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A B S T R A C T   

When switching between different tasks, the initiation of task switches may depend on task characteristics (difficulty, salient cues, etc.) or reasons within the person 
performing the task (decisions, behavioral variability, etc.). The reasons for variance in switching strategies, especially in paradigms where participants are free to 
choose the order of tasks and the amount of switching between tasks, are not well researched. In this study, we follow up the recent discussion that variance in 
switching strategies might be partly explained by the characteristics of the person fulfilling the task. We examined whether risk tendency and impulsiveness 
differentiate individuals in their response (i.e., switch rates and time spent on tasks) to different task characteristics on a tracking-while-typing paradigm. In detail, 
we manipulated two aspects of loss prospect (i.e., “payoff” as the amount of points that could be lost when tracking was unattended for too long, and “cursor speed” 
determining the likelihood of such a loss occurring). To account for between-subject variance and within-subject variability in the data, we employed linear mixed 
effect analyses following the model selection procedure (Bates, Kliegl, et al., 2015). Besides, we tested whether risk tendency can be transformed into a decision 
parameter which could predict switching strategies when being computationally modelled. We transferred decision parameters from the Decision Field Theory to 
model “switching thresholds” for each individual. Results show that neither risk tendency nor impulsiveness explain between-subject variance in the paradigm, 
nonetheless linear mixed-effects models confirmed that within-subject variability plays a significant role for interpreting dual-task data. Our computational model 
yielded a good model fit, suggesting that the use of a decision threshold parameter for switching may serve as an alternative means to classify different strategies in 
task switching.   

1. Introduction 

The allure of multitasking is the (false) belief of saving time and of 
increasing productivity by undertaking multiple tasks and dividing 
attention between them. A typical way of undertaking more than one 
task at the same time is by interleaving independent tasks and switching 
back and forth between them, for instance responding to an incoming 
text message while watching a movie on TV. Switches to another task 
may be initiated by external cues (i.e., the humming phone), or by the 
person (i.e., boredom, attentional deficits or seeking variety; Adler & 
Benbunan-Fich, 2013; Gopher et al., 1982; Janssen & Brumby, 2015). 

In psychological research, such behaviors have been tested in task- 
switching paradigms requiring participants to perform two tasks pre-
sented sequentially. Task switching includes strictly performing two 
tasks sequentially, selecting either task in each trial oneself (i.e., 
voluntary task-switching) and self-interruptions “where performance of 

a primary task is interrupted, either by a significant temporal break, 
requiring a ‘restart,’ or by an intervening task, so that the primary task 
needs to be resumed” (Koch et al., 2018, p. 560). Especially those 
switching paradigms, allowing participants to choose the order of tasks 
and/or the amount of switches between tasks without noticeable cues in 
the task, reveal great within-subjects variability and between-subject 
variance in switch rates. The majority of dual-task experiments how-
ever has ignored or subtracted out (i.e., by calculating group or condi-
tion means) any potential factors leading to variance in performance 
within or among individuals - rather than meaningfully explaining 
them. Thus, neither reasons for the emergence of changing priorities and 
the related decision to switch, nor the reasons why some people spend 
more time on a task than others, are well researched. Beyond, with the 
main focus being on how the sample as a whole responds to experi-
mental manipulations and participants being replaceable, the potential 
interaction between individual characteristics or preferences, and task 
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characteristics remains largely unexplored (Koch et al., 2018). To 
examine causes of variance in switching, researchers should focus more 
on within-subject variability in data sets (e.g., analyzing switching from 
trial to trial rather than sample means) or, as it has been recommended 
lately, include state and trait variables that have the potential to explain 
variance or stability in task performance (e.g., accuracy/RT) across 
different experimental conditions (Goodhew & Edwards, 2019). Beyond 
that, it has been recommended “to use continuous measures of variables 
by default wherever practically possible (…) with cognitive measures” 
(Goodhew et al., 2015, p. 21), because they allow differentiating par-
ticipants not only in dichotomous categories like responder/non- 
responder but in more nuanced ways. 

There is some preliminary evidence for the interaction effects of 
individual and task characteristics on switching. For instance, the 
strategic-task-overload-management model by Wickens et al. (2015) 
posits that task difficulty, task salience, or perceived attractiveness of a 
task change the likelihood for switches. Furthermore, experiments by 
Farmer et al. (2018) investigated how payoff functions affected people’s 
task priorities and effort division between tasks. In their dual-task setup, 
participants copied a string of digits that were presented on the left half 
of the monitor, while controlling a randomly moving cursor within a 
target circle which was presented on the right half of the monitor (see 
Fig. 1). Critically, participants were only able to see and work on one 
task at a time, because the unattended task was occluded. They were 
instructed that they could gain points for copying digits (i.e., reward 
prospect), but would be penalized and lose points as soon as the cursor 
exited the circle (i.e., loss prospect when the tracking task was unat-
tended for too long), so they had to actively switch between tasks. The 
penalty varied between losing all or half of the points gained so far and 
losing a fixed amount of points. This way the potential payoff for 
switching differed. The paradigm therefore differs from other switching 
paradigms in terms of risk: while normally switching is considered a 
risky decision because it requires cognitive effort and is associated with 
switch costs, in this paradigm, not switching and ignoring the other task 
for too long is associated with a higher likelihood of circle exits and thus 
increasing loss prospects. 

Farmer and colleagues hypothesized that in contrast to verbal in-
structions which can be subject to interpretations (e.g., “divide your 
attention 80:20 between tasks”), rewards and losses, and thus a payoff 
function, could more effectively convey how tasks should be prioritized 
relative to one another. Their results suggest that people can indeed 
adopt a near-optimal strategy after some practice, but that “the way in 
which people interleave tasks depends on a variety of factors” (p. 843). 
The authors pointed out that not only task characteristics (i.e., speed of 
cursor movement) but also individual characteristics like risk aversion 
may have affected the way participants handled the tasks. We took this 
as an invitation to examine whether risk tendency and impulsiveness 
differentiate individuals in their response to task characteristics in the 
same paradigm (see Fig. 1). 

1.1. Risk tendency 

Evidence that risk tendency explains variance in switching strategies 
is scarce. Driving simulation studies showed that people scoring high on 
risk measures hazard consequences in driving, like veering off-road, and 
switch more often to other tasks like cell phone use (Mizobuchi et al., 
2013; Sween et al., 2017). Studies using classic switching paradigms 
mostly manipulated rewards and reward prospect (Braem et al., 2012; 
Fröber et al., 2018; Fröber & Dreisbach, 2016). Both, expected value (e. 
g., reward), and risk can increase the expected utility of an option, 
especially in risk-seeking individuals (Tobler et al., 2009), and thus the 
likelihood of choosing an option. Studies manipulating reward prospect 
have shown that, for instance when sequentially changing reward 
prospect, increasing reward prospect increased voluntary switch rates 
and reduced switch costs (Fröber & Dreisbach, 2016). Brüning and 
Manzey (2018) identified different processing strategies in a switching 

paradigm which were interpreted as a flexible adaptation to the level of 
risk for interference. Participants had to classify two sets of letters (A, B, 
C, E vs. O, U, X, Z) regarding their position in the alphabet (first half vs. 
second half) and their kind of sound (consonant vs. vowel) and received 
a preview about upcoming stimuli. Based on the results, they were able 
to differentiate between serial, semi-overlapping or overlapping pro-
cessing of the two tasks. This means some participants switched more 
often between tasks using preview information to reduce switch costs, 
others did not use the information provided and processed the tasks 
strictly serially. Brüning and Manzey argued that personal preferences 
may have contributed to the three different ways of handling the tasks 
but this was not validated by separate measures. It also has to be noted 
that conclusions about the between-subject variance were drawn from 
condition means. Thus, the results represent responses to task charac-
teristics, but ignore individuals as random effects, and thus variability 
between repeated measures. To address this limitation, linear mixed 
effect analyses should be employed accounting for both between-subject 
variance and within-subject variability in the data. 

1.2. Impulsiveness 

It has been shown that higher levels of impulsiveness, and sensation 
seeking as one of its dimensions, is related to more switching between 
multimedia devices, to secondary tasks in driving simulations (e.g., cell 
phone use while driving, Sanbonmatsu et al., 2013; Schutten et al., 
2017) and to frequent multitasking in general (Ophir et al., 2009). Like 
risk tendency, impulsiveness has been related to reward prospect. Bur-
nett Heyes et al. (2012) demonstrated that impulsive individuals, 
especially those scoring high on motor impulsivity, accumulated higher 
reward in a task that required them to take risks under time pressure, so 
impulsivity was beneficial to time-sensitive risk decisions. Carver (2006) 
pointed out that impulsive individuals seem to be ‘highly engaged in the 
pursuit of whatever incentives arise’ (p. 107), whereas others reflect 
more on punishment for mistakes. Based on these findings, it seems 
useful to examine both risk tendency and impulsiveness, because both 
are related to reward prospect (see also Martin & Potts, 2004) and may 
explain variance in switching behavior. 

1.3. Risk and impulsiveness in the typing-while-tracking paradigm 

As outlined above, our aim was to examine whether risk tendency 
and impulsiveness differentiate individuals in their response (i.e., switch 
rate and time spent on the typing task (“time-on-typing”)1) to task 
characteristics (i.e., “payoff” which is the amount of points that could be 
lost when tracking was unattended for too long, and “cursor speed” 
determining the likelihood of such a loss occurring) in the switching 
paradigm by Farmer et al. (2018). Our hypotheses are as follows: 

People with a higher individual risk tendency have a lower threshold 
for making risky choices. The more risk-prone an individual, the better 
this individual will tolerate potential losses and thus is predicted to stay 
longer on the typing task and switch less often between tasks. It is 
further hypothesized that variance between risk-averse and risk-prone 
individuals will be more pronounced in conditions with high loss pros-
pects, i.e., for higher cursor speed (= higher likelihood of exit) and 
higher penalties for circle exits (= higher penalty increasing the payoff 
between tasks). 

The same data pattern could be predicted for impulsiveness. The 
more impulsive an individual, the more reward-seeking this individual 
will be and thus is predicted to spend more time on the typing task and 
switch last-minute, resulting in an overall lower switch rate. Alterna-
tively, the more impulsive an individual, the lower the ability to capture 
attention which is why this individual might find switching itself 

1 Additional dependent variables in the appendix are the number of digits 
typed (no-of-digits-typed) and typing errors. 
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rewarding, resulting in an overall higher switch rate. 

1.4. Research strategy A) conceptual replication and extension of Farmer 
et al. (2018) 

To examine whether different penalties and cursor speed, as well as 
risk-tendency and impulsiveness, produce variance and variability in 
switch rates and/or time spent on tasks, we employed self-report ques-
tionnaires and behavioral measures of risk tendency and impulsiveness 
prior to or after testing participants on the typing-while-tracking para-
digm. It has been recently stressed that behavioral and self-report 
measures often correlate weakly because they are designed to measure 
different response processes (Dang et al., 2020): while behavioral 
measures encourage people to do their best and thus include effort and 
willingness, “self-report measures tend to tap people’s typical perfor-
mance about how they usually behave” (p. 2). Apart from this issue, 
using both can be useful because they are sensitive to within-person 
experimental manipulations and “can be important for studying the 
processes that underlie task performance or the contexts that enhance or 
detract from task performance” (p. 3). In this regard, Konig et al. (2005), 
who measured working memory, fluid intelligence, and attention with 
behavioral tasks, plus polychronicity and extraversion with question-
naires, concluded that only the behavioral measures were able to predict 
multitasking performance. The divergence between behavioral and self- 
report measures in relation to the prediction of multitasking perfor-
mance shows that it is important to include more objective measures 
when examining causes for variance in switching. 

1.5. Research strategy B) exploring the modelling of switching decisions 

It has been suggested that multitasking can be understood as a choice 
for instance by prioritizing one task over another in switching paradigms 
(for the full proposal see Broeker et al., 2018). If time spent on tasks and 
switching were understood as decisions, then it would be reasonable to 
examine switching decisions with the help of decision-making theory 
and transfer its approaches to multitasking. The idea of such a transfer 
was also put forward by Pashler et al. (2008), who claimed that the 
contribution of decision processes should not be underestimated for 
dual-task processing because cognitive decision models could help un-
derstanding latency effects in dual-tasking. As shown by Broeker et al. 
(2018), many of the constructs and model parameters employed in basic 

decision-making paradigms are translatable to multitasking studies. For 
example, the Decision Field Theory (Busemeyer & Townsend, 1993) is a 
probabilistic and dynamic model explaining and modelling flexible 
choices by utilizing several parameters. In general, it assumes that 
preference fluctuates back and forth between two options based on 
attention during a choice task, and a threshold parameter defines how 
much information, and thus time, a decision-maker needs before 
choosing an option. The total amount of evidence needed to reach a 
threshold is a random variable N and the decision time is an increasing 
function of N (Busemeyer & Townsend, 1993). In multitasking, the 
threshold would be defined as the moment in time where the person 
switches to the other task. This parameter could therefore model the 
dynamic change of preference towards either of two tasks (rather than 
options) over time, and predict how much time an individual needs 
before switching. 

Thresholds depend on various external and also individual factors 
like personal experience with an option, or characteristics like risk 
tendency (Scheibehenne et al., 2009). Transferred to multitasking, 
switching thresholds could therefore be determined by measuring 
additional characteristics of the participant or by manipulating task 
characteristics like points or time pressure. 

For the cognitive model, this would mean that the more risk-prone 
and/or the more impulsive an individual, the higher the switching 
threshold. A higher threshold implies switching later and thus less often 
within a predefined time window. The threshold is further predicted to 
be lower in all individuals in conditions with higher loss prospect, that 
is, every person is predicted to pass the threshold earlier when cursor 
speed and/or potential loss is high. 

Summing up, this study aimed at extending findings by Farmer et al. 
(2018) and examine whether specific characteristics of different people 
may explain variance in switching strategies. Second, the study aimed to 
follow-up an earlier proposal and implemented exploratory analyses 
testing the hypothesis that switching thresholds as decision parameters 
in computational models represent a useful extension to the field of dual- 
task research. By exploring and applying computational models, we 
could formalize individual behavior, allowing us to generalize findings 
to new tasks, environments, and situations, beyond simply interpreting 
main effects of experimental manipulations. 

Fig. 1. Typing-while-tracking paradigm 
by Farmer et al. (2018) 
Note: In the typing-while-tracking 
paradigm participants have to type as 
many digits as possible while ensuring 
the target square would not exit the 
circle. By default, the typing task on the 
left half of the monitor was visible and 
the tracking task was occluded. Partici-
pants could switch to the tracking task 
on the right half of the monitor by 
holding the trigger of a joystick to then 
control the square, and switch back by 
releasing the trigger to then continue 
typing. Participants gained points 
through typing (10 p per digit) and saw 
interim scores when switching to the 
tracking task (e.g., 320 p when having 
typed 32 digits before the switch). They 
were instructed that they would lose 
points if the target exited the circle. In 
this way, not switching for a longer time 
equaled higher risk (of losing points).   
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2. Method A (main analyses) 

2.1. Participants 

Following the original study, the sample size was based on Farmer 
et al. (2018; Exp. 2) who tested and modelled data with 30 participants. 
We recruited 33 participants on campus. Participants were excluded 
from data analysis if they violated the instruction to switch between 
tasks in three or more of the nine dual-task trials. Three participants 
were excluded, yielding a total sample of 30 participants (11 male and 
19 female; aged between 19 and 29 years, M = 22.47 years, SD = 2.40). 

Participants gave written informed consent before the experiment 
and received a small remuneration or course credit for taking part. The 
experiments were approved by the local ethics committee and con-
formed to the principles of the Declaration of Helsinki 2008. 

2.2. Setup 

Participants completed three computer tasks (typing-while-tracking 
paradigm, one computerized risk measure, one computerized impul-
siveness measure) and four pen-and-paper questionnaires (order coun-
terbalanced: two risk questionnaires, two impulsiveness 
questionnaires). For the computerized tasks, participants were seated at 
a table with a viewing distance of 60 cm from a 24-in computer screen 
(144 Hz, 1920 × 1080 pixel resolution). We used a Windows 10, 64-bit 
system with a GTX750 graphics card. The keyboard’s numeric pad and 
participant’s left hand were concentered to the left half of the monitor; a 
spring-loaded joystick (SpeedLink Dark Tornado, max. sampling rate 60 
Hz) and participant’s right hand were concentered on the right half of 
the monitor. For the questionnaires participants were seated at a sepa-
rate small table. The experimenter sat behind an opaque divider to 
monitor compliance with the task. 

2.3. Tasks 

2.3.1. Typing-while-tracking paradigm 
The dual-task paradigm was based on Farmer et al. (2018). Partici-

pants controlled a typing and a tracking task in parallel but actively 
switched between them as only one task could be worked on at a time. 
The typing task (digits) was presented on the left side of the monitor, and 
participants had to copy a never-ending 27-digit-string of the numbers 
1–3 with their left hand using a numeric keypad (see Fig. 1). The 
tracking task was presented on the right side of the monitor, and par-
ticipants had to control a randomly moving target square within a cir-
cular target area with a joystick. Each task was practiced as a single task 
before each dual-task block. 

In dual-task conditions, the tracking task was occluded by default, so 
participants had to press the trigger of the joystick to switch from typing 
to tracking. Releasing the trigger enabled switching back to typing. For 
each digit correctly copied, participants were rewarded with 10 points; 
incorrectly copied digits led to a deduction of 5 points. As soon as each 
digit was typed in correctly, it disappeared automatically. If an incorrect 
entry was made, the digit remained until it was typed in correctly. To see 
the sum of points participants had gained during their visit to the typing 
window, they had to switch to the tracking task because the interim sum 
was displayed above the circular area (see Fig. 1). Crucially, participants 
had to judge how long they could leave the tracking task unattended 
because a cursor drift outside the circular target area made participants 
lose points. The penalty for a circle exit varied between “losing half of 
the points,” “losing all points,” and “losing a fixed amount of 500 points” 
(within-subjects factor “Payoff”). These were assumed to ordinally vary 

risk and losing 500 points was considered the highest risk because 
participants’ points could become negative.2 Further, the target cursor’s 
movement was more or less variable thus moved at different cursor 
speeds (low: 3 pixels standard deviation vs. high: 5 pixels standard de-
viation; within-subjects factor “Cursor Speed”). The higher the cursor 
speed, the higher the probability that the target square would exit the 
circle. For instance, an 80% probability of exit was reached after 20 s in 
high cursor speed conditions, and only after 50 s in low speed conditions 
(for the formula see Farmer et al., 2018). Overall, the study had a 3 
(Payoff, half vs. all vs. 500) × 2 (Cursor Speed, low vs. high), within- 
subjects design. At the beginning of the experiment, participants 
completed six familiarization trials (high cursor-speed tracking for two 
trials of 10 s each and typing for two trials of 20 s each, dual task for two 
trials of 90 s each). These were followed by six blocks, one for each 
condition, randomized across participants. A block consisted of one 
single-task typing trial (10 s), one single-task tracking trial in the 
respective cursor speed (20 s) and three dual-task trials (90 s). Overall, 
the paradigm took 30 min to complete. Target dependent variables 
(DVs; see Farmer et al., 2018) of the typing-while-tracking paradigm are 
switch rate and time-on-typing.3 

After completing a pilot study, two changes from the original study 
have been implemented to potentially produce variance in switching 
strategies and be better able to differentiate between participants: a) 
explicit instructions and b) longer trial length. In contrast to Farmer 
et al. we explicitly instructed participants about gains in the typing task 
and penalties in the tracking task, so they did not have to infer penalties 
from feedback scores above the circular area themselves. In addition, the 
trial length was extended from 20 s to 90 s. 

2.3.2. Risk measures 

2.3.2.1. Balloon-Analogue-Risk Task (BART). We chose the BART 
(Lejuez et al., 2003) as a behavioral measure for risk tendency. Partic-
ipants had to pump up a virtual balloon on a computer screen. Each click 
was accompanied by an inflation sound and an optically growing 
balloon. In accordance with Lejuez et al., participants were instructed 
that every pump would bring 5 cents, saved in a temporary reserve, and 
that they could collect the sum by clicking the “collect” button. An ex-
ploding balloon made them lose the temporary reserve and every 
balloon had an individual explosion point (randomized, ranging from 1 
to 128 pumps; unbeknownst to participants). After each explosion or 
money collection, a new balloon appeared until a total of 20 balloons 
were completed. DVs are the adjusted number of pumps (non-exploded 
balloons only), number of explosions and total earnings. The relation-
ship between monetary earnings and risk tendency was unclear, but 
individuals with lower scores on adjusted number of pumps and ex-
plosions were considered to be lower in risk tendency (Lejuez et al., 
2003). 

2.3.2.2. Risk Propensity Scale (RPS). We chose the RPS as a self-report 
measure for risk tendency (Cronbach’s α = 0.77, average 4.46 in the 
validation sample, Meertens & Lion, 2008). Participants rated general 
risk-taking tendency across 7 items on a 9-point scale (1: totally disagree 
– 9: totally agree, e.g., “I take risks regularly”), so risk-averse individuals 
would score lower than risk-seeking individuals. 

2.3.2.3. Domain-specific risk-taking scale (DOSPERT). We chose DOS-
PERT as a second self-report measure, because research has shown that 
people can differ in risk-tendency depending on the risk matter. The 
DOSPERT covers the content domains financial investment/gambling 

2 Post-hoc analyses confirm that in 84% of the “lose-half”-trials, participants 
typed less than 50 digits per visit to the typing window, which means they 
achieved less than 500 points and indeed risked to go into minus.  

3 Additional DVs in the appendix: no-of-digits-typed and typing errors. 
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decisions (e.g., “Betting a day’s income at the horse races”), health/ 
safety (e.g., “Engaging in unprotected sex”), recreational (e.g., “Taking a 
skydiving class”), ethical (e.g., “Revealing a friend’s secret to someone 
else”) and social (e.g., “Starting a new career in your mid-thirties”) de-
cisions (internal consistency estimates range from 0.71 to 0.86, Betz 
et al., 2002). The questionnaire consisted of three parts with the same 30 
items (6 items per domain): in part one, participants rated the likelihood 
of engaging in the described activities (1: extremely unlikely – 7: 
extremely likely), in part two they gave a gut assessment of how risky 
each behavior was (1: not at all risky – 7: extremely risky), and in part 
three they rated the benefits resulting from engaging in the specific 
behavior (1: no benefits at all– 7: great benefits). For our experiment, we 
used the mean score of the likelihood of engaging in gambling behavior 
since that was most similar to dealing with potential gains/losses in the 
typing-while-tracking task. Individuals with lower scores were consid-
ered lower in risk tendency. 

2.3.3. Impulsiveness measures 

2.3.3.1. Delay-Discounting Task (DDT). We chose the DDT as a behav-
ioral measure of impulsiveness. Delay discounting refers to a decline in 
the value of a delayed reward relative to the value of immediate rewards 
(Frye et al., 2016). Participants had to place a cursor on a grey button 
and were presented with two amounts of money with different delays: a 
delayed amount (e.g., 100 EUR in 1 year) and an immediate amount (e. 
g., 80 EUR now). They then had to make a choice by clicking on one of 
the two options. Seven different delays (6 h, 1 day, 1 week, 1 month, 3 
months, 1 year, and 5 years) were tested, and each delay was tested with 
6 trials. Depending on the participant’s choice, the immediate amount 
was adjusted up (when delayed amount was selected) or down (when 
immediate amount was chosen). For each individual, we created a dia-
gram with the seven delays on the x-axis, and the total number of 
“delayed amount chosen” on the y-axis. Given that each participant was 
presented 6 trials per delay, each value could range between 0 and 6. We 
then analyzed the area under the curve resulting from connecting the 7 
data points in the diagram. Individuals with smaller values were 
considered less impulsive. 

2.3.3.2. Barrat Impulsiveness Scale (BIS). We chose the BIS as a self- 
report measure of impulsiveness because it is the most widely cited in-
strument for the assessment of impulsiveness (Cronbach’s alpha = 0.80, 
average item inter-correlation r = 0.13, M = 59.18 (SD = 9.54), Reise 
et al., 2013). Participants rated 30 items, describing common impulsive 
or non-impulsive behaviors and preferences, on a 4-point scale (1: 
rarely/never - 4: almost always/always). Individuals with lower scores 
were considered less impulsive. 

2.3.3.3. Arnett Inventory of Sensation Seeking (AISS). We chose the AISS 
as a second self-report measure of impulsiveness, because the facet 
sensation seeking may contribute to risk preferences (Lauriola et al., 
2014). Sensation seeking is divided into the two sub-dimensions novelty 
and intensity, which are openness to novel situations and the need for 
intense stimulations (Cronbach’s alpha novelty = 0.49, intensity = 0.53, 
Roth, 2003). Participants rate 20 items using a 4-point scale (1 = de-
scribes me very well - 4 = does not describe me at all). Individuals with 
lower scores were considered higher in sensation seeking, so possibly 
higher in impulsiveness and risk tendency. 

2.4. Procedure 

Upon arrival, participants received overview information of the 
different tasks and signed informed consent. The typing-while-tracking 
paradigm, the computerized tasks (BART, DDT) and the question-
naires (RPS, DOSPERT, BIS-11, AISS) were each counted as an experi-
mental block. All experimental blocks were randomized across 

participants, and also tasks within one block were pseudo-randomized 
so that each participant completed the experiment in a different order. 
In total, the typing-while-tracking paradigm took about 30 min, the two 
computerized tasks took about 10 min, and the questionnaires took 
around 25 min to complete, yielding a total testing time of approxi-
mately 65 min. 

2.5. Data analysis 

Performance on the typing-while-tracking paradigm (DVs: switch 
rate, time-on-typing) with the factors Payoff (3: lose half, lose all, lose 
500) and Cursor Speed (2: low, high) was analyzed in a linear mixed 
model (LMM) using the lmer package (Bates, Mächler, et al., 2015) in 
the R system for statistical computing (Version 1.2.1335) under the GNU 
General Public License (Version 3, November 2019). The LMM analysis 
included each dual-task trial of each participant (N = 270, 9 trials from 
30 participants) and not the averaged performance for every condition. 
Participants were further specified as random factors. We followed the 
model selection procedure (iterative reduction of model complexity) as 
suggested by Bates et al. (2015). We first analyzed a maximum LMM by 
performing random-effects principal component analysis (rePCA) to 
determine the number of dimensions supported by the data. We then 
analyzed a zero-correlation parameter LMM removing correlations be-
tween random effects. If at least one component was close to zero, we 
continued by dropping variance components (i.e., random effects) until 
the rePCA no longer suggested over-identification (no component close 
to zero). After that, non-significant variance components were removed 
stepwise to a reduced model. Finally, the reduced zero-correlation- 
parameter-model was compared against the reduced correlation- 
parameter-model and checked for goodness of fit. If the rePCA indi-
cated components being close to zero, the correlation parameters were 
left out. The full procedure will be reported for switch rates and time-on- 
typing; analyses for number of digits typed and typing errors can be 
taken from the Appendix A. 

From 540 data points (270 × switch rate; 270 × time-on-typing), 
four missing values were identified, most likely because of a premature 
termination of the paradigm for two participants due to unknown 
technical errors, so each value was replaced by the condition mean per 
participant. 

We further analyzed performance on the computerized tasks and 
answers in the questionnaires. An overview of the different variables can 
be seen in Table 1. As we have outlined earlier, there is some debate 
about whether risk and impulsiveness overlap, so we analyzed correla-
tions between measures, too. To examine whether there is a relationship 
between risk tendency and/or impulsiveness and switching strategies, 
we further correlated the performance scores of the typing-while- 
tracking paradigm (switch rate, time-on-typing) with scores obtained 
in the separate measures. 

3. Results A (main analyses) 

3.1. Typing-while-tracking paradigm/switch rate 

Descriptive analyses showed that the average visit time on the 

Table 1 
Average visit time on the tracking paradigm in s and total visit time in per-
centage for the 90 s dual-task trials.   

High cursor speed Low cursor speed 

Lose 
half 

Lose all Lose 
500 

Lose all Lose 
half 

Lose 
500 

M (s) 1.71 1.50 2.98 1.77 2.18 2.68 
SD 2.69 1.05 7.57 2.65 4.92 7.14 
Total time 

% 
11.50% 14.97% 15.29% 10.58% 11.52% 10.38%  
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tracking paradigm, i.e., the time interval between the switch from typing 
to tracking and back from tracking to typing, took between 1.5 and 3 s 
(see Table 1). 

Switch rates were measured by the number of trigger presses when 
switching from typing to tracking (counting only one direction). Mean 
switch rates for the six experimental conditions can be taken from Fig. 2. 
The fixed-effects model yielded a main effect of Cursor Speed, F(1, 534) 
= 9.38, p = .002, ηp

2 = 0.02, because all participants switched more 
often to the tracking task when the cursor moved at higher speeds. There 
was no significant main effect of Payoff, F(2, 534) = 0.74, p = .478, ηp

2 

< 0.01, and no significant Cursor Speed × Payoff interaction, F(2, 534) 
= 2.64, p = .072, ηp

2 < 0.01 (see Fig. 2). 
In order to better understand within-subject effects, a model with 

subject as random effect was analyzed. The maximal linear mixed model 
with all variance components (switchrate ~1 + Cursor Speed * Payoff 
(Cursor Speed * Payoff | Subject)), failed to converge and was thus 
overparameterized, which was substantiated by the sixth component 
being close to zero in the rePCA. A comparison between a zero- 
correlation-parameter LMM and stepwise reduced models showed that 
our data was best described by a model keeping all uncorrelated random 
effects (switchrate ~1 + Cursor Speed * Payoff (Cursor Speed * Payoff || 
Subject)). This suggests that participants showed some variability be-
tween trials. Testing main effects and interaction of the best-fit model 
(dummy coded) revealed no significant main effect of Cursor Speed, F(1, 
32.59) = 0.01, p = .920, a significant main effect of Payoff, F(2, 41.58) 
= 4.96, p = .012, and a significant Cursor Speed × Payoff interaction, F 
(2, 33.64) = 5.62, p = .008 (for an illustration of the between- and 
within-subject variance see also Fig. 3). 

3.2. Typing-while-tracking paradigm/time-on-typing 

Switch rates and time-on-typing were significantly negatively 
correlated. The more time participants spent on typing, the less often 
they switched to the other task. This effect was overall more pronounced 
for high cursor speed conditions (see Table 2). 

For time-on-typing there was both a main effect of Cursor Speed F(1, 
502.08) = 21.00, p < .001, ηp

2 = 0.04, because all participants spent less 
time on the typing task when the cursor moved at higher speeds, and a 
significant effect of Payoff, F(2, 502.07) = 3.50, p = .031, ηp

2 < 0.01, 
because participants spent most time typing in lose half and least in lose 
500 conditions for high cursor speed. There was no significant Cursor 
Speed × Payoff interaction, F(2, 502.12) = 2.36, p = .096, ηp

2 < 0.01, as 
there were no differences for time-on-typing in low cursor speed 

conditions (see Fig. 4). 
The maximal linear mixed model with all variance components 

(time-on-typing ~1 + Cursor Speed * Payoff (Cursor Speed * Payoff | 
Subject)), failed to converge and was thus overparameterized. A com-
parison between a zero-correlation-parameter LMM and stepwise 
reduced models showed that our data was best described by a model 
keeping all (uncorrelated) random effects (time-on-typing ~1 + Cursor 
Speed * Payoff (Cursor Speed * Payoff || Subject)). Testing main effects 
and interaction of the best-fit model (dummy coded) revealed no sig-
nificant main effect of Cursor Speed, F(1, 58.09) < 1, p = .450, a sig-
nificant main effect of Payoff, F(2, 72.30) = 5.73, p = .005, and no 
significant Cursor Speed × Payoff interaction, F(2, 62.74) = 3.01, p =
.057. 

3.3. Separate measures of risk and impulsiveness 

Variance between participants on both risk and impulsiveness 
questionnaires and behavioral measures (see Table 3) resembled norm 
tables, and previous studies applying the measures (Beck & Triplett, 
2009; Lejuez et al., 2003; Meertens & Lion, 2008; Roth, 2003; Shamosh 
et al., 2008; Spinella, 2007; Weber et al., 2002). 

Overall, there were few significant correlations between measures 
within one domain, i.e., behavioral risk measure and self-report risk 
measure (see Fig. 5). Especially participants who reported to have a 
higher risk tendency in the RPS, also tended to act riskier on the 
behavioral risk measure. As it has been argued that risk tendency and 
impulsiveness might not be independent (Nigg, 2017), we also checked 
correlations across separate measures. We found that participants who 
reported a higher risk tendency also report more motor impulsiveness 
and a higher self-reported need for stimulation. For the dependent 
variables on the tracking-while-typing paradigm, a significant correla-
tion between RPS score and switch rates in three out of six conditions 
were found (see Fig. 5), yet none between any separate measure and 
time-on-typing. 

4. Method B (exploratory analyses) 

As it has been outlined by Broeker et al. (2018), computational 
modelling techniques as used in judgment and decision-making research 
could be useful to understand how and why participants divide effort 
between tasks (measured by when and how often they switch). One 
particularly successful model that has been used to explain a number of 
classic phenomena in typical judgment-and-decision-making tasks is the 
Decision Field Theory (DFT; Busemeyer & Townsend, 1993; for an 
overview see Johnson & Busemeyer, 2010). Here, we follow an earlier 
claim and transfer this approach to our task-switching paradigm. We 
intended to present exploratory analyses modelling participants’ 
behavior by assuming that the relevant decision is whether to switch 
tasks. 

DFT assumes that at each moment while executing a task, a person 
focuses on a particular feature (e.g., probability that the tracking cursor 
is near the edge of the circle) of the choice alternatives (e.g., switch vs. 
continue typing). As a participant’s focus shifts between the features 
over time, the tendency towards either option continues to shift 
accordingly; increasing when a feature suggests to favor the alternative, 
or decreasing when the focal feature presents a relative disadvantage. 
The more important a feature is the more likely it is to receive attention 
at each moment. As this shift in attention drives fluctuations in prefer-
ence over time, a stopping rule must determine when a choice is made. 
DFT assumes that there is some sufficient level of preference, or “deci-
sion threshold”, which warrants choice of the (first) alternative to reach it 
(for neurophysiological data see also Cisek & Kalaska, 2010). 

In this study, the “choice” is not between two presented options, or 
even an expression of preference for one task over the other, but rather 
represents some accumulating evidence or tendency to switch (vs. 
continue on the typing task). In this context, we use the threshold 

Fig. 2. Analyses of switch rates. 
Note: Switch rates display how often participants switched from the typing to 
the tracking task window. Cursor Speed related to the movement of the random 
cursor inside the circle (low: 3 pixel vs. high: 5 pixel) and Payoff described how 
many points participants would lose as soon as the random cursor exits the 
circle (lose half of their points, lose all their points or lose 500 points). Error 
bars show the 95% confidence interval. 
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parameter as a means to describe the switching behavior of individuals, 
indicative of their strategies based on risk preferences and/or impul-
sivity. Because the threshold parameter represents how much informa-
tion a decision maker needs before choosing an option, both task 
characteristics and individual characteristics can determine how high or 
low a threshold is set, and thus how early it is hit. For example, the 
higher the risk through penalty or cursor speed, the lower the threshold 
in general (i.e., regardless of individual differences). In addition, indi-
vidual risk tendency and impulsiveness would determine how early in 
time the individual passes the threshold, regardless of task characteris-
tics. A risk-averse individual would try to avoid losing points more 
strongly compared to risk-prone individuals, so we would expect their 
decision threshold to be lower, indicating an earlier moment in time to 
switch (see Fig. 6). 

Thus, for each individual, we fit separate threshold parameters for 
each of the two cursor speed conditions, also illustrated in Fig. 6. Pre-
dictions from DFT were generated by using a discrete approximation to 
the drift diffusion process illustrated in Fig. 6 (see Busemeyer & 
Townsend, 1992, for derivations). That is, rather than modelling the 
specific attentional shifts and resulting changes in preference, one can 
summarize the trajectories as shown in Fig. 6 by three parameters. The 
drift rate, d, characterizes the average trajectory path, or the slope of the 

Fig. 3. Switch rates across all trials for each participant separated by Payoff conditions. 
Note: Data are ordered by participant number. The left panel represents the condition “losing half of the points”, the middle panel represents “losing all points” and 
the right panel shows data points from the condition “losing 500 points”. Red data points are from high-speed conditions, green data points are from low-speed 
conditions. Lines represent y-intercepts. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
Correlations for dependent variables on the tracking-while-typing paradigm.  

Variable  Switch rate high cursor speed Switch rate low cursor speed 

Lose half Lose all Lose 500 Lose half Lose all Lose 500 

Time-on-typing lose half Pearson’s r − 0.538***   − 0.484***   
Time-on-typing lose all Pearson’s r  0.574***   − 0.427***  
Time-on-typing lose 500 Pearson’s r   − 0.322 **   − 0.250*  

* p < .05. 
** p < .01. 
*** p < .001. 

Fig. 4. Time-on-typing across all trials for each participant separated by 
Payoff conditions. 
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line that would best fit the trajectory. The fluctuations around the best- 
fit line can be characterized by a variance parameter, vard. In our 
framework, it could also be proposed that a task characteristic such as 

cursor speed might not affect (only) the threshold, but (also) the drift 
rate or accumulation of evidence itself. These are conceptually some-
what different realizations, and we prefer to adopt the former notion 
that the evidence threshold is impacted. We should note, however, that 
these competing explanations may still produce similar predictions for 
switching times. That is, a shallow drift rate may reach a lower threshold 
at the same time a steeper drift rate reaches a higher threshold. As such, 
both of these possible explanations cannot be simultaneously considered 
without more trials and/or conditions to produce reliable parameter 
estimates. In our exploratory analysis, we focus on the threshold 
parameter which represents our preferred conceptual interpretation, 
while holding the drift rate and variance constant. Given the relatively 
few trials to generate robust predictions on an individual trial and 
participant level, we need to further restrict our analysis scope as well. 
In particular, we will first focus on changes in one task characteristic 
only (cursor speed) collapsed across levels of the other feature (payoff). 
Doing so allowed us to use nine trials per participant for model esti-
mation (rather than three or six). 

Table 3 
Descriptive statistics of the five questionnaires and two behavioral measures examining risk tendency and impulsiveness.   

Task Variable of interest Scale No of items Min Max Mean SD 

Risk BART Adj. tot. pump count  20  188  740  454.1  137.7 
Total earnings EUR    11.90  37.00  23.50  6.31 
No of explosions    3.00  11.00  6.67  2.51 

RPS Mean 1–7 1  2.17  6.50  4.46  1.10 
DOSPERT Financial risk 1–7 3  0.00  16.67  11.06  1.62 

Gambling risk 3  0.00  15.33  9.83  2.18 
Impulsiveness DDT Area under the curve  7 × 6  − 7.14  − 21.4  − 16.0  3.74 

BIS Motor 1–4 8  16.00  27.00  21.70  3.48 
Attention 11  11.00  23.00  15.80  3.38 

AISS Mean intensity 1–4 10  1.50  3.50  2.60  0.33 
Mean novelty 10  2.20  3.50  2.83  0.42  

Fig. 5. Correlation plot separate measures and switch rates. 
Note: Correlations of all separate measures of risk tendency/impulsiveness (1)–(11), and of switch rate in the different experimental conditions (12)–(17). Circle color 
contrast and size depict the strength of the correlation. Significant correlations are marked with an asterisk, *p < .05, **p < .01. 

Fig. 6. Schematic visualization of the modelling approach. 
Note: The switching thresholds (decision to switch from typing to tracking) are 
determined by the task characteristic Cursor Speed low vs. high. The drift rate is 
assumed to be determined by personality characteristics, so any score on 
separate measures, and to be subject to slight fluctuations over time. 
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The starting point for the trajectory is modelled by a third parameter, 
z, which can be used to indicate any initial biases or preferences that are 
present at the beginning of the task (prior to any task-relevant atten-
tional focus). Recall that the two “options” modelled in our framework 
are switching vs. staying, and we did not hypothesize individuals to have 
any initial preference towards either of these, so z was set to zero. Given 
values of θ, d, vard, and z, DFT generates predictions for the mean time at 
which the decision is made to switch. We made a few simplifying as-
sumptions to apply DFT to the data from our specific task-switching 
paradigm. First, as already mentioned, we assumed that there was no 
initial bias in the task, such that z = 0 for all participants. Second, we 
used a constant drift rate and variance across participants; we chose d =
1 for simplicity and assumed some low variability with vard = 0.5. This 
allowed us to focus solely on changes in the threshold to account for any 
differences across individuals.4 DFT makes predictions for the distribu-
tion (and thus mean) time it takes for an individual to switch tasks, 
indicated by the time at which the trajectory hits θ in Fig. 6, rather than 
the switch rate directly. So, we converted the time-on-typing into an 
average switch time for each individual, by dividing the time-on-typing 
by the number of switches in that trial. As such, switch times indicate the 
average time between two switches. Given the switch time for each 
participant, we used the fminsearch routine in MATLAB to find the value 
for θ that produced the lowest sum of squared errors (SSE), between the 
observed and predicted mean switch time. 

Beyond that, we cross-validated the model, separately for high and 
low conditions. The model parameters were fit using trials one and two 
in order to predict the third trial in each condition. This eliminates free 
parameters from the model and allows us to see how well the model can 
predict out-of-sample. Specifically, we averaged the switch times for the 
first two trials, and fit the model parameter θ to these data. Then, we 
used the fit value of θ to predict the switch times for the third trial. 
Finally, we determined whether fit theta values from all trials correlate 
with scores obtained in the risk and impulsiveness measures, in line with 
our hypothesis discussed above (e.g., lower thresholds for more impul-
sive individuals). 

5. Results B (exploratory analyses) 

Mean time-on-typing was used as the proxy for switch times and 
subjected to the fitting routine, separately for each of the cursor speed 
conditions. Thus, each participant had nine trials (per condition) from 
which mean switch times were calculated and fit using the model. The 
model fit the data very well in both conditions; across all participants, 
we obtained mean SSEH = 0.005 and mean SSEL = 0.003. The mean 
predicted switch time for low cursor speed was 17.40 s (real mean 
switch time = 17.41 s) and for high cursor speed 15.48 s (real mean 
switch time = 15.46 s). The distribution of individual θ values is shown 
in Fig. 7. In general, threshold values are higher for the low cursor speed 
condition (M = 24.64) compared to the high cursor speed (M = 21.90), 
as one might expect (i.e., producing longer switch times). A paired- 
samples t-test comparing the threshold values across conditions was 
not significant, however, t(29) = 1.29, p = .209. 

The θ parameters with the highest fit were correlated with the scores 
obtained in the behavioral measures and questionnaires (separate 
measures). No significant correlations could have been detected. 

For the cross-validation procedure, we used the same fit routine to 
find the values of θ that best fit the data from the average switch times 
across the first two trials, for each condition. The resulting distribution 

of θ values follows a similar trend as above, as one would expect when 
applying the same model to a subset of the original data. To the degree 
that participants behaved somewhat differently across the three trials, 
the model performance in subsequently predicting the switch times for 
the third trial, without refitting values of θ, varied as well. Prediction 
error increased as expected, but most participants were still fit rather 
well. The median SSE values were 4.22 and 4.70 for the low and high 
cursor speed conditions, respectively. This translates to an error of 
slightly over 2 s in predicting switch times on a single trial without using 
any free parameters, which is admirable performance for the cognitive 
model. 

Finally, we repeated the initial fitting procedure separately for each 
penalty condition, rather than for each cursor speed; we thus collapsed 
across the latter. All other aspects of the original fit routine were the 
same, however now there were only six trials per participant, for each of 
three conditions (three trials for each of two cursor speeds). Although 
some caution may be warranted with relatively few trials per parameter 
estimate in a relatively complex model, the results show an effect of 
penalty condition on the estimated threshold values in the expected 
direction (Fig. 8). The difference between threshold values for the “lose 
all” (Mdn = 35) and “lose half” (Mdn = 46) conditions was significant, t 
(29) = 2.24, p = .03; as was the correlation between them (r = 0.83). As 
one would expect, participants had lower thresholds in order to shorten 
the amount of time between switches. 

6. Discussion 

Farmer et al. (2018) hypothesized that individual switching strate-
gies might be not only influenced by task characteristics, but differences 
between persons. The aim of this study thus was to examine whether risk 
tendency and impulsiveness can differentiate individuals in their 
response, that is, switch rate and time spent on tasks, to different task 
characteristics (cursor speed and payoff). We were able to replicate the 
finding that individuals vary in switch rate and time-on-typing both for 
varying potential losses and across trials, but our extension shows that 
differences cannot be explained by differences in risk or impulsiveness 
measures, at least not the measures we chose. The only exception was 
that people high in risk propensity have lower switch times, so switching 
earlier and more often. If, contrary to our original idea, switching itself 
(rather than not switching) is considered a risky decision because one 
must increase cognitive effort and abandon current processes, then this 
correlation seems to be informative. However, considering that the 
majority of separate measures show no relation to switch rates and time- 
on-typing, it seems more likely that variance is mostly provoked by 
cursor speed and payoff. Furthermore, the effect of payoff was more 
visible for time-on-typing task than for switch rate. One cautious 
conclusion could be that even though these two variables correlated, 
participants’ attention was on gaining points and their endeavor to earn 
as many points as possible through typing motivated switching behavior 
stronger than the avoidance of potential losses, irrespective of whether 
the reward for typing was always equally high in each condition. This in 
turn makes time-on-typing a more sensitive indicator of risk-seeking 
behavior. Future experiments could test whether this effect would be 
even more pronounced if the typing score was visible above the typing 
task and not the tracking task. In the current version, the amount of 
points gained was only visible after having switched to the tracking task 
which could have made switches a measure of performance monitoring, 
too, rather than only a measure of loss avoidance motivation. 

In any case, our results are in line with recent recommendations to 
focus more on the individual, thus within-subject variability in cognitive 
experiments (Goodhew & Edwards, 2019). The iterative model reduc-
tion approach showed that for both switch rates and time-on-typing it 
was important to account for within-subjects variability and between- 
subjects variance, because a model containing uncorrelated random 
effects terms had a higher goodness of fit than a model with fixed effects 
only. Models considering fixed effects only, much alike traditional 

4 We explored different values for d and vard and they had little effect on the 
quality of the model predictions. Changing these values would be compensated 
in the model by changing the values for θ, so it becomes simply a matter of scale 
and thus somewhat arbitrary. That is, using a shallow slope (small d) with a 
lower threshold (θ) could produce predictions similar to a steeper slope (large 
d) and higher threshold. 
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rmANOVAs, would have camouflaged this, yet in order to understand 
why some individuals show better multitasking performance than others 
it is important to disentangle influence by task characteristics from in-
dividual influence. Besides the impact of random effects, our study 
might have lacked sufficient power to detect this result in traditional 
rmANOVAs, as the post-hoc power of this study was 0.652. 

When analyzing the total number of digits typed and typing errors 
(see Appendix A), participants responded similarly to task characteris-
tics and so a model not considering within-subject variance was 
appropriate to represent the data. However, switch rate is a dependent 
variable representing the way individuals treat two tasks, and typing 
quantity and errors only represent performance on one task, so this 
might have contributed to less variance, too. Finally, we explored the 
use of a threshold parameter in a model that presumes a “build-up” in 
the need to switch, beyond the switch rate per trial, and showed that it 
can be a useful extension to switching research when examining within- 
subject variability. That is, a higher penalty is associated with a lower 
threshold for determining when to switch, leading to more frequent task 
switching. Future research should find more robust measures like the 
time-on-typing suited for modelling the parameter values in order to be 

able to make more reliable behavioral predictions across different tasks 
or situations. Other changes could serve as avenues for tailoring our 
tasks to such modelling endeavors and they benefits they offer. By 
increasing the number of trials we could explore relative influence of 
parameters and/or interactions between them, and use more sophisti-
cated hierarchical estimation techniques. 

Relatedly, we are aware that one limitation to the study may be the 
sample size. With the main aim to extend research by Farmer and 
examine the proposed explanation that differences in characteristics 
contribute to the switching variance, it was based on the original study. 
Yet, sample size and heterogeneity of the sample may affect power when 
analyzing between-subject differences between the typing-while- 
tracking paradigm and separate measures. Likewise, the small sample 
prevented us from conducting analyses of co-variance, median-splits or 
reporting reliability scores of the separate measures and we could only 
infer from descriptive statistics that data obtained in our sample was 
comparable to norm samples. 

This study represents one of the first attempts to explore reasons for 
different task-switching strategies in a switching paradigm entailing 
different payoffs. Using an experimental study and modelling approach 

Fig. 7. Best fitting threshold values, by cursor speed. Histogram of the best fitting θ values in “high” (blue) and “low” (yellow) conditions (left panel); and a 
scatterplot of individual θ value pairs for “low” vs. “high” conditions (right). (For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.) 

Fig. 8. Best fitting threshold values, by penalty condition. Histogram of the best fitting θ values in “all” (blue), “half” (yellow), and “500” (teal) conditions (left 
panel); and a scatterplot of individual θ value pairs for “all” vs. “half” conditions (right). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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including threshold parameters from decision-making theory provides 
an extension of previous research. In future research a simple DFT model 
testing only the threshold parameter could be extended for a systematic 
modelling approach testing other potential important parameters such 
as the drift rate. The results of our study suggest that task characteristics 
(i.e., reward and loss prospect) modulate behavior on this switching 
paradigm more than the characteristics of the person (i.e., risk tendency 
and impulsiveness). Yet future studies should still consider other char-
acteristics that may have a stronger influence on task-switching strate-
gies like the ability of relational integration or shifting as recently 
proposed by Himi et al. (2019). 
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Appendix A 

Descriptive statistics of the three performance scores on the typing-while-tracking paradigm for all six experimental conditions.    

Cursor speed 

Low High 

Lose half Lose all Lose 500 Lose half Lose all Lose 500 

M SD M SD M SD M SD M SD M SD 

Switch rate  8.3  5.4  7.7  4.9  7.4  4.7  8.3  5.5  10.4  7.3  9.7  7.5 
Total no of digits typed  196.9  41.0  199.9  34.9  194.1  35.9  196.0  33.9  189.9  40.04  179.6  38.8 
Typing errors  5.6  5.0  5.6  5.9  4.9  3.9  5.6  4.7  5.1  4.9  4.5  5.0   

Total no. of digits typed (per trial) 

For the fixed effects, we found a main effect of Cursor Speed, F(1, 29) = 9.19, p = .005, η2 = 0.013, because participants typed more numbers in 90 s 
trials when the cursor moved at lower speeds. We also found a significant main effect of Payoff, F(2, 58) = 5.14, p = .009, η2 = 0.015, because there 
was a tendency to type less digits per trial the higher the expected payoff. There was no significant Cursor Speed × Payoff interaction, F(2, 58) < 1, p =
.448, η2 = 0.004. 

The maximal LMM was singular, so variance components were dropped to achieve model identification. Dropping Payoff as a variance component 
improved goodness of fit, χ2(18) = 112.63, p < .001. Comparing this model against a zero-correlation-parameter LMM, shows that removing cor-
relation parameters does not improve goodness of fit, χ2(1) = 0.07, p = .789. When further simplifying the random-effects structure of the identified 
LMM (digits typed ~ Cursor Speed * Payoff + (Cursor Speed | Subject)), we found that there was no loss of goodness of fit when removing all variance 
components, subsequently the data was best represented without random effects term, so there were no major inter-individual differences for the total 
no. of digits typed. 

Analyses of the total number of digits participants typed during a 90 s trial. Cursor Speed was the speed of the random cursor inside the circle (low: 
3 pixel vs. high: 5 pixel) and Payoff described how many points participants would lose as soon as the random cursor exits the circle (lose half of their 
points, lose all their points or lose 500 points). Error bars show the 95% confidence interval. 

Correlations between number of digits typed and time-spent-on typing for all six experimental conditions to control for the potential influence of 
motor skill or experience.   

Variable  No. of digits typed No. of digits typed 

High cursor speed Low cursor speed 

Lose all Lose half Lose 500 Lose all Lose half Lose 500 

Time-on-typing Lose all Pearson’s r 0.484***   0.388***   
Time-on-typing Lose half Pearson’s r  0.190*   0.357***  
Time-on-typing Lose 500 Pearson’s r   0.435**   0.362*** 

Note: If motor skill or experience influenced the number of digits typed, then those individuals being more skilled should type more digits in less time than less skilled 
individuals, leading to rather weak correlations among the sample. 

* p < .05. 
** p < .01. 
*** p < .001. 
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Typing errors 

For fixed effects only, we found a main effect of Payoff, F(2, 58) = 4.02, p = .023, η2 = 0.006, so participants made fewer typing errors the higher 
the expected payoff. We neither found a significant main effect of Cursor Speed, F(1, 29) = 1.38, p = .250, η2 = 0.001, nor a significant Cursor Speed ×
Payoff interaction, F(2, 58) < 1, p = .836, η2 = 0.000. The maximal linear mixed model with all variance components (typing errors ~1 + Cursor Speed 
* Payoff (Cursor Speed * Payoff | Subject)), failed to converge and was thus overparameterized, which was substantiated by the fifth and sixth 
component being close to zero in the rePCA. When removing correlations between the variance components, we found singularity in the model, so we 
dropped variance components to achieve model identification. The stepwise reduction showed that the data was best represented when dropping 27 
out of 36 variance components (typing error ~ 1 + Payoff * Cursor Speed + (1 + Payoff + Cursor Speed||Subject)). The identified model was then 
further reduced by non-significant variance components, and none of the variance components improved goodness of fit, χ2(2) = 2.05, p < .359. This 
suggests that a model without random effects term represents the data set best. 

Analyses of typing errors participants made during a 90 s trial. Cursor Speed was the speed of the random cursor inside the circle (low: 3 pixel vs. 
high: 5 pixel) and Payoff described how many points participants would lose as soon as the random cursor exits the circle (lose half of their points, lose 
all their points or lose 500 points). Error bars show the 95% confidence interval. 
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