
LBS Research Online

Ming Gao
Economic behaviour and decision making: theories of two-sided markets, multiproduct pricing and
weighting for cumulative prospect theory
Thesis

This version is available in the LBS Research Online repository: https://lbsresearch.london.edu/
id/eprint/2314/

Gao, Ming

(2010)

Economic behaviour and decision making: theories of two-sided markets, multiproduct pricing and
weighting for cumulative prospect theory.

Doctoral thesis, University of London: London Business School.

DOI: https://doi.org/10.35065/JVKK8675

Users may download and/or print one copy of any article(s) in LBS Research Online for purposes of
research and/or private study. Further distribution of the material, or use for any commercial gain, is
not permitted.

https://lbsresearch.london.edu/view/lbs_authors/751411.html
https://lbsresearch.london.edu/id/eprint/2314/
https://lbsresearch.london.edu/id/eprint/2314/
https://lbsresearch.london.edu/view/lbs_authors/751411.html
https://doi.org/10.35065/JVKK8675


Economic Behaviour and Decision Making:

Theories of Two-Sided Markets, Multiproduct Pricing and

Weighting for Cumulative Prospect Theory

Ming Gao

Economics Department
London Business School
Regent’s Park, London

NW1 4SA, UK
Email: mgao.phd2005@london.edu
Homepage: phd.london.edu/mgao/

July 2010



Contents

1

Introduction of Thesis 2

Part I - When to Allow Buyers to Sell? Bundling in Mixed Two-Sided
Markets 4

Part II - Multiproduct Price Discrimination with Two-Part Tariffs 48

Part III - A Quasi-Cumulative Weighting Function for Prospect Theory:
The (β,c) Model 97

Conclusion of Thesis 146



Introduction of Thesis

This thesis studies the microeconomic theories of two-sided markets, multiproduct

pricing, and decision making in risky choice situations.

In the first part of the thesis, we focus on a special kind of two-sided markets, where

participants can act on both the buying side and the selling side of the market, which

we call "mixed two-sided markets". The literature on two-sided markets has assumed

that buyers cannot sell and sellers cannot buy. In real life, however, many markets are

mixed, with examples ranging from telecommunication to stock exchange. We provide a

general model for mixed two-sided markets. We observe that in practice, platforms in such

markets often use a "hybrid" bundling strategy: A common membership fee gives access to

both buying and selling services, while the individual transaction fees are separated. The

main impact of this strategy is what we call the "two-part-tariff effect": Imposing a small

bundled membership fee on top of any transaction fees always leads to zero first-order

losses in the demand of consumers who use both services, thus enabling the platform to

extract more surplus from them. When this positive effect dominates the losses in demand

from single-service users, hybrid bundling dominates unbundled sales. We present general

conditions that guarantee such an outcome.

In the second part of the thesis, we show that the two-part-tariff effect still applies

when such tariffs are used in a more general context of multiproduct pricing. We con-

sider a monopolist provider of n (> 1) products who uses two-part tariffs consisting of a

membership fee that is common to all consumers, and separate prices for different prod-

uct bundles. We show that the change in demand for any bundle of k ∈ [1, n] products
caused by imposing an extra membership fee on top of any separate pricing strategy is

proportional to the membership fee to the power of k. Therefore a small extra membership

fee has no first-order impact on the demand for any multiproduct bundles, which enables

the firm to extract more consumer surplus. When this positive effect dominates the loss

of single-product demand, two-part tariff dominates separate pricing. We present condi-

tions that guarantee such an outcome, which generalize McAfee, McMillan and Whinston

(1989)’s result from two products to multiple products. The two-part-tariff effect provides

a new multiproduct perspective for the wide application of two-part tariffs, complementary

to the classical "single-product" efficiency-related explanation. Our results suggest that

two-part tariffs can achieve multidimensional price discrimination and should be subject

to similar regulatory scrutiny as other discriminatory strategies, such as mixed bundling.

The theories discussed in the first two parts address market situations where partici-

pants face deterministic decision problems. However, many if not most decision making

processes involve uncertainty. The third part of the thesis focuses on people’s economic

behavior in risky choice situations. In this context, the cumulative prospect theory (CPT)

by Tversky and Kahneman (1992) has been accepted as one of the best descriptive models

that reconcile, within one unified model, the major phenomena that violate standard util-
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ity models. However, the inverse S-shaped weighting of cumulative probabilities posited

in CPT causes difficulties in preference representation, which hinders its application in

wider situations of risky choice. We propose a simplified weighting function for CPT, the

(β, c) model, which plays a similar role in models with risky choice as that of the quasi-

hyperbolic discounting function in models with intertemporal choice. The (β, c) model has

a weighting function that is linear with slope smaller than 1 on the open interval (0, 1),

jumps down to 0 at end point 0, and jumps up to 1 at end point 1. It achieves highly

tractable utility representation for CPT whilst preserving the basic tenets of CPT. It by

construction can explain all four major phenomena of risky choice violating the standard

model that CPT was developed to reconcile, including reference dependence and certainty

effect. It also allows Bayesian updating (with distortions at certainty) which CPT cannot

accommodate. We systematically examine the (β, c) representation of discrete and con-

tinuous lotteries, and provide four applications which illustrate that the (β, c) model is

a useful work horse to analyze implications of preferences exhibiting certainty effect and

reference dependence in standard models.

More detailed critical discussions are provided in each part of the thesis.

3



Part I

When to Allow Buyers to Sell?

Bundling in Mixed Two-Sided Markets∗

Ming Gao†

First version: January 2008. This version: July 2010.

Abstract

In many examples of two-sided markets, ranging from telecommunication to stock

exchange, participants act on both sides of the market. Whereas the literature has

assumed buyers cannot sell and sellers cannot buy, we provide a model for two-sided

markets where users can appear on both sides, which we call "mixed two-sided mar-

kets". We observe that in practice, platforms in such markets often use a "hybrid"

bundling strategy: A common membership fee gives access to both buying and selling

services (in a "bundle"), while the individual transaction fees are separated. The main

impact of this strategy is what we call the "two-part-tariff effect": Imposing a small

bundled membership fee on top of any transaction fees always leads to zero first-order

losses in the demand of consumers who use both services, thus enabling the platform

to extract more surplus from them. When this positive effect dominates the losses

due to single-service users, hybrid bundling dominates unbundled sales. We present

general conditions that guarantee such an outcome.
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munication
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1 Introduction

In many two-sided markets, participants act on both sides of the market. In online trading,

for instance, people can quite freely buy and sell as they please; in telecommunication

networks, most subscribers both make and receive phone calls; in many if not most kinds

of financial intermediation, traders (or account-holders) are allowed to both buy and sell

(or to both borrow and lend), such as in stock exchange, securities brokerage and social

lending.1

However, a common feature of the existing models in the literature on two-sided mar-

kets is that there is no overlap between the two sides (see, for instance, Caillaud and

Jullien (2003), Armstrong (2006) and Rochet and Tirole (2003 and 2006)). While this

assumption suits the classic examples studied in the literature, such as credit card, video

games and media, it does not apply to the examples we mentioned previously.

In this paper, we study two-sided markets where a consumer can appear on different

sides of the market, which we call mixed two-sided markets. If no one can appear on
both sides, we call the two-sided market standard. We provide a model which extends
the standard model of Rochet and Tirole (2006) to the mixed case. Figure 1 illustrates

the difference between these two kinds of markets.

Figure 1: Standard and Mixed Two-Sided Markets

Since some consumers may want to use the services a mixed two-sided platform pro-

vides to both sides, the platform can employ multiproduct pricing strategies that are irrel-

evant in standard two-sided markets. In particular, it can bundle its selling and buying

services and provide them to all potential users.2 "Mixedness" therefore brings a multi-

product/bundling perspective to two-sided markets and links the two literatures.

We study a new kind of bundling strategy that has not been studied in the literature

but is widely used by mixed two-sided platforms. We name it hybrid bundling and
it consists of two parts: a bundled membership fee, which gives access to both selling

1Other examples include software that allows users to both create and view files in certain formats
(such as text-processing software, PDF software, computer-aided design software, etc.) and information
exchange platforms that allow users to both post (or send) and view messages (such as bulletin boards,
online forums, social networking websites, user-generated content platforms, etc.).

2This is what we mean by bundling in this paper. It does not include, for instance, an eBay seller
selling two products in bundles on the platform, or eBay bundling two kinds of services designed for sellers
but not buyers.
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and buying services, and two separate transaction fees, which apply to the two parties

involved in each transaction. For instance, a typical pay-monthly phone tariff consists of

a monthly line rental for connection to both calling and answering services, plus separate

per-minute fees for making and receiving calls; stock exchanges (and many other financial

intermediaries) also usually charge users an annual membership fee for access to both

buying and selling services, plus separate commissions on transactions.

This strategy is different from the two classic categories of bundling strategies in

the literature: pure bundling (only selling multiple goods in bundles but not separately)

and mixed bundling (providing two goods both separately and in "one-to-one" bundles).

Schmalensee (1984), Fang and Norman (2006) and Banal-Estanol and Ottaviani (2007)

show that pure bundling can yield higher profit than unbundled sales because consumers’

valuation of the bundle is generally less dispersed than their valuation of each separate

good and hence pure bundling can increase the probability of trade at certain prices.

Schmalensee (1984) and McAfee, McMillan andWhinston (1989) show that mixed bundling

can increase profit because by lowering the price of the bundle below the sum of the prices

of separate goods (that is, lowering one price) a monopolist can increase demands for both

goods (that is, increase two demands).3

Hybrid bundling is a more subtle way of bundling. If we divide both selling and

buying services into two "stages", obtaining membership and making transactions, hybrid

bundling can be interpreted as pure bundling of memberships of two sides and unbundled

transactions of two sides. This is not the same as classic pure bundling, as transactions

on different sides are separated and discretionary. It is also different from mixed bundling,

as each user may make multiple transactions on either side, and the number of her sales

need not equal that of her purchases (that is, they need not match "one to one").4

Rochet and Tirole (2006) show that a standard two-sided platform can maximize prof-

its by an unbundled-sales type strategy involving separate membership fees and separate

transaction fees for two sides. We show that when the market is mixed, hybrid bundling

can further increase platform profits, because the bundled membership fee achieves mul-

tiproduct price discrimination.

We uncover the key mechanism of hybrid bundling, which we call the two-part-
tariff effect: Imposing a small bundled membership fee on top of any transaction fees
always leads to zero first-order decrease in the demand of consumers who use both services

(whom we call seller-buyers). This effect enables the platform to extract more surplus

from seller-buyers with hybrid bundling. When such gains dominate the losses due to

3Some mixed two-sided platforms use these classic strategies, such as Microsoft’s Word software which
is a pure bundle of both editing and reading functions that could potentially be separated as in the case
of PDF software.

4The classic models of mixed bundling mentioned previously assume that each bundle consists of one
unit of each product, and each consumer consumes at most one unit of each product. In section 6 we
provide a detailed discussion of these differences.
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single-service users, hybrid bundling dominates unbundled sales.

We present a series of conditions that guarantee such an outcome, where three main

factors favoring hybrid bundling emerge: the degree of mixedness, measured by the
proportion of seller-buyers amongst all users (depending on prices and consumers’valua-

tions); the scope economies in provision of two services; and negative correlation between

consumers’valuations of two services. We summarize the general insights from our results

below:

i) The profitability of hybrid bundling depends critically on market mixedness. There

needs to be a positive number of seller-buyers under unbundled sales in order for the

two-part-tariff effect to increase platform profits.

ii) The two-part-tariff effect generally increases the degree of mixedness. Under certain

technological assumptions that fit real-life financial intermediaries and telecommunication

networks, the higher is the market’s degree of mixedness under unbundled sales, the more

likely that hybrid bundling will dominate unbundled sales.

iii) Hybrid bundling exploits scope economies better than unbundled sales, even if the

platform saves equal costs under both of these strategies when providing two services to

one same user compared to providing them to two different users. This is because hybrid

bundling increases the proportion of seller-buyers among users, who are more cost-effective

than single-service users.

iv) When consumers’valuations of two services are weakly negatively correlated (in-

cluding independence), hybrid bundling always dominates.

v) The desirability of hybrid bundling does not depend particularly on users’ability

to take account of the service they value less in their decisions to join the platform. That

is, even if all users base their membership decisions solely on the higher one between their

expected benefit from selling and that from buying, all the results above remain robust.

Point iv) confirms similar results on bundling found in "one-sided" markets.

Point i), ii), iii) and v) are new findings of this paper, which are consistent with platform

pricing behaviors observed in real life. For instance, in different financial intermediation

markets, the popularity of hybrid bundling tends to "correlate" with the degree of mixed-

ness: stock exchanges normally face a very high proportion of users who both sell and buy,

and they normally use hybrid bundling; while social lending platforms (which facilitate

lending and borrowing among individuals, such as Zopa.com) usually have a much lower

proportion of users who both lend and borrow, and they usually employ unbundled sales.

We postulate that the distributions of valuations in these markets are such that, even if

stock exchanges also used unbundled sales, the degree of mixedness they face would still

be much higher than in social lending. Then point ii) tells us that they are more likely to

find hybrid bundling a more attractive strategy.

The remainder of this paper is structured as follows. Section 2 describes the model. In

section 3 we discuss unbundled sales as a benchmark. Section 4 examines hybrid bundling

8



and compares it to unbundled sales, where we present the main results. In section 5 we

discuss two extensions and check the "robustness" of results under a different production

technology and under bounded agent rationality. Section 6 discusses in detail how our

results relate to the existing literatures on bundling and multiproduct pricing. Section 7

concludes and discusses possible extensions.

2 Model

We study a market with one monopoly platform and a continuum [0, 1] of agents. The

agents may want to trade a certain kind of good, and the only way to do this is to use the

buying and selling services provided by the platform.

The market works in three stages:

Stage 1 - The platform chooses a strategy (unbundled sales or hybrid bundling) and

announces relevant prices;

Stage 2 - Each agent observes the prices and decides whether to use the platform only

as a buyer, only as a seller, as both a buyer and a seller (by paying the relevant membership

fees), or not to use it at all;

Stage 3 - Users who decide to use the platform trade.

2.1 The platform

The platform has two strategies:

Unbundled sales - It separates the services provided to sellers and buyers, and sets
different prices for different sides. The relevant price vector is denotedPU ≡ (aSU , a

B
U , A

S , AB) ∈
R+4, where AS and AB are the respective membership fees for each seller and buyer, and

aSU and aBU are the respective usage fees per transaction borne by the seller and buyer

involved.5

Anyone who wishes to use both services under this strategy must pay both membership

fees.

Hybrid bundling - The platform offers every potential user access to both selling

and buying services. The relevant price vector is denoted PH ≡ (aSH , a
B
H , A) ∈ R+3, where

A is the bundled membership fee for access to both services, and aSH and a
B
H are usage

fees per transaction borne by the seller and the buyer involved, respectively.

Notice that, under hybrid bundling, any user can make multiple numbers of transac-

tions on either side of the market. This distinguishes hybrid bundling from mixed bundling

strategies studied in the literature, which only allow unit-demand of either product by each

consumer (e.g. McAfee, McMillan and Whinston (1989)).

5We use superscripts to denote market sides (S for S
¯
eller and B for B

¯
uyer) and subscripts to denote

strategies (U for U
¯
nbundled sales, and H for H

¯
ybrid bundling).

9



As we discuss in detail in section 4.1, neither unbundled sales nor hybrid bundling can

replicate the other unless the bundled membership fee A is zero. When A is positive, they

will generally induce different demands.

We focus on these two strategies for three reasons:

i) Unbundled sales is an optimal strategy in standard two-sided markets (see Rochet

and Tirole (2006)). Hybrid bundling appears to be the prevalent type of strategy employed

by real-life mixed two-sided platforms, and it is relevant only if the market is mixed. Given

the diffi culties in fully characterizing the optimal multiproduct nonlinear pricing strategy

in our setting (mainly due to the network effects that link the demands of two sides, which

we specify shortly), hybrid bundling becomes a natural first step.

ii) Within the set of pure and mixed bundling strategies with two-part tariffs, since each

service (buying or selling) can be divided into two stages (membership and transaction),

and either pure bundling or mixed bundling could be done in each stage (or even across

stages), the total number of ways to bundle is quite large. Since not all such strategies

seem very practical (such as pure bundling of transactions of two sides and unbundled

memberships), we have to draw the line somewhere. Thus, the two prominent strategies

again provide a natural starting point.6

iii) These two strategies reflect the contrast between standard and mixed two-sided

markets that we want to show: mixedness allows the platform to exploit multiproduct

price discrimination.

Cost These two strategies may involve different cost structures for the platform. A

dedicated analysis of the impact of such differences is provided in section 5. In the main

parts of the paper, we ignore such differences and use the following assumption:

Assumption C (Cost structure) In both strategies, if a user only uses the selling (resp.
buying) service, the platform incurs fixed cost FS (resp. FB) for her; if a user uses

both services, the platform incurs fixed cost F for her. In addition, the platform

incurs a variable cost of c per transaction. We assume min(FS , FB, F, c) ≥ 0, and

F ∈ [max(FS , FB), FS + FB].

This is a standard assumption except that it allows for the possibility of scope economies

in the platform’s provision of two services. Note that this cost structure applies to both

6We do not consider any kind of bundling of transactions. We do not study formally the case of mixed
bundling of memberships, either. However we can show that our model does accommodate the latter, the
caveat being that in our model there always exist strategies of pure bundling of memberships that replicate
the demand and profit under mixed bundling of memberships. As such replication is not a general property
in different models, the results we show are actually only about pure bundling of memberships, and should
not be invoked in other circumstances. While our model explains platforms’incentive to use the hybrid
bundling strategy, further work is needed to understand why they refrain from using mixed bundling of
memberships in real life.
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strategies and hence the possible scope economies do not necessarily favor either strategy

ex ante.

The platform maximizes profits.

2.2 The agents

The whole set of agents is denoted Ω. An agent ω ∈ Ω, by using the platform, gets a

constant benefit vSω from each sale, and a constant benefit vBω from each purchase.7 The

pair of valuations (vSω , v
B
ω ) is called agent ω’s type.

Agents have different types. The distribution of types is given by G on a support

V ⊆ R2. Each agent knows her own type, but the platform only knows G.

Assumption 1 (Distribution) The type space V is weakly convex and has full dimension
on R2, and distribution G has no atoms on V.

This is a relatively weak version of the standard regularity assumption used in the

literature of bundling and multiproduct pricing.8 By using a two-dimensional type space,

our model links the literature on two-sided markets to the one on bundling.9

We denote the joint density function g, the conditional distributions GS|B and GB|S ,

marginal distributions GS and GB, and their respective density functions g S|B, gB|S , gS

and gB.

In stage 2 of the game, each agent decides whether to use the platform’s services or

not. We call this amembership decision. We say an agent becomes a user (or member)
of the platform by paying the relevant membership fee(s). The set of all users is denoted

Y .

In stage 3 of the game, each user decides whether to just sell, to just buy, or to both

sell and buy, by paying the relevant transaction fee(s).10 We call this a trading decision.
Any agent who uses the selling (respectively, buying) service is called a seller (respectively,
buyer).

We denote the set of all sellers S and the set of all buyers B. If a user both sells

and buys, she’s called a seller-buyer, otherwise she’s either a pure seller or a pure

7Notice vSω (resp. vBω ) is the "net" benefit from a sale (resp. purchase) for seller (resp. buyer) ω,
including any payments transferred from the buyer (resp. seller). Only the fees charged by the platform
are not included in vSω and v

B
ω . Similar "net valuation" parameters are used by Rochet and Tirole (2006).

8We do not restrict V to be R+2 as in McAfee, McMillan and Whinston (1989), or a closed set as in
Armstrong (1996). For example, our Assumption 1 allows G to be the bivariate normal distribution, in
which case V is the whole R2 space.

9 In some models of standard two-sided markets (e.g. Rochet and Tirole (2003 and 2006)), an agent
may have a different kind of "two-dimensional" type, e.g. (BS , bS), where BS is her "membership benefit"
as a seller, and bS is her "usage benefit" as a seller. However, such a type still only pertains to one side of
the market, and thus bears no relevance to bundling of services on two sides.

10Any user must trade, because having paid a non-negative membership fee, no-trade would give her
non-positive net payoff which is at least weakly worse than her outside option (0 payoff), in which case we
assume she would not have joined.
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buyer. We denote the set of pure sellers PS, the set of pure buyers PB, and the set of
seller-buyers SB.

These sets are also called market segments. The relationships among them are

summarized as follows:

S = PS ∪ SB; B = PB ∪ SB;

SB = S ∩B; Y = S ∪B = PS ∪ PB ∪ SB.

Ex post, a mixed two-sided market is one where SB 6= ∅.
Now we define the number of agents in these sets as the probability measures of the

relevant sets, including:

The number of sellers: NS ≡ Pr[ω ∈ S].

The number of buyers: NB ≡ Pr[ω ∈ B].

The number of seller-buyers: NSB ≡ Pr[ω ∈ SB].

The number of pure sellers: NPS ≡ Pr[ω ∈ PS] = NS −NSB.

The number of pure buyers: NPB ≡ Pr[ω ∈ PB] = NB −NSB.

The number of users: N ≡ Pr[ω ∈ Y ] = NS +NB −NSB.

To the platform, these numbers are demands from different market segments.

2.3 Transaction

The network effects between the two sides are crucial determinants of the platform’s

demands. We model them in the standard way used in the two-sided market literature,

as summarized in the following assumption.11

Assumption 2 (Network effects) There is a constant positive probability for each buyer
to trade with each seller, which is simplified to 1.

Therefore, each agent’s surplus from using either service is increasing in the number of

agents using the other service. In particular, suppose there are NS sellers and NB buyers,

and the transaction fees are aS and aB, then Assumption 2 implies that an agent of type

(vS , vB) will get total selling surplus (gross of any membership fee):

uS ≡ (vS − aS)NB

and total buying surplus (gross of any membership fee):

uB ≡ (vB − aB)NS

11Rochet and Tirole (2003 and 2006) use this same assumption. Caillaud and Jullien (2003) and
Armstrong (2006) also use an equivalent assumption of a constant probability of matching between agents
from two sides. We use this assumption here to facilitate a straightforward extension from earlier models
and a direct comparison between results.
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As mentioned in Rochet and Tirole (2006), Assumption 2 also implies that the total

volume of transactions on the platform is NS · NB, which we will use later in the profit

function.12

Furthermore, we make the following standard assumption in the bundling literature:

Assumption 3 (Separability) There exists no complementarity or substitutability in
consumption of the two services. In particular, a seller-buyer’s surplus gross of

any membership fee is uS + uB.

A user’s net surplus is then the total surplus she gets from trading minus the mem-

bership fee(s) she pays. For example, a seller-buyer’s net surplus is uS + uB − AS − AB

under unbundled sales, while it is uS + uB −A under hybrid bundling.

2.4 Demand

We make the following normalization assumption:

Assumption 4 (Normalization) Any agent’s outside option (i.e. not joining the plat-
form) gives zero net surplus. Whenever an agent is indifferent between joining and

not joining, she does not join.

Given the platform’s choice of strategy and the relevant prices announced, each agent

makes her membership decision by comparing her net expected surplus from trading with

the outside option, taking account of the expected number of people on either side of the

market. Individual agent’s membership decisions then aggregate into the market demand.

Like in Rochet and Tirole (2006), we assume that, given the platform’s pricing strategy,

all the agents have the same "rational" expectation of the induced market demand. If

such demand exists, we call it the equilibrium demand (or equilibrium outcome).13

Assumption 4 combined with the definitions of uS and uB implies that, whenever one

of NS and NB is zero, the other must also be zero. It is due to the assumption that all

the value that a user can get on the platform comes from the interaction with the opposite

side of the market - there is no value in just being on the platform when there is no one to

trade with. Therefore, (NS = 0, NB = 0) is always an equilibrium outcome regardless of

the pricing strategy chosen and the prices announced. This "trivial" equilibrium outcome

is quite common in models of two-sided markets and it is of little interest to our goal in

this paper, as it always yields zero platform profit. In the remaining parts of the paper

we focus without loss of generality on the more interesting equilibrium outcome with

12Concerns might arise regarding self-trade of a seller-buyer. However this is not a problem in our
model, since each individual agent is infinitesimal and her self-trade has zero measure in the accounting of
the volume of transactions based on probability measures.

13Given the platform’s pricing strategy, the equilibrium demand is actually the "rational expectations
equilibrium" of the subgame that all agents play.
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positive demand. Our task is then to identify such demands14 under different strategies

and compare the platform’s profits.

We start with unbundled sales.

3 Unbundled Sales

Suppose the platform uses unbundled sales and announces PU = (aSU , a
B
U , A

S , AB).15 Then

agents allocate into market segments in the following way:

PSU = {ω | uS > AS , uB ≤ AB}

PBU = {ω | uS ≤ AS , uB > AB}

SBU = {ω | uS > AS , uB > AB}

This means the demands from the two sides of the market at PU are:

NS
U = Pr[ω ∈ PSU ∪ SBU ] = Pr[uS −AS > 0] = 1−GS( A

S

NB
U

+ aSU )

NB
U = Pr[ω ∈ PBU ∪ SBU ] = Pr[uB −AB > 0] = 1−GB(A

B

NS
U

+ aBU )
(1)

Given PU , NS
U and N

B
U are simultaneously determined by system (1).

Notice that neitherNS
U norN

B
U depends directly on the prices applicable to the opposite

side - this is due to consumption separability in Assumption 3. This means that given

PU , an agent actually makes two separate membership decisions, each regarding one side.

Moreover, the criterion she uses in each decision is exactly the average per-transaction

charge on the relevant side: AS

NB
U

+ aSU for selling and
AB

NS
U

+ aBU for buying.

Figure 2 illustrates agent allocation under unbundled sales.16

14Existence of such positive equilibrium demands is guaranteed by Assumption 5 below.
15The analyses and results under unbundled sales are very similar to those in Rochet and Tirole (2006).

This is no surprise because the unbundled sales strategy "treats" a mixed two-sided market exactly the
same way as a standard two-sided market.

16The distribution shown in Figure 2 has support V = [0, v̄S ]× [0, v̄B ]. The same support is also used
in Figures 3, 4 and 5.

14



Figure 2: Agent Allocation under Unbundled Sales

The platform’s profit at PU is then:

ΠU (PU )≡ (AS − FS)NPS
U︸ ︷︷ ︸

pure sellers’membership

+ (AB − FB)NPB
U︸ ︷︷ ︸

pure buyers’membership

+(AS +AB − F )NSB
U︸ ︷︷ ︸

seller-buyers’membership

+(aSU+aBU−c)NS
UN

B
U︸ ︷︷ ︸

transactions

Lemma 1 (Redundancy of unbundled-sales membership fees) For any PU = (aSU , a
B
U ,

AS , AB) ∈ R+4, there exists a degenerate strategy PU0 = (aS′U , a
B′
U , 0, 0) ∈ R+4, such that

PU0 exactly replicates the demand and profit under PU .17

Proof. For any PU = (aSU , a
B
U , A

S , AB) ∈ R+4, let NS
U and NB

U denote the demands

induced by PU which must solve (1) above. Now define

aS′U ≡ aSU + AS

NB
U

aB′U ≡ aBU + AB

NS
U

Then PU0 = (aS′U , a
B′
U , 0, 0) is in R+4 and NS

U and N
B
U also solve (1) at PU0. It is easy to

check that ΠU (PU0) = ΠU (PU ).

The redundancy in the unbundled-sales strategy is due to Assumption 2. As shown in

Figure 2, we only need one threshold on each side of the market to determine all market

segments, thus one price for each side will suffi ce.

From now on, we focus without loss of generality on the degenerate vector PU0 as the

effective unbundled-sales strategy. And we make the following regularity assumption:

Assumption 5 (Existence of optimal unbundled-sales strategy) There exists an
optimal degenerate unbundled-sales strategy denoted by P∗0 ≡ (aS∗, aB∗, 0, 0) on the

interior of support V, at which the unbundled-sales profit is maximized and positive.18

17Rochet and Tirole (2006) also mentioned the redundancy in the unbundled-sales strategy.
18This assumption simply serves the same purpose as the standard regularity assumptions used in the
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4 Hybrid Bundling

Suppose the platform uses hybrid bundling strategy PH = (aSH , a
B
H , A). In this section we

assume agents are fully rational, and use "backward induction" while making membership

and trading decisions.

Thus, given PH = (aSH , a
B
H , A), each agent’s membership decision is based on a com-

parison between max(uS , uB, uS + uB) and the membership fee A. This means the set of

users at PH is:19

YH ≡ {ω | max(uS , uB, uS + uB) > A}

And they allocate into different market segments in the following way:

PSH ≡ {ω ∈ YH | max(uS , uB, uS + uB) = uS} = {ω | uS > A, uB ≤ 0}

PBH ≡ {ω ∈ YH | max(uS , uB, uS + uB) = uB} = {ω | uS ≤ 0, uB > A}

SBH ≡ {ω ∈ YH | max(uS , uB, uS + uB) = uS + uB}

= {ω | uS > 0, uB > 0, and uS + uB > A}

where uS = (vS − aSH)NB
H , and u

B = (vB − aBH)NS
H .

Because the same bundled membership fee A applies to both services, it will affect

every agent’s membership decision, and in turn affect the demands in all market segments

under hybrid bundling. Therefore the bundled membership fee A is not redundant. Figure

3 illustrates agent allocation at PH .

Figure 3: Agent Allocation under Hybrid Bundling (with Full Rationality)

The demands from two market sides at PH = (aSH , a
B
H , A) are determined simultane-

bundling literature. We provide a detailed discussion of it in appendix.
19We use subscript H for all results derived under hybrid bundling with full rationality.

16



ously by the following two equations:20

NS
H = Pr[ω ∈ PSH ∪ SBH ] ≡ nSH(aSU , a

B
U , A)

NB
H = Pr[ω ∈ PBH ∪ SBH ] ≡ nBH(aSU , a

B
U , A)

The platform’s profit under hybrid bundling is then:

ΠH(PH)≡ (A− FS)NPS
H + (A− FB)NPB

H + (A− F )NSB
H + (aSH + aBH − c)NS

HN
B
H

4.1 Demand comparison

Lemma 2 (Replication with degenerate strategies) At any transaction fees (aS , aB) ∈
R+2, the degenerate unbundled-sales strategy PU0 = (aS , aB, 0, 0) and the degenerate hy-

brid bundling strategy PH0 = (aS , aB, 0) produce exactly the same demand and profit.

Proof. See appendix.
This lemma is quite intuitive. When all membership fees are set to zero, a unbundled-

sales strategy and a hybrid bundling strategy with exactly the same usage fees will look

exactly the same to agents. Thus each agent will make the same membership and trading

decisions under these strategies, resulting in the same demand and profit in each market

segment.

When membership fees are positive, however, an agent may make different decisions

under different strategies.

Suppose we set the same aS , aB in both strategies and AS = AB = A > 0. It is easy to

see the different shapes of each market segment from Figures 2 and 3. In particular, there

exist non-users, pure sellers, and pure buyers in the unbundled-sales system who become

seller-buyers under hybrid bundling. Their surplus from either buying or selling alone is

not high enough to compensate the membership fee, but their combined surplus is. They

value the savings from a lower combined membership fee for both services under hybrid

bundling.

If we set AS = AB = 1
2A > 0, still there exist pure sellers and pure buyers (among

others) under unbundled sales who become seller-buyers under hybrid bundling. Take an

agent α, for example, who expects the platform to have NS sellers and NB buyers, and

has vSα ∈ (aS , A
S

NB + aS) and vBα > A
NS + aB. She will be a pure buyer under unbundled

sales since 0 < uSα < AS and uBα > A > AB; but she will be a seller-buyer under hybrid

bundling because uSα + uBα > A.21

20The specific demand formulae are shown in appendix, where NS
H and NB

H are determined at PH by
a simultaneous system of two equations (6). In case the solutions to that system are correspondences, we
take the suprema of them. This is feasible because NS

H and NB
H are both bounded (NS

H , N
B
H ≤ 1).

21Notice our discussion in neither of the two cases here is exhaustive, and not all the differences in
demands are represented in the figures. Whenever demand on one side changes (e.g. NB), the average
per-transaction charge on the other side (e.g. A

NB +aS) will be affected through the network effects. These
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In general, unbundled sales and hybrid bundling will yield different demands, unless

the bundled membership fee A is zero.

For the remainder of the paper, we will use a hybrid bundling strategy that is based

on the degenerate strategies discussed in Lemma 2.

We start from a strategy with arbitrary transaction fees (aS , aB) ∈ R+2 and zero

bundled membership fee, denoted PH0 ≡ (aS , aB, A = 0). By Lemma 2 we know it is

equivalent to an unbundled-sales strategy with the same transaction fees (aS , aB) and no

membership fees. Then we raise the bundled membership fee A by one unit from zero. This

change breaks the equivalence between this strategy and any unbundled-sales strategy, and

therefore can serve as a tool to study the differences between these two strategies. The

results we show will be the marginal effects on demand and profits by applying such a

strategy.

4.2 The two-part-tariff effect

The bundled membership fee applies to all users of the platform, therefore raising it by one

unit results in a simultaneous and commensurate rise in the final prices of all users. Such

a price rise will generally decrease demand, but its impact on different market segments

is not the same. In particular, we have the following result.

Proposition 1 (The two-part-tariff eff ect) For any transaction fees (aS , aB) ∈ R+2,

at PH0 = (aS , aB, 0) we have

∂NSB
H

∂A
(PH0)= 0.

That is, at any transaction fees, imposing a small bundled membership fee on every-
one has no first-order effect on demand of seller-buyers.

Proof. See appendix.
We illustrate the intuition of Proposition 1 in Figure 4.

"finer" changes can be seen from (6) and (7) in appendix.
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Figure 4: The Two-Part-Tariff Effect

At transaction fees (aS , aB), agent allocation in the market is fully characterized by

two straight lines vS = aS (line fh) and vB = aB (line dj) in Figure 4, which split the

type space V (assumed to be [0, v̄S ]× [0, v̄B] here) into four segments:

Pure sellers PSH (cf v̄Sj); pure buyers PBH (cdv̄Bh); seller-buyers SBH (cjih); and

non-users (ofcd).

When the bundled membership fee is raised to A > 0, all users’final prices are raised

together by A. This means all the service options that the platform provides (selling,

buying or both) become equally more expensive, whereas the price differences among

them stay unchanged. Therefore raising A does not lead to any agent switching from

single-service user to two-service user or reversely, but only causes the lowest-typed users

to leave the platform. This is represented in Figure 4 as:

PSH shrinking by cfgb; PBH shrinking by acde; and SBH shrinking by abc.

We focus on seller-buyers - SBH , and the change in their demand - area abc.

Without the bundled membership fee, seller-buyers are characterized by SBH = {ω |
uS > 0, uB > 0} = {ω | vS > aS , vB > aB}. Since the bundled membership fee applies to
both services that seller-buyers use, raising it must cause changes "along both dimensions"

of set SBH . In particular, a positive A imposes an additional constraint, uS + uB > A,

on set SBH , which requires that a seller-buyer get total benefits from using two services

high enough to compensate the extra fee A.

Put differently, the burden to compensate the one-dimensional rise in the bundled mem-

bership fee from zero to A is shared by increases in seller-buyers’valuations in two dimen-

sions. Therefore the change in SBH (area abc) has a "triangular" shape, whose probability

measure is of order greater than A (e.g. it is proportional to A2 in the case of uniform dis-

tribution). This implies that the first-order decrease in the number of seller-buyers, ∂N
SB
H
∂A ,

vanishes when A = 0 (e.g. it is proportional to A in the case of uniform distribution, and
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therefore vanishes when A = 0).22

In mathematical terms, the two-part-tariff effect reflects the difference in dimensional-

ity between the type space V (two-dimensional) and the domain of A (one-dimensional).

If the type space were one-dimensional (as in standard two-sided markets), there would

be no such effect.23

In summary, Proposition 1 says that, starting from any transaction fees, imposing a

small additional membership fee on everyone will only dissuade a negligible number of

seller-buyers from continuing to use the services.

This effect does not exist in either pure bundling or mixed bundling strategies.24 Only

a two-part tariff with a bundled membership fee can achieve it. Therefore we call it the

two-part-tariff effect.

4.3 The degree of mixedness

The seller-buyers are of special importance to the platform in a mixed two-sided market.

They are more active - each of them acts as both a seller and a buyer and therefore brings

"double" revenues; they are also potentially more cost-effective - their fixed cost to the

platform is no more than the combination of two single-service users, since we allow the

possibility of scope economies (see Assumption C). As we will show shortly, the conditions

for hybrid bundling to dominate unbundled sales would not hold without them.

Given price P of either strategy, we use the proportion of seller-buyers among all

users as a measure of how mixed a two-sided market is, which we call the degree of
mixedness, denoted m(P) ≡ NSB

N . This measure turns out to be an important factor in

many of the results we present later.

Lemma 3 For any transaction fees (aS , aB) ∈ R+2, at PH0 = (aS , aB, 0) we have

∂

∂A
m(PH0) > 0 if and only if 0 < m < 1.

That is, the degree of mixedness is strictly increasing in the bundled membership fee if and

only if there exists a positive measure of seller-buyers and the market is not fully mixed.

Proof. See appendix.
As long as the transaction fees aS and aB induce some but not full mixedness in

the market, imposing a small bundled membership fee strictly increases the degree of

22The argument here relies on a non-empty set of seller-buyers, which is relaxed in the formal proof.
In the case that transaction fees aS and aB induce an empty SBH , i.e. NSB

H = 0, the area abc must also
have a zero probability measure regardless of A, which means the marginal effect of raising A on NSB

H is
still zero.

23Note that the two-part-tariff effect relies on A starting from zero, so that the multiproduct monopolist
is not already exploiting price discrimination in two dimensions before it raises A. From A > 0, further
raising the bundled membership fee may lead to first-order decrease in the demand of seller-buyers.

24We present a detailed discussion of the differences between these strategies in section 6.
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mixedness, because on the first order this strategy discourages some single-service users

but none seller-buyers from using the platform.

If there are no seller-buyers at certain transaction fees (NSB
H = 0), the degree of mixed-

ness m is either zero (when NH > 0) or non-existent (when NH = 0). Imposing a bundled

membership fee in either case cannot increase m, as it does not change the number of

seller-buyers. Thus, if at some transaction fees hybrid bundling does increase m, it must

be that the market is already mixed.

Since seller-buyers are more cost-effective compared to single-service users, and raising

A generally increases their proportion among users, it will therefore save costs for the

platform. We discuss this further in the next section.

4.4 When to allow buyers to sell?

In this section we answer the question of when the platform should use hybrid bundling

instead of unbundled sales.

We present a series of conditions that guarantee the dominance of hybrid bundling.

Starting from the optimal unbundled-sales strategy P∗0 = (aS∗, aB∗, 0, 0) (defined in As-

sumption 5), we impose an additional bundled membership fee on top, which together

with aS∗ and aB∗ constitutes a hybrid bundling strategy. If this manipulation increases

profits, we are sure that hybrid bundling dominates unbundled sales.

In Proposition 2 we present the most general (and least transparent) condition. It

implies strict dominance of hybrid bundling in a wide range of situations, including in-

dependence and negative correlation between agents’valuations for two services (vS and

vB). We discuss these more specific cases in the corollaries to the proposition.

Proposition 2 Suppose P∗0 = (aS∗, aB∗, 0, 0) is an optimal unbundled-sales strategy, then

hybrid bundling strictly dominates unbundled sales if:

(FS + FB − F )[
gS(aS∗)GB|S(aB∗|aS∗)(1−GB|S(aB∗|aS∗))

1−GB(aB∗)
+

gB(aB∗)GS|B(aS∗|aB∗)(1−GS|B(aS∗|aB∗))
1−GS(aS∗)

]

+

∫ +∞

aS∗

∫ +∞

aB∗
[gS(s)gB|S(b| aS∗) + gB(b)g S|B(s| aB∗)− g(s, b)]dbds > 0.

(2)

Proof. See appendix.
Why would imposing a small bundled membership fee on everyone be profitable? The

gains come from two sources - cost saving and revenue increase - each represented by a

term in condition (2).

Cost saving The first term on the left-hand side of condition (2) represents the cost

saving from hybrid bundling, which is always non-negative regardless of the distribution
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of agents’valuations. The two parts in brackets of this term correspond respectively to

the decreases in demands of pure sellers and pure buyers due to increasing A.

As Lemma 3 shows, raising A generally decreases the number of single-service users

and increases the proportion of seller-buyers, who are more cost-effective whenever there

are scope economies. Therefore raising A will generally save costs for the platform.

Note this effect becomes zero when there exist no scope economies (F = FS + FB),

no seller-buyers (NSB = 0), or no single-service users (NPS = NPB = 0). It is positive in

all other situations.

Revenue change Raising the bundled membership fee by one unit from zero has three

first-order effects on revenues, represented by the second term of condition (2), whose sign

depends on the underlying distribution of valuations.

i) it reduces the number of users paying memberships (the losses in demands of single-

service users NPS and NPB are of the same order as the change in A);

ii) it reduces the total volume of transactions between sellers and buyers, leading to

lower total transaction fees paid (the total volume of transactions NS · NB decrease, as

NS = NPS +NSB and NB = NPB +NSB, where both NPS and NPB decrease and NSB

does not change); and

iii) it increases membership revenue per user by one unit.25

We analyze their net effect in each market segment:

Seller-buyers: We know from the two-part-tariff effect that raising A does not change
the demand of seller-buyers, thus there is no loss in the volume of transactions caused by

them, either. The platform therefore gets a pure gain of one unit from each and every

seller-buyer, with the total gain exactly equal to the number of them.

Pure sellers: Their demand NPS decreases, leading to losses in transaction revenue,

but there are gains in their membership revenue due to the higher fee charged. The net

effect may be positive or negative, depending on the distribution of valuations.

Pure buyers: Similar to pure sellers, their demand NPB also decreases, leading to

losses in transaction revenue, but there are also gains in their membership revenue. The

sign of the net effect depends on the distribution of valuations.

Thus, the overall impact of hybrid bundling on revenues may be negative or positive,

depending on the distribution of valuations. We present results for two special cases below.

4.4.1 The case of independence

Corollary 1 Hybrid bundling strictly dominates unbundled sales if vS and vB are inde-
pendent.

25Raising A has other (indirect) effects on demand that are not listed here, which are due to the network
effects. These effects are however negligible when A = 0, since they are all of order greater than the change
in A. See formulae (8) and (9) in appendix for these effects when A > 0.
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Proof. See appendix.
When vS and vB are independent, raising A by one unit from zero causes no change

in revenues from either pure sellers or pure buyers. The optimality of aS∗ and aB∗ under

unbundled sales guarantees that, the gains from their membership payments exactly com-

pensate the losses in their demand plus the losses in their volume of transactions. This

leaves us with seller-buyers, but we already know there is no loss in demand or transactions

due to them.

Therefore the net effect of raising A by one unit on revenues will be as if the platform

is extracting one unit of surplus from each and every one of the existing seller-buyers. This

means the second term of condition (2) reduces exactly to the number of seller-buyers at

P∗0, N
SB∗
U .

Note that independence between vS and vB also implies NSB∗
U = NS∗

U ·NB∗
U , and As-

sumption 5 guarantees that the numbers of sellers and buyers must both be positive, oth-

erwise the platform gets zero optimal profit under unbundled sales. Thus, there must also

be a positive number of seller-buyers at the optimal unbundled-sales strategy, NSB∗
U > 0,

and the gains from hybrid bundling is therefore strictly positive.

4.4.2 The case of negative correlation

Corollary 2 Suppose P∗0 = (aS∗, aB∗, 0, 0) is an optimal unbundled-sales strategy, then

hybrid bundling strictly dominates unbundled sales if any of the following conditions
holds:

(i) GS|B(aS∗
∣∣ b) is strictly increasing in b for all b > aB∗ in V; or

(ii) GB|S(aB∗
∣∣ s) is strictly increasing in s for all s > aS∗ in V; or

(iii) The two functions above are both constants for all b > aB∗ and s > aS∗ in V,
respectively, GS|B(aS∗

∣∣ aB∗) < 1 and GB|S(aB∗
∣∣ aS∗) < 1.

Proof. See appendix.
Recall that the second term on the left-hand side of condition (2) depends on the

conditional distributions GB|S and GS|B, which determines the "correlation" between vS

and vB. The conditions in Corollary 2 can therefore be roughly interpreted as a form of

negative correlation between vS and vB.

For instance, condition (i) means that within the set of all buyers (users with vB >

aB∗), the higher a buyer’s valuation for buying is (high vB), the more likely she will have a

valuation for selling that is lower than aS∗ (low vS). In Figure 4, this means that, within

the set of pure buyers (PBH , where users have vB > aB∗ but vS < aS∗), there is a higher

density of agents when vB is higher, and a lower density when vB is lower.

As we discussed previously, raising the bundled membership fee A makes the platform

lose pure buyers with low types (the area acde in Figure 4 where vB is low). Since when
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condition (i) holds, there are fewer pure buyers close to the lower end of PBH , the losses

in demand and transactions are therefore also lower compared to the case when (i) does

not hold.

The gains in memberships from pure buyers due to raising A, however, is higher when

condition (i) holds, as there are more of them close to the higher end of PBH , who stay

on the platform. These gains more than compensate for the losses, and thus the platform

makes positive profits from pure buyers.

The revenue changes due to pure sellers will then be at least covered by the pure gains

from seller-buyers, no matter how the distribution of valuations behave within the set of

sellers. This results in a strictly positive net effect on total revenues.

The case when condition (ii) holds is completely symmetric. Thus, either (i) or (ii)

will ensure that the overall impact of raising A on revenues, the second term of condition

(2), is positive. This is why negative correlation favors hybrid bundling.

Condition (iii) corresponds to independence between vS and vB in a "weak" sense, and

actually implies dominance of hybrid bundling under independence in the normal sense.

4.4.3 The case of positive correlation

When vS and vB are positively correlated, however, we cannot conclude for all kinds of

distributions what the sign of the net impact of hybrid bundling on revenues would be.

In this case, unbundled sales generally can already do quite well in capturing the people

with high valuations for both services (since they are positively correlated!). Therefore

hybrid bundling is less likely to bring more revenues.

However, the effect of cost saving under hybrid bundling (the first term of condition

(2)) is always present regardless of the correlation between valuations, and it therefore

expands the range of situations of dominance by hybrid bundling.

4.4.4 The importance of mixedness

Corollary 3 Condition (2) does not hold if the market is not mixed at the optimal
unbundled-sales strategy.

Proof. See appendix.
As mentioned in the discussion of Proposition 2, both sources of gains under hybrid

bundling rely critically on seller-buyers. Without them, the market would not be mixed,

and hence there would be no cost saving nor revenue gain by raising the bundled mem-

bership fee from zero.
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5 Robustness

In this section we discuss two extensions of the model. In each of them, we modify a

previous assumption to make the model more suitable for some real-life examples. They

therefore serve as "robustness checks" of the results we have found.

5.1 Technological impact

The examples we have discussed span various industries, and the platforms in them may

operate on different business models and employ distinct technologies. Like many other

models in the literature of bundling, our model so far allows for much more generality on

the consumption side (by imposing minimal restrictions on the distribution of consumer

valuations) than on the production side (by using possibly oversimplified cost assump-

tions). In this section, we take a step further on the production side of the bundling

story.

After all, most if not all the conditions in the bundling literature for one strategy to

dominate another boil down to restrictions on costs and distribution of valuations. We

believe that generalizing the cost assumptions used in the literature will add power to

the conditions derived. We also think that the assumption we use in this section is more

suitable than Assumption C for many of the examples we have discussed.

For this section only, we change the cost assumption to the following:

Assumption NC (New cost structure) With unbundled sales, the platform incurs

fixed costs FS per seller and FB per buyer. With hybrid bundling, it incurs a

fixed cost F for any user. The variable cost it incurs is the same with either

strategy, which is c per transaction. We still assume min(FS , FB, F, c) ≥ 0, and

F ∈ [max(FS , FB), FS + FB].

Under Assumption NC, the fixed cost incurred for a seller-buyer is FS + FB with

unbundled sales, while it is F with hybrid bundling. Thus there is again possibility for

scope economies. However, Assumption NC also implies that the single-service users

are more costly under hybrid bundling than unbundled sales. Thus changing the cost

assumption from C to NC does not necessarily favor either strategy ex ante. However we

show in Proposition 3 that hybrid bundling again finds a better way to exploit the scope

economies.

Real-life examples Assumption NC suits the production technologies of platforms

whose membership include some hardware device or registration process which represents

a large part of the fixed cost per member. In mobile telecommunications, for instance, it

is reasonable to assume that the fixed cost of a new subscriber is mainly due to the mobile
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phone given out along with the subscription. Suppose some network provider used unbun-

dled sales, then it would need to provide each caller with a device that makes calls, and

each receiver with one that receives; a user who joins both sides would then obtain both

devices. With hybrid bundling, instead, the platform needs to provide every user with one

device combining the two functions. Thus Assumption NC describes this example better

than Assumption C.

For financial intermediaries, for instance, the fixed cost involved in setting up a new

account is presumably mainly the time and effort it takes to gather, verify and evaluate

relevant information of the account holder. If the platform used unbundled sales, it might

need to gather and process different sets of information from borrowers (on their trustwor-

thiness, say) and lenders (on their available funds, say); for a same user who joins both

sides, it is unlikely that the platform can save much between the two procedures, as two

different accounts (one for each side) would need to be set up for that user. If it used

hybrid bundling, however, it would need both sets of information of every account holder,

since it would need to provide both services to each of them. Thus Assumption NC again

seems a better fit than Assumption C.

Impact on results The main impact of Assumption NC on our earlier results is that the

transition from the optimal degenerate unbundled sales strategy to its equivalent hybrid

bundling strategy will not be "smooth" in profit any more. This is because there is a

complete change in the structure of fixed costs when we switch from unbundled sales to

hybrid bundling, including:

i) additional fixed cost of each pure seller (increased by F − FS ≥ 0) and each pure

buyer (increased by F − FB ≥ 0); and

ii) reduction in fixed cost of each seller-buyer (decreased by FS + FB − F ≥ 0).

Thus we may need additional conditions to balance these changes in fixed costs. These

conditions are summarized in the following proposition.

Proposition 3 Under Assumption NC, hybrid bundling strictly dominates unbundled sales
if any of the following conditions holds:

(i) FS 6= FB, min(FS , FB) > 0, and

m(P∗0) ≥ F −min(FS , FB)

min(FS , FB)
(3)

where m(P∗0) =
NSB∗
U
N∗U

is the degree of mixedness of the market at the optimal unbundled

sales price P∗0;

(ii) FS = FB > 0, and condition (3) holds with strict inequality;
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(iii) FS = FB > 0, condition (3) is binding, and the following condition holds:

(F − FS)
gS(aS∗)GB|S(aB∗|aS∗)

1−GB(aB∗)
+ (F − FB)

gB(aB∗)GS|B(aS∗|aB∗)
1−GS(aS∗)

+

∫ +∞

aS∗

∫ +∞

aB∗
[gS(s)gB|S(b| aS∗) + gB(b)g S|B(s| aB∗)− g(s, b)]dbds > 0;

(4)

(iv) FS = FB = F = 0, and condition (4) holds.

Proof. See appendix.
The intuition of Proposition 3 is two-fold.

First, we find a new condition under Assumption NC: condition (3), which controls the

cost changes during the transition from unbundled sales to hybrid bundling. Its left-hand

side is the proportion of seller-buyers in all users at the optimal unbundled sales prices.

Since seller-buyers are still potentially more cost-effective under Assumption NC, a higher

proportion of them will save more fixed cost during the transition from unbundled sales to

hybrid bundling. The right-hand side of condition (3) is the percentage increase in fixed

cost per single-service user on the low-cost side. Condition (3) therefore ensures that there

are suffi ciently many seller-buyers who bring savings in fixed cost that at least cover the

losses due to single-service users, so that the transition is at least smooth in profit.

Second, condition (4) is the new version of condition (2), which represents the profit

changes under hybrid bundling due to raising A. The first two terms of its left-hand side

come from the cost savings during the transition between strategies. The two-part-tariff

effect says that raising the bundled membership fee will only reduce the demand from

single-service users on the first order, who under Assumption NC are more costly to the

platform with hybrid bundling. Therefore reducing their proportion always saves fixed

cost for the platform. The third term here is exactly the same as the second term of

condition (2) we presented earlier, which represents the net profit implications that are

not directly related to production technology.

Conditions (3) and (4) are useful in different situations of cost parameters.

New insights Proposition 3, especially condition (3), provides new insights for the

observation that some mixed two-sided platforms bundle while others do not. In situations

(i), (ii) and (iii), condition (3) implies that, given the same percentage change in costs,

hybrid bundling is more likely to dominate unbundled sales in markets with higher degrees

of mixedness.

As we discussed in section 1, this result is consistent with platform pricing behav-

iors observed in financial intermediation markets. Unlike stock exchanges, social lending

platforms usually employ unbundled sales of their services to lenders and borrowers. We

interpret this as the result of a much lower proportion of users who both lend and borrow

in social lending than the proportion of users who both sell and buy in stock exchanges.

27



Even if platforms in both markets used unbundled sales, stock exchanges would most likely

still end up with a higher degree of mixedness, and thus they are more likely to find hybrid

bundling more attractive.

5.2 Bounded agent rationality

The assumption in section 4 that agents take into consideration all future benefits from

trading in their membership decisions seems to work in favor of hybrid bundling vis-à-vis

unbundled sales. Unlike unbundled sales, hybrid bundling has only one membership fee,

which does not directly "prompt" an agent to associate it with a particular side of the

market. While a fully rational agent will consider the expected surplus from trading on

both sides, an agent with bounded rationality may ignore part of these surpluses, which

will generally result in lower demand for the platform’s services under hybrid bundling.

In this section, we "test" the results we have found so far under an assumption of

bounded agent rationality. We show that they remain robust even if each agent in her

membership decision considers only the benefit from trading on one side of the market.

We continue to use hybrid bundling price PH = (aSH , a
B
H , A).

Motivating example Consider an agent who wants to buy a CD on eBay. Before

signing up, suppose she has a high expected payoff from this purchase. She may also

have some idea about the possibility that she could one day sell her old CDs there and

expects a positive payoff from selling (which is lower than that from the current purchase).

Nonetheless, before joining she is not sure how the system will work and how the payoff

from future selling can be realized. Thus at the moment she may have to make the decision

based only on her current need. After becoming a user, however, through time she gets

familiarized with the services and can finally realize her expected payoff from selling as

well. In this example, the complexity of the system, or the agent’s lack of information (of

how to realize expected payoff), makes it impractical to take account of the "less urgent"

need when making the decision. The agent here is not fully rational - she cannot consider

all potential needs ex ante. It is this particular kind of bounded rationality that we will

focus on in this section, and it is summarized in the following assumption:

Assumption BR (Bounded Rationality) Given hybrid bundling price PH , each agent
makes her membership decision based only on her more urgent need - the higher of

uS and uB.

We believe for online trading and social lending markets, this is a more realistic as-

sumption than the one of full rationality. Note that Assumption BR does not apply when

the platform uses unbundled sales, because the membership fees of that strategy are sep-

arated for buying and selling, and consumption separability (Assumption 3) guarantees

that an agent does not need to compare uS and uB in her membership decision regarding
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either side.26 The agent is "forced" to make the rational membership decision under un-

bundled sales. Thus, compared to full rationality, Assumption BR simply works against

the appeal of hybrid bundling vis-à-vis unbundled sales.

Under Assumption BR, the group of all users at hybrid bundling price PH is the

following set:27

YBR ≡ {ω | max(uS , uB) > A}

From an ex post view, the set of seller-buyers at PH takes the following form:

SBBR ≡ {ω ∈ YBR | min(uS , uB) > 0}

= {ω | max(uS , uB) > A, and min(uS , uB) > 0}

Each seller-buyer, in the first instance of using the platform, is only interested in

either buying or selling. The first requirement max(uS , uB) > A makes sure she is willing

to sign up in the first instance. Nonetheless, after becoming a member she is able to use

the service of the opposite side without any further fixed fees. The second requirement

min(uS , uB) > 0 is to guarantee that she will indeed do so later on. Thus it is exactly the

agents in set SBBR that will end up using the services of both sides.

The pure sellers and pure buyers are then the following sets:

PSBR = {ω | uS > A, uB ≤ 0}

PBBR = {ω | uS ≤ 0, uB > A}

Because the same bundled membership fee A still applies to every user, it will affect the

demand in all market segments, just like under full agent rationality. Therefore the bundled

membership fee is again not redundant. The allocation of agents at PH is illustrated in

Figure 5.28

26See the demand functions of system (1) in section 3.
27We use subscript BR for all variables under Assumption BR, except for the price which is still denoted

PH .
28Compared to Figure 3, the main change due to bounded agent rationality in Figure 5 happens in the

shape and size of segment SBBR, which appears to be missing an extra triangular area of seller-buyers from
SBH in Figure 3. Those are the agents whose valuation for neither service is high enough to compensate
A alone, but their sum is.
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Figure 5: Agent Allocation under Hybrid Bundling (with Bounded Rationality)

The demands from two sides at PH = (aSH , a
B
H , A) are determined simultaneously by

the following two equations:29

NS
BR= 1−GS(aSH)−

∫ A

NB
BR

+aSH

aSH

∫ A

NS
BR

+aBH

−∞
g(s, b)dbds

NB
BR= 1−GB(aBH)−

∫ A

NB
BR

+aSH

−∞

∫ A

NS
BR

+aBH

aB
g(s, b)dbds

(5)

The platform’s profit is then:

ΠBR(PH)≡ (A− FS)NPS
BR + (A− FB)NPB

BR + (A− F )NSB
BR + (aSH + aBH − c)NS

BRN
B
BR

We have the following general conclusion.

Proposition 4 Propositions 1 through 3, Corollaries 1 through 3, and Lemmas 1 through
3 all hold with bounded agent rationality.

Proof. See appendix.
Although in general the demand under bounded rationality is lower than that under

full rationality at the same price, when that price includes a zero membership fee, the

differences in demands vanish. When an agent does not need to pay any membership fee,

there is no real membership decision to make - she only needs to decide what transactions

to make, which is not affected by our assumptions of her rationality. This means Lemma

2 holds.

The two-part-tariff effect also holds. The only difference from the full rationality case

is that a rise in the bundled membership fee is now compensated by the higher of uS and

29 In case the solutions to the system are correspondences, we still take their suprema.
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uB instead of their sum, which leads to a "larger" decrease in demand of seller-buyers.

The lost seller-buyers here is represented by a rectangular area abcd in Figure 5 instead of

the triangular area abc in Figure 4. However, the total probability measure of them is still

of the second order, again because the fee rise applies to both services and its "burden" is

still shared in two dimensions.30

Therefore all the implications of the two-part-tariff effect still apply under bounded

rationality.

Proposition 4 implies that the strength of hybrid bundling doesn’t depend on agents’

rationality of being able to foresee and take into account the service they value less when

they decide whether to join the platform. It allows our earlier results to be applied to

wider and more realistic contexts.

6 Discussion

In this section we provide detailed discussions of our model, concepts and results in relation

to those in the existing literature.

6.1 Hybrid bundling and pure bundling

The hybrid bundling strategy we study is different from pure bundling strategies in the

literature, because it involves two-part tariffs while the latter involves only "one-part"

prices (that is, one purchase involves only one fee payment).

In pure bundling, there is only one price - the price for the pure bundle - which means

all users would pay exactly the same fee for the service(s) they use on the platform.

Although the hybrid bundling strategy also involves pure bundling of memberships,

the membership fee is just one part of the final price users pay. After becoming members,

they still have the free choice of whether or not to pay the separate transaction fees, and

they would not all pay the same fee(s) if they have different preferences. Therefore hybrid

bundling generally induce different demand and profit than pure bundling.

6.2 Hybrid bundling and mixed bundling

In mixed bundling, users can also choose which service(s) to use and therefore there are

ways to induce the same choices as a given hybrid bundling strategy. The main difference

between them, however, lies in the different mechanisms induced by manipulations of

prices in these strategies.

30As SBBR = {ω | max(uS , uB) > A, and min(uS , uB) > 0} , where both functions still depend on
benefits from both dimensions, the rise in A will still be shared by increases in seller-buyers’benefits from
two dimensions.
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6.2.1 Comparison between mechanisms

In a "one-sided" market setting, Long (1984) establishes the equivalence between mixed

bundling and simple two-part tariffs, under a unit-consumption assumption. He shows

that a two-part tariff consisting of prices of two separate products, q1 and q2, say, and one

additional fixed fee for all consumers, q, is equivalent to a mixed bundling strategy with

prices for separate products p1 = q1+q, p2 = q2+q and price for the bundle pB = q1+q2+q,

where "the bundle discount is like a fixed fee".

Our discussion of hybrid bundling generalizes Long’s discussion, because the strategy

we study involves general two-part tariffs that allow for multi-unit consumption in the

trading stage.

However, we further argue that the bundle discount in mixed bundling is not equiva-

lent to the fixed/membership fee in either simple two-part tariffs or the hybrid bundling

strategy, because it cannot achieve the two-part-tariff effect.

Unilateral price manipulation in mixed bundling As we mentioned in section

4.2, raising the fixed/membership fee in hybrid bundling leads to a simultaneous and

commensurate rise in all users’final prices, which results in zero first-order decrease in

seller-buyers’demand. However, manipulations of the bundle discount or any other price

in mixed bundling always lead to demand changes of the same order as the price change

itself, which are therefore never negligible.

This distinction is due to the different prices used. In mixed bundling, all three prices

are final prices that consumers face. Unilateral adjustments of any final price will generally

change the price difference between "neighboring" market segments involving the product

(or bundle) under adjustment, which will in turn result in demand changes of the same

order as the price change.

For example, consider the mixed bundling strategy (p1, p2, pB) in McAfee, McMillan

and Whinston (1989)31 defined the same way as above, where the bundle discount is

ε ≡ p1 + p2 − pB. Raising the bundle discount whilst keeping p1 and p2 unchanged

is equivalent to lowering pB, which lowers the price difference between either separate

product and the bundle, and therefore makes the bundle look more attractive. This

change will generally cause consumers of both separate products "residing" along the

entire "boundary" of the bundle-segment (those who "hardly" preferred these separate

products to the bundle to begin with) to choose the bundle instead. The boundaries of

the bundle-segment therefore shifts outwards in both dimensions, resulting in a first-order

increase in the demand for the bundle.

Raising the bundle discount ε can also be achieved by raising p1 whilst keeping p2 and

pB constant, which will lower the price difference between "separate product 1" and the

bundle, and makes the bundle look more attractive. This again will cause those consumers
31See Figures II and III in McAfee, McMillan and Whinston (1989).
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of "separate product 1" who "hardly" preferred it to the bundle to begin with, to switch to

the bundle. In other words, the boundary between these two segments will shift towards

the segment of "separate product 1" by a distance proportional to the change in p1. This

again means a first-order increase in the demand of the bundle.

Multilateral price manipulation in mixed bundling Although there are ways to

replicate the two-part-tariff effect through simultaneous manipulations of all the prices

in mixed bundling, the required manipulations are further complicated by the multi-unit

transactions that hybrid bundling permits users to make, which may make such replication

impractical.

For instance, given a hybrid bundling strategy (aS , aB, A), a mixed bundling strategy

that can replicate the demand and profit under it is Q ≡ (pS , pB, ε) = (aS + A
NB , a

B +
A
NS , A), where pS is the fee any seller pays per sale, so that her total payment is pSNB(=

aSNB + A); pB is the fee any buyer pays per purchase, so that her total payment is

pBNS(= aBNS +A); and ε is the lump-sum bundle discount offered to a seller-buyer, so

that her total payment is pSNB + pBNS − ε(= aSNB + aBNS +A).

The first problem with this replication is that offering a lump-sum bundle discount only

to seller-buyers does not seem easy in practice. Nonetheless, there is no straightforward

way to offer the same total discount on a per-transaction basis either, since a seller-buyer

may well make unequal numbers of sales and purchases.

More problems arise when we use Q to replicate the two-part-tariff effect induced by

raising A from zero to ∆, say. Just raising the bundle discount ε from zero to ∆ does

not work, since this will cause positive measures of single-service users to become seller-

buyers. In addition, we need to raise pS by ∆
NB and pB by

∆
NS to make sure all users’final

prices are raised by ∆ (so that no single-service user would want to become seller-buyer).

These intricate and impractical price manipulations are necessary exactly because of the

different numbers of multiple transactions made by a buyer and a seller under general

two-part tariffs.

This example shows the diffi culty in replicating the hybrid bundling strategy and its

two-part-tariff effect using mixed bundling.32

Analogous results of price discrimination Although hybrid bundling and mixed

bundling have different mechanisms, they both can achieve multiproduct price discrim-

ination, since they both have a price instrument that links the two dimensions of the

type space (that is, the bundled membership fee and the bundle price, respectively). The

striking contrast between our results and those in the mixed bundling literature is that

32Other diffi culties arise in the case of n > 2 products, where a complete mixed bundle consists of 2n−1
"sub-bundles" and therefore requires 2n−1 prices to fully characterize. All these prices need to be changed
equally in order to fully replicate the two-part-tariff effect in that case.
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similar price discrimination can be achieved through these two mechanisms with price ma-

nipulation in opposite directions. McAfee, McMillan and Whinston (1989) achieve this by

reducing the bundle price from the sum of optimal separate prices, while we achieve it by

raising the bundled membership fee on top of the optimal separate transaction fees. The

reason why both deviations can be profitable is of course that they are not exactly oppo-

site - again, raising the bundled membership fee effectively changes everyone’s final price,

while reducing the bundle price does not reduce the final prices single-product consumers

pay.33

6.2.2 Comparison between conditions

The general conditions for hybrid bundling to dominate unbundled sales, condition (2) in

Proposition 2 and condition (4) in Proposition 3, are restrictions on the behavior of the

valuation distribution and cost parameters. In this sense, they bear certain resemblance

to the conditions for mixed bundling strategies to dominate unbundled sales in "one-

sided" markets (for instance, equation (20) of Schmalensee (1984) and Proposition 1 of

McAfee, McMillan and Whinston (1989)). All these conditions capture the marginal gains

in profits from introducing two-dimensional price discrimination into an optimal strategy

of one dimension.

However, the main difference between our results and theirs is that, conditions (2)

and (4) incorporate two new elements: the cost savings from scope economies, and profit

implications of transactions between sellers and buyers (who are all consumers of the

monopolist). The former is due to our generalized cost assumptions, and the latter is due

to our two-sided market context. These new elements generalize the existing results in the

literature.

Some implications of our results in special situations, such as weakly negative corre-

lation favoring hybrid bundling (Corollaries 1 and 2), confirm that similar intuition of

correlation carries over from one-sided to two-sided markets.34

The new conditions we present (such as the conditions in Proposition 3) provide new

insights specific to two-sided markets (such as the importance of mixedness to hybrid

bundling).

33We show in Gao (2009b) that both deviations discussed here lead to local profit improvements which
should not be used to infer properties of the global optimizers (e.g. whether the optimal bundling strategy
would involve higher or lower "average price per product" compared to unbundled sales). There we provide
an example where the optimal MMW-type mixed bundling strategy results in a higher average price per
product, contrary to the impression one might derive from MMW’s mechanism of offering a bundle discount
that an optimal mixed bundling strategy would involve a lower average price.

34For example, in one-sided market settings, Adams and Yellen (1976) illustrates results of negative
correlation with examples of discrete distributions; Long (1984) discusses a condition of negative correlation
involving different conditional probabilities; Schmalensee (1984) illustrates both independence and negative
correlation with bivariate normal distributions; McAfee, McMillan and Whinston (1989) provide a result
of dominance by bundling in the case of independence.
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6.3 Hybrid bundling and multiproduct nonlinear pricing

There is a connection between the two-part-tariff effect we have uncovered and the "op-

timality of exclusion" result by Armstrong (1996)35, where he shows in a multiproduct

pricing framework that, when agents have multidimensional types, it will generally be

optimal to exclude a positive measure of agents with the lowest types from the market.

The two-part-tariff effect is actually the underlying mechanism that drives the "opti-

mality of exclusion". If we apply the two-part-tariff effect to the whole type space, that

is, if we start from transaction fees that induce all agents to be seller-buyers, then it im-

plies that the platform will find it optimal to raise the bundled membership fee from zero

until it excludes a positive measure of seller-buyers from the market, which is the same

conclusion as Armstrong’s.36

However, the two-part-tariff effect does not only apply to the whole type space - it

applies to all possible sets of two-service users induced by any level of transaction fees,

which are subsets of the whole type space.

Another (technical) difference between these results is that the two-part-tariff effect

only requires weak convexity of the support of distribution; while "optimality of exclusion"

requires strict convexity of the support in order to guarantee negligible first-order demand

changes when the price manipulation Armstrong used starts from multidimensional-type

strategies (such as mixed bundling). We are not concerned with such situations as the

price manipulation we use start from one-dimensional unbundled sales strategy.

7 Conclusion

In real life, many two-sided markets are mixed - sellers may also buy and buyers can

also sell. In this paper we have provided a model for the dynamics in such markets. As

one same consumer may want to use the services that a monopoly platform provides to

both sides, the platform becomes a multiproduct monopolist. Such platforms therefore

can and will exploit their market power in multiple dimensions. Many real-life platforms

achieve this through a hybrid bundling strategy involving two-part tariffs. We have found

the key mechanism of such a strategy, the two-part-tariff effect, and presented general

conditions for hybrid bundling to dominate the conventional unbundled strategy. This

provides a new “multiproduct”explanation for the prevalence of two-part tariffs observed

in platform pricing strategies.

This paper can be viewed from two different perspectives.

35See Proposition 1 of Armstrong (1996). We thank Dezsoe Szalay for pointing out this connection.
36Armstrong (1996) studies an n-product monopolist. We show in Gao (2009b) that a "generalized"

two-part-tariff effect exists in the n-product case, where the decrease in demand for an "m-bundle" (that
is a bundle consisting of m products, where 1 ≤ m ≤ n) due to a rise in the bundled membership fee from
zero is of order m. This confirms that the two-part-tariff effect also drives the "optimality of exclusion" in
the n-product case.
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First, it extends the theoretical literature on two-sided markets to the mixed case,

where sellers may also buy and buyers can also sell; and

Second, it extends the bundling literature (and hence the multiproduct pricing litera-

ture) to the case where there exist network effects between the consumption of different

products.

There is much more work to be done in either direction and this paper is simply the

first step. In the first direction, we are starting to study the implications of mixedness for

established results of standard two-sided markets, such as platform competition. Along

the second line, we have found some properties of the optimal nonlinear pricing strategy,

where the general intuition is that the network effects serve as a channel to transfer demand

changes on one market side to the other and therefore amplifies the overall impact on profit.

Diffi culties in modelling the network effects arise when the number of services provided

exceeds two and the platform becomes multi-sided. While there seem to be great real-

life examples of such platforms (such as Google and iPhone), the general pattern of how

network effects work across multiple sides is far from clear.
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8 Appendix - Notes and Proofs

Assumption 5 - Discussion

This is mainly a restriction on the valuation distribution and the cost parameters so

that costs are not too high or too low compared to agents’valuation, which allows us to

focus on the more "interesting" situations. For example, it rules out the outcomes where

costs are so high that there does not exist a profitable unbundled-sales strategy.

Compared to the literature, both our cost structure (which involves per-user fixed

costs and transaction costs) and our type space (which is only weakly convex and can be

the whole R2) are more general. This means the full characterization of the necessary

and suffi cient conditions for the existence of an optimal unbundled-sales strategy is more

complicated.

For instance, one necessary condition would be:

There exists a real number k ∈ [0, c] such that there exists a positive measure of agents

who have vS > k, and a positive measure of agents who have vB > c− k.
This condition implies there is surplus at all for the platform to extract from transac-

tions.

Other necessary conditions include that the per-user fixed costs (F , FS , and FB) are

not too high so that the platform’s profit from transactions plus the profit (or minus the

loss) from user memberships does not go negative.

One simple suffi cient condition that guarantees the latter is that F = FS = FB = 0,

but it is not necessary and we are actually interested in the cases with positive fixed costs.

The part of Assumption 5 that P∗0 is on the interior of V only rules out situations

where V is closed below in both dimensions (e.g. V = [a,+∞) × [b,+∞)) and the costs

are so low that at least one optimal unbundled-sales fee is the lower bound of V, in which
case the first order conditions may not hold.

Since our main interest in this paper is not these existence-related conditions, we have

chosen to use Assumption 5 as a single simplifying assumption instead.

Lemma 2

Demand under unbundled-sales price PU = (aS , aB, AS , AB):

NS
U = 1−GS( A

S

NB
U

+ aS)

NB
U = 1−GB(A

B

NS
U

+ aB)

NSB
U =

∫ +∞

AS

NB
U

+aS

∫ +∞

AB

NS
U

+aB
g(s, b)dbds

Demand under hybrid bundling (with full agent rationality) at price PH =
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(aS , aB, A), NS
H and NB

H , are determined by the following two simultaneous equations:

NS
H = NPS

H +NSB
H

NB
H = NPB

H +NSB
H

(6)

where

NPS
H =

∫ +∞

A

NB
H

+aS

∫ aB

−∞
g(s, b)dbds (7a)

NPB
H =

∫ aS

−∞

∫ +∞

A

NS
H

+aB
g(s, b)dbds (7b)

NSB
H =

∫ +∞

aS

∫ +∞

aB
g(s, b)dbds−

∫ A

NB
H

+aS

aS

∫ 1

NS
H

[A−NB
H (s−aS)]+aB

aB
g(s, b)dbds (7c)

At PU0 = (aS , aB, 0, 0) and PH0 = (aS , aB, 0) we have:

NSB
U = NSB

H =

∫ +∞

aS

∫ +∞

aB
g(s, b)dbds

NS
U = NS

H= 1−GS(aS)

NB
U = NB

H= 1−GB(aB).�

Proposition 1

Step 1: First consider the case where the point (aS , aB) lies in the interior of support

V (which includes the case when V is a open set).
Step 1.1: Suppose PH0 = (aS , aB, 0) induces positive equilibrium demand NS

H and

NB
H , which must solve system (1) because (aS , aB, 0) is also a degenerate unbundled-sales

strategy.

Then the demand at PH0 can be represented by (7) above.

The first-order derivative of NSB
H with respect to A at general hybrid bundling price

PH is:

∂NSB
H

∂A
(PH) = −

NB
H −A ·

∂NB
H

∂A (PH)

(NB
H )2

·W (aS , aB, A,
A

NB
H

+ aS)−
∫ A

NB
H

+aS

aS

∂

∂A
W (aS , aB, A, s)ds

(8)

where

W (aS , aB, A, t) ≡
∫ 1

NS
H

[A−NB
H (t−aS)]+aB

aB
g(t, b)db, and

∂

∂A
W (aS , aB, A, t) =

1

(NS
H)2
·{[1− ∂NB

H

∂A
(PH)(t− aS)]NS

H −
∂NS

H

∂A
(PH)[A−NB

H (t− aS)]}

·g(t,
1

NS
H

[A−NB
H (t− aS)]+aB)
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And the first-order derivative of NPS
H and NPB

H with respect to A are:

∂NPS
H

∂A
(PH) = −

NB
H −A ·

∂NB
H

∂A (PH)

(NB
H )2

·
∫ aB

−∞
g(

A

NB
H

+aS , b)db (9a)

∂NPB
H

∂A
(PH) = −

NS
H −A ·

∂NS
H

∂A (PH)

(NS
H)2

·
∫ aS

−∞
g(s,

A

NS
H

+aB)ds (9b)

where

∂NS
H

∂A
(PH) =

∂NPS
H

∂A
(PH)+

∂NSB
H

∂A
(PH) (10a)

∂NB
H

∂A
(PH) =

∂NPB
H

∂A
(PH)+

∂NSB
H

∂A
(PH) (10b)

Let A = 0 and we immediately see that the domains of all the integrals in the expression

of ∂N
SB
H
∂A (PH) become single points. Therefore at PH0 = (aS , aB, 0), for any (aS , aB) ∈

R+2, it must be
∂NSB

H

∂A
(PH0)= 0.

Step 1.2: Suppose there exists no positive equilibrium demand at PH0.

Then the only equilibrium demand at PH0 is NS
H = NB

H = 0 (recall that either one of

them being zero implies both will be zero, by definition of uS and uB). We therefore have

NSB
H = 0 and raising A from 0 does not change NSB

H . Actually in this case, NSB
H = 0 for

all A ≥ 0.

Step 2: Now consider the case where the point (aS , aB) lies on the boundary of support

V (which requires that V is at least partially closed).
This change may only reduce some of the domains of integration in the expression of

∂NSB
H
∂A (PH), as density g will be zero if the domain of integration extends outside of V (in
this case the decrease in SB will be only part of the area abc in Figure 4), but it will cause

no other difference whatsoever compared to the situation considered in Step 1. However

our proof in Step 1 is immune to reduction in domains as all we need is that they become

single points when A = 0. Thus the result still holds in this case. The decrease in NSB
H

due to raising A from zero is still of order strictly greater than the change in A.

A caveat here is that Proposition 1 depends on Assumption 1, and it may not hold if

the support V does not have full dimension on R2. For example, if V is a line segment,
and if raising A causes changes in demand along it, then it may be that ∂N

SB
H
∂A (PH0)> 0.�

Lemma 3

Step 1: First suppose NH > 0 at PH0 = (aS , aB, 0).
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By Proposition 1 we know ∂NSB
H
∂A = 0. Since m =

NSB
H
N , we have

∂m

∂A
=

∂NSB
H
∂A ·NH −NSB

H · ∂NH∂A
N2
H

= NSB
H ·

−∂NH
∂A

N2
H

(11)

And since NH = NPS
H +NPB

H +NSB
H , we have ∂NH

∂A =
∂NPS

H
∂A +

∂NPB
H
∂A

Let A = 0 in (9), we have

∂NPS
H

∂A
(PH0) = −

gS(aS) ·GB|S(aB
∣∣ aS)

NB
H

∂NPB
H

∂A
(PH0) = −

gB(aB) ·GS|B(aS
∣∣ aB)

NS
H

Step 1.1: Now we prove the "If" part:

Since NH = NPS
H +NPB

H +NSB
H > 0, and m < 1, it must be that at least one of NPS

H

and NPB
H is strictly positive. Thus at least one of ∂N

PS
H

∂A (PH0) and ∂NPB
H
∂A (PH0) must be

strictly negative, while the other is non-positive. Thus we have∂NH∂A (PH0) < 0. And since

NSB
H > 0, we get ∂m

∂A (PH0) > 0.

Step 1.2: "Only if":

Since ∂m
∂A (PH0) > 0, we immediately know m(PH0) < 1, and by (11) we know NSB

H 6=
0. Thus NSB

H > 0.

Step 2: Suppose NH = 0 at PH0 = (aS , aB, 0).

Since NH = 1−G(aS , aB), we know G(aS , aB) =

∫ aS

−∞

∫ aB

−∞
g(s, b)dbds = 1. Convexity

of support V then implies that g(s, b) = 0 for all (s, b) ∈ ((aS∗,+∞)×R) ∪ (R×(aB∗,+∞)).

Then by (7) we must have NH(aS , aB, A) = NSB
H (aS , aB, A) = 0, for all A ≥ 0, and there-

fore m(PH0) does not exist. In this case, neither of these conditions (i.e. ∂m
∂A (PH0) > 0

and [NSB
H > 0,m > 1]) holds. Thus we are done.�

Proposition 2

Step 1: Find first order conditions for optimality of P∗0 = (aS∗, aB∗, 0, 0) under un-

bundled sales

Under unbundled sales, we only need to consider degenerate strategyPU0 = (aSU , a
B
U , 0, 0) ∈

R+4, where

NS
U = 1−GS(aSU ); NB

U = 1−GB(aBU );

NPS
U =

∫ +∞

aSU

∫ aBU

−∞
g(s, b)dbds; NPB

U =

∫ aSU

−∞

∫ +∞

aBU

g(s, b)dbds;

NSB
U =

∫ +∞

aSU

∫ +∞

aBU

g(s, b)dbds;

ΠU (PU0) = (aSU + aBU − c)NS
UN

B
U − FSNPS

U − FBNPB
U − FNSB

U
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At P∗0 = (aS∗, aB∗, 0, 0), denote NS∗
U = 1−GS(aS∗); NB∗

U = 1−GB(aB∗)

Thus we have

∂NS
U

∂aSU
(P∗0)= −gS(aS∗);

∂NS
U

∂aBU
(P∗0) = 0;

∂NB
U

∂aSU
(P∗0) = 0;

∂NB
U

∂aBU
(P∗0)= −gB(aB∗);

∂NSB
U

∂aSU
(P∗0)= −gS(aS∗) · [1−GB|S(aB∗

∣∣ aS∗)]; ∂NSB
U

∂aBU
(P∗0)= −gB(aB∗) · [1−GS|B(aS∗

∣∣ aB∗)];
∂NPS

U

∂aSU
(P∗0)= −gS(aS∗) ·GB|S(aB∗

∣∣ aS∗); ∂NPS
U

∂aBU
(P∗0)=gB(aB∗) · [1−GS|B(aS∗

∣∣ aB∗)];
∂NPB

U

∂aSU
(P∗0)=gS(aS∗) · [1−GB|S(aB∗

∣∣ aS∗)]; ∂NPB
U

∂aBU
(P∗0)= −gB(aB∗) ·GS|B(aS∗

∣∣ aB∗).
(12)

The first order conditions for the optimality of aS∗ and aB∗ are

∂ΠU

∂aS
(P∗0) = [(aS∗ + aB∗ − c)NB∗

U − FS ]
∂NS

U

∂aSU
(P∗0) +NS∗

U NB∗
U −(FS + FB − F )

∂NPB
U

∂aSU
(P∗0) = 0

∂ΠU

∂aB
(P∗0) = [(aS∗ + aB∗ − c)NS∗

U − FB]
∂NB

U

∂aBU
(P∗0) +NS∗

U NB∗
U − (FS + FB − F )

∂NPS
U

∂aBU
(P∗0) = 0

which reduce to

(aS∗ + aB∗ − c)NB∗
U − FS = (FS + FB − F )

∂NPB
U

∂aSU
(P∗0)

∂NS
U

∂aSU
(P∗0)

− NS∗
U NB∗

U
∂NS

U

∂aSU
(P∗0)

(13a)

(aS∗ + aB∗ − c)NS∗
U − FB = (FS + FB − F )

∂NPS
U

∂aBU
(P∗0)

∂NB
U

∂aBU
(P∗0)

− NS∗
U NB∗

U
∂NB

U

∂aBU
(P∗0)

(13b)

Step 2: Find ∂
∂AΠH(aS∗, aB∗, 0).

Denote hybrid bundling strategy PH0 = (aS∗, aB∗, 0). By Proposition 1, we have
∂NSB

H
∂A (PH0)= 0. Substituting PH0 in (9) and (10) (note A = 0 in PH0), we have

∂NPS
H

∂A
(PH0) =

∂NS
H

∂A
(PH0) = −

gS(aS∗) ·GB|S(aB∗
∣∣ aS∗)

NB∗
U

(14a)

∂NPB
H

∂A
(PH0) =

∂NB
H

∂A
(PH0) = −

gB(aB∗) ·GS|B(aS∗
∣∣ aB∗)

NS∗
U

(14b)

And by Lemma 2 we have
NS
H = NS∗

U = 1−GS(aS∗)

NB
H = NB∗

U = 1−GB(aB∗)

NSB
H = NSB∗

U =

∫ +∞

aS∗

∫ +∞

aB∗
g(s, b)dbds

Since ΠH(PH) = (A−FS)NPS
H +(A−FB)NPB

H +(A−F )NSB
H +(aSH +aBH−c)NS

HN
B
H ,
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we have

∂

∂A
ΠH(PH0) =

∂NPS
H

∂A
(PH0)[(aS∗ + aB∗ − c)NB∗

U − FS ] +NPS∗
U (15)

+
∂NPB

H

∂A
(PH0)[(aS∗ + aB∗ − c)NS∗

U − FB] +NPB∗
U

+NSB∗
U

Substituting (13) into (15), we get

∂

∂A
ΠH(PH0) = (FS + FB − F )

∂NPB
U

∂aSU
(P∗0)

∂NPS
H

∂A (PH0)

∂NS
U

∂aSU
(P∗0)

−NS∗
U NB∗

U

∂NPS
H

∂A (PH0)

∂NS
U

∂aSU
(P∗0)

+NPS∗
U

(16)

+ (FS + FB − F )

∂NPS
U

∂aBU
(P∗0)

∂NPB
H
∂A (PH0)

∂NB
U

∂aBU
(P∗0)

−NS∗
U NB∗

U

∂NPB
H
∂A (PH0)

∂NB
U

∂aBU
(P∗0)

+NPB∗
U

+NSB∗
U

Then substituting (12) and (14) into (16), we have

∂

∂A
ΠH(PH0) = (FS + FB − F )[

gS(aS∗)GB|S(aB∗
∣∣ aS∗)(1−GB|S(aB∗

∣∣ aS∗))
1−GB(aB∗)

(17)

+
gB(aB∗)GS|B(aS∗

∣∣ aB∗)(1−GS|B(aS∗
∣∣ aB∗))

1−GS(aS∗)
]

+

∫ +∞

aS∗

∫ +∞

aB∗
[gS(s)gB|S(b| aS∗) + gB(b)g S|B(s| aB∗)− g(s, b)]dbds

This is exactly the left-hand side of condition (2). Thus we are done.�

Corollary 1

This case is implied by part (iii) of Corollary 2. See proof of the latter below.�

Corollary 2

We first prove the following lemma:

Lemma 4 At P∗0 = (aS∗, aB∗, 0, 0), NSB∗
U = 0 if and only if GS|B(aS∗

∣∣ aB∗) = GB|S(aB∗
∣∣ aS∗)

= 1.

Proof. Step 1: "Only if"

Since NSB∗
U =

∫ +∞

aB∗

∫ +∞

aS∗
g(s, b)dsdb, and g has a weakly convex support V with full

dimension in R2, NSB∗
U = 0 implies that the point (aS∗, aB∗) is either on the boundary
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or outside of V. Thus we must have g(s, aB∗) = 0, for all s ∈ (aS∗,+∞), which implies

1−GS|B(aS∗
∣∣ aB∗) =

∫ +∞

aS∗

g(s,aB∗)
gB(aB∗)

ds =0, and thus GS|B(aS∗
∣∣ aB∗) = 1.

Similarly, we must have g(aS∗, b) = 0, for all b ∈ (aB∗,+∞) which impliesGB|S (aB∗
∣∣ aS∗)

= 1.

Step 2: "If"

GS|B(aS∗
∣∣ aB∗) = 1 implies 1−GS|B(aS∗

∣∣ aB∗) =

∫ +∞

aS∗

g(s,aB∗)
gB(aB∗)

ds =0 which in turn im-

plies g(s, aB∗) = 0 for all s ∈ (aS∗,+∞). SimilarlyGB|S(aB∗
∣∣ aS∗) = 1 implies g(aS∗, b) = 0

for all b ∈ (aB∗,+∞). Then by convexity of V, we must have g(s, b) = 0 for all (s, b) ∈ (aS∗,+∞)×

(aB∗,+∞), thus NSB∗
U =

∫ +∞

aB∗

∫ +∞

aS∗
g(s, b)dsdb = 0.

Now we use Lemma 4 to prove Corollary 2:
(i) For all b > aB∗, since GS|B(aS∗

∣∣ b) is strictly increasing in b and bounded from
above by 1, we must have GS|B(aS∗

∣∣ aB∗) < 1 and

1−GS|B(aS∗
∣∣ b) < 1−GS|B(aS∗

∣∣ aB∗) (18)

Denote I ≡ 1−GS|B(aS∗
∣∣ aB∗), then I is a positive constant.

(18) ⇒
∫ +∞

aS∗

g(s,b)
gB(b)

ds < I ⇒
∫ +∞

aS∗
g(s, b)ds ≤ gB(b) · I

Integrate both sides with respect to b on [aB∗,+∞), we get

⇒
∫ +∞

aB∗

∫ +∞

aS∗
g(s, b)dsdb <

∫ +∞

aB∗
gB(b)db · I ⇒

NSB∗
U < NB∗

U [1−GS|B(aS∗
∣∣ aB∗)] (19)

Thus by (16), FS + FB ≥ F , NS∗
U [1−GB|S(aB∗

∣∣ aS∗)] ≥ 0 and (19), we have:

∂

∂A
ΠH(PH0)

≥ NS∗
U [1−GB|S(aB∗

∣∣ aS∗)] +NB∗
U [1−GS|B(aS∗

∣∣ aB∗)]−NSB∗
U

> 0.

(ii) Using symmetry of our model regarding the two sides of the market, in this part

we only need to relabel all the notations used in (i) (i.e. swap "S" and "B") and we are

done.

(iii) By Lemma 4, GS|B(aS∗
∣∣ aB∗) < 1 implies NSB∗

U > 0.

Since bothGS|B(aS∗
∣∣ b) andGB|S(aB∗

∣∣ s) are continuous at (s, b) = (aS∗, aB∗), GS|B(aS∗
∣∣ b)

being a constant for all b > aB∗ implies GS|B(aS∗
∣∣ b) = GS|B(aS∗

∣∣ aB∗) for all b ≥ aB∗,

and GB|S(aB∗
∣∣ s) being a constant for all s > aS∗ implies GB|S(aB∗

∣∣ s) = GB|S(aB∗
∣∣ aS∗)

for all s ≥ aS∗.
By the same argument as in (i), except that all the inequalities need to be changed to
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equations since now GS|B(aS∗
∣∣ b) is a constant, we get the equality version of (19):

NSB∗
U = NB∗

U [1−GS|B(aS∗
∣∣ aB∗)]

Similarly, from GB|S(aB∗
∣∣ s) being a constant and GB|S(aB∗

∣∣ aS∗) < 1 we have

NSB∗
U = NS∗

U [1−GB|S(aB∗
∣∣ aS∗)]

Thus we have

∂

∂A
ΠH(PH0)

≥ NS∗
U [1−GB|S(aB∗

∣∣ aS∗)] +NB∗
U [1−GS|B(aS∗

∣∣ aB∗)]−NSB∗
U

= NSB∗
U > 0.�

Corollary 3

When NSB∗
U = 0, by Lemma 4 we know it must be GS|B(aS∗

∣∣ aB∗) = GB|S(aB∗
∣∣ aS∗)

= 1. Then from (16) we know that both terms on the left-hand side of condition (2) are

equal to 0, thus condition (2) does not hold.�

Proposition 3

Assumption NC does not change the demand functions, but it does change the cost

structure and hence the profit functions under both unbundled sales and hybrid bundling.

The new profit functions are:

At unbundled-sales price PU = (aSU , a
B
U , A

S , AB),

ΠNC
U (PU ) = (aSU + aBU − c)NS

UN
B
U + (AS − FS)NS

U + (AB − FB)NB
U

And at hybrid bundling price PH = (aSH , a
B
H , A),

ΠNC
H (PH) = (aSH + aBH − c)NS

UN
B
U + (A− F )NH

By definition, at P∗0 = (aS∗, aB∗, 0, 0) the platform achieves the highest unbundled-

sales profit, which is

ΠNC
U (P∗0) = (aS∗ + aB∗ − c)NS∗

U NB∗
U − FSNS∗

U − FBNB∗
U (20)

where NS∗
U = 1−GS(aS∗) and NB∗

U = 1−GB(aB∗).

By Lemma 2, the platform’s profit at hybrid bundling price PH0 = (aS∗, aB∗, 0) is

ΠNC
H (PH0)= (aS∗ + aB∗ − c)NS∗

U NB∗
U −F (NS∗

U +NB∗
U −NSB∗

U ) (21)

Thus

ΠNC
H (PH0)−ΠNC

U (P∗0) = FNSB∗
U − (F − FS)NS∗

U − (F − FB)NB∗
U (22)
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(i) When FS 6= FB and min(FS , FB) > 0, without lost of generality, suppose 0 <

FS < FB(≤ F ). Then condition (3) implies

m(P∗0) =
NSB∗
U
N∗U

≥ F−min(FS ,FB)
min(FS ,FB)

= F−FS
FS

⇒ FSNSB∗
U ≥ (F − FS)N∗U ⇒ FNSB∗

U − (F − FS)NSB∗
U ≥ (F − FS)N∗U

⇒ FNSB∗
U ≥ (F −FS)(N∗U +NSB∗

U ) = (F −FS)(NS∗
U +NB∗

U ) > (F −FS)NS∗
U + (F −

FB)NB∗
U

⇒ ΠNC
H (PH0)−ΠNC

U (P∗0) = FNSB∗
U − (F − FS)NS∗

U − (F − FB)NB∗
U > 0. Done.

(ii) When FS = FB > 0, and condition (3) holds with strict inequality,

m(P∗0) =
NSB∗
U
N∗U

> F−min(FS ,FB)
min(FS ,FB)

= F−FS
FS

⇒ FSNSB∗
U > (F − FS)N∗U ⇒ FNSB∗

U − (F − FS)NSB∗
U > (F − FS)N∗U

⇒ FNSB∗
U > (F −FS)(N∗U +NSB∗

U ) = (F −FS)(NS∗
U +NB∗

U ) = (F −FS)NS∗
U + (F −

FB)NB∗
U

⇒ ΠNC
H (PH0)−ΠNC

U (P∗0) > 0. Done.

(iii) When FS = FB > 0 and m(P∗0) = F−min(FS ,FB)
min(FS ,FB)

the same argument in (ii) above

with equations yields ΠNC
H (PH0) = ΠNC

U (P∗0).

Now we prove the left-hand side of condition (4) is exactly ∂
∂AΠNC

H (PH0).

First, the first order conditions for P∗0 to be the optimal unbundled-sales strategy under

NC are:

(aS∗ + aB∗ − c)NB∗
U − FS =

NS∗
U NB∗

U

gS(aS∗)
(23a)

(aS∗ + aB∗ − c)NB∗
U − FB =

NS∗
U NB∗

U

gB(aB∗)
(23b)

Now take the derivative of ΠNC
H (PH) with respect to A, and evaluate at PH0 =

(aS∗, aB∗, 0), we have

∂

∂A
ΠNC
H (PH0) = NPS

H +NPB
H +NSB

H (24)

+
∂NPS

H

∂A
(PH0)[(aS∗ + aB∗ − c)NB∗

U − F ]

+
∂NPB

H

∂A
(PH0)[(aS∗ + aB∗ − c)NB∗

U − F ]

Substituting (14) and (23) in (24), we get

∂

∂A
ΠNC
H (PH0) = (F − FS)

gS(aS∗)GB|S(aB∗
∣∣ aS∗)

1−GB(aB∗)
+ (F − FB)

gB(aB∗)GS|B(aS∗
∣∣ aB∗)

1−GS(aS∗)

+

∫ +∞

aS∗

∫ +∞

aB∗
[gS(s)gB|S(b| aS∗) + gB(b)g S|B(s| aB∗)− g(s, b)]dbds

which is exactly the left-hand side of condition (4).
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Thus ∂
∂AΠNC

H (PH0) > 0 when condition (4) holds. And since we have already shown

ΠNC
H (PH0) = ΠNC

U (P∗0), we are done.

(iv) When FS = FB = F = 0, from (22) we have ΠNC
H (PH0) = ΠNC

U (P∗0). And in (iii)

we have shown that ∂
∂AΠNC

H (PH0) > 0 when condition (4) holds. Thus we are done.�

Proposition 4

Under Assumption BR, demandNS
BR andN

B
BR at hybrid bundling pricePH = (aSH , a

B
H , A)

is determined by the simultaneous system (5), with which we can get

NBR= 1−
∫ A

NB
BR

+aSH

−∞

∫ A

NS
BR

+aBH

−∞
g(s, b)dbds

NSB
BR= NS

BR+NB
BR−NBR

(25)

We only need to prove the following two results with BR, and the rest will just follow.

Note that Lemmas 1 and 4 are not affected by BR since they are properties about the

unbundled sales strategy only.

Lemma 2 with BR:
Let PU0 = (aS , aB, 0, 0) and PH = (aS , aB, 0), then demand in any market segment

converges under unbundled sales and hybrid bundling with BR, and so does platform

profit. Thus we are done.

Proposition 1 with BR:
Simply take the first order derivatives of demands in (5) and (25) with respect to A

at PH0 = (aS , aB, A = 0). It is straightforward to see that ∂NBR
∂A (PH0)=

∂NS
BR

∂A (PH0)

+
∂NB

BR
∂A (PH0), and therefore ∂NSB

BR
∂A (PH0)=

∂NS
BR
∂A (PH0) +

∂NB
BR
∂A (PH0) −∂NBR

∂A (PH0) = 0.

This holds for any (aS , aB) ∈ R+2.�
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Part II

Multiproduct Price Discrimination with Two-Part Tariffs∗

Ming Gao†

First version: March 2009. This version: July 2010

Abstract

This paper gives a new "multiproduct" explanation of the wide application of

two-part tariffs, complementary to the classical "single-product" effi ciency-related ex-

planation. We consider a monopolist provider of n (> 1) products who uses two-part

tariffs consisting of a membership fee that is common to all consumers, and separate

prices for different product bundles. We show that the change in demand for any

bundle of k ∈ [1, n] products caused by imposing an extra membership fee on top of

any separate pricing strategy is proportional to the membership fee to the power of k.

Therefore a small extra membership fee has no first-order impact on the demand for

any multi-product bundles, which enables the firm to extract more consumer surplus.

When this positive effect dominates the loss of single-product demand, two-part tariff

dominates separate pricing. We present conditions that guarantee such an outcome,

which generalize McAfee, McMillan and Whinston (1989)’s result from two products

to multiple products. Our results suggest that two-part tariffs can achieve multidi-

mensional price discrimination and should be subject to similar regulatory scrutiny as

other discriminatory pricing strategies.
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1 Introduction

A two-part tariff is one of the most prevalent pricing strategies observed in real life.

Whenever the total price that a consumer pays for consumption of a product or service

consists of two parts instead of a one-off payment, a (general) two-part tariff applies.

Telecommunication network providers, energy companies, fitness clubs, etc, all use two-

part tariffs.

A typical single-product two-part tariff involves a fixed part and a variable part, both

pertaining to the same product. For instance, a pay-as-you-go mobile network tariff in the

UK normally consists of a fixed fee for access to the network (e.g. the cost of a SIM card

and/or a phone), and an additional fee for each minute spent making a call1. A typical UK

electricity/gas tariff also has a fixed part irrespective of usage (e.g. the "standing charge"),

and a variable part dependent on usage. The classical explanation of the desirability of

this kind of single-product two-part tariff is that it can reduce deadweight loss and hence

increase profit (e.g. with homogeneous consumers, a monopolist can set the unit price of

its product equal to marginal cost and capture all social surplus by an entry fee, which

also achieves effi ciency).

In this paper we study a different kind of two-part tariff involving multiple products,

which consists of an individual part that may be different for different products, and a

common part that applies to all products. For instance, a fitness club tariff may involve

different pay-as-you-go fees for different gym activities or classes, plus a membership fee

for access no matter what classes are taken.

We seek to answer the following question: Aside from the classical "effi ciency" benefits,

what makes (multiproduct) two-part tariffs desirable to a multiproduct monopolist?

The reason why we focus on two-part tariffs instead of, say, the optimal pricing strategy,

is three-fold: i) in theory, there is no known method to identify the general optimal

pricing strategy; ii) in real life, we rarely see pricing strategies that are as complex as the

potential optimal pricing strategy might be (e.g. mixed bundling consisting of hundreds

or thousands of prices), even for large numbers of products; and iii) in real life, two-part

tariffs are easily implementable and are actually widely used. (We further discuss our

motivation in section 2 in relation to the literature.)

Armstrong (1999) shows an asymptotic result that a cost-based two-part tariff can

be "almost" optimal when the number of products is large. This result is very useful

for understanding the pricing behavior of, say, supermarkets and bookshops, which have

thousands of products to sell (although it is not straightforward to tell how well a cost-

based two-part tariff describes the actual tariffs used by these firms in real life). However,

this result does not help us much to understand why firms with much fewer products, such

1Note that in some countries, e.g. US and China, the service of receiving calls on mobile phones may
not be free. If this is the case, it is useful to consider the reception service as a different product from the
calling service, in which case the tariff becomes a multiproduct two-part tariff.

51



as a fitness center, would also want to use a two-part tariff.

In this paper we show that two-part tariffs can achieve multiproduct price discrimi-

nation and we uncover the underlying mechanism through which it is achieved, i.e. the

two-part-tariff effect. This effect exploits the multi-dimensional nature of a multiprod-

uct firm’s demand, and has nothing to do with cost or effi ciency. It applies to any two

or more products, and holds for general forms of multivariate distributions. Our results

therefore complement Armstrong (1999) and provide a more complete explanation for the

prevalence of two-part tariffs in real life.

It is the common part of a two-part tariff that enables it to achieve multiproduct

price discrimination. Consider for instance a fitness club that provides three classes: 1,

2 and 3. Suppose the firm originally only sells them separately at respective prices p1,

p2 and p3. Then a consumer of classes 2 and 3, say, needs to pay p2 + p3. Suppose, in

addition to p1, p2 and p3, the firm now charges an extra membership fee m to everyone

who wants to use its facilities at all. Now a consumer has to pay total q2 = p2 + m for

class 2 alone, and q3 = p3 + m for class 3 alone. But classes 2 and 3 together now cost

p2 + p3 + m = q2 + q3 −m, cheaper (by m) than separate purchases of classes 2 and 3.
Moreover, attending all three classes together now costs p1 +p2 +p3 +m = q1 +q2 +q3−2m

(where q1 = p1+m), even cheaper (by 2m) compared to separate purchases of three classes.

This is a form of multiproduct price discrimination, and it is achieved because consumers

of any combinations of classes pay the same membership fee m. We show that when

m is small, it leads to a decrease proportional to m2 in the demand for any two-class

bundles, and a decrease proportional to m3 in the demand for all three classes together.

Such demand decreases are higher-order effects than the increase in total membership fee

collected from the consumers of these classes. Therefore the fitness club makes strictly

more profits from these consumers.

We use a general model for a monopolist provider of n (> 1) products facing heteroge-

neous consumers, and study when he would find it profitable to use the kind of two-part

tariff described in the previous example. In particular, we identify the demand implica-

tions of imposing an extra membership fee on top of separate-product pricing strategies,

which we call the two-part-tariff effect. We show that the change in demand for any bundle

of k > 1 products due to a small membership fee is proportional to the membership fee to

the power of k. This is because, for a k-bundle consumer, the burden of the extra fee is

shared by her valuations in k dimensions. Therefore, a small extra membership fee has no

first-order impact on the demand for any multiproduct bundles, but surpluses extracted

by the membership fee from consumers of such bundles are first-order gains. When these

gains dominate the losses from single products, two-part tariff dominates separate pricing.

We present conditions that guarantee such an outcome.

Our conditions generalize McAfee, McMillan andWhinston (1989)’s (henceforth MMW)

results to the multiproduct case. Their paper addresses the case of two products and pro-
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vides conditions for mixed bundling to strictly dominate separate pricing. The two-part

tariff we study can be viewed as a particular way of mixed bundling, where the member-

ship fee and its multiples serve as the "bundle discounts" in mixed bundling (as discussed

in the example of three products previously).

Although both two-part tariffs and mixed bundling can achieve multiproduct price

discrimination, they work through different mechanisms. MMW show that, offering a

discount to the bundle of two products (down from the sum of their separate prices) will

achieve the effect of increasing the demand for both products by just lowering one bundle

price, thus increasing total profits. We show that imposing a small membership fee has

zero first-order impact on the demand from all multiproduct consumers, thereby enabling

more surplus extraction from them and increasing total profits.

There is a "surprising" contrast between these mechanisms - MMW’s result on mixed

bundling involves a profitable decrease of the final price charged to consumers, whereas our

result on two-part tariff involves a profitable increase in the final price. This dichotomy

implies that the optimal pricing strategy will not necessarily involve a "discount" (i.e.

lower final price) compared to separate pricing, contrary to the impression that one might

incorrectly derive from MMW’s result. Indeed, we provide a two-product example in

section 8.4.2 where the optimal MMW-type mixed bundling strategy results in higher

final prices than separate pricing.

It is important to note that i) these two deviations are not exactly opposite to each

other - the exact opposite mechanism of an additional membership fee on all consumers is

the same amount of discount for all consumers, not just for multiproduct consumers; and

ii) both deviations lead to local profit improvements, and one should be cautious when

using them to infer properties of the global optimizers.

Since two-part tariffs can achieve multiproduct price discrimination, an implication of

our results is that (multiproduct) two-part tariffs should be subject to similar antitrust

scrutiny as other discriminatory pricing strategies, such as bundling.

The remainder of this paper is organized as follows: Section 2 discusses related liter-

ature and the position of this paper; Section 3 describes the model; Section 4 shows the

effect of two-part tariffs on demand, i.e. the two-part-tariff effect; Section 5 compares

profits under two-part tariffs and separate pricing, and provides conditions for the former

to dominate the latter; Section 6 generalizes two-part tariffs to allow for negative mem-

bership fees; Section 7 discusses the usage of more than one membership fees; Section 8

compares two-part tariffs and general mixed bundling strategies, where we also provide

results for specific distributions; Section 9 concludes.

53



2 Literature

This paper fits in the theoretical literature of multiproduct pricing, which is embedded in

the larger literature of multi-dimensional mechanism design (especially multi-dimensional

screening), and has evolved from the earlier literature on commodity bundling.

At its early stage, the bundling literature was first concerned with a two-product firm

and two classic categories of pricing strategies: pure bundling (only selling two goods in

bundles but not separately) and mixed bundling (providing two goods both separately and

in bundles). Scholars have focused on understanding how these strategies can do better

than separate pricing, and discussed the conditions with examples (Stigler (1963) and

Adams and Yellen (1976)), with particular distributions (Schmalensee (1984)), and then

with more general distributions (McAfee, McMillan and Whinston (1989)).

The general insights from these studies are: i) Pure bundling can yield higher profit

than separate pricing because consumers’valuation of the bundle is generally less dispersed

than their valuation of each separate good and hence pure bundling can increase the

probability of trade at certain prices; ii) Mixed bundling can increase profit because by

lowering the price of the bundle below the sum of the prices of separate goods (that is,

lowering one price) a monopolist can increase demands for both goods (that is, increase

two demands).

Afterwards the literature entered the era of multiple products. Along with the advance-

ment of understanding in multi-dimensional screening (Rochet and Chone (1998)), scholars

attempt to find the optimal multiproduct pricing strategy in a general setting. However,

so far this goal has not been achieved. The closest results that have been found are char-

acterizations of some properties of the optimal solution to the general screening problem

(Rochet and Chone (1998)), those of the optimal non-linear pricing strategy (Armstrong

(1996)) and those of the optimal mixed bundling strategy (Manelli and Vincent (2006)).

The first obstacle in identifying a solution is that the format of the optimal mechanism

is still unknown. Although mixed bundling is generally the most intuitive candidate,

Manelli and Vincent (2006) have shown that every multiproduct mixed bundling strategy

may actually be dominated by a mechanism involving random assignments.

Even when the search is narrowed down to mixed bundling strategies, the general

distributional assumption of consumers’valuations (of products) as well as the high di-

mensionality of the mathematical problem pose a second challenge - we only know some

properties of the optimal strategy under some well-behaved distributions (see Manelli

and Vincent (2006)), while the computational problem of finding the general solution is

NP-complete2 (Conitzer and Sandholm (2003)).

2NP-completeness (where NP stands for "nondeterministic polynomial time") implies that there is no
known effi cient way to locate a solution and the computational time required to solve the problem using
any currently known algorithm increases very quickly as the size of the problem grows, and may easily
reaches into the billions or trillions of years. See Madarász and Prat (2010) for a discussion of this problem.
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Moreover, even if we can find the optimal mixed bundling strategy given the specific

form of distribution, practicality becomes the third concern: For a supplier of n products, a

mixed bundling strategy needs to specify 2n−1 prices. This quickly makes mixed bundling

impractical in real life as the number of products increases beyond even the lower tens

(e.g. even if n = 5, there are still more than 30 prices involved).

In view of these diffi culties and concerns, the literature has developed in two different

directions:

The first direction pursues approximation of the optimal strategy through carefully

designed computational algorithms (see Madarász and Prat (2010)).

The second direction returns to studying the mechanisms of particular kinds of simpler

pricing strategies, and discusses the situations where these strategies may be desirable.

Papers in this direction include Fang and Norman (2006) and Banal-Estanol and Ottaviani

(2007) that focus on multiproduct pure bundling; and Chu, Leslie and Sorensen (2009)

that focus on "bundle-size" pricing.

The current paper follows the second direction and focuses on multiproduct two-part

tariffs. One nice feature of two-part tariff is that it is easily implementable: For a supplier

of n products, a two-part tariff only uses n + 1 prices (which is comparable to the small

number of prices used in "bundle-size" pricing, for instance). As discussed in section 1, our

results are complementary to Armstrong (1999) and provide a more complete explanation

for the prevalence of two-part tariffs in real life.

Long (1984) is the first in the bundling literature to make a connection between two-

part tariffs and mixed bundling in the two product case. He shows that a two-part tariff

consisting of prices of two separate products, q1 and q2, say, and one additional fixed fee

for all consumers, m, is equivalent to a mixed bundling strategy with prices for separate

products p1 = q1 +m, p2 = q2 +m and price for the bundle pB = q1 + q2 +m, where "the

bundle discount ( p1 + p2 − pB = m) is like a fixed fee".

Our model and results generalize Long’s discussion to the case of multiple products.

Furthermore, we show that the bundle discount in mixed bundling is not equivalent to

the membership fee in two-part tariffs, in either two-product case or multiproduct case,

because the bundle discount does not apply to single-product consumers and thus cannot

achieve the two-part-tariff effect (see section 8.3).

3 Model

There is only one firm, which produces n ∈ N different kinds of products. We use j ∈
{1, 2, ..., n} to denote a product. There is no cost of production. The firm maximizes

total profit.

There is a continuum of consumers, each of whom has a valuation for each of these
products (i.e. the utility she derives from the product) and demands 0 or 1 unit of each
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product (i.e. 2 or more units of any one product will provide the exact same utility as

1 unit of that product). The total utility a consumer derives from consuming various

products is simply the sum of her valuations for these products. No consumption results

in zero utility. We denote a consumer’s type by an n-dimensional real-valued parameter
x ≡ (x1, ..., xn), where xj is this consumer’s valuation for product j.

The firm does not know each consumer’s type. Rather, it has prior (density) f(x) of

the distribution of x among consumers. The support of f is denoted by S ≡ ×nj=1Sj ⊂ Rn,
where Sj is the support in dimension j (i.e. for product j).

Assumption 1 f is atomless, and S is weakly convex and has full dimension in Rn.

For expository simplicity and to allow for a direct comparison with Manelli and Vincent

(2006), in this paper we focus on the case when S = [0, 1]n ≡ In. All the results can easily
be generalized for general S that satisfies Assumption 1.3

Assumption 2 f is atomless, and f(x) > 0 if and only if x ∈ In.

A bundle is a set of different products. We denote the full bundle of all n products
as N = {1, 2, ..., n}. Any bundle, denoted by J , is therefore a subset of N , i.e. J ⊂ N .

The empty bundle is ∅ ⊂ N .
When it does not cause confusion, we also use j to represent the bundle {j} (i.e.

containing only product j). And jc simply means {j}c.
For bundle J , we denote the bundle size (i.e. the number of products in it) by |J |.
A general rule we use in the notation below is: superscript represents dimensionality;

subscript represents bundle or product.

Definition 1 (Price Schedule) A price schedule P specifies the price for each possible
bundle, P ≡ {pJ}J⊂N , where pJ ∈ R+ for any J ⊂ N .

Note that P consists of 2n prices since there are 2n possible bundles (including the full

bundle and the empty bundle).

Definition 2 (IC) Consider any K different subsets of N , denoted {Jk}k=1,2,...,K where

Jk ⊂ N ∀k = 1, 2, ...,K. A price schedule P = {pJ}J⊂N is incentive compatible (IC) if
the following condition holds for all K = 1, 2, 3, ..., 2n

p⋃K
k=1 Jk

≤
∑K

k=1
pJk

3Our notation also mostly follows that of Manelli and Vincent (2006).
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Interpretation In an IC price schedule, the price of a bundle would not exceed the sum

of the prices of any "profile" of its sub-bundles that forms a full "cover" of this bundle,

otherwise no consumer would ever demand this bundle. IC is a necessary condition for

each bundle to attract some demand.

Since a partition of a bundle is a profile of sub-bundles that form a full "cover" of this

bundle, IC therefore implies that the price of a bundle in an IC price schedule would not

exceed the sum of the sub-bundle prices in any partition of this bundle.

Our discussion from now on focuses only on IC price schedules.

Definition 3 (Additivity/Separate Pricing) A price schedule P = {pJ}J⊂N is ad-
ditive (or separate pricing) if p∅ = 0 and pJ =

∑
j∈J

pj for any non-empty J ⊂ N .

p∅ = 0 is actually a constraint on all price schedules that satisfy consumers’individual

rationality (IR). Note that this definition implies the following result.

Lemma 1 If P = {pJ}J⊂N is additive, then pJ + pK = pJ∪K + pJ∩K for any two bundles

J and K.

Proof. By additivity of P, we have

pJ∪K + pJ∩K =
∑

i∈J∪K
pi +

∑
h∈J∩K

ph

=
∑
j∈J

pj +
∑
l∈K\J

pi +
∑

h∈J∩K
ph

=
∑
j∈J

pj +
∑
k∈K

pk

= pJ + pK .

Lemma 2 Additivity implies IC.

Proof. Apply Lemma 1 on any two subsets of N , say J1 and J2, and we have

pJ1∪J2 + pJ1∩J2 = pJ1 + pJ2

Since pJ1∩J2 ≥ 0, we know

pJ1∪J2 ≤ pJ1 + pJ2

Now apply Lemma 1 to a third subset J3 and J1 ∪ J2, and in turn we have

pJ1∪J2∪J3 ≤ pJ1∪J2∪J3 + p(J1∪J2)∩J3 = pJ1∪J2 + pJ3 ≤ pJ1 + pJ2 + pJ3

We therefore can continue to add additional subsets one by one in the same way as

above and show that p⋃K
k=1 Jk

≤
∑K

k=1 pJk holds for all K = 1, 2, 3, ..., 2n.
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Definition 4 (Demand Segment) Given IC price schedule P = {pJ}J⊂N , the demand
segment for any bundle J ⊂ N , denoted AJ , is the set of all the consumers that buy bundle
J :

AJ ≡ {x ∈ In|
∑
j∈J

xj − pJ ≥
∑
k∈K

xk − pK ,∀K ⊂ N}

Note: From this definition, all demand segments are closed, and their intersections

define their "boundaries".

Definition 5 (Allocation) A (consumer) allocation given price schedule P is the pro-

file of demand segments of all bundles induced by P, denoted {AJ}J⊂N .4

Lemma 3 (Additive Allocation) If P = {pJ}J⊂N is additive, the allocation it induces
{AJ}J⊂N must satisfy for any J ⊂ N

AJ = {x ∈ In|xj ≥ pj ,∀j ∈ J ;xk ≤ pk, ∀k ∈ Jc} (1)

Intuition An additive price schedule allocates all consumers into "cubes" delineated by

orthogonal hyperplanes.

Proof.
What we need to show is that, when P = {pJ}J⊂N is additive, the following two

conditions are equivalent for any J ⊂ N :
(i)

∑
j∈J

xj − pJ ≥
∑
k∈K

xk − pK , ∀K ⊂ N ;

(ii) xj ≥ pj , ∀j ∈ J ;xk ≤ pk,∀k ∈ Jc.
The property we need to prove the equivalence is exactly additivity of P: that is,

p∅ = 0 and pJ =
∑
j∈J

pj for any J 6= ∅.

First, it is easy to see that for J = ∅, both (i) and (ii) reduce to: xk ≤ pk, ∀k ∈ N and

are therefore equivalent.

Now consider J 6= ∅ :

Step 1: (i)⇒(ii)
Since J 6= ∅, we must be able to partition J into some {i} and K where i ∈ J , K ⊂ N ,

i /∈ K, and J = {i} ∪K (note that K may be ∅).
Since (i) holds for any K ⊂ N , it must hold for this K. By additivity of P we know

pJ = pi + pK . Therefore we have∑
j∈J

xj −
∑
k∈K

xk ≥ pJ − pK ⇔ xi ≥ pi.

As this i can be any element in J , we have proved the first part of (ii).

To prove the second part of (ii), first notice that it only matters for J 6= N (and does

not exist for J = N). Therefore we can consider L ≡ J ∪{h} where h ∈ Jc. By additivity
of P we know pL = pJ + ph. Since (i) must hold for this L as well (as L ⊂ N), we have

4To lighten notation, we do not carry P in AJ or {AJ}J⊂N , but it is always implied that a demand
segment or allocation is induced by some price schedule.
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pL − pJ ≥
∑
l∈L

xl −
∑
j∈J

xj ⇔ ph ≥ xh

And this holds for any h ∈ Jc. Done.
Step 2: (ii)⇒(i)
For any K ⊂ N , by additivity of P and (ii) we have:

(
∑
j∈J

xj − pJ)− (
∑
k∈K

xk − pK)

= (
∑
j∈J

xj −
∑
k∈K

xk)− (pJ − pK)

= (
∑
i∈J\K

xi −
∑

h∈K\J
xh)− (pJ\K − pK\J)

≥ (
∑
i∈J\K

pi −
∑

h∈K\J
ph)− (pJ\K − pK\J)

= 0

which implies (i). Done.

Definition 6 (Truncated Type) Given any bundle J ⊂ N , a J−truncated type pa-
rameter is denoted xJ = {xj}j∈J ∈ IJ , where IJ ≡ ×j∈JIj.

We sometimes use xJj (where j ∈ J) to denote the element of xJ pertaining to product
j.

Notice xJ is a |J |-dimensional vector (or a point) in IJ . We use J instead of |J | as the
superscript of xJ to emphasize that xJ keeps the dimensions in In according to bundle

J , rather than any |J | dimensions of In. This distinction is important for the following
definitions.

Definition 7 (Projection) For any (consumer set) A ⊂ In and any bundle K 6= ∅,
define

AK ≡ {xK ∈ IK |(xK ,y) ∈ A, for some y ∈ IKc}

which is the projection of set A on the |K|-dimensional hyperplane defined by the fol-
lowing |Kc| equations:

{xKc

j = 0}j∈Kc (2)

Note that when K = N , because |N c| = 0, the projection operation above is the

identity mapping, i.e. AN = A.

Definition 8 (Projection of AJ) For any two bundles K,J 6= ∅, the set

AKJ ≡ {xK ∈ IK |(xK ,y) ∈ AJ , for some y ∈ IK
c}

is the projection of set AJ on the |K|-dimensional hyperplane defined by the |Kc| equa-
tions of (2).
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Definition 9 (Probability Measure) For any A ⊂ In, we define the probability mea-

sure of A as M(A) which satisfies

M(A) =

∫
A
f(x)dx

We use MJ(A) =
∫
A f(xJ)dxJ to denote the marginal measure in IJ of set A, for

any J ⊂ N , which is particularly useful when A does not have full dimension in In but

has full dimension in IJ .

4 Two-Part Tariffs and the Two-Part-Tariff Effect

Definition 10 (Two-Part Tariff) A two-part tariff is a price schedule Q = {qJ}J⊂N
consisting of two parts (m,P), where

m > 0; and

P = {pJ}J⊂N is additive; and

qJ =

{
pJ +m , if J 6= ∅
0 , if J = ∅

(3)

And the allocations induced by P and Q are denoted {AJ}J⊂N and {CJ}J⊂N , respectively.

Comment A two-part tariffQ consists of a common part, m, which is the membership

fee that applies to all customers, and an individual part, P, which is an additive price

schedule of the prices of separate products. Compared to P, Q simply increases the prices

of all non-empty bundles by the same amount m. Since P is additive, Q will not be

additive.

As we discussed in section 1, the two-part tariff in (3) achieves multiproduct price

discrimination. To see this, suppose under Q consumer a demands bundle {1} (by paying
q1 = p1 + m), consumer b demands bundle {2} (by paying q2 = p2 + m), and consumer

c demands bundle {1, 2} (by paying q{1,2} = p{1,2} + m = p1 + p2 + m = q1 + q2 −m).
Compared to a and b, it is as if c gets a "discount" of m by buying two products together,

since c only needs to pay membership fee m once. Actually, it is easy to see that under Q

a consumer of any bundle J gets a "discount" of (|J | − 1) ·m compared to the consumers

of the |J | individual products. This is a special feature of the two-part tariff we defined
in (3).
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4.1 Uniform Distribution

Theorem 1 Consider the price schedules and allocations defined in (3). If x is uni-
formly distributed, then for any J 6= ∅, we have

M(CJ)−M(AJ) = c(P) ·m|J |

where c(P) is a function of P (but not of m).

That is, the demand change of any bundle J due to an additional membership fee m

on top of separate pricing is proportional to m to the power of the bundle size |J |.

Intuition Starting from an additive price schedule, for a consumer of bundle J , the

burden of an extra membership fee is shared by her valuations of all |J | products in the
bundle.

Note that the demand change, M(CJ)−M(AJ), is non-positive because CJ ⊂ AJ as

we will show below.

Proof. Since P is additive, by Lemma 3 we know the allocation induced by P is defined
in (1), that is:

AJ = {x ∈ In|xj ≥ pj , ∀j ∈ J ;xk < pk,∀k ∈ Jc}

And by Definition 4 and the definition of Q in (3), we know the allocation Q induces

is

C∅ = {x ∈ In|
∑
k∈K

xk < pK +m,∀K 6= ∅,K ⊂ N}

= {x ∈ In|
∑
k∈K

xk <
∑
k∈K

pk +m,∀K 6= ∅,K ⊂ N}; and

CJ(6=∅) = {x ∈ In|
∑
j∈J

xj ≥ pJ +m;
∑
j∈J

xj − pJ ≥
∑
k∈K

xk − pK ,∀K ⊂ N}

= {x ∈ In|
∑
j∈J

xj ≥ pJ +m;xj ≥ pj , ∀j ∈ J ;xk ≤ pk,∀k ∈ Jc}
(4)

(For the last equation, see proof of Lemma 3 where we show (i)⇔(ii).)

Definition 11

AJ(m) ≡ {x ∈ AJ |0 ≤
∑
j∈J

xj − pJ<m}, for J ⊂ N. (5)
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Therefore we have

AJ(m) = {x ∈ AJ |0 ≤
∑
j∈J

xj − pJ<m} (6)

= {x ∈ In|xj ≥ pj , ∀j ∈ J ;
∑
j∈J

xj<
∑
j∈J

pj +m;xk < pk, ∀k ∈ Jc}

which implies:

Lemma 4 ∀J ⊂ N, we have AJ = CJ∪AJ(m). That is, AJ(m) is exactly the lost demand

for bundle J when the price schedule changes from P to Q.

Rewrite this relationship in terms of measures and we have:

Lemma 5 ∀J ⊂ N, we have M(AJ(m)) = M(AJ\CJ) = M(AJ)−M(CJ).

Denote the projection of AJ(m) in dimensions J (see Definition 8) as AJJ(m) ≡
(AJ(m))J , and that in dimensions Jc as AJ

c

J (m) ≡ (AJ(m))J
c
. Then by Definition 8,

(1) and (6) we know:

AJJ(m) = {xJ ∈ IJ |(xJ ,y) ∈ AJ(m), for some y ∈ IJc} (7)

= {xJ ∈ IJ |xj ≥ pj , ∀j ∈ J ;
∑
j∈J

xj<
∑
j∈J

pj +m}

From this expression we know AJJ(m) has full dimension in IJ , and each of its "|J |
sides" has "length" exactly equal to m.

By (6) we also know:

AJ
c

J (m) = {xJc ∈ IJc |(xJc ,y) ∈ AJ(m), for some y ∈ IJ} (8)

= {xJc ∈ IJc |xk < pk,∀k ∈ Jc}

= {xJc ∈ IJc |0 ≤ xk < pk,∀k ∈ Jc}

which implies:

Lemma 6
AJ

c

J (m) = AJ
c

J ,∀J ⊂ N. (9)

That is, AJ
c

J (m) does not depend on m for any J ⊂ N .

Lemma 7
AJ(m) = AJJ(m)×AJcJ ,∀J ⊂ N. (10)

That is, when the price schedule changes from P to Q, the demand change of any bundle J ,

AJ(m), is the Cartesian product of its projections in own dimensions J and in complement

dimensions Jc.
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(Notice that our proof up until this point applies to any general distribution f satisfying

Assumption 2.)

Therefore by mutual independence among all xj’s (j ∈ N) implied by uniform distri-

bution, we have

M(AJ(m)) = MJ(AJJ(m)) ·MJc(AJ
c

J ) (11)

Note: MJ(·) and MJc(·) are the marginal measures of M in dimensions J and dimen-

sions Jc, respectively.

Now we need to find MJ(AJJ(m)) and MJc(AJ
c

J ).

By (7) and f(x) = 1, ∀x ∈ In, we have

MJ(AJJ(m)) =

∫
AJJ (m)

dxJ =
m|J |

|J |! (12)

By (8) we have

MJc(AJ
c

J (m)) =

∫
AJ

c
J (m)

dxJ
c

=
∏
k∈Jc

pk (13)

Finally, putting (12) and (13) together, we have

M(CJ)−M(AJ) = −M(AJ(m)) =
−
∏
k∈Jc pk
|J |! ·m|J | (14)

where the first part
−
∏
k∈Jc pk
|J |! ≡ c(P) is a function of P only (more precisely it is a function

of PJ
c
only), and does not depend on m.

Comment By (8) we know MJc(AJ
c

J (m)) only depends on P and distribution f , but

does not depend on m. By (7) we know each of AJJ(m)’s "|J | sides" has "length" m, which
meansMJ(AJJ(m)) will be proportional to m|J |. ThereforeM(AJ(m)) is also proportional

to m|J |.

Under uniform distribution, Theorem 1 tells us that when we impose an extra mem-

bership fee on top of an additive pricing strategy, the impact on the demand for any

bundle is of order equal to the bundle size. This implies that, for multiproduct bundles,

there is no first-order demand impact. This implication turns out to hold for any general

distribution, as summarized in the following result.

4.2 General Distribution

Theorem 2 (Two-Part-Tariff Effect) Consider the price schedules and allocations de-
fined in (3). For any general f satisfying Assumption 2, we have

(i) ∂
∂m [M(CJ)−M(AJ)]|m=0 ≤ 0, for all J such that |J | = 1;

(ii) ∂
∂m [M(CJ)−M(AJ)]|m=0 = 0, for all J such that |J | > 1.
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That is, imposing an additional membership fee on top of separate pricing has no first-
order impact on the demand for any multiproduct bundle.

Intuition Similar to the results shown in Theorem 1, even when distribution f does not

satisfy independence, when m is very small, we can still think of M(AJ(m)) as "propor-

tional" to m|J |, and thus its first order derivative with respect to m would be "propor-

tional" to m|J |−1, which goes to 0 as m→ 0, unless |J | = 1.

Proof. The expressions (6), (7) and (8) derived above hold for any general distribution f
that satisfies Assumption 2. Although property (11) requires mutual independence among

xj’s, we do not really need it here as all we care about is the first order derivative of

M(AJ(m)), not M(AJ(m)) itself. Therefore Lemma 7 will suffi ce.

Part (i): when |J | = 1, i.e. J = {j}, ∀j ∈ N .
By (6) we know

Aj(m) = {x ∈ In|pj ≤ xj<pj +m;xk < pk,∀k ∈ jc}

= ×k∈jc{xk ∈ Ik|0 ≤ xk < pk} × {xj ∈ Ij |pj ≤ xj<pj +m}

where by (8) and (9) we know that Aj
c

j (m) = Aj
c

j = ×k∈jc{xk ∈ Ik|0 ≤ xk < pk}
Then by (10) we have

M(Aj(m)) =

∫ pj+m

pj

[

∫
Aj

c

j

f(xj
c
, xj)dx

jc ]dxj

Notice that the integral in the brackets above is a function of xj and Pj
c
only (it

depends on Pj
c
because of Aj

c

j ), and does not depend on m. Therefore we can define it as

Wj(xj ,P
jc) ≡

∫
Aj

c

j

f(xj
c
, xj)dx

jc

And rewrite

M(Aj(m)) =

∫ pj+m

pj

Wj(xj ,P
jc)dxj

Therefore

∂

∂m
(M(Cj)−M(Aj))|m=0 = −∂M(Aj(m))

∂m
|m=0

= −Wj(pj +m,Pj
c
)|m=0

= −Wj(pj ,P
jc)

= −
∫
Aj

c

j

f(xj
c
, pj)dx

jc

≤ 0
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Notice that the last inequality above will be strict if P in (3) satisfies pj > 0 ∀j ∈ N .
Part (ii): when |J | > 1. Since all n dimensions are "symmetric" in our setting,

without loss of generality, we consider J = {1, 2, ..., |J |}.
By (9) and (10) we have

M(AJ(m)) =

∫
AJ (m)

f(x)dx =

∫
AJ

c
J

[

∫
AJJ (m)

f(xJ
c
,xJ)dxJ ]dxJ

c

Since AJ
c

J does not depend on m (by (8) and (9)), we have

∂M(AJ(m))

∂m
=

∫
AJ

c
J

[
∂

∂m

∫
AJJ (m)

f(xJ
c
,xJ)dxJ ]dxJ

c
(15)

Now we focus on the part in brackets, ∂
∂m

∫
AJJ (m) f(xJ

c
,xJ)dxJ .

First notice that by (7) we know

AJJ(m) = {xJ ∈ IJ |xj ≥ pj , ∀j ∈ J ;
∑
j∈J

xj<
∑
j∈J

pj +m}

In the following expression we write out
∫
AJJ (m) f(xJ

c
,xJ)dxJ in all |J | dimensions, in

ascending order of product indices from inside outwards.∫
AJJ (m)

f(xJ
c
,xJ)dxJ

=

∫ m+p|J|

p|J|

∫ m+p|J|−1+p|J|−x|J|

p|J|−1

...

∫ m+
∑
j≥k

pj−
∑
j>k

xj

pk

...

∫ m+
∑
j≥1

pj−
∑
j>1

xj

p1

f(x)dx1...dxk...dx|J |−1dx|J |

Since |J | > 1, this expression will have at least two "layers". We focus on the first

(outmost) layer, and denote all the parts inside the first layer of integration as

V (|J |−1,P,m, x|J |) ≡
∫ m+p|J|−1+p|J|−x|J|

p|J|−1

...

∫ m+
∑
j≥k

pj−
∑
j>k

xj

pk

...

∫ m+
∑
j≥1

pj−
∑
j>1

xj

p1

f(x)dx1...dxk...dx|J |−1

(16)

where |J |−1 represents the number of layers of integration in V ; P and m enter V because

they define the limits of integration; and, finally, only x|J | instead of xJ enters V because

in the |J |−1 layers of integration from inside out, dx1, ..., dx|J |−1 each acts as the variable

of integration and therefore gets integrated away, leaving only x|J | (from the limits of

integration) in V .

Therefore we can rewrite
∫
AJJ (m) f(xJ

c
,xJ)dxJ as

∫
AJJ (m)

f(xJ
c
,xJ)dxJ =

∫ m+p|J|

p|J|

V (|J | − 1,P,m, x|J |)dx|J |
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Therefore we have

∂
∂m

∫
AJJ (m) f(xJ

c
,xJ)dxJ

= V (|J | − 1,P,m, x|J | = m+ p|J |) +
∫m+p|J|
p|J|

∂
∂mV (|J | − 1,P,m, x|J |)dx|J |

(17)

Now examine the first part of (17), V (|J | − 1,P,m, x|J | = m+ p|J |), which is found by

letting x|J | = m+ p|J | in (16). We only need to focus on the upper limit of integration in

(16), which is m+ p|J |−1 + p|J | − x|J |. We immediately see that it is equal to p|J |−1 when

x|J | = m + p|J |. But this means the upper and lower limits of integration of (16) are the

same. Therefore

V (|J | − 1,P,m, x|J | = m+ p|J |) = 0

Now consider the second part of (17). When m = 0, its upper and lower limits of

integration also coincide, and therefore it also equals 0 when m = 0.

Hence we have
∂

∂m

∫
AJJ (m)

f(xJ
c
,xJ)dxJ |m=0 = 0

Substitute back to (15) and we are done.

Comment Part (i) of Theorem 2 says that, imposing a small extra membership fee on

top of an additive price schedule will cause a first-order decrease in the demand for single-

product bundles. Part (ii) says that such a price manipulation has no first-order impact

on the demand for all multi-product bundles (consisting of two or more products).

Theorem 2 summarizes the demand implications of two-part tariffs, so we name it the

two-part-tariff effect.

The two-part-tariff effect is crucial to the profitability of two-part tariffs. When the

firm charges everyone an extra membership fee, part (ii) of Theorem 2 implies that this

will lead to a pure first-order gain in profit from all multi-product consumers, as their

demand does not decrease (on the first order) as a result. This gives rise to the possibility

of higher overall profit for the firm. In section 5 we discuss when this gain will dominate

the loss from the decreased demand for single products.

4.3 Deviation Starting from Non-Additive Price Schedules

The two-part-tariff effect exploits the multi-dimensional nature of the demand of a mul-

tiproduct firm. This argument is made in comparison to separate pricing (i.e. additive)

strategies.

Ignoring implementability concerns, would the two-part-tariff effect in Theorem 2 still

hold had the deviation started from a non-additive price schedule?

The answer is not necessarily.

66



Actually, starting from a non-additive price schedule, the first-order impact on demand

for multiproduct bundles due to an extra membership fee may be strictly negative. This is

because the original non-additive pricing strategy may already be exploiting the multiple

dimensionality, since it is not additive.

For instance, in the case when n = 2 with uniform distribution5, consider a two-part

tariff (m1,P) with m1 > 0 as the original pricing strategy. Suppose we impose a second

membership fee applicable to all consumers on top of m1. It is straightforward to see

that this deviation is equivalent to increasing the first membership fee m1 of the original

strategy. Since M(A{1,2}) = (1− p1) · (1− p2)− 1
2m

2 under uniform distribution, we have
∂M(A{1,2})

∂m |m=m1 = −m1 < 0. That is, imposing an additional membership fee will strictly

reduce the demand for multiproduct bundles. Therefore there is no two-part-tariff effect

starting from any two-part tariff (m1,P) with m1 > 0.

5 Two-Part Tariffs vs. Separate Pricing

5.1 The Profit Maximization Problem

If the firm uses general price schedule P = {pJ}J⊂N to maximize its profit, its maximiza-
tion problem is

max
{pJ}J⊂N

∑
J⊂N

pJM(AJ)

where {AJ}J⊂N is the allocation induced by P.

As discussed previously, so far the literature has not succeeded in finding the general

solution of this problem. The diffi culties in solving this problem are discussed in section

2.

Given the purpose of this paper, we focus on a comparison between two-part tariffs

and separate pricing.

5.2 Separate Pricing

In Definition 3, we have defined additivity to be a synonym of separate pricing to reflect

the fact that a separate pricing strategy does not involve any manipulation of the prices

of different combinations of products.

Note that, due to additivity, a separate pricing strategy P = {pJ}J⊂N can also be

written as P = {pj}j∈N which only lists the prices of single products, as they uniquely

and completely determine all the other prices in schedule P.

If the firm only uses separate pricing strategies, its profit maximization problem is

simple and solvable. Actually, because additive price schedules allocate all consumers into

"cubes" delineated by orthogonal hyperplanes (see (1)), the firm’s maximization problem

5See section 8.4.1 for a detailed discussion of this special case.
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reduces to n separate maximization problems, each regarding one single product. There-

fore in the optimal separate pricing strategy the monopolist can set the optimal price for

each single product irrespective of all the other products and their prices (i.e. acting as

a single-product monopolist). We call the separate pricing strategy comprised of these

"individually optimal" prices the monopoly separate pricing strategy.

Definition 12 (Monopoly Separate Pricing/MSP) A price schedule P = {pJ}J⊂N
is a monopoly separate pricing strategy if it is additive and ∀j ∈ N ,

pj = arg max
p′j≥0

p′j · Pr[xj ≥ p′j ] (18)

Lemma 8 The optimal separate pricing strategy is an MSP. There exists MSP P =

{pJ}J⊂N such that pj ∈ (0, 1) ∀j ∈ N and P yields strictly positive profit.

Proof. With separate pricing strategy P, the allocation is given by (1).
We consider the set of all consumers who buy some bundle that contains product j,

i.e. the total demand for product j ∈ N :

Bj ≡
⋃

J3j
AJ

Since {AJ}J⊂N satisfies (1), we have

Bj = {x ∈ In|xj ≥ pj},∀j ∈ N

That is, under separate pricing, all consumers with valuation for product j higher than

pj will buy j.

Note that instead of writing the firm’s total profit according to bundles,
∑
J⊂N

pJM(AJ),

there is an alternative way of writing it according to products. When the firm uses an

additive pricing strategy, the profit margin (equal to the price, as production cost is 0) is

the same for the same product however it is sold (either separately or as part of a bundle).

Therefore, we have ∑
J⊂N

pJM(AJ) =
∑
j∈N

pjM(Bj) =
∑
j∈N

pj Pr[xj ≥ pj ]

Thus the maximization problem reduces to

max
{pj}j∈N

∑
j∈N

pj Pr[xj ≥ pj ]

and therefore the optimal strategy must be an MSP.
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The existence of an MSP is implied by Assumption 2, under which the maximization

problem of each individual product, max
p′j≥0

p′j · Pr[xj ≥ p′j ], is well-behaved.

5.3 Comparison

Theorem 3 When all xj’s (j ∈ N) are mutually independent, the optimal separate
pricing strategy is strictly dominated by a two-part tariff.

Proof. Suppose P is the optimal separate pricing strategy, then Lemma 8 tells us P is

an MSP and satisfies (18).

Now we use this P to define a two-part tariffQ according to (3). Our strategy in this

proof is to find first the difference in profits from P and Q, and then show that when

m→ 0, Q yields strictly higher profit than P.

First define profit functions:

π(P) ≡
∑
J⊂N

pJ ·M(AJ)

π(Q) ≡
∑
J⊂N

qJ ·M(CJ)

Notice by (3) and (5), we have

∆π ≡ π(Q)−π(P) =
∑
J⊂N

qJ ·M(CJ)−
∑
J⊂N

pJ ·M(AJ)

=
∑
J 6=∅
{(pJ+m) · [M(AJ)−M(AJ(m))]− pJ ·M(AJ)}

= m ·
∑
J 6=∅

M(AJ)−
∑
J 6=∅

(pJ+m) ·M(AJ(m))

By definition, M(AJ) does not depend on m, ∀J ⊂ N . Therefore

∂∆π

∂m
=

∑
J 6=∅

M(AJ)−
∑
J 6=∅

[M(AJ(m)) + (pJ+m) · ∂M(AJ(m))

∂m
]

=
∑
J 6=∅

M(AJ)−
∑
J 6=∅

M(AJ(m))−
∑
J 6=∅

(pJ+m) · ∂M(AJ(m))

∂m
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Thus

∂∆π

∂m
|m=0 =

∑
J 6=∅

M(AJ)−
∑
J 6=∅

(pJ) · ∂M(AJ(m))

∂m
|m=0

=
∑
j∈N

M(Aj)−
∑
j∈N

(pj) ·
∂M(Aj(m))

∂m
|m=0

+
∑

J⊂N,|J |>1

M(AJ)−
∑

J⊂N,|J |>1

(pJ) · ∂M(AJ(m))

∂m
|m=0

where in the last equality we have used separate expressions for single-product bundles

and multi-product bundles.

By Theorem 2 we know that for any J ⊂ N, |J | > 1, ∂M(AJ (m))
∂m |m=0 = −∂M(AJ\CJ )

∂m |m=0 =

0. Therefore we are left with

∂∆π

∂m
|m=0 =

∑
j∈N

M(Aj)−
∑
j∈N

(pj) ·
∂M(Aj(m))

∂m
|m=0 +

∑
J⊂N,|J |>1

M(AJ) (19)

Now we study ∂M(Aj(m))
∂m |m=0.

We first focus on M(Aj(m)). By (10) we know

Aj(m) = {x ∈ In|pj ≤ xj<pj +m;xk < pk, ∀k ∈ jc}

= ×k∈jc{xk ∈ Ik|0 ≤ xk < pk} × {xj ∈ Ij |pj ≤ xj<pj}

where by (9) we know that Aj
c

j (m) = Aj
c

j = ×k∈jc{xk ∈ Ik|0 ≤ xk < pk}
Therefore

M(Aj(m)) =

∫ pj+m

pj

[

∫
Aj

c

j

f(xj
c
, xj)dx

jc ]dxj

The integral in the brackets only depends on xj and Pj
c
, which we define as

Wj(xj ,P
jc) ≡

∫
Aj

c

j

f(xj
c
, xj)dx

jc

And rewrite

M(Aj(m)) =

∫ pj+m

pj

Wj(xj ,P
jc)dxj

Therefore

∂M(Aj(m))

∂m
|m=0 = Wj(pj +m,Pj

c
)|m=0 = Wj(pj ,P

jc)
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Substituting in (19) we get

∂∆π

∂m
|m=0 =

n∑
j=1

[M(Aj)− pj ·Wj(pj ,P
jc)] +

∑
J⊂N,|J |>1

M(AJ) (20)

Notice that our proof up until this point applies to all general price schedules P satis-

fying (3) and any general distribution f satisfying Assumption 2.

Now we use the fact that P is MSP and all xj’s (j ∈ N) are mutually independent to
show that M(Aj) = pj ·Wj(pj ,P

jc), ∀j ∈ N .
First denote by Fj and fj the marginal distribution and density of xj , respectively.

Since P is additive, by (1) of Lemma 3, we have ∀j ∈ N

Aj = {x ∈ In|xj ≥ pj ;xk < pk,∀k ∈ jc}

and therefore

M(Aj) =

∫ 1

pj

[

∫
Aj

c

j

f(xj
c
, xj)dx

jc ]dxj

Since all xj’s (j ∈ N) are mutually independent, we know f(x) =
∏
j∈N fj(xj). And

since Aj
c

j = ×k∈jc{xk ∈ Ik|0 ≤ xk < pk} (see part (i) proof of Theorem 2), we have

M(Aj) =
∏
k 6=j

Fk(pk) · [1− Fj(pj)]

and

Wj(pj ,P
jc) =

∫
Aj

c

j

f(xj
c
, pj)dx

jc =
∏
k 6=j

Fk(pk) · fj(pj)

Therefore

M(Aj)− pj ·Wj(pj ,P
jc) =

∏
k 6=j

Fk(pk) · [1− Fj(pj)− pj · fj(pj)]

In the last step, we use the fact that P is MSP, which must satisfy (18), whose first

order condition is, for all j ∈ N ,

1− Fj(pj) = pjfj(pj)

and therefore M(Aj)− pj ·Wj(pj ,P
jc) = 0, ∀j ∈ N.

Therefore we have
∂∆π

∂m
|m=0 =

∑
J⊂N,|J |>1

M(AJ) ≥ 0

Now we only need to show that the last inequality above must be strict when P is

MSP.
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To see this, suppose instead
∑

J,|J |>1

M(AJ) = 0. Since each M(AJ) is non-negative, we

must have M(AJ) = 0, for all J ⊂ N, |J | > 1.

Given that the support in each dimension is I = [0, 1], M(AJ) = 0 for all |J | > 1

implies that, in price schedule P, there must exists at least one product k such that

pk ≥ 1. The reason is that if there were no such product, i.e. pj < 1 for all j ∈ N , then
at least M(AN ) would be strictly positive.

But pk ≥ 1 implies that Pr[xk ≥ pk] = 0, which in turn implies pk yields zero profit

from product k and therefore contradicts the fact that pk is the optimal MSP price for

product k.

Thus we have proven
∂∆π

∂m
|m=0 > 0

which implies that Q yields strictly higher profit than P.

Interpretation From Theorem 3 we know that, with independence, no separate pricing

strategy is optimal. One simple way to increase profit from the optimal separate pricing

strategy P is to impose a small membership fee (that is, raising all the prices in P by the

same small amount m > 0 except for the price of the empty bundle).

Theorem 4 With any general f satisfying Assumption 2, any separate pricing strategy
P is strictly dominated by the two-part tariff Q defined in (3) using P if the following

condition holds at P

n∑
j=1

[M(Aj)− pj ·
∫
Aj

c

j

f(xj
c
, pj )dx

jc ] +
∑

J⊂N,|J |>1

M(AJ) > 0 (21)

where {AJ}J⊂N is the allocation induced by P as defined in (1).

Proof. Consider the price schedules defined in (3). We need to show that when condition
(21) holds, Q yields strictly higher profit than P.

In exactly the same way as in the proof of Theorem 3 we can get result (20), which holds

for all general price schedules that satisfies (3) and any general distribution f satisfying

Assumption 2.

Substitute Wj(pj ,P
jc) =

∫
Aj

c

j
f(xj

c
, pj )dx

jc in (20) and we see that condition (21)

of Theorem 4 is exactly ∂∆π
∂m |m=0 > 0. Therefore P is strictly dominated by Q when

condition (21) holds.

Intuition As we have discussed in the comment of Theorem 2, imposing a small ex-

tra membership fee on top of a separate pricing strategy will only decrease the demand

for single-product bundles, but has no first-order impact on the demand for all multi-

product bundles. Since the firm charges everyone an extra membership fee, it gains from

72



each and every one of multi-product consumers. This gain is represented by the term∑
J⊂N,|J |>1

M(AJ) in condition (21) (which is exactly the "number" of all multi-product

consumers). From single-product consumers, the firm charges a higher price, but also

loses some demand. The net effect from single-products is represented by the term
n∑
j=1

[M(Aj) − pj ·
∫
Aj

c

j
f(xj

c
, pj )dx

jc ], which may be positive or negative, depending on

the pricing strategy P. The overall impact on profit from the whole market is therefore

captured by the left-hand side of condition (21).

Comment Theorem 4 generalizes Proposition 1 of McAfee, McMillan and Whinston

(1989) to the multiproduct case. The latter addresses the case of two products and provides

a condition for mixed bundling to strictly dominate separate pricing. It can be shown that

when n = 2, our condition (21) reduces to their condition (1).

We postpone the discussion of the relationship between our results on two-part tariffs

and MMW’s on mixed bundling to section 8.

6 Generalized Two-Part Tariffs

Thus far our discussion has focused on the situations where condition (21) holds. Now

suppose it does not hold at MSP P. Can the firm make a profitable deviation in this case?

The answer is yes. Indeed, since the left-hand side of condition (21) is merely ∂∆π
∂m |m=0,

in the case that it is negative, we expect that using a negative m should be profitable. In

this section we generalize two-part tariffs to allow for negative membership fees.

6.1 Subsidizing Memberships

A negative m is actually a membership subsidy. In real life, membership subsidies
often take the form of free gifts offered to consumers, such as complimentary appetizers

or desserts at restaurants, and free "air-time" offered by mobile phone networks. We have

not used membership subsidy in our general model because it may not always be feasible,

as we have restricted the feasible price schedules to be non-negative. However, when we

consider condition (21) at the optimal separate pricing strategy, Lemma 8 tells us that

the MSP is strictly positive, and therefore a small membership subsidy is indeed feasible.

Now we generalize our definition of two-part tariffs to incorporate subsidies.

Definition 13 (Generalized Two-Part Tariff) A generalized two-part tariff is a
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price schedule Q = {qJ}J⊂N consisting of two parts (m,P), where

m ∈ R; and
P = {pJ}J⊂N is additive; and

qJ =

{
pJ +m , if J 6= ∅
0 , if J = ∅

; and

qJ ≥ 0 for all J ⊂ N .

(22)

And the allocations induced by P and Q are denoted {AJ}J⊂N and {CJ}J⊂N , respectively.
When m > 0, we call it a membership fee; when m < 0, we call its absolute value a

membership subsidy.

Once we allow the membership fee to be negative, we have the following result.

Theorem 5 Suppose P is a monopoly separate pricing strategy, and the reverse of con-

dition (21) holds with strict inequality at P, then offering every consumer (who buys at

least one product) a small membership subsidy (i.e. a negative membership fee) strictly
increases profit.

Intuition A membership subsidy leads to a first-order increase in the demand for single

products, and does not affect the demand for any other bundles. Under the condition

expressed in Theorem 5, this turns out to be profitable overall.

Proof. In order to distinguish membership subsidies from membership fees, we denote

the former by s ≡ −m. In this proof, we require that s ≥ 0. Therefore, by Definition 13,

we have

qJ =

{
pJ − s , if J 6= ∅
0 , if J = ∅

where s ≥ 0.

Step 1: Finding the allocation induced by Q.
Since P is additive, by Lemma 3 we know the allocation induced by P is defined in

(1), that is:

AJ = {x ∈ In|xj ≥ pj , ∀j ∈ J ;xk ≤ pk,∀k ∈ Jc}

Now we look at the allocation induced by Q = {qJ}J⊂N defined above, {CJ}J⊂N . By
Definition 4, we know for any J ⊂ N

CJ = {x ∈ In|
∑
j∈J

xj − qJ ≥
∑
k∈K

xk − qK , ∀K ⊂ N}

Now we study J of different sizes.
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i) When |J | > 1, for any such J ⊂ N , we have qJ = pJ − s, which implies∑
j∈J

xj − qJ ≥
∑
k∈K

xk − qK ,∀K ⊂ N

⇔


(a)

∑
j∈J

xj − pJ ≥
∑
k∈K

xk − pK ,∀K ⊂ N,K 6= ∅

(b)
∑
j∈J

xj − pJ ≥ −s (when K = ∅)

In the same way as we show that (i)⇔(ii) in the proof of Lemma 3, we know that for
|J | > 1

part (a) above⇔
{
(a1) xj ≥ pj ,∀j ∈ J ;

(a2) xk ≤ pk ,∀k ∈ Jc.

And it is straightforward to see that (a1) implies (b) above, as P is additive. (This

means that when we use a membership subsidy s > 0, the IR condition of any multiproduct

bundle is not binding.)

From (a1) and (a2) we know for any J such that |J | > 1, Q induces the same demand

segment as P:

CJ,|J |>1 = {x ∈ In|xj ≥ pj , ∀j ∈ J ;xk ≤ pk,∀k ∈ Jc} = AJ,|J |>1

ii) When |J | = 1, i.e. J = {j}. For any j ∈ N , we have qj = pj − s, which implies∑
j∈J

xj − qJ ≥
∑
k∈K

xk − qK ,∀K ⊂ N

⇔



(c) xj − pj ≥
∑
k∈K

xk − pK , ∀K 3 j,K ⊂ N ;

(d) xj − pj ≥
∑
k∈K

xk − pK , ∀K 63 j, |K| > 1,K ⊂ N ;

(e) xj − pj ≥ xk − pk ,∀k ∈ jc;
(f) xj − pj ≥ −s. (when K = ∅)

If we write out the right-hand side of (c) above for K of different sizes, we have

part (c) above⇔ (c1) xk ≤ pk, ∀k ∈ jc.

Also, it is clear that (c1) and (e) together imply (d) as P is additive. Therefore we

only need (c1), (e) and (f) to fully characterize the demand segment of any single product

j ∈ N that Q induces, which is

Cj = {x ∈ In|xj − pj ≥ max[−s, xk − pk], and xk ≤ pk,∀k ∈ jc}

Note that this is different from the single-product segments induced by P.
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iii) When |J | = 0, i.e. J = ∅, we have q∅ = p∅ = 0, which implies∑
j∈J

xj − qJ ≥
∑
k∈K

xk − qK ,∀K ⊂ N

⇔

 (g) 0 ≥
∑
k∈K

xk − pK + s , ∀K ⊂ N, |K| > 1;

(h) 0 ≥ xk − pk + s , ∀k ∈ N.

Clearly, (h) implies (g) as s ≥ 0 and P is additive. Therefore we have

C∅ = {x ∈ In|xk ≤ pk − s,∀k ∈ N}

In summary, the allocation {CJ}J⊂N induced by Q with a membership subsidy s is

for any J ⊂ N

CJ =


{x ∈ In|xj ≥ pj , ∀j ∈ J ;xk < pk,∀k ∈ Jc} = AJ , if |J | > 1;

{x ∈ In|xj − pj ≥ max[−s, xk − pk], xk ≤ pk, ∀k ∈ jc} , if J = {j};
{x ∈ In|xk ≤ pk − s,∀k ∈ N} , if J = ∅.

Step 2: Finding the profit implication of raising s from 0, ∂∆π
∂s |s=0.

Compared to the allocation induced by P as shown in (1), the only difference in

{CJ}J⊂N happens on the single-product bundles and the empty bundle. In particular, for
any j ∈ N we have

Aj = {x ∈ In|xj ≥ pj ;xk ≤ pk, ∀k ∈ jc}

Cj = {x ∈ In|xj − pj ≥ max[−s, xk − pk], xk ≤ pk, ∀k ∈ jc}

Since max[−s, xk − pk] ≤ 0, it must be

Aj ⊂ Cj , ∀j ∈ N

Now define for any j ∈ N

Cj(s) ≡ Cj\Aj = {x ∈ In|max[−s, xk − pk] ≤ xj − pj ≤ 0, xk ≤ pk,∀k ∈ jc} (23)

Then we have

M(Cj) = M(Aj) +M(Cj(s)), ∀j ∈ N ;

M(CJ) = M(AJ), ∀J ⊂ N, |J | > 1.

Note that M(Cj(s = 0)) = 0.
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Therefore,

∆π ≡ π(Q)−π(P) =
∑
J⊂N

qJ ·M(CJ)−
∑
J⊂N

pJ ·M(AJ)

=
∑

J⊂N,|J |>1

(qJ − pJ) ·M(AJ) +
∑
j∈N

[qj ·M(Cj)− pj ·M(Aj)]

= −s ·
∑

J⊂N,|J |>1

M(AJ) +
∑
j∈N
{(pj − s) · [M(Aj) +M(Cj(s))]− pj ·M(Aj)}

= −s ·
∑

J⊂N,|J |>1

M(AJ) +
∑
j∈N
{pj ·M(Cj(s))− s · [M(Aj) +M(Cj(s))]}

By definition, M(AJ) does not depend on s, ∀J ⊂ N . Therefore

∂∆π

∂s
= −

∑
J⊂N,|J |>1

M(AJ) +
∑
j∈N
{pj ·

∂M(Cj(s))

∂s
− [M(Aj) +M(Cj(s))]− s ·

∂M(Cj(s))

∂s
}

= −
∑

J⊂N,|J |>1

M(AJ)−
∑
j∈N

[M(Aj) +M(Cj(s))] +
∑
j∈N

[(pj − s) ·
∂M(Cj(s))

∂s
]

Thus
∂∆π

∂s
|s=0 = −

∑
J⊂N

M(AJ) +
∑
j∈N

pj ·
∂M(Cj(s))

∂s
|s=0 (24)

The only thing remains to be shown now is ∂M(Cj(s))
∂s |s=0.

By definition (in (23)), we have

Cj(s) = {x ∈ In|max[−s, xk − pk] ≤ xj − pj ≤ 0, xk ≤ pk,∀k ∈ jc}

Now we define the section of Cj(s) on hyperplane xj = x′j in dimensions j
c (that is

orthogonal to dimension j), which is6

Cj
c

j (x′j) ≡ {xj
c ∈ Ijc |0 ≤ xk < x′j − pj + pk,∀k ∈ jc} (25)

Then we have

M(Cj(s)) =

∫ pj

pj−s
[

∫
Cj

c

j (xj)
f(xj

c
, xj)dx

jc ]dxj

where if we relabel the products in {j}c as jc1, jc2, ..., jcn−1, we have∫
Cj

c

j (xj)
f(xj

c
, xj)dx

jc =

∫ xj−pj+pjc1

0

∫ xj−pj+pjc2

0
...

∫ xj−pj+pjcn−1

0
f(xj

c
, xj)dxjcn−1

...dx
jc2
dx

jc1

6Note the section Cj
c

j (x
′
j) defined here does not include its (n−1) "edge-hyperplanes", i.e. it is missing

the set {xjc ∈ Ijc |xk = x′j−pj+pk, ∀k ∈ jc}. Given that f is atomless and S has full dimension in Rn, this
set has zero measure in Rn. Therefore our expression of M(Cj(s)) using the current definition of Cj

c

j (x
′
j)

is correct.
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which is fully defined by xj and P, and does not depend on s.

Therefore, we have

∂M(Cj(s))

∂s
|s=0 =

∫
Cj

c

j (pj−s)
f(xj

c
, pj − s)dxj

c |s=0

=

∫
Cj

c

j (pj)
f(xj

c
, pj)dx

jc

Now by definition (in (25)), we know

Cj
c

j (pj) = {xjc ∈ Ijc |0 ≤ xk < pk, ∀k ∈ jc}

By (8) and Lemma 6, we see that the Cj
c

j (pj) here is exactly the same as A
jc

j (the

projection of the demand segment of j induced by additive P, Aj , on a hyperplane in

dimensions jc). That is

Cj
c

j (pj) = Aj
c

j

Therefore we have

∂M(Cj(s))

∂s
|s=0 =

∫
Aj

c

j

f(xj
c
, pj)dx

jc

Substituting back in (24), we have

∂∆π

∂s
|s=0 = −

∑
J⊂N

M(AJ) +
∑
j∈N

pj ·
∫
Aj

c

j

f(xj
c
, pj)dx

jc

Therefore, ∂∆π
∂s |s=0 > 0 if and only if

∑
J⊂N

M(AJ)−
∑
j∈N

pj ·
∫
Aj

c

j

f(xj
c
, pj)dx

jc < 0

which is exactly the reverse of condition (21) in Theorem 4.

Comment In the proof above, we have shown that although the membership subsidy s

affects different demand segments (i.e. only single-product bundles) than the membership

fee (which affects all bundles), its marginal impact on profits starting from an additive

price schedule is actually exactly opposite to that of the membership fee. Therefore when

the reverse of condition (21) holds at the optimal separate pricing strategy, a membership

subsidy strictly increases profit.

Note that the two-part-tariff effect of Theorem 2 is no longer present when membership

subsidies are used. The demand changes induced by a subsidy are all first-order impacts

as ∂M(Cj(s))
∂s |s=0 =

∫
Aj

c

j
f(xj

c
, pj)dx

jc > 0.
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6.2 The "Power" of Generalized Two-Part Tariffs

When we allow membership fees to be either positive or negative, a (generalized) two-part

tariff becomes much more powerful. The following result summarizes our discussion of

both cases.

Theorem 6 (Dominance by Generalized Two-Part Tariffs) Under any general f
satisfying Assumption 2, suppose P is a monopoly separate pricing strategy. Then gener-

alized two-part tariffs strictly dominate separate pricing if the following condition holds at

P ∑
J⊂N

M(AJ)−
∑
j∈N

pj ·
∫
Aj

c

j

f(xj
c
, pj)dx

jc 6= 0 (26)

where {AJ}J⊂N is the allocation induced by P as defined in (1).

Proof. This is implied by Theorems 4 and 5. In particular, when condition (26) holds,
the optimal separate pricing strategy P is strictly dominated by the generalized two-part

tariff Q defined in Definition 13 using P.

7 Variable Membership Fees

7.1 Two Membership Fees

In real life, multiproduct firms sometimes use more than one level of membership fees. For

instance, if we think of parking charges at a shopping mall as a form of membership fee

charged by the mall, in practice such charges may vary according to how much shoppers

purchase from the mall. A seemingly popular practice is that a shopper gets a discount

on parking fee once her expenditure in the mall exceeds some threshold. This in effect

creates two different levels of membership fees: Consumers with purchases lower than the

threshold are charged a higher membership fee, say m, whereas consumers with purchases

no lower than the threshold pay a lower membership fee, say (m− ε), where ε ≥ 0.

Now we use our model to study this situation. Suppose a shopping mall sells n ≥ 2

products, and it is located in a remote area such that all consumers have to drive to shop

there. Suppose the mall initially uses a two-part tariffQ = (m,P), where m is the charge

for parking that is common to all consumers, and thus acts as a membership fee; and

P = {pJ}J⊂N is a separate pricing strategy. That is, Q = (m,P) = {qJ}J⊂N is exactly

as in Definition 10.

Now suppose the mall wants to introduce a discount of ε ≥ 0 on parking for consumers

who purchase at least n products from the mall. We denote by R the new price schedule

after the introduction of discount ε in Q. Our goal here is to see whether using such a

discount is profitable or not.
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Definition 14 (Two-Part Tariff with Two Membership Fees) A two-part tariff with
two membership fees is a price schedule R = {rJ}J⊂N consisting of three parts (m,P,ε),

where
(m,P) = Q = {qJ}J⊂N is a two-part tariff; and

ε ∈ (0,m]; and

rJ =


qJ − ε = pJ + (m− ε) , if |J | ≥ n
qJ = pJ +m , if 0 < |J | < n

0 , if J = ∅
where n ≥ 2.

(27)

And the allocations induced by P, Q, andR are denoted {AJ}J⊂N , {CJ}J⊂N , and {DJ}J⊂N
respectively.

If n = 1, it is clear that R = (m − ε,P), i.e. R reduce to a two-part tariff with

membership fee (m− ε). In this case, the discussion of R is exactly the same as that of a

normal two-part tariffQ in Definition 10, as the discount ε in is case has no different role

than the original membership fee m.

Therefore, in this section we focus on the case when the threshold n ≥ 2.

7.1.1 Two Membership Fees vs. One

Theorem 7 (Two Membership Fees) Under any general f satisfying Assumption 2,
suppose Q = (m,P) = {qJ}J⊂N is the optimal two-part tariff with m > 0. Then offering

all consumers who buy at least n(≥ 2) products a small discount ε on their membership

fee m strictly increases profit over Q if the following condition holds at Q

∑
J⊂N,|J |≥n

qJ ·
∂M(DJ\CJ)

∂ε
|ε=0 −

∑
J⊂N,|J |≥n

M(CJ)−
∑

J⊂N,|J |=n−1

qJ ·
∂M(CJ\DJ)

∂ε
|ε=0 > 0

(28)

where {CJ}J⊂N and {DJ}J⊂N are defined in (27).

Intuition Offering all consumers who buy at least n products a small discount ε results

in decreases in demand for all bundles of sizes smaller than n, and increases in demand for

all bundles of sizes at least equal to n. However, on the first order, the additional discount

ε only results in demand changes for bundles of sizes equal to or larger than n − 1, and

the demand changes for all other bundles are of orders higher than 1. The condition (28)

in Theorem 7 controls these first-order demand changes at the optimal two-part tariff.

Proof. We denote by R the price schedule resulting from offering all consumers who buy

at least n(≥ 2) products a small discount ε in Q. Our plan in this proof is to first identify

the allocation induced by R, and then study the profit implication of raising ε from 0.

Step 1: Finding the allocation induced by R = {rJ}J⊂N . It is clear that this R is
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exactly the price schedule defined in (27) using Q = (m,P) = {qJ}J⊂N . Therefore

rJ =


qJ − ε = pJ + (m− ε) , if |J | ≥ n
qJ = pJ +m , if 0 < |J | < n

0 , if J = ∅

where P = {pJ}J⊂N is additive.

By Definition 4 and the two-part tariff allocation in (4), we know the allocation induced

by Q is

CJ(6=∅) = {x ∈ In|xj ≥ pj , ∀j ∈ J ;xk ≤ pk,∀k ∈ Jc;
∑
j∈J

xj ≥ pJ +m}

By Definition 4 and the definition of R = {rJ}J⊂N above, we know the allocation

induced by R is

DJ⊂N,0<|J |<n−1 = {x ∈ In|xj ≥ pj ,∀j ∈ J ;xk ≤ pk, ∀k ∈ Jc;
∑
j∈J

xj ≥ pJ +m;

and
∑
k∈K

xk ≥ pK − ε,∀K ⊂ N, |K| ≥ n− |J | ,K ∩ J = ∅}

DJ⊂N,|J |=n−1 = {x ∈ In|xj ≥ pj ,∀j ∈ J ;xk ≤ pk − ε, ∀k ∈ Jc;
∑
j∈J

xj ≥ pJ +m}

DJ⊂N,|J |=n = {x ∈ In|xj ≥ pj − ε,∀j ∈ J ;xk ≤ pk, ∀k ∈ Jc;
∑
j∈J

xj ≥ pJ +m− ε;

and
∑
h∈H

xh − pH ≥
∑
k∈K

xk ≥ pK ,∀H ⊂ J,K ⊂ N,K ∩ J = ∅}

DJ⊂N,|J |>n = {x ∈ In|xj ≥ pj ,∀j ∈ J ;xk ≤ pk, ∀k ∈ Jc;
∑
j∈J

xj ≥ pJ +m− ε}

Compared to {CJ}J⊂N above, we have

DJ⊂N,0<|J |<n−1 ⊂ CJ⊂N,0<|J |<n−1

DJ⊂N,|J |=n−1 ⊂ CJ⊂N,|J |=n−1

DJ⊂N,|J |=n ⊃ CJ⊂N,|J |=n

DJ⊂N,|J |>n ⊃ CJ⊂N,|J |>n

Therefore, offering all consumers who buy at least n(≥ 2) products a small discount

ε results in decreases in demand for all bundles of sizes smaller than n and increases in

demand for all bundles of sizes at least equal to n.

Therefore, we have

M(DJ)−M(CJ) =

{
−M(CJ\DJ) , if 0 < |J | ≤ n− 1

M(DJ\CJ) , if |J | ≥ n

Now we take a closer look at {DJ}J⊂N above, focusing on where ε causes a change

from {CJ}J⊂N . We want to find the lowest "polynomial order" of M(DJ) in terms of ε.
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As an intuitive illustration, we suppose for now only that consumers’types follow the

uniform distribution. In this case, we can see from {DJ}J⊂N above that:

i) For 0 < |J | < n− 1 ,M(DJ) ∝ ε|K|(+ε|H|(>|K|)),where |K| ≥ n− |J | ≥ 2,

(from condition
∑
k∈K

xk ≥ pK − ε,∀K ⊂ N, |K| ≥ n− |J | ,K ∩ J = ∅);

ii) For |J | = n− 1 ,M(DJ) ∝ ε, (from condition xk ≤ pk − ε, ∀k ∈ Jc);
iii) For |J | = n ,M(DJ) ∝ ε, (from conditions xj ≥ pj − ε,∀j ∈ J and

∑
j∈J

xj ≥ pJ +m− ε);

iv) For |J | > n ,M(DJ) ∝ ε, (from condition
∑
j∈J

xj ≥ pJ +m− ε).

from which we see that the lowest polynomial orders of M(DJ) in terms of ε are all equal

to 1 except only for 0 < |J | < n− 1.

For general distribution f , we actually have

∂M(DJ)

∂ε
|ε=0 =


−∂M(CJ\DJ )

∂ε |ε=0 < 0 , if |J | = n− 1
∂M(DJ\CJ )

∂ε |ε=0 > 0 , if |J | ≥ n
0 , otherwise.

(29)

That is, the additional discount ε only results in first-order demand changes for bundles

of sizes equal to or larger than n− 1.

Step 2: Finding the profit implication of raising ε from 0, ∂π(R)
∂ε |ε=0.

π(R) =
∑
J⊂N

rJ ·M(DJ)

=
∑

J⊂N,|J |≥n
(qJ − ε) ·M(DJ) +

∑
J⊂N,|J |<n

qJ ·M(DJ)

Therefore

∂π(R)

∂ε
|ε=0 =

∑
J⊂N,|J |≥n

qJ ·
∂M(DJ)

∂ε
|ε=0 −

∑
J⊂N,|J |≥n

M(DJ)|ε=0 +
∑

J⊂N,|J |<n
qJ ·

∂M(DJ)

∂ε
|ε=0

=
∑

J⊂N,|J |≥n
qJ ·

∂M(DJ\CJ)

∂ε
|ε=0 −

∑
J⊂N,|J |≥n

M(CJ)−
∑

J⊂N,|J |=n−1

qJ ·
∂M(CJ\DJ)

∂ε
|ε=0

where the last equation is due to (29) and that DJ |ε=0 = CJ , ∀J ⊂ N .
Therefore ∂π(R)

∂ε |ε=0 > 0 if condition (28) holds in Theorem 7.

7.1.2 An Example with Three Products and Uniform Distribution

Corollary 1 Condition (28) holds under uniform distribution with three products when

n = 2.
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Proof. Under uniform distribution, when n = 3, the optimal two-part tariff isQ = (m,P),

where m ≈ 0.643, and p1 = p2 = p3 ≈ 0.198. When n = 2, we have ∂π(R)
∂ε |ε=0 ≈ 0.749 > 0.

Corollary 1 tells us that under uniform distribution and with three products, offering

all consumers who buy at least 2 products a small discount on their membership fee indeed

strictly increases profit over the optimal two-part tariff.

7.2 General Variable Membership Fees

The fundamental reason why offering a discount that in effect creates a second (lower) level

of membership fee can be profitable is that it may achieve better price discrimination, as

there is one more price instrument (the discount) that the firm can use. Therefore, the

firm should do at least as well with two membership fees as it does with one, and given

"favorable" valuation distributions (i.e. those satisfying condition (28)), it can do strictly

better.

When n ≥ 3, the same argument applies to using a third membership fee. Generally,

with more and more price instruments available to the firm, we expect the resulting price

schedule to be able to mimic the full mixed bundling strategy (with 2n − 1 prices) more

and more closely. However, the conditions also become (increasingly) more complicated

and less intuitive. For this reason, we do not pursue further in this direction.

8 Two-Part Tariffs vs. Mixed Bundling

We first focus on the two-product case and then discuss the general case in the end.

When n = 2, we know that a mixed bundling strategy has only 22 − 1 = 3 prices, and

we have illustrated in the first example of section 1 that such a strategy can be replicated

with a two-part tariff, which also has 3 prices when n = 2.

8.1 MMW’s Result on Mixed Bundling

McAfee, McMillan and Whinston (1989) show a very strong result on the desirability of

mixed bundling over separate pricing in the two-product case. They show a condition (con-

dition (1) in their Proposition 1) that holds under a wide range of distributions (including

all independent joint distributions), that guarantees mixed bundling strictly dominates

separate pricing.

They identified this condition by using a third price instrument called bundle discount

in addition to the two prices of the optimal separate pricing strategy. That is, they study

a general IC price schedule, where the price for the bundle of two products cannot exceed

the sum of the prices of two products separately - the difference being the bundle discount.

They show that by offering a small bundle discount starting from the optimal separate
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pricing strategy, the firm increases the demand for both products (sold either separately

or in bundles) although it lowers only one price (i.e. that of the bundle).

This effect is illustrated in the following figure which is directly adapted from MMW.

For consumers of product 1 only, a bundle discount will lure some of them to buy product

2 as well, as will it lure some consumers of product 2 only to buy product 1 as well. This

is why the bundle discount increases the demand for both products.

Figure II from McAfee, McMillan and Whinston (1989)

8.2 Outcome Equivalence

In the two-product case, Long (1984) shows that a two-part tariff consisting of prices of

two separate products, q1 and q2, say, and one additional fixed fee for all consumers, m,

is equivalent to a mixed bundling strategy with prices for separate products p1 = q1 +m,

p2 = q2 + m and price for the bundle pB = q1 + q2 + m, where "the bundle discount

( p1 + p2 − pB) is like a fixed fee".
It is true that when n = 2, a mixed bundling strategy and a two-part tariff can

replicate each other’s demand and profit - the profit maximization problems using these

two strategies are therefore equivalent.

However, we want to point out that this "equivalence" exists only in the outcome, but

not in the mechanism. To be specific, the bundle discount does not work in the same way

as the membership fee, nor can it replicate the two-part tariff effect (in either two-product

or multiproduct case). In order to replicate the latter, manipulation of the bundle discount

alone does not work - the prices for both single products also have to be manipulated at the

same time.
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8.3 Mechanism Dichotomy

8.3.1 Difference in Demand Changes

When we consider the demand changes induced by an additional membership fee identified

in Theorem 2, if we use a bundle discount ε instead of a membership fee m, we have the

following result.

Theorem 8 When n = 2, suppose P∗ = {p∗1, p∗2} is the optimal separate pricing strategy
(MSP) and induces allocation {AJ}J⊂N . Consider (mixed bundling) price schedule T =

{p∗1, p∗2, t{1,2} = p∗1 + p∗2 − ε} which induces allocation {CJ}J⊂N , where ε represents the
bundle discount. Then we have

(i) ∂
∂ε [M(Cj)−M(Aj)]|ε=0 < 0, for j = 1, 2;

(ii) ∂
∂ε [M(C{1,2})−M(A{1,2})]|ε=0 > 0.

That is, the demand changes induced by a bundle discount are all first-order impacts.

Proof. Part (i):
Under P∗ and T, the demand segments of single product j ∈ {1, 2} are respectively

Aj = {x ∈ I2|xj ≥ p∗j ;xk ≤ p∗k, k 6= j}, and

Cj = {x ∈ I2|xj ≥ p∗j ;xk ≤ p∗k − ε, k 6= j}

As IC of T implies that ε ≥ 0, we have Cj ⊂ Aj ,∀j = 1, 2. Therefore

Aj\Cj = {x ∈ I2|xj ≥ p∗j ; p∗k − ε ≤ xk ≤ p∗k, k 6= j}, and

M(Cj)−M(Aj) = −M(Aj\Cj) = −
∫ p∗k

p∗k−ε

∫ 1

p∗j

[f(xj , xk)dxj ]dxk

And hence

∂

∂ε
[M(Cj)−M(Aj)]|ε=0 = −

∫ 1

p∗j

f(xj , p
∗
k − ε)dxj |ε=0

= −
∫ 1

p∗j

f(xj , p
∗
k)dxj

< 0

where the last inequality is due to Lemma 8. Part (i) done.

Part (ii):

Under P∗ and T, the demand segments of bundle {1, 2} are respectively

A{1,2} = {x ∈ I2|x1 ≥ p∗1;x2 ≥ p∗2}, and

C{1,2} = {x ∈ I2|x1 ≥ p∗1 − ε;x2 ≥ p∗2 − ε;x1 + x2 ≥ p∗1 + p∗2 − ε}
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which implies C{1,2} ⊃ A{1,2}. Therefore

C{1,2}\A{1,2} = {x ∈ I2|p∗1 − ε ≤ x1 ≤ p∗1; p∗2 − ε ≤ x2 ≤ p∗2;x1 + x2 ≥ p∗1 + p∗2 − ε}

= (A1\C1) ∪ (A2\C2) ∪D(ε)

where

D(ε) ≡ {x ∈ I2|x1 ≤ p∗1;x2 ≤ p∗2;x1 + x2 ≥ p∗1 + p∗2 − ε}

And hence

M(C{1,2})−M(A{1,2}) = M(A1\C1) +M(A2\C2) +M(D(ε))

Now we focus on M(D(ε)), and we have

M(D(ε)) =

∫ p∗1

p∗1−ε

∫ p∗2

p∗1+p∗2−ε−x1
[f(x1, x2)dx2]dx1, and

∂

∂ε
[M(D(ε))] =

∫ p∗2

p∗1+p∗2−ε−(p∗1−ε)
f(p∗1 − ε, x2)dx2 +

∫ p∗1

p∗1−ε
f(x1, p

∗
1 + p∗2 − ε− x1)dx1

And therefore
∂

∂ε
[M(D(ε))]|ε=0 = 0

And since we have shown in the proof of part (i) that

∂

∂ε
[M(Aj\Cj)]|ε=0 = − ∂

∂ε
[M(Cj)−M(Aj)]|ε=0 > 0, for j = 1, 2

we have

∂

∂ε
[M(C{1,2})−M(A{1,2})]|ε=0

=
∂

∂ε
[M(A1\C1)]|ε=0 +

∂

∂ε
[M(A2\C2)]|ε=0 +

∂

∂ε
[M(D(ε))]|ε=0

> 0.

From Theorem 8 we know that the demand changes induced by a bundle discount are

all first-order changes. This can be seen from the figure above, where a positive measure of

consumers switch from buying either single product to buying the bundle (to be specific,

these consumers are represented by the areas bcde and aefg in the figure).

This is in stark contrast to the two-part-tariff effect we have shown in Theorem 2, where

the demand changes for all multiproduct bundles (including any two-product bundle)

induced by an additional membership fee are all of order higher than one.

86



This is because the membership fee and the bundle discount are two different price

instruments: The membership fee raises the final prices of both single products and the

two-product bundle (i.e. it raises the final price that all consumers face by the same

amount), which implies that there will be no consumer switching from buying either single

product to buying the bundle or vice versa (as their price difference does not change).

Therefore the only change in the demand for the bundle will be a loss of consumers

whose valuations for two products were higher than the sum of the separate prices under

separate pricing, but turn out to be insuffi cient to cover the additional membership fee.

Their measure has to be confined in the second order, as the membership fee is shared by

their valuations in two dimensions.

On the other hand, the bundle discount in mixed bundling only reduces the price

for the two-product bundle, and does not change the final price of either single product.

Therefore there is a change in the price difference between either single product and the

bundle, which in turn leads to first-order changes in their demand.

8.3.2 Deviations in "Opposite" Directions

Having identified the different demand implications of mixed bundling and two-part tariffs,

there is a second (and perhaps more striking) dichotomy between the mechanisms of mixed

bundling and two-part tariffs.

Starting from the optimal separate pricing strategy, MMW’s deviation involves a de-

crease in the bundle price (by offering a bundle discount), while our deviation involves an

increase in all prices (by imposing a membership fee). Under the same condition, both

deviations turn out to be profitable (when n = 2, our condition (21) reduces to condition

(1) in MMW’s Proposition 1).

The reason why these deviations in seemingly opposite directions can both be profitable

is, of course, that the membership fee and the bundle discount are not exactly opposite to

each other. The membership fee changes the final price that all consumers face, while the

bundle discount does not change the final prices of single products. The exact opposite

instrument of a membership fee is a membership "subsidy", i.e. the same amount of

"discount" on both single products and the bundle (which we discuss in detail in section

6).

8.4 Average Price at Optimality - Lower or Higher?

The deviations in "opposite" directions mentioned previously may have confusing impli-

cations. For instance, since MMW’s deviation involves a profitable decrease in the bundle

price whilst keeping the prices for separate products unchanged, one might get an impres-

sion that the optimal mixed bundling strategy would result in a somewhat lower "average"

price for each product compared to separate pricing. On the contrary, our result appears to
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render the opposite impression, i.e. a somewhat higher "average" price under the optimal

two-part tariff compared to separate pricing, since imposing an additional membership fee

on top of the optimal separate pricing strategy is profitable.

Given the outcome equivalence discussed previously, obviously only one of these two

impressions can be correct. So which is it?

Actually, the answer is: Neither. In this section, we show several specific distributions

which illustrate that, at optimality, the "average" price a consumer pays for a product can

go either way.

First of all, we need to give "average" price a precise and sensible definition.

Definition 15 Given price schedule P = {pJ}J⊂N and the induced allocation {AJ}J⊂N ,
the average price per unit of product is

p̄ ≡

∑
J⊂N

pJ ·M(AJ)∑
J⊂N
|J | ·M(AJ)

=
π(P)∑

J⊂N
|J | ·M(AJ)

.

That is, given a price schedule, we calculate the price for an "average" unit of product

offered by the firm, which is equal to the firm’s total revenue divided by the total number

of units of products sold at the current price schedule. The total revenue is in turn equal

to the total profit, as there is no cost of production.

This price precisely represents the expected price that an average consumer in the

population pays for one unit of product sold by the firm.

Note that when n = 2, the optimal mixed bundling strategy and the optimal two-part

tariff will imply the same p̄, since they have outcome equivalence.

8.4.1 Uniform Distribution (Independence)

f(x1, x2) = 1, for x1, x2 ∈ [0, 1]

Note that uniform distribution implies independence between x1 and x2.

Comparison between optimal strategies:
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Table 1: Optimality Results under Uniform Distribution

f(x1, x2) as shown Separate Pricing Two-Part Tariff

0x2
1

x1
0

0
1

f
2

{1}

{2} {1,2}

0.0 0.5 1.0
0.0

0.5

1.0

x1

x2

{1}

{2} {1,2}

0.0 0.5 1.0
0.0

0.5

1.0

x1

x2

p∗1, p
∗
2 0.5 > 0.20

m∗ - 0.47

p∗j +m∗ 0.5 < 0.67

p∗1 + p∗2 +m∗ 1 > 0.87

M(A1),M(A2) 0.25 > 0.07

M(A{1,2}) 0.25 < 0.54

π (=
∑

J⊂N (p∗J +m∗)M(AJ)) 0.5 < 0.55

d (=
∑

J⊂N |J | ·M(AJ)) 1 < 1. 20

D (=
∑

J⊂N M(AJ)) 0.75 > 0.67

ū (= d
D ) 1. 33 < 1. 80

ē (= π
D ) 0.67 < 0.82

p̄ (= π
d ) 0.5(= p∗1) > 0.46

In the table above, we have shown graphs of the density function and the optimal

allocations in the first row.

p∗1 and p∗2 are the optimal prices for single products in the relevant optimal price

schedule (separate pricing or two-part tariff); and m∗ is the optimal membership fee (only

applicable to two-part tariff). When m∗ > 0, p∗1 +m∗ and p∗2 +m∗ are the final prices for

single products, as implied by the optimal two-part tariff, and p∗1 + p∗2 +m∗ is the implied

final price for the two-product bundle. These three "final prices" constitute the optimal

mixed bundling strategy that is equivalent to the optimal two-part tariff (p∗1, p
∗
2,m

∗).

M(A1) and M(A2) are the demands for single products, and M(A{1,2}) is the demand

for the bundle. π represents the firm’s total profit (or revenue).

We have presented several new indicators in the table. In particular, d ≡
∑

J⊂N |J | ·
M(AJ) represents the total units of products sold given the relevant price schedule; D ≡∑

J⊂N M(AJ) represents the total measure of consumers who buy any product/bundle at

all; ū ≡ d
D represents the average number of units per consumer; ē ≡ π

D represents the

average expense per consumer.

In the last row of the table, we show the "average price per unit of product" p̄, as
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defined in Definition 15. We see that with uniform distribution, p̄ is lower under two-part
tariff/mixed bundling compared to separate pricing (0.46 < 0.5).

8.4.2 Highly Positively Correlated Distribution

f(x1, x2) =

{
16
7 − 4. 375× 10−101 , if x1 − 1

4 ≤ x2 ≤ x1 + 1
4 and 0 ≤ x1, x2 ≤ 1;

10−100 , otherwise.

This distribution has correlation coeffi cient corr[x1, x2] ≈ 0.8617 > 0. Under this

distribution, virtually all consumers are distributed evenly within a
√

2
4 -wide range along

the 45-degree line of the support. We have made the distribution outside this range so

"thin" that it is negligible in all the calculations.

We show below that even with this highly positively correlated joint distribution, two-

part tariff still strictly dominates separate pricing. Moreover, the average price that the

firm charges per unit of product, p̄, is higher under the optimal two-part tariff/mixed
bundling than under separate pricing (0.471 > 0.469).

Comparison between optimal strategies:

Table 2: Optimality Results under Highly Positively Correlated Distribution

f(x1, x2) as shown Separate Pricing Two-Part Tariff

0.0 0.5 1.0
0.0

0.5

1.0

x1

x2
{2}

{1}

{1,2}

0.0 0.5 1.0
0.0

0.5

1.0

x1

x2
{2}

{1}

{1,2}

0.0 0.5 1.0
0.0

0.5

1.0

x1

x2

p∗1, p
∗
2

15
32 ≈ 0.47 > 41

96 ≈ 0.43

m∗ - 1
12 ≈ 0.08

p∗j +m∗ 15
32 ≈ 0.47 < 49

96 ≈ 0.51

p∗1 + p∗2 +m∗ 15
16 ≈ 0.94 = 15

16 ≈ 0.94

M(A1),M(A2) 1
14 ≈ 0.07 > 2

63 ≈ 0.03

M(A{1,2})
13
28 ≈ 0.47 < 127

252 ≈ 0.50

π (=
∑

J⊂N (p∗J +m∗)M(AJ)) 225
448 ≈ 0.502 < 6107

12 096 ≈ 0.505

d (=
∑

J⊂N |J | ·M(AJ)) 15
14 ≈ 1. 07 = 15

14 ≈ 1. 07

D (=
∑

J⊂N M(AJ)) 17
28 ≈ 0.61 > 143

252 ≈ 0.57

ū (= d
D )

30
17 ≈ 1. 76 < 270

143 ≈ 1. 89

ē (= π
D )

225
272 ≈ 0.83 < 6107

6864 ≈ 0.89

p̄ (= π
d )

15
32(= p∗1) ≈ 0.469 < 6107

12 960 ≈ 0.471
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A rather interesting observation of the outcome shown above is that the total units

of products sold, d, remains exactly the same under separate pricing and two-part tariff.

Since the profit is increased under two-part tariff, the average price per unit of product

goes up.

8.4.3 Negatively Correlated Distribution

f(x1, x2) = x1 + x2, for x1, x2 ∈ [0, 1]

This distribution has correlation coeffi cient corr[x1, x2] = − 1
11 ≈ −0.09 < 0.

Comparison between optimal strategies:

Table 3: Optimality Results under Negatively Correlated Distribution

f(x1, x2) as shown Separate Pricing Two-Part Tariff

x1
1

x2

0
1

f
2

0 0

{1}

{2} {1,2}

0.0 0.5 1.0
0.0

0.5

1.0

x1

x2

{1}

{2} {1,2}

0.0 0.5 1.0
0.0

0.5

1.0

x1

x2

p∗1, p
∗
2 0.55 > 0.26

m∗ - 0.45

p∗j +m∗ 0.26 > 0.07

p∗1 + p∗2 +m∗ 0.32 < 0.60

M(A1),M(A2) 0.55 < 0.71

M(A{1,2}) 1.1 > 0.97

π (=
∑

J⊂N (p∗J +m∗)M(AJ)) 0.63 < 0.69

d (=
∑

J⊂N |J | ·M(AJ)) 1. 15 < 1. 35

D (=
∑

J⊂N M(AJ)) 0.83 > 0.75

ū (= d
D ) 1. 38 < 1. 80

ē (= π
D ) 0.76 < 0.93

p̄ (= π
d ) 0.55 > 0.51

Under this distribution, the average price per unit of product is lower under two-part
tariff/mixed bundling than under separate pricing (0.51 < 0.55).

8.4.4 Discussion

The examples above show that the "impressions" about the average price that one might

derive from either MMW’s result or ours are not reliable. This is because both results
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only reveal local deviations that lead to profit improvements. Caution should be taken

when we use these results to infer properties of globally optimal strategies.

8.5 Two-Part Tariff vs. Mixed Bundling: General Case when n > 2

In our setting, a general price schedule can be thought of as a mixed bundling strategy,

in the sense that it specifies all the prices of all possible bundles. Therefore the two-part

tariff in Definition 10 is generally a special case of mixed bundling.

When n > 2, the number of possible multiproduct bundles is larger than 1. For

instance, when n = 3, there are 3 two-product bundles and 1 three-product bundle. These

bundles may all have different prices, each of which may in turn also differ from the sum of

the prices of the component single products and/or component bundles. Unlike the case

when n = 2, there is no longer a standard way to define the "bundle discount" of a mixed

bundling strategy when n > 2. In general, for each bundle and each of its partitions (into

component bundles/products), there is a relevant "discount" that is the difference between

the bundle price and the sum of the prices of its component bundles/products. Since the

total number of bundles involved in a mixed bundling strategy increases exponentially

with the number of products, n, the total number of "bundle discounts" increases even

more quickly. Therefore it becomes impossible to fully characterize the impact of "bundle

discounts" on profits (i.e. MMW’s condition (1)) in the general multiproduct case.

That is, we do not know generally whether offering bundle discount(s) would be prof-

itable or not when n > 2.

However, our condition (21) of Theorem 4 and condition (28) of Theorem 7 bridge this

gap partly.

As we have illustrated in the three-product example in section 1 and again in the early

part of section 4, the two-part tariff we study creates "bundle discounts" at constant steps

equal to the membership fee m, according to the size of the bundle. That is, under two-

part tariff, a consumer of any bundle J gets a "bundle discount" of (|J | − 1) ·m compared

to the consumers of the |J | individual products.
Our Theorem 4 says that bundle discounts offered in this way will indeed be profitable

given condition (21).

Our Theorem 7 says that offering a further discount on membership fees for consumers

of bundles of certain sizes or larger will further increase profit given condition (28).

These are generalizations of the two-product result by MMW to the multiproduct case.

8.6 Correlation and Theorem 4

In this section we examine how the correlation between consumers’ valuations for two

products affects the profitability of two-part tariffs.
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The bundling literature has provided insights through particular examples and distrib-

utions that negative correlation generally works in favor of bundling strategies rather than

separate pricing. By outcome equivalence in the two-product case discussed in section 8.2,

these insights naturally apply to two-part tariffs as well.

Actually, we have the following conclusion for a family of negatively correlated distri-

butions that is more general than the existing results in the literature.

Corollary 2 Suppose n = 2 and P = (p∗1, p
∗
2) is a monopoly separate pricing strategy,

then two-part tariff strictly dominates separate pricing if any of the following conditions
holds:

(i) F1|2(p∗1|x2) is strictly increasing in x2 for all x2 > p∗2 in I
2; or

(ii) F2|1(p∗2|x1) is strictly increasing in x1 for all x1 > p∗1 in I
2; or

(iii) The two functions above are both constants for all x2 > p∗2 and x1 > p∗1 in I
2,

respectively.

Proof. When n = 2, since P = (p∗1, p
∗
2) is MSP, we have for j = 1, 2,

p∗j =
1− Fj(p∗j )
fj(p∗j )

∈ (0, 1)

M(A{j}) = 1− Fj(p∗j )−M(A{1,2})

Therefore the left-hand side of condition (21) of Theorem 4 becomes

∂∆π

∂m
|m=0 = M(A{1})− p∗1 ·

∫ p∗2

0
f(p∗1, x2)dx2 +M(A{2})− p∗2 ·

∫ p∗1

0
f(x1, p

∗
2)dx1 +M(A{1,2})

= [1− F1(p∗1)][1−
∫ p∗2

0

f(p∗1, x2)

f1(p∗1)
dx2] + [1− F2(p∗2)][1−

∫ p∗1

0

f(x1, p
∗
2)

f2(p∗2)
dx1]−M(A{1,2})

= [1− F1(p∗1)][1− F2|1(p∗2| p∗1)] + [1− F2(p∗2)][F1|2(p∗1| p∗2)]−M(A{1,2})

(i) For all x2 > p∗2 in I
2, since F1|2(p∗1|x2) is strictly increasing in x2 and bounded

from above by 1, we must have F1|2(p∗1| p∗2)< 1 and

1− F1|2(p∗1|x2) < 1− F1|2(p∗1| p∗2) (30)

Denote I ≡ 1− F1|2(p∗1| p∗2), then I is a positive constant.

(30) ⇒
∫ 1

p∗1

f(x1,x2)
f2(x2) dx1 < I ⇒

∫ 1

p∗1

f(x1, x2)dx1 ≤ f2(x2) · I

Integrate both sides with respect to x2 on [p∗2, 1], we get

⇒
∫ 1

p∗2

∫ 1

p∗1

f(x1, x2)dx1dx2 <

∫ 1

p∗2

f2(x2)dx2 · I ⇒

M(A{1,2}) < [1− F2(p∗2)][1− F1|2(p∗1| p∗2)] (31)
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Thus by (31) and [1− F1(p∗1)][1− F2|1(p∗2| p∗1)] ≥ 0, we have:

∂∆π

∂m
|m=0 > 0.

(ii) Using symmetry of our model regarding the two products j = 1, 2, we only need

to swap the product labels and we are done.

(iii) Since f is atomless (Assumption 2), when F1|2(p∗1|x2) is constant for all x2 > p∗2
in I2, we have

1− F1|2(p∗1|x2) = 1− F1|2(p∗1| p∗2)

By the same argument as in (i), except that all the inequalities need to be changed to

equations since now F1|2(p∗1|x2) is a constant, we get the equality version of (31):

M(A{1,2}) = [1− F2(p∗2)][1− F1|2(p∗1| p∗2)]

Similarly, from F2|1(p∗2|x1) being a constant for all x1 > p∗1 in I
2, we have

M(A{1,2}) = [1− F1(p∗1)][1− F2|1(p∗2| p∗1)]

Thus we have
∂∆π

∂m
|m=0 = M(A{1,2}) > 0.

It can be shown that conditions (i) and (ii) above are both satisfied by the negatively

correlated distribution we discussed in section 8.4.3 (i.e. f(x1, x2) = x1 + x2, for x1, x2 ∈
[0, 1]), and condition (iii) is satisfied by the uniform distribution in section 8.4.1.

With positive correlation, we cannot draw a general conclusion as in the case of negative

correlation. However, condition (21) of Theorem 4 can still hold with positive correlations.

Actually, it does hold under the highly positively correlated distribution discussed in

section 8.4.2 (with correlation coeffi cient≈ 0.9), where we can show that ∂∆π
∂m |m=0 = 1

14 >

0.

9 Conclusion

Two-part tariffs are prevalent in life. In many cases, they involve more than one product

provided by the same firm, such as the landline telephone and broadband services from a

telephone company, or a bank account through which many services such as debit card,

credit card, mortgage and travel insurance are provided.

As a multiproduct pricing strategy, a two-part tariff has the appeal of simplicity (in

that it consists only n+ 1 prices, for totally n products) and implementability (in that it

simply adds on top of a separate strategy an additional membership fee). It is an easy way
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for a multiproduct firm to achieve price discrimination. We have examined the underlying

general mechanism, the two-part-tariff effect, which distinguishes two-part tariffs from

other kinds of pricing strategies, including mixed bundling.

The two-part-tariff effect also helps us understand real-life pricing strategies that may

not look like two-part tariffs, such as free gift (as "membership subsidy") and discount on

parking charge (as "variable membership fee"), which are actually general two-part tariffs

in disguise.

Our results on the desirability of two-part tariffs have nothing to do with production

cost or effi ciency, and apply to general firms providing two or more products. They

therefore provide a new perspective for the prevalence of two-part tariffs, as well as a

practical way for multiproduct firms that use separate pricing for some reason, to increase

profits - imposing a small membership fee or subsidy would generally be profit-improving.

Another practical implication of this new perspective is that two-part tariffs should be

subject to the same regulatory scrutiny as other discriminatory pricing strategies.
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Part III
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Prospect Theory: The (β, c) Model∗
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Abstract

We propose a simplified weighting function for cumulative prospect theory (CPT),

which plays a similar role in models with risky choice as that of the quasi-hyperbolic

discounting function in models with intertemporal choice. The inverse S-shaped

weighting of cumulative probabilities posited in CPT causes diffi culties in represen-

tation which hinders its application in wider situations of risky choice. The (β, c)

model we propose has a weighting function that is linear with slope smaller than 1 on

the open interval (0, 1), jumps down to 0 at end point 0, and jumps up to 1 at end

point 1. It achieves highly tractable utility representation for CPT whilst preserving

the basic tenets of CPT. It by construction can explain all four major phenomena

of risky choice violating the standard model that CPT was developed to reconcile,

including reference dependence and certainty effect. It also allows Bayesian updating

(with distortions at certainty) which CPT cannot accommodate. We systematically

examine the (β, c) representation of discrete and continuous lotteries, and provide

four applications which illustrate that the (β, c) model is a useful work horse to an-

alyze implications of preferences exhibiting certainty effect and reference dependence

in standard models.
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1 Introduction

Tversky and Kahneman (1992) propose a cumulative version of their prospect theory

(1979), called the cumulative prospect theory (henceforth, CPT). Among other things,

they posit that, in risky choice situations, people do not use the true probabilities of

outcomes to evaluate "lotteries" but use decision weights that are functions of these prob-

abilities. Moreover, the weight people attach to each outcome does not only depend on the

true probability of that outcome, but also depends on the probabilities of other outcomes

- a.k.a. the cumulative probability.

They show with experiments that the so-called weighting functions are inverse S-

shaped - they transform true probabilities non-linearly in such a way that they are more

sensitive to probability changes (and hence are steeper) closer to impossibility and cer-

tainty, and less sensitive in the interim (and hence are flatter). The functional forms they

used to fit experimental data are continuous functions with changing curvature throughout

the unit interval.

The preference representation that Tversky and Kahneman (1992) propose is then a

cumulative functional consisting of a complex system of functions that invokes inverse

S-shaped weighting of cumulative probabilities. With complexity in the functional forms,

they gain accuracy in approaching the "true" decision weights. However, what is lost is

tractability in utility representation. This trade-off is not always worthwhile.

As a descriptive model, the CPT cumulative functional is quite powerful in reconcil-

ing, within one unified model, the "anomalous" phenomena that violate standard utility

models. However, it is unlikely that there exists a "precise" cumulative functional, as

Tversky and Kahneman (1992) said: "..., the cumulative functional is unlikely to be accu-

rate in detail. We suspect that decision weights may be sensitive to the formulation of the

prospects, as well as to the number, the spacing and the level of outcomes."

As a preference representation, the CPT cumulative functional is quite cryptic. With-

out calculation, it is diffi cult to comprehend what the representation of a given lottery is,

and in most cases it is impossible to compare two lotteries that do not involve some kind of

"dominance" (e.g. first-order stochastic dominance). We feel that this lack of tractability

hinders the application of CPT in a wider range of risky choice situations, which moti-

vates our quest for a simplified representation for CPT. In this quest, we find that a small

sacrifice in precision of weighting yields a big reward in representational transparency.

We propose a simplified weighting function, named the (β, c) model, that achieves

highly tractable utility representation of CPT for risky choice.1 This function is linear

with slope smaller than 1 on the open interval (0, 1), jumps down to 0 at end point

0, and jumps up to 1 at end point 1. We use β for the slope and c for the intercept.

This simplification preserves the key features of the "true" weighting functions, which are
1Besides risky choice, CPT also applies to uncertain choice (i.e. choice under ambiguity). In this

paper, however, we restrict our discussion of the (β, c) model to risky choice only.
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the oversensitiveness to probability changes close to impossibility and certainty, and the

undersensitiveness in the interim, whilst only sacrificing precision along the curvature of

the “true”functions. With this new weighting function and the original CPT cumulative

functional, we systematically examine discrete and continuous lotteries and derive their

representation.

The (β, c) representation of a general lottery consists of a linear part that is the "dis-

counted" expected value of the lottery, plus additional value terms of the reference point

and the extreme outcomes (if any) of the lottery. Each part in the representation has a

transparent interpretation, and the whole representation is highly tractable. The certainty

and possibility effects, and reference dependence, for instance, are all shown in concise and

intuitive analytical forms.

The (β, c) representation can work as a relatively nice descriptive model of risky choice,

because by construction it can explain all four major phenomena of risky choice violat-

ing the standard model that CPT was developed to reconcile, including: framing effect,

nonlinear preferences, risk seeking and loss aversion.

Besides, the (β, c) representation does two things that CPT does not do. Firstly, it

allows for Bayesian updating of probabilities with distortions at certainty, due to the lin-

ear part of the (β, c) model. CPT, however, cannot accommodate Bayesian updating as

the decision weights under CPT are everywhere non-linear in probabilities. In section

5 we provide an application of dynamic decision making that makes use of this feature,

where decision makers with (β, c) representation can exhibit time-inconsistent behavior.

Secondly, the (β, c) representation does not converge to the standard expected-utility rep-

resentation as a lottery converges to a deterministic outcome, due to discontinuity of the

(β, c) model at impossibility and certainty. This feature can change standard results that

rely on limiting properties of sequences of lotteries, and we provide an application in

section 7 that shows its impact on trembling-hand perfection in finite strategic games.

We also provide two other applications of the (β, c) representation - one on the existence

of mixed strategy Nash equilibrium in finite strategic games (section 6) and the other on

static investment decision making (appendix). These applications illustrate that the (β, c)

model is a useful tool for analyzing implications of preferences exhibiting certainty effect

in standard models.

An analogy can be drawn between the role of our (β, c) model in risky choice situa-

tions and that of the (β, δ) model (a.k.a. quasi-hyperbolic discounting function, Phelps

and Pollak (1968) and Laibson (1997)) in intertemporal choice situations. While there is

evidence showing that people’s true intertemporal preference is best described by a hy-

perbolic discounting function, the (β, δ) model instead uses a simplified quasi-hyperbolic

function, which also tremendously reduces the burden in representation whilst preserv-

ing the "present bias" that is central to hyperbolic discounting behavior in intertemporal

choice.
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It was not until the (β, δ) model became the prevalent work horse of behavioral mod-

els of intertemporal choice, that the wide implications and applications of present-biased

preference were systematically studied and revealed. Using the (β, δ) model, many elegant

behavioral theories burgeoned and helped us understand some most interesting intertem-

poral choice behaviors much more clearly. (For instance, O’Donoghue and Rabin (1999)’s

account of procrastination.) We hope the easily tractable and straightforward closed-form

representation implied by our (β, c) model will help expand the scope of applications of

cumulative prospect theory studied by behavioral economists.

2 A Reminder of the General CPT Model

In cumulative prospect theory (Tversky and Kahneman (1992)), a lottery, which is a
(discrete) probability measure on X (a bounded subset of R), is defined as:

f ≡ (x−m, p−m; ...;x−1, p−1;x0, p0;x1, p1; ...;xn, pn)

where outcomes xi are listed in ascending order, i.e. x−m < ... < x−1 < x0 < x1... < xn,

and
∑n

i=−m
pi = 1. We denote by x the underlying random variable of f .

x0 is the reference point - the neutral outcome. In CPT it is assumed that x0 = 0.

Note lottery f does not necessarily have the neutral outcome x0, i.e. it may be that

p0 = 0. Without loss of generality, we require strictly positive probabilities for all other

outcomes, i.e. pi > 0 ∀i 6= 0.

Let
p+ ≡

∑n

k=1
pk = 1−

∑−1

k=−m
pk − p0 = Pr[x > x0]

p− ≡
∑−1

k=−m
pk = 1−

∑n

k=1
pk − p0 = Pr[x < x0]

Then p+ + p− + p0 = 1. Let

f+ ≡ (x0, (p0 + p−);x1, p1; ...;xn, pn)

f− ≡ (x−m, p−m; ...;x−1, p−1;x0, (p0 + p+))

denote the positive and negative parts of f , respectively, which are also lotteries. Note
that the probabilities that originally correspond to negative (resp. positive) outcomes get

re-assigned to x0 in f+ (resp. f−), which will cause a double-counting of outcome x0 in

the final evaluation of f .

CPT says that the decision maker evaluates lottery f according to a cumulative
functional V :

V (f) ≡ V (f+) + V (f−) (1)
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where

V (f+) =
∑n

i=0
π+i v(xi)

V (f−) =
∑0

i=−m
π−i v(xi)

where v(·) is a strictly increasing real-valued function with v(0) = 0, and π+i (resp. π
−
i ) is

the weight attached to outcome xi in the evaluation of f+ (resp. f−).
In the first version of prospect theory (Kahneman and Tversky (1979)), π+i , say, is a

function of pi only and is independent of all other pk, k 6= i. In CPT, however, π+i depends

on the (de-)cumulative probability of outcome i, i.e. all probabilities pi, pi+1, ..., pn; π−i
depends on all probabilities p−m, p−m+1, ..., pi−1, pi. Their particular functional forms are:

π+0 = w+(1)− w+(
∑n

k=1
pk)

π+i = w+(
∑n

k=i
pk)− w+(

∑n

k=i+1
pk), for 0 < i < n

π+n = w+(pn)

π−0 = w−(1)− w−(
∑−1

k=−m
pk)

π−i = w−(
∑i

k=−m
pk)− w−(

∑i−1

k=−m
pk), for −m < i < 0

π−n = w−(p−m)

where w+ and w− are called weighting functions, which are both strictly increasing
functions mapping [0, 1] into itself, satisfying

w+(0) = w−(0) = 0, and w+(1) = w−(1) = 1 (2)

Tversky and Kahneman (1992) suggest weighting functions that are inverse S-shaped,

like those shown in the following figure:

Figure 1: Weighting Functions of CPT

The functional form that they used to fit their experimental data is the following:
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w(p) =
pγ

(pγ + (1− p)γ)1/γ

where parameter γ takes different values for w+ and w−.

Tractability of CPT Representation From the description so far, we see that the

preference representation under CPT, the cumulative functional in (1), consists of a com-

plex system of functions. The complexity mainly comes from inverse S-shaped weighting

of cumulative probabilities.

As a descriptive model, CPT is quite powerful in reconciling "anomalous" phenomena

that violate standard utility models. We provide a brief discussion of its descriptive power

as well as that of the (β, c) model in section 3.5.

However, the CPT representation is quite cryptic and it is not easy to comprehend

what the representation of a given lottery is in (1), even with the help of the decision

weights π+, π− and weighting functions w+, w−. Without calculating the value of V , it is

even harder, and impossible in most cases, to compare two lotteries that do not involve

some kind of straightforward dominance (e.g. first-order stochastic dominance).

It is this lack of tractability of the original CPT cumulative functional that motivates

our quest for a simplified representation for CPT.

3 The (β, c) Model

In this part, we propose a simplified weighting function for CPT, which we call the (β, c)

model. Its relationship to the "true" weighting function is similar to that between the

quasi-hyperbolic discounting function and the hyperbolic discounting function. We will

show that the (β, c) model yields a highly tractable preference representation that keeps

the gist of CPT.

Definition 1 ((β, c) Model) The (β, c) model has weighting functions satisfying w+ =

w− = w, and

w(p) =


0 , if p = 0

βp+ c , if 0 < p < 1

1 , if p = 1

(3)

where β and c are constants and satisfy the following conditions:

0 < β ≤ 1, 0 ≤ c < 1, β + c ≤ 1.

This weighting function w only keeps the true probability as the decision weights at

the two extremes, 0 and 1.
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When β = 1 and c = 0, the weight is exactly the probability, and the resulting CPT

model is similar to the expected utility (henceforth EU) model2. In other cases, this

weighting function will have discontinuities at at least one of the two ends of [0, 1], and it

is linear but less "sensitive" in probabilities anywhere in the middle (i.e. flatter than the

45-degree line).

The following is a graph of the (β, c) model:

Figure 2: Weighting Function of the (β, c) Model

Interpretation of (β, c) Parameters Evident from the figure above, c (the distance

of the "jump" of the value of w at p = 0) captures the possibility effect at probability
0, or the "overweighting of very small probabilities"; (1 − β − c) (the distance of the

"jump" of the value of w at p = 1) captures the certainty effect at probability 1, or

the "underweighting of probabilities very close to certainty". β represents the slope of the

linear part, and measures the lack of sensitivity to intermediate probabilities, as
well as part of the certainty effect captured by (1−β−c). The two parameters β and c will
continue to manifest themselves in the representations we derive from the (β, c) model.

Notice that when c = 0, that is, when there is no possibility effect, the β parameter

alone captures both the lack of sensitivity to intermediate probabilities and the certainty

effect (1−β). A calibrated (β, c) model with c = 0 will be used in most of the applications

we present later in the paper.

Note that the experiment evidence by Tversky and Kahneman (1992) is consistent with

our assumption of w+ = w− in the (β, c) model. More discussion of empirics is postponed

until section 4.

Degenerate Lotteries Before we derive the (β, c)-representation for general lotteries,

it is useful to emphasize the (obvious) fact that the (β, c) model preserves the "original"

2Even when π+i = pi, π
−
j = pj for all i, j, V (f) is still not necessarily equivalent to the expected utility

of f , unless v(x0) = 0. This is because the outcome x0 gets double counted in the evaluation of f+ and
f− in CPT, and we generally have V (f) = Ev(f) + v(x0) when π+i = pi, π

−
j = pj for all i, j.
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preference represented by v(·) in riskless situations. That is, for "degenerate" lotteries
- those with sure outcomes - the (β, c) representation is exactly the same as the value

function v(·).

Theorem 0 (Degenerate Lottery) If f = (x, p = 1), then f is evaluated in the (β, c)

model by

V (f) = v(x).

Unless otherwise stated, all our following results are about non-degenerate lotteries
- those with no sure outcomes.

3.1 Discrete Lotteries

Consider the discrete lotteries described in section 2. In the (β, c) model, we have the

following result.

Theorem 1 (Discrete Lottery) Given x0, if discrete lottery f has outcomes y and z
such that y < x0 < z, then it is evaluated in the (β, c) model by the following function V :

V (f) = βEv(f) + cv(xn) + cv(x−m) + 2(1− β − c)v(x0) + βv(x0) (4)

Proof. Under the (β, c) model, from (3) we have

π+0 = β(p0 + p−) + (1− β − c)
π+i = βpi, for 0 < i < n

π+n = βpn + c

π−0 = β(p0 + p+) + (1− β − c)
π−i = βpi, for −m < i < 0

π−−m = βp−m + c

(5)

and
V (f+) = β

∑n

i=0
piv(xi) + cv(xn) + (1− β − c)v(x0) + βp−v(x0)

V (f−) = β
∑0

i=−m
piv(xi) + cv(x−m) + (1− β − c)v(x0) + βp+v(x0)

(6)

Substituting into V (f) = V (f+) + V (f−) and we get (4).

Theorem 1 focuses on the case when y < x0 < z. Other situations are discussed in

section 3.2 as special cases.

Notice in the proof above that, when 0 < i < n or −m < i < 0, the decision weight

attached to outcome xi is simply βpi, which does not depend on the cumulative probability.

The cumulative probability only affects the weight when i = 0,−m, or n, i.e. the reference
point or the two extreme outcomes. This is why we also call the weighting function of the

(β, c) model quasi-cumulative.
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Theorem 1 holds for lotteries with p0 = 0 and p0 > 0, i.e. it does not matter whether

the reference point x0 is an outcome of this lottery. Below we provide an interpretation of

(4) in the case when p0 > 0, and it is straightforward to extend it to the case when p0 = 0.

Interpretation of the (β, c) Representation for Discrete Lotteries

• The part βEv(f) in (4) reflects the fact that the (β, c)model has a weighting function

that is linear in probabilities for all the intermediate outcomes. And because the

decision weights attached to outcomes are less sensitive than their respective true

probability, the true EU of the lottery is "discounted" by factor β ≤ 1.

• The part cv(xn)+cv(x−m)+2(1−β−c)v(x0) is the direct result of the possibility effect

and the certainty effect captured by the (β, c)model. The probability p of an outcome

is transformed into βp+ c in the representation. Evident from (5) above, because of

the linearity of the weighting function in intermediate probabilities, combined with

the cumulative nature of the weighting function in CPT, each intermediate outcome

xi only gets weight βpi, which goes into βEv(f) in the representation, and only the

reference point and extreme outcomes get different weights (see (6)):

— In both f+ and f−, due to cumulative weighting, the reference point x0 becomes
the "sure" outcome. For instance, in f+, x0 is the minimum gain, and its (de-

)cumulative probability (i.e. the probability of the outcome of f+ no smaller

than x0) is 1. Therefore, in the evaluation of f+, x0 gets overweighted relative

to the other outcomes by (1 − β − c), due to certainty effect. Similarly, x0 is
the minimum loss in f−, and it also gets overweighted by (1 − β − c) in the
evaluation of f−. This results in the extra term 2(1− β − c)v(x0).

— In f+, the extreme outcome xn has (de-)cumulative probability (i.e. the proba-
bility of the outcome of f+ no smaller than xn) close to 0, and therefore it gets

overweighted relative to the other outcomes by factor c due to the possibility

effect, which results in the additional term cv(xn).

— In f−, the extreme outcome x−m has cumulative probability close to 0 and

thus gets overweighted relative to the other outcomes by factor c due to the

possibility effect, which results in the additional term cv(x−m).

• The last part βv(x0) is due to double-counting of the reference point. We know f+

(resp. f−) truncates f from x0 upwards (resp. downwards), and re-assigns all the

remaining probability p− (resp. p+) to x0. This leads to a complete double-counting

of x0 with probabilities p+, p−, and p0 (which sum up to 1) in the final evaluation of

x0. After discounting each probability by β, this results in an addition term βv(x0).
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Corollary 1 If v(x0) = 0, the (β, c) model gives the following representation of discrete

lottery f with outcomes y and z such that y < x0 < z:

V (f) = βEv(f) + cv(xn) + cv(x−m)

In CPT, it is assumed x0 = 0 and v(0) = 0, which leads to v(x0) = 0.

Our discussion of the (β, c) model in this paper also invokes this assumption for ex-

pository simplicity in applications, although the (β, c) model does not need it.

We have chosen to present the general (β, c) representation without invoking this as-

sumption in theorems, and the representation that does invoke it in corollaries.

3.2 Special Cases of Discrete Lotteries

3.2.1 Pure Gains

This is the special case when xi ≥ x0, ∀i. In this case, f = f+.

Corollary 2 (Pure Gains) Discrete lottery f with xi ≥ x0 ∀i (Pure-Gain Lottery) is
evaluated in the (β, c) model by

V (f) =

{
βEv(f) + cv(xn) + (1− β − c)v(x1) , if p0 = 0

βEv(f) + cv(xn) , if p0 > 0
(7)

Proof. Note that xi ≥ x0 ∀i =⇒ p− = 0 =⇒ p+ + p0 = 1 =⇒
f− = (x0, 1) =⇒ V (f−) = v(x0) = 0.

Therefore, when p0 = 0 :

V (f) = V (f+) = βEv(f) + cv(xn) + (1− β − c)v(x1)

Some points to notice:

• p0 = 0 means x1 is the "sure" outcome in this lottery, and thus x1 gets overweighted

by (1− β − c) due to the certainty effect;

• the extreme outcome xn still has an additional term cv(xn) in the representation

due to the possibility effect.

When p0 > 0 :

V (f) = V (f+) = βEv(f) + cv(xn) + (1− β − c)v(x0)

= βEv(f) + cv(xn)

• In the evaluation, x0 always gets double-counted, but it does not appear in the
representation because v(x0) = 0 is invoked.
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3.2.2 Pure Losses

The special case when xi ≤ x0, ∀i. In this case, f = f−.

Corollary 3 (Pure Losses) Discrete lottery f with xi ≤ x0 ∀i (Pure-Loss Lottery) is
evaluated in the (β, c) model by

V (f) =

{
βEv(f) + cv(x−m) + (1− β − c)v(x−1) , if p0 = 0

βEv(f) + cv(x−m) , if p0 > 0

Proof. xi ≤ x0 ∀i =⇒ p+ = 0 =⇒ p− + p0 = 1 =⇒
f+ = (x0, 1) =⇒ V (f+) = v(x0) = 0.

Therefore, when p0 = 0 :

V (f) = V (f−) = βEv(f) + cv(x−m) + (1− β − c)v(x−1)

When p0 > 0 :

V (f) = V (f−) = βEv(f) + cv(x−m) + (1− β − c)v(x0)

= βEv(f) + cv(x−m)

3.2.3 Binary Lotteries

Corollary 4 (Binary Lottery) If f = (x1, p1;x2, p2), where x1 < x2 and pi > 0 ∀i,
then f is evaluated in the (β, c) model by

V (f) =


βEv(f) + cv(x2) + (1− β − c)v(x1) , if x0 ≤ x1
βEv(f) + cv(x1) + (1− β − c)v(x2) , if x0 ≥ x2
βEv(f) + cv(x1) + cv(x2) , if x1 < x0 < x2

(8)

Proof. When x0 ≤ x1 :

This is a pure-gain lottery, and by Corollary 2 we have

V (f) = βEv(f) + cv(x2) + (1− β − c)v(x1)

When x0 ≥ x2 :

This is a pure-loss lottery, and by Corollary 3 we have

V (f) = βEv(f) + cv(x1) + (1− β − c)v(x2)
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When x1 < x0 < x2 :

In this case, f+ = (x0, p1;x2, p2), f− = (x1, p1;x0, p2), and by (4) of Theorem 1, we

immediately have

V (f) = βEv(f) + cv(x1) + cv(x2) + 2(1− β − c)v(x0) + βv(x0)

= βEv(f) + cv(x1) + cv(x2)

3.3 Continuous Lotteries

While CPT only considers discrete lotteries, we want our model to also be applicable to

continuous lotteries of the following kind.

Definition 2 (Continuous Lottery) f is called a continuous lottery if it is an atom-
less probability density function defined on a convex support.

We denote by S the support and only discuss the case when S ⊆ R. Denote by

int(S) the interior of S. Note that when S is a singleton, the continuous lottery becomes

degenerate, and its representation is given in Theorem 0.

We continue to denote by x the underlying continuous random variable of f , and

denote by F its c.d.f.

We define the value and weighting functions for f in a very similar way as for discrete

lotteries, in the same spirit as Quiggin (1982).3

Consider two weighting functions, w+(·) and w−(·), which satisfy property (2) and are
strictly increasing and differentiable on (0, 1), with derivatives denoted w+′(·) and w−′(·),
respectively.

We assume lim
t→0+

w+′(t), lim
t→1−

w+′(t), lim
t→0+

w−′(t), lim
t→1−

w−′(t) all exist, and denote them

w+′(0), w+′(1), w−′(0), w−′(1), respectively.

Given x0, for realization x ∈ S of x, if x > x0, we define its weight as

π+(x) ≡ lim
ε→0+

1

ε
[w+(1− F (x))− w+(1− F (x+ ε))]

= w+′(1− F (x)) · f(x)

If x < x0, we define its weight as

π−(x) ≡ lim
ε→0+

1

ε
[w−(F (x+ ε))− w−(F (x))]

= w−′(F (x)) · f(x)

3See Quiggin (1982) for a discussion of the analogy between the weighting functions for discrete and
continuous lotteries.
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And

π+(x0) ≡ w+(1)− w+(1− F (x0))

π−(x0) ≡ w−(1)− w−(F (x0))

Similar to those for discrete lotteries, these weights are also transformed from the

"cumulative probability" of outcome x. Since f is a continuous probability distribution,

the weights assigned to its outcomes need to have the format of "probability densities",

and hence we use the derivatives w+′ and w−′ in the definitions above.

The value of lottery f is then defined as

V (f) ≡ V (f+) + V (f−)

where

V (f+) ≡
∫ ∞
x0

π+(t)v(t)dt+ π+(x0)v(x0)

V (f−) ≡
∫ x0

−∞
π−(t)v(t)dt+ π−(x0)v(x0)

where v(·) is exactly the same utility function as in the case of discrete lotteries.

Theorem 2 (Continuous Lottery) Continuous lottery f with support S is evaluated

in the (β, c) model by

V (f) =

{
βEv(f) + (2− β − 2c)v(x0) , if x0 ∈ int(S)

βEv(f) + v(x0) , if x0 /∈ int(S)
(9)

Proof. By the definition of continuous lottery f we know that ∀x ∈ S, 0 < f(x) < 1.

In the (β, c) model, by (3) we have w+′(t) = w−′(t) = w′(t) = β, ∀t ∈ [0, 1] (recall our

definition of w+′(0), w+′(1), w−′(0) and w−′(1) above). Therefore we have

π+(x) = π−(x) = βf(x), ∀x 6= x0

If x0 ∈ int(S), we know F (x0), 1− F (x0) ∈ (0, 1). Therefore

V (f+) =

∫ ∞
x0

βf(t)v(t)dt+ (1− β − c+ βF (x0))v(x0)

V (f−) =

∫ x0

−∞
βf(t)v(t)dt+ (1− βF (x0)− c)v(x0)

Therefore V (f) = βEv(f) + (2− 2c− β)v(x0).

If x0 /∈ int(S), we know F (x0)·(1−F (x0)) = 0, and therefore one of π+(x0) and π−(x0)

must take value 1 while the other takes value 0, which implies π+(x0) + π−(x0) = 1.
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Therefore V (f) = βEv(f) + v(x0).

Interpretation of the (β, c) Representation for Continuous Lotteries For a con-

tinuous lottery f , if x0 /∈ int(S), it must be that x0 is either weakly bigger than or weakly

smaller than all the outcomes of f . The atomless assumption guarantees that there exists

no extreme outcome with strictly positive probability in f , thus CPT suggests that all

probabilities get discounted due to lack of sensitivity (in intermediate probability "densi-

ties"), and in the (β, c) model they are discounted by factor β ≤ 1, which results in the

linear part of the representation.

Moreover, x0 is by definition always double counted in our definition of decision weights

(π+(x0) and π−(x0)) above, and hence the additional term v(x0).

If x0 ∈ int(S), there must exist outcomes y and z of f such that y < x0 < z, and

hence we must have Pr[x ≤ x0] > 0 and Pr[x ≥ x0] > 0. Thus, just like in the discrete

case, x0 becomes the "sure" outcome in both f+ and f− (it is either the minimum gain or

minimum loss), and is therefore overweighted by 2(1− β − c) due to the certainty effect.
Moreover, x0 is still double counted in the evaluation, although since it now appears

in the interior of support S, it will be discounted by β. Hence we have the additional term

(2− β − 2c)v(x0).

Corollary 5 If v(x0) = 0, the (β, c) model gives the following representation of continuous

lottery f :

V (f) = βEv(f) (10)

Intuition: In a continuous lottery (satisfying Definition 2), all outcomes have zero
probability measure. Since there is no extreme outcome with strictly positive probability,

there is no overweighting of such outcomes. Therefore, in the (β, c) model, all outcomes

are (under-)weighted by factor β, resulting in a linear representation of the lottery.

3.4 Summary of the (β, c) Representation

As Theorems 1 and 2 show, the (β, c) model results in a preference representation con-

sisting of a linear part that is the discounted expected value of the lottery, β ·Ev(f), and

additional terms of the reference point and extreme outcomes (if any) that exhibit the

certainty effect, the possibility effect, and reference dependence. Each part in the repre-

sentation has a transparent interpretation, and the whole representation is highly intuitive

and tractable.

A natural special case that draws our attention is when c = 0 and β < 1, and when

the assumption that v(x0) = 0 is invoked. In this case, Corollaries 1 and 5 show that

the (β, c) representation of non-degenerate discrete and continuous lotteries is simply the

linear discounted expected value of the lottery, β · Ev(f). Combined with Theorem 0,

the (β, c) representation of lotteries exhibits the same feature as the (β, c) model itself
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- it is linear and discontinuous. The discontinuity in the (β, c) representation occurs as

soon as risk is introduced into a degenerate lottery, where the representation value drops

from expected value to a strictly smaller discounted expected value, although linearity in

probabilities is maintained for all lotteries.

3.5 The (β, c) Model - What It Does and Does Not Do

Tractable Preference Representation Above all, the (β, c) model achieves highly

tractable preference representation for general lotteries. The "gist" of CPT, such as the

certainty and possibility effects, and reference dependence are all shown in concise and

intuitive analytical forms, as discussed in the previous section.

3.5.1 What It Does that CPT also Does

By construction, the (β, c) model can explain all the major phenomena of risky choice

violating the standard model that CPT was developed to reconcile (among other things),

as set out by Tversky and Kahneman (1992), including4:

Framing Effect/Reference Dependence Variations in the framing of options in

terms of gains or losses yield systematically different preferences. The (β, c) model keeps

the same assumption on reference dependence and the same framing process of gains and

losses as CPT.

Nonlinear Preferences/Certainty Effect CPT reconciles nonlinear preferences (e.g.

"Allais" behavior) through changes of curvature of the weighting function (steeper at

impossibility and certainty, and flatter in the middle); the (β, c) model achieves non-

linearity by discontinuities at impossibility and certainty. In the next section we illustrate

that a calibrated (β, c) model can explain Allais Paradox.

Risk Seeking Preference for large prizes with small probabilities over its expected value,

and for large losses with substantial probabilities over a sure smaller loss. These can be

explained in both CPT and the (β, c) model, where decision makers overweight small

probabilities and underweights large probabilities.

Loss Aversion Losses loom larger than gains. The asymmetry between gains and losses

can be explained in CPT by allowing for a steeper weighting function for losses (w−(·))
than that for gains (w+(·)). Similarly, we can extend the (β, c) model to allow for different

4Besides the four phenomena discussed here, Tversky and Kahneman (1992) also mention a fifth
pheonomena (that is related to uncertainty/ambiguity) that CPT can explain - Source dependence. The
(β, c) model in this paper does not explain source dependence as we have restricted our discussion to risky
choice only.
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weighting functions, (β+, c+) and (β−, c−), for gains and for losses respectively, with a

corresponding larger β− than β+.5

3.5.2 What It Does that CPT Does Not Do

Besides working as a relatively nice descriptive model of risky choice, the (β, c) model also

does two things that CPT does not do:

"Bayesian" Updating When we use c = 0, the (β, c) model allows for normal Bayesian

updating of probabilities strictly smaller than 1 in dynamic decision making. This is

because, when c = 0, the (β, c) weighting function is linear in probabilities except for 1. If

such probabilities satisfy the Bayes rule, so do their respective decision weights. However,

the decision weights under CPT do not satisfy Bayes rule as they are everywhere non-

linear in probabilities. In section 5 we provide an application of dynamic decision making

that makes use of this feature.

Non-Convergence Due to the discontinuities of the (β, c) model at impossibility and

certainty, the decision weights do not converge to 0 or 1 when the probabilities do, unlike

the decision weights in CPT that do converge due to continuity of its weighting functions.

Therefore the (β, c) representation does not converge to the standard expected-utility rep-

resentation as a lottery converges to a deterministic outcome, which for instance can be

seen from the contrast between Theorems 0 and 1. This feature may change standard

results that rely on limiting properties of sequences of lotteries, and we provide an appli-

cation of this feature in section 7 that shows its impact on trembling-hand perfection in

strategic games.

3.5.3 What It Does Not Do - Limitations of the (β, c) Model

The benefits we derive from the two key features of the (β, c) model, linearity and discon-

tinuity, come at a cost. The (β, c) model and representation by construction have their

limitations.

Loss of continuity at impossibility and certainty The (β, c) weighting function is

neither differentiable nor continuous at impossibility (when c > 0) and certainty (when

1− β − c > 0), and therefore it does not allow estimation of sensitivity (i.e. derivative) in

probabilities at these two points.

Some may argue that the non-convergence result we discussed previously can also be

viewed as a limitation of the model, as the discontinuities of the (β, c) weighting function

imply that even the slightest change in probability from total impossibility or certainty will

5The detailed discussion of the (β, c) model with two different weighting functions is omitted as loss
aversion is not the focus of the current paper.
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result in a big "jump" in evaluation. However, some results we derive in applications rely

critically on this discontinuity. A detailed assessment of this issue is provided in section

7.3.

Loss of curvature Due to the linearity in intermediate probabilities, the (β, c) weighting

function does not have changing curvature and therefore cannot capture any "fine" effects

related to curvature, such as changes in a decision maker’s sensitivity towards intermediate

probabilities at different levels of probabilities. For this reason, it cannot explain nonlinear

preferences in choices that do not involve sure outcomes (e.g. common ratio effect with

only intermediate probabilities).

Loss of curvature in the weighting function naturally brings the (β, c) representation

closer to EU representation compared to the original CPT representation. In many cases

this makes the (β, c) representation coincide with EU representation. Some may view this

as "too far" a departure from CPT and thus another limitation of the model.

In particular, when the assumption v(x0) = 0 is invoked (as it should be in most

situations), i) for all non-degenerate continuous lotteries satisfying Definition 2, Corollary

5 tells us that the (β, c) representation is equivalent to EU representation; ii) for all non-

degenerate discrete lotteries with the same extreme (i.e. largest and smallest) outcomes,

Corollary 1 implies that the (β, c) representation is also equivalent to EU representation.

In these cases, the only "useful addition" that the (β, c) model brings to the standard EU

representation is the discontinuity when evaluating degenerate lotteries, as shown by the

contrast between Theorem 0 and the corollaries mentioned previously.

In all other cases, particularly for all non-degenerate discrete lotteries with different

extreme outcomes, the (β, c) representation lies "strictly between" EU and CPT represen-

tations.

4 Empirics and Calibration

Weighting functions with a linear part in intermediate probabilities are sometimes used in

ad hoc manners in empirical studies to fit experimental data on risky choice. As such data

by definition involve discrete rather than continuous lotteries (probability distributions),

they can not logically show what the limits of decision weights are as true probability

converges to 0 or 1, and thus continuity of the weighting function at impossibility and

certainty does not really matter for empirics. However, if a linear weighting function for

intermediate probabilities fit experimental data reasonably well, this will provide support

for the (linear part of) the (β, c) model as a good descriptive model, as well as providing

estimates of the parameters of the (β, c) model.

Tversky and Fox (1995) estimated among other things a linear weighting function

for three studies of risky choice, as an approximation of their more general "subadditive"
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(SA) weighting functions. They found that the former fits the data quite well. The median

estimates in their study of a set of parameters that correspond to β, c, and (1− β − c) in
the (β, c) model were 0.76, 0.07, and 0.16, respectively.

In a more theoretical study of the SA weighting functions, Tversky and Wakker (1995)

argued that "Since w (author: w is their SA weighting function) is fairly linear in the

middle region, ... upper SA usually hold for larger intervals, and for most functions found

in the literature ... even ε′ = 0 can be chosen". In their model, ε′ represents the lower

bound of the range of probabilities where "upper subadditivity" applies, which by and

large captures the certainty effect. ε′ = 0 corresponds to c = 0 in the (β, c) model.

We take these studies as the basis of our calibration of the (β, c) model in the appli-

cations we will discuss in subsequent sections. Before that, we fist illustrate below that a

reasonably calibrated (β, c) model can explain Allais Paradox.

4.1 Allais Paradox

Consider the original Allais Paradox:

Question 1:

{
Lottery A = ($1 Million, 100%)

Lottery A∗ = ($0, 1%; $1 Million, 89%; $5 Million, 10%)

Question 2:

{
Lottery B = ($0, 89%; $1 Million, 11%)

Lottery B∗ = ($0, 90%; $5 Million, 10%)

A typical "Allais behavior" involves the choice of A in Question 1 and the choice of

B∗ in Question 2, which violates EU theory.

Now we show that such behavior can be explained using the (β, c) model with the

estimates from Tversky and Fox (1995): β = 0.76, and c = 0.07.

First suppose the value function for money of the decision maker (DM) is v(·) as in
CPT, and take $0 as the reference point, i.e. v(0) = 0.

If DM has (β, c) preference, by Corollary 2 her evaluation of the lotteries in Questions

1 and 2 should be:

V (A) = v(1M)

V (A∗) = β × (89%× v(1M) + 10%× v(5M)) + c× v(5M)

= 0.89β × v(1M) + (0.1β + c)× v(5M)

V (B) = β × (11%× v(1M)) + c× v(1M)

= (0.11β + c)× v(1M)

V (B∗) = β × (10%× v(5M)) + c× v(5M)

= (0.1β + c)× v(5M)
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And her "Allais behavior" can be represented by

V (A) > V (A∗)⇔

v(1M) > 0.89β × v(1M) + (0.1β + c)× v(5M); and

V (B) < V (B∗)⇔

(0.11β + c)× v(1M) < (0.1β + c)× v(5M)

which together are equivalent to

0.1β + c

1− 0.89β
<
v(1M)

v(5M)
<

0.1β + c

0.11β + c
.

Since β = 0.76, and c = 0.07, the condition above reduces to

0.46 <
v(1M)

v(5M)
< 0.95.

Therefore, a value function in money v(·) that is concave enough will satisfy this
condition. For instance, v(x) = xα with α = 0.4 works, where v(1M)

v(5M) ≈ 0.53. Smaller

positive values of α also work.

5 Application I - Dynamic Decision Making

The preference represented by the (β, c) model has a bias towards certainty. We show

in this section that in dynamic situations, this bias can lead to distortions in evaluation

when the decision maker Bayesian updates probabilities, which may result in inconsistent

behaviors.

5.1 A Promotion Example

Suppose there is a CD album that a decision maker (DM) values at v̄ = £5 for sale at a

shop. DM demands at most one unit of this CD. The current price posted is p1 = £3.

The shop has announced that it will run a promotion on this item in two steps: it will

first reduce the price to p2 = £2 next week (week 2), and then finally to p3 = £1 in week

3.6

Apart from the price changes, suppose DM has no preference towards time - the value

of this CD will be £5 to her no matter when she buys it.7 Her utility from buying the CD

6Real-life examples of such promotions are observed around Christmas, where the price of some product
may be slightly reduced close to the holiday as a "Christmas promotion", and then further reduced at the
"Boxing Day sale". Whether announced or not, such "step promotions" can in many cases be anticipated
in advance by consumers.

7Although the intention of such "step promotions" may be related to (some) people’s time preference
(e.g. Christmas gift purchases), all consumers need not have time preference. What we study here is how
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at any price p is simply v̄ − p. Therefore she would generally want to buy at the lowest
final price £1.

However, the shop has limited stock of this CD and there are other shoppers who,

knowing about the promotion or not, may buy it before DM. Suppose that DM cannot

stay at the shop all the time to monitor the stock. Therefore, if she waits for the promotion

prices, there is a risk that it will be sold out. She estimates that there is an 80% chance

that stock will last till price drops to £2, and a 72% chance that it will last till price drops

to £1. In other words, if she waits till the price drops to £2, there is a 20% chance that

the CD is sold out when she goes; conditional on there being still stock at £2, it will last

till price drops to £1 with probability 72%
80% = 90% (i.e. there is a further 10% chance of

sell-out if she waits till the price drops to £1).

Suppose not buying will leave DM with a payoff of 0, which we naturally take as the

reference point.

5.1.1 The Dynamic Purchasing Decision Problem

What should DM do now? In other words, at what price should she buy this CD?

We can represent this decision problem in "extensive form" in Figure 3, where the solid

dots and hollow dots represent the decision nodes of the DM and of "nature", respectively,

and the numbers in parentheses represent DM’s payoff.8

Figure 3: The Dynamic Purchasing Decision Problem

a DM with no time preference should act faced with such promotions, whatever the shop’s intention is.
8To answer the previous question, we need to compare two lotteries - "buying" and "not buying" - at

each of the three prices. Our discussion in the main text focuses on intuition and tries to avoid technical
terms and heavy notation. To clarify the correspondence between this example and the terminology of our
model, for i = 1, 2, 3, "buying" at price pi is the degenerate lottery: (v̄ − pi, 1). "Not buying" at price pi
is the binary pure-gain lottery: (0, πi;Vi, 1 − πi), where πi is the sell-out probability at pi, and Vi is the
"continuation value" of the game evaluated at pi if DM does not buy at pi. This "continuation value" is
DM’s perceived best alternative option to buying at the current price, which depends on her preference
and her options in the remainder of the game. Its particular form becomes clear in our discussion in the
main text.
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If DM has EU preference, it is straightforward to see that she should wait for the

lowest price, because this gives her the highest expected value (5− 1)× 80%× 90% = 2.

88, whereas buying at £3 gives 5− 3 = 2 and buying at £2 gives (5− 2)× 90% = 2. 7.

5.1.2 (β, c) Preference and Awareness

Suppose instead that DM has (β, c) preference with β = 0.8 and c = 0, then her deci-

sion may be different, as her preference suggests that she has a bias towards certainty.

Furthermore, her decision may also be affected by whether she is aware of her bias or

not. Following the terminology of the self-control literature, we call DM a naif if she is

oblivious of her certainty bias, and a sophisticate if she is fully aware.9

Evaluation Distortion in Bayesian Updating In order to clarify the exact meanings

of these different cases, sophisticates evaluate lotteries with the (β, c) preference, and know

that their bias towards certainty (represented by β < 1) will cause disproportionate scaling

of decision weights in their evaluation of lotteries, particularly when probabilities are scaled

up to certainty as compared to scaling up to be merely probable.

For instance, from the perspective at price £3, the probabilities of the stock lasting till

prices £2 and £1 are 80% and 72%, respectively, which in the (β, c) model are transformed

to decision weights β · 80% and β · 72%, respectively. Come price £2, conditional on there

is still stock, however, the probabilities of stock availability at prices £2 and £1 become
80%
80% = 100% and 72%

80% = 90%, respectively, which are transformed to decision weights 1

(without β) and β · 90%, respectively. Therefore, the respective decision weights are not

both scaled proportionately when one of the (conditional) probabilities is 1, which in turn

leads to evaluation distortion of the outcomes at these prices.

Sophisticates realize that their bias distorts their evaluation when their "Bayesian

updating" of probabilities involves sure outcomes. However, naifs incorrectly believe that

there is no such distortion in their evaluation when probabilities are scaled up or down, even

though they also have (β, c) preference. Therefore, there may be inconsistency between

what naifs plan to do and what they end up doing.

5.1.3 Solution

In summary, we want to find the choices of three types of DM: EU, naif and sophisti-

cate. We show that in this example they all indeed make different decisions: EUs buy

at the lowest promotion price £1, naifs buy at intermediate price £2, while sophisticates

(somewhat surprisingly) buy at the highest price £3.

We use backward induction to analyze the choices of naifs and sophisticates, who share

the same (β, c) preference with β = 0.8 and c = 0. Recall from Theorems 0 and 1 that,

9DM’s decision may also be affected by the degree of her awareness of her bias. Here we only discuss
the two extreme cases - total obliviousness and full awareness.
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a (β, c) DM will apply multiplier β to the expected utility of any lottery the outcomes

of which have probabilities strictly smaller than 1, but will not do so if the lottery has

only one sure outcome. Therefore at the lowest price £1, if there is stock, both naifs and

sophisticates will buy as this gives them a positive payoff 5−1 = 4, higher than the outside

option 0. (Recall that EUs will also buy.)

Now consider the situation at the intermediate price £2, where buying would provide

payoff 5 − 2 = 3. What is the expected payoff of waiting until the price is £1? Because

there is a 10% risk of sell-out, and (β, c) preference underweights any uncertain outcome

by β = 0.8, naifs and sophisticates evaluate the lottery of waiting until £1 to be 0.8× (5−
1) × 90% = 2. 88, which is lower than their payoff from buying at price £2. Thus when

the price is £2, both naifs and sophisticates will buy. (Recall that at price £2 EUs still

prefer the option of buying at £1 which they evaluate at (5− 1)× 90% = 3. 6 > 3.)

Finally, consider the situation at the original price £3, where buying would provide

payoff 5 − 3 = 2. What is the payoff from not buying? Sophisticates know that if they

do not buy at £3, they will buy at price £2 as long as there is stock. Thus sophisticates

only need to know their current evaluation of the lottery of buying at £2, which is 0.8×
(5− 2)× 80% = 1. 92, lower than the payoff of buying at £3. Therefore when the price is

£3, sophisticates buy right away.

Naifs also get payoff 2 if they buy at £3. What is their payoff from not buying at

£3? Recall that they do not realize that their biased preference may lead to evaluation

distortions when they scale probabilities. When the price is £3, if you ask naifs at what

price they would buy if they did not buy at £3, they will say that they would buy at £1.

This is because their current evaluation of buying at £1 is 0.8 × (5 − 1) × 80% × 90% =

2.304, higher than their current evaluation of buying at £2, which is 0.8× (5−2)×80% =

1.92. Therefore, believing incorrectly that they would buy at £1 and receive a payoff of

2.304, naifs forego the option of buying at £3. However, as our previous analysis shows,

naifs will end up buying at £2 come the first price reduction.

We have shown that in this promotion example, EUs wait until the lowest sale price

despite the risk of sell-out; (β, c) naifs think they would wait for the lowest price and

therefore risk not buying at the original price, but end up buying at the intermediate

price because at that price the risk of losing is actually too high for them to take; (β, c)

sophisticates, on the other hand, seize the CD at the original price for security, realizing

they would otherwise give in to their fear of uncertainty (of sell-out) at the intermediate

sale and never reach the final sale.

5.2 Alternative Auction Interpretation

The dynamic decision-making problem in Figure 3 can also be interpreted as that of a

bidder in a descending-price auction with a large (perhaps unknown) number of other

bidders, such as in a Dutch flower market.
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An important feature of the situations that can be described by this problem is that

the DM takes the risk in the decision-making process as given, by either subjective or

objective probability distributions. For example, in a Dutch auction, if the number of

bidders is very large and the time for consideration at each price is quite short, it may be

a practical "rule of thumb" for a bidder to consider the sell-out probability at any price as

given and independent of her own decision, rather than to focus on the interactive aspect

of bidding. If a bidder thinks this way, her decision-making process can be described in

exactly the same way as illustrated in this promotion example.

5.3 Discussion

5.3.1 Analogy to Time-Inconsistent Behavior

The behavior of (β, c) decision makers in this example resembles preproperative behaviors

exhibited by quasi-hyperbolic time preference in O’Donoghue and Rabin (1999)’s context

of intertemporal choice. We have developed (but have chosen not to present here) examples

involving losses that increase in absolute value over the different stages of dynamic decision

making where the behavior of (β, c) decision makers resembles procrastination. Actually,

results exactly parallel to those by O’Donoghue and Rabin (1999) can be developed using

the (β, c) model for dynamic decision of risky choice, where decision makers with a bias

for certainty exhibit time-inconsistent behavior.

The analogy between some decision patterns in risky choice and intertemporal choice

has been investigated empirically by Keren and Roelofsma (1995) and Weber and Chap-

man (2005), in search for the underlying psychological channels of such analogy, and

theoretically by Halevy (2008), who unifies the representation of risk and time preferences

and argues that risk works on a more fundamental dimension.

5.3.2 Distorted Bayesian Updating

Unlike these studies, the purpose of this application is to show that the (β, c) model is

an easily applicable tool to introduce certainty effect into dynamic decision making. As

we have discussed in section 3.5.2, the (β, c) model has a big advantage over CPT in this

context as it allows Bayesian updating of probabilities strictly smaller than 1, and creates

distortion whenever such updating involves certainty. Though simple, we hope that the

promotion example nonetheless illustrates that the (β, c) model is potentially applicable

in situations with much more complex information structure and that such "distorted"

Bayesian updating can have unexpected implications.
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6 Application II - Mixed Strategy Nash Equilibrium in Fi-

nite Strategic Games

In the promotion example we discussed previously, the risk is modeled as if it comes from

"nature". That is, the DM’s choice does not affect the probabilities in the lotteries she

faces (i.e. the chances whether or not stock runs out, which is assumed to be given). In

this section, we turn to situations where the risk that a DM faces comes from other DMs’

choices, and strategic interaction among different DMs affects everyone’s decision making

process.

Since situations with strategic interaction are generally distinguished from individual

decision making, and are modeled by game theory instead of decision theory, in this section

we replace the name "DM" with "player". One natural area in game theory to look for the

impacts of certainty effect is mixed strategies, as they involve non-deterministic choice of

actions and therefore introduces risk in players’payoff. Actually, the sell-out probabilities

in the promotion example can be interpreted as a mixed strategy "played" by nature.

In this section, we show that allowing for certainty effect in players’preference can have

significant impact on the standard results on mixed strategies of strategic (i.e. normal-

form) games (where by definition time no longer plays a role and there are no dynamics

at all).

6.1 Definitions

6.1.1 The Game

We consider finite two-player strategic games.10 Each player i ∈ {1, 2} has a finite action
set Ai = {ai1, ai2, ..., aini} where ni ∈ N. An action is also called a pure strategy. A pure
strategy profile of two players is denoted a = (a1j , a2k) ∈ A1 ×A2. Given a pure strategy
profile a, player i’s payoff is defined as vi(a), where vi is player i’s preference representation

towards deterministic outcomes, i.e. the value function v(·) in CPT and the (β, c) model

we discussed previously.

We denote by Γ = 〈{1, 2}, (Ai), (vi)〉 the finite two-player strategic game we have
described above.

6.1.2 (β, c)-Mixed Extension

Now we defined the "mixed extension" of Γ = 〈{1, 2}, (Ai), (vi)〉.
A mixed strategy of player i is defined as a probability distribution over Ai, denoted by

σi = (ai1, pi1; ai2, pi2; ...; aini , pini) ∈ ∆(Ai), where
∑ni

j=1 pij = 1. We sometimes simplify

10The definitions of strategies and equilibria used in this section are standard in game theory. In
particular they follow Osborne and Rubinstein (1994). The only change we make is on the preference
representation of players.
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the notation by writing σi = (pij)
ni
j=1 ∈ ∆(Ai). In the case that σi has pij = 1 for some

aij ∈ Ai, σi simply coincides with pure strategy aij . A mixed strategy profile of two players
is denoted by σ = (σ1, σ2) ∈ ∆(A1)×∆(A2).

Definition 3 (Lottery Induced by MS Profile) The lottery induced by mixed strat-
egy profile σ = ((p1j)

n1
j=1, (p2k)

n2
k=1) ∈ ∆(A1)×∆(A2) for player i ∈ {1, 2} is the probability

distribution that σ implies over player i’s payoffs from pure strategy profiles, denoted by

L(σ) = (vi(a1j , a2k), p1j · p2k)j=1,...,n1;k=1,...,n2 . (11)

Notice L(σ) is a well-defined discrete lottery in the CPT sense because
∑n1

j=1

∑n2
k=1 p1j ·

p2k =
∑n1

j=1 p1j ·
∑n2

k=1 p2k =
∑n1

j=1 p1j · 1 = 1.

Player i evaluates L(σ) using Vi(·), which is her preference representation towards
lotteries. Vi(·) can be EU representation, or the cumulative functional V (·) in CPT and
the (β, c) model we discussed previously. We denote

Vi(σ) ≡ Vi(L(σ)) = Vi((vi(a1j , a2k), p1j · p2k)j=1,...,n1;k=1,...,n2)

What we have described above is the "mixed extension" of game Γ with preference

representation Vi. If the players in Γ have (β, c) preference, Vi will be the (β, c) represen-

tation, in which case we call the extension the "(β, c)-mixed extension". We formalize this

concept below.

Definition 4 ((β, c)-Mixed Extension) The (β, c)-mixed extension of game Γ = 〈N, (Ai), (vi)〉
is the game 〈N, (∆(Ai)), (Vi)〉 where player i ∈ N has (βi, ci) preference with representa-

tion Vi.

Definition 5 The EU-mixed extension of game Γ = 〈N, (Ai), (vi)〉 is the game 〈N, (∆(Ai)), (Evi)〉
where player i ∈ N has EU preference with representation Evi.

Note that the (β, c)-mixed extension incorporates the standard notion of "mixed ex-

tension" - EU-mixed extension. By Theorems 0 and 1 we know Vi is exactly Evi when

(βi, ci) = (1, 0) and vi(x0) = 0. When all players have EU preference and vi(x0) = 0

∀i ∈ N , the (β, c)-mixed extension becomes the standard EU-mixed extension.

6.1.3 Equilibrium

The equilibrium concepts we use in this section are all defined in the standard way on Γ

or on its (β, c)-mixed extension. Since Theorem 0 implies that the (β, c) representation al-

ways coincides with EU representation for degenerate lotteries, and pure strategies always

induces degenerate lotteries, allowing for (β, c) preference should not affect the standard

results on pure strategy Nash equilibria (PSNE) of finite game Γ at all. Formally, we have
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Lemma 1 (β, c) representation does not affect the set of pure strategy Nash equilibria of

game Γ = 〈{1, 2}, (Ai), (vi)〉.

Proof. Consider a general pure strategy profile of game Γ, a = (a1j , a2k) for some a1j ∈ A1
and a2k ∈ A2. Suppose player i ∈ {1, 2} has (βi, ci) preference. By (11) we know a

induces degenerate lottery L(a) = (vi(a1j , a2k), p = 1). By Theorem 0 we know Vi(a) =

vi(a1j , a2k), irrespective of βi and ci.

Thus, we omit the discussion of PSNE, and focus on mixed strategies.

Definition 6 (MSNE) A mixed strategy Nash equilibrium (MSNE) of a game Γ =

〈N, (Ai), (vi)〉 is the Nash equilibrium of its (β, c)-mixed extension 〈N, (∆(Ai)), (Vi)〉, which
is a mixed strategy profile σ∗ ∈ ×i∈N∆(Ai) such that for every player i ∈ N , we have

Vi(σ
∗
i , σ
∗
−i) ≥ Vi(σi, σ∗−i) for all σi ∈ ∆(Ai).

Lemma 2 (Indifference at MSNE) Let game Γ = 〈{1, 2}, (Ai), (vi)〉 be a finite strate-
gic game. When every player i ∈ {1, 2} has (βi, ci = 0) preference, suppose σ∗ ∈
×i∈{1,2}∆(Ai) is an MSNE of Γ, then given σ∗−i, every player i ∈ {1, 2} is indiff erent
among all the pure strategies in the support of σ∗i .

Proof. Denote by Si the support of σ∗i . The Lemma holds trivially in the case that Si is
a singleton for every i ∈ {1, 2}.

In the case that Si is not a singleton for some player i ∈ {1, 2}, without loss of generality
suppose ai1, ai2 ∈ Si, that is, if we write out σ∗ = ((pij)

ni
j=1, (p−ik)

n−i
k=1), we know pi1 > 0

and pi2 > 0.

Suppose that, given σ∗−i, player i is not indifferent between ai1 and ai2, and assume

without loss of generality that

Vi(ai1, σ
∗
−i) > Vi(ai2, σ

∗
−i) (12)

Now for j = 1, 2, we look at profile (aij , σ
∗
−i). The lottery it induces for player i

is L((aij , σ
∗
−i)) = (vi(aij , a−ik), p−ik)k=1,...,n2 . By Theorem 1 we know that player i’s

evaluation of profile (aij , σ
∗
−i) and its induced lottery L(aij , σ

∗
−i) is for j = 1, 2,

Vi(aij , σ
∗
−i) =

{
Evi(aij , σ

∗
−i) , if vi(aij , a−ik) = constant for all a−ik ∈ S−i;

βi · Evi(aij , σ∗−i) , otherwise;
(13)

where 0 < βi ≤ 1. The reason for this is that the only situation when profile (aij , σ
∗
−i)

will yield player i a constant payoff is when vi(aij , a−ik) = constant for all a−ik ∈ S−i.
(13) distinguishes three situations:

(1) vi(ai1, a−ik) = constant, ∀ a−ik ∈ S−i; but vi(ai2, a−ik) 6= constant, ∀ a−ik ∈ S−i.
In this case, Vi(ai1, σ∗−i) = Evi(ai1, σ

∗
−i), and Vi(ai2, σ

∗
−i) = βi · Evi(ai2, σ∗−i). Therefore
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(12) implies that

Evi(ai1, σ
∗
−i) > βi · Evi(ai2, σ∗−i)

In this case, given σ∗−i, no matter how we mix ai1 and ai2 (with strictly positive

probabilities in order to keep them in Si), the resulting mixed strategy σ∗i will yield strictly

lower payoff for player i than (ai1, σ
∗
−i) does. This is because when we mix ai1 and ai2 with

strictly positive probabilities, we get a payoff that is a mixture between βi · Evi(ai1, σ∗−i)
and βi ·Evi(ai2, σ∗−i) (note it is not between Evi(ai1, σ∗−i) and βi ·Evi(ai2, σ∗−i)), since the
certainty of payoff vi(ai1, σ∗−i) disappears once ai2 is played with positive probability (due

to vi(ai2, a−ik) 6= constant, ∀ a−ik ∈ S−i). That is, we have

Vi(ai1, σ
∗
−i) = Evi(ai1, σ

∗
−i) > βi · Evi(σ∗i , σ∗−i) = Vi(σ

∗
i , σ
∗
−i)

which contradicts that (σ∗i , σ
∗
−i) is an MSNE. Therefore case (1) cannot really happen.

(2) vi(aij , a−ik) = constant, ∀ a−ik ∈ S−i, for both j = 1 and j = 2, or vi(aij , a−ik) 6=
constant , ∀ a−ik ∈ S−i, for both j = 1 and j = 2. In this case, (12) implies that

Evi(ai1, σ
∗
−i) > Evi(ai2, σ

∗
−i). (14)

(3) vi(ai2, a−ik) = constant, ∀ a−ik ∈ S−i; but vi(ai1, a−ik) 6= constant, ∀ a−ik ∈ S−i.
In this case, Vi(ai1, σ∗−i) = βi · Evi(ai1, σ∗−i), and Vi(ai2, σ∗−i) = Evi(ai2, σ

∗
−i). Therefore

(12) implies that

βi · Evi(ai1, σ∗−i) > Evi(ai2, σ
∗
−i)

which in turn implies (14) since βi ≤ 1.

In both cases (2) and (3), we have (14). Now we come back to look at σ∗ = ((pij)
ni
j=1, (p−ik)

n−i
k=1),

where pi1 > 0 and pi2 > 0. The lottery it induces for player i is L(σ∗) = (vi(aij , a−ik), pij ·
p−ik)j=1,...,n1;k=1,...,n2 . Therefore, we have

Vi(σ
∗
i , σ
∗
−i) =

{
Evi(σ

∗
i , σ
∗
−i) , if vi(aij , a−ik) = constant for all (aij , a−ik) ∈ Si × S−i;

βi · Evi(σ∗i , σ∗−i) , otherwise;

By (14) we know that it cannot be that vi(aij , a−ik) = constant for all (aij , a−ik) ∈
Si × S−i, therefore we have

Vi(σ
∗
i , σ
∗
−i) = βi · Evi(σ∗i , σ∗−i) = βi ·

∑
j,aij∈Si

[pij · Evi(aij , σ∗−i)] (15)

where pi1 > 0 and pi2 > 0.

Therefore by (14) and (15) we know that in both cases (2) and (3), player i can

strictly increase Vi(σ∗i , σ
∗
−i) by moving some probability from ai2 to ai1, without changing

any other probabilities in σ∗i .
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This again contradicts the fact that σ∗ is an MSNE of Γ. Therefore, given σ∗−i, every

player i ∈ N must be indifferent among all the pure strategies in the support of σ∗i .

Comment: Lemma 2 is due to the linearity of the (β, c) model in probabilities strictly

between 0 and 1. It confirms the same result for finite strategic games with standard EU-

mixed extensions.

The discontinuities of players’(β, c) representation at impossibility and certainty do

not affect indifference at the MSNE because of the MSNE requirement, which is actually

a "best response" requirement. If some player does play two or more actions with positive

probabilities at MSNE, it means that no single action alone can do better given the

opponent’s strategy, despite the "bias" she has towards single actions (that yield a constant

payoff).

On the other hand, the reverse of Lemma 2 does not necessarily hold, exactly due to

the discontinuities of players’(β, c) representation at impossibility and certainty. If given

the opponent’s strategy, a player is indifferent between two pure strategies which are both

best responses, mixing them up does not necessarily create another best response, since it

could be that one of the original pure strategies yields a constant payoff while the other

does not, in which case a mixed strategy between them will destroy the certainty of the

constant payoff and result in its underweighting, which in turn leads to a lower overall

payoff for the mixed strategy.

Lemma 2 allows us to use the standard "trick" to look for Nash equilibria in the

(β, c)-mixed extensions of two-player finite strategic games - identifying the indifference

condition of each player.

6.2 Example

Now we use Lemma 2 to find Nash equilibrium of Game A below, which is a two-player

game where each player has two actions - (row) player 1 has actions a11 and a12, and

(column) player 2 has actions a21 and a22.

Game A a21 a22

a11 5, 0 0, 4

a12 4, 4 4, 0

All the payoffs shown in the game matrix are the evaluation results for pure strategy

profiles, according to the preference representation of the relevant player. In particular,

the pair of payoffs in row j and column k is defined as (v1(a1j , a2k), v2(a1j , a2k)).

Notice that player 1 has an action a12 that gives her a constant payoff of 4, irrespective

of player 2’s strategy. Player 2 has no such action.

Game A has been constructed so that it has no PSNE (when both players have EU

preference). And by Lemma 1 we know no player’s (β, c) preference will change this. We
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study its MSNE in three cases, and show that in some cases Game A has no MSNE either.

6.2.1 EU Preference

First consider the case when both players are EUs. That is, Vi(σ) = Ev(σ) for all σ ∈
∆(A1)×∆(A2), i = 1, 2. In this case, the standard results for (EU) mixed strategy apply

and it is straightforward to see that Game A has one MSNE, σEU = ((12 ,
1
2), (45 ,

1
5)).

6.2.2 Player 1 with (β, c) Preference

Now suppose player 1 has (β, c) preference and layer 2 still has EU.

Claim 1 Game A has no MSNE when player 1 has (β, c) preference with β ≤ 0.8 and

c = 0, and player 2 has EU.

Proof. Suppose on the contrary that there exists an MSNE σ∗ = (σ∗1, σ
∗
2), where σ

∗
i =

(pi, 1− pi), pi ∈ [0, 1].

First observe that Game A has no PSNE.

Second observe that σ∗2 cannot be a pure strategy, otherwise player 1 would strict

prefer a11 (if σ∗2 = a21) or a12 (if σ∗2 = a22), and σ∗ would be a PSNE, which does not

exist.

Therefore σ∗2 must assign positive probabilities to both a21 and a22, i.e. p2 ∈ (0, 1).

By Lemma 2 we know σ∗1 = (p1, 1 − p1) must make player 2 (who is EU) indifferent
between actions a21 and a22, that is

V2(σ
∗
1, a21) = V2(σ

∗
1, a22)⇔

V2(0, p1; 4, (1− p1)) = V2(4, p1; 0, (1− p1))⇔

4(1− p1) = 4p1 ⇔

p1 =
1

2

Therefore σ∗1 = (12 ,
1
2), which means that σ∗1 is not a pure strategy either.

Therefore by Lemma 2 we know σ∗2 = (p2, 1− p2), p2 ∈ (0, 1) must make player 1 (who

has β = 0.8 and c = 0) indifferent between actions a11 and a12 (since both are assigned

positive probabilities in σ∗1). Notice that v1(a12, a21) = v1(a12, a22) = 4. Therefore

V1(a11, σ
∗
2) = V1(a12, σ

∗
2)⇔

V1(5, p2; 0, (1− p2)) = V1(4, p = 1)
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By Theorems 0 and 1 we have

β(5p2) = 4⇔

p2 =
4

5β
≥ 1 when β ≤ 0.8.

This contradicts that p2 ∈ (0, 1). Therefore there exists no mixed strategy of player

2 that makes player 1 indifferent between actions a11 and a12, and therefore Game A has

no MSNE.

This means that Game A has no Nash equilibrium in either pure or mixed strategy in

this case.

6.2.3 Both with (β, c) Preference

Our discussion of the previous case also applies when both players have (β, c) preference.

Claim 2 Game A has no MSNE when player 1 has (β1, c1) preference with β1 ≤ 0.8 and

c1 = 0, and player 2 has any (β2, c2) preference with c2 = 0.

The reason for this result is that, unlike player 1, player 2 has no action that gives her

a certain payoff level. Therefore, whenever player 1 plays a completely mixed strategy,

the strategy profile will induce a non-degenerate lottery for player 2, no matter which

action player 2 chooses. Since the MSNE condition of player 2 is an indifference equation

between her two actions (each combined with player 1’s mixed strategy), player 2 is always

comparing two non-degenerate lotteries, whose evaluation will both be affected by the

certainty effect implied by the (β2, c2) preference, that is, both will be "discounted" by

multiplier β2 (when c2 = 0). But multiplying any β2 > 0 on both sides does not change

the condition at all. Therefore the MSNE condition for player 2 remains the same whether

she has EU or (β, c) preference.

Proof. Compared to the proof of the previous Claim, the fact that player 2 has (β2, c2)

preference with c2 = 0 instead of EU only changes her indifference condition from 4(1 −
p1) = 4p1 to an equivalent condition 4β2(1 − p1) = 4β2p1. And all the rest of the proof

remains the same.

6.3 Existence of Mixed Strategy Nash Equilibrium (MSNE)

We provide more general results in this section.

Consider the two-player finite game Γ = 〈{1, 2}, (Ai), (vi)〉.
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For i ∈ {1, 2}, ai ∈ Ai, define

v̄i(ai) ≡ max
a−i∈A−i

(vi(ai, a−i))

vi(ai) ≡ min
a−i∈A−i

(vi(ai, a−i))

∆vi(ai) ≡ v̄i(ai)− vi(ai)

When∆vi(ai) = 0, we denote vi(ai) ≡ vi(ai, a−i) (which by definition remains constant
for any a−i ∈ A−i).

Proposition 1 In game Γ = 〈{1, 2}, (Ai), (vi)〉, suppose
(i) every player i ∈ N has (βi, ci = 0) preference and 0 is the reference point;

(ii) A2 = {a21, a22};
(iii) vi(ai, a−i) ≥ 0, for any i ∈ {1, 2}, any ai ∈ Ai, and any a−i ∈ A−i;
(iv) vi(ai, a−i) 6= vi(ai, a

′
−i) for any a

′
−i 6= a−i except for i = 1 and ai = a11;

(v) v1(a11, a21) = v1(a11, a22) = v1(a11) < max
a1∈A1

(v̄1(a1)), and v2(a11, a21) 6= v2(a11, a22);

(vi) game Γ has no PSNE.

Then Γ’s (β, c)-mixed extension 〈{1, 2}, (∆(Ai)), (Vi)〉 has no Nash equilibrium (or Γ

has no MSNE) if

β1 ≤
v1(a11)

max
a1∈A1

(v̄1(a1))
.

Proof. Suppose on the contrary that game Γ has an MSNE σ∗ = (σ∗1, σ
∗
2), where σ

∗
i ∈

∆(Ai). We consider three cases.

(1) Suppose for each player i ∈ {1, 2}, the support of σ∗i , Si, has at least two actions.
Denote σ∗i = (pij)

ni
j=1 where pij > 0, for i ∈ {1, 2} and j = 1, ..., ni. Then ni ≥ 2, for

i ∈ {1, 2}.
Assumption (iv) and (v) implies that player 1 has only one action, a11, that yields

her a constant payoff, v1(a11), irrespective of the opponent’s action; and player 2 has no

action that yields her a constant payoff. Therefore by Definition 3, (a11, σ
∗
2) induces a

degenerate lottery L(a11, σ
∗
2) = (v1(a11), p = 1) for player 1. By Theorem 0 we know

player 1 evaluates L(a11, σ
∗
2) with V1(a11, σ

∗
2) = v1(a11).

Since S1 has at least two actions, suppose without loss of generality that a1j ∈ S1, for
some j 6= 1. By Definition 3, (a1j , σ

∗
2) induces the following lottery for player 1:

L(a1j , σ
∗
2) = (vi(a1j , a2k), p2k > 0)a2k∈S2

By assumption (iv), a1j does not yield player 1 a constant payoff. Since player 1 has
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(β1, 0) preference, by Theorem 1 we know player 1 evaluates L(a1j , σ
∗
2) with

V1(a1j , σ
∗
2) = β1 · Ev1(a1j , σ∗2) = β1 ·

∑
k,a2k∈S2

v1(a1j , a2k) · p2k (16)

< β1 · v̄1(a1j)

≤ β1 · max
a1∈A1

(v̄1(a1))

≤ v1(a11)

max
a1∈A1

(v̄1(a1))
· max
a1∈A1

(v̄1(a1))

= v1(a11) = V1(a11, σ
∗
2)

Notice that a1j can be any action in S1 as long as a1j 6= a11. By Lemma 2, we know

V1(a1j , σ
∗
2) = V1(a1h, σ

∗
2), ∀a1h ∈ S1. Therefore we have

V1(a11, σ
∗
2) > V1(a1h, σ

∗
2), ∀a1h ∈ S1

Lastly, since (σ∗1, σ
∗
2) induces a lottery over all V1(a1h, σ

∗
2) for a1h ∈ S1, and all

V1(a1h, σ
∗
2) are equal for a1h ∈ S1, by Theorem 0 we have

V1(σ
∗
1, σ
∗
2) = V1(a1h, σ

∗
2), ∀a1h ∈ S1

which implies that

V1(a11, σ
∗
2) > V1(σ

∗
i , σ
∗
2).

which contradicts the fact that (σ∗1, σ
∗
2) is an MSNE of Γ.

(2) Suppose S1 = {a1j} ⊂ A1, and S2 = A2 = {a21, a22}.
In this case, by the same comparison as in (16), we have S1 = {a11}. By Lemma

2, we know a11 makes player 2 indifferent among all actions in S2, but this contradicts

assumption (v), v2(a11, a21) 6= v2(a11, a22).

(3) Suppose S1 has at least two actions, and S2 = {a2k} ⊂ A2. By Lemma 2, we know
a2k makes player 1 indifferent among all actions in S1, which implies that v1(a1j , a2k) ≡ v̄,
for all a1j ∈ S1. Therefore (σ∗1, a2k) induces a degenerate lottery (v̄, p = 1) for player 1,

and we have V1(σ∗1, a2k) = v̄.

Since (σ∗1, a2k) is an MSNE, we have

V1(σ
∗
1, a2k) ≥ V1(σ1, a2k), ∀σ1 ∈ ∆(A1)⇒

v1(a1j , a2k) ≥ V1(σ1, a2k),∀a1j ∈ S1, ∀σ1 ∈ ∆(A1) (17)

By (17), we know any a1j ∈ S1 is player 1’s best response to a2k. Since game Γ has

no PSNE (assumption (vi)), a2k cannot be player 2’s best response to any a1j ∈ S1. Since
A2 has only two actions, then the other action in A2, a2l must be player 2’s best response
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to all a1j ∈ S1. That is,

v2(a1j , a2l) > v2(a1j , a2k), a2l 6= a2k,∀a1j ∈ S1 (18)

By Definition 3, (σ∗1, a2k) induces the following lottery for player 2:

L(σ∗1, a2k) = (v2(a1j , a2k), p1j > 0)a1j∈S1

and (σ∗1, a2l) induces the following lottery for player 2:

L(σ∗1, a2l) = (v2(a1j , a2l), p1j > 0)a1j∈S1

By assumption (iv), neither L(σ∗1, a2k) nor L(σ∗1, a2l) is a degenerate lottery. Therefore

by (18) we have

Ev2(σ
∗
1, a2l) > Ev2(σ

∗
1, a2k)⇒

V2(σ
∗
1, a2l) > V2(σ

∗
1, a2k)

which contradicts that (σ∗1, a2k) is an MSNE.

We have shown that in any of the three possible cases, there is a contradiction. There-

fore Γ has no MSNE.

Recall that Game A satisfies all assumptions (i) through (vi), and we have shown that

it has an MSNE when both players are EUs, but not when player 1 has (β, c) preference

with β ≤ 0.8 and c = 0.

6.4 Summary

In finite two-player strategic games, we have the following general results about the impact

of certainty effect (CE, represented by the (β, c = 0) preference) on equilibrium:

i) CE does not affect the existence of pure strategy Nash equilibrium (PSNE);

ii) CE does not affect the existence of mixed strategy Nash equilibrium (MSNE), if no

(β, c)-player has a strategy that yields her a constant payoff, irrespective of the opponent’s

strategies;

iii) CE may affect the existence of MSNE if some (β, c)-player has a strategy that

yields her a constant payoff. If this is the case, then for β small enough, there exists no

MSNE.

A crucial reason for result iii) is that the payoff functional V of a (β, c) player (β < 1)

is not continuous in mixed strategies, due to discontinuity of the (β, c) model at certainty.

The general existence of MSNE in finite strategic games is a very strong result in

standard game theory. We have shown that, with strong CE (represented by small β),

this result can be weakened in two-player finite games. We have shown an example, Game
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A, which has no Nash equilibrium in either pure or mixed strategy when player 1 has

(β, c) preference with β ≤ 0.8 and c = 0. Proposition 1 provides a more general result on

non-existence of MSNE.

7 Application III - Trembling-Hand Perfection in Finite

Strategic Games

Another part of game theory where mixed strategies are most useful is trembling-hand

perfection, which is motivated as a refinement of Nash equilibrium where players’ratio-

nality with respect to out-of-equilibrium events are treated as "the result of each player’s

taking into account that the other players could make uncorrelated mistakes (their hands

may tremble) that lead to these unexpected events. The basic idea is that each player’s

actions be optimal not only given his equilibrium beliefs but also given a perturbed belief

that allows for the possibility of slight mistakes. These mistakes are not modeled as part of

the description of the game. Rather, a strategy profile is defined to be stable if it satisfies

sequential rationality given some beliefs that are generated by a strategy profile that is

a perturbation of the equilibrium strategy profile, embodying ’small’mistakes (Osborne

and Rubinstein, 1994)."

In a finite strategic game, a trembling hand perfect equilibrium (THPE) is defined

as a mixed strategy profile σ with the property that there exists a sequence of completely

mixed strategy profiles (σk)∞k=0 that converges to σ such that for each player i the strategy

σi is a best response to σk−i for all values of k.

Since we have discussed the existence of MSNE previously, in this section we focus

our attention on trembling-hand perfection of PSNE only, which will allow us to keep a

"cleaner" example which suffi ces to show the point.

7.1 Example

Trembling-hand perfection eliminates Nash equilibria with weakly dominated strategies.

This can be illustrated by the following Game B of two-players.

Game B L R

U 5, 2 1, 0

D 5, 0 4, 2

7.1.1 EU Preference

When both players have EU preference, Game B has two PSNE (U,L), (D,R), and only

(D,R) is trembling-hand perfect. The reason is that action U of player 1 is weakly

dominated by action D, and therefore U cannot be the best response to any completely

mixed strategy of player 2.
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Now we look at the following Game C, which only reduces player 1’s payoff of (D,L)

from 5 in Game B to 4 here.

Game C L R

U 5, 2 1, 0

D 4, 0 4, 2

When both players have EU preference, Game C also has two PSNE (U,L), (D,R).

Is either of them trembling-hand perfect? Yes, both are!

As action D no longer dominates U in Game C (nor vice versa), both PSNE are

trembling-hand perfect.

However, if we interpret all the payoffs in this game as the players’evaluation results

of deterministic money amounts in terms of millions of dollars (e.g. take v(x) = x as the

value function in money and let the numbers in the game matrix represent millions of

dollars), self inspection as well as a potential analogy to the Allais Paradox both suggest

that, strategy D can be more appealing to player 1 than strategy U and therefore the

equilibrium (D,R) may be more likely to happen than (U,L).

One plausible argument of reasoning by player 1 is: D is a "safe strategy" as it gives a

high payoff of 4 for sure, no matter what player 2 plays, whereas although U may possibly

give a higher payoff if player 2 plays L, there is always risk that player 2 may play R

instead, at least by mistake, which leads to a payoff too low for player 1.

We may hope that trembling-hand perfection, as a refinement of Nash equilibrium that

is designed to incorporate players’concerns of "mistakes" into equilibrium, can eliminate

the "unfavorable" equilibrium (U,L). However, because neither action of either player

dominates the other, the concept of trembling-hand perfection alone cannot achieve this

goal.

Now we show that by adding into the model another crucial factor from the argument

of player 1 mentioned above - the bias towards certainty - trembling-hand perfection can

indeed eliminate the unfavorable equilibrium (U,L).

7.1.2 Player 1 with (β, c) Preference

Now suppose player 1 has (β, c) preference with β = 0.8 and c = 0. Player 2 still has EU.

In order to show (U,L) is no longer trembling-hand perfect, we consider any completely

mixed strategy of player 2, σp2 = (L, p;R, 1− p), p ∈ (0, 1). Now we need to show that U

is never a best response to any sequence of σp2 that converges to L.

When player 1 plays U , the strategy profile is (U, σp2), by Definition 3 in the previous
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section we know her payoff is

V1((U, σ
p
2)) = β × (v1(U,L)× p+ v1(U,R)× (1− p))

= β × (5p+ 1− p) = β × (4p+ 1)

When player 1 plays D, the strategy profile is (D,σp2), and her payoff is

V1((D,σ
p
2)) = 4

as v1(D,L) = v1(D,R) = 4.

Since β = 0.8, we know that for all p < 1

V1((U, σ
p
2)) < V1((D,σ

p
2))

That is, U is never a best response to any completely mixed strategy σp2, and hence it

is never a best response to any sequence of σp2 that converges to L, either. Therefore we

have the following result.

Claim 3 In Game C, (U,L) is not trembling-hand perfect when player 1 has (β, c) pref-

erence with β = 0.8 and c = 0, and player 2 has EU.

Now we check whether (D,R) is still trembling-hand perfect. The argument above

already shows that D is always a best response of player 1 to any completely mixed

strategy of player 2. It remains to be shown that R is a best response of player 2 to some

sequence of completely mixed strategy of player 1, σq1 = (U, q;D, 1 − q), q ∈ (0, 1) that

converges to U . To see this, we have

V2((σ
q
1, R)) = Ev2((σ

q
1, R))

= v2(U,R)× q + v2(D,R)× (1− q)

= 2(1− q)

and

V2((σ
q
1, L)) = Ev2((σ

q
1, L))

= v2(U,L)× q + v2(D,L)× (1− q)

= 2q

Therefore for all q > 1
2

V2((σ
q
1, R)) > V2((σ

q
1, L))

which means that R is a best response to the sequence of completely mixed strategies

(σq1)q for all q >
1
2 , which converges to U as q → 1.
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Therefore (D,R) is still trembling-hand perfect.

Trembling-hand perfection has successfully eliminated only the unfavorable equilibrium

(U,L) when we allow player 1 to have (β, c) preference with β = 0.8 and c = 0.

7.1.3 Both with (β, c) Preference

It is easy to see that our discussion of the previous case also applies here and therefore

the result is the same as before.

The reason for this result is again that only player 1 has an action (D) that gives

her a constant payoff level, irrespective of the opponent’s action. Player 2 always faces

risky payoffs whenever player 1 plays a completely mixed strategy, and therefore player 2’s

evaluation of the payoff from playing either of her actions will be affected by the certainty

effect implied by (β, c) preference, that is, "discounted" by multiplier β. Since multiplying

β = 0.8 on the payoffs from both player 2’s actions does not change their comparison,

player 2’s best response remains the same whether she has EU or (β, c) preference.

7.2 Generalization

In finite two-player strategic games, we have the following general results about the impact

of certainty effect (CE) on trembling-hand perfect equilibrium (THPE):

i) CE does not affect THPE if no (β, c)-player has a strategy that gives her a constant

payoff, irrespective of the opponent’s strategies;

ii) CE may affect THPE if some (β, c)-player has a strategy that gives her a constant

payoff. If this is the case, the set of pure strategy THPE (PS-THPE) under CE is a subset

of the original set of PS-THPE; in particular, if c = 0, then for β small enough, the set of

PS-THPE under CE is a strict subset of the original set of PS-THPE.

Our analysis of Game C when player 1 has (β, c) preference serves as a "proof" of point

ii) above. The intuition of this result is: As we only consider PSNE, and we know that

(β, c) preference does not affect PSNE at all, trembling-hand perfection can not expand

the set of qualifying PSNE. When player 2 plays a completely mixed strategy, it favors

the "safe strategy" of player 1 (i.e. the strategy that gives her a constant payoff) as player

1 discounts any uncertain payoffs with β. For β small enough, such "discounting" is so

severe that in the limit of player 2’s sequence of completely mixed strategies, player 1’s

payoff from the "risky strategy" is strictly lower than that of the safe strategy.

7.3 Discussion

In the result we have shown in this section, the discontinuity of the (β, c) weighting function

at p = 1 has played a crucial role.

As Theorems 0 and 1 show, when c = 0 and β < 1, the discontinuous weighting

function results in a discontinuity in preference representation - any non-degenerate lottery
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f’s evaluation V (f) is equal to its expected value Ev(f) "discounted" by β, which makes

V (f) strictly smaller than Ev(f) (at least in absolute value).

When a player (e.g. player 1 in Game C) has this kind of (β, c) preference, as well as an

action (e.g. D) that yields a certain payoff, her evaluation of strategy profiles consisting

of an own action that does not yield a certain payoff (e.g. U), along with the opponent’s

any completely mixed strategy (e.g. σp2), will always be the "discounted" expected value.

Even though the opponent’s sequence of completely mixed strategies converges to a pure

strategy (i.e. an action, e.g. L), and hence the sequence of strategy profiles converges to

a deterministic action profile (e.g. (U,L)), the (β, c) player’s evaluation of the sequence

of strategy profiles still does not converge to the expected value of the limiting action
profile (e.g. v1(U,L)). Rather, it converges to its expected value discounted by β, which

is strictly lower in absolute value. Therefore, although the limiting action profile itself

(e.g. (U,L)) may have a higher evaluation than the profile consisting of the own action

yielding the certain payoff and the same action of the opponent (e.g. (D,L)), the sequence

of strategy profiles (e.g. (U, σp2)) can still all have lower evaluations than the latter. If this

is the case for all completely mixed strategies by the opponent, the limiting action profile

(e.g. (U,L)) will not be the best response to any sequence of completely mixed strategies

by the opponent, and therefore will not be trembling-hand perfect.

The key intuition of the argument above is that, given even the slightest chance that

the opponent may make a mistake, a (β, c) player will strictly prefer the action that leads

to a certain payoff to an alternative action that results in a lower evaluation compared

to the certain payoff, even if the alternative action has a strictly higher expected value.

This exactly reflects the distortion in evaluation due to the certainty effect of the (β, c)

preference.

8 Conclusion

There have been so many "anomalous" empirical findings of people’s risky choice behavior

that violate the expected utility theory as a normative rule. Prospect theory and cu-

mulative prospect theory are among the best behavioral economic theories that attempt

to provide a unified way to understand and explain such findings. With complexity in

the functional forms of weighting functions, CPT gains descriptive power and accuracy

in approximating empirical evidence. However, what is lost is tractability in its utility

representation, which hinders its application to wider risky choice situations.

The (β, c) model we propose achieves highly tractable utility representation of CPT

by simplifying weighting functions whilst preserving the basic tenets of CPT. We hope

it would become an easier work horse for behavioral economists to study risky choice

behaviors, and help expand the scope of applications of CPT. The applications we have

discussed illustrate its useful role in what we think are the most natural situations where
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stand models can be improved. There are potentially many other interesting topics where

the (β, c) model can be most helpful, including risky choice situations with both dynamics

and strategic interaction, such as in extensive-form games.
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9 Appendix - Application IV - Static Investment Decision

In this section we use simple binary lotteries to illustrate the implications of certainty

effect as represented by the (β, c) model in simple static investment choices.

As a first step, consider an investor with preference represented by the (β, c) model

where c = 0 and β = 0.9 (whom we call the (β, c)-investor). That is, her weighting

function underweights the probabilities of all uncertain outcomes by a factor 0.9, and

only the certain outcome gets a full weight 1. Her preference is therefore biased towards

certainty.

9.1 Under-Investment with Certain Cost and Uncertain Return

Suppose this investor needs to choose one between two investment projects, A and B.

Project A requires an initial investment (i.e. cost) of −CA = −10 and yields in the next

period a return of either 0 with probability 1
2 or RA = 20 with probability 1

2 . Project B

requires an initial cost of −CB = −5 and yields in the next period a return of either 0

with probability 1
2 or RB = 10 with probability 1

2 .

We assume the investor evaluates different periods separately, but there is no time

discounting. That is, whilst evaluating a project, she does not subtract relevant costs

from returns across periods for each "state of the world" to get the "net payoff" in that

state. Rather, she evaluates the value of the project in each period, and then sum up

all periods. This assumption is consistent with the "mental accounting" type of behavior

found in experiments. A "period" simply serves as a reference of "accounting" in project

evaluation.

We further suppose the underlying utility function is v(x) = x, which implies that an

EU-investor with this utility function is risk neutral; and we set the reference point at

x0 = 0.

We have constructed this example so that an EU-investor would be indifferent between

projects A and B, since

Ev(A) = Ev(B) = 0

Which project would the (β, c)-investor choose?

Since both projects are binary lotteries, we can evaluate them under the (β, c) model

by (8) in Corollary 4, and we have

V (A) =
1

2
βRA − CA = −1

V (B) =
1

2
βRB − CB = −0.5

Therefore the (β, c)-investor strictly prefers project B, the one with lower cost (in ab-

solute value) and lower expected return, although both projects provide the same expected
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utility.

Why is this the case? The reason is exactly the certainty bias in the (β, c)-investor’s

preference, which says that she overweights certain outcomes relative to uncertain ones.

When the cost of a project is certain but the return is random, the same cost "hurts"

a (β, c)-investor more than an EU-investor (due to overweighting). Thus, given the same

choice, a (β, c)-investor would try "harder" to avoid the certain cost - she achieves this by

choosing the lower-cost project when an EU-investor feels indifferent between the two.

We can summarize this point as: Certainty effect implies under-investment in
projects with certain cost and uncertain return. And we can actually prove this
for quite general cases.

Proposition 2 (Under-Investment with Certain Cost and Uncertain Return) In
investment choice with certain cost and uncertain (discrete or continuous) pure-gain re-

turn, when c = 0 and β < 1, a (β, c)-investor will strictly prefer the project with the lower
cost (in absolute value) between two projects with the same expected utility.

Proof. Step 1: Discrete pure-gain return
Suppose each project i ∈ {A,B} requires a certain (occurring with probability 1) cost

in the first period and yields a random return in the second period. Since we only consider

"pure-gain" return, we suppose the lowest possible returns that both these projects yield

in the second period are the same, which we take as the reference point x0 and normalize

to x0 = 0.

We denote by Ri the "return lottery" of project i (note here Ri is not an outcome

but a random variable), whose outcomes are ri0(= 0) < ri1 < ... < rini , with respective

probabilities pij ∈ (0, 1), j ∈ {0, 1, 2, ..., ni}, and
∑ni

j=0
pij = 1.

Denote Ci the (absolute value of) cost of project i and assume without loss of generality

CA > CB > 0.

Suppose v(x) = x (risk neutrality), which is consistent with our general assumption

v(x0) = 0.

We want to show that when c = 0 and β < 1, a (β, c)-investor will always strictly

prefer project B (the one with the lower certain cost) when A and B provide the same

expected utility.

The EU of lottery Ri is

Ev(Ri) =
∑ni

j=0
pijrij

The EU of project i is

Ev(i) = Ev(Ri)− Ci

Suppose an EU-investor is indifferent between A and B:

Ev(A) = Ev(B)
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which implies

CA − CB = Ev(RA)− Ev(RB) > 0

Now we study the choice of a (β, c)-investor with c = 0 and β < 1.

Since the returns are pure-gain lotteries, from (7), we have

V (i) = βEv(Ri)− Ci (19)

Therefore

V (A)− V (B)

= (βEv(RA)− CA)− (βEv(RB)− CB)

= β(Ev(RA)− Ev(RB))− (CA − CB)

= (CA − CB)(β − 1)

Since CA > CB we have V (A) < V (B) if and only if β < 1. Therefore the (β, c)-investor

will always strictly prefer the project with the lower cost.

Step 2: Continuous pure-gain return
Suppose the returns of both projects are continuous lotteries satisfying Definition 2.

Then by Theorem 2 we know (19) still holds. Therefore the proof above follows through.

We are done.

Notice this result and the next one are not driven by the risk-averse or risk-seeking

attitudes in the EU theory, as we have used a risk neutral utility function v(x) = x. These

results are simply due to the certainty effect imbedded in the (β, c) model.

9.2 Over-Investment with Uncertain Cost and Certain Return

When we swap the roles of costs and returns in the previous example, we will find that

certainty effect also implies over-investment in projects with certain return
and uncertain cost.

To see this, suppose A now provides a sure return of RA = 10 in the second period, but

its cost in the first period may be either 0 or −CA = −20 with equal probability. Project

B provides a sure return of RB = 5 in the second period and costs either 0 or −CB = −10

with equal probability in the first period.

Buying a house on floating-rate mortgage might be a good real-life example of such

investments if we consider the "return" as the benefit of living in the house (which is thus

certain) while the cost is the monthly mortgage payment (which is uncertain due to the

floating rate). Other similar choice situations include a foreigner planning a trip to see

the London 2012 Olympic Games, where he is quite certain about the reward from this

trip (i.e. seeing the Games) but the cost (e.g. flight price) may well be subject to changes
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until he makes up his mind (e.g. deciding to go and booking the flights).

Faced with this choice, an EU-investor still feels indifferent as Ev(A) = Ev(B) = 0.

How would the (β, c)-investor choose?

Again by Corollary 4, we have

V (A) = RA −
1

2
βCA = 1

V (B) = RB −
1

2
βCB = 0.5

Therefore the (β, c)-investor strictly prefers project A, the one with higher expect cost

(in absolute value) and higher return, although both projects provide the same expected

utility.

When the return of a project is certain but the cost is random, the certainty effect

implies that a (β, c)-investor would overweight the return relative to the cost, and therefore

would try "harder" to get a high return than suggested by EU theory. In other words,

due to underweighting of the uncertain costs, a (β, c)-investor can "bear" higher cost than

an EU-investor. Therefore she chooses the higher-cost and higher-return project when an

EU-investor feels indifferent between two projects.

We can also prove this point for general cases.

Proposition 3 (Over-Investment with Uncertain Cost and Certain Return) In
investment choice with uncertain (discrete or continuous) pure-loss cost and certain re-

turn, when c = 0 and β < 1, a (β, c)-investor will strictly prefer the project with the higher
expected cost (in absolute value) between two projects with the same expected utility.

Proof. Step 1: Discrete pure-loss cost
Suppose each project i ∈ {A,B} requires a random cost in the first period which

is a pure-loss lottery and yields a certain return in the second period. We suppose the

lowest possible absolute value of costs in both projects are the same, which we take as the

reference point x0 and normalize to x0 = 0.

Since we use v(x) = x, there is no asymmetry between gains and losses. Therefore

we can treat the absolute values of costs as pure-gain lotteries to lighten notation in the

following proof. In particular, we denote the "cost lottery" of project i as Ci, whose

outcomes are ci0(= 0) < ci1 < ... < cini , with respective probabilities pij ∈ (0, 1), j ∈
{0, 1, 2, ..., ni}, and

∑ni

j=0
pij = 1.

Denote Ri the return of project i and assume RA > RB > 0.

Suppose v(x) = x (risk neutrality), which is consistent with our general assumption

v(x0) = 0.

We want to show that when c = 0 and β < 1, a (β, c)-investor will always strictly

prefer project A (with the higher return and expected cost) when A and B provide the

same expected utility.
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The EU of lottery Ci is

Ev(Ci) =
∑ni

j=0
pijcij

The EU of project i is

Ev(i) = Ri − Ev(Ci)

Suppose an EU-investor is indifferent between A and B:

Ev(A) = Ev(B)

which implies

Ev(CA)− Ev(CB) = RA −RB (20)

Now we study the choice of a (β, c)-investor with c = 0 and β < 1.

Since the (absolute values of) costs are pure-gain lotteries, from (7) in Corollary 2 we

have

V (i) = Ri − βEv(Ci)

Therefore

V (A)− V (B)

= (RA − βEv(CA))− (RB − βEv(CB))

= (RA −RB)− β(Ev(CA)− Ev(CB))

= (RA −RB)(1− β)

Since RA > RB we have V (A) > V (B) if and only if β < 1. Notice when A and B

provide the same expected utility, by (20) we know RA > RB is equivalent to Ev(CA) >

Ev(CB). Therefore the (β, c)-investor will always strictly prefer the project with the higher

expected cost.

Step 2: Continuous pure-loss cost
Suppose the costs of both projects are continuous lotteries satisfying Definition 2. Then

by Theorem 2 we know the proof still follows through. We are done.

In the next section we discuss investment choice with more general values of β and c.

9.3 Investment Choice with General (β, c) Values

In Propositions 2 and 3, we have kept c = 0 for simplicity. When c > 0, from Theorem 1 we

know the extreme outcomes of the return lottery or the cost lottery will get overweighted

relative to the other outcomes by factor c. This means the comparison between two

investment projects would depend not only on their expected return or expected cost, but

also on the distribution of their outcomes. Therefore the range of cases in which we can

draw comparison conclusions as general as Propositions 2 and 3 are limited. While we can
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still show the conditions required for such conclusions given specific distributions, in this

part we illustrate the intuition only using the special case of binary lotteries. We continue

to use the risk-neutral utility function v(x) = x, and set reference point at x0 = 0.

Certain cost and uncertain return Consider two investment projects A and B, where

project i ∈ {A,B} requires a certain cost −Ci in the first period and yields a random pure-
gain return (0, 1 − p;Ri, p) in the second period, Ri > 0, p ∈ (0, 1). Then we have the

following conclusion:

Proposition 4 In the investment choice with certain cost and uncertain return described
in this section, a (β, c)-investor strictly prefers the project with the lower cost (in absolute
value) between two projects with the same expected utility if and only if β < 1− c

p .

Proof. First note that p is the probability of the higher outcome in the return lottery,
and p ∈ (0, 1).

Without loss of generality, suppose CA > CB.

Since Ev(A) = Ev(B) and Ev(i) = pRi − Ci, we have

CA − CB = p(RA −RB) > 0

Now we find the condition for a (β, c)-investor to choose project B (the one with lower

cost) instead of A, that is

V (B) > V (A)

Since the returns are pure-gain lotteries, i.e. 0 = x0 < Ri, i ∈ {A,B}, from Corollary

2 we have

V (i) = (pβ + c)Ri − Ci

Therefore

V (B) > V (A)

⇔ (pβ + c)RB − CB > (pβ + c)RA − CA
⇔ CA − CB > (pβ + c)(RA −RB)

⇔ p(RA −RB) > (pβ + c)(RA −RB)

⇔ p > pβ + c

⇔ β < 1− c

p

For instance, suppose p = 0.5. Then the parameter values (β = 0.7, c = 0.1) would

guarantee that a (β, c)-investor chooses B.
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Corollary 6 In the investment choice situation with certain cost and uncertain return
described in this section, a (β, c)-investor strictly prefers the project with the lower cost
(in absolute value) between two projects with the same expected utility if and only if the
weighting function w satisfies w(p) < p, where p ∈ (0, 1) is the probability of the higher

outcome in the return lottery.

Proof. In the last step of the proof of Proposition 4, we have found a suffi cient and
necessary condition

p > pβ + c

But since p ∈ (0, 1), by (3) we know w(p) = pβ + c. Therefore w(p) < p is also a

suffi cient and necessary condition.

Intuition: The intuition here is still under-investment with certain cost due to cer-
tainty effect. Notice the condition w(p) < p in Corollary 6 is consistent with the empirical

evidence in CPT.

Uncertain cost and certain return Now we reverse the roles of cost and returns.

Consider two investment projects A and B, where project i ∈ {A,B} requires a random
cost in the first period which is a pure-loss lottery (0, 1 − p;−Ci, p), with p ∈ (0, 1), and

yields a certain return Ri in the second period. Then we have the following conclusion:

Proposition 5 In the investment choice with uncertain cost and certain return described
in this section, a (β, c)-investor strictly prefers the project with the higher expected cost
(in absolute value) between two projects with the same expected utility if and only if
β < 1− c

p .

Proof. Without loss of generality, suppose CA > CB.

Since Ev(A) = Ev(B) and Ev(i) = Ri − pCi, we have

RA −RB = p(CA − CB) > 0

Now we find the condition for a (β, c)-investor to choose project A (the one with higher

expected cost) instead of B, that is

V (A) > V (B)

Since the costs are pure-loss lotteries, i.e. 0 = x0 > −Ci, i ∈ {A,B}, from Corollary 3

we have

V (i) = Ri − (pβ + c)Ci
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Therefore

V (A) > V (B)

⇔ RA − (pβ + c)CA > RB − (pβ + c)CB

⇔ RA −RB > (pβ + c)(CA − CB)

⇔ p(CA − CB) > (pβ + c)(CA − CB)

⇔ p > pβ + c

⇔ β < 1− c

p

Again, if p = 0.5, the parameter values (β = 0.7, c = 0.1) would guarantee that a

(β, c)-investor chooses A.

Corollary 7 In the investment choice with uncertain cost and certain return described in
this section, a (β, c)-investor strictly prefers the project with the higher expected cost
(in absolute value) between two projects with the same expected utility if and only if the
weighting function w satisfies w(p) < p, where p ∈ (0, 1) is the probability of the higher

outcome in the return lottery.

Proof. The same as the proof of Corollary 6.

145



Conclusion of Thesis

The theories we have presented in this thesis are relevant and applicable in many

real-life situations.

On the industry level, the theory of mixed two-sided markets models one of the fastest

growing and most promising industries - the "platform" industry. The past two decades

have seen the emergence and dominance of gigantic platforms including Windows, Google

and Facebook. Other less obvious platforms include a wide range of telecommunication

networks and financial intermediaries. Understanding the two defining characteristics of

such markets, the two-sidedness and the mixedness, is key to understanding their present

and future development.

On the firm level, pricing strategies are of ultimate importance to platforms, as well

as to other "ordinary" businesses in general, such as fitness clubs and shopping malls.

The theory of multiproduct pricing with two-part tariffs is therefore useful in a wider

context. The two-part-tariff effect we have found in the first two parts of the thesis

helps us understand the prevalence of two-part tariffs in real life. The simplicity and

implementability of two-part tariffs make them very practical ways to increase profit over

conventional separate pricing.

On the individual level, decision making of risky choice occurs on a daily basis. From

static investment decisions to dynamic purchasing decisions, and from individual decision

problems to strategic interaction between decision makers, our simplified model of deci-

sion weighting provides a transparent way of understanding a wide range of "anomalous"

phenomena that violate standard utility models.

Given the relevance and range of applications, we hope the theories presented in this

thesis prove a useful addition to the microeconomic literature as well as an adequate

foundation for future research.
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