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Timely After-Sales Service and Technology Adoption:
Evidence from the Off-Grid Solar Market in Uganda
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McDonough School of Business, Georgetown University, Washington DC 20057, USA, ak1924@georgetown.edu

Kamalini Ramdas
London Business School, Regent’s Park, London NW1 4SA, UK, kramdas@london.edu

Problem definition: Adoption and continued use of novel technologies has the potential to significantly

accelerate social and economic development in emerging markets. In this paper, we examine to what extent

timely after-sales service – i.e., faster resolution of repair tasks – impacts technology adoption. In particular,

we empirically assess the impact of service wait times on the adoption of solar home systems by first-time

users (i.e., adopters of the technology) in off-grid Uganda. Academic / Practical Relevance: Our study

sheds light on a previously understudied driver of technology adoption – customers’ post-purchase experience

related to after-sales service. We also provide evidence on how negative word-of-mouth stemming from long

service wait times hampers customer acquisition. Methodology: We address our research question using

detailed customer-level sales and service data from a leading assembler and distributor of solar home systems

in Uganda. We develop a fixed effects base specification and two instrumental variables specifications that

leverage different sources of exogenous geo-spatial variation – in service task locations, weather and road

quality. Results: We find that timely after-sales service experienced by existing customers is a strong driver

of adoption by first-time users. A one week increase in average wait time for service decreases adoption by up

to 32.4%. The relationship between wait times and adoptions is heterogeneous and depends on the types of

pending service cases. We also find that the number of customers acquired through referrals from an existing

customer depends on the referring customer’s service wait time. This provides evidence of a strong word-of-

mouth channel of information sharing. Managerial Implications: Our findings have direct implications

for the customer acquisition strategies of technology firms and for technology investors in emerging markets.

Our results are also relevant for policy makers who aim to harness technology to improve the socio-economic

lives of people living in these regions. Importantly, we provide empirical evidence of a direct link between

after-sales service and technology adoption, which is of relevance to managers outside of emerging markets

as well.
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1. Introduction

Adoption and continued use of novel life-changing technologies across sectors including energy,

healthcare, education and telecommunication has the potential to significantly accelerate social
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and economic development in emerging markets (Akcigit 2017). Examples include mobile payment

systems that have brought millions of unbanked individuals into the financial system (Acimovic

et al. 2019), pay-as-you-go distributed solar technology that provides electricity to off-grid

communities (Guajardo 2019) and drones that supply medicine to remote communities or food

to refugees (The Economist 2015). Technological innovation is only part of the solution to

tackling challenges to development. Rapid adoption of new technologies and their continued use

by consumers is equally important (Hanna et al. 2016). Unfortunately, adoption of technology

in emerging markets is slow, even when the benefits of using technology products are apparent

(Uppari et al. 2018, Cohen et al. 2010). Unearthing the reasons for low adoption of technology

remains an active area of research (Bold et al. 2017).

A new technology product can have many attractive features, yet consumers may be wary of

trying it, afraid that they may “break” the product or that it might operate unreliably (The

Atlantic 2015). Such concerns might be even more salient in emerging markets, where consumers

are less educated, less familiar with technology and more risk-averse when assessing the potential

payoff from new technology (Feder et al. 1985). Emerging markets are also characterized by tightly-

knit communities (Miller and Mobarak 2014). News of a user’s unsatisfactory encounter with a

technology can travel fast – through word-of-mouth – to potential new users, deterring adoption.

To increase the rate of adoption – and acquire new customers – technology companies operating in

emerging markets need to allay such fears in the minds of potential consumers and build trust in

their technology. One way to achieve this is to quickly resolve product or service glitches, through

timely after-sales service. Knowing to what extent timely after-sales service can aid rapid adoption

of technology in these markets would highlight opportunities for firms to increase adoption rates

and thus accelerate economic development.

In this study, we examine how timely after-sales service – i.e., fast resolution of repair tasks –

impacts technology adoption in emerging markets. In particular, we empirically assess the impact

of service wait times experienced by existing users on the purchase rates of solar home systems by

first time users (i.e., adopters of the technology) in off-grid Uganda. We identify three important

findings: (1) Timely after-sales service is a strong driver of technology adoption in emerging

markets. (2) The relationship between wait times for service and adoptions is heterogeneous and

depends on the types of pending service cases. (3) Customers share their service experience with

others in their network. This word-of-mouth mechanism explains our first two findings. We also

find that inadequate infrastructure, especially road quality, significantly affects service wait times

and impacts technology adoption in emerging markets.

Our research site is a leading for-profit solar distribution company that operates in off-grid

communities in East Africa. The company is headquartered in Kampala, the capital of Uganda. It
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sells solar home systems and basic appliances that can power a house or a small business, through

its country-wide network of 46 branches. About three-fourths of the population of Uganda does

not have access to electricity (International Energy Agency 2017), posing a significant barrier to

its social and economic development. In recent years, several companies, especially in Africa and

Asia (such as our partner company), have started to offer different solutions for off-grid access

to electricity (Guajardo 2019, GOGLA 2018). Service-related issues are frequent in off-grid solar

products – stemming from improper use of the products, manufacturing and installation problems

as well as bad weather conditions. Knowing the extent to which after-sales service influences product

adoption also informs better decision making on how to best catalyse adoptions and where to

allocate resources. It is also a critical input in assessing the viability of solar off-grid electricity

providers.

Data on how long it takes to resolve after-sales service issues is hard to obtain. This is even more

the case in emerging markets. Our partner company places a high emphasis on after-sales service

and collects a wealth of detailed micro-data about its after-sales service processes, making it an ideal

research site for our study. To empirically assess how the timeliness of after-sales service experienced

by existing customers impacts the purchasing decision of potential adopters, we assembled a branch-

week panel dataset from our partner company, with detailed customer-level sales and service data

spanning June 2016 to August 2017. In the period of our study, 83% of the company’s sales

came from adopters of the technology, i.e., customers who had never owned solar home system

technology before. Each company branch has a sales team that is responsible for sales in the off-grid

communities in the area assigned to the branch. Each branch also has a single service technician,

who visits customers to instal products and service them. In this setting, we measure timeliness of

after-sales service as the average wait time for service cases that are pending in the week, at each

branch.

We face three econometric challenges. The first is potential reverse causality. We are interested

in assessing the impact of wait time for service on adoptions. However, an increase in adoptions can

increase the likelihood of new service cases and can thus affect service wait times. Our weekly unit

of analysis combined with the relatively long time lag between purchase and installation of solar

home systems rules out concerns about reverse causality. A second potential concern stems from

bias due to unobserved confounding factors. In our base model, we carefully control for seasonality

and branch characteristics using branch-month fixed effects (which subsume branch fixed effects).

These fine-grained controls account for many unobserved factors including variation in demand,

weather, staff competence levels, product quality, customer characteristics and variation in socio-

economic development across branches and over time.
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The sales team and service technician at the branches operate independently and do not have

overlapping duties. None-the-less, any potential coordination across the sales and service staff,

to strategically provide service with a view to increasing sales, is not fully accounted for in our

base model. Unobserved variation of this kind can bias our coefficients of interest. To address

this source of potential endogeneity, we develop two instrumental variables (IVs), leveraging geo-

spatial variation in service task locations, weather and road quality. To develop these instruments,

we combine hand-collected supplemental customer geo-location data and highly granular data on

weather and road quality with our institutional knowledge about the details of the firm’s after-

sales processes. For our first IV, we take advantage of unpredictability in the timing and spatial

dispersion of service tasks that require a branch technician’s visit. For the second, we exploit the

exogenous logistical challenges – stemming from weather and road conditions – faced in receiving

repaired products from the firm’s central repair workshop in Kampala.

We find that customers in our sample are highly sensitive to the timeliness of after-sales service.

In our base specification with branch-month fixed effects, we find that when the average wait time

for service for existing customers increases by a day, adoption of the technology (i.e., purchase by

first-time users) decreases by 0.76% (p = 0.028). Thus, an increase in average wait time for service

by a week (which corresponds to one standard deviation of the average wait time distribution

within a branch-month) leads to a 5.3% decrease in adoptions.

From our IV analyses, we find that adoption of solar home systems can decrease by as much as

32.4% (p = 0.031) when the average wait time for service increases by a week. Our IV analyses

correct for any potential downward bias due to active coordination between the sales and service

staff. In addition, they allow us to explore heterogeneous impact of service wait times on adoptions.

Our two IVs exploit two separate sources of exogenous variation in average wait time for service

and capture local average treatment effects, as opposed to the average treatment effect captured

by the base specification (Angrist and Pischke 2008). Our IVs only impact our estimates through

cases which require a technician visit or involve the workshop. Such cases typically involve longer

wait times than cases resolved via phone. Our IV estimates – which are larger than the estimates

from our base specification – suggest that when waits include technician visits or workshop cases,

increases in wait time have more damaging consequences. In particular, we find that customers

are most sensitive to service wait times from workshop cases. This is expected as customers have

to separate from their products for a long time and they may worry that the product will not be

returned or will be replaced in worse condition. Also, the wait for workshop cases is the longest.

In a separate reduced form analysis, we find that congestion at the central workshop due to a

capacity bottleneck leads to a reduction in adoptions, providing further evidence that long waits

for workshop related service hurt adoptions.



Kundu and Ramdas Timely After-Sales Service and Technology Adoption 5

An important channel through which after-sales service can impact adoption is word-of-mouth.

To validate the word-of-mouth channel, we utilize an individual-customer-level model. In March -

August 2017, our partner company started a formal referral program. Every month, they rewarded

existing customers based on the number of new customers acquired through their referral. Using

a panel dataset with customer and month fixed effects, we test whether the number of customers

acquired through referrals from an existing customer depends on the referring customer’s service

experience. We find that the number of customers acquired through referrals decreases by 5.6% (p

= 0.001) when the referring customer’s wait time for service (averaged over the last three months)

increases by a day. This evidence suggests that word-of-mouth is a critical channel for customer

acquisition for technology firms in emerging markets. Dissatisfied customers share their negative

experiences with others, which can significantly impede technology adoption.

Little is known about the extent to which timely after-sales service affects customer acquisition.

Perhaps for this reason, product innovation, improved product affordability, access to finance and

branding/marketing campaigns have gained more traction than after-sales service as customer

acquisition strategies. This is also the case for firms selling technology products in emerging markets

(GOGLA 2018). Our study provides the first empirical estimates of the impact of after-sales service

on customer acquisition through technology adoption, in an emerging market setting. We find

that different types of service waits affect technology adoption differently. This has an important

implication for after-sales service resource allocation. In our case, other things equal, customers who

have been waiting for workshop cases should be prioritised for service. Prior work on the drivers

of technology adoption in emerging markets has primarily focused on the impact of government

policies (e.g., see Cohen et al. 2010, Hanna et al. 2016). In contrast, our work highlights the

importance of private sector firm operations in achieving this end. Finally, our analysis suggests

that the private sector can not operate in a vacuum. Public sector investment in improving road

quality and connectivity has a non-obvious impact on technology adoption in these settings.

In Section 2 below, we discuss relevant literature. In Section 3, we discuss background, data and

summary statistics. In Section 4, we lay out our empirical strategy, including our base specification

and two IV approaches. In Section 5, we provide our results and discuss the word-of-mouth

mechanism. We conclude in Section 6.

2. Literature Review

Our paper contributes to three streams of literature. First, we create new knowledge about the

drivers of technology adoption in emerging markets, by focusing on the importance of timely

after-sales service. Second, we contribute to the literature on peer effects and word-of-mouth. We

demonstrate that long service wait times can lead to substantial negative word-of-mouth and lower
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technology adoption in emerging markets. Finally, we add to the operations management literature

on after-sales service by empirically assessing the impact of wait time for service on customer

acquisition through technology adoption.

Recent studies in economics and operations management have examined how liquidity and

information impact technology adoption in emerging markets. Through randomized controlled

trials, Cohen et al. (2010) find that demand for insecticide-treated bednets in Kenya goes down

significantly when their price increases. Guiteras et al. (2015) find that in Bangladesh, providing

subsidies to households increases ownership of latrines. By modelling customer purchasing behavior,

Uppari et al. (2018) find that adoption of small rechargeable bulbs in rural Rwanda can be improved

by reducing customers’ liquidity constraints and increasing the convenience of recharging. Foster

and Rosenzweig (1995) focus on the role of information and report that imperfect knowledge about

how to use new varieties of seeds was a significant barrier to their adoption by farmers during the

Green Revolution in India.

Researchers have also examined how product quality affects technology adoption in emerging

markets. Bold et al. (2017) suggest that smallholder farmers in Africa do not adopt fertilizer and

hybrid seeds because the versions of those technologies available in local markets are of low quality.

Through a randomized controlled trial, Levine et al. (2018) find that offering a free product trial

and money back guarantee that allows consumers to assess product quality significantly increases

adoption of solar cook stoves in Uganda. Hanna et al. (2016) conduct a long-term randomized

controlled trial on the health benefits of replacing traditional cook stoves with solar cook stoves in

Bangladesh and find that solar cook stoves lose efficiency of over time – due to the lack of repair and

proper maintenance. Such issues of product reliability and post-purchase customer experience could

be just as important in driving technology adoption as liquidity, information or other aspects of

product quality. Knowing to what extent they drive adoptions is needed in order to make tradeoffs

about what activities to invest in to spur adoption. It is this question that we address.

A large body of literature in marketing and economics focuses on the role of peer effects and

word-of-mouth in driving technology adoption. Tucker (2008) finds that employees at an investment

bank adopt video-messaging machines when others in their network use them. Miller and Tucker

(2009) find that US hospitals adopt electronic medical records when other hospitals in their network

do so. Using data on Californian households, Bollinger and Gillingham (2012) find that adoption of

solar products is driven by peer effects – the adoption rate of solar increases as the installed base of

solar products increases. Similarly, in the emerging markets context, there is substantial evidence

that social interactions and word-of-mouth are key channels of information exchange that can

heavily influence technology adoption. Miller and Mobarak (2014) find that villagers’ decisions to

adopt nontraditional stoves in Bangladesh are related to the choices of opinion leaders. This effect
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is stronger when the opinion leader refuses to adopt the technology after a marketing intervention,

suggesting that negative information is more salient than positive information. Conley and Udry

(2010) find that farmers in Ghana adjust their use of fertilizers based on the profits achieved by

their neighbors. We build on this stream of literature by highlighting that customers also share

their after-sales service experience with others. This information has a significant impact on the

adoption decisions made by potential adopters.

Researchers in marketing and operations management have highlighted different ways in which

after-sales service affect individual customer behavior. Emadi and Swaminathan (2018) show that

differences in callers’ queue abandonment behavior in call centers is driven by differences in their

beliefs about their delays based on contact history. Researchers have also built analytical models

to study customer response to service wait times at call centers (e.g., see Akşin et al. 2013).

Zeithaml et al. (1996) show the impact of service quality on specific customer behaviors that signal

whether customers will remain with or defect from a company. In a retail bank setting, Buell et al.

(2016) find that increased competition among firms offering differential levels of service quality can

impact customer defection at the incumbent firm. Using structural estimation, Allon et al. (2011)

find that customers of the Fast-Food Drive-Thru industry attribute a high cost to their waiting

time. Lu et al. (2013) find empirical evidence that the number of customers in a supermarket

queue significantly impacts customers’ purchasing behaviour. We contribute to this literature by

estimating the effect of after-sales service experienced by existing users on the number of new

customers acquired through their referrals.

There is also a rich operations management literature on service contracts. Aflaki and Popescu

(2013) examine how strategic firms can manage customized service over time to maximize the long-

term value from each customer. Guajardo et al. (2015) empirically assess how the interplay between

product quality and warranty length affects product demand across different U.S. automobile

companies. Chan et al. (2018) study how service contracts are selected by the customers of medical

equipment suppliers and how this choice of service contracts affects service costs. Using data on

B2B contracts on service renewal in a high-technology industry in Germany and in the U.K., Bolton

et al. (2006) find that customers renew their service contracts based on past service quality received.

Despite a large volume of work on after-sales service and its impact on customer satisfaction and

retention, these studies have so far overlooked the direct impact of service wait times on sales,

let alone on adoptions. Our study builds on this stream of literature and answers this important

question. By providing an empirical estimate of the value of after-sales service, our study can allow

firms to better assess the benefits of implementing strategies that improve their after-sales service

versus other strategies for increasing adoptions and sales.



8 Kundu and Ramdas Timely After-Sales Service and Technology Adoption

3. Background, Data and Variables

Our partner company is one of the two main branded companies that sold household and business

appliances with credit payment options and after sales service support in off-grid communities

in Uganda during our study period. They sell high quality products and have a comprehensive

after-sales service support. There are many other companies that sell smaller solar solutions or

pico-lighting solutions in Uganda – these companies are not direct competitors of our partner

company.

The company has a wide network of 46 branches that serve off-grid communities across Uganda.

(Its has closest competitor in comparison only operates in a third of the branches covered by our

partner company.) Depending on its location, a branch can cover an area with population ranging

from below 100,000 in a rural area to a few million in urban centers like Kampala. Each branch

has a branch manager who oversees the sales team and service technician in the branch and is

accountable for their performance. The company has centrally controlled operations with little

autonomy given to its 46 branches. Each branch is primarily a retail store with an in-house branch

technician.

The sales team at a branch usually consists of 5-15 employees – the number varies depending

on the size of the population covered by the branch. The sales team acquires new customers and

maintains good relations with them in order to ensure timely payment and to catalyze repeat

purchases. The service staff at each branch constitutes one branch technician and a driver. The

technician installs newly purchased appliances at customers’ homes and caters to service cases

raised by existing customers. The branch technician is not involved in the branch sales activities.

3.1. Adoption

In 2016, only 18% of the rural population in Uganda had access to electricity (World Bank 2016).

In off-grid communities, people use candles, kerosene and paraffin lamps to light their homes and

businesses after sundown. With the recent development of a competitive and innovative off-grid

solar sector that offers a range of solar products and credit-based pay-as-you-go payment options,

solar home systems now provide an alternative to traditional sources of lighting in these regions.

The branch sales teams of our partner company visit villages in the off-grid communities around

their branches to acquire new customers. They also receive referrals for potential customers from

existing customers. In the time frame of our study, June 2016 - August 2017, 83% of the 11,697

solar home systems sold were sold to adopters – i.e., customers who had never previously had

electricity and were buying solar home system technology for the first time. The starting panel size

of a solar home system offered by our partner company is 50 Watt power (Wp). This allows for a

few lights and mobile phone charging points. More advanced products include bigger home systems
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that support appliances such as television sets, refrigerators, agricultural pumps and hair clippers.

Customers can upgrade their solar home systems from time to time by adding new appliances,

batteries and solar panels to their current system. This climb up the “energy ladder” provides an

opportunity for retaining customers and increasing their lifetime value.

The sales process starts with a sales lead generated by a branch sales representative. A solar home

system is an expensive purchase. A basic solar home system in Uganda can cost between 100-500

USD (Ugandan Off-Grid Energy Market Accelerator 2018). In comparison, the average monthly

income of a Ugandan household is 453,000 UGX (∼ 122 USD) (Ugandan Bureau of Statistics

2013). To reduce the financial burden of buying a solar home system, our partner company allows

customers to buy products on credit, with contract durations ranging from 12 to 24 months under

a lease-to-own model. After undergoing a credit check, credit customers make a down payment.

Cash customers pay the full price for the product upfront. Once a payment is validated by the

accounts team at the company’s headquarters, an installation ticket is created. This is considered

as the time of sale and therefore adoption in the case of first-time users.

Once an installation ticket is created, the product is dispatched from the central warehouse

at the headquarters in Kampala. Two logistics vans take products from the headquarters to the

branches, one operating on a North-East van route and the other on a South-West van route. Once

a product arrives at a branch, the branch technician is responsible for installing the product at

the customer’s location. On average, it takes about three weeks from the date of sale to the date

of installation. Less than 10% of installations are completed within a week of the sale date. Figure

3.1 shows the sales process at a branch and the average duration in each stage.

3.2. After-Sales Service

An important aspect of our partner company is that they provide all their customers with free

after-sales service, irrespective of the type or size of the product they have purchased, their mode

of payment or their location.

After-sales service issues are very frequent in our data – of the customers who bought a product

in the period of our study, around half of them requested at least one after-sales service in the

period of our study. Service issues arise because of different reasons. In our data, around a quarter

of the service cases are related to manufacturing, supplier or installation issues. Around 10% of

the cases stem from improper use of the products by customers. Weakening of batteries over time

and bad weather such as heavy rain, lightening and dust storms are also frequent causes of service

cases.1

1 From our data, it is difficult to discern the actual causes of service issues as the data is incomplete and includes
overlapping causes. As a result the frequency of different service causes noted here is an approximation.
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Figure 3.1: Key stages in the sales process of the partner company

Note: The legend describes different parts of the process that are undertaken by the branch sales team, at the

headquarters or by the branch technician. The numbers below the stages indicate the average duration of completing

the stages. We do not have time stamps for some of the stages in the process.

A service case ticket is created in the company’s central SAP system when a customer logs a

complaint through a central toll-free number. A customer care representative at the headquarters

opens the case and attempts to resolve the issue over the phone. If unresolved, the case is forwarded

to the relevant branch technician who visits the customer at her location. The technician decides on

his tasks for each week based on the customer locations for pending service tasks and the technical

issues that need to be addressed in these tasks. If the technician is unable to resolve the case, he

uninstalls the product and brings it to the branch office. The product is then sent to the central

workshop in Kampala through a logistics van that visits the branch every week. After the product

is repaired at the workshop (or a replacement product is obtained if needed), it is loaded back onto

the logistics van and brought to the branch. From here, the branch technician takes the product

back to the customer’s location and reinstalls it. Once a service case is marked ‘done’ either by

a centrally-located customer care representative or by the branch technician, the audit team at

the headquarters calls the customer to ensure that the service case has been resolved. If the case

has been resolved to the customer’s satisfaction, the audit team closes the case. If not, the case is

reopened. A schematic diagram of this process and the average time taken in the different stages

is provided in Figure 3.2.

In Table 3.1, we provide summary statistics for wait times for the different types of service cases

in our data. In the time frame of our study, we observe 9,786 service cases. Less than 10% of these

cases were resolved via phone by a customer care representative. The remaining cases required
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Figure 3.2: Key stages in the service process of the partner company

Note: The legend describes different parts of the process that are undertaken at the headquarters or by the branch

technician. The numbers below the stages indicate the average duration of completing the stages. We do not have

time stamps for the ‘received-at-branch’ state.

a visit by the technician. In a quarter of their cases, the technicians send the product to the

workshop for repair or replacement. As seen in Figure 3.2 and Table 3.1, service cases that involve

the workshop have the longest wait time. The time spent at the workshop depends on factors such

as the congestion (or backlog) of pending cases at the workshop, workshop capacity, difficulty level

of the tasks and availability of spare parts. In addition, it takes about two weeks from the time

when a product is repaired and ‘workshop-ready’, till when it is reinstalled by the technician at

the client’s location. A part of this delay is due to the logistics vans facing heavy rainfall and poor

road conditions enroute in some weeks.

Mean SD Observations
Duration of service cases (days) 42.1 54.1 9786
Duration of service cases resolved by customer care rep (days) 8.4 14.9 931
Duration of service cases that required a technician visit (days) 24.9 33.0 6675
Duration of service cases that were sent to workshop (days) 47.8 47.6 2180
Duration between workshop-ready and returned-to-client (days) 15.9 25.7 1766

Table 3.1: Summary of after-sales service wait times

Granular data that tracks onsite technician visits and repair processes is challenging to collect

and therefore less common, especially for firms operating in emerging markets. Lack of such data

may be one of the reasons why post-purchase customer experiences have garnered less attention

from empirical researchers so far. Our collaboration with our partner company – a highly data-

centric solar distribution company – allows us to measure the timeliness of after-sales service at a

granular level and answer our research questions.
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3.3. Variables

To identify the impact of after-sales service (provided to existing customers) on adoption by new

customers, we aggregate the sales and service data by geography. We aggregate the data at the

branch-week level. We choose this level of aggregation for two reasons. First, branch information

is available for all customers whereas customer location information at more granular levels such

as the county or subcounty level is incomplete. Second, the sales and service teams are specific to

each branch. Therefore, it is challenging to control for spillover of sales and service between units

at lower levels of aggregation than a branch.

Adoptions in a branch-week refers to the number of sales made to customers who have never

owned a solar home system before. We define the installed base in a branch-week as the total

kilo-Watt power (kWp) sold in the branch from the start of our data up until the start of the week.

Timeliness of service quality is measured as the average wait time for service cases that are

pending in the week. The wait time for a service case is the number of days from its start date, till

the end of the week or its closure date (whichever is earlier). How customers observe wait times

– and our wait time measure – are likely to suffer from the inspection paradox, i.e., longer cases

are likely to be over sampled and shorter cases under sampled. However, we chose to use this as

our primary measure of wait time because we believe it is a reasonable reflection of how customers

may think of average wait times, based on their observed waits. Note that service wait times, and

therefore average wait time for service, span multiple weeks. In order to avoid right censoring, we

drop the first three months of our data. We find that 90% of service cases are completed within

90 days. With this modification, we have 65 weeks of adoption and service data for 46 branches

between June 2016 and August 2017. We also measure the total number of service cases that

opened in each branch-week. Further, congestion at the workshop is measured as the number of

products that are waiting to be repaired at the workshop each week.

We collected granular satellite-based rainfall data (measured at half-hourly intervals) from the

National Oceanic and Atmospheric Administration (NOAA) for every 0.1◦ X 0.1◦ cell in Uganda.

Each cell corresponds to a geographic area of 11 sq. km. For each branch-week, we first count the

number of days of rainfall over 12mm (75th percentile of daily rainfall in Uganda) in each cell in

the area covered by the branch, and then average this value across all the cells in this area. This

gives us a measure of the days of bad weather in each branch-week. As discussed in Section 4.2.,

we also use weather data to create one of our IVs. A summary of the key variables used in our

analysis is provided in Table 3.2.
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Mean Min Max SD
Adoptions (#) 2.6 0.0 298.0 7.5
Total sales (#) 3.2 0.0 299.0 7.6
Installed base (kWp) 11.4 0.0 83.3 10.6
Avg wait for service (days) 50.4 0.0 158.0 24.1
New service cases (#) 2.8 0.0 21.0 2.9
Congestion at the workshop (#) 119.6 8 196 56.1
Days of bad weather 0.5 0.0 4.4 0.6
Observations (Number of branch-weeks) 2990

Table 3.2: Summary of variables at the branch-week level

4. Empirical Specification
4.1. Base Specification

Our base specification is a fixed effects model with extensive controls, as shown below.

Adoptionsbw =Branch.monthbm +β1Avg.wait.for.servicebw +β2New.service.casesbw

+β3Installed.basebw +β4Days.of.bad.weatherbw +Week.of.monthw + εbw
(1)

Here, Adoptionsbw is the number of sales to first-time solar home system users in a branch in

a week. A ‘sale’ is logged on the date when the installation ticket is created. This is when the

customers either makes a full payment or down payment for the product. Products are typically

installed after three weeks from the date when the installation ticket is created. Due to this lag

between sale and installation of a product, reverse causality, i.e., adoptions in a week affecting wait

time for service or workload of the technician in the same week, can be ruled out.

Avg.wait.for.servicebw is the average wait time for pending service cases in a branch in a

week. Because each branch has its own service technician and the branches operate independently,

average wait time for service is uncorrelated across branches (conditional on branch-month fixed

effects, week-of-month fixed effects and days of bad weather). New.service.casesbw is the number

of service cases that arise in a branch in a week. Because of the high likelihood that product quality

problems will surface very early (due to the bathtub curve theory of product failure – e.g., see

Chan et al. 2018), this variable reflects the effect of product quality. It also reflects the quality of

recent installation tasks. Installed.basebw is the total capacity (in kWp) sold up until the start

of the week (from the start of our data). Branch.monthbm are the branch-month fixed effects.

Week.of.monthw are the week-of-month fixed effects.

A number of factors may influence both timeliness of service and adoptions, many of which vary

systematically across branches. These include staff, infrastructure, topography, cloud cover, hours

of sunshine and customers’ socioeconomic characteristics. To account for these factors, we control

for each branch in our model specification. However, instead of including branch fixed effects, which

would capture the average characteristics of each branch, we include branch-month fixed effects.

These fixed effects allow us to control for all time-invariant branch characteristics and for the
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average effect of all time-varying characteristics of a branch within a month. In this way, we control

for changes in branch characteristics over time, e.g., staff turnover, changes in marketing or sales

strategies, changes in customer or product composition and hours of average sunshine – that could

otherwise confound our estimates. The branch-month fixed effects further control for any macro

changes in factors such as infrastructure, income or education that may affect a branch within the

15 months of our data. By using this fixed effects specification, we exploit the within-branch-month

variation in average wait for service and in adoptions – i.e., variation in these variables in the weeks

within a month in a branch – to assess the impact of average wait time for service on adoptions.

We choose a month as the appropriate period for these time-interacted fixed effects because it is

very reasonable to expect that a branch will have comparable operating conditions in such a short

time window, even for a company that is expanding rapidly.

Sales and service can differ systematically from one month to the next due to seasonality and

time trends. Our branch-month fixed effects capture seasonality for each branch separately, while

also allowing different non-parametric time trends for the 46 different branches over the 15 months

of our study. We further control for seasonality by using week-of-month fixed effects, which capture

the fact that sales and service quality might differ in different weeks within a month. Differences

in sales across different weeks in a month could be driven by sales targets that are set for the sales

force each month. This could lead to more aggressive sales tactics towards the end of the month.

Similarly, sales teams and branch technicians are provided with a travel budget at the start of the

month, which depletes over time. This could also affect the sales or service pattern in different

weeks of the month.

Heavy rain can deter both the sales team and the branch technician from visiting their customers

in the off-grid communities that they serve, as roads become difficult to navigate. Heavy rain

may also result in more service cases opening up. As cloud cover reduces efficiency of solar home

systems, heavy rain could also deter adoptions. Thus heavy rain could lead to lower adoptions and

can also increase the average wait time for service in a branch-week. To address this endogeneity

concern, we control for the number of days of bad weather (i.e., heavy rain) in a branch in a week.

Within a branch-month, another reason for an increase in service cases that is potentially

endogenous to sales is an increase in recently installed products. Recently installed products can

directly impact sales through peer effects (Bollinger and Gillingham 2012). As mentioned above,

they can also affect service wait times because quality problems have a high likelihood of arising

at the start of the product life cycle. To address this endogeneity issue, we control for the installed

base in Equation 1.

Including installed base measured as number of installations in the fixed effects model would

result in an endogeneity issue because the number of installations are fully determined by the
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number of past sales. This leads to concerns similar to those in a dynamic panel, where errors after

fixed effects transformation are correlated with the transformed installed base variable. Bollinger

and Gillingham (2012) discuss in detail the challenges in estimating the effect of installed base in a

fixed effects model. To avoid bias in our estimate of the coefficient of average wait time for service

due to including installed base as a regressor when it is fully determined by past sales, we include

the total capacity of solar products sold (in terms of kWp) as a proxy for this variable. As different

customers purchase different amounts of solar home system capacity, the capacity of the installed

base is not fully determined by past sales (Bollinger and Gillingham 2012). About a third of the

time, the branch of sale is different from the branch where the product is installed. This further

reduces the correlation between past sales at a branch and its installed base.

We cluster errors at the branch-month level and we correct for heteroskedasticity by using

heteroskedasty-robust standard errors. Although we have a long panel with 65 weeks of data, non-

stationarity is not a concern in our specification because we use branch-month fixed effects. This

reduces the variation used to estimate our coefficients of interest to within-branch-month, i.e., only

4-5 weeks.

4.2. Identification using Instrumental Variables

Identification of the impact of timeliness of service quality on sales in our base specification hinges

upon the assumption that after controlling for branch-month fixed effects and other controls in

Equation 1, the wait time for service is uncorrelated with the regression errors. Although the sales

team and the service technician at the branches have separate non-overlapping duties, any active

coordination between them to increase sales is a potential source of endogeneity. For example, the

sales team might request the branch technician to visit a county where it plans to go next, to

reduce customer discontent about long waits. If such coordination occurs, we would underestimate

the impact of service wait time on sales in Equation 1. To address this potential source of bias,

we develop two geo-spatial IVs. For our first IV, we take advantage of exogeneity in the timing

and spatial dispersion of service tasks. For our second IV, we exploit exogenous weather and road

conditions faced by the logistics vans. These IVs allow us to tease out the effect of exogenous

variation in average wait time for service, which is uncorrelated with factors, such as collusion

between the sales and service team and strategic activities by competitors within the branch-month.

4.2.1. IV based on Geographic Dispersion of Service Cases Due to the sparse

population, poor road quality and long travel time between locations in off-grid communities in

Uganda, branch technicians pool nearby tasks together to increase efficiency. That is, technicians

tend to pool together pending service and installation cases at a location and resolve them in the

same visit. If a technician’s tasks are highly geographically concentrated in a week, his efficiency
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increases and the backlog of pending tasks decreases faster, reducing average waiting time. On

the other hand, if tasks are in spread apart locations, the technician’s efficiency suffers and thus

average wait time increases. The efficiency gains from pooling nearby service cases together comes

primarily from reduction in technicians’ travel time. Pooling can also lead to learning-related time

savings and economies of scale for the technician as customers living close together may experience

similar service cases as they buy similar products. Previous studies in operations management have

found that workload affects service quality and performance in different settings (e.g., Tan and

Netessine 2014, Song et al. 2015).

Amongst a technician’s pending tasks, two specific technician task types arise randomly. First,

new service cases arise as products fail. After controlling for branch characteristics, weather

conditions, seasonality and the installed base (as in Equation 1), the location and timing of new

service cases is exogenous. Second, the time taken for products to be repaired at the workshop

is exogenously determined by factors such as the number of pending cases from other branches,

workshop capacity, difficulty level of the tasks and availability of spare parts. The workshop is

managed by a separate workshop team at the headquarters. Thus, none of the workshop-related

factors for service delays are influenced by the decisions made by the sales teams or the service

technicians at the branches. Therefore, the number of cases that become workshop-ready in a

branch-week – i.e., the number of workshop cases in a week that are ready for return to a particular

branch – is also exogenous.

Building on these observations, we create our first instrument. We measure the spatial dispersion

of new or workshop-ready service tasks that have arisen for a branch technician in the last six

weeks. The spatial dispersion of these tasks is measured in three steps. First, we identify the new

or workshop-ready cases associated with customers in each county in a branch, in a week. Next, we

count the total number of new or workshop-ready cases in each county-level cluster in each week.

Finally, we take the standard deviation of the number of tasks across the counties in a branch,

in each week. We consider the technician tasks in the last six weeks because this corresponds to

the average duration of service cases in our data. We use this spatial distribution of technician

tasks to instrument for the average wait time for service in a branch-week in Equation 1. Given

the exogeneous manner in which the new or workshop-ready service cases arise, we expect this IV

to meet the exclusion criterion.

To illustrate this instrument, in Figure 4.1, we show the geographic dispersion of the new or

workshop-ready technician tasks across the five different counties in the Kabale branch across two

consecutive weeks. The upper two plots in Figure 4.1 show that there is substantial variation in

the geographic dispersion of these tasks across the two weeks. Also, we see from the lower two plots
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Figure 4.1: Spatial dispersion of new or workshop-ready service cases

Note: This Figure is based on data for the Kabale branch across two consecutive weeks (30th and 31st week in 2017).

Each point on the map refers to a county within the area served by the Kabale branch.

that the technician tends to prioritize larger clusters, suggesting a positive correlation between the

cluster sizes and number of cases resolved by the technician each week.

To build this instrument, we first geo-locate customers at the county level. We obtained granular

customer location data from the company. This data was not standardized or well formatted, so

we matched it with a list of county names obtained from the Ugandan Bureau of Statistics. To

match the locations, we used exact and fuzzy matching techniques. Finally, we web-scraped the

geocodes of the standardised county names from the geonames.org website. We matched 75% -

100% of the sales and service data at the county level in 21 branches. Data from these 21 branches

are used in this IV analysis. Our estimates for the coefficients in Equation 1 using this subsample

are comparable to those using the full sample.

4.2.2. IV based on Weather along Logistic Van Routes For this instrument, we exploit

the logistical constraints faced by vans when delivering ‘workshop-ready’ repaired or replacement

products from the workshop to their respective branches. Given the exogeneity in the amount of

rainfall in the route of the van, the road quality and the number of products that are workshop-

ready in any week, this instrument exploits exogenous variation in average wait time and fulfils

the exclusion criterion.

geonames.org
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To obtain this IV, we first map each of the two van routes and the fixed sequence of branch

locations each van travels to each week, using the Google Maps Application Programming Interface

(API). Below in Figure 4.2, we provide a map of the two routes navigated by the logistics vans.

One van route (marked in blue in the figure) covers branches in the North East of Uganda. The

other van route (marked in red) covers branches in the South West. The number associated with

each branch indicates the sequence in which it is visited by the van in each trip. We next identify

the rainfall and road quality in the path of the logistics van. We use highly granular satellite data

on daily rainfall in Uganda (obtained from the NOAA). The grid in gray in Figure 4.2 denotes

the cells (each corresponding to 0.1◦ X 0.1◦ on the coordinate system or 11 sq. km.) for which we

have half-hourly rainfall data. We develop a measure of road quality using a geospatial dataset of

road and river networks in Uganda obtained from the World Food Program and the DIVA-GIS

databases, respectively.

Figure 4.2: Route taken by the logistic vans

Note: The route of the van that goes to branches in the North East of Uganda is in blue. The route of the van that

goes to branches in the South West is in red. The grid shows the cells for which we have half-hourly rainfall data.

From the rainfall grid, we identify each 11 sq. km. cell that intersects the van routes. For each

cell, in each week, we measure the number of days of bad weather (i.e., rainfall above 12mm).

We weight the rainfall in each cell based on the length of the van route covered by the cell. This

gives us a weekly rainfall in route for each cell. Next, we overlay the Ugandan road network data
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on the mapped route of each van. This allows us to identify the road sections that are tertiary

roads, i.e., roads that are not classified as highways, primary or secondary roads and are therefore

not well-suited for heavy motorized traffic. These are often dirt roads that get badly waterlogged

during heavy rain. For each cell, we measure the fraction of distance traveled by the van in the cell

that is on tertiary roads. Using the GIS data on river networks in Uganda, we identify the number

of river crossings (i.e., rivers crossing the van route), in each cell. River crossings on tertiary roads

often become impassable in bad weather due to broken bridges or flooding. In each cell, we measure

road quality by interacting the fraction of tertiary roads and the number of river crossings. Figure

4.3 shows the mapping of rainfall and road conditions between two branches, in a week in May

2017.

Figure 4.3: Rainfall and road characteristics

Note: This Figure is based on data for a particular week for the route connecting Kagadi and Mubende, two branches

on the North East van route. Each cell represents a 11 sq. km stretch of land, corresponding to 0.1◦ X 0.1◦ on

the coordinate system. The coloured cells provide rainfall information over the underlying road. Red lines denote

highways and primary roads, yellow denote secondary roads and gray denote tertiary roads. Rivers are shown in blue.

To obtain a weekly rainfall-road-condition score for each cell in a week, we interact the rainfall

in route measure with the road quality measure. For each branch-week, we sum the rainfall-road

condition score over all the cells that lie in the path of the logistics van between Kampala and the

focal branch. This gives us the branch-rainfall-road-condition score. The reliability of the logistics
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vans’ timing is only a concern for customers waiting for service when they are awaiting repaired

or replacement products that need to be sent to them from the workshop. Once workshop-ready,

products are usually sent to the branch either in the same week or the next week. Thus, in each

week, we weight the branch-rainfall-road-condition score in the current and the next week by the

number of workshop-ready products for the branch (i.e., those that have already been repaired

at the workshop and are ready to be picked up). This provides us a weighted-branch-rainfall-

road-condition score. For each branch-week, we then take the average weighted-branch-rainfall-

road-condition score over the last four weeks to capture the current and lagged effect of logistical

constraints in the van’s route on wait times in the branch-week. This average-weighted-branch-

rainfall-road-condition score is the measure that we use as our second instrument for average wait

time for service.

5. Results and Discussion

We use multiple models to test whether wait time for service has an impact on adoption of solar

home systems. First, in Section 5.1, we present two fixed effects models and consider the two IV

approaches discussed above. For robustness, we also present alternate measures for timeliness of

after sales service in Section 5.2. Finally, in Section 5.3, we present a customer-level fixed effects

model to validate the word-of-mouth mechanism that is driving our results.

5.1. Impact of Wait Time for Service on Adoptions

Table 5.1 contains the results of our analysis of the impact of average wait time for service faced

by existing customers on the number of purchases made by adopters. Column (1) shows our results

from the base specification (Equation 1). We find that as the average wait time for service increases

by a day, the number of adoptions decreases by 0.023 customers (p = 0.028). In other words, as

the average number of adoptions is about 3 customers/ week/ branch, when the average wait time

for service increases by one day, there is a 0.76% decrease in adoptions.

We also find in Table 5.1 that adoptions are lower when new service cases start in a week. This

suggests that customers express dissatisfaction with product quality or installation quality as well.

The installed base at a branch consistently and substantially increases adoptions. With each kWp

capacity increase in the installed base, adoptions increase by about 7%. This corroborates earlier

studies which show that peer effects are a strong determinant of technology adoption (Bollinger

and Gillingham 2012, Guiteras et al. 2015). Although not statistically significant at 10%, days of

bad weather has a negative coefficient. This could be attributed to loss of effectiveness of the sales

team as they are unable to commute to the off grid communities to acquire customers.

Our dependent variable – the number of adoptions in a branch-week – is a count variable.

In column (2), we test if our results hold when we instead use a Poisson fixed effects model
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(1) (2) (3) (4)
Fixed Effects Fixed Effects IV I IV II

(Poisson) (Geographic Dispersion of Cases) (Weather in Van Route)

Avg wait for service (days) -0.023** -0.011*** -0.133** -0.139**
(0.01) (0.00) (0.06) (0.06)

New service cases started (#) -0.188 -0.050** -0.183** -0.362**
(0.12) (0.02) (0.09) (0.17)

Installed base (kWp) 0.191*** 0.054* 0.211*** 0.212***
(0.06) (0.03) (0.06) (0.08)

Days of bad weather (#) -0.820 -0.263* -0.092 -0.933
(0.60) (0.15) (0.11) (0.62)

Branch-Month Fixed Effects Yes Yes Yes Yes
Week of Month Fixed Effects Yes Yes Yes Yes

KP Wald F statistic - - 37.269 33.814
Number of branch-months 690 643 315 623
Observations 2,990 2,789 1,365 2,695
Dependent variable is number of adoptions in a branch-week. In column (1) we report our base fixed effects specification
and in column (2) we report a Poisson fixed effects model. In columns (3) and (4) we report the second stage result
of the 2SLS regressions. In column (2), observations that do not have variation in the number of adoptions within a
branch-month drop out. In column (3), observations drop because we have data on the instrument for only 21 branches.
In column (4), we do not have van route information for 3 branches and we drop observations for Kampala as it is the
origination of the logistic vans’ route. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 5.1: Impact of average wait time on adoptions

specification. We find that average wait for service continues to have a negative and significant

impact on adoptions. A one day increase in average wait for service decreases adoptions by 1.10%

(p = 0.001). This impact is slightly higher than that suggested by the linear model used in column

(1). IV methods for Poisson fixed-effects models are not well developed (Angrist and Pischke 2008),

so we use linear models for our IV analyses.

In columns (3) and (4) of Table 5.1, we validate the relationship between service wait times

and adoptions using two different IVs. In column (3), we report results from the IV based on

geographical dispersion of new or workshop-ready service cases. We find that a one day increase

in average wait time reduces adoptions by 0.133 customers (p = 0.033). In column (4), we report

results from using the IV based on weather along the van routes. Here, we find that a one day

increase in average wait time reduces adoptions by 0.139 customers (p = 0.031). From the four

different estimates in Table 5.1, we can conclude that average wait time for service has a significant

negative impact on the adoption of solar home systems in rural off-grid Uganda.

The IVs suggest a stronger negative impact of service wait times on adoptions than the base

specification. Both the instruments are strong instruments, with an F-statistics above the threshold

of 10 (Angrist and Pischke 2008). Our IVs also pass the Hansen test for overidentification,

suggesting they are valid instruments (χ2 p-value corresponding to the Hansen J statistic is 0.604).

The first stage results are shown in Online Appendix A1. As expected, we find that lower

geographic dispersion of technician tasks decreases the average wait time for pending cases. Also,

we find that bad weather in the route of the logistics vans increases the average wait time for
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pending cases. The impact of poor road conditions (compounded by bad weather) on service wait

time highlights the role that the public sector can play in improving off-grid electrification, i.e., by

investing in infrastructure that increases connectivity.

Discussion of the Estimates There are two noteworthy observations regarding the estimates

of average wait time for service from our base specification in column (1) and from our IV

specifications reported in columns (3) and (4) of Table 5.1.

First, our IV specifications address concerns about any unobserved coordination between sales

and service staff at a branch. In the specifications in columns (3) and (4), we use two very

different sources of exogenous variation in average wait time for service to correct for any potential

underestimation of the impact of service wait time due to this coordination.

Second, the pronounced impact of average wait time for service on adoptions in columns (3)

and (4) suggests that the impact of average wait time for service on adoptions is heterogeneous.

Note that our IV analyses provide local average treatment effects (LATE) as opposed to the

average treatment effect (ATE) reported in column (1). The LATE applies only to the subset of

the population that are “compliers”, i.e., those affected by the instrument in question (Angrist and

Pischke 2008). Thus, our results in column (3) apply to branch-weeks with pending service cases

that require a visit from the technician, i.e., cases that are resolved by the technician or those

that are returned from the workshop via the technician. Our results in column (4) only apply to

branch-weeks with pending service cases where products are returned from the workshop.

The branch-weeks that are compliers to our IVs experience a longer and a different type of wait

compared to the non-compliers. The service cases experienced by compliers involve longer wait

time for service because the quickest time to service completion is for cases that do not require

a technician visit or do not involve the workshop (Table 3.1). Customers who experience longer

waits are likely to be more dissatisfied with the company’s after-sales service and to issue stronger

negative publicity about the company. In addition, customers might be especially anxious about

having to separate from their products when they are sent to the workshop, and impatient to

receive them back. In Online Appendix A2, we compare estimates from our two IVs for different

lookback periods and find that for the same lookback period, estimates are higher in magnitude for

our second IV (weather in the route of the logistics van). That is, customers are most sensitive to

wait from service cases that involve the workshop, followed by wait associated with a technician’s

visit. This suggest that service cases involving the workshop should be prioritized by solar service

providers.

Our results suggest that existing customers share their service experience with their families,

friends and community members. In other words, customers who are deciding whether or not to
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purchase solar home systems consult with community members who have previously purchased

the product. Even if we consider the conservative estimates in column (1) of Table 5.1, our results

suggest that one standard deviation increase in within branch-month average wait time for service

– which corresponds to around seven days – leads to 5.3% decrease in technology adoption. This

suggests an economically significant impact of service wait times on technology adoption in our

context.

Solar home systems that are sold by our partner company are expensive purchases for customers

living in the rural off-grid communities of Uganda. It is likely that customers who buy the product

have higher-than-average income and higher status in the community. The average monthly income

of rural households in Uganda is 325,000 UGX (∼90 USD). In contrast, customers of our partner

company report having an average income that is seven times higher. Thus, information about long

wait times experienced by existing customers – who are influential in their communities – might

travel fast around the community. In off-grid communities, solar home systems are high visibility

products. They provide electricity after sundown in an area that would otherwise be pitch dark.

Electronic appliances such as television sets and refrigerators have rarely been used by off-grid

customers before solar home systems became available. Furthermore, some customers buy solar

home systems and appliances such as mobile charging units, television sets and refrigerators for their

businesses. Businesses are often located in market places, which are a hub for social interactions in

rural locations in emerging markets. Thus, long wait times and failure of solar products are easily

noticed by potential customers. Our results at the branch level reflect this information effect across

the different social clusters within the branch territory.

5.2. Extensions to the Main Analysis

So far, we have assessed the impact of average wait time for service for cases that are pending

in the current week, on adoptions. It is possible that customers also consider wait times for cases

that were closed in the past, when making an adoption decision. To account for this, we build two

moving average variables – by taking a moving average of our average wait time variable over the

past 4 and 8 weeks.

In columns (1) and (2) of Table 5.2, we use our two IVs to show the impact of a 4-week moving

average of average wait time for service on adoptions. In columns (3) and (4), we show the impact

of an 8-week moving average of average wait time for service on adoptions, using our two IVs. As

before, IV1 (in columns (1) and (3)) is based on the geographical dispersion of new or workshop-

ready service cases and IV2 (in columns (2) and (4)) is based on the weather along the logistic

van routes. The moving average in consecutive weeks is highly correlated because of overlapping

pending cases, in both the 4 or 8 week lookback period. As a result, the variance of the moving
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average wait times is lower than that of our original measure of average wait time for service. The

variance in the moving average variable is further reduced when we include branch-month fixed

effects and use IV specifications. To address this, in the IV specifications, we use branch-half year

fixed effects. To control for seasonality across the 15 months of our data, we also include month

fixed effects. We continue to include all other controls used in Table 5.1.

Results from columns (1) - (4) of Table 5.2 continue to show a strong negative impact of

service wait times on adoptions. This suggests that the impact of service wait times on adoptions

is persistent over time and depends on past service as well. Comparing the magnitude of the

estimates of the two IVs, i.e., comparing estimates in (1) and (3) with (2) and (4), we find that

customers are particularly sensitive to past wait times associated with pending workshop cases. In

Online Appendix A3, we further validate our results using additional measures of service wait time

including exponentially smoothed moving average wait time variables.

(1) (2) (3) (4) (5)
IV1 IV2 IV1 IV2 Poisson Model

4 Week Moving Avg Wait for Service (days) -0.058* -0.138**
(0.03) (0.06)

8 Week Moving Avg Wait for Service (days) -0.097 -0.169**
(0.06) (0.08)

Cases at workshop from other branches (#) -0.004**
(0.00)

Cases started in week (#) -0.013 -0.152* -0.014 -0.133
(0.03) (0.08) (0.03) (0.08)

Installed base (kWp) 0.239*** 0.292*** 0.230*** 0.314***
(0.04) (0.05) (0.05) (0.05)

Days of bad weather (#) -0.020 -0.638 -0.066 -0.643
(0.10) (0.45) (0.10) (0.46)

Branch-Half Year Fixed Effects Yes Yes Yes Yes
Branch-Month Fixed Effects Yes
Month-Year Fixed Effects Yes Yes Yes Yes
Week of Month Fixed Effects Yes Yes Yes Yes Yes

KP Wald F statistic 57.347 16.282 27.027 14.398 -
Number of Branch-Half Years 65 126 64 126
Number of Branch-Months 638
Observations 1,268 2,534 1,182 2,411 2,703
Dependent variable is the number of adoptions in a branch-week. Robust standard errors in
parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 5.2: Extensions to main analysis

In our sample, service cases that involve taking faulty products to the workshop incur the longest

wait time. Also, the results in Tables 5.1 and 5.2 indicate that customers are highly sensitive to

service delays arising from the workshop. One of the major reasons for delay at the workshop is

congestion at the workshop, i.e. a backlog of service cases that require repair or replacement at the
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workshop. We directly assess the impact of this operational bottleneck on adoption in the branches,

using the following reduced form specification:

Adoptionbw =Branch.monthbw + δ1Cases.at.workshop.from.other.branchesbw

+Week.of.monthw + νbw
(2)

This specification is similar to Equation 1, with two changes. First, instead of using average

wait time for pending cases as a measure for timeliness of service, we consider the impact

of an operational bottleneck, namely, congestion at the workshop. For each branch-week,

Cases.at.workshop.from.other.branchesbw measures the average number of cases from other

branches that have been pending at the workshop in the last three weeks. Second, by considering

only cases pending at the workshop from other branches, we identify a source of exogenous variation

in after-sales service experience stemming from this operational bottleneck. We continue to control

for differences across branches and for seasonality using branch-month fixed effects and week-of-

month fixed effects. Since the number of workshop cases that are pending from other branches

is not affected by the sales team’s or the branch technician’s decisions at the focal branch, other

controls used in Equation 1 are not relevant here.

Our results from a Poisson model in column (5) of Table 5.2 confirm that congestion at the

workshop in Kampala hurts adoptions at the branches. One unit increase in the congestion at the

workshop leads to a decrease in the number of adoption by 0.4% (p-value=0.047). Thus, a direct

way for our partner company to increase adoptions (and sales) is to reduce congestion at their

workshop.

5.3. Mechanism

Our results indicate that the service experienced by existing customers affects purchasing decision

made by adopters. This suggests that word-of-mouth is a likely channel through which after-sales

service affects adoptions. We first discuss model free evidence that points towards this mechanism.

Later, we show that the number of customers acquired through referrals provided by existing

customers depends on the service wait time recently experienced by the referring customers.

To document model-free evidence, we develop a topic model using data from a net-promoter score

survey conducted by our partner company in 2016. The company reached out – through phone

calls made by customer care representatives – to 1,000 randomly selected existing customers who

were at different stages in their relationship with the company. The survey included two questions

relevant to our study. The first asked customers to self report (on a scale of 0-10) how likely they

were to refer the company’s products to their friends or family. Customers who gave a response

above 8 on this question are coded as promoters, while those that gave a response below 8 are

coded as non-promoters. Promoters are more likely to provide positive word-of-mouth about the



26 Kundu and Ramdas Timely After-Sales Service and Technology Adoption

company’s products than non-promoters. The second question asked customers to list what the

company should be improving upon. Customers provided a verbal response to this question, which

was typed up by a customer care representative.

Figure 5.1: Structural Topic Model – Promoters vs. Non-Promoters

Note: This Figure shows differences in the views of promoters vs. non-promoters regarding what the company should

improve upon. The model identifies groups of words that were often spoken close together to generate unlabeled

‘topics’. Based on the top five most frequently spoken words in each topic, we classified the topics as – prices, batteries,

service, and quality/ installation.

From this survey data, we built a Natural Language Processing (NLP) based structural topic

model, as shown in Figure 5.1. The topic model indicates that customers want the company to

improve along four dimensions – reduce prices, improve batteries, improve service and improve

product/ installation quality. More importantly, the model shows that promoters and non-

promoters are concerned about different aspects of the company. Promoters are concerned about

price and battery quality, whereas, the non-promoters are concerned about after-sales service and

product/installation quality. Moreover, the difference in the estimated probability of customers

in each of the two groups talking about each topic is statistically different from zero. Figure 5.1

suggests that customers who experience poor after-sales service are less likely to promote the

company’s products and refer new customers to the sales teams at the branches.
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Next, we use referral data provided by our partner company to test whether wait time for service

affects the number of customers acquired through referrals from existing customers. In the last six

months of our study, March - August 2017, our partner company started a formal referral program.

Every month, existing customers were gifted 30,000 UGX (∼8 USD) for each customer acquired

through their referral. In the six month period, 1221 new customers were acquired through referrals

provided by 470 existing customers. We will examine how the variation in the wait times for these

470 customers affect their referral numbers. Around half of the customers who referred others had

at least one unresolved service case at some point in the six month period. Using this data, we run

the following customer-level specification:

Referralscm =Customerc +λ1Days.waiting.for.servicecm

+λ2Num.products.purchasedcm +Month.yearm +ωcm

(3)

Here, Referralscm refers to the number of customers acquired through referral from customer c

in month m. Days.waiting.for.servicecm refers to the number of days the referring customer has

been waiting for service by the end of the month (number of days counted from the start of each

service case). Num.products.purchasedcm denotes the number of products the referring customer

bought in the focal month. We control for the number of products bought by the referring customer

in the focal month because recently bought products can affect the number of referrals provided

by the customer, and can also affect the number of service cases the customer faces. For example,

if a customer buys a solar home system and multiple appliances, the chance of an item failing

increases. We control for seasonality using month-year fixed effects.

Results from the Poisson models in Table 5.3 suggest that the number of customers acquired

through referrals from existing customers depends on the wait time for service experienced by

referring customers. Column (1) shows that when wait time for service experienced by a referring

customer increases by a day, the number of customers acquired through her referral decreases by

1.4% (p = 0.019). From column (2), we find that customers are also sensitive to waits for service

in the past. When the wait time for service experienced by a referring customer (averaged over

the last three months) increases by a day, the number of customers acquired through her referral

decreases by 5.6% (p = 0.001). In columns (3) and (4), we examine whether wait times experienced

by existing customers nonlinearly impact the number of customers acquired through their referrals.

In column (4) we find that customers whose average wait for service in the last three months

exceeds three weeks provide less than three times (p = 0.001) the number of referrals as those

with no outstanding service cases in the last three months (i.e., the base case). The impact of

average service wait times on referrals when customers wait less than three weeks is not statistically

different from the base case. Results in column (3) follow the same direction as in column (4) but

are not statistically significant at the ten percent significance level.
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(1) (2) (3) (4)
Customers Customers Customers Customers

Referring customer variables Acquired (#) Acquired (#) Acquired (#) Acquired (#)

Wait for service (days) -0.014**
(0.01)

Avg wait for service in last 3 months (days) -0.056***
(0.02)

Wait for service <= 3 weeks -0.053
(0.19)

Wait for service > 3 weeks -0.618
(0.41)

Avg wait for service in last 3 months <=3 weeks 0.030
(0.28)

Avg wait for service in last 3 months >3 weeks -3.369***
(0.99)

Total products bought (#) -0.265 -0.235
(0.37) (0.38)

Total products bought in last 3 months (#) -0.677 -0.819
(0.51) (0.50)

Customer Fixed Effects Yes Yes Yes Yes
Month-Year Fixed Effects Yes Yes Yes Yes

Number of customer 470 319 470 319
Observations 2,797 1,276 2,797 1,276
Poisson fixed effects regressions drop observations of referring customers that do not have variation in the number of
customers acquired through their referrals in the six months. We also lose observations in column (2) and (4) as we
consider variables lagged over three months. Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 5.3: Impact of service wait time of referring customers on customers acquired through
referrals

The median time difference between a new customer being referred by an existing customer and

the customer being acquired (i.e., purchasing their first product) is four days. This short time span

suggests that the acquired customer is influenced by the referring customer’s service experience and

not through other channels. Our results continue to hold if we only consider a subset of the referral

data where the time difference between being referred and being acquired is below the median.

These results indicate that word-of-mouth is indeed a critical channel through which after-sales

service experienced by existing customers affects adoption of solar home systems in rural off-grid

communities in Uganda.

We have highlighted one mechanism through which word-of-mouth can affect adoption – a formal

referral system. There are two other plausible mechanisms. First, existing customers may share

their experience of after-sales service with new customers informally. Potential adopters might also

observe the service issues being experienced by existing customers in their network. Second, in

any week, the sales team at a branch may decide to reduce its sales efforts in areas within its

jurisdiction that are experiencing high wait time on pending service cases, because they expect

lower sales in these weeks due to negative word-of-mouth. Due to data limitations, we are unable to

examine these channels. In our analysis, we find that there is a strong negative impact of long wait
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times for service on customer acquisition, at our partner company. It is possible that customers

who are happy due to quick resolution of service cases provide positive word of mouth and improve

customer acquisition. Due to the lack of details of causes and solutions of the service cases and

customer satisfaction after case completion, we are unable to test this.

6. Conclusion

Our study sheds light on a previously understudied driver of technology adoption – customers’

post-purchase experience of after-sales service. Our results suggest that customers in emerging

markets are highly sensitive to service wait times. A one day increase in average wait time for

service can decrease adoptions by 0.76% to 4.63%. We find that the relationship between wait

times and adoptions is heterogeneous and depends on the types of pending service cases. We also

find that capacity limitations at a repair workshop hurt product adoption. Estimates such as ours

can help firms determine the appropriate size of their service teams, to better allocate resources

to reduce operational bottlenecks that lead to long wait times. They can also inform modeling

assumptions in future research in this area. Our analysis highlights the value of micro-level data

for informing decision-making in emerging market firms. Methodologically, we introduce two new

geo-spatial IVs that can be relevant in other settings as well.

Another important aspect of our study is that we provide direct evidence on the role of word-

of-mouth in customer acquisition. Using customer-level data on referrals, we find that the number

of customers acquired through referrals from an existing customer decreases by 5.6% when her

wait time for service (averaged over last three months) increases by a day. Thus, negative word-of-

mouth generated by long wait times can significantly hurt the sales of technology firms in emerging

markets. In order to reduce service wait times, solar providers can either build a strong in-house

service team or partner with value-chain specialists that focus on repair of solar home systems.

Currently, such value-chain specialists, are rarely present in emerging markets. Our results suggest

that there is a strong value proposition for this type of business model.

The recent influx of private investments into the solar sector in emerging markets has enabled

off-grid solar providers to aggressively pursue customer acquisition (e.g., see GOGLA 2018). To

understand the practical implications of our results, we talked with both providers and investors

who are active in the sector. We learned that off-grid solar providers and investors consider after-

sales service to be important to ensure (i) low default rates by credit customers who make periodic

payments to the solar provider and (ii) repeat purchase by existing customers and their growth

on the “energy ladder”. Our interviews suggest that after-sales service is not viewed as central to

the customer acquisition strategies of off-grid solar providers and investors. Against this backdrop,

our results suggest that investors and firms should invest in after-sales service, to expand market

share.
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Around 14% of the world’s population does not have access to electricity. Ninety-five percent

of this unserved population lives in sub-Saharan Africa and Asia. Thus, reduced adoption of solar

technology due to long service wait times has a direct cost on the socio-economic development of

off-grid communities that are served by off-grid solar providers in these regions. Our results are

also relevant for policy makers who aim to improve the socio-economic lives of people living in

these regions. Poor after-sales service can reduce consumers’ trust in a technology, thereby stalling

adoption. Policies that incentivise technology companies to invest in timely after-sales service can

spur rapid adoption. Our IVs also reflect the role of infrastructure, especially roadways, in reducing

service wait times. Importantly, public sector investment in infrastructure can substantially improve

adoption of solar technology in rural communities in emerging markets.

To the best of our knowledge, we provide the first direct evidence of the impact of timely after-

sales service on customer acquisition through technology adoption. While a great many researchers

have studied diffusion models since the seminal work of Bass (1969), the focus has mostly been on

market conditions, marketing variables or customer heterogeneity as drivers of technology adoption

(Geroski 2000). We find that an important operational metric – timely after-sales service – also

drives technology adoption. Thus, our results complement existing research which suggests that

affordability, awareness and tangible aspects of quality are important drivers for uptake of new

technologies in emerging markets (Dupas 2014, Miller and Mobarak 2014).

We focus on one aspect of after-sales service, the wait time for service. There remain other

aspects of after-sales service that could affect technology adoption in emerging markets. For

example, Calmon et al. (2019) build a theoretical model to show that reverse logistics which

supports higher refunds for regret-returns can improve adoption of life-improving technologies

in emerging markets. Future studies can identify other operational strategies and bottlenecks

that can expedite technology adoption. This domain of research is particularly relevant today as

the private sector is getting increasingly involved in providing a variety of new technologies and

services to consumers in emerging markets.
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