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Abstract: We implemented deep learning models to examine the accuracy of predicting a single 

feature (sheet resistance) of thin films of indium-doped zinc oxide deposited via plasma sputter 

deposition by feeding the spectral data of the plasma to the deep learning models. We carried out 

114 depositions to create a large enough dataset for use in training various artificial neural network 

models. We demonstrated that artificial neural networks could be implemented as a model that 

could predict the sheet resistance of the thin films as they were deposited, taking in only the spectral 

emission of the plasma as an input with the objective of taking a step toward digital manufacturing 

in this area of material engineering. 
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1. Introduction 

Transparent conductive oxides (TCO) are materials which have attracted a 

significant amount of attention due to their vast application areas. They are an essential 

part of various optoelectronic devices, such as light emitting diodes (LEDs), thin-film 

solar cell modules, flat panel displays and flexible electronics. Physical vapor deposition 

(sputtering) under vacuum is one of the proven industrial methods of depositing thin 

films of these materials [1]. During the sputter deposition of materials, the sputtering 

conditions govern the way that the atoms are deposited and laid on the substrate surface 

as a thin film coating. The arrangement of the atoms in materials such as TCOs will 

ultimately define the work function, electron affinity, band-gap and all relevant functional 

parameters of the as-deposited material. Unlike standard laboratory chemical reactions, 

which give significant parameters of choice to alter during the reaction, the plasma sputter 

deposition technique can only be altered in terms of the operating chamber pressure, 

plasma power, the trajectory angle of sputtered atoms and distance between the 

magnetron and the substrate surface, etc. For example, researchers who apply this 

technique for TCO preparation usually report their findings by stating the condition of 

the sputtering process, such as chamber pressure, plasma power and the gas composition 

of the chamber during deposition. Furthermore, when moving from one sputter machine 

to another, depending on the dimensions of the chamber, size of the targets and a few 

other design related issues, TCO coatings with different properties can be obtained, even 

if the sputtering conditions are maintained, according to an earlier report. As such, to 

achieve a particular thin film with certain features and functionality, multiple trial and 

error experimental runs are required to fine tune a machine to produce a specific desired 

coating. This means that, to fully digitize the sputter deposition process, significant 

constrains will arise. This study focused on the spectral emissions of the plasma, using 

them to predict the properties of the thin films deposited via the process. Certainly, the 
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plasma in the sputtering procedure is the core of the reaction and fundamental to the 

deposition of the thin film. However, characterizing a plasma through optical 

spectroscopy is nothing new [2–8]. The diagnosis of laboratory plasma is usually carried 

out by optical emission spectroscopy (OES), through which numerous analytical 

techniques are established to determine certain plasma properties, such as electron 

density, plasma temperature, element recognition and qualification of elements present 

in the plasma. 

Such fundamental plasma physics-related investigations are complex; extensive 

expertise, as well as time and effort, are required to assess them. We briefly looked into 

the concept of the plasma temperature calculation to appreciate these complexities. 

The radiative behaviour of the atomic constituents of any plasma can only be 

predicted if the expected population of its possible states are known and the atoms obey 

the Boltzmann distribution for every possible state and radiation energy density to 

assume a thermal equilibrium condition is present [4–9]. However, creating such a 

condition in the laboratory would be almost impossible. As such, the concept of local 

thermal equilibrium (LTE) condition was considered. LTE can be described as a state 

where Boltzmann and Saha equations, which govern the distribution of energy level 

excitation and ionization temperature, are equal to the Maxwell–Boltzmann distribution 

of free electron velocities [8–10]. Achieving the LTE condition depends on defining the 

plasma by a common temperature T and the existence of sufficient large electron density. 

McWhirter proposed a criterion where there is a need for a critical amount of electron 

density for LTE conditions to exist [11–14]. 

The temperature of ions and electrons in the plasma are directly proportional to their 

random average kinetic energy, while Maxwell distribution governs the distribution of 

velocities for each particle when thermal equilibrium conditions apply. Under the LTE 

conditions, the same temperature is assumed for electrons, ions and atoms in the plasma 

and the plasma temperature is (considered) the temperature of the electrons [4]. 

From the plasma spectral emissions, two spectral lines can be chosen from the same 

species (for example argon) and ionization stage, where there is a large difference in the 

upper energy level. Ultimately, by taking a ratio (I1)/(I2) of the intensities of the selected 

lines, the temperature of the electron can be calculated in electron volts [15]. 

This method is the simplest method of calculating the temperature of the plasma and 

its accuracy is conditional on using two lines with a maximum difference in their upper 

energy states. 

Another feature of the plasma: the electron density can be calculated using various 

methods, two of which are (1) applying the Stark broadening relationships or (2) applying 

the Saha-Boltzmann equation. The Stark broadening is caused by the electric field of 

electrons and ions interfering, which results in the broadening of the spectral line. The 

interference of the mentioned electric fields causes fluctuations in the field of plasma as 

the radiating atoms are surrounded by the interfering electrons and ions. The electric field 

of the electrons or ions causes a perturbation of energy levels close to the continuum while 

simultaneously affecting the external applied electric field—which ultimately causes the 

observed spectral broadening [15–17]. 

2. Modelling Background 

Since the 1980s, there have been many attempts to model the magnetron sputtering 

discharge. These models can be classified into purely mathematical models or analytical 

models. Theoretical models can be subclassified into kinetic models, fluid models or 

plasma physics-based models. These models need to include the calculations of the 

electric field based on the applied external voltage and distribution of the charged plasma 

species. The sputtering process can be classified into three stages: ejection of the particles 

from the target, particle transport and, finally, condensation on the substrate surface. This 

means the complete model of this process needs to describe discharge physics, plasma 
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physics and material surface interactions. Some of the models that have been 

implemented to date are summarized as follows: 

1. Analytical models rely on simple analytical formulae to describe the behaviour of the 

glow discharge parameters, such as the current and voltage. They are simple and 

easy to calculate; however, they suffer from accuracy and are only applicable for 

limited ranges of deposition conditions [16]. 

2. Pathway models are based on a simple approach of following the sputtered and 

working gas species within the discharge to gain understanding of the discharge 

processes in pulsed magnetron sputtering discharges. It was originally developed to 

determine the ionized fraction of the film-forming material arriving at the substrate 

and to explain the low deposition rate observed in some discharges [17]. 

3. Fluid models define the plasma as a continuum and are based on continuity and 

transport equations for the various discharge species, along with the Poisson 

equation, in order to obtain a self-consistent electric field distribution. The fluid 

model has an advantage in terms of easy computing. However, the validity of using 

a fluid model to describe a magnetron sputtering discharge has been questioned [18]. 

4. Ionization region models are based on defining an ionization region which is volume-

averaged and time dependent. The region is the visually observed bright glowing 

plasma near the surface of the target. Via this model, the time evolution of neutral 

and charged species and the electron temperature in pulsed magnetron sputtering 

discharges can be calculated. The model is constrained by experimental parameter 

inputs—such as the geometry and the working gas pressure, the working gas, sputter 

yields and target species—and a reaction system setup for these species, in the sense 

that it first needs to be adapted to an existing discharge and then fitted using two or 

three parameters to reproduce the measured discharge current and voltage 

waveforms [19,20]. 

5. Hybrid models, as the name suggests, intend to combine the precision of kinetic 

models with the computational simplicity of the fluid model. In the magnetron 

sputtering discharge, the secondary electrons are emitted from the cathode target 

surface and accelerated to high energies within the cathode sheath. Often, the 

electrons are split up into two groups: the so-called fast electrons, with energy above 

the threshold for inelastic collisions, which are treated with a kinetic Monte Carlo 

model, and slower electrons that are described with a fluid model. In the hybrid 

approach, the ions and bulk electrons are treated by the fluid description and the fast 

electrons are treated by the particle model [21]. However, this approach has been 

criticised by Kolev and Bogaerts [22]. 

6. In Direct Monte Carlo simulations, several test particles, representing many plasma 

species, are followed. The movement of the test particles is influenced by applied 

forces and collisions with other particles. Direct Monte Carlo simulations have been 

used to predict the spatial distribution of the ionization [23] and ion trajectories [24] 

in a planar magnetron sputtering discharge. 

7. Boltzmann solver is based on numerically solving the Boltzmann equation to obtain 

the electron energy distribution within the discharge. This is an accurate and widely 

implemented model in discharge physics. However, in the magnetron sputtering 

discharge, the Boltzmann equation includes a Lorentz force term that leads to 

mathematical complexity. Therefore, this approach has only been applied 

successfully in the case of a cylindrical magnetron sputtering discharge that consisted 

of a coaxial inner cathode and an outer anode [25–28]. 

8. Monte Carlo collisional simulations are based on the same principle as the discussed 

Monte Carlo simulations. The trajectories of many individual species are calculated 

applying Newton’s laws, and their collisions are treated by assigning random 

numbers [29]. Furthermore, the electric field distribution is also calculated self-

consistently from the positions of the charged species using the Poisson equation. 

This approach provides spatial distribution of the charged particles projected onto a 
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grid, along with the electric field across the discharge, illustrating charge density 

distribution, from which the electric field distribution can be calculated. It is the most 

powerful numerical method to explore the magnetron sputtering discharge. 

However, it relies on significant computational power as it tries to describe the 

detailed behaviour of charged species along with solving the Poisson equation [30]. 

All of these are methods that require precise expertise in the field of plasma physics 

and statistical mechanics. However, at operational levels and where industrial scale 

deposition is considered, such an extensive and detailed knowledge of plasma physics 

and implementation of complex mathematical models will be impossible to implement. 

Furthermore, the ionization processes in magnetron sputtering discharges seem not 

to be uniformly distributed along the racetrack. Magnetron sputtering processes are 

known to demonstrate inhomogeneous plasma with distinct regions of increased light 

intensity that seem to float along the racetrack. The appearance of rotating dense plasma, 

referred to as spokes, have been known for a few decades [31–33]. 

The spokes are independent of the magnetron configuration and have been observed 

with both circular and rectangular or linear magnetron targets [34–37]. As such, the 

plasma may seem inhomogeneous. 

These inhomogeneities smooth out at high discharge currents to yield azimuthally 

homogeneous plasma [38,39], where power densities are above 3 kW·cm2. The reason for 

this observation can be explained through electron heating, resulting from a combination 

of acceleration of secondary electrons and pure Ohmic heating [40]. 

At the same time, the addition of a reactive gas leads to compound formation on the 

target surface, referred to as surface poisoning, which affects other parameters of the 

sputtering discharge, such as the secondary electron emission yield, the sputter yield, and 

the plasma composition near the target. It can even lead to alternation of the spoke shape 

[41] and decrease of discharge voltage upon addition of reactive gas, which can be 

correlated with an increase in the secondary electron emission [42,43]. 

In addition to instabilities propagating along the target surface (i.e., spokes), the 

plasma may also exhibit other instabilities. In particular, the plasma can oscillate in a 

direction normal to the target surface, which has been termed breathing instability [44,45]. 

Spokes and breathing instability usually superimpose [44]. 

Electrons arriving at a spoke reach a region of higher potential, and are thus 

energized, enabling them to cause localized excitation and ionization. This suggests that 

images of spokes can be taken as approximate images of the potential distribution [46]. 

Recent measurements by Held et al. indicated that the spokes had a higher plasma 

density, electron temperature and plasma potential than the surrounding plasma [47]. 

2.1. A New Approach 

The objective of this article and our research was to push all the mentioned 

complexities into the black box of an artificial neural network. With modern computing 

powers and artificial intelligence (AI)-based data assessment methodologies, we aimed to 

explore implementing an alternative approach in plasma diagnostics during the sputter 

deposition process to assess the qualitative parameters of thin films as they were 

deposited. We believe that artificial intelligence and deep learning can be the answer, if 

the objective is to fully automate and digitise the industrial-scale sputtering process. 

Artificial Neural Networks (ANNs) are the core of deep learning. They are powerful, 

scalable, versatile and highly complex, yet easy to implement with high level application 

programming interfaces (APIs) such as KERAS and TENSORFLOW in Python 

programming language. The origins of ANNs can be dated back to the 1940s; however, 

their complexity and subsequent need of powerful computing restricted their application. 

Today, with the emergence of modern powerful and fast computers and commercial 

entities such as Google and Facebook, along with the availability of large digital 

databanks, we are observing an explosive emergence of ANNs and they are 
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outperforming all existing machine learning models that were once ahead in terms of 

popularity and application, such as support vector machines (SVM). Some theoretical 

limitations associated with ANNs, such as the model getting locked in local minima of a 

function, seem to be benign in practice. In fact, multidimensional data with their complex 

function gradients are least affected by the local minima restriction. 

The unit constructs of ANNs are supposedly a mimic of biological neurons and their 

interactive connections. However, the mysterious and extremely complex nature of 

biological neurons is at another level of excellence yet to be explored by neurologists. As 

such, the term neuron as used in describing ANNs is only a term used for description 

purposes. The term perceptron for each unit is a more realistic description of the ANNs 

constituents. The perceptron was invented in 1957 by Frank Rosenblatt. The perceptron 

computes a weighted sum of its inputs and applies a function to the weighted sum. Figure 

1 illustrates the basic mathematical operation of a single preceptron. For an in depth 

understanding of artifical neural networks and deep learning, see [48,49]. 

 

Figure 1. A simple representation of the operation of single perceptron fed with three data (X0,X1,X2) 

inputs to give an output (ŷ) which needs to be close to a known (y) value. The perceptron will apply 

weights to the inputs, sum up and apply a function (σ) on the outcome, and will adjust the weights 

through a forward and backward loop by implementing a loss function (error factor) until the 

selected weights result in ŷ being as close as possible to y value. 

Ultimately, ANNs are a multilayer of perceptron’s constituting input layers, hidden 

layers and output layers. When an ANN contains a deep stack of hidden layers, it is 

referred to as a deep neural network (DNN). 

The idea is to feed multi-dimensional data (vector) via the input neurons of a DNN 

leading to an output value from the output layers. This output will be simultaneously 

compared with experimental outputs and the model will train itself by adjusting the 

weights (Figure 2) associated with the perceptron at each layer. The model learns through 

the process of back propagation, introduced by David Rumelhart [49], which in its core 

implements Gradient Descent to compute the gradient of the networks error. Detailed 

discussion of the theory and mechanism of deep learning is beyond the scope of this 

article, as it is an exponentially growing field in computer science and artificial 
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intelligence. In this article, we explored the feasibility of implementing deep learning 

models as a step toward digitising the sputtering process. 

 

Figure 2. A simplified illustration of the backpropagation process and adjustment of weights by a 

perceptron. New weights are calculated by subtracting the old weight from the product of the 

learning rate and the derivative of the loss function. 

The concept of this experimental trial is illustrated in Figure 3, where, during the 

deposition of the films, the spectral data from the plasma was gathered. Once the 

deposition was complete, the sheet resistance of the film was calculated via a four-point 

probe measurement system. 

 

Figure 3. Illustration of the sputtering process and the experimental concept. Spectral data of the 

plasma is collected during the deposition process and the sheet resistance of the deposited films are 

measured. σ is the sheet resistance, V: voltage, I: current, w is the width and L is the length of sample 

region to be measured. (a) is illustrating plasma deposition; (b) is illustrating the method by which 

spectral data were collected via a collimator and optical fibre; (c) is the spectral data; (d) is a sample 

substrate coated with the thin film; (e) represents the method of sheet resistance calculation. 

In our experiments, the spectral emissions at each 0.2 nm of the spectral data or area 

under emission peaks at 100 nm intervals acted as the ‘x’ values described in Figure 1 and 

the sheet resistance of the film served as the ‘y’ value. 
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2.2. ANN Modelling 

Figure 4 visualises the theoretical concept of our experiments with direct ANN 

models. The spectral data, in form of the vectors containing the area under the peaks in 

linearly spaced 100 nm spectral gaps or in the form of vectors composed of emission 

intensity at each 0.2 nm interval segment of the plasma spectrum, were fed into a deep 

network of perceptrons (neurons). The actual sheet resistance of the films associated with 

each spectral data vector was also fed into the neural network to enable the learning 

process of the model. 

Once the model was trained, it was provided with spectral data without film sheet 

resistance to predict the conductivity of the film, purely based on the spectral emissions 

of the plasma as the film was being deposited. 

 

Figure 4. Illustration of the theoretical concept. (A) In this approach, spectral data of the plasma in 

form of point-by-point spectral intensity values are fed into a neural network model and (B) in this 

approach, spectral data of the plasma in the form of area under the peaks at certain intervals (50 nm 

windows) are fed into a neural network model. The model is also fed with the sheet resistance 

values, physically measured to enable the model to learn from the spectral data to predict the sheet 

resistance value. (The shape and size of the neural network does not represent the actual models 

developed and is only for illustration). 

2.3. CNN Modelling 

In a separate attempt, we converted the spectral data of the plasma emission into an 

image by converting the emission intensity vectors into a matrix. This matrix could then 

be converted into an image where each spectral data point acted as a pixel of the image. 

We then used these images to train a convolutional neural network model and predicted 

the sheet resistance of the films associated with each deposition. Convolution is a 

mathematical operation wherein a signal is convolved with a kernel and, in CNNs, it 

technically reflects implementing a cross-correlation. The kernels (of filter maps) extracted 

feature maps from the signal. In our experiments, the spectrum of the plasma was 

converted into an image and, using various random kernels in a CNN model, features 

were extracted from the image and ultimately used for regression analysis when they 

were converted into a flat single vector (see Figure 5). These kernels were initially 

randomly chosen during the model training and were learned through a gradient descent 

process. Ultimately, the convolutional approach was intended to reduce the data size and 

focus on important features from the data. Discussing the mathematics and structure of 

these models was beyond the scope of this work; however, for further reading refer to 

[50–53]. 
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Figure 5. Illustration of implementation of a convolutional neural network linked to a regression 

multilayer ANN model for predicting the sheet resistance of the thin films from an image generated 

from the spectral emission of the plasma. 

3. Experimental 

Deep learning requires large data banks. Data, in the form of feature columns and 

expected output columns in large quantities, are required for training these models. As 

such, the main task of our research was to gather a large enough data bank by 

continuously operating a sputtering deposition system, obtaining spectral data and 

measuring an output value associated with the samples prepared during the 

experiments—in this case, the sheet resistance of the thin films. The data implemented in 

this article were the result of continuous operation of a machine over a period of one year. 

Thanks to the ongoing extensive research conducted by data science researchers who have 

advanced the progress on deep learning models, these models are now powerful and easy 

to implement. Nonetheless, large datasets are fundamental to their implementation and, 

as such, data acquisition remained at the core of this research. 

3.1. The Instruments 

The sputtering instrument used for these experiments was a V6000 unit that was 

manufactured by Scientific Vacuum Systems limited (SVS Ltd., Wokingham, UK) with a 

vacuum chamber of ~40 cm × 40 cm × 40 cm dimesnsion with three 6” confocal magnetrons 

holding targets of the choice materials to be deposited. The distance between the target 

surface and substrate (centre to centre) was 15 cm at 45° angle. The working gas used in 

the experiment was a 95% argon −5% hydrogen (Ar + H) single-source mixed-gas cylinder. 

During each deposition procedure, spectral data from the plasma was obtained by 

placing an in-vacuum collimator optic probe (Plasus GmbH, Mering, Germany) at a right 

angle to the glow of the plasma. The probe was installed on the magnetron so that it 

horizontally collected light from ~1.5 cm away from the surface of the target and at 4 cm 

from the edge of the target. The collected light was then guided to a Plasus Emicon 

Spectrometer (Mering, Germany), which generated a detailed spectral plot of the 

emission. Emicon software (Plasus GmbH, Mering, Germany) coupled to the 

spectrometer logged the spectral data of the plasma and was also programmed to 

calculate the area under the peak of the spectral window segments (see Figure 4). A Jeti 

Specbos 1201 spectrometer (Jena, Germany) was used as secondary spectral monitoring 

system. 

3.2. The Experiments and Results 

As discussed, deep learning models rely on significant amounts of data for training; 

hence, the core of our research involved carrying out as many depositions of indium-

doped zinc oxide (IZO) thin films as possible, gathering spectral data from the plasma and 

physically measuring a single feature of the prepared sample (sheet resistance) to be 

predicted by deep learning models. An important parameter of a transparent conductive 
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oxide to be considered is the sheet resistance of the thin films, hence we focused only on 

this property of the films. 

Overall, 114 samples were prepared. Each coating deposition carried out for a period 

of one hour using 300 watts of radio frequency-based plasma power under ambient 

temperatures. The substrate was rotating at 10 rpm. The working gas was an 

Argon/Hydrogen mix (Argon 95%, Hydrogen 5%) from a single cylinder source. The 

parameter that was changed during the coating of the samples was the chamber working 

pressure which, as discussed earlier, can significantly alter the microenvironment of the 

plasma and sputtered atoms. Thin film depositions were carried out under working 

pressures of 1 × 10−3, 1.5 × 10−3, 1.9 × 10−3, 2.1 × 10−3, 2.7 × 10−3, 3.3 × 10−3 and 4.1 × 10−3 mbar. 

Multiple samples were prepared under the above pressures and the spectral data 

from the plasma were gathered. After each deposition, the sheet resistance of the films 

was measured using a Jandel RM3000 four-point probe system. 

The data were tabulated such that each row represented a sample, the last column 

represented the calculated sheet resistance and other columns, from start to end, 

represented the signal intensity that the spectrometer had calculated at each emission 

wavelength point to precision of 0.2 nm. 

Figure 6 demonstrates the spectral peaks of the plasma under four different pressures 

in a comparative presentation. It illustrates the emission peaks spectra and their 

associated intensity, comparing 2.1 mbar against 3.7 mbar and 1 mbar against 4.1 mbar. 

 

Figure 6. Spectral emission from the sputtering plasma under various chamber pressures. 

Comparing chamber pressures of 2.1 mbar and 3.7 mbar (left) and comparing 1 mbar and 4.1 mbar 

chamber pressures (right). The objective is to have the model learn the spectral features of the 

plasma and predict the sheet resistance of the thin films of indium-doped zinc oxide thin films 

purely from these spectral features, without the need for delving into complex plasma physics 

models. 

We undertook three approaches toward preparing and implementing the data to 

train our neural network models: (a) an ANN-based integral approach with 50 nm spectral 

windows, (b) an ANN-based spectral approach and (c) a CNN-ANN-based spectral 

approach that deviated into computer vision and image recognition, wherein we 

converted the spectral data into two-dimensional scaled images, implemented an 

advanced computer vision deep learning convolutional neural network as an image 

recognition model and coupled it to a neural network model for regression analysis 

(Figure 7). 
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Figure 7. Conversion of the spectral plot of the plasma into 2D images formed from scaling the 

spectral values. Images were generated from standard scaled and min-max scaled spectral data. The 

images were then fed into a convolutional neural network model coupling image recognition and 

regression analysis. (a) is the original spectra, (b) is an image directly formed from the original 

spectra, (c) is an image formed from the standard scaling of the original spectra, (d) is an image 

formed from the min max scaling of the original spectra. 

3.2.1. The Integral Approach 

The integral approach proceeded with calculating the area under the spectral peaks 

in 50 nm intervals from 300 to 900 nm, giving us a data frame with 12 columns associated 

with these areas. This resulted in a data frame with 517 rows and 12 columns associated 

with peak area values, while the 13th column was a vector of thin film sheet resistance 

values. Figure 8 presents the structure of the neural network model for the integral 

approach to model construction, as well as the predictions of the model for sheet 

resistance of 24 randomly selected samples. The optimizer for this model was Adam [54], 

with a learning rate of 0.01 and Huber loss function [55]. 

 

Figure 8. The structure of the neural network model designed for training with the integral 

approach. The model is composed of five dense layers. Layers 1 to 5 have 30, 20, 8, 4 and 1 neuron/s, 

respectively, generating a total of 1219 parameters requiring computation. The model’s R2 value is 

0.795. 
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We observed a total of 24 predictions of sheet resistance by the model, as compared 

to the actual sheet resistance measured via a Jandel four-point probe system. The R2 value 

for the models’ predictions was 0.795 with a mean squared error of 0.7. 

However, rerunning the sample would demonstrate instability, which could be 

associated with the small size of the data frame. As discussed, neural network models 

require large datasets for training and our dataset, although large from a practical material 

engineering perspective, was comparatively small compared to standard datasets 

implemented in data science and machine learning. 

3.2.2. The Spectral Approach 

In the spectral approach, the objective was to use the peak intensity values across the 

spectrum from 195 to 1104 nm with a resolution of 0.2 nm. This approach would lead to a 

data frame composed of 113 rows and 4552 columns. All the negative values from the 

spectrometer signal (noise) were adjusted to 0. The columns of the data frame represented 

the ratio of the intensity of the spectral signal at each wavelength over the total sum of the 

intensity. The structure of the model and its predictions are presented in Figure 9. 

 

Figure 9. The structure of the neural network model designed for training with the spectral 

approach. The model is composed of eight dense layers. Layers 1 to 8 have 4551, 2000, 500, 300, 50, 

8, 4 and 1 neuron/s, respectively, generating a total of over 30 million parameters requiring 

computation. The model’s R2 value is 0.153. 

From the results presented in Figure 9, we can see that the model was significantly 

larger and more complex than the previous model handling integral data frame. The 

model had to handle over 30 million parameters compared to the 1219 parameters of the 

previous model, which was computationally very expensive. Nevertheless, the model’s 

statistical performance with R2 value of 0.15 was no match for the 0.795 R2 value of the 

previous model. 

Various neural network structures were constructed to handle the spectral data 

frame system; the model reported here was the best performing model by far. We decided 

to implement principal component analysis (PCA) on our spectral data frame to reduce 

its large dimensionality [56]. This was a form of feature engineering. By implementing 
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PCA, we reduced the number of feature columns from 4552 columns to only 12 columns. 

PCA extracted hidden factors from the dataset and defined data using a smaller number 

of components, which explained the variance in data. As such, it reduced the 

computational complexity. We then implemented these 12 principal components as the 

input for the neural model. The structure of the model and its predictions on physically 

measured samples are presented in Figure 10. 

 

Figure 10. The structure of the neural network model designed for training with the combined 

principal component analysis and spectral approach. The model is composed of seven dense layers. 

Layers 1 to 7 have 10, 10, 10, 10, 8, 4 and 1 neuron/s, generating a total of 349 parameters requiring 

computation; the model’s R2 value is 0.883. 

As presented in Figure 10, in the PCA/spectral data frame integration approach, the 

model outperformed our integral approach experiment with an R2 value of 0.883—

significantly better than the previous models. 

3.2.3. The Image Recognition Approach 

The spectral data collected between 200 to 1100 nm with a resolution of 0.2 nm 

created an array of 4500 data points. This array was converted into a matrix of shape (50, 

90). This matrix was then converted into an image where each value of the matrix 

represented a pixel value of an 50 pixel × 90 pixel image. This is illustrated in Figure 11. 

 

Figure 11. Converting a spectral plot (a) into an image (b). The spectral data are initially summed 

up and each peak value is calculated by dividing the original peak value over the sum. It is then 

converted into a matrix of (50, 90) shape. 
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The image generated directly from the spectra was used to train various 

convolutional neural network models. However, none of the models were able to learn 

from the image in its direct form as CNN models work efficiently with standardised 

values. The image pixel values were then scaled using two different normalising methods: 

min-max scaling and standard scaling. 

x(min max scaled) =
x − min (x)

max(x) − min (x)
 (1)

x(standard scaled) =
x − μ

σ
 (2)

New images were generated from the normalised values of the pixels associated with 

the original image. Two examples are presented in Figure 12. 

 

Figure 12. The original image (top) is converted to an image from normalised values via standard 

scaling (bottom left) and min-max scaling methods (bottom right). 

The normalised images were then used to train the model to predict the sheet 

resistances of the IZO films deposited via the associated plasma. 

The normalised images were then tested via similar convolutional models. The 

results are presented in Figures 13 and 14. Interestingly, the min-max scaled data resulted 

in best performance of sheet resistance prediction, as illustrated in the results and R2 

values, with standard scaled images showing R2 values of 0.642 and min-max scaled 

images showing R2 values of 0.897. 
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Figure 13. The structure of the convolutional neural network model designed for training with 

standard scaled values of the pixels in image of the spectra. The model is composed of two 

convolutional layers and two max-pooling layers which are then flattened and fed to a deep network 

with five dense layers. Where layers 1 to 5 had 5000, 5000, 100, 20, and 1 neuron/s, generating a total 

of 57,518,453 parameters requiring computation, the model’s R2 value was 0.642. 

 

Figure 14. The structure of the convolutional neural network model designed for training with the 

min-max scaled values of the pixels in images of the spectra. The model is composed of two 

convolutional layers and two max-pooling layers which are then flattened and fed to a deep network 

with five dense layers. Where layers 1 to 5 had 5000, 5000, 100, 20, and 1 neuron/s, generating a total 

of 57,518,453 parameters requiring computation, the model’s R2 value was 0.897. 
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The results so far indicated that min-max scaling of the data allowed the CNN model 

to perform more accurately on recognising the patterns and hidden features of the image. 

In the next step, as each image was technically a matrix of size (50, 90), we applied 

singular value decomposition (SVD) to every single image. The SVD decomposed the 

image matrix into three matrices: a U matrix, which spanned the column space of the 

image; a V matrix, which spanned the row space of the image; and a diagonal matrix 

holding singular values that were scalers associated with consecutive columns of U and 

V. The whole image was able to be reconstructed from the out product of U and V scaled 

by the diagonal singular value matrix. This is illustrated in Figure 15. 
The vectors in U and V were unit vectors. The associated singular value acted as a 

scaler which gave the magnitude to the outer product of these vectors. The condition 

number of a matrix reflects the spread of information within a matrix and can be obtained 

by dividing the highest singular value of a matrix over its lowest singular value. In our 

results, although both standard scaled and min-max scaled image matrices demonstrated 

similar condition numbers, the spread of information associated with each singular value 

was different when we performed SVD on the images. 

 

Figure 15. The singular value decomposition and reconstruction of a matrix. Once a matrix is 

decomposed, it can be reconstructed back layer by layer, where each layer is formed via the outer 

product of the vectors spanning the column space of the original matric and vectors spanning the 

row space of the matrix and the associated singular value. 

Figure 16 represents the (scree plot) typical spread of singular values for each layer 

of a decomposed standard scaled and min-max scaled matrix. In a min-max scaled matrix, 

the first singular value (the max value) held a higher percentage of the sum of all values 

compared to the standard scaled decomposed matrices. 
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(A) (B) 

Figure 16. The scree plot of singular values for (A) min-max scaled images and (B) standard scaled 

images. 

In the next step of our efforts to increase the accuracy of the CNN model, we 

reconstructed the decomposed spectral image matrices layer by layer (from a total of 50 

layers for each image) and trained the CNN model with images reconstructed from 

smaller layers—or even a single layer—of the SVD process. As the standard scaled whole 

images performed poorly before (see Figure 13, R2 value 0.642), we were seeking better 

performance from the min-max scaled values. However, to our surprise, an image 

reconstructed from the first single layer of the standard scaled images decomposed by 

SVD outperformed all our other CNN training efforts with an R2 value of 0.935. Most 

importantly, the model was the most stable in terms of its output on repeated trainings. 

Comparatively, reconstructing an image from the first single layer of a min-max scaled 

image performed very poorly in training the CNN model with R2 value of 0.74. 

This observation was very intriguing for us. The standard scaled original images 

performed poorly in training the CNN model, while the min-max scaled original images 

performed very well. Meanwhile, the first single layer reconstruction of a standard scaled 

image outperformed all models in terms of accuracy and stability. Hence, as we carried 

out these experiments in a set of chamber pressures, we decided to convert the 

reconstructed images from the first layer of the singular value decomposed original 

images into a spectral format. These results are presented in Figures 17 and 18. Each 

column in these figures represented four randomly selected spectral reconstructions of 

the plasma emissions from the first layer of the SVD of the original image, at a particular 

chamber pressure. 

 

Figure 17. Four randomly selected conversions of the first layer of the image decomposition via 

SVD, associated with process chamber pressures into a spectral format. For standard scaled images. 
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x-axis represents emission wavelengths and y-axis is emission intensity. To the naked human eye, 

these patterns won’t mean much, however the deep learning model is able to pick up features 

beyond human vision. 

 

Figure 18. Four randomly selected conversions of the first layer of the image decomposition via SVD 

associated with process chamber pressures into a spectral format. For min-max scaled images, x-

axis represents emission wavelengths and y-axis is emission intensity. 

The predictions of the CNN model from standard scaled image data are presented in 

Table 1. 

Table 1. Prediction of the thin film sheet resistance from a CNN model learning from the first layer 

of a singular value decomposed image of a plasma spectra (standard scaled). 

Predicted Real Relative Error 

7.598 7.5 1.31 

13.955 13.5 3.37 

7.360 7.5 1.87 

10.832 11.4 4.98 

9.967 9.6 3.82 

7.487 7.5 0.18 

10.893 11 0.97 

10.255 9.6 6.82 

9.377 9.6 2.32 

10.996 10.7 2.77 

10.518 10.7 1.71 

10.457 10.7 2.27 

7.467 7.5 0.45 

13.073 13.5 3.16 

11.098 11.4 2.65 

9.937 10 0.63 

7.329 7.5 2.27 

10.551 11.4 7.44 

10.290 10.7 3.83 

10.045 9.8 2.50 

11.811 10.7 10.38 

11.475 11 4.32 

10.474 10 4.74 
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The observed training performance associated with standard scaled first layer images 

may be explained by comparing images in Figures 17 and 18. Convolutional neural 

networks essentially operate by identifying specific features in an image. These features 

(and their detection within the black box of a deep neural network) are not very intuitive 

and sometimes mysterious. As such, standard scaling of the images that were constructed 

from the original plasma spectrum formed features that were packed in a particular 

column and row space of the image, while the min-max scaling resulted in feature 

distribution across other row and column vector spaces. However, as our long-term 

approach was to explore the suitability of deep learning models for moving toward 

digitised sputtering processes, we accepted the model’s performance. Nonetheless, this is 

an interesting topic, to be pursued by researchers with a primary focus on the actual 

engineering of deep learning models. 

The overall performances of all of our experiments, in terms of their predictive 

accuracy, are presented in Table 2. 

Table 2. The overall performance of the models and the data approach in our experiments. The R2 

value is the highest achieved for the CNN model approach. The stability reflects how repeatable the 

model’s consecutive R2 values were, i.e., how they differed from the max R2 obtained. Poor indicates 

a deviation of 0.15 points, moderate indicates 0.1 and good indicates 0.05, when the models were 

repeated ten times. 

Modelling Approach and Data R2 Stability 

ANN model, Integral approach 0.795 Poor 

ANN model, Spectral approach 0.153 poor 

ANN model, Spectral approach with PCA dimensionality reduction 0.883 Moderate 

CNN model, Standard Scaled 0.642 Moderate 

CNN model, Min Max scaled 0.897 Moderate 

CNN model, Standard Scaled, SVD first layer 0.934 Good 

CNN model, Min Max Scaled, SVD first layer 0.741 Good 

4. Conclusion 

Implementing deep learning models in spectral analyses of sputtering plasma has 

the potential to digitise the sputtering process, in the sense that, during the deposition a 

particular property of the film may be estimated purely from observing the characteristics 

of the plasma. Following different modelling approaches, as summarised in Table 2, the 

CNN model approach resulted in the highest R2 value with a good stability. The study 

showed that the accuracy of the results was dependent on the number of data points and 

number of process parameters considered. The accuracy also depended on the modelling 

approach followed. Certainly, our future attempts will involve explorations of other 

features of the samples, such as charge carrier concentration, mobility, crystal structure 

parameters and optical band gap. We also intend to vary other parameters of the 

experiment, such as sample rotation speed, incident angle of the magnetron to the 

substrate and their distance for predicting the functionality of the deposited films with a 

high degree of accuracy. 

At the same time, expert researchers in the fields of data science, AI and machine 

learning are developing more and more accurate algorithms, loss functions, back 

propagation models and optimisations to further enhance this science as a tool available 

to all other areas of science. Surely, the models presented in this report could be fine-tuned 

further and further in order to achieve higher accuracies. As such, the process of digitised 

manufacturing in the field of thin film depositions could significantly benefit from 

integrating the process of the AI, as illustrated in our study and related to functional 

properties, like sheet resistance of a TCO film. 

However, as discussed earlier, deep learning models require large datasets as input 

for the learning stage. Currently, academics in the fields of chemistry and material 
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sciences conduct numerous experiments and generate significant data, collectively. 

However, most of these data remain unused or are discarded when the desirable outcome 

from the experiment is not achieved. For example, lead researchers working on thin film 

perovskite solar cells produce numerous devices within their research groups and tend to 

keep for further study only those samples which perform above a certain threshold. Even 

then, most of the data remain unstructured and unnoticed. Machine learning models learn 

from data, irrespective of the data being associated to a poor performance or an optimised 

device. Our research is currently supported via a GCRF/EPSRC-supported initiative 

holding multiple partner organisations from two countries (India and the UK), 

collaborating on the development of new generation and disruptive thin film solar cells 

for affordable electricity for villages in India. Many of our collaborators have conducted 

(or do conduct) sputter deposition of thin films; however, during our inquest, we realised 

that only data associated with desirable outcomes are stored or structured, while huge 

quantities of data that are generated at great expense over significant amounts of time are 

wasted. 

In this paper, we noted the potential for further improvements in our model 

construction if we had more data (specifically from other sputter systems) which, 

unfortunately, were not available. However, our efforts within these limitations 

represented a step towards correlating digital datasets with the desired functionality of 

the TCO films with reasonable accuracy. Thus, this work will be of significance for 

optoelectronic industries using physical vapor deposition (sputtering, in this case) to 

realise a product with a high yield. Hence, in conclusion, we believe our results have 

suggested the necessity of the formation of a global repository, where data generated at 

each level of research by various research groups (such as material engineers, like us) will 

be made available for analysis and model training. Long term, this will reduce research 

and development costs and accelerate the development of novel materials and 

technologies—and will benefit industries as they move toward efficient and cost-effective 

scaling-up of their productions. 
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