∝ n
2/3
s [34]. These for-

mulas enable us to calculate the collective modes at the
BCS-BEC crossover by using a quantum hydrodynamic
theory at zero temperature. The chemical potential used
in the main text is the polytropic equation of state cal-
culated from Eqs. (A1)-(A3), from which one can further
obtain analytic expressions for the screened potential and
phonon frequency.

2. Quantum hydrodynamic model

The low-energy collective dynamics of the superfluid
Fermi gas at the BCS-BEC crossover is usually described
by the equations of classical superfluid hydrodynamics,
which are the time-dependent version of the local density
approximation with the Thomas-Fermi energy functional
method [30]. Quantum hydrodynamic theory is a gen-
eralization of classical superfluid hydrodynamics, includ-
ing the quantum effects. The quantum hydrodynamic
model [5, 37, 64–68] provides a powerful tool to under-
stand the collective behavior of quantum many-body sys-
tems from different points of view, where its dynamical
generalization amounts to introducing quantum statistics
and diffraction effects into the hydrodynamic equations
of classical fluid. The quantum diffraction effect has been
proved experimentally in quantum plasmas [69].

We define charge Zse (e is the elementary charge), den-
sity ns = |Ψs|2, velocity field vs = ~

ims
∇ Ψs√

ns
, and wave

function Ψs, for species s. The considered system can be
described by the Hamiltonian [34, 37] with the electric
potential φ,

Hs = − ~2

2ms
∇2 + Zseφ+ µs. (A4)

It is convenient to write the wave function in the form
of [32, 34, 37]

Ψs =
√
nse

iSs/~ (A5)

with msvs = ∇Ss. Here we neglect the effects of entan-
glement and focus on the collective modes of quantum
plasmas. The dynamics of species s at zero temperature
can be described by the nonlinear Schrödinger equation

i~
∂Ψs

∂t
= − ~2

2ms
∇2Ψs + ZseφΨs + µsΨs. (A6)

By separating Eq. (A6) into its real and imaginary parts,
we indeed obtain the equivalent hydrodynamic equations,

∂ns
∂t

+∇ · (nsvs) = 0,

∂vs
∂t

+
∇
ms

(Zseφ+ µs +
1

2
mv2

s −
~2

2ms

1
√
ns
∇2√ns) = 0,

(A7)
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provided that the fluid is inviscid and irrotational [30].
In the bracket of the second identity, the first term is the
electric potential, the second term is the chemical po-
tential, which is regarded as quantum statistical poten-
tial due to the Pauli exclusion principle for fermions, the
third term is the kinetic potential, and the fourth term is
the quantum Bohm potential (quantum pressure) involv-
ing the interacting of wave functions due to wave interfer-
ence [34, 66]. Indeed, in an ultra-cold quantum plasma,
the quantum nature of particles could induce wave prop-
erties due to wave interference [12] and Fermi statistics
effects due to Pauli exclusion principle [11]. The quan-
tum hydrodynamic equations are closed by the Poisson
equation

∇2φ = 4πe (ne − n0)− 4πZieδ(r)

Assuming a test ion at position r = 0 with charge Zie
to realize an analytical form of the electric potential φ(r)
between ions based on Ref. [5].

In order to achieve analytical expressions, which would
be critical for understanding the underlying mechanisms
of the collective dynamics, the hydrodynamic equations
and Poisson equation could be linearized. We apply a lin-
earized fluid description of electrons and ions. We write
each quantity as X = X0 + δ ·X1 where subscript 0 de-
notes the zero-order constant equilibrium value, and 1
denotes the first-order perturbation. δ is an ordering pa-
rameter for linearization, and has the physical value 1.
This linear method is valid for X0 � δ ·X1. To linearize,
we balance all terms in each equation of the same or-
der in δ. The terms involving only subscript-0 quantities
are all order δ0 and must balance, and terms with one
subscript-1 quantity are all order δ1 and balance. We
treat the velocity field and electric potential as order-1
(vs0 = 0,vs = vs1, φ0 = 0, φ = φ1). The hydrodynamic
equations and Poisson equation after linearization take
the form

∂ns1
∂t

+ n0∇ · vs1 = 0

∂vs1
∂t

+
∇
ms

(Zseφ+ µs1 −
~2

4msn0
∇2ns1) = 0, (A8)

and

∇2φ = 4πe(ne1 − Zni1). (A9)

The quantum hydrodynamic model is valid [5, 37, 64,
66, 68, 70] for ~ωep ≤ EFe, and the electron-ion collision
relaxation time is greater than the electron plasma pe-
riod, where ωep is the electron plasma frequency, given

as ωsp =
√

4πe2n0/ms. The applicability and validity
of the quantum hydrodynamic model have been widely
tested not only in quantum plasmas [5, 34, 37, 64–68, 70],
but also in the field of cold atomic systems [30, 32, 62, 71].

3. Screened potential

We report a screened electric potential between ions
that are shielded by degenerate electrons according to
Ref. [5]. In order to obtain an analytical expression of this
potential between ions, we assume a test ion at position
r = 0 with charge Zie = e, thus the Poisson equation
becomes after linearization

∇2φ = 4πene1 − 4πeδ(r). (A10)

The linearized density ne1(r, t) and velocity ve1(r, t) can
be written as

ne1 (r, t) = ne1 exp (i (q · r− ωt))
ve1 (r, t) = ve1 exp (i (q · r− ωt))

, (A11)

where q is the wave vector and ω is the frequency of
acoustic waves. Inserting Eq. (A11) into Eq. (A8), we
get

ne1 = ne0
q · ve1
ω

,

ve1 = i
e

meω
∇φ/(1− c2e0q

2

ω2
− ~2q4

4m2
eω

2
). (A12)

The space Fourier transformation is used for Eq. (A10),

φ(r) =

∫∫
dq

(2π)3
φ(q)eiq·r. (A13)

Inserting the resultant ne1 from Eq. (A12) into Eq. (A13),
leads to the electric potential around an test ion,

φ(r) =
e

2π2

∫
exp(iq · r)

q2D
d3q, (A14)

where r denotes the position relative to the position of
the test ion. The dielectric constant D and its inverse
are given as

D = 1 +
ω2
ep

q2c2e0 + ~2q4/4m2
e

,

1

D
=

(
q2/q2

s

)
+ αq4/q4

s

1 + (q2/q2
s) + αq4/q4

s

. (A15)

Here, cs0 = ( n0

ms

d2(n0εs(n0))
dn2

0
)1/2 is the non-interacting

sound velocity, qs = ωep/ce0 is the inverse Thomas-Fermi
screening length, and α = ~2ω2

ep/4m
2
ec

4
e0.

By inserting Eq. (A15) into Eq. (A14) we get

φ(r) =
e

4π2

∫ [
(1 + ib)

q2 + q2
+

+
(1− ib)
q2 + q2

−

]
exp(iq · r)d3q,

(A16)

where q± =
(
qs/
√

4α
) [

(
√

4α+ 1)1/2 ± i(
√

4α− 1)1/2
]
,

and b = 1/
√

4α− 1. With the convolution theorem,∫
exp(iq · r)

q2 + q2
±

d3q = 2π2 exp (−q±r)
r

,
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Eq. (A16) yields Eq. (M1) that used in the main text

φ(r) =
e

2r

[
(1 + ib)e−q+r + (1− ib)e−q−r

]
,

which corresponds to

φ(r) =



e
r [cos (qir) + b sin (qir)] exp (−qrr) , α > 1/4
e
r

(
1 + qsr√

2

)
exp

(
−
√

2qsr
)
, α −→ 1/4

e
2r (1 + ib) exp (−q+r)

+(1− ib) exp(−q−r), α < 1/4
e
r exp (−qsr) , α −→ 0.

,

(A17)
Here, r = |r|, and

qr =
(
qs/
√

4α
)

(
√

4α+ 1)1/2,

qi =
(
qs/
√

4α
)

(
√

4α− 1)1/2,
√

1− 4α = i
√

4α− 1, α > 1/4,
√

4α− 1 = i
√

1− 4α, α < 1/4. (A18)

4. Dispersion relation

The interaction potential between two screened ions
is also described by Eq. (A17) [5], by replacing r with
the distance between two same ions rmn = |rm − rn|.
Therefore, the interaction potential energy between two
screened ions with the same charge e at the positions rm
and rn, can be written as

Um,n (rmn) =
e2

rmn
exp (−qrrmn) [cos (qirmn)

+b sin (qirmn)] .

(A19)

We have the motion equation for vibrations of homoge-
neous lattice ions under the screened Coulomb interac-
tions based on Ref. [5, 72]

mi
d2z1n

dt2
= −

∑
m 6=n

∂Umn (rm, rn)

∂zn
, (A20)

where z1n = zn − z0n is the vertical displacement of the
nth ion from its equilibrium position z0n. Note that this
equation plays a similar role as Eq. (A8) without the
chemical potential and quantum pressure of ions.

In order to obtain an analytical dispersion relation,
we consider wave oscillations with time and space de-
pendence X1 ∝ exp[i(nLq − ωt)] (frequency ω and wave
number q). X1 represents the first-order perturbation of
any physical quantity like zn, vi and ni, and L is the near-
est neighbor distance. Here, we take L = d determined
by dφ(r)/dr = 0 at r = d according to the Ref. [5]. If
we deal with nearest neighbor screened Coulomb interac-
tions alone according to Refs. [5, 72], dispersion relation
without the chemical potential and quantum pressure of

ions can be obtained by substituting z1n ∝ exp[i(dq−ωt)]
into Eq. (A20),

−ω2mi = e(
d2φ(r)

dr2
)r=d[exp(idq) + exp(−idq)− 2]

= −4e(
d2φ(r)

dr2
)r=d sin2(

qd

2
). (A21)

The effect of ion chemical potential and ion quantum
pressure can be included in the collective dispersion of
quantum ion acoustic waves (phonon excitations), with
coupling Eq. (A8), (A17) and (A21) and substituting
vi1, ni1 ∝ exp[i(ndq − ωt)] into them,

−ω2mi = −4e(
d2φ(r)

dr2
)r=d sin2(

qd

2
)−mic

2
i0q

2 − ~2q4

4mi
.

(A22)

This Eq. (A22) is rewritten as

ω2

q2
=
ed2

mi

[
d2φ(r)

dr2

]
r=d

(
sin(qd/2)

qd/2
)2 + c2i0 +

~2q2

4m2
i

,

(A23)
With the help of Eqs. (A21)-(A23), we derive Eq. (M5)
that is used in the main text to define the dispersion re-
lation of the quantum ion-acoustic wave with considering
the electric potential, chemical potential and quantum
pressure of screened ions.

For low wave number q or long wavelength limit (q �
kF ) [72], on setting sin(qd/2) ≈ qd/2, the dispersion
relation reduces to

ω2 = [
ed2

mi

d2φ(r)

dr2
|r=d + c2i0]q2 +

~2q4

4m2
i

. (A24)

Based on Eq. (A24), the ion wave velocity without the

ion quantum pressure (~2q4

4m2
i

) is given as

v0 =
ω

q
= [

ed2

mi

d2φ(r)

dr2
|r=d + c2i0]1/2, (A25)

which can be compared to the sound velocity ci0 for non-
interacting Fermi gas. The difference is induced from the
screened potential between ions and ion quantum pres-
sure, compared to the noninteracting sound velocity ci0.
It is necessary to calculate the unitary limit of the sound
velocity

cs0|kF a→±∞ = vFs(ξ/3)1/2, (A26)

where vFs = (2EFs/ms)
1/2. Thus, the roles of linearized

model [Eq. (A8)] and the analytical screened potential
[Eq. (A17)] are to have a simple analytical expression of
the phonon frequencies without the effect of the order
parameter (∆, defined in Eq. (M3) in the main text).

In order to consider the effect of order parameter (∆)
on the dispersion law of the collective mode for acous-
tic waves in a paired plasma, we express the dispersion
relation based on Ref. [43],

s11s22 = ω2s2
12, (A27)
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where

s12(ω, q, µi,∆) =
∫∞

0
k2dk

∫ 1

0
du 1

E+E−

E+η−+η+E−
(E++E−)2−ω2 ,

s11(ω, q, µi,∆) =
∫∞

0
k2dk(

∫ 1

0
duζ+ − 1

E ),

s22(ω, q, µi,∆) =
∫∞

0
k2dk(

∫ 1

0
duζ− − 1

E ),

ζ± = (E++E−)
E+E−

E+E−+η+η−±∆2

(E++E−)2−ω2 , E± =√
η2
± + ∆2, E =

√
η2 + ∆2 , η± =(

k2 ± kqu+ q2/4
)
~2/(2mi) − µi and η = k2~2/(2mi) −

µi. The above equations can be solved numerically,
where the MATLAB fsolve function is used to solve the
integral equations. The frequency ω is dependent on
1/kFa through the order parameter [Eq. (M3) defined in
the main text] and the chemical potential [Eq. (A3)].
We compare the dispersion relation obtained without
[Eq. (A23) ] and with [Eq. (A27)] the effect of order
parameter ∆ along the BEC-BCS crossover in the main
text.
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Figure 5. (Color online) The screened potential φ(r), varying with
the plasma density n0 = 2 × 1027(α = 0.25), n0 = 3 × 1024(α =
2.2), n0 = 1023(α = 6.9), n0 = 2 × 1022(α = 12), n0 = 1021(α =
32), n0 = 1020(α ≈ 70) cm−3.

Appendix B: Analysis of the results

In this Appendix, we discuss the short-range attractive
potential between fermionic ions and show the dispersion
relation of the quantum ion-acoustic wave, analyze their
collective properties (phonon excitations).

1. Analysis of the short-range attractive potential

In the following, we calculate the screened poten-
tial between two ions in a quantum plasma outside the

BCS-BEC crossover with n0 = 2 × 1027(α = 0.25)
cm−3 and over the BCS-BEC crossover with n0 = 3 ×
1024(α = 2.2), 1023(α = 6.9), 2 × 1022(α = 12), 1021(α =
32), 1020(α ≈ 70) cm−3. The range of the BCS-BEC
crossover is taken from n0 ≈ 1015 to n0 = 3 × 1024

cm−3, corresponding to the region of Coulomb bound
states [34], which is sufficiently large to probe the pres-
ence of the BCS-BEC crossover. The quantum plasma
is composed of electrons and 4He+ ions, with ion mass
mi = 6.6×10−24 g and electron mass me = 9.109×10−28

g. These values are taken to be the same as in the main
text.

In cold atomic gases, the interaction strength between
a pair of atoms can be realized by magnetically tuned
scattering resonances, named as Feshbach resonances[16–
18], offering the unique possibility to realize the BCS-
BEC crossover. The Feshbach resonance was shown in
Ref. [39] with infinite scattering length at the threshold
(called the unitary point) for the formation of a bound
state. Once this bound state is formed, the scattering
length changes sign (−∞ −→ +∞), and the magnitude
decreases with increasing the strength of potential.

The BCS-BEC crossover from Cooper pairs to
molecules appears when the size of molecules is of the
order of the inter-particle spacing ∝ 1/kF in atomic sys-
tems [32]. It is interesting to explore whether this phe-
nomenon also happens for the cold ion system due to the
screened potential between a pair of ions. Although the
screened Coulomb interactions make the physics different
in a cold plasma, compared to a cold atomic system, the
BCS-BEC crossover is expected to occur in a cold plasma.
We tried to understand the mechanism for forming the
BCS-BEC crossover in a cold plasma, where the inter-ion
potential and phonon excitations (acoustic waves) might
be essentially different from those of atomic systems at
the BCS-BEC crossover.

We first try to answer how the screened potential
changes its behavior with the plasma density n0 (α) as
it was done in Ref. [5]. Parameter α represents the im-
portance of the quantum recoil effect, as it is the co-
efficient of the quantum pressure term [see the terms
of ∼ q4 in Eq. (A15)]. Here α = ~2ω2

ep/4m
2
ec

4
e0 is de-

pendent on the density n0, through the electron plasma
frequency ωep and the noninteracting sound velocity ce0
determined by the electron chemical potential µe, which
are self-consistently included in the expression of φ(r)
[Eqs. (A15)-(A17)].

As it has been reported in Ref. [5] that, the screened
potential shows negative values for α > 0.25, the effect
of n0 on the potential φ(r) as a function of r is drawn
in Fig. 5, with several values of n0 (α). It is clearly
seen that the potential shows both short-range positive
and negative values, indicating the short-range repulsive
and attractive interactions between two ions with dif-
ferent distance. The negative potential value increases
while their distance decreases, as shown in Fig. 5, which
is expected for realizing the BCS-BEC crossover. The
value of minimum potential φ(r) at different distance r
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is shown in Table II for different n0 (α). Note that the
different regimes depend on the potential. As shown in
Fig. 5 and Table II, the deep BEC state is achieved tun-
ing n0 = 3 × 1024 cm−3 (φ(r) = −7.8 × 10−4 [cgs]).
The unitary regime occurs when n0 = 2 × 1022 cm−3

(φ(r) = −6 × 10−4 [cgs]). We can obtain the deep BCS
of the ions when n0 = 1020 cm−3 (|φ(r)| = 2.4 × 10−4

[cgs]). We indeed see the short-range attractive poten-
tial that agrees with the Lennard-Jones–type potential
in the range of 10−8 ≤ r ≤ 10.5 × 10−8 cm, which is on

the order of average ion distance n
−1/3
0 . This is just the

condition required for the BCS-BEC crossover.

n0 cm−3 1020 1021 2× 1022 1023 3× 1024 2× 1027

φ(r)× 104 [cgs] −2.4 -3.8 -0.6 -7.5 -7.8 0

r × 108 [cm] 10.5 5.8 3 2.1 1 0.6

Table II. The value of attractive potential φ(r)×104 [cgs] be-
tween a pair of ions at different distance r× 108 [cm] for sev-
eral values of n0 across the BCS-BEC crossover (BCS: n0 <
2×1022, unitary: n0 = 2×1022, BEC: 2×1022 < n0 ≤ 3×1024)
and outside the crossover (2× 1027).

The minimum value of the potential occurs at r = 10−8

cm (deep BEC), r = 3 × 10−8 cm (unitary), and r =
1.05 × 10−7 cm (deep BCS), as shown in Table II, indi-
cating that the range of attractive potential gets smaller
from deep BCS (∼ 10−7 cm) to deep BEC (∼ 10−8 cm)
states. The attractive potential reaches its minimum
value in the deep BEC region and is almost unchang-
ing with further increasing n0. This is consistent with
the prediction that the strongest attraction is resolved
by dimer formation, while a repulsion occurs between
dimers with further decreasing the distance [39]. In-
deed only short-range repulsive potential exists for small
enough distance r < 6× 10−9 cm with large enough den-
sity n0 ≥ 2× 1027 cm−3 (α ≤ 0.25) as shown in Fig. 5.

It is expected that the short-range attractive potential
can form fermionic ion pairs, which in fact may collapse
into a BEC state. The short-range attractive potential
with adjustable strength agrees on the role of the Fes-
hbach resonance, preferable for the realization of BCS-
BEC crossover in a cold plasma without a magnetic field.
In other words, the screened ions can be trapped in the
negative part of the exponential oscillating potential [see
Eq. (A17) ], which leads to ion clusters (like molecules)
depending on the plasma density n0. The potential φ(r)
takes its negative value is allowed by the combined ef-
fects of the electron quantum statistical potential and
the electron quantum Bohm potential at zero tempera-
ture [5]. Physically, this involves the overlapping of elec-
tron wave function due to the Heisenberg uncertainty
and Fermi statistics effect due to Pauli exclusion prin-
ciple [11, 12, 34, 66], leading to a short-range negative
hard core electric potential. This qualitative behavior
has been reported by Shukla and Eliasson [5]. Thus, the
BCS-BEC crossover is realized by the short-range attrac-
tive potential between a pair of ions, which exhibits new

insight into quantum plasmas.
The distance where the potential takes minimum value

is defined as the nearest neighbor ion distance and noted
as d, which is essential to compare the range of inter-ion
potential and average ion distance. For this purpose, we

seek the solution of relation ∂φ(r)
∂r = 0, from which we

determine and plot d in Fig. 6(a), the minimum poten-
tial φ(d) in Fig. 6(b) and the Laplacian of the potential
∂2φ(r)
∂r2 |r=d in Fig. 6(c) at r = d, and the acoustic wave

period sin2(qd/2) under this potential in Fig. 6(d), as a
function of 1/kFa.

The value of d decreases linearly with increasing 1/kFa
in the BCS region, then rapidly drops at unitary, and
decreases more slowly in the BEC region with increasing
1/kFa, as shown in Fig. 6(a). These features are con-
sistent with Fig. 5. In general, the distance d decreases
through the BCS-BEC crossover, which is just the phe-
nomenon that particle distance decreases over the BCS-
BEC crossover, reported in Refs [32, 40, 62]. We believe
that the variation of distance d between two ions is evi-
dence of the formation of ion pairs at BEC, resulting in
a variety of new features in quantum plasmas.

At r = d, the potential φ(d) indeed take negative val-
ues, as shown in Fig. 6(b), where its strength increases
over the BCS-BEC crossover, leading to the formation
of ion pairs or ion clusters (analogous to dimers) in the
BEC region. This negative Lennard-Jones-like poten-
tial is relevant to the ion-binding potential in the ultra-
cold plasma. The binding potential is determined by
the depth of the minimum potential φ(d). Correspond-
ingly, the value of φ′′(d) increases through the BCS-BEC
crossover, as seen from Fig. 6(c), which further deter-
mines the acoustic wave frequency and the character of
dispersion relation [see Figs. 7-9 below]. Note that, φ(d)
and φ′′(d) take finite negative values and positive values,
respectively, over the whole BCS-BEC crossover, indi-
cating that there always occurs attractive potential be-
tween a pair of screened ions at a proper distance for
1015 ≥ n0 ≤ 3× 1024 cm−3 (3× 104 ≥ α ≥ 2). The value
of 2π/kF d is plotted in Fig. 6(d), which is the period of
oscillating frequency [see Eq. (A23) and Figs. 7-9 below].
The period increases with increasing 1/kFa, taking val-
ues of 0 − 2.5 at BCS side, 2.5 at unitary, and 2.5 − 7.5
at BEC side.

2. The dispersion relation of acoustic waves

This subsection discusses the dispersion relation of
quantum ion-acoustic waves for unpaired ions since in-
traspecies of the ions may not form pairs but contribute
to phonon excitations. Note that the phonon frequency
for paired ions is shown in the main text. The en-
ergy per particle εs/EFs, chemical potential µs/EFs, and
sound velocity cs0/vFs are plotted as a function of 1/kFa
in Fig. 7(a) and n0 in Fig. 7(b), across the BCS-BEC
crossover. The parameter 1/kFa characterizes the dif-
ferent interaction regimes and the interaction strength
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Figure 6. (Color online) (a) The distance d defined by
∂φ(r)
∂r

= 0,
(b) the potential φ(d), (c) its second derivative φ′′(d) at r = d,
and (d) the acoustic wave period 2π/kF d under the potential, as a
function of 1/kF a, over the BCS-BEC crossover.

increases with increasing 1/kFa (through increasing n0).
The calculation of energy per particle, chemical poten-
tial and sound velocity are based on Eqs. (A1)- (A3)
and the results agree well with that in Refs. [32, 40, 62].
At unitary at 1/kFa = 0 (n0 = 2 × 1022 cm−3), the
sound velocity is calculated from cs0 = vFs(ξ/3)1/2. In
both deep BCS and BEC states, the energy per particle,
chemical potential, and sound velocity take asymptotic
limits and are almost independent of 1/kFa. However, at
unitary, the curves show a rapid decrease with increasing
1/kFa (n0), as shown in Fig. 7(a,b), indicating the forma-
tion of the BCS-BEC crossover. One sees the crossover
from the BCS (1/kFa = −10, n0 = 1015 cm−3) to uni-
tary (1/kFa = 0, n0 = 2 × 1022 cm−3) then to BEC
(1/kFa = 10, n0 = 3 × 1024 cm−3), as shown in Fig. 7,
which suggests that the BCS-BEC crossover is indeed a
continuous transition.

The dispersion relation [see Eq. (A23)] is not only de-
pendent on the electron chemical potential and electron

quantum pressure, included in the value of ∂2φ(r)
∂r2 |r=d,

but also relevant to the ion chemical potential [behaves as
the second term ci0q

2 in Eq. (A23)] and the ion quantum
pressure [behaves as the third term ∝ q4 in Eq. (A23)].
For the purpose of understanding the collective prop-
erties of quantum ion-acoustic waves at the BCS-BEC
crossover, the phonon frequency is obtained for all the
possible values of 1/kFa [varying through the plasma
density n0 (see Fig. 3(d) in the main text)]. We plot
the phonon frequency as a function of 1/kFa in Fig. 7(c)
and n0 in Fig. 7(d), for different q.

The frequency presents slowly changing acoustic mode

at the BCS side, and a sharp increase around the unitary
point, then a significantly slower increase at the BEC
side, as shown in Fig. 7(c,d). In the regime of a strongly
interacting unitary Fermi gas, an abrupt change in the
phonon frequency occurs, which may be a signature for
a transition from BCS to BEC phase. This phenomenon
agrees with the evolution of the Anderson-Bogoliubov
damped mode in the BCS limit to the Bogoliubov sound
mode in the BEC limit [73], predicted by Melo et al. [73]
based on the time-dependent Ginzburg-Landau equation.

The frequency dependence on n0 is consistent with that
on 1/kFa, since 1/kFa is determined by the plasma den-
sity n0 [see Fig. 7(d) in the main text]. This is qualita-
tively agreeing with the breathing modes in atomic sys-
tems obtained by various theoretical methods such as be-
yond mean-field theory [74], hydrodynamic method [32]
and time-dependent density functional theory [62]. Be-
cause the short-range attractive potential between a pair
of ions in cold plasmas plays the role of an external
trapped potential in atomic systems. The frequency
is inversely proportional to the chemical potential, and
its dependence on 1/kFa is inverted compared to the
chemical potential and the non-interacting sound veloc-
ity [32, 40, 62]. The frequency increases with increasing
1/kFa, indicating a positive-shift of the frequency with
increasing the interaction strength, which coincides with
the feature predicted by Refs. [32, 40, 62, 74].
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Figure 7. (Color online) The energy per particle εs/EFs (solid
line), chemecal potential µs/EFs (dashed line), and sound velocity
cs0/vFs (dash-dotted line) as a function of 1/kF a (a) and n0 (b).
Phonon frequency ω/ωip for q = 0.2kF (solid line), q = 0.4kF
(dashed line), q = 0.8kF (dash-dotted line), q = 1.2kF (dotted
line) as a function of 1/kF a (c) and n0 (d).

We perform systematic calculation and detailed dis-
cussion on the phonon frequency ω/ωip dependence on
1/kFa for understanding the collective property of cold
plasmas at the BCS-BEC crossover. The frequency de-
pendence on 1/kFa for different wave number q is shown
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in Fig. 8. For small q, the frequency is lower at BCS
state, while it rises quickly at unitary, and it is higher
at BEC state, which is consistent with the profile of
∂2φ(r)
∂r2 |r=d [see Fig. 6(c) above]. The frequency depen-

dence on 1/kFa is contrast to the profiles of µi and ci0

[see Fig. 7(a,b) above], as the term ∝ ∂2φ(r)
∂r2 |r=d is dom-

inant compared to the other terms [see Eq. (A23)] for
small q. Moreover, the frequency first decreases in the
BCS region, then increases and approaches its maximum
value in the BEC region, passing through the minimum
near unitary point 1/kFa = 0, indicating nonmonotonic
behavior at q = 2.5kF . This behavior agrees phenomeno-
logically with that in an atomic system in Ref. [32] over
the BCS-BEC crossover.

With increasing q, the frequency minimum changes to
the maximum, and ω/ωip first increases then decreases
over the crossover in the presence of sin2(qd/2) [see
Eq. (A23)], as shown in Fig. 8(c). With further increas-
ing q, the frequency peak divides into a valley and a peak,
with the minimum and maximum occurring close to the
left and right of the unitary point, respectively, as shown
in Fig. 8(d). This result is ascribed to the presence of
sin2(qd/2) due to the screened potential, yielding an os-
cillating frequency concerning q [see Fig. 9 below].

The phonon frequencies reach the asymptotic values in
the deep BEC limit, indicating an asymptotic behavior,
which agrees with the character of the breathing modes
in a trapped atomic system [32]. A local maximum oc-
curs near the unitary point in the BCS regime at a de-
cent wave number q, indicating the nonmonotonic char-
acter of the phonon frequency. The experimental mea-
surements of phonon frequency confirm this result in a
trapped atomic system, where the radial frequency has
shown an abrupt decrease with increasing 1/kFa in the
regime of BCS near the unitary point [23]. This exper-
iment also predicted a negative-shift of the radial fre-
quency [23] with increasing 1/kFa, i.e., increasing the
interaction strength, with a spin mixture of trapped 6Li
atoms in a cigar-shaped molecular BEC confined by a
laser beam. Although this is contrast to our results for
small q as shown in Fig. 8(a,b), it has shown consistent
features for a proper large q [see Fig. 8(c,d)]. The ex-
perimental data [23] confirms our results for a good wave
number. i.e., the abrupt change and negative shift of
the phonon frequency occur in nearly the same way [see
Fig. 8(c,d)]. This further confirms the occurrence of the
BCS-BEC crossover in cold plasmas, which is guaranteed
by the short-range attractive potential.

Are these different phonon frequencies across the BCS-
BEC crossover not pure fantasy? There are strong rea-
sons to believe that this is a very realistic scenario at
the BCS-BEC crossover examined in ultra-cold quantum
plasma. Indeed, our theoretical results on the phonon
frequency in a cold quantum plasma show three possible
reasons for realizing the BCS-BEC transition, compared
with the collective mode in the trapped atomic system
with reasonable choices of the relevant parameters. The
corresponding features, could be confirmed on the basis

of available theoretical models [32, 40, 62, 74] and exper-
imental measurements [23] over the BCS-BEC crossover
with three reasons. First, the cold atom is trapped exter-
nally by a magnetic field or laser in the atomic system; in
comparison, the cold ion is trapped in the negative part
of screened potential by the short-range attractive inter-
actions. Second, the phonon frequency exhibits the same
dependence on 1/kFa as that of atomic gas, although the
values of them differs in the two cases. Third, both sys-
tems have nonmonotonic and asymptotic characters and
abrupt changes at and near the unitary point.
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Figure 8. (Color online) Phonon frequency ω/ωip as a function of
1/kF a for different q.

The dispersion relation is shown to illustrate the ef-
fect of 1/kFa in Fig. 9(a,b,c), and the contour of ω/ωip
as functions of 1/kFa and q in Fig. 9(d). A dramatic
character of Fig. 9 is the persistence of linear frequency
dependence on q as long as q ≤ kF , which agrees well
with the classical ion-acoustic wave dispersion (ω = v0q)
in the limit of small Debye length and low-frequency os-
cillations, where v0 is the wave speed in a plasma. Oth-
erwise, with increasing q the curves start to oscillate with
a period of 2π/kF d [see Fig. 6(d) above], due to the ef-
fect of term sin2(qd/2). This guarantees the existence
of periodic oscillating frequency. The frequency almost
takes a periodic oscillation for small q (q/kF ≤ 5), where

the maximum value is determined by ∂2φ(r)
∂r2 |r=d, smaller

than ion plasma frequency ωip ≈ 2×1010−1015 s−1 over
the BCS-BEC crossover.

The frequency profile at different 1/kFa qualitatively
agrees with each other, but the value is different at BEC,
unitary, and BCS states. The amplitude of the oscillat-
ing frequency is highest at BEC, higher at unitary, and
high at BCS state since this amplitude increases with
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increasing the plasma density. The three curves sepa-
rate from q = 0, and their difference first becomes larger
then smaller with increasing q due to the periodic prop-
erty. Our results give the nontrivial effect of the param-
eter 1/kFa on the phonon dispersion for small q, due to
Eq. (A23). Indeed, for large q (q � kF ), the frequency in-
creases more quickly with increasing q, and finally merges
and shows a quadratic q dependence due to the dominant
effect of the third term∼ ~2q4/4m2

i , compared to the first
and second terms in Eq. (A23).

As expected, the frequency is nearly the same at uni-
tary (1/kFa = 0 ) and BEC state (1/kFa = 0.1 ),
while it is a bit lower at BCS state (1/kFa = −0.1
), as shown in Fig. 9(a). Because the frequency vary-

ing with 1/kFa is mainly determined by ∂2φ(r)
∂r2 |r=d [see

Eq. (A23) and Fig. 6(c) above], which takes similar val-
ues at 1/kFa = 0 and 1/kFa = 0.1, but slightly smaller
value at 1/kFa = −0.1. The three curves separate more
significantly with increasing the absolute value of 1/kFa,
especially for small q, as shown in Fig. 9(b,c). Whereas
their difference gets smaller with increasing q due to the
term ∼ ~2q4/4m2

i in Eq. (A23), finally they merge, and
the oscillation vanishes for q ≥ 20kF . The frequency os-
cillation disappears more quickly for the BCS state than
that for the BEC state, and the unitary case is moderate
between them, which are determined by the strength of
short-range attractive potential [see Fig. 6(b) above].

The frequency dependence on q is quasi-periodic
through the BCS-BEC crossover, with a period of
2π/kF d, as shown in Fig. 9(d). The frequency reaches
the asymptotic value in the deep BEC and shows non-
monotonic behavior on 1/kFa for a larger wave number.
These results qualitatively agree with the experimental
measurements of phonon frequency in a trapped atomic
system [23], which further confirms the occurrence of the
BCS-BEC crossover in the cold quantum plasma. How-
ever, the physical mechanism is different for the two sys-
tems.

Appendix C: Possible comparison between cold ion
and atomic systems over the BCS-BEC crossover

In this Appendix, we discuss the possible comparison
between cold ion and atomic systems over the BCS-BEC
crossover. Quantum plasma is easily found in nature like
the cores of giant planets and white dwarf stars [34, 75–
77], due to the high density (greater than solid-state
density ∼ 1023 cm−3) caused by gravitation. It has
been indicated that electrons are expected to be quan-
tum degenerate in the core of the Sun [75]. Quantum
plasma also occurs in various modern laboratories, us-
ing shock waves [78], pinches in high-current-carrying
plasmas [79, 80], gas guns [81], laser beams and ion
beams[82, 83]. A different kind of quantum plasma oc-
curs in metals and semiconductors, where the valence
electrons behave as quasi-free, characterized by a Fermi
gas. Moreover, strong compression of a atomic (molecu-
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Figure 9. (Color online) Phonon frequency ω/ωip as a function of
q for different 1/kF a over the BCS-BEC crossover (a,b,c), and the
contour of ω/ωip as functions of 1/kF a and q (d).

lar) gas could transforms matter from a neutral state of
atoms and molecules into a fully ionized two-component
quantum plasma with electrons and ions, where bound
states may exist at low temperature and high density.
Correspondingly, the quantum Coulomb coupling param-

eter (Brueckner parameter) is rs ∼ 1
kF aBs

∝ |eφ(d)|
EFs

. i. e.,

re ≈ 1, ri ≈ 104 with n0 ∼ 1022 cm−3 at zero temper-

ature [34]. Here aBs = ~2

mse2
is the effective Bohr ra-

dius. Finally, ultra-dense quantum plasmas could exist
in nuclear matter, i. e., quark-gluon plasma (QGP) and
the Big Bang, achieved by continued compression of the
quantum plasma of electrons and nuclei, where details of
the interactions are complex but dominated by Coulomb
interactions [84–86].

Previous hydrodynamic theories of the BCS-BEC
crossover mainly focused on neutral gas in an atomic sys-
tem [30, 32, 62, 71]. Our theoretical results for ion pairs
in ultracold plasmas could be equivalently important as
atom pairs for a BCS-BEC crossover. The fact is that
atoms like 4He considered in atomic systems [32] can be
treated as an ion sphere-forming of the nucleus and elec-
trons as a charged cloud surrounding the nucleus. The
dense Thomas-Fermi atomic gas [30] is analogously re-
placed by a dense Thomas-Fermi plasma [5, 34], where
the ions are shielded by nonrelativistic degenerate elec-
trons at zero temperature. The shielding radius of the
sphere is defined as the Debye radius or Thomas-Fermi
radius [34, 64, 66, 70] λF = (EFe/ωep)

1/2 ∝ 1/kF , which
is the same order with the inter-particle spacing in atomic
unitary systems. Thus, the range of inter-particle poten-
tial comparable with inter-particle spacing in the plasma
systems, is similar to those in atomic systems, where the
Fermi gas exhibits universal properties and is regarded as
unitary Fermi gas, irrelevant to neutral or charged gas.

The theoretical model may be realized experimentally
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by using a 3D solid like 4He including 4He+ ions and
electrons. Sound waves with dispersion relation cs0q are
pressure waves propagating from one layer to the next by
collisions among the atoms or molecules. In an electrons
and ions system, with no neutrals and few collisions,
a consistent phenomenon occurs, called an ion acous-
tic wave (phonon excitation), or, simply, an ion wave.
Acoustic waves can occur through the intermediary of
an electric field. Experimental verification of the exis-
tence of acoustic waves was first accomplished by Wong
et al. [87, 88], where Q-machine experiment was designed
to detect waves and wave velocities [87, 88].

In discussion, the BCS-BEC crossover between ultra-
cold plasma and atomic gas can be directly compared,
where differences appear only in the interaction potential.
An external trapped potential is applied for the atomic
system, where a Feshbach resonance controlled by a mag-
netic field is used to tune the s-wave scattering length and
the interaction potential between two fermionic atoms in
a cold atomic system. The short-range attractive poten-
tial between fermionic ions screened by degenerate elec-
trons plays the role of effective interaction potential in a
cold ion system. This is a controllable interaction, where
interaction range and magnitude could be controlled by
varying the plasma density.

Indeed, we obtain short-range attractive potential be-
tween a pair of screened ions with increasing strength
from BCS to BEC as the potential range decreases, which
agrees with the main principle of BCS-BEC crossover.
With the presence of short-range attractive potential at
scales (average ion distance ∼ 1/kF ), the ions can be
trapped in the negative part of exponential oscillating
screened potential [see Eq. (A17)]. This leads to the
formation of ion pairs or ion clusters, depending on the
plasma density n0, realizing the BCS-BEC crossover, in
the field of strongly coupled quantum plasmas [34, 47–
51].

The s-wave scattering length indeed can be tuned from
−∞ to +∞ due to the short-range attractive potential.
This guarantees the existence of BCS-BEC crossover in
cold ion systems. Here bound pairs are composed of
fermionic ions of a different spin. As a result, the system,
originally a Fermi gas, is transformed into a bosonic gas
of ion-ion pairs. The possibility of tuning the scattering
length across the BCS-BEC crossover from negative to
positive values can provide a continuous connection be-
tween the physics of Fermi superfluidity and BEC state,
including the strongly interacting unitary Fermi gas at
the middle of the crossover. Moreover, it is shown that
the resulting quantum ion-acoustic waves exhibit dis-
tinct dispersion relations across the BCS-BEC crossover,
which provide a direct route to probe the changing scat-
tering length, as well as the BCS and BEC states. It
would deserve an experimental measurement of a phonon
dispersion [89] varying continuously from BCS to BEC
state.

It is important to note that the short-range attractive
potential is an elegant mechanism of pure electron collec-

tive quantum behavior, and it vanishes in the quantum
limit ~ −→ 0. In quantum mechanics, the spin config-
uration of two fermions can be antiparallel or parallel,
where the energy of an antiparallel state is lower than
the parallel state, and this antiparallel state is named
the ground state, which can interact with s-wave. We
show that the mechanism of the s-wave interaction is
characterized by the low-energy collisions between two
fermionic ions when the interaction range is on the same
order of the inter-ion spacing, which permits the ions to
undergo a BCS-unitary-BEC crossover. Therefore, the
bounded 4He+ ions with the s-wave interaction over the
BCS-BEC crossover are virtually occupied in pairs of op-
posite spin. This is analogous to the paired electrons
with opposite spin in the ground state of a superconduc-
tor [90]. Indeed, the Pauli exclusion principle states that
two fermions in a bounded state cannot have the same
quantum numbers, and only two fermions can occupy the
same orbital where they must have opposite spin states.

It is necessary to mention that there are situations
where fermions manage to transform into bosons in order
to achieve lower energy, i.e., the particles are favorable
to settle at the position of minimum attractive poten-
tial. This principle is the same as that for Cooper pair
formation where two fermions form a weakly bound pair
which obeys Bose statistics, which is possible due to the
short-range attractive potential between a pair of ions.
Such fermionic ion pairs, like electron Cooper pairs, may
be responsible for the loss of electrical resistance, i. g.,
superconductivity, in various materials.

We realize the BCS-BEC crossover for fermionic ion
pairs in ultra-cold quantum plasmas in the presence
of short-range attractive potential due to the quantum
statistics and diffraction effects of degenerate electrons
at zero temperature, offering a new platform to quan-
tum simulate the BEC-BCS crossover in cold quantum
plasma. This may open new stimulating perspectives in
the interdisciplinary region of cold plasma and atomic
system. From the many-body point of view, the study
of BCS-BEC crossover in an ultra-cold plasma opens a
different application area and richer class of questions in
the interdisciplinary region of cold quantum plasma and
cold atomic systems.

This work based on the generalized hydrodynamic the-
ory, further confirms the existence of the Lennard-Jones-
like short-range attractive potential and its inevitable
role in the formation of ion pairs over the BCS-BEC
crossover, which might be important for plasma crys-
tallization [8, 13, 34, 91, 92]. and strong laser-matter
interaction in laboratory [83, 93, 94]. Hydrogen and he-
lium were predicted to form stable crystals controlled by
the carrier density [13], which should be realized experi-
mentally with laser or ion beam techniques. Our results
confirm that the strength and range of the short-range
attractive potential can indeed be tuned by the density of
plasma, which may be one of the essential factors yield-
ing strong ion-coupling in planets. The introduction of
such short-range attractive potential, which brings the



17

ions closer together might also lead to breakthroughs in supercomputing, semiconductor, and nanotechnology sci-
ences [8, 52, 95–97].
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