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Abstract

This thesis is a body of work applying data science and mathematical
modelling to problems in intelligent transportation systems. Utilising data
collected from the M25 London orbital, four problems relevant to both industry
and academia are considered. In chapter 4 we develop a novel methodology
for anomaly detection on road networks. We determine a data-driven region
of typical behaviour in the flow-density plane, tracking fluctuations from this
to identify anomalies in real time. We find this offers generally comparable
performance to existing methods, but is clearly superior when the distribution
of speeds conditioned on time of week is bimodal.

In chapter 5, we quantify the prevalence of primary and secondary traffic
incidents in our data using a novel self-exciting point process. The self-
excitation component suggests 6-7% of incidents are most likely secondary,
occurring temporally and spatially in the wake of other incidents. Our modelling
further identifies two spatial hotspots and captures commuting patterns in
the UK. We are able to apply out-of-sample validation and show the model is
statistically defensible.

Chapter 6 explores dynamic prediction of incident durations. We find
non-parametric neural network models offer strong performance compared to a
range of alternative candidates, achieving errors below current industry targets.
By exploring feature importance, we find time series prove informative for
predictions on short horizons whereas time of day and location do so at longer
horizons.

We explore an emergent behaviour path planning model in the context of
autonomous vehicles in chapter 7. This was developed in conjunction with
engineers from Jaguar Land Rover and incorporates practical constraints real-
world vehicles must satisfy. Formulating an optimization problem incorporating
comfort, safety and progress, we show dynamically solving this results in
emergent complex driving behaviours: vehicle following, passing and overtaking.
Safety is based on a distributional prediction of drivers behaviours, with its
variance indirectly defining properties of the emergent behaviours.

Our findings throughout this work offer models and methodologies that
can be used to improve the management and better understand the behaviour
of existing transportation infrastructure, as well as the development of future
technologies.
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Chapter 1

Introduction

Efficient and reliable transportation infrastructure is a fundamental component

of an advanced economy [5]. Road infrastructure in-particular accounts for 90%

of passenger journeys and 70% of freight transport in the UK [6]. As a result,

effective management of the country’s road network is of significant practical

concern. In many countries, including the UK, there is limited scope to build

additional infrastructure to cope with the demand for road traffic. Instead,

the focus is on approaches referred to as ‘intelligent mobility’ and ‘intelligent

transportation systems’. These broadly describe efforts to improve the usage of

existing infrastructure by combining real-time data, mathematical or statistical

models and communication of information to users. These efforts can be both

network-wide or on the scale of individual commuters and their vehicles. We

will consider the network-wide problems to fall under the umbrella of intelligent

transpiration systems, and those concerning individuals and their vehicles to

fall under intelligent mobility. An appropriate test-bed for the network-wide

approaches is the Strategic Road Network (SRN), which constitutes around

4,400 miles of motorways and major trunk roads across England [7]. The

SRN carries 30% of all traffic in the country, with 4 million vehicles using it

each day and 1 billion tonnes of freight being transported across it each year

[8]. Whilst a large component of transportation infrastructure in England,

congestion remains a significant problem on the network, with [8] suggesting

75% of businesses consider tackling congestion on the SRN to be important or

critical to their business.

There is little chance that in the short term, the SRN will see significant

infrastructure changes, however data describing the traffic state across the

network is already being collected and made available for analysis through the

National Traffic Information Service (NTIS)1 [9]. There is therefore significant

scope to address a range of problems faced by commuters, traffic operators and

1Technical details of the NTIS data feeds are available at http://www.trafficengland.
com/services-info.
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traffic management centres using this data. Some of these problems relate to

incidents on the network, for example detecting where incidents are occurring

and altering operators of their existence, or making informed predictions of

how long a part of the network will be impacted by an incident. Others include

identifying locations for infrastructure improvement, and more future facing

tasks on the microscopic scale considering challenges in the application of

autonomous vehicles. Fundamentally, one of the major challenges in intelligent

mobility and intelligent transportation systems is to understand how best

to utilise the available data, in conjunction with statistical, mathematical

and engineering methods to address these types of problems, whilst ensuring

solutions are practically implementable and robust.

We focus on four problems relevant to both industry and academia through-

out this thesis. Literature relevant to each of these problems and that has

influenced our modelling is reviewed in chapter 2. We then detail the data

from the SRN that we extract and analyse in chapter 3. In chapter 4, we

consider how to detect incidents that occur on the network and alert operators

in a timely manner. To do so, a consideration of what constitutes ‘normal’

or baseline behaviour is required. We explore what natural definitions arise

from an analysis of the data, and how one can use these in real-time to detect

incidents as they occur and develop. The agreement between incidents detected

by the proposed methodology and those registered in the data is investigated,

providing validation for the practical application of the method.

In chapter 5, we consider how one might model the spatio-temporal variation

in the occurrence of incidents on the network, and evidence for different incident

generation mechanisms in the data. We apply a model that distinguishes

between primary and secondary incidents, with primary incidents occurring at

some ‘background’ rate that varies in space and time, and secondary incidents

occurring after an initial incident, at short time and length scales relative to

the background. We show such a model is statistically valid on out-of-sample

data, and investigate how the components of the model vary spatially across

the domain, temporally across seasons, and when the data is restricted to

incidents that result in large speed drops on the network.

The third problem, addressed in chapter 6, is predicting the duration of

incidents on the network. By duration, we mean the time between an incident

starting and the traffic behaviour at the incident location returning to some

baseline. We specifically consider how one can dynamically update duration

predictions using real-time data taken from the incident location, reducing

uncertainty and improving prediction performance as more data becomes

available. We ensure the models are interpretable and explore what factors

influence predictions at different time horizons.

In chapter 7, we look further into the future and to a more microscopic scale,
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considering how paths through uncertain environments can be generated in the

context of autonomous vehicles, whilst meeting practical, comfort and safety

requirements. An optimisation problem is formulated accounting for these

requirements, from which a range of natural driving behaviours are emergent.

Such an approach avoids the specification of explicit rules defining driving

behaviours, rather they emerge as a balance between the costs associated

with performing certain actions and occupying certain states, along with the

uncertainty in other drivers behaviours.

Whilst the problems we tackle are all challenges in the domains of intelligent

transportation systems and intelligent mobility, the methodological connections

between them run deeper. We repeatedly consider distributional predictions

to account for various forms of uncertainty, and often utilise non-parametric

statistical methods to capture variation inherent to the data. We utilise various

tools to retain interpretability and understanding of our methods, through

either the construction of the methods themselves, limiting freedom of certain

model components, or applying methods from machine learning to interpret

‘black box’ models. Further, our work provides both practical tools and insight

for traffic management centres and operators, identifying areas for improvement

to existing infrastructure and tools to help better manage situations or develop

future methodologies. This research has been guided by interactions with

industry experts from Thales, Jaguar Land Rover and Transport for the West

Midlands to ensure our analysis and recommendations are of practical use and

address pressing industry concerns.
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Chapter 2

Background

In this chapter, we review literature relevant to each of the challenges we

consider. We also offer an overview of some of the relevant mathematical and

statistical methodologies we apply throughout our work. Before we begin,

we note that different areas of the literature may tend to use different terms,

either ‘events’ or ‘incidents’ to describe situations that occur on the network,

for example crashes, breakdowns and abnormal traffic jams. We will refer to

such situations as incidents throughout this work.

2.1 Automatic incident detection

Multiple approaches have been proposed for the task of anomaly detection as

applied to traffic incident detection. They broadly fall into two classes. The

first class uses data from individual vehicles. Examples include the use of data

from automatic vehicle identification systems as in [10], the identification of

single vehicles using cameras in [11] or the use of global positioning system

(GPS) and social media data from navigation applications such as Waze in

[12]. The second class uses time series data from embedded loop sensors,

usually aggregated measures of traffic. Typically, these include one or more of

vehicle counts, occupancy or density and speed. These methods do not identify

individual vehicles and are often statistical in nature. We explore methods of

the second class in chapter 4.

Various approaches that utilise data derived from loop sensors have been

considered throughout the literature. Firstly, basic pattern matching is an

approach which has proven to be successful in some contexts. The idea is

to determine some features or thresholds in time series data that indicate

incident and non-incident windows. Early and well known examples of this

are the California algorithms and their variants, discussed in [13, 14]. These

algorithms compare occupancy values at adjacent sensors, looking for when the

pair-wise comparison metrics pass some thresholds. As a specific example, for
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two sensors i and i+1, where i+1 is downstream of i, the California Algorithm

#7 computes the occupancy difference at time t between sensor i and i+ 1, as

well as the relative occupancy difference between the two. Finally, it compares

the downstream occupancy to some threshold, and outputs an incident free,

tentative incident, incident occurred or incident continuing flag. Modifications

are made to the logic for other variants. To apply this in practice, one needs

labelled time series data at the loop level, with labels specifying when and

where incidents occurred. The model thresholds can then calibrated based on

this data, and the algorithm applied in real-time.

A second popular approach is the so-called McMaster algorithm, based

on catastrophe theory, discussed in [15], and further developed in [16–18].

The initial observation for the approach is that in uncongested regimes, flow-

occupancy data typically fits a linear relationship with little scatter. From this

uncongested data, one can construct a lower bound of flow-occupancy data

through some parametric form, and also define critical occupancies and flows.

Together, these segment the flow-occupancy diagram into sections that are

then considered to represent system states, either uncongested, bottleneck flow

or congested. If a sensor is considered to be congested, then the next sensor

downstream is examined, determining if this is also congested, or appears

uncongested. If the downstream detector is uncongested, then there is likely

an incident between the two examined detectors, otherwise there is likely a

problem somewhere further downstream that has impacted further upstream.

Such an approach requires calibration of particular thresholds, which may differ

from station to station and also requires fitting some parametric form of the

lower flow-occupancy bound. Subsequent work on the McMaster algorithm has

explored how to correctly calibrate these parameters, with [19] considering a

particle-swarm approach. Our work in chapter 4 also considers a segmentation

of data into different regions, however we consider a non-parametric approach

to avoid introducing a large number of parameters to fit, allowing the data to

define the regions itself.

A third important approach is the standard normal deviate (SND) meth-

odology, an early use being in [20]. These methods attempt to construct some

average value µSND for a traffic variable on a particular time interval, and

some measure of variation σSND. Then, one can question if new data, for

example speed, is below some threshold value of µSND − c σSND, determining

the parameter c to best fit available data. Of course, if one simply uses a mean

and standard deviation for this, there is a risk that outliers may significantly

influence these values. To account for this, one can pre-filter a dataset to

remove any known incident periods before computation as in [21], or use robust

summary statistics as in [22]. Extensions of this idea include incorporation of

spatial information, seen in [23], where the total delay time caused by traffic
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accidents is examined by considering the propagation backwards in space and

forwards in time of traffic queues. Further, [24] considers robust construction

of noise thresholds and incorporates smoothing, first determining a robust

threshold for each particular interval of a day, then smoothing these using a

bilateral filter to incorporate spatial-temporal correlations, assuming nearby

windows of space and time should have reasonably similar thresholds. The

methodology we develop in chapter 4 is similar in some sense to a robust

SND methodology, however we detail further in that chapter how we construct

a robust threshold for normality from a joint representation of flow-density

data, and investigate how deviations from this correspond to incidents on the

network.

Closely related to the SND family of algorithms are various approaches

based on change-point detection. Such ideas are considered in [25], where the

authors use a Markov structured model to predict the transitions between a

congested and free flow state. Additionally, [26] based their methodology on

forecasting with ARIMA models, classifying an incident period as one where the

data lay outside the confidence bounds of their forecasting model. Approaches

such as this one assume that the confidence limits provided by a forecasting

model are indeed representative of the true uncertainty present in the data,

and as a result require extensive time series validation. The question of what

is an optimal model to forecast traffic states, in the wide range of potential

scenarios is also a complex one. These methods, along with the SND methods,

have the advantage that they can be applied without any changes to both the

individual loop level, or at the aggregated link level.

However, calibrating any form of incident detection method is generally

difficult because of data quality problems [27]. These problems include incidents

that are present in the data but were not flagged and labelled by operators,

delays in the reporting of incident occurrence times, and lack of location

information. These can present particular difficulty for methods that rely on

pre-filtering data and removing incidents to determine normal behaviour, but

still result in difficulties more generally for determining the detection rate,

false alarm rate and detection time for methodologies. To combat this, some

authors use simulated data, as in [28, 29], however how close this simulated

data is to that generated from a real-world location of interest may vary in

practice.

Recently, alternative methodologies have emerged for clustering of data into

typical and anomalous states to discover non-recurrent congestion as in [30],

where higher than expected journey times are distinguished from typical ones

using expected journey times scaled by a congestion factor. Further, clustering

of vehicle trajectories is performed in [31], creating a probabilistic tree-like

clustered structure that can used to identify anomalous incidents. Additionally
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[32] use a Gaussian Mixture Hidden Markov Model to extract features and

classify traffic states from video data into categories of: empty, open flow, mild

congestion, heavy congestion and stopped.

Finally we mention that machine learning and deep learning methodologies

have seen significant developments in their application to incident detection in

recent years. Some of these use traditional datasets but new methodologies,

for example [33] which incorporate traffic data along with weather information

and spatial structure into a convolutional-LSTM model to predict the time

and location of traffic accidents. Additional deep learning approaches include

[34], which uses a convolutional neural network for anomaly detection on the

Luxembourg road network and [35] which again uses a convolutional neural

network but for incident detection on urban roads in London. For such methods,

computational intensity and data quality issues continue to act as barriers.

2.2 Spatio-temporal incident modelling

There is significant literature focusing on analysis and modelling of traffic

incidents from a spatio-temporal perspective. The goal of work in this area may

be to offer descriptive analysis of incident data to better understand existing

traffic patterns, or to develop models for forecasting incident occurrence times

and locations. It is observed throughout the literature that incidents along a

road network do not occur uniformly, and instead there is some spatial auto-

correlation present in the data. A discussion of the evidence for this is given

in [36]. Within, the authors discuss previously applied descriptive analysis

methods, including K-function analysis and comparison to complete spatially

random patterns, and how they showed clear evidence of spatial correlation

among incident locations. They then further this work by incorporating spatial

components into an auto-regressive model, finding it improved upon models

disregarding the spatial correlation in the data. Additional analysis is provided

in [37], where the authors focus on an urban network in China and analyse the

evolution of incident hot-spots through time. They develop various network

spatial analysis methods, extending kernel density estimation on networks, cross

K-function analysis, Moran’s I and Local Indicators of Mobility Associations

(LIMA) and offer various exploratory analysis of the dataset with these methods.

They specifically found that network kernel density analysis revealed differing

spatial structure of incidents during the day and night whereas cross K-function

analysis showed strong association with collisions localised near hotels and

low association near sports and recreation centres. Their use of Moran’s

I considered increases and decreases in incidents on weekdays compared to

weekends, finding large commercial areas showed large increases on weekends,

and finally their use of LIMA showed that local areas in the network often
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showed coherent increasing and decreasing incident numbers.

Further spatial-temporal analysis is completed in [38], where the authors

used Kulldorff’s space-time scan statistics to determine statistically significant

clusters of traffic accidents across the entire UK in 2016. They found two

significant clusters, both in the north of the country, but conceded that they

do not explicitly account for the network structure in their analysis. Whilst we

also consider data from the UK, our work in chapter 5 focuses on a different

time-period and on a much smaller region, a single motorway rather than

the entire country. We also construct a predictive model of traffic incidents

based on point-process, not just discovering locations of statistically significant

clusters. Of course, through constructing a model, we can infer spatially and

temporally where incidents are most common, but the approach we take later

in this work is fundamentally different from [38].

A point of particular interest to our work arises from the modelling of

traffic incidents in [39]. Here, logistic regression and random forest models are

used to predict the likelihood of incident occurrences. In-particular, the models

incorporate a significant ‘cascading effect’ variable, in which the presence of

an incident showed significant influence on the likelihood of another nearby

in space and time. Although a different type of model and formulation to the

one we explore in chapter 5, there is clearly a sense that cascading effects are

a real component in some traffic data that one may want to incorporate into a

model. It is unclear what time and length scales are associated with this effect

however, and if smart motorway features may remove this effect from the data.

Based on this analysis, it is natural to consider applying spatio-temporal

point-process models to traffic incidents. Recent work considering these models

on linear networks is given in [40], where some specific comments are made

in regards to applying them to traffic incident modelling. In-particular, the

authors consider road-networks in Huston, Medellin and Eastbourne and

question what features the data show. They find statically significant evidence

that incidents on the network did not follow a uniform spatial-temporal Poisson

process and that tests indicated favouring clustering of data in space and time.

Further, they show clear structure in the incidents data relating to time of

day, finding a peak at the evening rush-hour in all datasets. However they

focus on urban road networks, whereas we focus on highways throughout this

work, in-particular smart motorways. We choose to collect data on a large ring

road, detailed in chapter 3, and doing so simplifies the structure of our domain

from a network to a continuous space. Indeed, we will use this, and with it a

standard distance measure in space throughout the work in chapter 5, rather

than a graph distance as in [40]. Our choice of dataset simplifies the fitting

procedure of a point-process model from a network space onto continuous

space, whilst also offering some insight into a much discussed topic of smart
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motorway safety.

Readers interested in the discussed spatial-temporal analysis methodologies

that are not explored further in this work can find details of K-function analysis

in [41], Kulldorff’s space-time scan statistic in [42] and LIMA in [43].

2.3 Incident duration prediction

As well as exploring methods to detect incidents on a network and model their

spatio-temporal properties, there is significant work on predicting the duration

of incidents. Whilst this is a large body of existing work, many fundamental

challenges remain that are both of practical interest to traffic management

centres and remain active areas of research in an academic sense. A review

of existing work in this area is found in [44], where six future challenges for

incident duration prediction are listed. These are: combining multiple data-

sources, time sequential prediction models, outlier prediction, improvement

of prediction methods through machine learning or alternative frameworks,

combining recovery times and accounting for unobserved factors. We base our

work in chapter 6 on addressing some of these challenges, and review relevant

literature below that covers other aspects that influence our modelling.

Before any methodologies are considered, it is first important to define

exactly what is being modelled in existing works focusing on incident duration

analysis and prediction. A traffic incident is considered to have four different

time-phases: the time taken to detect and report an incident, the time to

dispatch an operator to the scene, the travel time of the operator to the scene,

and finally the time to clear an incident. Such a framework is described in [44].

Often authors cannot estimate reporting time, and so an incident is considered

to have ‘started’ when it is reported by an operator. Typically, an incident

is considered to have ended when it is closed by an operator or management

centre, and many works focus on modelling the duration of an incident as

measured by the difference between these two times. However, [44] highlights

that a future challenge for works in this area is to also model the recovery times

of incidents, that is to include the time until the road returns to some normal

behaviour in the modelling. We discuss this further and how we account for it

in chapter 6.

Whatever explicit definition of duration is used, there is an enormous

amount of work on developing models to explain and predict this. For many

works, an initial step in modelling is to determine an appropriate distributional

form to represent the measured durations. These are typically heavy tailed

and empirically show significant variation. Examples of this include modelling

the distribution of incident durations as log-normal in [45, 46], log-logistic

in [47, 48], Weibull in [49, 50] and generalised F in [51]. In the later, it is

9



noted that the generalised F distribution can be equivalent to many other

distributional forms for particular parameter choices, including the exponential,

Weibull, log-normal, log-logistic and gamma distributions. Hence, it offers

more freedom than choosing any single one of these forms. Indeed, the authors

state that the increased flexibility it offers allows it to fit the data better.

Even further flexibility in the distributional choice is given in [52], where it

is shown that modelling the distribution as a mixture, that is the sum of

multiple components, may improve model performance. Specifically, they

consider a model with a single log-logistic distribution, and another model

with a 2-component log-logistic mixture distribution, achieving mean absolute

percentage errors of 49% and 39% respectively, clearly showing promise in this

mixture approach. Finally, [53] had difficulty finding statistically defensible

distributional fits to their data, although it should be noted that different

definitions of incident durations will likely impact this.

Using some common probability distribution is appealing in some sense as it

limits the freedom of a model and can be easier to fit to data. However, it is clear

that authors are exploring more complex distributional forms to better model

the data and seeing better results when they do so, as in [51] and [52]. Mixture

distributions are a naturally appealing form, as we assume the data is generated

by multiple sub-populations, and can have different effects of covariates for

different populations. Recent applications of survival analysis in healthcare

[54] have removed distributional assumptions entirely, and instead formulate

models that output distributions with no closed form. This is done by treating

the output space as discrete, and treating the model output as a probability

mass function (PMF) defined over it, allowing for construction of a fully non-

parametric estimate. Such an approach offers even more freedom, and as we

see more complex distributions used in the traffic literature to provide similar

freedom, one could question if removing the distribution assumption entirely

can improve model performance. We incorporate this section of the literature

and idea of increasing freedom into our work in chapter 6 by considering models

with simple log-normal and Weibull distributional assumptions, and then more

complex mixture and non-parametric methods. One of the main questions in

that section of our work is does using a non-parametric distribution that has

shown success in healthcare have any benefits in the domain of traffic incident

duration analysis.

An important point to consider as increasingly complex distributions are

used in modelling is overfitting, describing models that fit training data too

closley and do not generalise to unseen data. The more parameters a model

has, and more complexity built into it, the higher the risk of overfitting. There

are a number of approaches taken to avoid this in the literature, and we are

mindful to apply them in our work. The first is to judge model performance on
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unseen data to determine if, after training, the model is able to generalise and

retain performance on new data. This is done throughout chapters 4, 5 and 6.

When we specifically consider prediction of incident durations in chapter 6, we

not only assess out-of-sample performance, but we also apply variable selection

using information criterion for classic models, and elastic-net regularisation

for our neural network models. This form of regularisation ensures weight

values in the neural networks do not grow to large, as this is typically an

indication of overfitting. Further, elastic-net regularisation encourages some

weights in the network to have values of 0, thereby reducing the complexity of

the network. Dropout is used during training of the neural networks, meaning

values for nodes are randomly set to 0 with some probability, ensuring the

network does not become too dependent on specific nodes. Finally, training

for the neural networks is halted when performance on some unseen dataset

begins to decrease, a practice known as early stopping. All of these techniques

highlight the fact that whilst we do consider models with significant complexity

and freedom, we are also mindful to ensure they generalise to unseen data.

After a distribution is determined, many works apply methods from survival

analysis, with a common choice being the accelerated failure time (AFT) model.

Example applications of this are given in [55–57]. Such a model assumes that

each covariate either accelerates or decelerates the life-time of a particular

individual. In practice, this model is equivalent to performing a regression on

the log of the durations with some assumed form of noise. These models are

widely used, and offer an interpretable means of investigating what factors

strongly or weakly influence incident duration. However, it can be difficult

to incorporate time series features into them. Whilst it is possible to model

time-varying effects of covariates, for example in [58], it is more complex to

derive optimal features from a time series that are also interpretable. As well

as producing interpretable outputs and relationships between variables, AFT

models can incorporate the various distributional forms for incident durations

suggested in the literature. The alternative and well known classical survival

model some apply is a Cox regression model [59]. Such a model assumes a

baseline hazard function for the population, describing the instantaneous rate

of incidents, from which survival probabilities can be calculated. Covariate

vectors for individuals shift this baseline hazard allowing for individualised

predictions. Applications of this to transportation problems are given in [60–62].

We consider both of these models and offer more detail on them in chapter 6.

Whilst these two methods are widely used, a number of alternative meth-

odologies exist. One such method is a sequential regression approach, an early

example being [63]. Here the authors identify that more information describing

an incident will become available over time, and hence consider a series of mod-

els to make sequential predictions. Their sequential information is descriptive
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and included information such as damage to the road and the response time

of rescue vehicles. An alternative type of sequential information one could

consider is the time series provided by a sensor network, for example those

recorded along the SRN, and we investigate their use in sequential prediction

in chapter 6. Truncated regression approaches are discussed in [47], where

there is a specific effort to model ‘cascading’ incidents (referred to as primary

and secondary incidents in some literature). The thought here is that incidents

that occur nearby in time and space to another would lead to a significantly

longer clearance time for the road segment, and hence this should be accounted

for in modelling. Extensive analysis of primary and secondary incidents in our

dataset can be found in [2], which constitutes a large part of chapter 5, and as

a result of both this and [47], we consider the inclusion of a cascade variable in

our modelling in chapter 6, allowing this to influence duration predictions.

Further regression approaches are explored in [64, 65], and switching re-

gression models are used in [66]. Note that in [65], the authors first cluster

the incident data, then use this clustering as additional features for a model,

further suggesting that there is some element of sub-population structure in

the data. It would be interesting to consider how one might apply clustering

in a dynamic setting, taking measurements up to some prediction time and

identifying sub-groups in the data based on this. A final relevant regression

based work is [67], where quantile regression is used to model incident durations.

This is a natural choice, as there is a clear skew in the empirically observed

duration distributions, and if one does not want to assume a particular distri-

butional form, they can instead model properties of the distribution, in this

case quantiles.

Alternative modelling approaches applied to this problem include those

based on trees or ensembles of them. Tree based models are discussed in [53],

where the authors compare models that assume particular incident duration

distributions, a k-nearest-neighbour approach and a classification tree method

based on predicting ‘short’, ‘medium’ and ‘long’ incidents. They conclude

that no model provides accurate enough results on their dataset to warrant

industrial implementation, but find the classification tree is the preferred model

of those considered. Classification trees are further considered in [68], where a

specific advantage of their method is that only the branches corresponding to

available information on a per-incident basis are used for analysis, offering a

natural way to deal with missing data. The authors specifically state that they

do not use a fixed tree, instead they build a sequence of models, each built

using a different subset of features. The predicted duration for and incident is

then generated by passing the information it provides down the tree fit to the

corresponding subset of features it provides. Doing this is reasonable if there

are a small number of feature subsets that each event can possess, however
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quickly becomes impractical otherwise.

Further, [69] consider a regression tree approach, where the terminal nodes

of each tree are themselves multivariate linear models. Such an approach avoids

binning of incidents into pre-defined categories, and achieved 42.70% mean

absolute percentage error, better than the compared reference models. From

an interdisciplinary setting, alternative tree methods have been considered,

namely one known as ‘random survival forests’ (RSF) [70] as an extension to

random forests to a survival analysis setting. In such a framework, the terminal

nodes of each tree specify cumulative hazard functions for all data-points that

fall into that node, and these hazards are combined across many trees to

determine an ensemble hazard. There is no defined distributional assumption

in such a model, again leaning towards the side of freedom in allowing the

data to construct its own hazard function estimate rather than parametrising

an estimated form. Applications of such a method are seen in [71, 72] and a

review is given in [73].

Of course, the recent explosion in machine learning research has lead to a

number of authors considering its application to incident duration modelling.

Some of these include support vector regression, as in [74], and k-nearest-

neighbour clustering methods as in [75]. Another rapidly developing branch

of machine learning is neural networks, which have been used extensively in

incident duration prediction and form the basis for some of our work in chapter

6. Examples of this include [76–78]. Each of these applies feed-forward neural

networks to determine estimates of incident durations, and particularly in [78]

sequential prediction is considered, using two models. The first takes standard

inputs such as time of day and details on location and incident type, whereas the

second takes these along with detector readings from upstream and downstream

locations after the incident had occurred. These are input into feed-forward

neural networks, and used to generate point predictions. Additional neural

network applications are given in [79], where their performance is compared

to that of linear regressions, decision trees, support vector machines and

k-nearest-neighbour methods. The authors find that different models have

optimal performance at different incident durations, suggesting there is still

much to improve on feed-forward networks. A final point to note is that neural

networks have been applied to survival analysis problems in other disciplines,

for example healthcare, a number of times. Examples of this include [80]

which develops a Cox model, replacing a linear regression component with

a neural network output, [54] which as discussed removes any distributional

assumptions, and [81] which uses a sliding window mechanism and temporal

convolutions for dynamic predictions. We consider if the later two are useful

when applied to traffic incidents in chapter 6. Specifically, using [81] offers an

automated way to engineer features from data provided by the sensor network,
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whilst being able to model a parametric or non-parametric output.

Whilst we have discussed a number of different methodological approaches,

the features used by these models, regardless of approach, appear quite con-

sistent across different works. In [64], the authors state that by using number

of lanes affected, number of vehicles involved, truck involvement, time of day,

police response time and weather condition, one can explain 81% of variation

in incident durations. An overview of various feature categories and other

important factors is given in [44], identifying incident characteristics, environ-

mental conditions, temporal characteristics, road characteristics, traffic flow

measurements, operator reactions and vehicle characteristics as important

factors when modelling incident durations.

Our work throughout this thesis focuses on the use of sensor data for a

number of problems in intelligent transportation systems, and we note that

we are not the first to consider applying this to incident duration analysis.

Speed data collected from roads is used in [51], where the authors include

two features based on the speed series: if the difference between the 15th

and 85th percentiles of the speed data is greater than 7 mph and if the 85th

percentile for speed is less than 70 mph. Further, in [78, 82] the authors train

two feed-forward neural networks, with input features that include the speed

and flow for detectors near the incident. The first model provides a forecast

just before the incident occurs, and the second has new data input whenever

available, updating predictions as time progresses. In the first paper, the focus

is on reducing the dimensionality of the problem through feature selection via

a genetic algorithm. Our work in chapter 6 fundamentally differs from these

for multiple reasons. With regard to [51], this was an analysis of which factors

impact incident durations the most, and whilst we both utilise hazard based

models, we use the sensor data to engineer dynamic features, either manually

or through temporal convolutions. Additionally, our work differs from [82] and

[78] through how we determine features and network structure, and through

predicting an output distribution, not just a point estimate. This allows for

some determination of risk and a survival function in-line with classic survival

models, but retains the non-linear modelling power of a neural network. We

additionally use the sensor information to determine when the end of the

incident is in-terms of returning to ‘normal operating conditions’ which are

defined entirely by the data, and as discussed is highlighted as a problem in

this area to address.

With dynamic prediction being highlighted as an area to address in the

literature, some recent papers have looked at this problem through different

methods to those already discussed. One example of this is [83], where a topic

model is used to interpret written report messages and predictions are made as

new textual information arrives. Further, multiple regression models are built
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in [84], and as different features become available, data-points are assigned

clusters, and a prediction is generated using a regression model tailored to

each cluster. The approach in [85] considers four types of incidents, defined by

the ratio of measured speed and free-flow speed during the incident. As new

speed measurements arrive, they are used to determine if and when the ratio

of actual speed to free-flow falls below specified thresholds, and models are

built incorporating this information. Lastly [86] consider a five stage approach,

where a prediction is made at each stage and different features are available

defining these stages. These include vehicles involved, agency response time

and number of agencies responding. While this structured approach addresses

some aspects of dynamic prediction, the purely data-driven approach which

we present in chapter 6 provides much more flexibility.

2.4 Challenges in planning paths for autonomous

vehicles

The previously discussed tasks consider network scale problems one might face

and the existing work to address them. There are however a huge range of topics

relating to intelligent mobility that consider problems on a more microscopic

or single vehicle scale. A significant one from both an academic and industrial

perspective is path planning for autonomous vehicles. An extensive overview

of this area is provided in [87], highlighting methods typically used to generate

paths. The four main methods reviewed are based on: determining paths

through a graph, randomly sampling state-space, interpolating curves through

way-points and numerical optimisation of functions subject to constraints.

Many of these algorithms plan a route from some origin to a destination trying

to meet some criteria, for example minimal path length, maximal comfort or

lowest curvature. Fundamentally, these can incorporate static objects, but

often the control scheme to follow this, and accounting for dynamic obstacles,

is left as a later problem to solve. Indeed, accounting for dynamic environments

is explicitly listed as a challenge in [87]. We now review each of these path

generation methods, but note from the outset that the work in chapter 7 falls

under the class of numerical optimisation approaches.

Graph based approaches are typically concerned with discretisation of a

domain into a network representation, and then applying well know network

theory algorithms such as Dijkstra’s algorithm or A∗ to generate a path through

this. An example of such a work is [88] in the context of vehicle manoeuvres,

where the network is taken to be a ‘dynamically feasible lattice state space’.

In short, this is a set of states, each of which consists of a position, heading

and speed. Connections are made between states by considering an ‘action
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space’, meaning pairs of acceleration and steering commands that allow one to

transition between states. States in the lattice are connected if there is a valid

action pair linking them, and then finding a route through the lattice ensures

the resulting path is dynamically feasible. In [88], a variant of A∗ is used to

search through the graph, determining heuristics to decrease computational

time. Further network based approaches are given in [89], where the authors

again search the kinematic space of a vehicle using an algorithm based on

A∗, and smooth the resulting path by optimising a cost function penalising

being close to obstacles, excessive curvature and improving the smoothness of

the path. A∗ search is once again used in [90], specifically to route around a

multi-level car-park and again the authors smoothed the result of the graph

search to yield a final path. Whilst A∗, an approximation to Dijkstra’s globally

optimal search through a graph, improves the speed of searching, retaining the

global optimality relies on choosing a heuristic that is ‘admissible’, meaning

it never over-estimates the remaining cost of moving from some node to the

target. Further, as pointed out in [88], the level of discretisation of the state and

action spaces significantly impacts the final result, as well as the computational

demand, so there are multiple trade-offs to consider when applying methods

based on routing through a network.

Methods that are based on randomly sampling state space include rapidly-

exploring random tree (RRT), discussed in [91]. Here, the initial vehicle state

is specified as a single vertex in a tree, then a random point in state space is

selected. The nearest point currently in the tree is chosen, then the control

action that brings this point nearest to the random point in state space is

applied, and the resulting state is included in the tree. This is repeated many

times and rapidly the state space is explored. Applying the control action is

done though the consideration of a system of differential equations representing

the vehicle dynamics, and hence links between state space satisfy what is

possible for a vehicle. When a path from the initial state to the goal is found,

the algorithm terminates. Such a method allows state space to be explored

rapidly, and when coupled with a collision detection system, can account

for static obstacles. However, in its initial form, one takes the first feasible

path as the result, which may not be optimal depending on what measure of

optimality is used. One can continue the exploration until a path meeting

some other criteria is found, however it is still a challenge to define exactly

what these criteria should be if there is the potential for dynamic obstacles in

a scene. Finally, the paths generated by this algorithm are known to be jerky

(uncomfortable) as they are not continuous.

The third method mentioned, planning paths by considering interpolating

curves, takes a set of way-points and then determines a smooth continuous

path between them, discussed at length in [92]. This smooth continuous path
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may be a polynomial, a spline interpolation or a clothoid to name just a few.

Such a method is appealing in a static global sense, if one can predefine some

intuitive way-points and generate a smooth path between them, the resulting

experience in the vehicle will be comfortable and smooth for passengers. When

dynamical obstacles are present, one has to re-compute paths in an on-line

setting, and either determine a way to add additional way-points to manoeuvre

around new obstacles, or wait until the obstacle has moved to proceed. How

best to dynamically add new way-points is a complex problem, and if we were

to consider this problem in the context of uncertain behaviour of other vehicles,

we would perhaps search for some robust way-point generation based on a

compromise between path length and expected interference from obstacles.

Numerical optimisation is used in path planning in numerous ways. The

first is as a method to refine other planning results, as discussed in [89, 90]

already. Such an application makes logical sense, as the initial path generated

from say a graph based method should already be feasible and achieve the

overall goal, and then making minor adjustments can further optimise the

path. There are also a broad range of well established numerical optimisation

routines that handle linear and non-linear constraints on states and actions

that may be present in an autonomous driving context. Rather than just

refinement however, other works consider constructing a trajectory directly

through minimisation of a cost function. One such example of this is [93].

Here, a controller is developed to generate a path minimising a cost function

which has components representing distance to walls, velocity difference from

some desired value, and induced acceleration and jerk values. The idea is

that the optimal path is a compromise between driving at a desired speed,

comfort and avoiding walls. Whilst computationally expensive, designing a

specific cost function and minimising it is appealing because constraints can

be directly incorporated into the optimisation, and different weights can be

applied on different components to represent the relative importance of them.

In different scenarios, one might value different components of this cost more

or less than others, so this can be adjusted as required to reflect this. Our work

in chapter 7 is based on constructing a specific cost function and optimising

the actions of a vehicle directly to minimise it. However, we consider a different

concept of safety than this work, and focus on a conceptual, emergent behaviour

model rather than trying to recreate a specific journey, as is done in [93]. It is

important to note however than in the cited work, the final result was that a

real vehicle drove 103 kilometres on roads and avoided any collisions, however

the authors state it is tuned for a ‘defensive style of driving’ which might not

always be preferable.

For numerical optimisation based methods, it is common to use a method

known as model predictive control (MPC) [94] to overcome computation time
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and account for modelling uncertainties. The idea is that, if we were to plan

a 10 minute journey and had the option to apply a steering and acceleration

action every 0.1 seconds, the size of the resulting optimisation problem would

be large. In this case, it would require optimising 2 × 60 × 10 × 10 = 12000

variables. Whilst one could actually solve this, computation time would be

restrictive, and there is some associated uncertainty with the results. The

model used for the vehicle may present minor errors compared to an actual

vehicles dynamics that accumulate over time, and the environment may change

meaning the route has to be re-optimised. MPC tackles this by breaking up a

large optimisation problem into many smaller ones. Given some look-ahead

horizon τ∗, one solves an optimisation problem from the current time t up to

t+ τ∗, then in a receding horizon fashion allows the system to evolve and re-

solves an optimisation starting at the new point. This general methodology is a

natural way to consider planning a path for an autonomous vehicle, as humans

approach the problem in a very similar way: assessing the current situation,

reasoning about what other actors might do in the near future, performing

some actions, and constantly re-assessing and adjusting their actions based

on how the situation develops. In the autonomous driving context, solving

many smaller problems not only reduces computational effort, it also allows

for continuously updating prediction uncertainty through time.

An example application of MPC in autonomous driving is given in [95],

where a steering controller is developed, aiming to choose a set of actions that

follow a pre-determined reference path with minimal error. The cost function

utilised is based on the deviation from a reference path, and constraints

represent physical and comfort limitations. Similarly, in [96], MPC is used to

again follow a reference path, but also avoiding obstacles. Firstly, a global path

is determined, then when static obstacles are detected, MPC is used to locally

re-plan and avoid them. Another relevant work is [97], where MPC is used to

both incorporate safety and comfort into path-planning. The work handles

safety by introducing a sub-module that considers the risk of violating comfort

constraints and the risk of violating a lateral tracking constraint. When this

risk is sufficiently high, local re-planning is performed. However, there is no

discussion on the concept of other drivers’ behaviour or incorporating the

variability and growing uncertainty in the future states of other vehicles.

A fundamentally important concept in autonomous driving is safety, and

how to actually define this concept mathematically. All autonomous vehicles

can be assumed to have some on-board ‘watchdog’ that will not allow input

actions to roll a vehicle or present a physically impossible situation, however

safety in terms of avoiding other vehicles and pedestrians in a scene is complex.

There are a range of ways this is incorporated into path planning in the

literature. In [93], when obstacles are detected, all corridors that the obstacle

18



can reach in a time horizon are determined, and then a trajectory for each

corridor is predicted by assuming the vehicle follows its lane and maintains

the same distance to the right bound. Polygons representing hard constraints

on positions are created, varying through time along the predicted trajectories,

specifying areas of the domain that cannot be occupied by the controlled

vehicle. Other works generate a ‘predictive occupancy map’ of the domain, for

example in [98], where feasible locations of other vehicles in a scene assuming

fixed behaviour are determined. Twelve trajectories through space are then

constructed, each with an associated risk considering the risk of changing lanes

and of encountering other vehicles. Selection of the optimal trajectory is made

by choosing the one from these twelve with minimal risk. In the context of

ocean navigation, [99] utilise a probabilistic prediction of ship locations to

consider what areas were most likely to be occupied by other ships. A cost

function for planning a path is formulated by incorporating the risk of being

in particular locations, hence resulting in a minimum expected risk planner.

Our methodology in chapter 7 shares some ideas with these three works, as

we will consider some hard constraint through time over the expected position

of other vehicles as in [93], but we shall also utilise a predictive distribution

of the states of other vehicles to augment the hard constraints. We will not

generate a discrete set of trajectories and choose the lowest risk one as in [98],

instead we will solve an online optimisation problem where safety is part of

the cost function.

Other works assign a ‘potential function’ to obstacles that rapidly increases

as distance to the obstacle decreases to ensure safety. Discussions of this in

a dynamic setting are given in [100]. Here, the authors consider the relative

velocity between the controlled vehicle and a moving obstacle, and choose some

maximal allowed deceleration, which in turn defines a difference in distances

one would travel over some time-period. A potential function is then described

utilising concepts of a safe distance, the obstacle dimensions and at what ranges

an obstacle influences decision making. Such a function guides a path planner

to avoid being near obstacles whilst still pulling the trajectory towards some

end goal. This is applied in an autonomous driving context in [101], where three

types of potentials are considered. The first is for crossable obstacles (bumps

in the road), the second is for non-crossable obstacles (other vehicles) and the

third is for lane changing. Crossable objects have an exponential potential,

non-crossable objects have a hyperbolic potential and lane boundaries have a

quadratic potential. A cost function is then determined looking ahead some

horizon and accounting for the potential functions, the distance from some

target state and the cost of large tyre forces and steering angles. The ultimate

goal is to reach some lane at some desired speed. A similar approach is

taken in [102], where a ‘potential crash severity index’ is also incorporated,
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accounting for velocity difference, mass difference and angle differences between

the controlled vehicle and obstacle. This severity index is then incorporated

into the cost function, along with the previously discussed components, and it

is shown that doing so ensured if a crash between vehicles did occur, it would

have minimal severity. We also consider looking some horizon ahead in our

work throughout chapter 7, but rather than choosing a functional form for each

obstacles potential, we instead allow this repulsion to be a consequence of the

uncertainty of a predicted distribution of future obstacle states. We also do

not include a concept of ‘cut off’ distance or similar, instead this is controlled

by the tail behaviour of the predictive distribution. Finally we also include

concepts of crash severity as in [102], ensuring the velocity difference between

vehicles is accounted for in the concept of safety.

It should be noted that a huge number of papers address single complex

manoeuvres. In [103] and [104], this takes the form of designing a methodology

to perform an overtake. In-particular, [104] considers a three-phase overtake

with only the controlled vehicle and a single other vehicle in the scene, and

assumes the other vehicle travels with a constant velocity along a rectilinear

route, and the overtake lane has enough space to complete the manoeuvre.

Acceleration profiles are generated using sine curves in [105] and pre-specified

acceleration and deceleration periods are used to design a system that smoothly

overtakes obstacles. Such a construction makes fitting the parameters to data

simple, but restricts the behaviour of the vehicle to follow a small set of all

possible dynamics. Clearly, designing a large number of systems, each of

which specialised to a single task, will make transitioning between simple and

complex driving environments very difficult, as the number of individual tasks

becomes very large as environmental complexity increases. In [106], a more

general framework is considered, deciding when to follow and when to overtake

vehicles on a highway. They do so first by computing a separate reference

speed for the vehicle to follow in each lane. A rule based system then decides

which lane to take, and an optimisation problem is solved to determine the

sequence of actions to get there. Of particular relevance to our work in chapter

7 is their consideration of uncertainty, where elliptical boundaries are drawn

over expected vehicle positions, with the ellipse shape representing different

uncertainties in lateral and longitudinal positions of the vehicles. Assuming

Gaussian tracking errors, they construct hard constraints in their optimisation

specifying an elliptical region that the controlled vehicle cannot enter for each

dynamic obstacle. The semi-major and semi-minor axis of these ellipses are

determined by the lateral and longitudinal tracking uncertainty, multiplied

by some constant which will in turn enclose some quantile of the associated

distribution. Slack variables are then included to adjust the ellipse length

under extreme conditions. In section 7.3.2 we discuss a similar idea, however
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do not just consider the uncertainty as a hard constraint, rather we use it

to determine the cost of occupying space and possessing various velocities

throughout time. Our approach also does not generally assume Gaussian

tracking errors, instead we take some output from a prediction model which

can have any form. A further point to mention is that papers such as [106] have

some fundamental rule based system attached, and an explicit understanding

of following, overtaking, lane-changes and so forth.

Finally, of particular recent interest are imitation learning approaches to

path planning. Examples of this include [107] for high-speed off-road driving

and [108, 109] for urban driving. These methods aim to control the vehicle in

such a way as to imitate an expert driver, defined by available training data.

In some approaches, one assumes that the training data gives samples of a

perfect ‘policy’, and the goal of training the method is to take an observation

and determine the policy that maps this to the appropriate action that would

have been taken by the expert driver. These policies are typically represented

by neural networks, allowing for non-linear relationships between the scene

input and driver behaviour. As they have little prior knowledge encoded into

the modelling structure, they take large amounts of data to produce a model

that can generalise across many scenarios, and there is a large cost associated

with collecting this data.

2.5 Mathematical & statistical tools

We now detail some of the tools and methods that are central to work through-

out this thesis.

2.5.1 Kernel density estimation

Kernel density estimation (KDE) is a statistical method that aims to take

observed data-points and determine a smoothed representation of them. Given

some samples from an unknown distribution, p(x), with x ∈ Rd, KDE generates

a non-parametric estimate of p(x) by “smearing out” the samples using a

predefined kernel. Given N samples, Xi ∈ Rd, i ∈ {1, 2, ..., N}, the kernel

density estimate is

p̂Σ (x) =
1

N

N∑
i=1

kΣ (x−Xi) (2.1)

where Σ is a d× d positive definite matrix called the bandwidth matrix and

the kernel, kΣ(x), is often taken to be the multivariate normal distribution

kΣ(x) =
1

(2π)
d
2 |Σ| 12

e−
1
2
x′Σ−1x. (2.2)
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In denoting the estimated density by p̂Σ (x), we are suppressing explicit de-

pendence on the samples, X1, . . . ,XN for the sake of notational compactness.

The estimate p̂Σ (x) is strongly dependent on the choice of bandwidth matrix,

Σ, since it controls the amount of smoothing applied to the data. Choosing

Σ involves a trade-off between under-smoothing and over-smoothing the data.

See [110] for an extensive discussion. One principled way to select the optimal

trade-off is to select the Σ that minimises the mean integrated square error

(MISE), defined as

MISE(p̂Σ) = E
[∫

Rd
(p̂Σ(x)− p(x))2 dx

]
, (2.3)

where the expectation value is with respect to the distribution of the samples,

Xi, i ∈ {1, 2, ..., N}. This optimisation cannot be done directly however since

p(x) is unknown. There are two approaches to address this problem. The first

is to adopt a cross-validation approach whereby a subset of the data is used to

estimate p̂Σ(x) and remaining data is then used to estimate the MISE in some

way. The second is to exploit the fact that Eq. (2.3) simplifies significantly in

the limit N →∞ when the number of samples become large. In this limit, an

analytic formula for the optimal bandwidth can be found although this formula

still depends on the (unknown) second derivative of p(x). For example, in the

univariate case where the bandwidth is a scalar, say ω, the asymptotic mean

integrated square error (AMISE) is

AMISE =
R(k)

Nω
+
ω4

4
(m2(k))2R(p′′) (2.4)

where R(k) =
∫
k(x)2 dx, m2(k) =

∫
x2k(x) dx and R(p′′) =

∫
p′′(x)2 dx with

p′′(x) denoting the second derivative of the unknown density, p(x) and k

denoting the kernel. AMISE clearly has a minimum as a function of ω. The

location of this minimum is the optimal bandwidth and can be calculated

analytically as

ωoptimal =

(
R(k)

(m2(k))2R(p′′)

) 1
5

N−
1
5 . (2.5)

Details of these calculations can be found in [111, chapter 3]. Methods based

on this second approach and extensions of it to the multivariate case are

called ‘plug-in’ methods. Different strategies have been suggested for self-

consistent estimation of the unknown second derivatives of p(x) and most

modern approaches to KDE are based on the ‘plug-in’ approach, see [112]. In

our work in chapter 4, we use the method of Chacón and Duong described in

[110, 113] to perform multivariate smoothing. In chapters 5 and 6, we utilise

univariate smoothing. In each of these, KDE allows us to avoid specifying

parametric forms of particular functions or distributions, and the specific
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applications are discussed within each chapter. Further details can be found in

appendix A.1.1.

2.5.2 Self-exciting spatial-temporal point-process models

From our review of the literature relating specifically to spatio-temporal incident

modelling, we saw a number of spatial and temporal features were clearly present

in incident data. Further, there was a specific mention of a cascading effect,

meaning incidents occurring at one location and time influence the likelihood

of others nearby in space and time. Finally, we saw point-process models had

been applied, modelling traffic incidents on networks. A natural modelling

extension based on these observations is to consider point-process models that

capture this cascading effect through the use of a self-excitation component.

Such a model is known as a Hawkes process, and these have been applied to a

wide range of real-world problems, with a recent review given in [114]. One

application discussed within is earthquake modelling, as in [115–117]. This is

a natural application for such models, as there is strong evidence that initial

large earthquakes lead to aftershocks, and hence there is a clearly interpretable

self-excitation component to the application. Another application discussed is

crime forecasting, as in [118, 119], where self-excitation can be seen in physical

terms as retaliation crimes, among other things. Alternative applications

discussed include epidemic forecasting in [120, 121], and modelling incidents

on social-networks in [122]. Very recently, similar models have been applied to

modelling the spread of COVID-19 [123], although this is still in its infancy.

In each of these works, there is some sense of a ‘background’ component

that models the typical behaviour, and a ‘triggering’ component that allows

for self-excitation. There is much discussion as to what functional form the

components should take, in-particular for the triggering components. Typically,

one supposes some reasonable parametric forms, then determines which is

most appropriate through inspection of the log-likelihood value or information

criteria. Standard choices include some form of exponential, Gaussian or

power-law decay of triggering in time and space. However, recent work in [124]

shows how one can determine both the background and triggering components

in a non-parametric way, through kernel-smoothing of data. In-particular,

the authors model crime data using a background comprised of periodic daily,

periodic weekly, long-term trend and spatial components, as well as triggering

in space and time. However, every component is determined without assuming

any functional form, instead the authors show how when basing their methods

on work in [125], one can determine which incidents in the data appear to be

a result of the background and which appear to be triggered, and then smooth

data based on this to reconstruct the desired components. It is on this we base
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most of our work in chapter 5, and within the chapter we give an overview of

the methodology and how we adapt it for our use.

Clearly, there is significant work on applying self-exciting point-process

models to problems in crime, earthquakes and epidemics, but there is little on

applying them to traffic incidents. One paper that does look at this is [126],

where a self-exciting point-process model is proposed that could theoretically

be fit to real data. However, only simulated data is used, generated from

the proposed model, to then show how the fitting and evaluation would

work. Additionally, a somewhat similar idea is considered in [127], however

importantly here the authors consider traffic flow data to be ‘incidents’ and tried

to use self-excitation to model the idea that often traffic flow occurs in clusters.

They then apply the methods to model traffic flow in Sydney, however there is

no clear conclusion as to if the model is statistically defensible and captured all

features of the data, or if alternative traffic forecasting methods were preferable.

There is still an enormous amount of work to be done applying this methodology

to real traffic incident data, and understanding what components of it are

important, and the amount of self-excitation present in traffic data, along

with appropriate time and length scales it occurs on. Throughout our work in

chapter 5, we are able to offer some discussions of these questions.

2.5.3 Deep learning

There has been enormous work in the areas of machine learning and deep

learning in recent times, with tools from each branch of research being applied

successfully to a wide range of applications. In the most general form, machine

learning looks to approximate some function f(x), which may be a non-linear

function of the input variables x. We use machine learning tools, in-particular

neural networks, throughout chapter 6 and offer an overview of the relevant

aspects here.

Neural network architectures

One choice to model the function f(x) is through a neural network, the most

basic form of which is referred to as a feed-forward network. A simple feed-

forward network is pictured in Fig. 2.1a. In such an architecture, we have

some number of layers ` that make up the network. We denote layer k to have

dk neurons, a weight matrix W k that performs a mapping W k : Rdk−1 → Rdk

and some bias vector bk. The output for each layer can then recursively be

defined as

F 1 (x) = σNN

(
W 1x+ b1

)
F k (x) = σNN

(
W kF k−1(x) + bk

)
∀k ∈ 2, . . . , `.

(2.6)
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(a) Diagram of a feed-forward neural net-
work.

(b) Diagram of a convolutional neural net-
work.

Figure 2.1: Examples of neural network structures. These are generated using
the tool discussed in [128].

where σNN is some activation function. The ultimate aim is to determine

the optimal weights and biases that, given a set of inputs, produces network

outputs that match the observed outputs in the data as close as possible. By

choosing σNN as some non-linear function, one can train a model to learn non-

linear relationships between inputs and outputs, and there has been significant

developments in different architectures to handle different datasets.

One such alternative architecture is known as a convolutional neural network

(CNN), depicted in Fig. 2.1b. This figure illustrates the classic setup for such a

model, when input data takes the form of an image being a N ×M ×P tensor,

with P being the number of channels, for example RGB information of the

image. Convolutions between the input and a number of filters, that is small

matrices of values to be tuned, are computed and the results are used as novel

features of the input data. Tuning of these filters allows for the extraction of

useful predictive features, which are often fed through feed-forward layers to

determine a final network output. As we have discussed, [81] and other works

have looked at applying these networks not to images, but to extract useful

features from series data, and shown promising results. In such a case, the

channels become different variables, for example speed and flow, and the filters

are passed along some temporal window of the data.

Given some specified network architecture, one then trains the network by

defining a loss function, and feeding training examples through the network,

where both the input and output are observed. Often this is done by feeding a

batch of training data at a time, computing the gradient of the loss with respect

to each weight, and then updating the weights to improve the loss. Typically,
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one separates their data into three sets, a training set with which the network

weights are optimised, a hold-out set used to determine if the training should

be stopped, and a separate set on which performance metrics are computed

and reported. Doing so allows one to stop training the model before it becomes

too specialised to the training data (overfit), retaining generalisation of the

model. Further, a number of hyper-parameter combinations are considered

and trained on, allowing one to determine the number of neurons, filters and

so forth that result in an optimal model. We follow this work-flow throughout

our work in chapter 6.

Model interpretability

Recently, there has been a significant effort to improve the interpretability

of prediction models, both those involving neural networks and more general

frameworks. One such example of this is in [129], where ‘Local Interpretable

Model-agnostic Explanations’ (LIME) is proposed, a method to build a simpler

‘explainer’ model G that locally approximates some complex (in our context

neural network) model F . The idea is to optimise the model G to match the

outputs of F by generating a set of perturbed samples around a data-point of

interest. One then minimises the squared loss between the explainer model and

the complex model, and weights data-points in this loss by their distance to

the instance we wish to explain. A penalty for model complexity is imposed on

this optimisation, ensuring that the explainer model is truly simple enough for

human interpretation. The optimisation function for LIME takes the explicit

form ∑
z,z′∈Z

πx(z)
(
F (z)−G(z′)

)2
+ Ω(G) (2.7)

where Z is the set of samples, of which z are inputs to the full neural network

model and z′ are the explainer inputs, πx(z) is some weighting on the current

sample and Ω(G) is a term that penalises complexity.

Alternative works consider neural network specific approaches to model

interpretability, for example [130] in which ‘DeepLIFT’ is proposed. The idea

here is to select some ‘reference’ or background point we want to compare to

and a data instance we wish to explain the prediction of. If we denote the

reference output of the network as F (r) and the output for the data-point in

question as F (x), then DeepLIFT determines a contribution score C∆xi,∆r for

each feature i such that

M∑
i=1

C∆xi,∆r = F (x)− F (r) (2.8)

where M represents the number of features. Various forms of C∆xi,∆r are
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proposed in [130] dependent on network structure, however the key point of

this method is that these contribution scores sum to the difference between the

reference output and query output, and hence their values are informative of sig-

nificant features. One computes these contribution scores by back-propagation

of the final prediction through the network to the original feature values.

Later, in [131], it was shown that many existing model interpretability

methods could be phrased in-terms of a concept from game-theory known as

Shapley values. In short, they propose explainer models of the form

G(z′) = φ0 +

M∑
i=1

φiz
′
i (2.9)

where z′i is a binary value indicating the inclusion or exclusion of a particular

feature and M is again the number of features. They then specify three

properties that one might desire in a feature attribution method: local accuracy

(predictions of the same input give the same output), missingness (no attributed

impact of missing features) and consistency (for two models, if the output

of one is more sensitive to a particular feature change than the other, then

it achieves a higher attribution value). The authors show that under these

properties and Eq. (2.9), the φi values actually coincide with Shapley values

from game theory, and are computed as

φi =
∑

S⊆M\i

|S|!(M − |S| − 1)!

M !
[F (S ∪ {i})− F (S)] (2.10)

where M is the set of all features. In Eq. (2.10), we sum over all subsets of

feature vectors that do not include feature i. For any one of these sets S,

we compute the difference between the model output using the features in S

and feature i, and the model output using only the features in S, shown by

F (S ∪ {i})− F (S). The remaining term |S|!(M−|S|−1)!
M ! accounts for all possible

orderings of the feature vector. The φi values are then referred to as ‘SHAP

values’ and the term φ0 represents the ‘null’ model output, that is the output

if all features were missing.

It is shown in [131] that various existing methods, such as LIME and

DeepLIFT can be phrased to compute these SHAP values, unifying various

feature importance measures. However, there is a clear problem in that neural

networks cannot take arbitrary missing features as an input, so using Eq. (2.10)

alone one cannot compute the SHAP values for such models. Instead, the idea

of a background dataset is again used, and rather than set values to missing,

they are replaced with values from this background. Typically, this background

is not a single data instance, rather it is a large number of them, and the SHAP

values are computed averaging across this background. In such a case, φ0 is the
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average model output in the background dataset. A further complication is the

computational demand in evaluating Eq. (2.10) as it involves summing over all

possible subsets of features, so a number of methods to improve computation

speed have been proposed and are discussed in [132].

Once computed however, SHAP values are appealing as they are additive.

The magnitude of the φi’s reveals the overall importance of a feature, and

the values themselves show if they increase or decrease the model output. We

utilise SHAP values when considering the impact of specific features in our

neural network models in chapter 6. Further discussion of SHAP values is

given in appendix A.2.

2.5.4 Optimisation methods

Optimisation is fundamental to a number of problems and applications of

methods, and we utilise it throughout our work. In-particular, an online

optimisation problem underpins much of our work in chapter 7. We detail how

the optimisation procedures actually minimise functions below.

Gradient descent is a simple and well established optimisation routine, with

variants of it being used to train many modern neural networks. To minimise

a differentiable function f(x), the method iteratively steps towards a minima

by choosing some starting point x(0) and some step size η, then applying

x(n+1) = x(n) − η∇f(x(n)). (2.11)

The intuition is that we want to move against the gradient, so we are at some

given point x(n) and then choose at each iteration to step in a direction that

the function appears to decrease in. When the gradient becomes 0, we have

potentially arrived at the minimum of the function.

Newton’s method is similar to gradient decent, however replaces Eq. (2.11)

with

x(n+1) = x(n) − η
(
∇2f(x(n))

)−1
∇f(x(n)), (2.12)

which clearly adjusts the step taken by considering the second derivative of

the function. The size of each step to take can be chosen using backtracking

line search, discussed in appendix A.3.

Often, optimisation problems are accompanied by constraints representing

practical considerations that limit the values solutions can take. One such

set of constraints are equality constraints, which can be written in the form

hc(x) = 0 for some constraint function hc(x). A second kind of constraint

are inequality constraints, written as hc(x) ≤ 0. One can extend Newton’s

method to incorporate equality constraints without significant difficulty. To

incorporate inequality constraints, one can use the so called ‘barrier’ or ‘interior
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point’ method. The intuition behind such methods is that one wants to solve

an optimisation problem of the form

min (f(x)) s.t. hci (x) ≤ 0 (2.13)

∀ i ∈ {1, . . .Mc}, meaning we have a function to minimise and have Mc

inequality constraints captured by the functions hci . The barrier method

incorporates these inequality constraints into the minimisation directly. If the

so called ‘log barrier function’ is used, one instead solves

min

(
f(x)− 1

κ

Mc∑
i=1

log(−hci (x))

)
(2.14)

for some parameter κ. The idea here is that as hci (x) approaches 0, an increasing

penalty is applied to the quantity we wish to minimise, thereby still accounting

for the constraints. One solves a sequence of problems, increasing the value of

κ until some threshold is met, and in turn a solution to the original problem

is produced that satisfies the inequality constraints. Each problem in this

sequence is solved using Newton’s method, initialised at the previous solutions

end point. A review of these methods is found in [133], and further discussion

of them and optimisation in general is given in appendix A.3.

2.6 Data & modelling uncertainty

Whilst we have reviewed the literature on four problems in intelligent transport-

ation systems and intelligent mobility, and discussed a number of mathematical

and statistical tools we shall use throughout this thesis, two further topics

of interest remain that have relevance to our work. These relate to missing

values in a dataset, and sources of uncertainty in modelling. These topics apply

to a wide range of disciplines where real data is used and models of complex

situations and processes are constructed. Since we do both of these throughout

this thesis, we offer an overview of the two topics here, and discuss their

relevance to specific aspects of our work in the conclusions to each chapter.

2.6.1 Missing data

When collecting datasets, there is often potential for certain values to be missing

or erroneous. Practical examples of this include people refusing to respond

to a particular survey question, faulty sensors and errors in data storage and

transmission. Understanding the mechanisms that result in missing data, and

the potential impact of this on modelling conclusions is a widely studied area

of statistics, and an extensive overview is given in [134]. An important point
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to note is that missing values often hide meaningful information. As examples

in the context of transportation, these might take the form of missing speed

values, flow values or incident flags that would provide a better understanding

of the state of infrastructure if they were in the dataset. A result of this is that

any modelling conclusions or recommendations to traffic operators we make

are subject to this missing information being unknown.

It is important to highlight the difference between missing data patterns

and missing data mechanisms. Missing data patterns describe which values are

missing in a dataset. Examples of this applicable to our application include:

- Univariate or multivariate patterns, depending on how many variables

report missing values

- Monotone patterns. If a sensor were to break at some time during the

collection period and remain broken for the rest of the collection period,

then we would describe the missing data pattern for that sensor as

monotone.

- Non-monotone patterns. This describes the case where a sensor may

break or temporarily malfunction, stop reporting data, but then be

repaired and become functional again whilst we are still collecting data.

Understanding what patterns exist in the dataset is important when considering

the potential influence of missing data.

Missing data mechanisms describe the relationship between missingness

and the values of variables in the data. There are a number of different mech-

anisms that can lead to missing data, discussed in [134] and [135]. Following

these, we consider a complete data matrix Y and denote a missingness in-

dicator matrix M , with an entry in M being 1 if the corresponding entry

in Y shall be missing. A simplifying assumption is that the rows yi and mi

are independent and identically distributed over i. We use the conditional

distribution fM |Y (mi|yi,φ) to characterise missingness mechanisms, with φ

denoting unknown parameters. One mechanism is named missing completely at

random (MCAR) and describes situations where missingness does not depend

on values of the data (observed or missing). Formally, for two values yi and

y∗i in the sample space of Y , this is written as

fM |Y (mi|yi,φ) = fM |Y (mi|y∗i ,φ) . (2.15)

Alternative mechanisms exist, one being missing at random (MAR). If we

denote observed components yi,obs and missing components yi,miss, then MAR

describes situations where missingness only depends on yi,obs. This is written

as

fM |Y (mi|yi,obs,yi,miss,φ) = fM |Y
(
mi|yi,obs,y

∗
i,miss,φ

)
. (2.16)
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A further mechanism is missing not at random (MNAR), describing situations

where the conditional distribution of mi depends on the missing values in the

data.

In many real-world datasets, values are often not MCAR, and missingness

is in some sense informative. A practical example of this in our domain might

be that, if a sensor breaks on an extremely busy section of road, it may not be

justifiable to perform the necessary repairs as it would cause too significant of

a delay to road users. Alternatively, the opposite could be true, that a sensor

malfunctions but is on a section of road with so few problems historically that

it is not considered a priority to address and remains inactive for a long time.

We therefore take care to point out the potential impact of missing data on our

results in the conclusions of each chapter. Further, whilst these two examples

relate to missing sensor measurements, we may also have prior knowledge that

informs us of missing data mechanisms for incident flags in traffic data. It

is well known, and already discussed, that incident labels in data are often

incomplete, and hence we expect some level of missing data with regards to

these in our dataset. If these flags are manually input into the system by

operators, as some are in our dataset with further discussion in chapter 3,

then it is likely that periods of time where operators are particularly busy will

contain more missing flags, and hence the values are not MCAR.

When missing values are encountered in a dataset, one can attempt to

impute them. The method of imputation may vary by application, however in

the context of our dataset, if particular sensor readings are missing, one might

approach this in two ways. Firstly, if a small number of measurements are

missing, but the surrounding values are present, one might use these surrounding

values to construct an estimate of the missing values. We do this and discuss

further in chapter 3, using linear interpolation. Alternative approaches include

mean or median imputation using recent values, or constructing a distribution

that we believe reflects the data values at a given point, and sampling values

from it. However, if an entire day of sensor data is missing, and behaviour

varies significantly over a single day, it is no longer reasonable to linearly

interpolate such elongated periods of missing values. Instead, one might

construct a seasonal estimate of the data values from the non-missing data

and use this to impute values, however one must first be sure that there were

no particular reasons or mechanisms for this data being missing that make a

seasonal model unrepresentative of the true behaviour. Further, as we focus

on incidents, that is highly atypical behaviour of traffic on a short time-scale

(relative to the collection period) we are apprehensive to perform significant

seasonal imputation, as the traffic state during incident periods will not be well

modelled by the long-term seasonal behaviour a section of road experiences.

Imputation of missing incident flags is a more complex issue, as with sensor

31



data, we know some value must have existed at each time point, it may just

have not been reported for various reasons. If we encounter a period in our

data that appears extremely atypical but has no incident flag, we do not know

what the operator was thinking at that time and if they were simply too busy

to record the incident, purposefully choose not to raise a flag for some reason,

or if despite the situation appearing unusual, there was no true cause of this

behaviour they could identify. With the points discussed throughout this

section in mind, we comment on missing data, its prevalence in our dataset

and subsets of it in chapter 3 and appendix B.1.

2.6.2 Sources of uncertainty

We have discussed that missing data might make some useful information

unavailable for analysis. However, even if all values are present in a dataset,

there are often still a number of sources of uncertainty and imprecision when

modelling complex problems. This is discussed at length in [136], and we

outline implications for our work in this section. When attempting to perform

analysis and develop methodologies to tack real-world problems, often three

distinct steps are taken:

- Modelling: construct a mathematical or statistical model of a system or

problem.

- Exploration: consider the behaviour of the model with various different

inputs and in different scenarios.

- Interpretation: provide guidance or advise for an expert or decision maker

based on exploration of the model.

An outline of the different uncertainties one faces in each of these steps is

given in [136]. If we consider the modelling step, one might face uncertainties

through:

- What might happen? For example, what situations might develop on a

road network?

- Meaning & ambiguity. For example, if we want to improve traffic flow

on a network, how do we measure the optimality of flow? It is simply

the highest flow rate, or do we want to consider other metrics such as

safety? If so, how do we define safety?

- Related decisions. For example, if a traffic operator temporary reduces

the speed limit on a section of road, how many people will obey it? How

long will it take for drivers to notice and act upon it?

If we then consider the exploration of models, relevant uncertainties include:
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- Randomness & lack of knowledge. For example, how likely is it that a

traffic incident disrupts flow for a given duration?

- Judgements. For example, what weight should be given to different

features a model uses? What threshold do we set to distinguish between

congested and uncongested traffic?

- Accuracy of calculations. For example, if we have to perform billions

of computations to fit a model, how confident are we of the numerical

accuracy during each of these calculations?

Finally, sources of uncertainty during the interpretation of models include:

- Appropriateness of model. For example, should a linear or non-linear

model be used?

- Appropriateness of analysis. For example, should a Bayesian or frequentist

approach be used be used to explore data?

- Depth of analysis. For example, how complex does a model need to be

before we are happy it describes a situation sufficiently well?

Clearly, there are a range of different sources of uncertainty that are relevant

to our work, and in addition we highlight potential uncertainty as a result of

missing values in the data, or quantities that are not recorded in the NTIS

system but likely influence the traffic state. Suppose we try to model the

duration of traffic incidents, as we do in chapter 6. There may be factors

that our dataset does not provide, but are highly informative of an incidents

duration, for example detailed injury records. We therefore have an associated

uncertainty as we have an aspect of randomness we cannot directly account

for, and it is important to recognise when such problems arise throughout our

work.

In [137], the authors discuss the importance of understanding and commu-

nicating sources of uncertainty to decision makers when models are built to

aid humans in tasks. This is particularly relevant to the work in this thesis, as

we design both tools that could be used for decision support in real-time, and

perform retrospective analysis that might inform transportation planners of

how to improve the network in the future. As a result, we comment on the

sources of uncertainty for each aspect of our work in the conclusions for each

chapter, and discuss their impact on the potential utilisation of our work in a

transport management centre. There is no single optimal way to communicate

uncertainties to decision makers. Instead, we consider the most appropriate

form within each chapter. Example of this include using a continuous measure

of severity of an incident in chapter 4, avoiding the use of an uncertain ‘cut-off’
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and instead allowing our system to act as a filter that an expert could use

to prioritise attention. Further examples include utilising distributional out-

puts from models rather than point predictions in chapter 6, which inherently

represents when a model is very unsure in a particular situation.

A further related aspect of note is that when complex models are proposed

as a tool to support decisions by experts, one has to find useful and informative

ways to communicate both the uncertainties these models are subject to, and

ideally an explanation of why a model gives a particular result. Doing the later

helps build trust between an expert and a new tool, and we have discussed one

way we will do this in section 2.5.3. A further way to do this can be through

the construction of the model directly, as we will see in chapter 4 where the

model is built upon common engineering knowledge, and chapter 5 where the

model explored can be decomposed into distinct, interpretable components.
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Chapter 3

Data Pre-Processing

In this chapter, we outline the data collection, cleaning and pre-processing

preformed during this project. A more technical outline is provided in appendix

B.1, if readers wish to replicate the pipeline developed.

3.1 Data collection

NTIS provides both historic and real time data for various traffic measurements

on roads throughout the SRN through the use of physical sensors (loops)

positioned along the roads that detect passing vehicles. These loop sensors are

part of a system called ‘Motorway Incident Detection and Automatic Signalling’

(MIDAS) and function based on electric induction, generating a current when

the metal bodies of vehicles travel over them to record passing traffic. We

choose to focus our analysis on one the countries busiest motorways, the M25

London Orbital, pictured in Fig. 3.1. Inside NTIS, roads are represented by a

Figure 3.1: Map view of the M25, marked in blue, which all data was taken
from. The entire motorway circles London, with a small gap on the east side
being the Dartford crossing where we do not collect data.

directed graph, with edges (links) being segments of road that have a constant
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number of lanes and no slip roads joining or leaving. Each link in the network

will have a number of loop sensors positioned along it We extract all links and

loops that lie on the M25 in the clockwise direction, yielding a subset of 77

links and 447 loops to collect data for. We collect data at both the individual

loop and aggregated link scales, describing when each source is needed and

why when appropriate.

Starting in 2004, ‘Smart Motorways’ [138] have been introduced in some

areas of the UK (one being the M25), hoping to provide traffic operators

tools to better manage traffic on the network. In practice, operators use

a series of cameras to investigate sections of the network, and can display

temporary messages and speed limits to drivers using overhead signs. The hope

is to reduce the likelihood of incidents and improve traffic flow by taking a

proactive approach to managing situations. The state of this smart-motorway

infrastructure is also provided in NTIS, allowing us to collect data describing

the state of all message and speed limit signs on our selected links, as well

as the opening and closing of lanes. Further details on the control aspects of

smart motorways can be found in [139].

3.2 Data selection

Given a set of links and loops, we collect data for all of these sites between

April 7th 2017 and November 1st 2018. Extracting this much data was

a computational challenge because of the amount of memory, storage and

computation time required. After doing so however, we attain three sets of

data detailing the network during the collection period: time series at the link

and loop-level and incident information and message sign information, both at

the link-level.

3.2.1 Time series processing

The following loop level time series are collected from NTIS:

- Flow: The number of vehicles per hour that pass a given loop.

- Occupancy: The percentage of time a loop is occupied in the time period

between updates.

- Speed: The average speed in kilometres per hour of the vehicles passing

a given loop. This is computed using the average of measured speeds

when vehicles are going over the loop.

- Headway: The average time in seconds between vehicles, measured from

the front of one vehicle to the front of the following vehicle.

36



Each of these series are also aggregated internally in NTIS to the link level

and are collected for analysis. Two further series are provided at the link level:

travel times and profile times. The travel time is the average time in seconds

to travel along a selected link, measured through a combination of sensors and

tracked vehicles. The profile time is a prediction of the travel time for each

link at each minute of the day, using Highways England’s prediction algorithm.

Details of this algorithm are not publicly known.

Specifically for the loop-level data, we note that these time series are

originally provided separately for each lane. They are further accompanied by

potential error flags, specifying when the system considers a measurement to

be the result of ‘suspect equipment’. We treat any data-points with this error

flag as missing values. We do not believe there is any reason to suspect missing

values will be more common in particular lanes. We also combine each lane

measurement into a single, aggregate measure for each loop site for any given

minute in the collection window. To do so, the reported occupancy, speed and

headway is averaged over all lane measurements. If this involves averaging a

missing value, the result is set to missing. Flow is reported per lane but also

segmented into four categories dependent on the length of vehicles. We are

agnostic to vehicle length in our work, so first sum the results for each length

category, and then further sum the flow over all lanes. Missing values in this

sum again give an overall missing value.

After extraction, we ensure all time series have an entry at each minute

of the collection period. Missing values are linearly interpolated if at-least 3

values from a surrounding 5 minute window are not missing, otherwise they

are marked as missing. The time-frames and link or loop sites used for each

piece of work are detailed within each chapter.

We accept that one could perform some form of imputation to fill in missing

values that do not meet the criteria set for linear interpolation. One candidate

methodology to do so would be to construct a seasonal profile of the variables

and replace elongated stretches of missing values with this profile. However we

choose not to do this for a number of reasons. Firstly, we have a significant

amount of non-missing data available to use that allowed us to construct and

verify methodologies without any imputation other than the simple linear

interpolation for intermittent missing values. Secondly, we explore models and

methodologies relating to significant events on the network, that perturb the

traffic from its typical state throughout chapters 4, 5 and 6. As a result, we

are interested in the short-lived but extremely atypical behaviour these rare

but significant incidents result in, and we feel these periods would not be well

modelled by any form of profile we could use to impute the missing values. To

take our methods into practical implementation, one could consider the most

appropriate form of imputation to use in these extreme periods, and how this
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impacts the models and methodologies we develop in this thesis.

We finally estimate a density at the loop and link level by dividing the flow

series by the speed, yielding a quantity dimensionally equivalent to density

(vehicles per kilometre). We note from the outset that the variables recorded

by NTIS are temporally averaged, which raises a point of particular note in

regards to speed. The average speed value computed by taking the arithmetic

mean of individual speed recordings in some given time-frame produces a

result known as ‘time-mean speed’ (TMS). The alternative measurement one

could take is known as ‘space-mean speed’ (SMS), which under stationary

conditions is the harmonic mean of the individual measurements [140]. Whilst

TMS describes the average speed in some time-window at a given point in

space, SMS describes the average speed over some space at a given instant in

time [141]. These quantities are further discussed in [142] and [143]. TMS is

biased above SMS, and hence density estimates are lower than expected when

using TMS in-place of SMS for macroscopic models. The difference between

these two quantities is of practical relevance when considering the fundamental

diagrams of traffic flow [144], and macroscopic models based on fluid dynamic

principles.

Denoting SMS = v̄SM and TMS = v̄TM, it was shown by Wardrop in [142]

that, assuming constant road topology, one can write

v̄TM = v̄SM +
σ2

SM

v̄SM
(3.1)

where σSM is the standard deviation of the instantaneous vehicle speeds. How-

ever, this quantity is not known for many datasets. As we do not collect

measurements for individual vehicle speeds, we cannot compute σSM. It is

therefore non-trivial to convert between SMS and TMS with our dataset,

however work in [141] considers a heuristic way to convert between the two.

Specifically, the authors take NTIS data and collect accompanying individual

vehicle data, and derive an approximation for σSM based on this. We take the

heuristic approximation used in this work and also generate series of SMS and

density using these values. Further details of the approximation in [141] are

given in appendix B.2. Note that throughout this work, if we discuss speed or

density, we are using the temporally averaged values provided by NTIS. We

will specifically point out in any section when space-mean values are utilised.

3.2.2 Incident flag processing

We annotate the time series data with incident flags provided by NTIS. These

flags are manually entered into the system by traffic operators, specifying any

one of the following incident types:
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- Accidents - Collisions between vehicles or the surrounding environment.

- Vehicle & General Obstructions - Vehicles, debris or spillages blocking

parts of a link.

- Poor Environmental Conditions - Weather related incidents on links.

- Road Management - Operators opening or closing lanes on a link.

- Maintenance - Work carried out to maintain the road or equipment.

- Abnormal Traffic or ‘Deviation from profile’ - Periods when the travel

time on a link is higher than expected. We are told that ‘all but very

short links’ have such an incident declared when the measured travel

time exceeds the profile time by at-least 120 seconds, for 5 consecutive

minutes.

In addition to type, incidents have an accompanying start and end time, and are

specified to have occurred on a particular link in the network. Further incident

features are discussed in chapter 6 when they are utilised for modelling. Poor

environmental conditions are so common that they are considered redundant

for analysis.

In chapter 5, we require more fine-grained locations for incidents than

just the link it occurred on, so we perform further localisation. The issue

with link-level localisation data for incidents is that NTIS links vary vastly in

size, with the distribution of link lengths given in Fig. 3.2a, along with the

distribution of gaps between successive loop sensors across the entire network

in Fig. 3.2b. The wide range of link lengths shown in Fig. 3.2a clearly indicate
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Figure 3.2: Comparison of link lengths and distance between successive loop
sensors. We see that there is wide range of link lengths, with a small number
being close to 10 kilometres in length. On the other hand, distances between
successive loop sensors are highly concentrated between 0 and 800 metres.

that further localisation needs to be performed to narrow down a specific point
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on the link before one can apply point-process methodologies considered in

chapter 5. However, there is hope that the loop sensors are fine-grained enough

in space to provide an estimate of this, with Fig. 3.2b showing that any point

in the network should have a loop sensor less than around 400 metres away.

This is a far higher level of detail than initially provided by NTIS incidents,

so we decide to refine our data further by using the time series provided by

the loop sensors. This is not a trivial task however as we do not have labelled

data on which we can train a model, and instead must define sensible criteria

that indicate the location of an incident.

3.2.3 Incident localisation methodology

We note from the outset that detection of traffic incidents in both space and

time is an active research field, and various approaches are being considered

using an increasing variety of data sources. We are in an atypical situation in

that we know a temporal and spatial window in which an incident occurred,

and are only searching for a more fine-grained spatial location within this

window. As such, we do not aim to completely solve the incident detection

problem using inductive loop data, rather we try and develop an effective

methodology to take a given window with a known incident in and argue what

pair of sensors the incident may lie between. From informal discussions with

industry experts, we consider the following properties to be clear signatures of

a significant traffic incident:

a) upstream of an incident location, speed will be decreased and occupancy

will be increased compared to seasonal values

b) downstream of an incident location, speed may still be decreased, but

less so than upstream of the accident

c) downstream of an incident location, occupancy will be decreased com-

pared to seasonal values

Given the industry expert criteria, we first develop simple seasonal models

for each loop sensor in our network. There is clear seasonality on the weekly

scale in traffic data, with commuting days in the UK being Monday to Friday,

and Saturday and Sunday having fewer vehicles on the road. Taking this as the

leading seasonal component, we construct a simple seasonal model by taking

all data on a given weekday at a given time of day, and then computing the

median value, using this as a reasonable seasonal estimate. Doing so, we have

a model for each weekday, at the minute level, fit to each loop site separately.

We produce one such seasonal model for each variable the loops record.

We then consider what is reasonable to develop with our available data.

Ideally, we would design and validate some localisation methodology incorpor-
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ating spatial-temporal information from the loop data, inferring a location from

the behaviour of all loops. However, we have no data with the ground truth

locations, so we cannot reasonably develop such a model. Instead, we can use

a simple ‘rule of thumb’ approach based on existing methodology. Numerous

historic methodologies in traffic theory [13, 16] compare adjacent sensors to

determine two points, one where the data appears to show an incident, and

another where the data does not. We can do the same, and given we know

there must be an incident in the given window, we can simply ask at what

point do we see the largest discrepancy for two adjacent sensors. First, we

consider any two sensors in our network, i − 1 and i ∀ i ∈ {2, · · · , N}. We

construct residual series for speed and occupancy by subtracting the seasonal

profiles attained from the historical median models, and denote the residual

series for speed and occupancy on sensor i as RSi and ROi respectively. We

then compute the spatially differenced values as

∆RSi = RSi −RSi−1, ∆ROi = ROi −ROi−1. (3.2)

We then define an ‘incident impact score’ between the two loops as

IISi = ∆RSi −∆ROi. (3.3)

Since ∆RSi will likely be positive and ∆ROi will likely be negative if an

incident occurs between i− 1 and i, then we look for the pair of loops at which

the value of IISi is largest considering an average over the incident duration,

and place our localised incident halfway between these two loops. There is of

course huge scope to improve upon such a model, but without data to validate

more advanced approaches it is sufficient to provide a method that agrees with

existing literature and common sense rules.

In Fig. 3.3 we plot an example of localising an incident based on our simple

methodology applied to loop sensor data.

3.2.4 Message & speed limit sign processing

The final components of the data we attain from NTIS are the text written

on variable message signs and the speed limits displayed overhead whenever

they are changed during the collection period. Speed limits can be set to any

of 40, 50, 60 or 70 miles per hour (64.37, 80.47, 96.56, 112.65 kilometres per

hour), and currently if a speed limit is active at a particular location, all lanes

at that location will have the same speed limit enforced. Variable messages

on the other hand vary vastly, from the lowest importance message given as

‘do not drive when tired’ to the most important ‘danger oncoming traffic’. In

total, we record the state of 997 signs displayed to drivers.
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(b) Loop 1 - speed.
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(c) Loop 2 - speed.
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(d) Loop 3 - speed.
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(e) Loop 1 - occupancy.
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(f) Loop 2 - occupancy.
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(g) Loop 3 - occupancy.

Figure 3.3: An example result of our localisation procedure. We plot the
data ( ), seasonal median ( ) and the 20th and 80th percentiles for the
particular traffic variable ( ). These give a sense of how much variation
there is in the data. This is the first link in our network, so we show the next
loop sensor along for a sense of scale. We see that sensors 1 and 2 have large
drops in speed and increases in occupancy, however sensor 3 appears reasonably
seasonal. Our methodology has then placed the incident between sensors 2
and 3.

3.3 Data summary & further details

Having preformed the extraction and processing described throughout this

chapter, we attain a dataset that will be used extensively for exploratory

analysis, calibration and validation of models throughout chapters 4, 5 and

6. There are a number of additional aspects we discuss here that offer a more

detailed description of the data and choices made when collecting it.

3.3.1 Why the M25?

In principle, the data extraction and processing described throughout this

chapter could be performed on any part or parts of the SRN covered by NTIS.

There are a number of reasons we choose to focus on the M25. The first is that

it is a significant part of the UK’s infrastructure, both in terms of the number

42



of vehicles that use it daily and its location, circling England’s capital and

carrying significant amounts of both freight and commuter traffic. Secondly,

during the period in which we collect and process data, there are no elongated

periods of time in which special events should make the observed data atypical.

As an example, had we collected data from the same location but during

the summer of 2012, the presence of the Olympic games in London would

likely make this subset unrepresentative of the long-term behaviour, and hence

conclusions made on such subsets would be specific to these conditions. No

such events are present during our collection period. However, specific days in

the data on which rare but recurrent events take place may still look atypical

relative to the wider dataset. Practical examples of this include major sporting

events held at Wembley stadium, which typically constitute the final games of

football tournaments. On these days, traffic volumes on the M25 near these

locations of interest may seem higher than on a typical week, however such

events occur every year, just infrequently. More recent considerations relate to

the highly atypical situation caused by national travel restrictions in England

due to the COVID-19 pandemic. During these elongated periods where the

majority of the population did not commute to their offices, the traffic volumes

are likely to be far lower than in the preceding years. Finally, the M25 offers

a large spatial domain to study and attain understanding about the spatial

heterogeneity in traffic data, which is discussed at length in chapter 5.

As it is used by both commuters and freight, traffic data from the M25

typically exhibits high volumes of traffic during two ‘rush periods’, one relating

to commuters travelling from their homes to work and the other relating to

them doing the opposite. Late in the evening, one might expect the average

speed on the M25 to hits its peak, however this is not necessarily true. The high

prevalence of heavy goods vehicles during this time, which are generally limited

in speed to around 60 mph (96.56 km/hr) can actually result in a slightly lower

average speed that one would intuitively expect. Another practical factor to

consider is that during the weekends, the lack of commuter traffic often results

in a reduction in the number of vehicles on the road. Finally, there are a

number of national holiday periods (bank holidays) in the UK, where again

the lack of commuter traffic will influence the data recorded on the roads.

As a result of the discussed factors, improvements that are applicable to

the M25 have the potential to benefit both a large number of businesses and

individual commuters. We also note however that the methodologies and ideas

we apply throughout chapters 4, 5 and 6 can be applied to other sections of the

SRN in the future to gain similar insights and tools that can aid management

across the entire road network. The data collection period, both in space and

time, offers a dataset that is representative of the expected behaviour across

the M25 during typical times of operation, and offers the opportunity to study
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temporal variation over different time-scales, and spatial variation over a major

component of the UK transportation infrastructure. In terms of future work,

one can further analyse the data we have to collected if consideration of smart

motorway features is desired, as the M25 has such features on some sections.

3.3.2 The data generating process

Whilst loop level data is recorded by physical sensors placed along the road,

the link level data is generated through a data fusion process before being

input into NTIS. This process constitutes generating a link-level measurement

using both readings from the loop sensors on the link and floating vehicle data.

This floating vehicle data is purchased from a third party, INRIX, and as a

result no details are given on the penetration levels of vehicles being tracked.

Further, the exact methodology for fusing it with the loop sensor readings

is not detailed publicly. It is therefore difficult to make comments on the

influence this floating vehicle data will have on the final link-level values. We

are however informed that the tracked vehicles constitute a fleet of vans used

by various companies that operate on a national scale throughout the UK. One

would expect that, if no tracked vehicles are present on a stretch of road during

a particular time-period, the loop data alone would be enough to generate

a sensible link-level estimate. It may be that very late in the night, this is

exactly how the data is generated, and during the day when more vehicles

used the roads, the tracked vehicles have a greater influence on measurements.

Investigation of the optimal methodology to fuse heterogeneous data sources,

and the range of potential data sources one could use is an interesting avenue

for future research, however in this context would require a significant amount

of cooperation from multiple industrial partners.

Further, there are specific aspects relating to the generation of incident

labels in the system that are relevant to the work throughout this thesis. Recall

that incident types in NTIS include physical instances such as accidents and

obstructions, as-well as abnormal traffic incidents where the measured travel

times rise above some link-specific threshold for a given duration. Human

operators are able to log information about incidents into the system, attained

through the use of cameras covering the network and phone calls from local

authorities. In the control room, an operator sees two things displayed at any

given time. The first is a schematic of the network, which can be manipulated

to view specific locations and the current traffic state at those locations. The

second is a list of tasks to resolve. Abnormal traffic incidents are automatically

recognised by NTIS but not automatically logged into the system. Instead,

when the conditions to raise a abnormal traffic incident are met, the system

adds an entry to the operators list of tasks, detailing where the incident is
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taking place. The incident is then only recorded in the NTIS feed if the

operator manually selects it from their list and accepts the incident. If the

travel times on a link return to a level such that an abnormal traffic incident

should no longer be active, the task is removed from the operators list. As

a result, there may be a number of periods in the data where the criteria to

declare an abnormal traffic incident are met, but no record of this is given in

NTIS. The number of periods in which this happens depends heavily on how

busy an operator is, and how common the conditions resulting in abnormal

traffic incidents are, which itself depends on the variability in the data and

the thresholds used to define the incidents. This discussion clearly indicates

there are fundamental reasons in the data generation process that will lead to

potential missing event flags in our data. It is important to consider this when

evaluating our models performance, and we discuss it further when reflecting

on the work in chapter.

3.3.3 Summary statistics & exploratory analysis of the data

Within chapters 4, 5 and 6, we will use varying subsets of data either for

illustrative purposes, or to separate training and testing of models. Here we

detail some finer points and summary statistics of the overall dataset. The

first point of note is that although we collect data between April 7th 2017 and

November 1st 2018, we do not have data-records for every single day in this

window. Rather, data collection was first performed between April 7th 2017

and June 20th 2017. After this, more processing code was written to record

loop-level data, and once complete, more data was attained for analysis. Loop

data is therefore accessible to us between September 1st 2017 and November

1st 2018. We could not attain the raw data files before this date to further

extract the loop data, as due to their size Highways England removes them

from storage after a set time. Highways England were contacted and asked if

there was any potential to get this data but revealed that it no longer existed

in their system to provide.

Summary statistics

The summary statistics, computed for each link using all available data, are

given in table 3.1. It is important to also note that ‘Num Events’ in table 3.1

includes all accident, obstruction and abnormal traffic events. A large number

of abnormal traffic events exist in NTIS, and industry experts tell us these are

the most common form of incident, however they vary enormously in severity

and duration. Whilst table 3.1 contains a significant amount of information due

to the studied domain consisting of a large number of links, we highlight some

aspects here. The first is that generally, longer links have more loop sensors on
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than shorter links. This makes intuitive sense and shows loop sensors provide

a higher level of detail spatially than link averaged values. We do have a single

link, numbered 17 in table 3.1, that is 0.5 kilometres in length, and has no

loop sensors on it but still reports data at the link-level. Data values from this

link will be a result of the fused data provided by the NTIS system.

Inspecting speed values in table 3.1, we see that median speeds for links

vary between 88 and 110 kilometres per hour, showing some spatial variation.

Many links report a minimum speed value of 0 kilometres per hour, however

note the values displayed in table 3.1 are rounded to the nearest integer, so

in practice this shows many links experience a minimum speed less than 0.5

kilometres per hour. From this, we see most links experience nearly stationary

traffic at some point during the collection window. Maximum speeds by link

vary between 116 and 130 kilometres per hour. These are larger than the

maximum allowed speed of 112.654 kilometres per hour (70 miles per hour)

on UK motorways, however during very low density periods, we could have

individual drivers violate the speed limit and hence give rare large readings.

Finally, the amount of variation observed in speeds on each link is shown with

the inter-quartile range. We see links with the lowest observed variation have

an inter-quartile range of 6 kilometres per hour, where as the highest observed

reaches 51 kilometres per hour. This is a significant difference and highlights

that different spatial locations can experience quite significantly different speed

behaviour.

Performing the same analysis for flow, we see that median values across all

links vary between 1680 and 5460 vehicles per hour. This discrepancy indicates

certain spatial locations routinely carry significantly more traffic than others,

which is expected as some links will be adjacent to particular locations that

many people will need to access. Minimum flow values of 0 vehicles per hour

are often observed. Maximum values on the other hand reach between 4298 and

10200 vehicles per hour, again showing significant variation of traffic metrics

across the M25. The inter-quartile range for flow varies between 1635 and 4980

vehicles per hour across links.

Comparing travel times across links is less informative as we have vastly

different link lengths, and hence expect significantly different travel times.

One can however see that the maximum travel times are between 6 and 34

times higher than median values observed on links, which poses significant

problems for individual vehicles on the links and disrupts both commuters and

freight transport. In exceptionally rare cases where measure speed is exactly

0 kilometres per hour, one might expect infinite travel times to be reported,

however in practice these values are always finite. This is likely a consequence

of the reporting architecture and data fusion previously discussed.

Moving to inspect density in table 3.1, we observe median values between
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20 and 64 vehicles per kilometre, further highlighting the spatial variation in

observed traffic metrics on the M25. Minimum values of 0 vehicles per kilometre

are often observed however again note that these are rounded, indicating many

links yield speed and flow values such that when flow is divided by speed,

we see less than 0.5 vehicles per kilometre on many links. Maximum density

values vary significantly across links, attaining values between 117 vehicles per

kilometre and 390 vehicles per kilometre. The inter-quartile ranges varying

between 18 vehicles per kilometre and 89 vehicles per kilometre show, as with

all other metrics, that our dataset possesses significant variation in traffic

metrics across the studied domain. Similar summary statistics of different

subsets of data used throughout this thesis are given in appendix B.4.

Missing data

Inspecting table 3.1, we see that our dataset does contain missing data, and

therefore comment on the patterns observed and potential mechanisms. From

table 3.1, we see that only a single link, numbered 65, reports missing data for

the entire collection period across all variables. Is is most likely that this is a

result of broken equipment that has not been repaired in the collection window.

There is a clear pattern when inspecting the prevalence of missing values for

different variables, with flow being missing more often than speed and travel

time values. Specifically, links 60, 66, 68 and 69 report only missing flow values

but have a significant number of non-missing speed values. It is unclear why

flow would be more likely to be missing than other variables, however this

consistent pattern observed in our dataset may point to a specific aspect of the

sensors that allow them to report one variable but not another, or an aspect

of the data-fusion that is able to determine speed values but not flow values.

The fact that these links with entirely missing flow values are nearby in space

suggests that this data is not MCAR, and instead it may be that addressing

the problem, if it does involve changes to the physical sensors at the locations,

would be too disruptive to traffic to justify.

A further pattern of missingness emerges when we inspect links 12 and 13

in table 3.1. These report significant amounts of missing speed, flow and travel

time values, and are adjacent in space to each other, again suggesting an aspect

of informative missingness. They do however report speed values for over half

of the collection period. An obvious question may be, did these missing values

occur continuously over some interval, for example a broken sensor that was

fixed at some time, or did they occur randomly through the collection window?

In appendix B.4, we provide analysis and summary statistics for subsets of

data used throughout the thesis, and our conclusions there suggest that almost

all of these missing values were reported in 2017. Clearly, this missingness is
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therefore dependent on the collection time and may indicate a malfunctioning

set of sensors that were fixed or an aspect of the data fusion that was altered

in early 2018.

Taking a less granular view, we see the majority of links have less than

0.5% of speed values missing. Three links have over 50% of their speed values

missing, the first of which is within the first half of the domain (link 31 in

table 3.1) and the remaining two are towards the end of the M25 (links 63

and 64 in table 3.1). It is interesting to see that the links surrounding link

31 do not report any significant amount of missing speed values, suggesting

the mechanism responsible for these missing values was solely localised to the

individual link. Our analysis of subsets of data in appendix B.4 suggests that a

significant amount of non-missing values on links 63 and 64 were reported from

June 2018 onward, again suggesting structure in the missingness and revealing

information about the underlying generation process.

As discussed, flow generally has more missing values than speed for each

link, with 5 links reporting only missing flow values for the entire collection

period. In addition to these, 5 other links have more than 50% missing data

reported, however the majority of links report 1% or fewer missing values. We

most commonly observe that 7%-8% of travel time values are missing across

links, which suggests a systematic issue with NTIS. Only one link reports

missing travel time values for the entire collection period, and a further three

report above 50% of their values as missing. Finally, since density is constructed

from speed and flow, missing values in either of these quantities at a given

time lead to missing density values at that time.

Recall that it is very difficult to reason about how many missing incident

labels the links have, so uncertainties in these are present in all of our projects,

and indeed most datasets in the literature. Given these observations, we

consider two aspects that might impact our work, what informative missingness

is present and what bias might our conclusions be subject to as a result of

it. Elongated periods of missingness are clearly informative of a systematic

problem in the collection or fusion of the data. Further, the patterns observed

comparing the prevalence of missing flow values compared to speed values

indicate that missingness patterns are dependent on the variable of interest.

Considering potential bias missing data may introduce in our work is best

done when reflecting on the content of each chapter, and as a result we discuss

it within the conclusions of each chapter. As a general overview, the most

obvious potential bias we might be exposed to is the inability to train and

validate models that require flow data on links 60, 65, 66, 68 and 69. Since these

are nearby in space, and are clearly subject to missingness that is not MCAR,

they may possess particular properties or traffic volumes that we cannot expose

our modelling approaches incorporating flow data to. Further, missing speed
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values for elongated periods may result in a bias where we neglect the reason

for specific periods being missing, for example a change in traffic behaviour

that occurs before the links start to report data. Finally, potentially missing

incident flags may mean that models to detect incidents (considered in chapter

4) have higher reported false alarm rates than they would when evaluated on

perfect data. On the other hand, methods trained to predict the duration of

incidents (considered in chapter 6) may not be exposed to short-lived or very

minor incidents that occur on the network but are often omitted from the data.

Seasonality

Since seasonality is a clear feature of traffic data, an exploratory analysis of

our dataset would not be complete without a discussion of it. We provide plots

of seasonal speed, flow and density for all of our links in appendix B.3 and note

the main points here. We extract the seasonality by segmenting the data by

time of week and taking the median value for each variable. Considering flow

(Fig. B.2), the morning and evening commuter rush periods are quite evident

across most links, however they are more prominent on some links compared

to others. We also observe some links that experience considerably less flow

than the links adjacent to them, which from a practical perspective will be a

result of them being after a major exit that many vehicles often use. There

is generally a noticeable, but sometimes small, decrease in flow on weekends

compared to weekdays during these rush periods.

Considering speed (Fig. B.3), we generally see significant reductions on

weekdays during rush periods, but significantly less so on weekends. There

is also a group of links, starting at number 43 and ending at number 54

that do not see a significant speed drop as a seasonal feature, even during

weekdays, suggesting these are not commonly used by commuters. Further,

link 8 consistently has a lower seasonal speed than its surrounding links. The

most extreme reductions in speed, both in terms of magnitude and duration

are observed between links 25 and 42, with links 25 to 37 exhibiting clear

speed drops even during weekends. Finally, inspecting seasonal density (Fig.

B.4) highlights that links 7 to 13 appear to be significantly impacted by the

morning rush period, more so than the evening one. We also see links 33 to 36

attain the highest seasonal density values, and even show significant increases

in density on weekends. The lowest seasonal densities are observed near the

very start and end of the M25.

Incident variation in space

It is also useful to visualise how the intensity of physical incidents, that is

accidents and obstructions, varies spatially across the network. To do so, we
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look forward to the methods in chapter 5, where we formulate a model that

incorporates the spatial background rate of events along the M25. Using the

output of this model, we generate a visualisation of the incident rate on the

M25, shown in Fig. 3.4. Inspecting Fig. 3.4, we see two peaks in incident

0.0
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2.0
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Figure 3.4: Background intensity of incidents on the M25, constructed using
data between September 1st 2017 and September 30th 2018 using the methods
detailed in chapter 5.

intensity along the M25. The largest peak, around 140 kilometres along the

motorway, is located near the ‘Potters Bar’ junction. The second largest,

around 25 kilometres along the motorway, is located between where the M25

meets the M26, and where the M25 meets the M23. Readers should refer to

chapter 5 for a detail description of what this intensity means and how it is

constructed.
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Chapter 4

Anomaly detection from

fluctuations in the

flow-density relationship

In this chapter, we describe and validate a novel data-driven approach to the real

time detection and classification of traffic anomalies based on the identification

of atypical fluctuations in the relationship between density and flow. For

aggregated data under stationary conditions, flow and density are related

by the fundamental diagram. However, high resolution data obtained from

modern sensor networks is generally non-stationary and disaggregated. Such

data consequently show significant statistical fluctuations. These fluctuations

are best described using a bivariate probability distribution in the flow-density

plane. By applying kernel density estimation to high-resolution data from

NTIS, we empirically construct these distributions for London’s M25 motorway.

Curves in the flow-density plane are then constructed, analogous to quantiles

of univariate distributions. These curves quantitatively separate atypical

fluctuations from typical traffic states.

Although the algorithm identifies anomalies in general rather than specific

incidents, we find that fluctuations outside the 95% probability curve correlate

strongly with the spikes in travel time associated with significant congestion

incidents. Moreover, the size of an excursion from the typical region provides a

simple, real-time measure of the severity of detected anomalies. We validate the

algorithm by benchmarking its ability to identify labelled incidents in historical

NTIS data against some commonly used methods from the literature. Detection

rate, time-to-detect and false alarm rate are used as metrics and found to

be generally comparable except in situations when the speed distribution is

bimodal. In such situations, the new algorithm achieves a much lower false

alarm rate without suffering significant degradation on the other metrics. This

method has the additional advantages of being self-calibrating and adaptive:
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the curve marking atypical behaviour is different for each section of road

and can evolve in time as the data changes, for example, due to long-term

roadworks.

4.1 Introduction & problem relevance

As discussed, an important problem with significant existing research in highway

traffic management is incident detection: monitoring the data streams from

embedded sensors that report the traffic state on infrastructure in real-time

and raising flags to alert operators to potential problems as they happen. A

high level understanding of the typical behaviour of traffic on a section of

road is provided by the fundamental diagram which assumes a functional

relationship between vehicle density and vehicle flow. See [144] for a review.

This relationship is valid for ‘near steady-state’ conditions [145], where data

has been aggregated on an appropriate time-scale and therefore describes

the average behaviour of steady-state traffic. In this chapter, we explore

how analysis of the fluctuations in the high resolution, non-aggregated and

non-steady-state flow-density data can be used to perform real time anomaly

detection, by identifying periods of time when the flow pattern on a stretch of

road is atypical. Our objective is to provide a systematic, data driven definition

of ‘atypical’ behaviour and to suggest a principled way of tracking the severity

of incidents as they occur in real time.

We consider anomalies to correspond to cases when the traffic state is

atypical in a statistical sense. We emphasise from the outset that anomaly

detection and incident detection are not exactly the same thing. Network

operators, road users and other stakeholders are generally interested in incidents

such as collisions, obstructions or lane closures. Such incidents may cause

disruption resulting in an atypical flow pattern that can be picked up by an

anomaly detection system. However, this is not necessarily the case a priori.

For example, a broken down vehicle during a period of low demand may not

impact upon the traffic flow at all. This incident would therefore not result in

any anomaly. Conversely, anomalies like so-called ‘phantom traffic jams’ are

sometimes observed that are not associated with any underlying incident or

cause. In this chapter, we investigate the correspondence between incidents and

anomalies in detail using labelled incident data to establish that the overlap

between the two is sufficient to be of use in practice.

The methodology presented throughout this chapter is a purely data-driven

method for identifying significant deviations from the typical behaviour of the

traffic on a road section using time series data from the M25. The key idea

is exploit the large volume of data to arrive at a robust understanding of the

range of typical fluctuations about the flow-density relationship that is tailored
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to each road section and to interpret big excursions from this range as proxies

for significant incidents. We adopt a ‘macroscopic’ perspective meaning that

the objective is to detect when the collective behaviour of the traffic on a

road section is unusual in some sense. This macroscopic perspective means

that we do not directly detect individual incidents like collisions, stationary

vehicles or lane closures but rather changes in flow patterns that can be a

consequence of such incidents. To validate our approach, we measure how

periods identified as atypical relate to existing labels of incidents on roads

provided by NTIS, and benchmark this comparison against some other available

methods from the literature. Although we are initially agnostic about why a

particular configuration is atypical we nevertheless find our criteria typically

detect the most extreme congestion incidents. Our entirely unsupervised,

data-driven methodology offers comparable or better performance than some

existing models based on learning patterns from the data.

The main advantages of our approach, compared to specifically trained

incident detection methods are as follows. Firstly, calibration is straightforward,

requiring no labelled data to determine typical behaviour, instead only a

representative sample of data taken from a stretch of road is required. Since

road incidents are rare in absolute terms, this means that collecting a dataset

to calibrate the method on is far easier than collecting a representative set of

incidents on a specific section of road. We show in section 4.3.3 that 3 weeks

of data is sufficient to identify stable periods of typical behaviour, whereas it

is highly unlikely that the same time-period would provide a sufficient number

of incidents on a single section of road to adequately train a deep learning

model for example. Secondly, it is self-adaptive. One can account for long-term

changes in the behaviour on certain sites by simply reapplying the methodology

on a new representative sample. Thirdly, it is fully interpretable, with a

clear reason as to why a data-point is marked atypical, and allows for direct

comparison between different locations around a network with reference to the

typical behaviour at each site. Finally, it is shown to also capture periods of

labelled incident data, showing that physical incidents on the network such

as accidents and breakdowns correspond to a subset of the atypical periods

a section of road experiences. In terms of practical application, this analysis

should be thought of as a filter that could be help human operators of the

smart motorways infrastructure to prioritise their attention. Regardless of

cause, it may be useful to inform operators which parts of their infrastructure

are experiencing the most atypical situations, and hence where intervention

might be able to help the system to return to normal.

In chapter 2, we reviewed existing work in automatic incident detection.

We note that the approach proposed in this chapter takes some ideas from this

broad range of literature, but has distinct advantages and applicability. Like the
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McMaster algorithm, we segment the flow-density diagram into distinct regions

that separate the typical from the atypical. Unlike the McMaster algorithm,

we do not pre-specify how the segmentation of the diagram should be done.

Instead, the segmentation is defined by the data itself in a parameter-free way,

similar to the philosophy underpinning the SND algorithm. As is the case for

SND, using data to determine its own bounds requires that statistically robust

approaches are used. As such, our method should be seen as combining the

idea of segmenting the flow-density diagram with the robust approaches in the

literature, whilst side-stepping the two difficult problems of obtaining labelled

data and calibrating an incident detection system with many parameters.

The remainder of this chapter is structured as follows. First we detail what

parts of the data are used and how we define typical behaviour on a link. We

then consider time-scales of atypical incidents in our data, and compare this

to existing incident flags. After, we discuss when to raise atypical incident

flags, methodologies to determine the severity of incidents, and consider how

our incidents correlate with travel time spikes. Finally, we consider how our

method performs if one were to use it only to detect labelled incidents in the

dataset, comparing it to existing incident detection methodologies from the

literature. We then summarise our findings and results.

4.2 Data details

For the work in this chapter, we first develop the methodology and illustrate

its usage on a subset of our data, the first 10 weeks collected. This data is

recorded between April 7th 2017 and June 16th 2017, and summary statistics

of this subset are given in appendix B.4.1. As this data was taken purely to

determine if our methodology was viable and to perform exploratory analysis,

we arbitrarily took a window starting at the earliest collection point we had.

After verifying our methodology is viable, we utilise a much larger subset

of the dataset when considering model validation in section 4.6 to show how

the proposed approach compares to existing methods over an extensive range

of observed incidents. This subset is taken between September 1st 2017 and

November 1st 2018. Such a long window ensures we have a sufficient amount

of data to apply our model on a large representative sample of real scenarios

that it would encounter if taken forward for industrial use. This subset, and

the separation into training and testing is further discussed in section 4.6.
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4.3 Data-driven characterisation of the flow-density

relationship and identification of atypical config-

urations

We recall from chapter 3 that NTIS does not provide direct measurements

of density. Throughout this chapter, when we refer to ‘density’ we are really

referring to a proxy measure obtained by dividing the average flow by the

average speed. It has been noted that this proxy quantity for density can

be biased [146]. To obtain quantitative estimates of parameters like critical

density, for example, one must be careful to account for this bias. We do not

need to measure such quantities however since our objective is to distinguish

between typical and atypical fluctuations in the traffic state. Direct use of

a proxy measure for density is therefore appropriate provided this does not

introduce significant artificial scatter into the data. To test if this is the

case, we consider the empirical relation derived in [141], where NTIS data is

taken along with microscopic measurements and a formula to convert from

time-mean quantities to space-mean quantities is given. Applying this to our

dataset, we see qualitatively similar properties hold, there is still significant

variation, and our methods give generally the same conclusions at each step.

Based on these calculations, we use the raw data provided by NTIS from

here onwards. One could formally test for introducing scatter by binning the

data based on the two definitions of density and applying a number of paired

statistical tests comparing the distributions of flow in each bin, however this

is not fundamentally important to our methodology. Rather, the important

aspects will be that all anomalies are defined relative to some determined

baseline, this baseline can be constructed using existing NTIS data, and we

are consistent with our use of variables when using the methodology. Example

flow-density series using the raw NTIS data are given in Fig. 4.1a, and the

transformed data using the methods in [141] are given in Fig. 4.1b.

4.3.1 Using kernel density estimation to model the flow-density

relationship

Whilst a classical way to consider the properties of a link are to inspect the

corresponding fundamental diagram, the raw disaggregated flow-density series

shows statistically significant variability. The reasons for this variability are

discussed at length in [145]. Our methods rely on utilising this variability in

the data, retaining valuable information in the joint distribution of flow and

density that is typically lost when this is replaced by a single curve representing

the average relationship.

By modelling the flow-density relationship as a probability distribution,
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(a) Example flow-density series using time mean speed data and a density inferred
from this.
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(b) Example flow-density series using approximated space mean speed data and a
density inferred from this.

Figure 4.1: Example flow-density series using 10 weeks of M25 data, taken
from 3 distinct links. Left column: link between junctions 2 and 3 (3636 metres
long). Middle column: link between junctions 3 and 4 (4525 metres long).
Right column: link between junctions 8 and 9 (10,009 metres long).

we can incorporate this variability which would typically be removed when

aggregating and filtering parts of the raw data. The price to be paid is

additional analytical complexity: reasonable functional forms are required for

the joint distribution of flow and density. We suggest sidestepping this question

by using the data to construct the required distribution directly.

A simple and computationally efficient way to do this is using kernel

density estimation (recall KDE from section 2.5.1). As discussed, we aim to

approximate an unknown distribution p(x), with x ∈ Rd, using samples Xi,

i ∈ {1, 2, ..., N} with an estimate of the form

p̂Σ (x) =
1

N

N∑
i=1

kΣ (x−Xi) . (4.1)

As before, Σ is the bandwidth matrix controlling the amount of smoothing we

apply to the data. We determine such an approximation for the flow-density

data, using the method of Chacón and Duong, detailed for the multivariate case

in [110]. We specifically use the R implementation described in [147]. Doing so

yields a two-dimensional distributional interpretation of the flow-density data

for any given link.

Fig. 4.2 shows an illustrative example of this process. Fig. 4.2a shows a

scatterplot of the data from a representative M25 link between junctions 2

and 3. Fig. 4.2b shows a 3D rendering of the corresponding joint distribution
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(a) Scatterplot generated from 10 weeks
of data from a representative M25 link
between junctions 2 and 3.

(b) Kernel density estimate of the joint
distribution of flow and density gener-
ated from this data.

Figure 4.2: Representative example of the use of KDE to obtain a representation
of the joint distribution of flow and density for a single link of the M25 using
NTIS data.

obtained using KDE. The latter makes clear that most of the mass is centred

around two modes, a feature that is much less evident from the scatterplot. We

refer to these as the low density and high density modes. Note that this multi-

modal structure is not a sampling bias since the data is uniformly sampled at

1 minute intervals across the shown 10 week data collection window. Rather it

reflects the fact that this link spends a lot more time in the low density regime

compared to the high density regime.

4.3.2 Separating typical and atypical configurations

We now turn to the central point of the chapter: using KDE to systematically

draw a distinction between typical and atypical behaviour of the traffic on a

link. The idea is to calculate a level curve of the KDE representation, p̂Σ(x),

of the joint distribution of flow and density that encloses a predefined portion,

1 − α, of the total probability. Level curve here means a curve satisfying

p̂Σ(x) = constant. Points inside this level curve are considered typical whereas

points outside are considered atypical. By adjusting the parameter α we can

adjust the relative frequency between typical and atypical. This is essentially

a two-dimensional bivariate analogue of a one-dimensional confidence interval

for a univariate distribution. This construction is a topic of active research

in the statistics literature because inference of level curves is analytically and

computationally highly non-trivial. See [148] and the references therein. In

our application however, the large volume of data available from NTIS means

practically useful level curves can be obtained without addressing the much

harder problem of quantifying the uncertainty in these curves.

Once we have obtained the KDE representation, p̂Σ(ρ, f), of the joint
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(a) Data taken between junctions 2 and
3 on the M25.
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(b) Data taken between junctions 8 and
9 on the M25.

Figure 4.3: Level curves corresponding to a threshold α = 0.05 created using
data from two different links. Each contains 95% of the probability mass of
the respective KDE representations.

distribution of density, ρ, and flow, f , the computational task is to find z∗

such that the integral of all mass above this height equals some threshold value

1− α. We determine z∗ by finding the (unique) root of the function

H(z) = 1− α−
∫ ρmax

ρmin

∫ fmax

fmin

p̂Σ(ρ, f) Θ [p̂Σ(ρ, f) − z] df dρ. (4.2)

Here Θ(x) is the Heaviside function,

Θ(x) =

{
1 if x ≥ 0

0 if x < 0
,

which serves to threshold the integrand by setting it to zero when p̂Σ(ρ, f) is

lower than z. In Eq. (4.2), the root of H(z) will simply be the value at which

the integral of our thresholded distribution is equal to the desired threshold.

Note that as our data has bounds on density and flow, we only need to integrate

between these.

Having found the desired height z∗, we slice the surface p̂Σ(ρ, f) at this

value, thereby defining a level curve c(ρ, f) that contains the desired amount

of mass, with points lying outside the curve being outliers at the α threshold.

For example, if we choose α = 0.05, we would have 95% of the data inside

c(ρ, f), with the remaining 5% considered atypically large deviations from the

standard behaviour. The level curves for taking α = 0.05 are shown in Fig. 4.3

for some representative links. These two examples are illustrative of how we

capture known features of traffic flow, in this case recurrent bottlenecks. Flow

breakdown is generally absent on the link shown in Fig. 4.3a, however the

link shown in Fig. 4.3b clearly sustains a high flow as we move from densities

around 60 veh/km to 120 veh/km, suggesting it is impacted by a recurrent

60



bottleneck. As the traffic state evolves in time on any given link, it traces out

a trajectory in the ρ− f plane. NTIS can track this trajectory almost in real

time. When the trajectory makes an excursion outside of the curve delimiting

the region of typical behaviour, we call it an ‘atypical traffic incident’. One can

numerically check if a flow-density data-point is outside of this typical region

by solving the ‘point in polygon’ problem. Further discussion of this is given

in appendix C.2.

4.3.3 Stability of the flow-density relationship over time

In order for the concept of an atypical traffic incident to be useful, the level

curves delimiting the region of typical behaviour should be stable in time. Our

analysis showed this to be the case. Another way to phrase this is that, if we are

to use this contour approach for any real-time applications, we should first be

confident that the system we are observing is stationary over relevant timescales.

For our purposes, stationary means that when we look at subsets of our data,

the flow-density relationship and the corresponding contour do not significantly

change. Whilst we may get different incidents and severity of incidents in

different periods of time, we would hope that the typical behaviour of the

flow-density series remains reasonably constant. To test this, we construct the

contours of typical behaviour using 3 disjoint 3-week subsets of data. These

subsets begin on April 7th 2017, April 28th 2017 and May 19th 2017, and

were chosen to investigate the stability at sequential time-periods in the data.

Summary statistics for these subsets are given in appendix B.4.2, B.4.3 and

B.4.4. For each of the 3 week periods, we perform kernel density estimation and

determine the 95% contour. We plot each for two different links, showcasing

how different types of contour, one with a significant amount of data present

at high densities and one without, can be stationary in Fig. 4.4.

Considering Fig. 4.4, we see generally similar results across each 3 week-

period, both for the contours with only low density (0-70 veh/km) data, and

for the one with high-density data (up to 120 veh/km) present. This showcases

that despite the clearly different dynamics a link may experience, we can still

find a stationary distribution of the flow-density series due to the recurrent

nature of traffic. All of the windows shown have incidents in them, however the

typical behaviour remains constant on each link. After verifying stationarity,

we consider only contours fit to 3 weeks of data throughout the remainder of

this work.
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Figure 4.4: Contour plots of data segmented into 3-week periods. Top row: data
taken from a link between junctions 2 and 3, 3635 kilometres in length. Bottom
row: data taken from a link between junctions 15 and 16, 7146 kilometres in
length. We see generally stable contours using 3-week segmentation of the
diagrams, shown by the similar shape of each region of typical behaviour.
Clearly, the diagrams in the top-row typically experience significantly lower
density values than those in the bottom-row, however all 6 diagrams shown
have accidents, obstructions and abnormal traffic incidents in, so this behaviour
appears to be a recurrent feature rather than caused by occasional incidents.

4.3.4 Timescales of atypical traffic incidents and comparison

to NTIS incidents

We might expect that many atypical traffic incidents correspond to small

excursions that rapidly return to the typical region. Very brief excursions are

unlikely to be of much practical interest. It is therefore useful to compare the

distribution of durations of atypical traffic incidents generated by the procedure

described above with the distribution of durations of incidents flagged by NTIS.

We scan all the links in our data and determine the start and end points of

each NTIS accident and obstruction incident and each atypical traffic incident.

This gives us a set of durations for each category. The resulting histograms

of durations are shown in Fig. 4.5. From Fig. 4.5a, we see the most common

duration of an NTIS accident or obstruction incident is between 25 to 40

minutes. In contrast, abnormal traffic incidents, shown in Fig. 4.5b, are most

commonly found to be less than 10 minutes in duration and the distribution

simply decays as duration increases. This clearly highlights two things. The

first is that a large number of the abnormal traffic incidents may be so short

lived that the actual impact on traffic on a link is minor. An infrastructure

operator, for example, might not be interested in seeing these minor deviations.

It can therefore make sense to apply secondary thresholding to single out the

most significant ones. This is done in section 4.4. Secondly, when an incident
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(a) Accident and obstruction incidents
flagged by NTIS.
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(b) Atypical traffic incidents generated by
our algorithm.

Figure 4.5: Comparison of the empirical distributions of durations of NTIS
accidents and obstructions incidents and durations of atypical traffic incidents
defined through our methodology. The two distributions are somewhat distinct,
with atypical traffic incident durations most commonly being between 1 and
10 minutes, and mainly concentrated at small values less than 100 minutes.
Accidents and obstructions on the other hand are most commonly between
25 and 40 minutes, and the histogram is also reasonably constant between
durations of 60 and 140 minutes. To ensure a representative set of NTIS
incident flags, we have used data between April 7th 2017 and June 20th 2017
in both of these plots. Summary statistics of this dataset are given in appendix
B.4.5. This gives us a continuous period of operation to consider data from,
and is reflective of the wider period we have been using for exploratory analysis
of our methodology.

occurs, it may not perturb the traffic state significantly for a number of minutes,

causing only minor obstructions to begin with. However these can grow in time

so that one eventually sees strongly atypical flow-density behaviour. There is

therefore a natural notion of the severity of an incident which can evolve in

time. An approach for quantifying severity is discussed in section 4.5.

Finally, one should consider that the differences observed between Fig. 4.5a

and Fig. 4.5b are likely also a consequence of the definitions of accidents and

obstructions compared to the definition of atypical traffic incidents. Accidents

and obstructions require either a collision between a vehicle and one or more

vehicles or the environment, or some form of physical obstruction to be present

on a link. As a result, they are unlikely to be resolved on very short time-scales,

for example 5 minutes or so. Conversely, atypical traffic incidents do not

necessarily have to correspond to a physical problem, and can just be the result

of short-lived drops in speed or flow that occur for a variety of reasons. As a

result, we would intuitively expect that some of these atypical incidents may

be very short lived, and others that do overlap with accident and obstruction

flags in the data last for a comparable time-scale.
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4.4 Identification of significant ‘Deviation from Typ-

ical Behaviour’ (DFTB) incidents

In this section we describe a protocol for identification of significant abnormal

traffic incidents by filtering out those of short duration. We call these ‘Deviation

from Typical Behaviour’ (DFTB) incidents to distinguish them from the

incident categories NTIS already records, discussed in section 3.2.2. We

expect significant commonality between the two types of incident and some

comparisons are made in the remainder of this chapter.

4.4.1 Determining when to raise flags
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(a) The duration of atypical traffic in-
cidents observed in our 3-week training
window. The majority are short term as
shown by the initial large peak.
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(b) The number of DFTB incidents raised
in the training window as a function of
the percentile chosen as the threshold for
duration. At the extremes, we have every
single deviation registering an incident
(threshold = 0th percentile) or no incid-
ents raised (threshold = 100th percentile).

Figure 4.6: Analysis of the duration of atypical traffic incidents and the number
of incidents raised. Plots are shown for a representative link, between junctions
2 and 3 on the M25.

We propose to make decisions on raising DFTB incident flags by defining

a time threshold for which trajectories must be outside of the typical region

in order be considered significant. This filters out the aforementioned minor

fluctuations. Throughout this section, we use 3-weeks of data to perform the

KDE and to identify the curve enclosing the typical region. Two further 3-week

subsets of data are then used as a test set within which we seek to identify

incidents so that decisions are based solely on past data. As before, the 3-week

subsets used begin on April 7th 2017, April 28th 2017 and May 19th 2017, with

the first being the training window. Summary statistics for these subsets are

given in appendix B.4.2, B.4.3 and B.4.4. To begin, we plot the histogram of

durations of atypical traffic incidents observed on a representative link during

the training window. A example is shown in Fig. 4.6a. We see a large number
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of short-duration excursions from the typical region, and far fewer large ones.

These extreme deviations represent the most severe incidents on the link, with

the less extreme ones being located in the short-term deviations. By setting

the threshold at a given percentile of the duration distribution we obtain a

systematic and purely data driven notion of significance that does not rely on

any details of individual links. Obviously selecting a higher threshold percentile

gives fewer incident flags. The relationship between the threshold and the

number of incidents is shown in in Fig. 4.6b.

It is natural to look where DFTB incidents appear in travel time series and

to compare them to incidents flagged by NTIS. In Fig. 4.7, we plot the travel

times for the link in question, separated by colour and symbol into cases with

and without DFTB flags raised. For reference, we also show the same plot

using NTIS flags, using deviation from profile, accident and obstruction flags,

and finally show how our flags change for a range of different thresholds.
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(a) NTIS incident flags in the training
data.
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(b) DFTB flags in the training data
without thresholding.
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(c) DFTB flags raised in training data
with threshold at 40th percentile.
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(d) DFTB flags raised in training data
with threshold at 80th percentile.

Figure 4.7: Travel times for a single link, separated into cases with and without
incident flags. On each plot, blue (×) represents a data-point with no incident
flag, whereas red (•) represents a raised flag. Plot (a) is of travel times coloured
and symboled to represent NTIS incident flags, whereas the rest are done to
represent the presence of a DFTB flag at various thresholds. For reference,
the threshold values for the 40th and 80th percentiles are 4 and 23 minutes
respectively.

From Fig. 4.7, it is clear that atypical fluctuations in the flow-density

relationship identify spikes in the travel times on a link. This identification is

indirect since we never modelled travel times. For low thresholds, we see many

DFTB flags are raised during low-travel times. However as we increase the

threshold we identify only the large spikes in the series. Fig. 4.7a also shows

65



that some DFTB incidents are associated with significant spikes in travel times

that are not associated with any NTIS incident. It would be interesting to

investigate these further.

From an operational perspective, recall from chapter 3 that some flags are

automatically entered into the system, where as others have to be accepted

by a human operator. As a result, some incidents may not have been entered

into the system simply when an operator was particularly busy, or had their

attention elsewhere. Hence, whilst NTIS provides useful data to compare our

methodology to, we have to acknowledge that the process by which the data

is generated is subject to these practical considerations. In such cases, our

algorithm may be raising flags at periods where the data should have a flag,

but a flag was not accepted by the operator. Doing so acknowledges that we

do not have perfect ‘ground truth’ information.

4.4.2 Results for DFTB flags in the test data

The plots in section 4.4.1 are for the training data that was used to determine

the contour defining the typical region. It is therefore not surprising that the

DFTB incidents selected are in close correspondence with atypical incidents

observed in the travel time series. We now check that the process generalises

to unseen data, using two subsequent 3 week periods of test data that has

not been used to construct the curve enclosing the typical region. Recall that

the first 3 week test period starts April 28th 2017 (test set 1) and the second

starts May 19th 2017 (test set 2). In Fig. 4.8, we show the number of incidents

raised as a function of threshold again, but for each of the two test periods

using unseen data.

0 20 40 60 80 100
Percentile For Thresholding

0

10

20

30

40

50

60

70

80

N
um

b
er

of
In

ci
de

nt
s

R
ai

se
d

(a) Test set 1: 3 weeks of data starting
April 28th 2017.
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(b) Test set 2: 3 weeks of data starting
May 19th 2017.

Figure 4.8: Plots of the number of DFTB incidents raised as a function of
threshold percentile for each of our test datasets. We see similar relationships
to those observed in Fig. 4.6b, with slightly more incidents raised in these
windows at low thresholds.
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(a) DFTB flags in test set 1 with threshold
at the 40th percentile.
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(b) DFTB flags in test set 2 with threshold
at the 40th percentile.
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(c) DFTB flags in test set 1 with threshold
at the 80th percentile.
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(d) DFTB flags in test set 2 with threshold
at the 80th percentile.

Figure 4.9: Travel time series for test set 1 (left column) and test set 2
(right column). On the top row, we show results when thresholding at the
40th percentile, and on the bottom row results for thresholding at the 80th
percentile. As in the training case, we see the significant spikes in the series
are captured by our methods, however thresholding at the 40th percentile
also identifies many seemingly small perturbations in the travel times. As we
move to the thresholding at the 80th percentile, we see our DFTB flags match
only the significant spikes and a small number of low travel time periods. For
reference, the threshold values for the 40th and 80th percentiles are 4 and
23 minutes respectively. As before, blue (×) represents a data-point with no
incident flag, whereas red (•) represents a raised flag.

The series of travel times with colours and symbols used to represent the

presence of incident flags in are shown in Fig. 4.9. Inspecting our results in Figs.

4.8 and 4.9, we see that our results are both quantitatively and qualitatively

similar in the training and testing scenarios considered.

4.5 Severity ranking of DFTB incidents in real time

A clear disadvantage of duration thresholding for raising DFTB incident flags

is that the process is retrospective: the duration of an incident is only known

once traffic conditions return to normal. Since NTIS updates every minute,

this problem can be avoided by assigning a dynamical severity level to incidents

based on the evolution of the trajectory in the density flow plane. Minor

fluctuations can then be removed almost in real time by filtering on this

severity level.
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4.5.1 Dynamical severity measures for DFTB incidents

There are many ways one could ascribe a severity level to an excursion from the

typical region. Relevant features include how far the trajectory has deviated

from the typical region and how long the trajectory has spent outside the

typical region. Since these could be combined in different ways, perhaps with

other features, there is no single ‘correct’ quantitative measure of severity. We

argue that any proposed measure should satisfy two practical requirements:

1) severity should be 0 when a trajectory is inside the typical region,

2) the numerical value of severity should be quickly and intuitively under-

standable.

The first criterion simply reflects that we are only interested in ranking abnormal

traffic incidents. The second is a question of normalisation. We choose to

normalise our measure so that a severity score of unity implies an incident

as extreme as the worst observed in the training data. Doing so permits an

intuitive understanding: a score between 0 and 1 suggests traffic is in a state no

more severe than seen in the training window, whereas a score above 1 means

the situation has developed more so than previously seen. We tried multiple

different definitions of severity. We ultimately decided that calculating the

current distance of a trajectory to the nearest point on the boundary of the

typical region alone provides a useful and computationally feasible severity

measure. We did this by approximating the boundary of the typical region

as a polygon and calculating the distance to the nearest point - see appendix

C.1. Excursions from the typical region almost always start small, reach some

maximal distance and then return to the typical region after some time. A

severity score based on distance to the typical region means that severity evolves

in such a way that maximal severity is reached when the largest perturbation

from the contour is observed, and we slowly increase to and decrease from

this value in time. The duration aspect of severity is captured indirectly since

excursions that reach a larger distance from the typical region are generally

also of longer duration.

4.5.2 Results for severity ranking of DFTB incidents

Fig. 4.10 shows a representative example of how the dynamical severity score

of incidents raised using the distance based severity method relate to travel

times. Considering Fig. 4.10, we clearly see the most severe scores are attained

with the largest peaks in the travel time series. Importantly, in Fig. 4.10,

DFTB flags are raised, and severity computed, whenever a data-point leaves

the typical region, eliminating the need to wait to decide whether or not to

raise a flag, but allowing instead thresholding of incidents on the severity value.
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(a) Training data.
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(b) Test set 1.
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(c) Test set 2.

Figure 4.10: Comparison of severity scores in relation to travel times using the
training and test data. We colour the points by their severity score, normalised
by the maximum value in the training window. In all cases, we see low severity
scores when travel times are only marginally above the typical values, and
higher scores when large deviations occur.

We note that there is a single spike (around 05-18 in Test Set 1) that has

the second largest observed travel time, but does not have the second highest

severity. This can occur because we do not model travel times directly in

our methodology. This spike simply has a less extreme deviation in-terms of

distance from the typical contour than other cases, which may have smaller

travel time spikes but larger excursions from the typical region. Nevertheless,

the overall conclusion is that the severity of deviations from the typical region

strongly correlate to travel time spikes.

4.6 Validation & comparison to existing NTIS in-

cidents

It is clear from section 4.5 that our methodology identifies travel time spikes

though atypical fluctuations with varying severities. This is one form of val-

idation showing that these atypical situations we would display to operators

correspond to practical situations where road users are experiencing delays.

However, another form of validation is to question how many atypical fluc-

tuations in the flow-density relationship correspond to actual incident flags

recorded in the data. As discussed in section 3.2.2, NTIS has multiple incident

categories, each of which are practically important to traffic operators. Here,

we compare how alerts one might raise at different severity thresholds using

our method compare to accident, obstruction and abnormal traffic incident
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flags in the data, and how alternative methodologies perform at the same task.

4.6.1 Comparison models

A number of methods for incident detection have been investigated throughout

the literature, and were discussed in chapter 2. We also recall that NTIS only

provides incident locations at the link-level, and hence we never know the

ground truth of which two loop sensors an incident actually occurred between.

As such, the classic California algorithms are not appropriate for comparison

as they rely on comparing adjacent sensors and flagging when discrepancies

emerge between them. However, in practice our method segments the flow-

density diagram like the McMaster method, and defines a robust threshold for

normality like the robust variants of the SND method. We therefore choose to

compare to these two methods as closely as possible using the available link

level data.

To implement the SND methodology, one isolates non-overlapping windows

of speed time series, and then computes summary statistics measuring the

average and spread of the data. Initially these were the mean and variance,

however more robust statistics, being the median, inter-quartile range (IQR)

and median absolute deviation (MAD) have since been applied. For a given

window w, if we denote the mean and median speeds as µwmean and µwmedian

respectively, and the standard deviation, IQR and MAD as ζsd, ζIQR and ζMAD

respectively, we then compute threshold speeds for this window as

s̃1 = min (smax
1 , µwmean − c1ζsd) ,

s̃2 = min (smax
2 , µwmedian − c2ζIQR) ,

s̃3 = min (smax
3 , µwmedian − c3ζMAD) .

(4.3)

This approach is taken from [24], where one avoids ‘swamping’ of the robust

statistics. As in the cited work, we set the threshold values smax
1 , smax

2 and

smax
3 to be 45 mph, informed by the work in [149]. To apply this methodology,

one then needs to determine optimal values for either c1, c2 or c3 depending on

methodology choice. We choose to use windows of length 15 minutes, computing

a different set of statistics for windows across a week as in [24]. A window

length of 15 minutes is a reasonable and standard choice consistent with existing

literature, for example [21] and [24], offering enough data in each bin to measure

variation without being too fine to introduce large uncertainty in these statistics.

We see consistently better performance on our dataset using robust methods,

and generally a slight performance improvement when using the median and

IQR so only consider the threshold defined by min (45, µwmedian − c2ζIQR), which

we refer to as SND (Robust) from now on. After fitting, we raise alarms when

the measured speed on a link falls below this threshold for at-least 3 consecutive
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minutes. Note that this 45 mph value is actually converted to km/hr to align

with the units of our data in implementation.

Another insightful method for comparison is a variant of the McMaster

algorithm, in the sense that one takes the flow-occupancy diagram at the link

level and then segments it into distinct regions. Occupancy is used here to

exactly follow the work in [16]. This has more parameters than the SND

methodology, as one has to specify a ‘lower bound of uncongested data’ (LUD),

a critical occupancy and a critical flow. We consider a quadratic form for

LUD as in [18], giving us 5 total parameters to fit for the model. It should

be noted that the full McMaster logic, as detailed in [16], contains an initial

step of determining a congested, bottle-neck or uncongested state, and then

has a second step where one distinguishes between recurrent and incident

congestion. As we are dealing with link-level data, it is not sensible to conduct

this secondary check, however we can still compare to a method that in spirit

segments the flow-occupancy diagram and determines when the link state is

outside reasonable bounds. If we consider only links not subject to recurrent

congestion, it is sensible to make comparisons between this model and our

own. As such, one should not entirely consider this the McMaster algorithm,

however it is also an adept comparison as the proposed methodology similarly

attempts to segment the flow-density diagram, however by discovering the

bounds on typical behaviour in an entirely data-driven way.

4.6.2 Measuring performance

To tune the comparison models and measure performance, we first isolate all

aforementioned incidents on a link. We then split the data into a training

set, which we calibrate our models with, and a test set which we measure

performance on. By calibration, we specifically mean three things. For the

DFTB model, we are aiming to choose the optimal severity threshold that will

distinguish between fluctuations representing labelled incidents and those not.

For the SND model, we compute the median and IQR of the data, and choose

the optimal c2 value that distinguishes between typical speed variation and

decreases relating to incident flags. Finally, for the McMaster algorithm, we fit

all parameters to segment the diagram in such a way that when flags are raised

by the method, they correspond optimally to real incident flags. As such it is

clear that for the DFTB and SND methods, we are fitting a single parameter,

and for the McMaster we are fitting 5.

Since the amount of data used for training could influence model perform-

ance, for a fair comparison we used the same 3-week subset of data (April 7th

2017 to April 27th 2017) used to fit the typical behaviour contour, summarised

in appendix B.4.2. To verify that training window length does not strongly
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influence the results, we also fit the models using 12 weeks of data and found

no significant changes. This 12 weeks of data started on September 1st 2017

and constituted the 12 week period following this. We selected this to ensure

we were training on a continuous window of data, as-well as testing if providing

a longer window of training data altered model performance. This subset

is summarised and discussed in appendix B.4.6. To ensure that we evaluate

our models on a truly representative set of data, we take our test period to

be 45 weeks, taken between December 21st 2017 and ending on November

1st 2018. This provided a continuous window of unseen data that spanned a

representative set of weather conditions, traffic volumes, national holidays, and

typical commuting days and weekends. Further details on this subset are given

in appendix B.4.7.

Given this, we then compute the standard performance metrics used

throughout incident detection work. The first of these is detection rate (DR),

calculated as the number of labelled incidents detected divided by the total

number of labelled incidents. Another is false alarm rate (FAR), calculated as

the number of times an incident flag was raised when there was no flag in the

data, divided by the number of applications of the algorithm. The final one is

mean time to detect (MTTD), being the average time between the start of an

incident in the data and the identification of the incident by the method. We

express DR and FAR as percentages from now on. As with all multi-objective

optimisation problems, there is no immediately clear mathematical answer to

the question of how to trade these performance measures off against each other.

This depends on the application. We choose to combine DR, MTTD and FAR

into the single optimisation criterion, denoted performance index (PI), that

was used in [24], [150] and [151] and is written as

PI =

(
εDR −

DR

100

)
·
(

FAR

100
+ εFAR

)
· (MTTD) (4.4)

where εDR and εFAR are constants that avoid trivial minima of the criteria.

While we recognise that there is arbitrariness in this choice, it does facilitate

easy comparison to existing literature. We set εDR = 1.01 and εFAR = 0.001 as

in [24]. We choose the parameters of each model that minimise Eq. (4.4), and

then compare their performance to our anomaly detection methodology. In

general, calibration of automated incident detection methods is considered to

be a difficult task [152], yet to fit a set of models over many links, one must

comprise and use some reasonable criteria as an optimisation objective.

It is important to note that with the discussed methods, one can easily

envision how an operator could interpret and change the single parameters of

the DFTB and SND methods. Since both have essentially one tuning parameter,

the severity threshold in the DFTB case and the c parameter in the SND case,
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they are entirely interpretable to an operator experienced in traffic management

but not in the technical aspects of the model. An increase in either of these

thresholds will allow more variation before flagging, but it is reasonably clear

how each of the DR, FAR and MTTD would naturally increase or decrease

when doing this. This is not true however for the McMaster algorithm, as

altering a 5 parameter model and understanding how your changes will impact

the performance criteria is not as simple.

4.6.3 Validation results

After choosing the parameter set for each model that has optimal PI in the

training period, we apply the tuned models to the unseen test data. Results

for this comparing the DFTB performance in DR, FAR and MTTD to the

robust SND model are give in table 4.1, considering a variety of link lengths

and locations along the M25. We have selected this subset of links as those

that appear to have minimal data quality problems in terms of missing data.

After presenting aggregated statistics in the final rows of table 4.1, we then

consider the typical differences between the models in table 4.2, where we also

test if there is statistically significant evidence that distinguishes between the

two models for each performance metric. Inspecting table 4.1, we see that the

mean and median DR for the DFTB method is lower than that of the robust

SND methodology across the considered links. The mean and median FAR

across the links is lower for the DFTB compared to the robust SND method,

and we see that the DFTB results in a marginally lower mean value of MTTD,

but a marginally higher median value of the same metric.

Before any further discussion of these performance scores, let us first

determine which of the observed differences are statistically significant. This

is to avoid basing conclusions on small differences that could have arisen by

chance. Statistical significance of differences in model performance is a topic

that has been discussed extensively in the machine learning literature, with

[153] providing an overview of the hypothesis tests that are most appropriate

for comparing performance across multiple datasets. This is further discussed

in [154]. They conclude that two statistical tests are generally appropriate

for model comparison: the Wilcoxon signed-rank test and the sign test. We

therefore apply both of these, and show results in table 4.2. To perform a

Wilcoxon signed-rank test, we first compute the paired differences in the data,

and record the sign of this (+1 or -1). We then compute the absolute values

of each paired difference, and rank them from smallest to largest. Our test

statistic is then the sum of these ranks, multiplied by +1 or -1 depending on

the sign of the paired difference. This statistic is then compared to known

distributions under the null hypothesis: assuming the difference in medians
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Link DR (%) FAR (%) MTTD (minutes)

Location Length (km)
SND

(Robust)
DFTB

SND
(Robust)

DFTB
SND

(Robust)
DFTB

East 0.7 80.39 86.28 0.94 0.97 5.71 4.66

East 1 89.13 84.78 1.99 2.25 4.34 2.59

South East 0.5 82.35 79.41 2.14 1.78 10.14 12.22

South East 0.4 83.87 80.65 2.15 1.78 7.50 9.32

South East 5.1 81.97 78.69 0.74 0.55 14.26 14.77

South 0.7 96.55 96.55 2.66 0.71 4.21 4.25

South 1.2 69.09 49.09 0.71 0.04 10.79 14.74

South West 0.9 94.27 81.25 10.06 1.35 3.54 7.03

South West 6.9 44.11 46.39 2.40 0.44 14.96 12.88

West 2.5 64.29 78.57 0.49 0.46 9.59 9.76

West 3.9 35.06 89.08 1.58 2.57 10.67 7.17

West 1.2 91.16 81.86 9.40 0.65 12.10 15.34

North West 1.9 98.13 90.65 5.32 1.59 7.41 7.10

North West 1.3 47.95 42.47 1.49 0.33 17.37 13.90

North West 0.9 54.29 48.57 0.52 0.41 17.84 13.41

North 4.5 69.14 61.71 1.03 0.74 15.29 14.12

North East 1.9 89.09 87.27 1.03 0.85 11.25 11.60

Mean 74.76 74.31 2.63 1.03 10.41 10.29

Median 81.97 80.65 1.58 0.74 10.67 11.60

Std Dev 19.58 17.43 2.91 0.73 4.54 4.14

IQR 24.84 24.56 1.47 1.14 6.85 6.80

Table 4.1: Comparison of model performance across a set of representative links
of varying lengths and locations around the M25. All models are shown 3 weeks
of training data. SND (Robust) is the standard normal deviate methodology
using the median and inter-quartile range (IQR), as defined in Eq. (4.3).
DFTB is the proposed deviation from typical behaviour methodology. The
metrics compared are: DR (detection rate, given as a percentage of all labelled
incidents in the data), FAR (false alarm rate, given as a percentage of the
total applications of the algorithm) and MTTD (mean time to detect, given
in minutes). The length of each link is given in kilometres. For reference, the
links used here are numbered 0, 2, 3, 4, 7, 9, 19, 27, 28, 30, 32, 37, 41, 42, 51,
67 and 70 in table 3.1.

DFTB DR -
SND (Robust) DR

DFTB FAR -
SND (Robust) FAR

DFTB MTTD -
SND (Robust) MTTD

Mean -0.45 -1.60 -0.12

Median -3.28 -0.36 0.04

Wilcoxon signed-rank
test p-value

0.170 0.004 0.890

Sign test p-value 0.077 0.0127 > 0.999

Table 4.2: Aggregated model performance summary. We consider the mean
and median differences between the 3 evaluation metrics, and question if there
is statistically significant evidence to suggest the two models have differing
performance in each metric. This is done through both a non-parametric
Wilcoxon signed-rank test and a sign test, both considering the measurements
to be paired. Statistically significant values at the 5% significance level are
shown in bold. Abbreviations and units are as defined in table 4.1.
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between the paired samples is 0. Hence, in our context, rejecting the null

hypothesis under the Wilcoxon signed rank test suggests there is statistically

significant evidence that the median difference between the two models is not

0.

A sign test on the other hand does not account for ranks, and acts as more

of a ‘tournament’ between two models. A ‘match’ in this tournament represents

training and then testing each model on a single link. In each match the two

models get the same training data and calibrate to this, then have to predict

the same test data. We then only record the ‘winner’ of each match, asking

which model had superior DR, FAR, or MTTD. If one model consistently wins

when we compare the results for each match, then we suspect that the methods

are not equally skilled at the particular task. Formally, the null hypothesis

in such a test is that given a pair of measurements, it is equally likely that

either the first or second is larger or smaller than the other. This suggests that

rejecting the null hypothesis in our context means one model is consistently

producing a larger DR, or lower FAR and MTTD. Further discussion of both

of these tests is given in appendix C.3 for those interested, but one can also

consult [153] or papers that have since used the discussed methods, such as

[155] and [156] for other examples of modelling works using this approach.

The results from these tests in table 4.2 suggest there is sufficient evidence

to reject the null hypothesis of the median difference between the DFTB

and robust SND FAR being 0 (Wilcoxon signed-rank test). Further, there is

sufficient evidence to reject the null hypothesis that the probability the FAR

for the DFTB method is larger than that of the robust SND method equals

0.5 (sign test). None of the other tests in table 4.2 suggest any statistically

significant results. This analysis is based on a 0.05 significance level, with a

p-value falling below 0.05 indicating statistically significant results, providing

evidence to reject the null hypothesis.

If we compare to the McMaster algorithm with the discussed link-level

limitation, we see that it consistently has a higher MTTD compared to the

DFTB model on our dataset, taking a mean of 4.5 and median of 4 minutes

longer to detect incidents than the DFTB does. It also has a lower DR, 6.7%

lower in mean and 2.2% lower in median. Finally, it achieves a better false

alarm rate, with a mean difference of 0.19% and a median difference of 0.28%,

but this is at the expense of the other two metrics, and being far harder to fit.

We also note that the FAR reported above might seem higher than in the

literature. We are aware some incidents can be missed in the system, an indeed

informed of this by system experts. Additionally, we have not pre-filtered the

data to identify only incidents that blocked lanes as in [24] and other works.

We find FAR to be consistent across models showing this is a systematic feature

of the data and not the models. Our typical MTTD values are slightly larger
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than those discussed in [24], however again this may relate to the data quality

problems, and could be further impacted by the definition of deviation from

profile incidents that could be minor for some time then develop into significant

incidents on the link.

Finally, one has to also consider from a practical perspective, what might

be important to a traffic operator who would be in an environment using any of

these models? A survey of such operators was conducted and analysed in [152],

and one of the principle reasons for limited integration and operational use of

automated incident detection systems was difficulty of algorithm calibration.

Difficulty of calibration can be thought of in two ways. The first is deciding

on an exact optimisation criteria that captures what peak performance means

exactly to an operator. Whilst we have used PI for this, it is an open problem

to determine what might be more appropriate. However, our model, as with the

SND methodology, is fully interpretable and since both have a single parameter,

calibration is much more reasonable than say, a deep learning model that might

have billions of parameters that an operator could not feasibly adjust without

expert knowledge.

4.6.4 Analysis in bimodal speed cases

The above performance tests indicate that our algorithm is generally comparable

to the well calibrated robust SND methodology in terms of performance on

NTIS incidents data although there are a few instances where there are very

large differences, particularly in the FAR. We now investigate why this is

so. In the process, we identify situations in which our bivariate approach

provides some fundamental advantages over SND. Again referring to table 4.1,

we see that robust SND method attains a 10.058% FAR on the first link in the

south-west investigated, which is enormous even considering the data-quality

problems we might have. First, one might say this is just a ‘poor’ training

window choice, not representative of the long-term link behaviour, however

this does not appear to be the case. If we extend the training period, even

providing 12 and 24 weeks of data, we still see similar false alarm rates from

the SND method. Additionally, the DFTB achieves a FAR of 1.3%, at the

expense of a higher MTTD and lower DR. This suggests that, on this link, some

property of the speed leads to it not being well modelled by a single location

and scale parameter pair. We investigate this by taking all false alarms raised

by the robust SND method, and considering what time-bin each lies in through

the week. We then consider the distribution of the speeds in each bin. If the

SND assumptions were valid, the speeds in each bin would be unimodal, and

a sensible measure of outliers is µ− cσ. This bin could still contain extreme

values or a heavy tail, which are accounted for through the use of robust
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statistics. However, if the speed distribution in a bin is bimodal, then it is not

appropriate to judge outliers using a single location and scale parameter. To

illustrate this we refer to Fig. 4.11, where we plot the distribution of speeds in

3 time-windows. In Fig. 4.11a, we show an example where the use of the SND

threshold is reasonable, whereas in Figs. 4.11b and 4.11c we show cases where

there appears to be bimodality in our data.
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(a) An example unimodal
speed distribution.
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(b) An example bimodal
speed distribution (1).
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(c) An example bimodal
speed distribution (2).

Figure 4.11: Distribution of speed in 3 example time-windows, each of length
15 minutes. We take the same 45 weeks of data as discussed in section 4.6.2
and plot the resulting histogram for each bin, marking the median of the data
with a dashed red line.

Inspecting Fig. 4.11a, we see an example time-window on the link where

it is completely reasonable to judge outliers as values being some threshold

away from the median of the distribution. However, in Fig. 4.11b, we see a

bimodal distribution, one mode around 100 km/hr and another at 60 km/hr.

Similarly, in Fig. 4.11c, we see one mode at 110 km/hr and another at 50

km/hr. This behaviour does not appear to be the result of roadworks, as we

have removed points marked with these flags before plotting the distributions.

With this bimodal behaviour, optimising the SND parameters essentially faces

a dilemma. Since the inter-quartile range, median absolute deviation and

standard deviation will all be very large, the method can choose a very small

c value to still flag in these bimodal cases, but then be more prone to false

alarms, or choose a larger value and almost completely ignore flagging in these

bins.

We can further show this point by plotting the actual data inside each bin,

along with the differing thresholds for them. To do this, we take bins (1) and

(2) as shown in Figs. 4.11b and 4.11c, and collect all the reported data during

them for the specific link. We then plot this data, along with the thresholds

from the DFTB and robust SND methodology, with results shown in Fig. 4.12.

The main interpretation one should make from Fig. 4.12 is that data-points

in the shown time-windows clearly fall in two regimes of the flow-density

diagram. Some have densities around 20-40 veh/km and flows between 2000

and 4500 veh/hr. Additionally, there is a further cluster of data-points at high
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(a) Example flags for the window (1)
shown in Fig. 4.11b, plotted on-top of
the contour of typical behaviour used in
the DFTB method.
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(b) Example flags for the window (1)
shown in Fig. 4.11b, plotted with the
speed threshold used in the robust SND
method.
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(c) Example flags for the window (2)
shown in Fig. 4.11c, plotted on-top of
the contour of typical behaviour used in
the DFTB method.
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(d) Example flags for the window (2)
shown in Fig. 4.11c, plotted with the
speed threshold used in the robust SND
method.

Figure 4.12: Example flags in a specific time-window for each method. We
show the threshold for each method with a solid blue line, points flagged as
‘typical’ with black (×), and points flagged as atypical in red (•). Notice that
points can be outside of the contour of typical behaviour, but still be typical
as they are not far enough away to have a severity past some threshold. Note
that these SND speed thresholds have been set based on optimal performance
in the training window, and the very large spread of data in some bins appears
to have set the c parameter to a very small value, which in turn has lead to
quite high thresholds for these two bins, but over the entire dataset gave better
performance.

density high flow points, around densities of 60-80 veh/km and flows of around

3000-4000 veh/hr. A weakness of the SND method is highlighted as it cannot

capture the two regime component in the bin as the DFTB method does.

Exactly what causes this bimodality is unclear without a significant amount

more data on the physical properties of the road and environment throughout

the year. One could see if there is some sort of seasonal bottleneck impacting

the link, for example once every 2 weeks or month where the flow becomes

restricted, speed drops but not due to an incident. An example of such a
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situation could be sporting or cultural events nearby that influence the traffic.

If this were true, one could adapt the SND methodology to use a different

number of bins and so forth, but we see that our model does not need this

adaptation. By using a different definition of a typical threshold, we are able to

distinguish better in these particular bimodal states than a simple univariate

approach as with the SND algorithm, however all of the complexity in defining

our threshold is automated, with the kernel smoothing, bandwidth selection

and so forth, so the end user still receives a single parameter model that is

fully interpretable.

4.6.5 Performance on high density links

In its raw form, the proposed methodology does not apply any temporal

segmentation of the data. This can cause problems on links that recurrently

reach very high density states and experience flow breakdown. For such links,

flow-density trajectories that are highly unusual during periods of low demand

may enter regions in the flow-density plane that are typical during periods of

high demand. Such trajectories therefore might not get flagged as atypical

despite being very unusual given the time that they occur. To illustrate this

scenario, we look for the link that periodically reaches the highest densities in

our data and exhibits flow breakdown as a recurrent feature, not just due to

incidents. The contour of typical behaviour for this link is shown in Fig. 4.13.

The point is illustrated by examining an incident trajectory in flow-density

space that occurs during a typically low-density period. This is done in Fig.

4.14a, where we plot the same contour as in Fig. 4.13, but overlay a trajectory

that corresponds to an incident that occurred at 12:14pm. We see that although

the incident starts and ends in a low density region of typical behaviour, the

traffic state whilst the incident is progressing mostly stays within a typical

region at high densities. Our method in its raw form would not raise an alarm

in this case until very late into the incident.

There is however a natural way to account for this by providing some level

of temporal segmentation before fitting any contours of typical behaviour. A

natural temporal segmentation is into ‘rush periods’ and ‘non-rush periods’

representing commuting patterns that strongly influence traffic on motorways.

We show in the remainder of this section that doing so solves the identified

drawback for links that regularly experience flow breakdown and high densities.

We first take the same 3 weeks of data that the contour in Fig. 4.13 is fit

to (period beginning April 7th, summarised in appendix B.4.2), and split the

data into points that are taken from the rush period and points that are not.

We then determine contours of typical behaviour for each of these datasets

separately, with the non-rush period typical region shown in Fig. 4.14b and the
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Figure 4.13: Example of the contour of typical behaviour for a link with
significant flow breakdown as a recurrent feature. We see a clear aspect of the
‘typical’ behaviour includes a breakdown of flow as density increases, around
100 veh/km.

rush period typical region shown in Fig. 4.14c. We see from Fig. 4.14b that the
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(a) Contour fit to full data-
set, with an incident tra-
jectory imposed in red.
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(b) Contour fit to only data
outside of the ‘rush period’
of operation in the UK.
The same trajectory as in
(a) is overlaid.
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(c) Contour fit to only data
during the ‘rush period’ of
operation in the UK.

Figure 4.14: An incident trajectory overlaid on contours constructed from
different subsets of data. The particular incident occurs at 12:14pm, and the
flow-density data during it is plotted in Figs. 4.14a and 4.14b. The contour in
Fig. 4.14c represents only the typical region during rush periods, and hence the
trajectory we observe in this example is abnormal relative to what we expect
the flow-density data to produce during non-rush periods.

incident trajectory deviates from the typical region during non-rush periods,

and would correspond to raising a flag at this time. Clearly, an incident flag

would be raised much sooner when we consider a temporal segmentation of the

data rather than the full dataset as in Fig. 4.14a. This segmentation is simple

and intuitive and clearly demonstrates that for links that regularly experience a

large range of density values and flow breakdown, partitioning the data before

contour construction is important for identifying atypical cases. Doing so, one

would ideally choose two severity thresholds, as we see potential for far more

significant deviations from the contour of typical behaviour outside of the rush

period compared to inside it. We see examples of trajectories corresponding to

incidents deviating from the typical region during rush periods in Fig. 4.15.
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Figure 4.15: Two example trajectories corresponding to incidents that occurred
during rush period, overlaid on the contour of typical behaviour fit to only
data during the rush period.

When we compare the performance metrics for this link, we see that

applying a simple temporal segmentation of the data into rush and non-rush

periods significantly improves the balance between DR, FAR and MTTD that

the method achieves, with results given in table 4.3. From table 4.3, we see

Method DR FAR MTTD

SND (Robust) 72.868 6.189 8.191

DFTB 36.951 0.898 39.182

DFTB (With Temporal Segmentation) 93.023 3.300 5.847

Table 4.3: Comparison of methods on a link with a high density range. We
see that the DFTB method in its raw form performs poorly on such a link,
however if we segment the data into rush and non-rush periods before fitting
the contour, we observe a large increase in performance and achieve better
results than the SND (Robust) method across all 3 metrics.

that the robust SND method clearly outperforms the DFTB in its initial

implementation. It is clear why this poor performance is observed, thinking

back to the example in Fig. 4.14a. A trajectory can deviate from one region in

the flow-density space that is typical, however move into another region that

is still typical, however not typical at the time the incident occurs. The raw

DFTB methodology does not perform any temporal segmentation and hence

for extremely high density links, this can mean that incidents during non-rush

periods occupy the same flow-density space as typical behaviour during rush

periods. Hence, we have to either wait a very long time for the trajectory

to move out of all regions of typical behaviour, or flag at very low severities,

which would cause a large number of false alarms. As a result, we see that

the raw DFTB method has detected very few incidents, and taken a very

long time to do so, but has a very low FAR. When we instead provide an

intuitive temporal segmentation before fitting the contour, we see an enormous

improvement in balance of performance metrics for this link. This extra layer

of information we provide the model achieves a higher DR and lower MTTD
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than both the original DFTB method and the robust SND method. It also

achieves a lower FAR than the robust SND method, however higher than the

raw DFTB method. This has to be considered with a balance of the other

variables however, as the FAR is so low in the raw DFTB case as a result of

the MTTD being very high and DR being very low. Overall, it is clear that

the temporal segmentation improves the overall performance of the DFTB

method on links that recurrently reach very high densities. If we show the

robust SND method more data, the detection rate improves to match that of

the temporally segmented DFTB model, but the FAR and MTTD still remain

inferior.

4.7 Summary & conclusions

In this chapter, we have explored how empirical analysis of fluctuations in the

flow-density relationship can be combined with streaming NTIS data to identify

significant deviations from typical behaviour of traffic flow on a road section

almost in real time. Starting by considering a kernel density estimate of the

raw flow-density data, we showed how to define a contour of typical behaviour

in which standard traffic behaviour lies, and investigated the deviations from

this contour. We showed how the time-scales of these deviations can be used

to infer the presence of significantly atypical behaviour on a link, and hence

identify problematic traffic states for operators to address. To avoid creating a

delay in raising incidents, we looked at methods to automatically and in real

time assess the severity of a deviation, finding the distance of a flow-density

data-point from the typical behaviour contour offered a severity measure that

directly correlated with the spikes in travel time series. Our methods indirectly

identify spikes in the travel time series and incident flags raised by the NTIS

system.

This approach may present some practical advantages over existing methods

of incident detection. One advantage is that our approach is entirely model free

in the sense that the boundary of the region of typical behaviour for each link

is autonomously learned entirely from data. There is no need for complicated

time series analysis of travel times or calibration of travel time profiles at

the level of individual links in order to identify incidents. Furthermore, by

relearning the boundary of the typical region at periodic intervals, the system

could be made self-adaptive to automatically capture long term changes in

the behaviour of traffic on a link. A second advantage is that identification

of incidents and assignment of a severity score can be done almost in real

time since the process operates directly on the speed and flow data. From a

practical perspective, we receive data from the NTIS system on a minute-scale,

and the computation of a severity takes significantly less than this.
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We envision that our methodology for detecting anomalies on the network

and raising flags when they are sufficiently severe could provide the basis for

a practically useful decision support system that can help operators better

manage and monitor the road network. Before discussing this further, it is

useful to recall from chapter 3 that in the existing operational infrastructure,

human operators view a display summarising the current state of the network

and can filter this to different locations. Along with this display, current

incidents appear as a list on the screen. Locations where the criteria for a

deviation from profile event are met enter this list, but have to be manually

accepted by operators before being logged in NTIS. One could extend this

existing infrastructure to incorporate our DFTB flags in a reasonably simple

way. We have seen two important aspects relating to this throughout our

methodology. Firstly, we have observed throughout this chapter that DFTB

flags have a significant amount of commonality with non-recurrent congestion

flags in the NTIS data, hence capturing many observed incidents already logged

in the data. Secondly, we are able to rank anomalies by their severity, measured

relative to the typical variation observed on each individual link. As a result,

we imagine integrating our DFTB flags into the existing operator display,

raising flags when a particular severity threshold is reached. A key point in

integration of our methodology would be to use the ranks to determine what

order to display these flags to operators, so the operator sees the most severe

situations first, and less severe anomalies can be addressed later if time allows.

Computationally, our methodology does not require any specialist hardware to

be used when run in real-time, further highlighting potential for integration.

The data available to us has required some compromises during validation

that one would ideally investigate further in the future. The first of these is a

somewhat uncertain ‘ground truth’, meaning the incident labels NTIS provides

that we have measured our DR, FAR and MTTD on in section 4.6. We are

aware that both our dataset and data from the wider literature does not provide

perfect incident labels, as start times may be delayed when entering incidents

into the system and incidents may not be recorded at all if operators are

particularly busy or their attention is required elsewhere. Collecting a dataset

that does not suffer from these data quality issues would be an expensive and

time consuming task, however this would be required to truly measure the

effectiveness of any incident detection methodology. We therefore believe that

such a dataset should be attained, potentially on a smaller time and space

domain if required for practically, and the validation completed here repeated

on this dataset before our method could be implemented into the NTIS system

and be used by operators. Doing so would remove a significant element of

uncertainty in the modelling and conclusions we have drawn, further justifying

its use in a practical setting and building trust with operators.
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It should also be noted that when validating our methodology in section 4.6,

we have selected a range of links of different lengths, from different locations

around the M25 and that experience different traffic volumes. However, to

avoid excessive inspection of the data, we have used a subset of links that

have minimal data quality issues, regarding missing sensor readings and clearly

missing event labels. Whilst we are confident we have tested our behaviour

on a wide range of links and long window of data, far more than is typical in

the literature, we also recognise that in selecting this subset of links, we have

preformed a process similar to complete case analysis. If all missing values are

missing completely at random (recall MCAR), this would not cause significant

bias, however as we have discussed, there may be a number of reasons our data

possesses missing incident labels and sensor data. Examples of these include

malfunctioning sensors on sections of road that are recurrently extremely busy,

where maintenance on these sensors cannot be justified due to the distribution

it would cause. Further, operators may themselves be more likely to focus

their attention on a subset of links they know are structurally important to

the transport network, and miss more event flags on other links. For both of

these reasons, the validation we have performed may be biased, and in the

future significant efforts should be made to verify if the conclusions made in

our work remain the same when the methods are applied on datasets without

these issues. As discussed, generating such datasets is costly and may prove

difficult, particularly for the durations we have considered. However, subject

to the constraints our data places on our work, we believe our analysis has

covered a range of different links and locations, on time-scales that allow one

to observe a significant amount of heterogeneity in behaviour that might occur

across the M25.

If one were to use our system to augment the information already displayed

to operators as discussed, this would introduce a new incident category in

NTIS (DFTB), however we believe the visualisations given throughout this

chapter clearly define why such an event would be raised, so this would not be a

major hurdle for operators. Another potential application would be to use our

methodology as an automated filter that determines inputs to a more complex

and intensive simulation model. Given an incident occurs on the network,

it may be of interest to model directly what the impact on the surrounding

infrastructure will be, potentially at the microscopic scale. One could build

a model for this purpose at the level of individual vehicles, and calibrate it

to NTIS data. However, such a model is likely to be very computationally

intensive, and not realistic to run for every incident that occurs on the network.

Instead, only incidents that reach a particular severity could be input to such

a model, which might provide useful predictions for the short term future of

the network in the cases where the output would be most helpful for operators.

84



The results from this expensive simulation model could then be presented

to operators to identify the optimal control actions to take in managing an

incident.

We have already discussed that the uncertainty in the incident labels lead

to uncertainty in the DR, FAR and MTTD for both our proposed methodology

and the comparison models, and how we would ideally want to overcome

this. A further level of uncertainty is introduced through the missing flow

values on links 60, 65, 66, 68 and 69 (recall table 3.1). As we cannot evaluate

our methodology without speed and flow data, we are unable to perform our

analysis, fitting or validation on these links on any subset of our data. We are

therefore unable to say with absolute certainty that these links will not exhibit

some unseen density-flow behaviour that degrades our models performance.

However, the same is true for any comparison methods that use both variables,

and we have considered a range of different links when testing and validating

our methodology. As a result, we concede that our conclusions are subject to

some bias and would ideally like to repeat our analysis on these links when

data is available and before our methodology is used in a real-world scenario.

A final point is that if our method was used in the control room, but a

particular set of sensors did not report flow data, we would be unable to raise

DFTB incidents on these links. This could lead to situations where control

room operators miss significantly atypical situations on particular stretches

of road, and they cause increased levels of congestion as they are not dealt

with for long periods. We therefore believe that even after all of the other

uncertainties highlighted have been overcome, operators should still be given a

list of links that do not report data, and they can then check these manually

either through camera feeds or other means. The operators face a similar

problem if links report missing travel times in the current implementation of

NTIS, so they will already have some experience in working with missing data

on sections of the network.
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Chapter 5

A non-parametric Hawkes

process model of primary and

secondary incidents

In this chapter, a self-exciting spatio-temporal point process is fitted to NTIS

incident data to model the rates of primary and secondary incidents observed

in the data. This process uses a background component to represent primary

incidents, and a self-exciting component to represent secondary incidents.

The background consists of periodic daily and weekly components, a spatial

component and a long-term trend. The self-exciting components are decaying,

unidirectional functions of space and time. These components are determined

via kernel smoothing and likelihood estimation. Temporally, the background is

stable across seasons with a daily double peak structure reflecting commuting

patterns. Spatially, there are two peaks in intensity, one of which becomes

more pronounced during the study period. Self-excitation accounts for 6-7%

of the data with associated time and length scales around 100 minutes and 1

kilometre respectively. In-sample and out-of-sample validation are performed

to assess the model fit. When we restrict the data to incidents that resulted in

large speed drops on the network, the results remain coherent.

5.1 Introduction & problem relevance

The United Kingdom has one of the lowest per-capita death rates from traffic

accidents in the world, estimated by [157] at 3.1 per 100,000 of population

in 2016. Nevertheless 1782 deaths and 25,484 serious injuries resulted from

accidents on UK roads in 2018 [158]. Aside from the direct human cost of

serious accidents, indirect economic costs result even from relatively minor

incidents. This is because crashes, collisions and breakdowns can cause severe

congestion leading to significant drops in the efficiency of the road transport
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network. For these reasons, there is an imperative to further reduce the incident

rate on UK roads. However traffic incidents are rare in absolute terms and

are not distributed uniformly across the network. Further rate reductions are

therefore likely to require targeted interventions. Targeted interventions might

try to to improve safety at specific locations where the congestion risk is known

to be high compared to the baseline or might try to mitigate against particular

mechanisms that are known to account for a significant proportion of incidents.

Infrastructure modifications to improve the safety of accident-prone junctions

is an example of the first type of intervention. The deployment of MIDAS

to reduce the number of secondary incidents on motorways is an example

of the second. Secondary incidents occur when when a driver fails to react

appropriately to the disruption caused by an existing incident leading to a

subsequent incident upstream of the first one.

Throughout this chapter, we use data from NTIS to model the distribution

of motorway incidents as a spatio-temporal Hawkes process. The objectives of

the study are two-fold. The first is to quantify how incident risk on the M25

varies in space and time relative to the baseline. The second is to use the self-

excitation component of a Hawkes process to quantify the likely contribution

of secondary incidents to the observed totals. We would like this model to be

helpful in addressing the question of how best to target interventions when the

baseline incident rate is low in absolute terms. We therefore perform extensive

in-sample and out-of-sample validation to verify the models performance on

seen and unseen data.

5.2 Data details

Throughout this chapter, we consider all accident and obstruction incidents

in the data between September 1st 2017 and September 30th 2018, defining

incident locations through the localisation methodology discussed in section

3.2.3 and times as given by NTIS. This subset of data was selected as we

obtained both the link and loop level data during this period, allowing us to

perform the localisation of NTIS incidents. We did not extract the loop data

before this time-period, and hence could not perform the same localisation.

This subset is still sufficiently large to capture long-term behaviour across the

M25, and as we will see throughout this chapter, identify natural features of

traffic behaviour as-well as novel insights into incidents on the studied domain.

Summary statistics for this subset of data are given in appendix B.4.8.
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5.3 Methodology

5.3.1 Model formulation

Our objective is to model the number of incidents observed between any two

positions x1 and x2 in any time interval between t1 and t2. We denote this

quantity by N[x1,x2),[t1,t2). Since we know that incidents cluster in both space

and time, the simplest model is a non-homogeneous Poisson point process.

This model is specified by an underlying intensity function, λ(x, t), which is the

local incident probability per unit length per unit time. It is then assumed that

for any intervals, [x1, x2) and [t1, t2), N[x1,x2),[t1,t2) has a Poisson distribution,

written as

P(N[x1,x2),[t1,t2) = n) =
Λn[x1,x2),[t1,t2)

n!
e−Λ[x1,x2),[t1,t2) , (5.1)

where

Λ[x1,x2),[t1,t2) =

∫ t2

t1

∫ x2

x1

λ(x, t)dx dt. (5.2)

It is natural to assume that the intensity is multiplicatively decomposable,

giving

λ(t, x) = µ0 µd(t)µw(t)µt(t)µs(x). (5.3)

Here µ0 is a uniform background intensity which has units of incidents per

unit time per unit length. This uniform background is then modulated by the

functions µd(t), µw(t), µt(t) and µs(x) to capture spatio-temporal variation.

The spatial modulation, µs(x), accounts for the fact that different locations

will naturally have differing rates of incidents, for example junctions with

low visibility having higher rates than straight, simple sections of road. The

temporal modulation, µd(t)µw(t)µt(t) consists of three components: µd(t)

represents daily variation, µw(t) represents weekly variation and µt(t) represents

any long term trend that may be present. Daily and weekly seasonality is

a ubiquitous feature of traffic data reflecting daily ‘rush-period’ commuting

patterns, and weekly differences between the 5-day working week to the 2-day

weekend. Annual seasonality may also be present but since our data spans 13

months, any such variation is captured by the trend.

Inhomogeneous point processes describe clustering solely in terms of vari-

ations in the intensity function. A more sophisticated model is a self-exciting

point process, known as a Hawkes process, to capture the distinction between

primary and secondary incidents. Self-excitation means that when an incident

occurs, the probability of observing a subsequent incident nearby increases. A

second term depending on the previous incidents is added to Eq. (5.3) to give
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what is called the conditional intensity function, taking the form

λ(t, x) = µ0 µd(t)µw(t)µt(t)µs(x) +A
∑
ti<t
xi>x

g(t− ti)h(x− xi), (5.4)

where A is the triggering rate, g and h are triggering functions that describe

how the triggering mechanism decays in time and space respectively and (ti, xi)

are the times and locations of the observed incidents. The word ‘conditional’

here reflects the dependence of the intensity on the realisation of the process.

Our methodology is based on the work of [124], where it is shown how to

construct the conditional intensity of a Hawkes process in a non-parametric way

by applying kernel smoothing to the observed data on crime. We modify this

model to make it applicable to traffic data. We begin in the following sections

by detailing the estimators of model components and details of the fitting

algorithm, following closely [124]. We then discuss the three main changes

made to the original work. Firstly, the spatial triggering mechanism is one-

dimensional and unidirectional: secondary incidents cannot occur downstream

of the primary incident. Secondly we enforce monotonicity of the triggering

functions, g and h, in Eq. (5.4) as a constraint to help with identifiability.

Thirdly, we apply boundary correction to the kernel density estimates to reduce

bias.

Derivation setup

Throughout the following sections, we will denote a kernel function with

bandwidth ω as kω(x), and let md, mw be the number of time-points (in our

case minutes) in a day and week respectively. Then, as discussed in [124] and

[125], for a spatio-temporal point process Np with conditional intensity function

λ(t, x) and a predictable process f(t, x) ≥ 0, over a time domain [T1, T2] and

space domain S, we can write

E

[∫
[T1,T2]×S

f(t, x)dNp(dt× dx)

]
= E

[∫ T2

T1

∫
S
f(t, x)λ(t, x)dxdt

]
. (5.5)

Using this, we then outline the methodology provided in [124] to construct

first the background components of our desired process then the triggering

components. To construct each component of our model, we have a dataset of

incidents, each with a time of occurrence ti and location xi, with i ∈ {1, 2, ..., N},
and our data collected through a time-space range [0, T ]× [0, X]. Note also

that throughout, µd(t), µw(t), µt(t) and µs(x) have average value 1, allowing

µ0 to represent the background rate and each of these functions to modulate

it, and for ease of comparison across components. The triggering functions g(t)

and h(x) are probability density functions, as in [124].
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Periodic temporal background components

Our model contains two periodic background components, capturing daily and

weekly variation in the background. These are constructed very similarly, so

we only detail the daily component here. To begin, we first denote

w(d)(t, x) =
µd(t)µs(x)

λ(t, x)
, (5.6)

and substitute this into Eq. (5.5), giving

N∑
i=1

w(d)(ti, xi)1ti∈∪k∈Z[t+kmd−∆t,t+kmd+∆t]

≈
∫ T

0

∫ X

0
w(d)(τ, χ)λ(τ, χ)1τ∈∪k∈Z[t+kmd−∆t,t+kmd+∆t]dχdτ

=

∫ T

0

∫ X

0

µd(τ)µs(χ)

λ(τ, χ)
λ(τ, χ)1τ∈∪k∈Z[t+kmd−∆t,t+kmd+∆t]dχdτ

=

[∫ T

0
µd(τ)1τ∈∪k∈Z[t+kmd−∆t,t+kmd+∆t]dτ

] [∫ X

0
µs(χ)dχ

]

=


⌊
T
md

⌋∑
γ=0

∫ md

0
µd(τ)1τ∈[t−∆t,t+∆t]dτ

[∫ X

0
µs(χ)dχ

]

=


⌊
T
md

⌋∑
γ=0

∫ t+∆t

t−∆t
µd(τ)dτ

[∫ X

0
µs(χ)dχ

]

≈


⌊
T
md

⌋∑
γ=0

2∆tµd(t)

[∫ X

0
µs(χ)dχ

]

∝ µd(t).

(5.7)

Here, we have the indicator function 1ti∈∪k∈Z[t+kmd−∆t,t+kmd+∆t] incorporating

a data-point into the estimate if it lies in some interval [t−∆t, t+ ∆t], on any

day in the dataset, where t ∈ [0,md) and ∆t is a small positive value. From

Eq. (5.7), it follows that

µ̂d(t) ∝
N∑
i=1

w
(d)
i 1ti∈∪k∈Z[t+kmd−∆t,t+kmd+∆t], (5.8)

w
(d)
i =

µd(ti)µs(xi)

λ(ti, xi)
. (5.9)

We can simplify this expression by introducing t̃i = ti − md

⌊
ti
md

⌋
, ∀i ∈

{1, 2, . . . , N}, mapping the raw incident times from the domain [0, T ] onto the
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domain [0,md). Eq. (5.8) then becomes

µ̂d(t) ∝
N∑
i=1

w
(d)
i 1t̃i∈[t−∆t,t+∆t]. (5.10)

In Eq. (5.10), we essentially have a histogram estimate of µd(t), and it is

natural to considering smoothing such an estimate as in [124]. We can again

turn to kernel functions to do this, using a bandwidth ω and Gaussian kernel

of the form

kω(x) =
1√
2πω

e−
x2

2ω2 . (5.11)

Applying this smoothing, we then attain

µ̂d(t) ∝
N∑
i=1

w
(d)
i

kωd(t− t̃i)∫md
0 kωd(τ − t̃i)dτ

(5.12)

where ωd is the smoothing bandwidth specific to the daily background com-

ponent, and we have prevented the ‘leaking of mass’ problem by ensuring that

each kernel function is normalised such that its integral is 1 over the domain in

question. We have constructed an estimate for the daily periodic background

component by smoothing the observed incident times mapped onto the domain

[0,md), however one subtly remains.

The smoothed contribution of the data-point ti to the function µd(t) is

kωd

(
t−
[
ti −md

⌊
ti
md

⌋])
. However, since the domain is periodic, we account

for the fact that some incident ti may also have non-zero contribution from

its location on the previous and following day. In the context of a periodic

temporal function, we would consider an incident before our domain as ti −
md

⌊
ti
md

⌋
−md and after our domain as ti −md

⌊
ti
md

⌋
+ md. We denote the

contributions of these components as klower
daily = kωd

(
t−
[
ti −md

⌊
ti
md

⌋
−md

])
and kupper

daily = kωd

(
t−
[
ti −md

⌊
ti
md

⌋
+md

])
. We can then incorporate these

into the estimate as

µ̂d(t) ∝
N∑
i=1

w
(d)
i

klower
daily + kωd

(
t−

[
ti −md

⌊
ti
md

⌋])
+ kupper

daily∫ 2md
−md kωd(τ − t̃i)dτ

. (5.13)

In Eq. (5.13) we have normalised the kernel over the entire domain, including

the extended points. Notice here that we have approximated the function over

the domain [−md, 2md] and then we retain only the chunk in between 0 and

md for µd(t), meaning we do not need to provide boundary correction as there

is no boundary. One could actually incorporate an infinite sum over all past

and future periods, however in practice the decay of a Gaussian kernel leads to

it being sensible to truncate this sum to just these terms. An explicit example
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comparing estimates with and without this correction incorporated can be

found in appendix D.3.

Similarly, one can write the weekly periodic component as

µ̂w(t) ∝
N∑
i=1

w
(w)
i

klower
weekly + kωw

(
t−
[
ti −mw

⌊
ti
mw

⌋])
+ kupper

weekly∫ 2mw
−mw kωw(τ − t̃i)dτ

(5.14)

with

w
(w)
i =

µw(ti)µs(xi)

λ(ti, xi)
(5.15)

and klower
weekly, k

upper
weekly are defined as in the daily case but considering the number of

points in a week and weekly bandwidth choice. As before, ωw is the smoothing

bandwidth specific to the weekly background component, and in this case t̃i

maps to a one week domain.

Temporal trend background component

Definition of the temporal trend component follows similarly to the previously

discussed components. One begins by specifying

w(t)(t, x) =
µt(t)µs(x)

λ(t, x)
. (5.16)

Substituting this into Eq. (5.5) yields

N∑
i=1

w(t)(ti, xi)1ti∈[t−∆t,t+∆t]

≈
∫ T

0

∫ X

0
w(t)(τ, χ)λ(τ, χ)1τ∈[t−∆t,t+∆t]dχdτ

=

[∫ T

0
µt(τ)1τ∈[t−∆t,t+∆t]dτ

] [∫ X

0
µs(χ)dχ

]
=

[∫ t+∆t

t−∆t
µt(τ)dτ

] [∫ X

0
µs(χ)dχ

]
≈ [2∆tµt(t)]

[∫ X

0
µs(χ)dχ

]
∝ µt(t).

(5.17)

Again, one can then write a smoothed estimate of the trend component as

µ̂t(t) ∝
N∑
i=1

w
(t)
i

kωt(t− ti)∫ T
0 kωt(τ − ti)dτ

(5.18)

w
(t)
i =

µt(ti)µs(xi)

λ(ti, xi)
, (5.19)
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where ωt is the smoothing bandwidth for the trend component.

Unlike the periodic components, the trend component is restricted onto the

domain [0, T ]. As such, the smoothed estimate is truncated both at 0 and T .

It is well known that, on a truncated domain, kernel estimates are biased near

the boundary, with discussion of this in [159] and references within. There are

many ways to account for this throughout the literature, with a simple method

being to ‘mirror’ the data, supposing we have extra data-points. If we have

our ‘real’ data-points X1, X2, . . . XN and wish to truncate our domain at 0,

we introduce extra points −X1,−X2, · · · −XN . The smoothed estimate ν̂(x),

using a bandwidth ω, is then

ν̂(x) =
1

N

N∑
i=1

[kω (x−Xi) + kω (x+Xi)] . (5.20)

We apply such a correction, both for the truncation at 0 and T for the trend

component.

Spatial background component

The spatial background component can be constructed much like the temporal

background components. First, we write

ψ(t, x) =
µ0µd(t)µw(t)µt(t)µs(x)

λ(t, x)
, (5.21)

and then substitute this into Eq. (5.5), giving

N∑
i=1

ψ(ti, xi)1xi∈[x−∆x,x+∆x]

≈
∫ T

0

∫ X

0
ψ(τ, χ)λ(τ, χ)1χ∈[x−∆x,x+∆x]dχdτ

=

∫ T

0

∫ X

0

µ0µd(τ)µw(τ)µt(τ)µs(χ)

λ(τ, χ)
λ(τ, χ)1χ∈[x−∆x,x+∆x]dχdτ

= µ0

[∫ T

0
µd(τ)µw(τ)µt(τ)dt

] [∫ x+∆x

x−∆x
µs(χ)dχ

]
≈ µ0

[∫ T

0
µd(τ)µw(τ)µt(τ)dτ

]
2µs(x)∆x

∝ µs(x)

(5.22)

with ∆x being a small positive value. This suggests that we can write the

smoothed estimate of the spatial background component as

µ̂s(x) ∝
N∑
i=1

ψi
kωs(x− xi)∫ X

0 kωs(χ− xi)dχ
, (5.23)
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ψi =
µ0µd(ti)µw(ti)µt(ti)µs(xi)

λ(ti, xi)
, (5.24)

where ωs is the smoothing bandwidth specific to the spatial background com-

ponent.

We make a further modelling assumption that the spatial background is

periodic, as the M25 is an almost continuous ring around London. Recall from

Fig. 3.1 that a small section to the east of the M25 is not a motorway and

reports no data, but it is negligible in comparison to the wider motorway, so

assuming a spatial background on a ring is reasonable. We therefore incorporate

the same correction to this estimate as we have with the periodic temporal

components, including potential non-negligible contributions from smoothed

data-points one period before and after the domain in question.

Triggering components

To determine our triggering functions in an entirely data-driven way, we

first consider two data points
(
τ (1), χ(1)

)
and

(
τ (2), χ(2)

)
. We then define

ρ(τ (1), χ(1), τ (2), χ(2)) as

ρ
(
τ (1), χ(1), τ (2), χ(2)

)
=


Ag(τ (2)−τ (1))h(χ(2)−χ(1))

λ(τ (2),χ(2))
, if τ (1) < τ (2)and χ(1) > χ(2)

0, otherwise
.

(5.25)

This is simply stating the fraction of total intensity at the point
(
τ (2), χ(2)

)
that

is a result of another incident at
(
τ (1), χ(1)

)
. This also specifically incorporates

the idea of unidirectional triggering. If we apply this to Eq. (5.5), letting

f(τ, χ) = ρ(ti, xi, τ, χ)1τ−ti∈[t−∆t,t+∆t], then we attain∑
j

ρ(ti, xi, τj , χj)1τj−ti∈[t−∆t,t+∆t]

≈
∫ T

0

∫ X

0
ρ(ti, xi, τ, χ)1τ−ti∈[t−∆t,t+∆t]λ(τ, χ)dχdτ

= A

∫ T

ti

∫ xi

0

g(τ − ti)h(χ− xi)
λ(τ, χ)

1τ−ti∈[t−∆t,t+∆t]λ(τ, χ)dχdτ

= A

[∫ T

ti

g(τ − ti)1τ−ti∈[t−∆t,t+∆t]dτ

] [∫ xi

0
h(χ− xi)dχ

]
.

(5.26)
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If we then let s = τ − ti we have∑
j

ρ(ti, xi, τj , χj)1τj−ti∈[t−∆t,t+∆t]

≈ A
[∫ T−ti

0
g(s)1s∈[t−∆t,t+∆t]ds

] [∫ xi

0
h(χ− xi)dχ

]
= A

[∫ t+∆t

t−∆t
g(s)ds

] [∫ xi

0
h(χ− xi)dχ

]
≈ 2A∆tg(t)

[∫ xi

0
h(χ− xi)dχ

]
∝ g(t).

(5.27)

As a result

g(t) ∝
∑
i

∑
j

ρ(ti, xi, tj , xj)1tj−ti∈[t−∆t,t+∆t] (5.28)

and hence

ĝ(t) ∝
∑
(i,j)

ρi,j1tj−ti∈[t−∆t,t+∆t] (5.29)

with

ρi,j =
Ag(tj − ti)h(xj − xi)

λ(tj , xj)
∀ (i, j) s.t. ti < tj and xi > xj . (5.30)

As before, the estimator in Eq. (5.29) can be smoothed to give

ĝ(t) ∝

∑
(i,j)

ρi,jkωg (t−tj+ti)∫ T−ti
0 kωg (τ−tj+ti)dτ

N∑
i=1

1ti+t≤T

. (5.31)

In Eq. (5.31), ωg represents the smoothing bandwidth of the temporal triggering

component, and we have normalised each kernel density estimate by the

remaining time, and then finally dividing by the term
∑N

i=1 1ti+t≤T , which

corrects for repetitions as detailed in [124].

In the same way, we can write the spatial triggering function, with smoothing

bandwidth ωh as

ĥ(x) ∝

∑
(i,j)

ρi,jkωh (x−xj+xi)∫ xi
0 kωh (χ−xj+xi)dχ

N∑
i=1

1xi+x≥0

. (5.32)

5.3.2 Determining background and triggering coefficients

In the model specification, we have two coefficients A and µ0 that specify how

much or little of the triggering and background component respectively enters
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the conditional intensity function. In-particular, it should be noted that A can

be interpreted as the proportion of the impact of the triggering functions on

the total intensity, so a high A value suggests data is dominated by triggering

and the converse for a small value. These parameters can be determined

through maximum likelihood estimation. The log-likelihood function for a

spatial-temporal point process model with triggering is given by

log(L) =
N∑
i=1

log (λ(ti, xi))−
∫ T

0

∫ X

0
λ(t, x)dxdt. (5.33)

Using Eq. (5.4), we then see

log(L) =

N∑
i=1

log

µ0µd(t)µw(t)µt(t)µs(x) +A
∑
ti<t
xi>x

g(t− ti)h(x− xi)

−
∫ T

0

∫ X

0
µ0µd(t)µw(t)µt(t)µs(x) +A

∑
ti<t
xi>x

g(t− ti)h(x− xi)dxdt

=
N∑
i=1

log

µ0µd(t)µw(t)µt(t)µs(x) +A
∑
ti<t
xi>x

g(t− ti)h(x− xi)

−
∫ T

0

∫ X

0
µ0µd(t)µw(t)µt(t)µs(x)dxdt−∫ T

0

∫ X

0
A
∑
ti<t
xi>x

g(t− ti)h(x− xi)dxdt

=

N∑
i=1

log

µ0µd(t)µw(t)µt(t)µs(x) +A
∑
ti<t
xi>x

g(t− ti)h(x− xi)

−
µ0

∫ T

0

∫ X

0
µd(t)µw(t)µt(t)µs(x)dxdt−

A
N∑
i=1

∫ T

ti

∫ xi

0
g(t− ti)h(x− xi)dxdt.

(5.34)

We then denote

U =

∫ T

0

∫ X

0
µd(t)µw(t)µt(t)µs(x)dxdt

G =
N∑
i=1

∫ T

ti

∫ xi

0
g(t− ti)h(x− xi)dxdt

(5.35)
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and attain the partial derivatives with respect to A and µ0 as

∂ log(L)

∂µ0
=

N∑
i=1

µd(ti)µw(ti)µt(t)µs(x)

λ(ti, xi)
− U

∂ log(L)

∂A
=

N∑
i=1

∑
ti<t
xi>x

g(tj − ti)h(xj − xi)

λ(ti, xi)
−G.

(5.36)

Setting these equal to 0 and solving, one attains the following iterative system

of equations

ψ
(ζ)
i =

µ
(ζ)
0 µd(ti)µw(ti)µt(ti)µs(xi)

µ
(ζ)
0 µd(ti)µw(ti)µt(ti)µs(xi) +A(ζ)

∑
tj<ti
xj>xi

g(ti − tj)h(xi − xj)

Aζ+1 =

N −
N∑
i=1

ψ
(ζ)
i

G

µζ+1
0 =

N −A(ζ+1)G

U
.

(5.37)

5.3.3 Constraining triggering functions

We note that this model aims to explain any residuals from the background

process using the triggering component. As such, the model has significant

freedom to adapt to the data. We can limit this freedom to ensure that the

triggering component truly reflects increased rates of incidents on a short-time

scale (compared to the background components) in the wake of a particular

incident. A natural way to do this and extension of the original methodology

is to enforce the triggering functions to be monotonic. This is a reasonable

constraint that ensures interpretability of the triggering functions, whilst still

allowing them to be constructed by the data. Triggering decaying in space

and time suggests that we expect reduced influence of an incident as we move

further from its location and as time passes. Existing work details how to

ensure a smoothing estimate of data is monotonic, in-particular we use the

methods described in [160]. Recall that one writes a smoothed estimate of

some dataset (X,Y) as

ν̂(x) =
1

N

N∑
i=1

kω (x−Xi)Yi (5.38)

with all terms as previously defined. Specifically in our application, X represents

differences in incident locations or incident times, and all Y values equal 1,

however the technique works for more general cases. In Eq. (5.38), we place no

constraints on the estimate ν̂(x), however in practice there are many situations
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where we may want to enforce some minimal structure. One such structure

is monotonicity, with [160] introducing a generalised definition of Eq. (5.38),

incorporating a weight pi to each data-point used in the smoothing to ‘adjust’

the initial smoothed fit to be monotonic. One then writes this adjusted fit as

ν̂mono(x|p1, . . . , pN ) =
N∑
i=1

kω (x−Xi)Yipi. (5.39)

Our goal is now to choose a weight pi for each data-point i used in the

construction of the function, whilst altering the original estimate as little as

possible. There are an infinite number of sets of {p1, p2, . . . , pN} one could

choose to enforce a monotonic function, and to identify a unique solution,

we choose the set that is as close to the uniform distribution
{

1
N , . . . ,

1
N

}
as

possible. One distance measure used in [160] to compare the pi’s to a uniform

distribution is

D0(p1, . . . , pN ) = −
N∑
i=1

log(Npi). (5.40)

Using this, we can then introduce a step in our model fitting where we solve a

further optimisation problem, determining each pi value to produce a monotonic

triggering function. The optimisation problem is specified as

min
p1,...,pN

D0(p1, . . . , pN )

s.t.
dν̂mono(x|p1, . . . , pN )

dx
≤ ε

pi ≥ 0 ∀i ∈ {1, 2, . . . , N}
pi ≤ 1 ∀i ∈ {1, 2, . . . , N}
N∑
i=1

pi = 1.

(5.41)

Since we are enforcing the triggering to decay with increasing time and distance,

ε constrains the gradient of the triggering functions to be below some value.

It should be noted that in practice, constraining the triggering function only

alters the resulting functions in section 5.4.6, where we fit the model to small

subsets of data. When fit to 13 months of data, the resulting functions are

already monotonic.

5.3.4 Fitting algorithm

Our final reference back to the original work [124] is the description of the

fitting algorithm used, with our additional components incorporated, detailed

in algorithm 1. For computational speed, we assume triggering after 12 hours

is 0, which is informed by considering time-scales similar to the worst recorded
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Algorithm 1: Fit triggering point process model to data

Input: Initial guesses µd, µw, µt, µs, g, h,A, µ0

1 while Not converged do

2 Compute w
(d)
i , w

(w)
i , w

(t)
i , ψi, ρi,j for all valid (i, j) using Eq. (5.9),

(5.15), (5.19), (5.24) and (5.30)
3 Estimate µd, µw, µt, µs, g, h using Eq. (5.13), (5.14), (5.18), (5.23),

(5.31) and (5.32). Appropriate boundary correction should be
applied to each.

4 Determine pi ∀i ∈ {1, 2, . . . N} by solving Eq. (5.41)
5 Estimate A and µ0 using Eq. (5.37)

6 end
Output: Optimised components µd, µw, µt, µs, g, h,A, µ0

traffic jams in the UK, detailed in [161].

5.4 Results

5.4.1 Bandwidth selection

Selection of smoothing bandwidths is an open problem for models of this

form, however the application discussed offers natural choices with time-scales

inherent to the system. We choose the daily, weekly and trend bandwidths to be

60, 10×60 and 60×24×14 minutes respectively. The value of daily bandwidth

is selected due to the ‘rush-period’ behaviour in the UK typically varying

on a time-scale of around an hour, whilst the weekly and trend components

capture variation across larger time-scales. The spatial bandwidth is chosen

as 5500 metres, which appears small enough to capture differing features

across the M25, whilst not introducing superfluous oscillations. This is also

larger than the uncertainty we would expect in incident locations, therefore

accounting for potential uncertainty in the data. Finally, the temporal and

spatial bandwidths for the triggering functions are chosen to be 30 minutes

and 500 metres respectively. We considered variations on all of these values,

finding those listed provided a reasonable compromise of model interpretability

and identifying known components of traffic flow.

5.4.2 Model selection & prevalence of triggering

We first consider some measure of goodness of fit for models containing vari-

ations of the discussed components. The first is a simple, homogeneous Poisson

process, used as the simplest reference model one could construct. We then

compare models with: daily and weekly background components, daily, weekly

and trend background components, daily, weekly background and triggering

components, and daily, weekly, trend background and triggering components.

99



To compare these, we consider the log-likelihood, given by

log(L) =

N∑
i=1

log (λ(ti, xi))−
∫ T

0

∫ X

0
λ(t, x)dxdt, (5.42)

with a larger value suggesting a better model. Note that in using log-likelihood

to judge the goodness of fit, we ignore model complexity, the idea that we

could continuously add components to any model and see increasingly marginal

improvements as we attain a more complex model. However, our results

throughout this section show the estimated functions present reasonable and

interpretable behaviour that seems to catch marginal but still present features

of the phenomenon of interest. To check the specification of the model we

inspect the residuals and validate the results in section 5.4.5, while a successful

attempt of out-of-sample validation is attained in section 5.4.6.

Model A Log-Likelihood

Fixed Rate Poisson Process - -28861.55

Daily + Weekly Background - -28028.05

Daily + Weekly + Trend Background - -27929.60

Daily + Weekly + Triggering 0.068495 -27864.48

Daily + Weekly + Trend + Triggering 0.065462 -27781.38

Table 5.1: Model log-likelihood values for models with various components.
We see by far the worst model is a homogeneous Poisson process, as expected,
and adding periodic daily and weekly components to this shows the largest
improvement in log-likelihood. Including a trend and triggering component
further improves the model log-likelihood.

Using this methodology, the parameter A can be interpreted as the pro-

portion of the impact of the triggering function on the total intensity. For

our optimal model incorporating all components, this means about 6.55% of

incidents appear to be the result of triggering, in practical terms about 100

incidents. One may want to consider this as an upper bound, as discussed in

section 5.4.4, along with an appropriate time-scale.

5.4.3 Background analysis

The background component of the model is strong, as seen when inspecting the

changes in log-likelihood from table 5.1. In our model, this constitutes a daily,

weekly, spatial and trend component. We visualise the temporal background

components in Fig. 5.1. Inspecting Fig. 5.1a, we see that the daily background

increases to an initial peak during the morning rush hour, then remains roughly

constant, before rising again to a peak at around 4pm, and decaying after this.

From Fig. 5.1b, there appears to be much less variation in the intensity across

the week compared to all other identified components, but a slightly higher
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(a) Daily background.
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(b) Weekly background.
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(c) Trend background.

Figure 5.1: Temporal background components fit to 13 months of data.
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(a) Spatial background.

Figure 5.2: Spatial background components fit to 13 months of data. Recall
that we have collected data for the clockwise direction of the M25, and as a
result ‘distance along the M25’ is measured in the clockwise direction, starting
below the gap for the Dartford crossing on the west side of the motorway.

intensity on Thursdays and Fridays, and the lowest on Tuesdays and Saturdays.

Finally, we see a small increase in the trend during the first 7 weeks of the data,

then it remains reasonably flat until week 28, where it begins to rise again.

Around week 40, it stabilises again. This could be due to an increase in actual

incident intensity, or more comprehensive reporting after a certain point, more

operators and so forth, however no changes in reporting are known to us.

As well as the temporal background, where incidents are most common

around the M25 is of interest. We show the spatial background in Fig. 5.2,

from which a clear spatial structure is visible. We see two distinct peaks in Fig.

5.2a, and a smaller spread out peak in-between these two. Recall from chapter

3 that the largest peak, around 140 kilometres along the motorway, is located

near the ‘Potters Bar’ junction. The second largest, around 25 kilometres into

the motorway, is located between where the M25 meets the M26, and where

the M25 meets the M23.

5.4.4 Triggering analysis

Triggering does appear to improve the log-likelihood of our model, and as

we have seen in table 5.1 it explains around 6.55% of incidents in the data.

We visualise the resulting functions in Fig. 5.3. From Fig. 5.3b, it is clear

that spatial triggering is limited to around 2-kilometres, after which we do not

see any non-zero values. However, temporal triggering, pictured in Fig. 5.3a,
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(a) Temporal triggering.
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(b) Spatial triggering.

Figure 5.3: Triggering functions, fit to 13 months of data.

appears to have quite a ‘long tail’ in the sense that it decays over a relatively

long time-range. However, this is a clear time-scale in this result of around

100 minutes. As a result of this, one should take 6.55% as an upper bounds of

sorts, understanding this, combined with the identified time and length scales

is an informative conclusion to draw.

5.4.5 Model validation

To validate if our model captures the relevant features of a process, one often

follows the work of [125], [162] and [163]. Specifically, we use the transformed

time-sequence given by

ti → Λi =

∫ ti

0

∫ X

0
λ(u, x)dxdu, (5.43)

then the resulting sequence of values Λi ∀ i ∈ {1, 2, . . . N} will follow a unit rate

Poisson process if the model is correctly specified. To prove this, one can derive

that the sequence of values Λi − Λi−1 are i.i.d. random variables that follow

an exponential distribution with parameter 1, which is done in [163]. Given

that we know the expected distribution of Λi − Λi−1, we can then transform

this to follow a standard uniform distribution by computing

zi = 1− e−(Λi−Λi−1). (5.44)

Now, the computed zi values should follow the simplest known distribution,

which we can evaluate by comparing the measured and theoretical cumulative

distribution functions (CDF), as well as the measured and expected quantiles.

One can generate confidence bounds for the comparison of two CDFs by

inversion of the Kolmogorov-Smirnov statistic, and for quantile-quantile (QQ)

plots by using the fact that the order statistics of a uniform distribution follow

a beta distribution. The distribution of the k-th order statistic has parameters

k and n + 1 − k, with n being the number of sample points. Using this, we

then generate CDF and QQ plots for our model, given in Fig. 5.4a and 5.4b. It

is clear from Fig. 5.4 that the model is statistically defensible when inspecting
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(a) CDF validation.
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(b) Quantile-Quantile validation.

Figure 5.4: Validation results for 13 months of data. Model results are shown
with , 95% limits: , 99% limits: and a reference line: .

both the CDF and QQ plots of the results. Some of the quantiles in Fig. 5.4b

are just on the edge of acceptable, but do not deviate outside of the confidence

bands. These results show that our model is well specified, however extra

components could continue to be added to improve the fit. The compromise

between model complexity and overfitting should always be considered when

including additional features. Considering our application, traffic incidents

are already rare in absolute terms as previously discussed. Further, the model

has significant freedom to adapt to any data it is trained on. As a result,

incorporating a large amount of features may quickly result in a model that

is too specific to the training data, and does not generalise to unseen data.

Hence, if further work does look at applying additional features to our model,

one should always consider both in-sample and out-of-sample validation to

ensure the model has not become too specific to the supplied training data.

We detail how to do so at the end of the following section.

5.4.6 Do components change with season?

Given our results for the 13 months of data, we can question how resilient the

background and triggering components are by inspecting subsets of the data.

To test this, we partition our data into 3-month seasonal periods, and fit the

model to each subset. We then overlay the components in Fig. 5.5. Summary

statistics for these periods are given in appendices B.4.9, B.4.10, B.4.11 and

B.4.12.

It is clear from our results in Fig. 5.5 that there is varying amounts of

consistency in components of the model. Generally, we see in Fig. 5.5a that

the daily background component is constant throughout the year, with a little

variation present in the 3-months of data starting on 03/2018, where the

evening peak is a little less pronounced than any of the other datasets. The

morning peaks of the datasets starting at 09/2017 and 03/2018 are also a little
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(a) Daily background.
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(b) Weekly background.
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(c) Spatial background.
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(d) Temporal triggering.
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(e) Spatial triggering.

Figure 5.5: Background and triggering components compared across different
3-month datasets. Datasets are: 09/2017-11/2017: , 12/2017-02/2018: ,
03/2018-05/2018: and 06/2018-08/2018: . Distance along the M25 is
as defined in Fig. 5.2.

more pronounced than in the other two time-periods. It is difficult to make

conclusions about the weekly component, when we have only 12 instances

of each day of the week for a given 3-month subset. Of particular interest

is the spatial background through time, shown in Fig. 5.5c, where we see

that the peak around 140 kilometres along the M25 actually becomes more

pronounced as time progresses. Both the peak at 25 and 140 kilometres are

present throughout all subsets of data, but later periods appear to show that

the peak around Potters Bar is more significant later in the dataset compared

to earlier. It is unclear if a physical change occurred leading to this, but would

be of interest to investigate with more data. Finally, the temporal and spatial

triggering functions are generally quite consistent across all datasets. We still

see somewhat of a long decay in the temporal triggering, but time-scales of

around 100 minutes remain. Considering the triggering in each of these subsets,

we attain A values of 0.034, 0.063, 0.068 and 0.075 for the periods starting

09/2017, 12/2017, 03/2018 and 06/2018 respectively. Without more data, we

cannot say if these values vary throughout the year, or if they are increasing

over time.

A further practical consideration when inspecting Fig. 5.5 is that in

England, schools have a 6-week holiday in the summer. Whilst we expect this

would alter urban and inner-city traffic behaviour significantly, we believe the

impact on motorway traffic should generally be less substantial. This is mainly

due to the amount of heavy goods vehicles that use motorways, and also that

many motorway journeys are likely to be used by commuters to work. The lack
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of traffic from students being dropped at schools may therefore have a minor

effect, but we certainly do not expect it to be significant for our studied domain.

The general consistency of the data subset ‘06/2018-08/2018’ in Fig. 5.5 with

the alternative subsets suggests our assumptions are reasonable, and whilst

the spatial hotspot near Potters Bar does appear most significant during this

time-period, it is clearly also a significant feature of the data in the preceding

subset of data.

We note that, for small temporal subsets of data, the trend component

becomes less impactful in the model. Recalling Fig. 5.1c, the trend is almost

flat for long periods, suggesting we can omit it for some temporal subsets. As

a result, we can perform out-of-sample model validation, something we are

not aware of being done previously in the literature for this type of model.

Since the trend is omitted, and we see the triggering components are consistent

through time, we can train the model on some 3-month subset of data, then

perform our validation on unseen data. We show two examples of this in Fig.

5.6a and 5.6b. It is clear from Fig. 5.6 that on short time-scales, one can
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(a) Out of sample CDF Validation, fit to
data 12/2017-02/2018, validated on data
for 03/2018.
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(b) Out of sample CDF Validation, fit to
data 06/2018-08/2018, validated on data
for 09/2018.

Figure 5.6: Out of sample model validation for two datasets. Model results are
shown with , 95% limits: , 99% limits: and a reference line: .

use the model for acceptable performance out-of-sample. This is not possible

over longer time-scales however, due to the clear trend and varying spatial

background evident in the data.

5.4.7 Do components change for significant incidents?

Whilst all incidents flagged in NTIS should correspond to actual traffic incidents,

many of them may not have had a significant impact on the traffic state.

Consider the case where two vehicles have a minor collision, create no debris,

and the drivers pull into the closed hard-shoulder to exchange insurance

information. In such a case, there should be little impact on flow, travel
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time and speed. Additionally, if a vehicle breaks down and pulls into the

hard-shoulder, and the road is far from capacity, we should again see little

drop in average speed. To consider only the behaviour of incidents that

have some significant impact, we inspect the link-level data, which contains

significantly less noise than the loop-level. For a given incident window, we

consider the largest percentage drop in speed between a simple historical

median segmentation profile and measured values across the entire window. If

this percentage drop is above some threshold, then we say the incident caused

a significant impact on the traffic state. As we raise this threshold, we isolate

more extreme incidents but discard so much data that it is no longer reasonable

to fit a model. To retain enough data for fitting, we consider only thresholds

between 0 and 50%. We split our dataset into subsets containing only incidents

that lead to a speed decrease of at-least 0%, 10%, . . . , 50%, then re-run our

model fitting on these subsets. The resulting background components are

visualised in Fig. 5.7.
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(a) Daily background.
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(b) Weekly background.
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(c) Spatial background.

Figure 5.7: Background components compared across significant incidents,
varying what speed decrease is required to define an incident as significant.
Thresholds are: 0%: , 10%: , 20%: , 30%: , 40%: and 50%:

. Distance along the M25 is as defined in Fig. 5.2.

Inspecting Fig. 5.7a, we see the daily background is reasonably stable

across different thresholds of significance. The main difference is that as we

raise the threshold, the morning and evening peak structure becomes clearer,

and the periods very early and late in the day are lowered. From Fig. 5.7b,

we observe that the weekend has a lower intensity than weekdays as we raise

the threshold for significance. This is likely due to demand being significantly

lower on weekends compared to weekdays, and hence when an incident does

occur, there is less chance of an queue forming as the road is further from

capacity than on a weekday. Finally, the spatial background in Fig. 5.7c

clearly shows that the second peak, identified around 140 kilometres along the

M25, appears to experience more significantly impactful incidents than the

first peak, observed around 25 kilometres along the M25. This suggests that

not only is Potters Bar a ‘hot-spot’ for incidents, but also that the incidents

here are some of the more extreme on the network. Analysis of triggering
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during different significance thresholds shows that the time-scales and A values

remain consistent throughout.

5.4.8 Do components change around hotspots?

Whilst we have seen that the background component of our model has two

clear peaks in it, we can also question if the daily and weekly background

components differ significantly in the vicinity of these peaks, compared to

their behaviour across the entire motorway. To investigate this, we consider

each peak separately. Firstly, we define two ‘hotspots’ surrounding the two

peaks in spatial intensity. These locations start where the spatial background

component has a value above 1, and end where it then falls back below 1. We

then isolate a set of incidents that occur in each spatial hotspot. For our model,

this suggests we are isolating the spatial location where there is an increase

in the rate of incidents compared to the average spatial location. We then

re-fit our model using only this subset of incidents, and question what resulting

daily and weekly background components arise. We visualise our results in Fig.

5.8. Specifically, we visualise the subsets by location in Fig. 5.8a, the daily

background in Fig. 5.8b and the weekly background in 5.8c.
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(a) Visualisation of hotspot
locations.
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(b) Comparison of daily
backgrounds.
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(c) Comparison of weekly
backgrounds.

Figure 5.8: Identification of hotspot locations, and comparison of temporal
background components around them. In 5.8a, we show the spatial locations
of hotspot 1 ( ) and hotspot 2 ( ). In 5.8b and 5.8c, we show the results
for the entire dataset ( ), hotspot 1 ( ) and hotspot 2 ( ).

From Fig. 5.8, it is clear that the temporal background around each hotspot

is reasonably similar to that across the entire M25. The daily background

around the first hotspot has a slightly more pronounced peak in the morning

and lower peak in the evening compared to the entire network. The second

hotspot has a slightly higher peak in the evening. Both hotspots have a similar

weekly component. Overall, it seems reasonable to conclude that behaviour

at these two hotspots is not fundamentally different to that across the entire

motorway.
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5.5 Summary & conclusions

We have analysed the spatio-temporal variation in the incident rate on London’s

M25 motorway over a period of 13 months using a model that distinguishes

between primary and secondary incidents. This variation is found to be strongly

inhomogeneous. The temporal variation shows a strong daily double peak

structure reflecting commuting patterns superimposed in a weaker weekly

variation with a peak on Fridays and a trough on Saturdays. This pattern of

temporal variation remains stable over the data period. The spatial variation

shows two primary peaks in intensity. The first and largest is in the vicinity

of the Potters Bar Interchange. The other is in the vicinity of Junctions

5 and 6 where the M26 and M23 join the M25. The peak at Potters Bar

appears to increase in intensity during the data period, and is more pronounced

when we condition on the most significant incidents in terms of impact on

traffic speed. We find that 6-7% of the observed incidents are most probably

secondary incidents under the assumptions of our model. Plausible time and

length scales emerge for the range of the triggering effects: 100 minutes in the

temporal triggering, and 1 kilometre for spatial triggering. From these figures

we conclude that the effects of secondary incidents is a small but detectable

feature of the M25 incident data set. Our analysis suggests that, on the M25

at least, the scope to further reduce accident rates by reducing the number of

secondary incidents is limited compared to what could be achieved by reducing

the peaks at specific times or ‘hot-spot’ locations.

Unlike other aspects of this thesis, this chapter does not present a real-time

tool for operators to use. Instead, it presents retrospective analysis of the

mechanisms that generate incidents on the network and an understanding of

these mechanisms in space and time. Therefore, the main real-world applic-

ation of our work would be to aid decision makers deciding where to focus

on improvements to existing infrastructure. Clearly, our analysis of the back-

ground components of incidents on the M25 identify spatial locations where

improvements should be made to reduce the background rate of incidents.

Further, if changes are made to infrastructure, one could apply our modelling

approach to data recorded before and after the change, and understand how

these changes have impacted the different components that constitute the

incident rate. Any analysis of this type would be subject to other variation in

the traffic properties over the same time period, however if one can incorporate

this, our work provides a useful way to judge the effectiveness of changes made

to the network.

Similarly, if one repeats our analysis over the entire SRN, conclusions could

be drawn regarding the impact of smart motorway features such as variable

speed limits and message signs. The results from such an analysis can then
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influence future infrastructure planning, as we can quantify the impact it

has on different components on the incident generation mechanisms. Equally,

one could investigate how altering the methodologies by which variable speed

limits and message signs are set on current smart motorways impacts the

time and length scales for secondary incidents. Doing so would involve close

collaboration with the operators in control rooms, and extended periods of

time where various methodologies for determining what speed limit to enforce

or message to display are implemented. As a result, collecting enough data

to confidently calibrate the model we have used would be expensive and time

consuming, however it remains an option if there is enough commercial interest

in evaluating alternative control strategies for smart motorway infrastructure.

For any of the discussed real-world applications, we believe our current

approaches to displaying the model outputs throughout section 5.4 are both

intuitive and allow for easy comparison across components. As all background

components are scaled to have average value 1, it is simple to understand

where increases or decreases to the average behaviour are observed, and one

could overlay the model results before and after a change to clearly show

differences in the components of the model. Equally, we believe the optimal

way to visualise the time and length scales of secondary incidents is through

visualisations similar to those we have shown, allowing direct comparison before

and after any changes. Finally, since we can conclude that the parameter A

is the proportion of secondary events in the data, we can in a single number

quantify the prevalence of secondary incidents. Each of these visualisation

would be informative and concise for decision makers to view.

In terms of incorporating more data, one needs to ensure that only compon-

ents that could significantly impact the background rate are included in the

model. As discussed, the model has significant freedom and specifying a huge

number of inputs could quickly lead to overfitting. One candidate variable that

could be investigated is the weather, specifically how best to incorporate this

as it will likely influence driving conditions but there is no immediately obvious

way to incorporate it into the model other than simply recording rainfall and

ignoring other weather conditions. Another includes a measure of severity of

an incident, for example the measure defined in chapter 4, however as events

are already rare in absolute terms, providing a further segmentation of them

may make fitting the model difficult. Inclusion of additional variables could be

done through methods that consider marked point process, and this is a clear

avenue for future extensions to our modelling.

There are two main of sources of uncertainty in our modelling. The first

of these is the uncertainty in the start time of incidents and the locations

determined by the localisation produced described in chapter 3. Delays in the

reporting of incidents may result in the temporal background determined by
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the model being slightly different to the true underlying background, however

we have observed results similar to the literature so whilst this is an area of

uncertainty, we do not believe it has significantly impacted our analysis. We

have discussed that we cannot validate our localisation procedure, however have

gone to lengths to ensure it is based on existing literature and expert knowledge.

This does however mean our locations are somewhat uncertain and incidents

may be placed incorrectly along a link. Since we apply kernel smoothing to

each of the model components, some of the uncertainty is handled directly in

the model construction, however we would like to repeat the analysis using the

true incident locations. As a result of this we do not believe any particular

changes should be made to the visualisations used when presenting results to

decision makers based on these sources of uncertainty. Finally, since events

are rare in absolute terms, collecting enough data to observe the underlying

patterns in incident generation is difficult, however we believe the consistency

we observe when comparing 13 months of data and 3 month subsets indicate

there is sufficient data for our purposes.

Finally, missing data could bias the conclusions we have made, both through

missing incident labels in the data, and missing sensor data making localisation

impossible. There is little we can do regarding potential missing incident labels,

and if there are specific locations or times where incidents are likely to be

missed by operators, our background analysis will be biased against these times

and locations. To avoid this impacting the applicability of our methodology in

transportation planning, we suggest that both traffic operators and decision

makers are involved in discussions of our model results, as the operators will

have the deepest understanding of the potential for missing flags and when

and where they are most likely to occur. This expert knowledge will augment

our results, allowing decision makers to account for it alongside our analysis.

Since we see a reasonably high number of missing speed values for links 63, 64

and 65 in our dataset during the studied period, we expect that the spatial

background at these locations may be underestimated. This constitutes around

6 kilometres of road where we may see a lower contribution to the background

than expected. Indeed, this may somewhat explain why the second peak in

spatial intensity appears more pronounced in later subsets of data, when we

observe less missing data at these locations. This should be directly mentioned

when discussing our results with decision makers, and ideally results should

be compared to future datasets when missing data at these locations is less

prominent to asses any impact on the spatial background.
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Chapter 6

Dynamic and interpretable

hazard-based models of traffic

incident durations

Understanding and predicting the duration or ‘return-to-normal’ time of traffic

incidents is important for system-level management and optimisation of road

transportation networks. Increasing real-time availability of multiple data

sources characterising the state of urban traffic networks, together with advances

in machine learning offer the opportunity for new and improved approaches to

this problem that go beyond static statistical analyses of incident duration. In

this chapter we consider two such improvements: dynamic update of incident

duration predictions as new information about incidents becomes available and

automated interpretation of the factors responsible for these predictions. We use

the collected NTIS incident and time series data to train models that predict the

probability distribution of incident durations, utilising both time-invariant and

time-varying features of the data. The latter allow predictions to be updated as

an incident progresses, and more information becomes available. For dynamic

predictions, time series features are fed into the Match-Net algorithm, a

temporal convolutional hitting-time network, recently developed for dynamical

survival analysis in clinical applications. The predictions are benchmarked

against static regression models for survival analysis and against an established

dynamic technique known as landmarking and found to perform favourably by

several standard comparison measures. To provide interpretability, we utilise

the concept of Shapley values recently developed in the domain of interpretable

artificial intelligence to rank the features most relevant to the model predictions

at different time horizons. For example, the time of day is always a significantly

influential time-invariant feature, whereas the time series features strongly

influence predictions at 5 and 60-minute horizons. Although we focus here on

traffic incidents, the methodology we describe can be applied to many survival
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analysis problems where time series data is to be combined with time-invariant

features.

6.1 Introduction & problem relevance

Traffic congestion can be broadly separated into two types: recurrent and

non-recurrent. Recurrent congestion is simply the result of demand regularly

exceeding capacity on busy sections of road during ‘rush periods’. Non-recurrent

congestion on the other hand is mainly caused by traffic incidents and rare

incidents [44]. To better manage traffic during these incidents, traffic operators

require reliable estimates of how long a particular incident will last.

Whilst there is significant existing work on modelling incident durations,

many fundamental challenges remain that are both of practical interest to traffic

management centres and remain active areas of research in an academic sense.

A review of existing work on this problem is found in [44], where six future

challenges for incident duration prediction are listed. Recalling the discussion

in section 2.3, these are: combining multiple data-sources, time sequential

prediction models, outlier prediction, improvement of prediction methods

through machine learning or alternative frameworks, combining recovery times

and accounting for unobserved factors. Cases by case, we detail how our

work in this chapter addresses some of these challenges. Firstly, we combine

multiple data-sources by using both operator reports, stating incident types,

times and locations along with the high-resolution time series provided by the

sensor network. Whilst we have seen other works directly input speed and flow

measurements to a model, we first remove the seasonality from the series, then

consider manually engineered features (levels and gradients of residual series) as

well as automatically engineered features attained through applying temporal

convolutions across the series. It is unclear a priori if these complex derived

features will offer more explanatory power, however considering residuals from

a baseline is a natural way to view the inputs.

Secondly, we consider time sequential prediction models both from clas-

sic survival modelling and using emerging machine learning methods. This

is done by applying methods from the discipline of healthcare, specifically

‘landmarking’ for classic models, and a sliding window mechanism for machine

learning methods, with more detail given in section 6.4.4. Thirdly, when outlier

prediction is discussed in [44], it is specifically suggested that time-sequential

methods could account for extremely long incidents as it would become clear

as more information was available that a section of road was not recovering in

typical times. Our dynamic approaches should do exactly this, allowing for

some large predictions when the information suggests it. Fourthly, improve-

ment of prediction methods through machine learning was listed as a challenge,
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and this is clearly addressed by how we consider very recent work that has

shown success in other disciplines and apply it to the problem of incident

duration prediction. Further, using these methodologies allow us to consider a

non-parametric form of incident distributions, based on work in [54], which is

again a modelling advancement when applied to this discipline.

Finally, the review stated combining recovery times was a future challenge,

by which it meant modelling when the traffic state on some link would return

to some sense of normal operating conditions. We are explicitly able to measure

this as we have a year of data, recording traffic speed, flow and travel time

every minute. As such, we are able to generate data-driven, robust estimates of

baseline behaviour for each link, varying by time of day and week. Using this,

we can then measure when exactly the traffic state on a link returns to a level

close to what would be normally be expected for that section at that time of

day. This point is of particular interest to practical operators and road users.

We note from the outset that we want to ensure any model we make is of

practical use, meaning as soon as an operator observes an incident, they can

‘turn on’ our algorithm to generate predictions of some form, feeding in new

data as it arrives. We specifically do not want to use any features that would

not be known either when the operator can see the incident location through

a camera, or that are not provided by existing functioning sensors that are

installed on the road. We overview the features used in our models in section

6.4.1, which are ultimately a combination of incident, temporal and spatial

characteristics (time-invariant) along with traffic measurements taken from the

sensor network (time-varying). One could include additional features such as

injury reports as they become available however we do not consider that here.

The rest of this chapter is structured as follows. Firstly, we discuss the data,

perform an initial exploratory analysis of it and detail how we determine data-

driven speed baselines. We then describe the considered modelling approaches,

both for static and dynamic predictions, and results for our dataset. Finally, we

consider what variables are important for the models and end by summarising

our main findings.

Note that throughout this chapter, an ‘event’ is defined as the traffic state

on a section of road returning to a baseline behaviour. As such, when an event

has ‘occurred’ we really mean the traffic state has recovered. This is just a

note of terminology commonly used in the survival analysis literature.

6.2 Data details

For this work, we utilise the link level incident flags and time series from

NTIS discussed in section 3.2.2. We use all data available to us, and detailed

summary statistics and discussions of this dataset can be found in chapter
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3.3.3 and table 3.1. However, we require further data processing to model the

full duration of an incident, which we now discuss.

6.2.1 Establishing a data-driven baseline

As discussed in chapter 2, incident duration consists of 4 distinct phases, and

an open problem highlighted in the literature is modelling the total incident

duration. Like many works in this field, we consider an incident to have ‘started’

when it is identified in the system by the human operator. Our focus is to

model the time from this point until both the incident has been physically

cleared, and traffic behaviour on the road has returned to some sense of ‘normal’

behaviour. We use a speed profile to define this normal behaviour following

the ideas in [49], where they define the ‘total incident duration’ to be the time

from incident start until the speed has recovered to the profile.

How to determine an optimal speed baseline, and ensure it is robust to

outliers whilst retaining important features of the data is an open problem.

However, a natural way to approach it is to develop a seasonal model of the

speed data. We do so by first taking the speed time series and pre-filtering

it by removing the periods impacted by incidents. After, we account for any

potential missing incident flags by further removing any remaining periods

with a severity higher than 0.3. Severity is defined as in chapter 4. We then

take this filtered series and extract the seasonal components, in our case daily

and weekly components, to capture natural variability on the link. Note that

inspection of the data shows no trend.

We try two methods of extracting this seasonality, the first is simple phase

averaging, where for each minute in a week we take the median of all filtered

data at that time of week and consider that to be the seasonal component

of the series. The second is more complex, decomposing the series using the

‘seasonal trend decomposition using loess’ (STL) algorithm, first discussed

in [164]. We see little difference between the two methods, so choose to use

the phase average baseline for simplicity. We define one speed baseline for

each link, establishing a robust profile describing the speed behaviour on a

‘typical week’, and replicate this over the entire data period. It is robust in the

sense that we have pre-filtered the extreme outliers. It also captures the clear

seasonality in the problem and has be applied to new test data without any

difficulty. An example of this profile for a single link, along with the residuals

from it are given in Fig. 6.1a, along with an example incident in Fig. 6.1. We

specifically mark where the NTIS flag was raised, where it was closed, and

where the speed behaviour returned to the baseline.

Using this methodology, we process our dataset such that we have a set

of records with the start time of each incident and the time at which the link
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(a) An example weekly baseline, and re-
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Figure 6.1: The baseline for a single link and an example incident. The baseline
captures clear seasonality in the data. On a much shorter time-scale, we see
a drop in speed in the wake of an NTIS incident flag, and a recovery after a
sustained period of low speed.

returned to normal operating conditions. We include a safety margin in this

baseline to account for any persistent but minor problems, shifting it down by

8 km/hr (≈ 5 mph). A link is considered to have returned to normal when its

speed is above this shifted baseline for at-least 3 consecutive minutes, acting

as a persistence check. We then focus on predicting this return time given a

variety of associated features.

6.3 Exploratory analysis

6.3.1 Incident duration analysis

As discussed in chapter 2, an initial step for many works in this area is to

determine if the observed durations are well modelled by a particular statistical

distribution. Our review of the literature suggested fitting log-normal, log-

logistic, Weibull and generalised F distributions, so we do exactly this and show

our results in Fig. 6.2. Specifically, Fig. 6.2a shows the probability density

functions (PDFs) compared to the data and Fig. 6.2b shows a quantile-quantile

plot. An overview of each distribution considered is given in appendix E.1.

From Fig. 6.2, we see that the Weibull PDF follows the data most closely,

but inspecting the quantiles we see only the generalised F distribution has

reasonable estimates of the extreme values. When we apply a Kolmogorov-

Smirnov with estimated parameters [165], we see no significant evidence that

any of these candidate distributions are statistically valid fits. Note that in
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Figure 6.2: Analysis of various distributions fit to incident duration data across
the M25. Overall, the Weibull distribution fits the bulk of the data most closely,
but the heavy tail is best captured by the generalised F distribution.

[53], a chi-squared test was applied to determine the statical significance of

distributional fits, however doing so requires binning the data, which we avoid

here. These results suggest that to properly describe the data, we may want

to consider more complex distributional representations, either non-parametric

or mixtures of many components. Note also that the tail of the durations

contains around 10 outliers, suggesting very rare incidents where the link was

at a reduced speed for almost an entire day, however the bulk of the incidents

attain a duration of less than 300 minutes.

6.3.2 Incident clustering analysis

We saw throughout the literature that time-invariant features were sometimes

clustered to reveal different sub-populations of incidents, and provided useful

features in modelling. This was particularly evident in [65] and [75]. We

question if these clusters are also reflected in the time series for the data. To

do so, we require a distance metric between time series. A common choice is

dynamic time warping (DTW) distance, discussed in [166] and used in, for

example, [167]. We specifically use the implementation in [168]. The idea is to

stretch or squeeze a pair of time series such that they are as similar as possible.

If one time series has the same shape as another, but is perhaps extended over

a longer time period, they will have a low DTW distance, whereas if two are

fundamentally different, they will have a large distance. We first standardise

all link data by removing the seasonality and then subtracting any remaining

mean and and dividing by the standard deviation, then compute the DTW

distance between all pairs of series that represent a window where an incident

occurred. From this, we attain a distance matrix, and we use hierarchical

agglomerative clustering (HAC) with a ward linkage function [169] to construct
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a dendrogram to visualise distances between elements. The results are shown

in Fig. 6.3, where Fig. 6.3a clusters the data by their time-invariant features

and Fig. 6.3b clusters the data by their time series. From Fig. 6.3, there
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(b) Clustering of incidents using the speed
time series.

Figure 6.3: Clustering Dendrogram using all incidents in the NTIS data. We
see clear structure, perhaps suggesting 4-6 distinct groups exist. Different
distance metrics are used for each clustering, so the scales of the y-axis are
different.

is clear structure in the distance matrix, suggesting that incidents cluster by

both time-invariant features, but also by the observed traffic metrics on the

links. The number of clusters is somewhat subjective, but if we inspect the

average within cluster sum of squared distances, we see that the reduction in

this begins to diminish after around 6 clusters are identified for both clustering

instances. More evidence of this and discussion of the clustering is given in

appendix E.3, along with more examples of time-series from incident windows

in appendix E.2.

6.4 Methodology

Our modelling approach compares multiple methodologies to predict incident

durations. First, we detail the features used for each of our models, then

discuss at length how each of our proposed methodologies are implemented.

A concise summary with all models considered and the main points of note

about them is available in appendix E.4.

6.4.1 Incident features

There is clearly much work in the literature identifying the most influential

features for incidents. However, we are restricted in two ways. The first is
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that at any time-step of a prediction, we only incorporate features that would

be known at that step. The second is that our dataset does not provide

as comprehensive an overview of some features that are likely to be highly

informative of the duration, for example we do not have in-depth injury reports

or arrival time of police forces. The features we do use are separated into

time-invariant and time-varying categories. The time-varying features are

derived from time series of speed, flow and travel-time provided at a 1-minute

resolution, which we take from the link an incident occurs on. We first remove

the seasonality from each of these series by determining ‘typical weeks’ just as

in the case of the speed baseline, then subtracting this from the time series to

generate a set of residual series. We then hand engineer features that may be

of use for some simple dynamic models, computing the gradient of the residuals

at some time t using the previous 5-minutes of data from t, as well as simply

recording the value of the series. These are used as initial features from the

time series as they provide a sensible and intuitive summary of an incident

from the sensor data, however of course more complex features can be derived

from the series. We consider models that do just this by applying temporal

convolutions across the residual series, and compare the modelling results in

section 6.5.

A full list of the time-invariant features used are detailed in table 6.1, and

are a combination of what an operator might know using existing camera and

phone coverage of the SRN. Time-varying features are detailed in table 6.2

for completeness. Whilst not exhaustive, the features in tables 6.1 and 6.2

offer a combination of contextual information in time, space and specific to the

incident. The main omission from our features that might be useful are details

of injuries sustained (if any) by motorists involved in the incident. We did not

record this, and do not know when it would be available to operators, so do not

consider it for our dynamic cases. Weather information and potentially highly

specific geometry information about the road surfaces could also be useful.

Our choice of bins for time of day reflects typical commuting patterns in the

UK. Some authors use day and night time as separation [52], whereas others

account for peak times in their binning [55, 63], as we have. Whilst one could

consider the binning used for time of day as a parameter to tune in the model,

we believe this choice is reasonable for an initial exploration and consistent

with general traffic patterns in our dataset. One could consider if starting

the night time bin slightly later improves model performance, but with the

current value we believe a significant amount of commuter traffic should have

left the motorway at the time the night time bin begins. The same exploration

of optimal encoding could be performed for many of these features, however

our initial choices are consistent with the wider literature and are reasonable

for an initial exploration.
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Feature Variable Type Description

Binned daily
time

Categorical

An indicator of the time of day.
Bins: Morning Rush (6am-9am),
Afternoon (9am-3pm), Evening
Rush (3pm-6pm) and Night
(6pm-6am).

Capacity
reduction

Categorical

The fraction of all lanes that are
blocked due to the incident, binned
into 0-25%, 25-50%, 50-75% and
75-100%.

Incident type Categorical

Specified incident type, coded as
Accident, Vehicle Obstruction, Non-
Vehicle Obstruction, and Abnormal
Traffic.

Link length Continuous
Length of the link the incident
occurred on in metres

Link downstream
atypical?

Binary
Is the link downstream perturbed to
some atypical state at the time
of the incident flag?

Link upstream
atypical?

Binary
Is the link upstream perturbed to
some atypical state at the
time of the incident flag?

Number of
vehicles

Count
How many vehicles are involved in
the incident?

Has cascade? Binary
Did the incident occur immediately
after another incident nearby
in space and time?

Has roadworks? Binary
Did the incident occur on a link
with roadworks active?

Spatial location Categorical

Network is split into 8 sections
(North, North East, East, . . . , North
West) and the incident location is
specified with this encoding

Season Categorical
What season did the incident occur
during?

Vehicle types
involved

Binary

Binary variables indicating if an
incident involved a car, motorcycle,
lorry, trailer and articulated
vehicle.

Weekend indicator Binary
An indicator specifying if an
incident occurred on a weekend.

Table 6.1: Overview of the time-invariant features considered for incident
duration modelling. These would be recorded by an NTIS operator when an
incident is declared in the system and observed on the network. The presence
of roadworks is determined using roadwork flags provided by NTIS, giving
start times, end times and locations of any work performed. A weekend is
defined as all times between (and including) 00:00 on a Saturday to 23:59 on
the following Sunday.
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Feature Variable Type Description

Time series
residual

Continuous
Speed, flow and travel time residuals
from their weekly baselines (used
only in landmarking models)

Gradient of time
series residual

Continuous

Gradient of speed, flow and travel
time residuals from their weekly
baselines (used only in landmarking
models)

Table 6.2: Overview of the time-varying features considered for incident dura-
tion modelling. The time series used to measure the time-varying features are
reported at the link level each minute. We further consider machine learning
models that engineer features from the time series automatically.

6.4.2 Survival analysis methods

We first offer more detail on models in the vein of classic survival analysis

that we will consider for our problem. We remind the reader that, following

the convention in the survival analysis literature, we use the word “event” to

mean the occurrence of the outcome of interest. In our case, this is the end

of a traffic incident as determined by the return of the speed to within some

threshold difference from the the profile value. Survival analysis methods aim

to model some property of the duration distribution. Let fID(t) be the PDF

of incident durations, and FID(t) be the CDF. A key component in survival

analysis is the survival function SID(t), which in our context describes the

probability an incident has not ended by time t, where time is measured from

the start of the incident. Denoting the event time (the incident end time) by

T , we formally write

SID(t) = P (T > t)

= 1− FID(t)

=

∫ ∞
t

fID(x)dx.

(6.1)

Further, many survival analysis methods are concerned with the hazard function

λID(t), describing the instantaneous rate of occurrence of events. One can show

that

λID(t) = lim
dt→0

(
P (t ≤ T < t+ dt | T ≥ t)

dt

)
=
fID(t)

SID(t)
.

(6.2)

In practice, this means that the instantaneous rate of events is equal to the

density of events at that time divided by the probability of surviving to that

time. A final concept of note is the cumulative hazard function ΛID(t), which
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is the integral of the hazard function between time 0 and t, written as

ΛID(t) =

∫ t

0
λID(s)ds. (6.3)

Using these concepts, the first model we apply is a Cox regression model,

reviewed in [170]. Suppose some ‘individual’ i (incident in this application) has

covariate vector xi. A Cox model specifies the hazard function for individual i

as

λIDi(t | xi) = λID0(t)ex
′
iβ (6.4)

where λID0(t) is some baseline hazard at time t, and β is a vector of regression

coefficients. The baseline hazard describes the hazard function for an individual

with covariates all equal to 0, and then it is adjusted for a particular individual

with the exponential of the regression term. In this original formulation, the

covariate effect is constant in time, but the baseline hazard varies in time.

Various methods exist for estimating a baseline hazard function, with more

details found in [171]. In short, the baseline hazard is assumed to be piecewise

constant and determined without any distributional assumptions, allowing the

data to construct an approximation. One can determine β by optimising the

partial likelihood

PL(β) =

N∏
i=1

[
ex
′
iβ∑

j∈R(τi)
ex
′
jβ

]δi
(6.5)

where δi is 1 if the event time is observed and 0 if it is censored and R(τi) is the

set of at-risk individuals at time τi. Here τi represents the recorded incident

duration for incident i. The baseline hazard function can be determined using

the Breslow estimator

λID0(τi) =
δi∑

j∈R(τi)
ex
′
jβ
. (6.6)

We use the implementation of Cox models provided in the R package ‘survival’

[172]. Ties in event times are handled using the ‘Efron’ method, detailed in

[173], altering the likelihood in Eq. (6.5).

The next model we apply is an accelerated failure time model (recall AFT

from the literature review). Such a model supposes relationships between the

survival and hazard functions of the form

sIDi(t) = sID0

(
texiβ

)
, λIDi(t) = λID0

(
texiβ

)
exiβ. (6.7)

Here, sID0(t) and λID0(t) represent assumed baseline survival and hazard

forms, and covariates ‘accelerate’ or ‘decelerate’ the survival time of particular

individuals. Given an assumed form, for example Weibull, log-normal or so on
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with parameters θ, one can then fit this model through maximum likelihood,

optimising

L(θ) =

N∏
i=1

[fID(τi)]
δi sID(τi)

1−δi . (6.8)

A common way to interpret the AFT model is as a regression on the log of the

durations, writing

log(τi) = −x′iβ + εi (6.9)

where εi is noise, with some assumed form. We implement the models using

the R package ‘flexsurv’ detailed in [174].

As Cox and AFT models involve, in some way, a linear regression on

covariates of interest, they are unable to account for potential non-linear,

complex interactions and effects of variables without manual investigation and

specification. One way to account for this is to instead use random survival

forests (recall RSF from the review in chapter 2), which are non-linear models

based on an ensemble of individual tree models. The basic idea is as follows.

Firstly, one takes a training set and generates B bootstrap samples from it,

that is samples with replacement. Each of these samples is used to grow a

decision tree, however randomness is introduced in the growing of the tree, by

selecting a set of potential split variables at any point when the tree needs to

be split. The optimal split variable from this set is chosen to optimise some

survival criterion. One of the most commonly used is the log-rank splitting

rule [70]. The tree is then grown until some condition is met, either a maximal

size or minimum number of cases remaining, and the output at the end of any

branch is the cumulative hazard function for all data-points that are placed

into that branch when passed through the tree. This process is repeated

several times and the collection of trees is referred to as a forest. Each decision

tree is a non-linear mapping from input covariates to the output cumulative

hazard function, and the collection of many trees acts as an ensemble learner.

Ensemble models are known to show promising performance in a range of

tasks, and this in addition to the non-linear decision tree models suggests such

models may improve upon Cox and AFT models for certain datasets. For our

work, we use the R implementation found in [175].

6.4.3 Deep learning methods

Alternative approaches in survival analysis have focused on applying methods

from deep learning to incorporate non-linear covariate effects and behaviours.

One of the first such methods was in [176], where a Cox model is considered, but

the term x′iβ is replaced with g (xi), the output from a neural network given

input xi. Similarly, [80] and [177] extend the Cox model to a neural network

setting, however fundamentally such models are still somewhat restrictive in
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that they assume a form of the hazard function. More recently, [54] suggested

to make far fewer assumptions, and instead train a feed-forward network to

directly model the function FID(t | x) = 1−P (T > t), referred to as the failure

function. To avoid specifying any particular form of this function, the output

space is treated as discrete, defined on times {t1, t2, . . . tmax}. We suppose a

single output value in this discrete space at time tj gives P (tj | xi) and hence

we derive FID(tj | x) as

FID(tj | xi) =

tj∑
t=t1

P (t | xi) . (6.10)

However, we still need to enforce that the output vector actually defines a

discrete probability distribution. A natural way to enforce this is apply a

softmax function on the output layer, normalising the sum of the values to 1

though

σNN (z)j =
ezj∑tmax
k=1 e

zk
. (6.11)

Note that these values will also all be positive. In particular, [54] considered an

application with competing risks, where individuals experienced one of many

possible events. Here we consider a simpler case, having only one event (traffic

state returning to normal), however the methodology remains consistent in

this application. As we are only able to measure if an event has occurred

each minute from our sensor data, the discrete nature of the model is not

restrictive in our context, yet the non-parametric output is appealing as we have

seen in section 6.3.1 that the data does not appear to be generated from any

particular, simple closed form distribution. Such a model for the distribution

also adheres to the increasing complexity considered for distribution modelling

in the literature, as discussed in chapter 2. We adapt our implementation from

the implementation found in [178].

For our implementation, we specify a tmax value equal to the longest

duration, plus a 20% margin as in the original implementation, and define

the output grid at a 1 minute resolution. However doing so leads to a very

large output space for the model, and could potentially lead to over-fitting. To

combat this, we apply dropout after every fully connected layer in the network,

elastic net regularisation on the weights and early stopping based on holdout

data. We further consider if a parametric distribution may be sufficiently

flexible when attached to a neural network model to perform well in the

prediction task. To test this, we build another model as described above, but

remove the softmax output layer and replace with with a mixture distribution

layer. The choice of a mixture distribution rather than a single distribution is

influenced by [52], in which they found success with such distributions. We
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choose our mixture components to be log-normal, avoiding the other specified

distributions for numerical stability. This alters the output size to be 3×Nm

where Nm is the number of mixtures, a hyper-parameter to tune.

A final alternative that compromises between the non-parametric discrete

output and the parametric mixture is to allow the output layer of the network

to define a set of weights, and construct a probability distribution from these

weights using kernel smoothing. As discussed in the previous chapters, this

is a non-parametric way to determine a distribution, however the output has

some degree of smoothness unlike the discrete non-parametric approach. We

write this weighted smoothing estimate as

ν̂(x) =

N∑
i=1

qikω (x−Xi) . (6.12)

Here qi are the weights for each kernel centre, N is the number of kernel centres

and as before kω(x) is the kernel taken to be Gaussian with bandwidth ω, and

the resulting estimate essentially builds a distribution as a weighted smoothed

sum over all kernel centres. All kernels are normalised to avoid the leaking of

mass problem. A point with high weighting will result in a significant amount

of mass near this location, and a large bandwidth will smooth this mass out

to the surrounding area. Applying this to our problem, it allows us to avoid

treating the output space as discrete, and instead we place a kernel centre at

each point in the formerly discrete grid, and treat the neural network output

(including having a softmax applied) as values of the weights qi. Doing this also

enforces some amount of smoothness in the output distribution, determined by

the choice of ω. We choose to use a bandwidth of 3 minutes, which still allows

significant freedom to the distribution.

The actual function proposed in [54] to optimise in order to train the network

is a combination of two loss values, the first accounting for the likelihood of the

observed data and the second enforcing ordering. The likelihood loss function

is given as

L1 = −
N∑
i=1

[
δi log

(
f̂ID(τi | xi)

)
+ (1− δi) log(1− F̂ID(τi | xi))

]
(6.13)

where f̂ID is the PDF (or PMF in the discrete case) implied by the model

output, and F̂ID is the CDF or (cumulative mass function in the discrete case)

implied by the model output, given a particular input xi. This is exactly as

in Eq. (6.8), but taking logs, describing the likelihood of survival data, then

taking the negative as we want to minimise the loss during training. The
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second loss function is written

L2 =
∑
i 6=j

1τi<τjη
(
F̂ (τi | xi), F̂ (τi | xj)

)
η(x, y) = e

−x−y
ησ

(6.14)

where 1τi<τj includes pairs where τi < τj . This loss penalises the incorrect

ordering of pairs in terms of the cumulative probability at their event time. If

an incident i ends before j, then we would expect F̂ (τi | xi) to be larger than

F̂ (τi | xj), and if so this pair is considered correctly ordered. Large deviations

from correct ordering are penalised by η(x, y), with ησ controlling how rapidly

the penalisation increases. The total loss function is then the sum of L1 and L2.

The hyper-parameter grids used for all machine learning models can be found

in appendix E.6, and all models are trained using 100 instances of random

search in these grids.

6.4.4 Dynamic methods

To this point, all models discussed in this section have been static, that is an

individual i has a covariate vector xi, it is passed through some model, and

an estimate of its hazard function, failure function or alternative is attained.

However, in-practice our specific application contains a significant amount of

information that may be useful in determining the duration that is not available

at the start of the incident. Such information in the traffic domain is a police

report made on the scene, recovery information, and specifically of use to us, the

time series provided by the sensors along the road. A significant incident on a

road network could lead to speed drops, flow breakdown and travel time spikes,

all of which will be evident when we inspect the time series as the incident

progresses. However, the recovery of the link to normal operating conditions is

closely tied to these time series, firstly through the level of the speed series

(as this defines how far from a baseline we are), but one could imagine much

richer indicators of traffic state can be mined from them. Recall Fig. 6.1, we

see significant structure in the series, having a linear drop near the start of

the incident, an unstable oscillation period at lower speeds, then a recovery to

normal conditions. Further examples of these series for incident periods can be

found in appendix E.2. A number of methods have been suggested to handle

dynamic predictions in a survival analysis setting, incorporating this data as

it becomes available and conditioning predictions based on this. We overview

this work in the following section.
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Landmarking

With any dynamic prediction approach, the goal is to provide estimates of a

hazard function, survival function or similar at some time t, conditioned on the

fact that the individual has survived to time t and any covariates they provide.

A simple method to do this is known as ‘landmarking’ and is discussed at length

in [179]. We note from the outset that landmarking is similar to truncated

regression discussed in chapter 2, however this terminology is consistent with

the wider survival analysis literature. To carry out landmarking, one first

specifies a set of ‘landmark times’ {tLM1 , tLM2 , . . . , tLMK
} at which we want to

make dynamic predictions. One then chooses some survival model, for example

a Cox model, and the hazard function at landmark time tLMj becomes

λIDi(t | xi(tLMj ), tLMj ) = λID0(t | tLMj )e
xi(tLMj

)′β(tLMj
)

(6.15)

with tLMj ≤ t ≤ tLMj + ∆t, for some ∆t defining how far ahead we are in-

terested in looking. Notice how, compared to Eq. (6.4), the covariate values

xi are replaced with those known at time tLMj and the regression coefficients

and baseline hazard can vary based on landmark time. At each landmark

time, only incidents that are still ongoing are retained, so the model is there-

fore conditioned on surviving up to this landmark time. To account for

potential time-varying effects and avoid misspecification of the regression

parameters, events that occur after tLMj + ∆t are administratively censored,

that is they are marked as censored if they survived past the look-ahead

time of interest. Such a model is simple to implement as one can refine

the dataset at different times to produce dynamic models. However, as the

landmark time grows and less data becomes available, some power may be

lost when drawing statistical conclusions. To implement these models, we

choose landmark times tLM of {0, 15, 30, 45, 60, 120} minutes, and horizons

∆t of {5, 15, 30, 45, 60, 120, 180, 240} minutes and display results throughout

section 6.5. Finally, the landmarking framework can be applied with models

other than a Cox model, so we consider both Cox and RSF landmarking models

as two candidate dynamic prediction models, with RSF offering a non-linear

alternative. The same was done to compare to dynamic models in [180].

MATCH-Net based sliding window model

The models considered so far require us to manually engineer features from the

time series variables to incorporate them as covariates. As discussed, we use

the level and gradient of the residual series, as these will indicate both how

close the link is to reaching standard behaviour, and if the situation is getting

better or worse. However, gradients computed in short windows can be noisy,
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yet computed on large windows may lead to significant delay in identifying

features. Instead, we would like some automated method that, given a time

series, is able to learn meaningful features from them and incorporate them

into predictions. Such a method is proposed in [81], where the authors detail

a sliding window model which they name MATCH-Net. We note that the

algorithm is designed to make dynamic predictions accounting for missing data,

although in our application we do not have missing data so are interested in

the dynamic prediction aspect only. In this model, a window of longitudinal

measurements is fed through a convolutional neural network (CNN), with

the convolutions learning features from the time series that are then used for

prediction of risk in some look-ahead window. The model slides across the

data, shifting the window each time, meaning features are updated as time

progresses and predictions are also shifted forward. It is upon this we base our

sliding window methodology.

Specifically, we take a historical window of length w, and at time t feed

the time series from time t− w to t through a CNN, where the filters in the

CNN aim to derive features from the series without any manual specification

of what they should be. We then concatenate the features output by the CNN

with the time-invariant features, and then pass these through a series of fully

connected layers. In [81], the output layer was a discrete space upon which

a softmax activation was applied, and we again consider this, a mixture of

log-normal distributions and a kernel smoothed output distribution. At each

input time, we consider a window ahead of the the same length as in the static

case, and treat w as a hyper-parameter to optimise. We then optimise the

network by minimising the negative log-likelihood. Finally, since this model

is more complex and has far more parameters than in the former case, we

actually consider the discrete distribution to be piecewise constant for 5 minute

intervals. As a result, the output space decreases in size by 80% without

sacrificing too much freedom. A schematic of the network architecture is given

in Fig. 6.4, with the output layer left intentionally vague to be clear that we

consider multiple different forms of output.

6.5 Results

A point infrequently discussed in the context of traffic incidents, is that there

are multiple criteria that define a ‘good’ survival model, and multiple ways to

measure this in the dynamic setting. We discuss some of these ways in the text

below. We note that elastic net regularisation is applied to all deep learning

methods, and the optimal Cox and AFT models are selected though inspection

of sample-size adjusted Akaike information criterion (AIC) to avoid over-fitting.

The data is split into 70% training, 30% testing sets, with performance metrics
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Window of 
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Time-invariant 
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Concatenate Fully Connected Output Layer

Figure 6.4: Network schematic for the sliding window model. We pass filters
across the residual time series to engineer features, then concatenate these with
the time-invariant features to create a feature vector, which is passed through
a series of fully connected layers, and some output layer is applied to the result.
The example shown is for a single traffic incident being passed through the
network. The number of boxes for features is not to scale. The window of time
series represents 3 variables and a window size of 7 in this simple example.
The different time series variables are considered channels in the CNN context.

shown being computed only on the test set. The training data is further split,

using 30% of it as hold-out data to judge when to stop training the neural

networks.

6.5.1 Discriminative performance - concordance index

The concordance index (C-index) has different definitions in the static and

dynamic setting. In the static setting, we write it as

Cindex = P
(
F̂ID(τi | xi) > F̂ID(τi | xj) | τi < τj

)
. (6.16)

Eq. (6.16) is the so called ‘time dependent’ definition used in [54], accounting

for the fact that we care about the entire function F̂ID and not a single point in

the output distribution. In the dynamic setting, it is written given prediction

time t and evaluation time ∆t as

Cindex(t,∆t) = P
(
F̂ID(t+ ∆t | xi(t)) > F̂ID(t+ ∆t | xj(t)) | τi < τj , τi ≤ t+ ∆t

)
(6.17)

which is the definition given in [180]. The only difference here is now we are

specifically computing the C-index at a given prediction time and horizon

rather than over the entire dataset. In computing this, we are taking the F̂ID

values at some time t + ∆t and compare pairs where an incident i actually

ended in the horizon.

As described in [180], such a measure compares the ordering of pairs. If

individual i experienced an event before individual j, then we would expect a

good model to correctly assign more chance of an event to individual i than j.

A model with perfect C-index, given N traffic incidents, will perfectly predict

the order in which the incidents will end. This idea stems from viewing survival

analysis as a ranking problem, and since we compare the CDF for two incidents,

we see that it incorporates the entire history from a prediction time up to an
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evaluation time, not just a single point measurement. A random model will

achieve a C-index on average of 0.5, and a perfect model will attain a value of

1.0, so these are reference values to consider when interpreting this measure.

We formally compute Eq. (6.17) given our dataset by evaluating

Cindex(t,∆t) ≈
∑

i 6=j Ψi,j · 1F̂ (t+∆t | xi(t))>F̂ (t+∆t | xj(t))∑
i 6=j Ψi,j

Ψi,j = 1τi<τj , τi≤t+∆t

(6.18)

where we simply evaluate empirically how often the ordering is correct con-

ditioned on the requirements. The same is true for the static case. If two

incidents happen to give exactly the same CDF values when evaluating, we

take the convention of adding 0.5 to the total rather than 0 or 1, following

[181].

6.5.2 Calibration performance - Brier score

Brier score measures how well calibrated a model is, and compares the binary

label (1 if an event has happened at some time, 0 otherwise) with the model

prediction at that time. Formally, we write

BS(t,∆t) =
1

N

N∑
i=1

(
1τi≤t+∆t − F̂ID(t+ ∆t | xi(t))

)2
(6.19)

where we sum over all incidents still active at time t, and ask did incident i end

by t+ ∆t. If it did, then we would expect a good model to have a high CDF

value at this point, with 1 being perfect (i.e. predicting the incident would

end by t + ∆t for certain). On the other hand, if the incident did not end

before t+ ∆t, then we would expect a low CDF value. This definition is that

proposed in the supplementary material of [180]. In a sense, this measures the

mean square error of a probabilistic forecast of a binary outcome. In terms of

reference values, a model that outputs a survival function value equal to 0.5 at

a particular time will have a Brier score of 0.25, so lower values than this are

desirable, and a perfect model will achieve a score of 0.

6.5.3 Point-wise performance - mean absolute percentage er-

ror

Whilst C-index and Brier score are used throughout the survival literature, we

also note that mean absolute percentage error (MAPE) is used throughout the

traffic literature and has some practical relevance to our application. Since

we have no censoring, we know the true duration for each traffic incident.

As such, we can evaluate for every data-point, what is the error between a
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point-prediction and the true duration. A natural choice for such a point

prediction is the median of each models output distribution, [83, 182, 183]

as the distribution of traffic incident durations is known to be heavy tailed.

We can then ask what is the point-wise error for each model. Note that,

C-index and Brier score asked about the accuracy of the output distribution,

whereas this asks about a single point taken from the distribution. Highways

England currently states that NTIS are measured on their prediction of the

‘likely delay associated with an event’. Specifically, NTIS is scored as follows.

One aggregates all incidents that have a predicted return to profile time made

at their half way point and lasted over 1 hour. The MAPE between these

predictions at the half-way point and the true values is computed. The target

for NTIS predictions is for this to be below 35%, and it is stated in [184] that

the current value in practice is 35.49%.

There is of course a problem with this criterion, in that a ‘perfect’ model

by this standard would just always predict double the current duration, which

would optimise the prediction at the mid-point, but be of no practical use aside

from this. Regardless, this rough measure allows us to frame our work in the

context of the practical considerations traffic operators are currently working

towards.

6.5.4 Static prediction models

We begin by considering how a range of models perform on the data in a

static sense. For this, we use only the time-invariant covariate information

available at the start of the incident to fit the models. We apply each of the

discussed models, and show results for all metrics in table 6.3. Generally,

Model
C-

Index

Point
-Wise
MAPE

AFT (LN) 0.624 40.677

AFT (W) 0.624 38.543

Cox 0.626 38.545

RSF 0.676 39.961

NN (LN) 0.666 41.401

NN (NP) 0.647 37.416

NN (Kernel) 0.659 39.332

Brier Score

Prediction Horizon (minutes)
Mean

5 15 30 45 60 120 180 240

0.000 0.052 0.110 0.146 0.185 0.231 0.168 0.102 0.124

0.000 0.052 0.113 0.148 0.186 0.226 0.164 0.100 0.124

0.000 0.052 0.113 0.149 0.186 0.226 0.164 0.100 0.124

0.000 0.048 0.103 0.134 0.167 0.210 0.149 0.093 0.113

0.000 0.049 0.106 0.141 0.178 0.221 0.157 0.094 0.118

0.000 0.050 0.108 0.142 0.179 0.223 0.163 0.101 0.121

0.000 0.049 0.104 0.137 0.173 0.218 0.157 0.097 0.117

Table 6.3: Performance measures for models in a static setting, where we make
only a single prediction per incident using a set of static covariates. Optimal
values are highlighted in bold. AFT (LN) - An accelerated failure time model
assuming a log-normal distribution of incident durations. AFT (W) - An
accelerated failure time model assuming a Weibull distribution of incident
durations. Cox - A linear Cox regression model. RSF - Random survival forest.
NN (LN) - A feed-forward neural network model with an output layer that
parametrises a mixture of log-normal distributions. NN (NP) - A feed-forward
neural network model with a non-parametric output layer. NN (Kernel) - A
feed-forward neural network with a kernel smoothed output.

130



we see the ordering of incident durations, measured by the C-index, attains

values between 0.624 and 0.676. Recalling that a random model will achieve

on average a C-index of 0.5, we see all models are informative, and the biggest

gains in C-index are seen when we go from the linear to non-linear modelling

frameworks. The RSF achieves the optimal C-index, followed by the neural

network with a mixture of log-normals.

In terms of point-wise error, we do not make predictions at the half-way

point of incidents, we only make them at the start of an incident in this setting.

Doing so and measuring for all incidents longer than 60 minutes, we see that all

models achieve a MAPE between 37% and 41%, with the best model being the

non-parametric neural network. No model achieves an MAPE of less than 35%.

Finally, the optimal Brier score is always achieved by the RSF method, with

the most noticeable differences observed at horizons of 120 and 180 minutes.

There is not much to distinguish many of these models, and ultimately one

might suggest that in a static setting, a RSF offers a good compromise between

performance measured by C-index, Brier score and MAPE, however if MAPE

is the single desired criterion, a non-parametric neural network model would

be preferred. It is likely that we would need more features that distinguish

incident durations, for example injury details, police and recovery information

and weather details to significantly improve these models, rather than more

parameter searches.

6.5.5 Dynamic prediction models

We now consider the models in a dynamic setting, that is we use landmarking

or sliding windows to provide more details for the model and condition our

predictions on surviving to particular times. We now consider C-index as

defined in Eq. (6.18), and show results for it at various prediction times and

horizons in table 6.4. We see that initially, the RSF achieves optimal C-

index across all horizons when predicting at t = 0. As time of prediction

increases, we see a strong favouring of neural network models, specifically the

sliding window model with a kernel smoothed output achieves the optimal

C-index in most cases. There is a systematic preference for the non-parametric

sliding window models compared to others at all prediction horizons when

considering prediction times of 30 minutes or greater. Even at a prediction

time of 15 minutes, the non-parametric sliding window models are preferred

when considering 180 and 240 minute horizons. As a general summary of table

6.4, one should see that out of all 47 prediction time, prediction horizon pairs

considered, the optimal model in terms of C-index is the RSF roughly 36% of

the time, the sliding window neural network with kernel output 43% of the

time, and the sliding window neural network with non-parametric output the
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remainder of times.

Averaged over all horizons, we see that one would prefer the RSF model

when initially making predictions, but all prediction times after 15 minutes

favour the kernel smoothed output, with the non-parametric neural network

often similar in performance. The neural network model parametrising a

mixture of log-normals achieved the highest C-index of the neural network

models in the static case, following the RSF model, however it never wins in

the dynamic case, suggesting that when we provide the time-varying features,

the RSF makes better use of them initially, and then the other neural network

models make better use of them as time-passes. All models achieve C-index

values higher than the reference value of 0.5, across all prediction times and

horizons showing their predictions remain informative.

One point of note from table 6.4 is that the Cox model has quite poor

C-index compared to the alternatives considered when predicting at a horizon

of 5 minutes. We believe this is due to the amount of administrative censoring

introduced at such a short horizon. If we look to [185], an assumption of the

Cox landmarking model is that there is not too much censoring at the horizon

time. For a very short horizon of 5 minutes, almost all incidents last longer

than this, and hence, when we are applying our administrative censoring, this

assumption becomes invalid, and we suspect this is why the Cox model has

poor results at this horizon.

We further show the Brier scores for each model in table 6.5. Again, we

observe that initially, the random survival forest achieves optimal scores across

all horizons, however as time of prediction increases we gradually see the sliding

window neural network with kernel smoothed output start to achieve better

Brier scores for short prediction horizons. This is again systematic, and we

see for a prediction time of 120 minutes that the optimal model is the sliding

window neural network with kernel smoothed output at horizons up to and

including 45 minutes, but for a prediction time of 45 minutes it is only optimal

for horizons up to and including 15 minutes. One could postulate that initially,

time series provide less useful information than the fixed features, that is at the

very start of an incident, we see only the state of the link before the incident,

which might have been reasonably seasonal. However, as time progresses, we

will attain more informative features specific to single incidents, and in this

case the fact the sliding window method engineers its own features, rather than

the noisy gradient and level values we manually input to the RSF model, may

prove more useful. Despite this, if a duration is very long, say 4 hours, and

make a prediction 60 minutes into it, how much do we truly expect to gain

from inspecting the time series so far? It may be that there is just simply no

sign of recovery and all we can really conclude is that speed has been slow for

a long time, and shows no other clear features.

132



Prediction Time
Model

Prediction Horizon (minutes) Mean Over
(minutes) 5 15 30 45 60 120 180 240 Horizons

t = 0

Cox - 0.851 0.799 0.754 0.712 0.654 0.642 0.638 0.721
RSF - 0.870 0.832 0.803 0.774 0.698 0.667 0.651 0.756

SW (LN) - 0.766 0.709 0.673 0.650 0.606 0.599 0.597 0.657
SW (NP) - 0.798 0.743 0.705 0.682 0.642 0.637 0.634 0.692

SW (Kernel) - 0.823 0.757 0.717 0.689 0.641 0.634 0.630 0.699

t = 15

Cox 0.513 0.864 0.784 0.732 0.698 0.648 0.639 0.637 0.689
RSF 0.956 0.893 0.826 0.788 0.751 0.686 0.662 0.653 0.777

SW (LN) 0.927 0.851 0.773 0.732 0.694 0.644 0.633 0.632 0.736
SW (NP) 0.947 0.884 0.811 0.772 0.731 0.678 0.669 0.666 0.770

SW (Kernel) 0.953 0.891 0.815 0.774 0.733 0.679 0.667 0.662 0.772

t = 30

Cox 0.529 0.861 0.770 0.731 0.702 0.662 0.652 0.648 0.664
RSF 0.921 0.880 0.795 0.760 0.738 0.699 0.676 0.662 0.766

SW (LN) 0.947 0.867 0.774 0.735 0.707 0.662 0.653 0.653 0.750
SW (NP) 0.960 0.905 0.803 0.761 0.733 0.689 0.681 0.677 0.776

SW (Kernel) 0.971 0.907 0.810 0.768 0.739 0.691 0.679 0.675 0.780

t = 45

Cox 0.504 0.859 0.796 0.764 0.724 0.679 0.667 0.661 0.707
RSF 0.970 0.884 0.817 0.787 0.757 0.706 0.684 0.654 0.783

SW (LN) 0.950 0.852 0.778 0.750 0.718 0.673 0.663 0.662 0.756
SW (NP) 0.967 0.880 0.813 0.784 0.749 0.703 0.692 0.688 0.785

SW (Kernel) 0.974 0.893 0.821 0.787 0.750 0.701 0.687 0.683 0.787

t = 60

Cox 0.578 0.872 0.796 0.755 0.723 0.684 0.670 0.668 0.718
RSF 0.954 0.887 0.811 0.782 0.742 0.700 0.674 0.654 0.776

SW (LN) 0.928 0.871 0.796 0.759 0.726 0.681 0.672 0.671 0.763
SW (NP) 0.953 0.903 0.830 0.787 0.755 0.711 0.702 0.699 0.793

SW (Kernel) 0.969 0.912 0.834 0.793 0.758 0.712 0.701 0.698 0.797

t = 120

Cox 0.522 0.850 0.804 0.781 0.750 0.706 0.692 0.683 0.724
RSF 0.961 0.889 0.839 0.807 0.777 0.731 0.697 0.688 0.799

SW (LN) 0.944 0.878 0.822 0.799 0.769 0.718 0.715 0.713 0.795
SW (NP) 0.968 0.896 0.852 0.824 0.791 0.744 0.739 0.735 0.819

SW (Kernel) 0.986 0.904 0.853 0.825 0.793 0.743 0.737 0.732 0.822

Table 6.4: C-Index values for considered models, across a range of different
prediction times (when predications are made) and prediction horizons (at
what time after the prediction time they are evaluated). Higher values show a
better model. Optimal values for each prediction time - prediction horizon pair
are shown in bold. Cox - A linear Cox landmarking model. RSF - Random
survival forest. SW (LN) - Sliding window with a log-normal mixture output.
SW (NP) - Sliding window with a non-parametric output. SW (Kernel) -
Sliding window with a kernel smoothed output.

Another point of note when considering Brier score is that a RSF model

appeared to perform favourably compared to a non-parametric neural network

model in existing work. If we look to the supplementary material of [180], we

see that a neural network with a non-parametric output did not consistently

improve upon the Brier score achieved by a RSF model (see table VI in the

supplementary material of the cited reference). It is unclear therefore if there is

some fundamental reason for this in the modelling framework, as two entirely

different datasets and applications appear to have observed the same behaviour.

Despite this, all models generally achieve Brier scores below the reference value

of 0.25.

Finally, we show the error in a point prediction made at various times

throughout incidents in table 6.6. For reference we also include the value

achieved by the fixed model to get an idea of what we are gaining from making

dynamic predictions. From table 6.6, we see that when making a prediction

after 30% of the duration of an incident has passed, we can expect between 30%
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Prediction Time
Model

Prediction Horizon (minutes) Mean Over
(minutes) 5 15 30 45 60 120 180 240 Horizons

t = 0

Cox 0.000 0.046 0.096 0.130 0.171 0.224 0.164 0.099 0.116
RSF 0.000 0.041 0.089 0.120 0.154 0.205 0.149 0.091 0.106

SW (LN) 0.006 0.096 0.197 0.260 0.315 0.317 0.204 0.115 0.189
SW (NP) 0.007 0.082 0.160 0.213 0.262 0.290 0.195 0.113 0.165

SW (Kernel) 0.006 0.079 0.159 0.211 0.261 0.292 0.197 0.114 0.165

t = 15

Cox 0.027 0.062 0.113 0.152 0.192 0.218 0.149 0.088 0.125
RSF 0.018 0.059 0.107 0.141 0.177 0.204 0.138 0.083 0.116

SW (LN) 0.020 0.077 0.157 0.212 0.266 0.280 0.176 0.097 0.161
SW (NP) 0.019 0.069 0.134 0.180 0.230 0.259 0.170 0.096 0.145

SW (Kernel) 0.018 0.070 0.136 0.181 0.230 0.259 0.171 0.097 0.145

t = 30

Cox 0.025 0.068 0.127 0.165 0.198 0.204 0.138 0.082 0.126
RSF 0.020 0.064 0.121 0.157 0.186 0.190 0.128 0.076 0.118

SW (LN) 0.019 0.074 0.154 0.204 0.250 0.255 0.161 0.090 0.151
SW (NP) 0.018 0.067 0.138 0.183 0.223 0.236 0.155 0.088 0.139

SW (Kernel) 0.017 0.066 0.137 0.180 0.218 0.235 0.156 0.089 0.137

t = 45

Cox 0.028 0.073 0.131 0.162 0.196 0.194 0.132 0.082 0.125
RSF 0.018 0.070 0.125 0.153 0.185 0.185 0.125 0.077 0.117

SW (LN) 0.021 0.082 0.157 0.201 0.245 0.239 0.154 0.090 0.149
SW (NP) 0.019 0.074 0.138 0.176 0.217 0.221 0.148 0.089 0.135

SW (Kernel) 0.016 0.070 0.136 0.173 0.213 0.219 0.149 0.089 0.133

t = 60

Cox 0.034 0.083 0.139 0.168 0.196 0.185 0.129 0.083 0.127
RSF 0.023 0.079 0.135 0.161 0.190 0.177 0.119 0.077 0.120

SW (LN) 0.025 0.082 0.154 0.199 0.240 0.228 0.145 0.090 0.145
SW (NP) 0.023 0.073 0.136 0.176 0.212 0.210 0.139 0.089 0.132

SW (Kernel) 0.019 0.070 0.135 0.172 0.208 0.208 0.140 0.090 0.130

t = 120

Cox 0.034 0.090 0.146 0.168 0.184 0.169 0.117 0.083 0.124
RSF 0.024 0.084 0.132 0.157 0.174 0.159 0.109 0.078 0.115

SW (LN) 0.026 0.087 0.148 0.179 0.213 0.199 0.137 0.091 0.135
SW (NP) 0.023 0.082 0.128 0.157 0.189 0.183 0.130 0.089 0.123

SW (Kernel) 0.018 0.076 0.128 0.155 0.186 0.183 0.132 0.090 0.121

Table 6.5: Brier scores for considered models, across a range of different
prediction times (when predications are made) and prediction horizons (at
what time after the prediction time they are evaluated). Lower values indicate
a better model. Optimal values for each prediction time - prediction horizon
pair are shown in bold. All keys are as defined in table 6.4.

and 33% MAPE in that prediction. This is around a 5-10% improvement from

the prediction made from the corresponding static models at the start of the

incident. If we make a prediction half way through an incident, we see that the

neural network models all now achieve quite a significantly better MAPE value

than the landmarking models, with an optimal MAPE of 21.6% achieved by the

mixture of log-normals model, followed by 22% for the non-parametric model.

The discrepancy between the sliding window and landmarking models grows as

we make predictions later and later, with the sliding window models achieving

an MAPE of between 16.5% and 17.3% compared to a value of 26.5% for the

optimal landmarking model (RSF). Additionally, the prediction error shows

very little improvement moving from the 50th to 70th and 90th percentiles of

an incidents duration for the RSF model, and actually increases for the Cox

model, suggesting that they are not sufficiently capturing signs in the time

series that indicate the end is near. A key point of practical interest is that

with the dynamic models, we do indeed achieve a MAPE value below 35% as

desired by Highways England. Of course, we would need to attain data for all

incidents across the UK to truly ensure that we are able to maintain this on a
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wider scale, but as far as we are able to measure we achieve what would be

considered industrially satisfactory error rates with the dynamic models.

Whilst the landmarking models appear to plateau in point-wise performance

here, we note that it is partly due to the fact that very few incidents remain

active at large landmarking times, and as a result the model is fit to smaller

subsets of data and prediction performance is limited. We visualise how the

average error evolves minute by minute in appendix E.10, which shows this.

The plots within appendix E.10 are in general agreement with those one can

find in other dynamic traffic incident prediction work, for example figure 2 in

[83].

Model
MAPE

Static Model

MAPE Dynamic Model
Percentile Into Incident Prediction Made at

30th 50th 70th 90th

Cox 38.545 32.513 31.002 32.180 35.923

RSF 41.607 30.286 27.707 26.478 25.319

SW (LN) 37.416 32.839 21.576 16.506 11.319

SW (NP) 41.401 31.660 21.998 17.069 10.399

SW (Kernel) 39.332 31.056 22.432 17.319 10.040

Table 6.6: MAPE at various points for incidents, all of which are at-least 60
minutes long. The optimal model for each prediction point is shown in bold.
The point prediction is generated as the median of the output distribution
from each model. All keys are as defined in table 6.4.

6.5.6 Do temporal convolutions improve predictions?

As we have applied methods from [81] to formulate a sliding window model,

we have naturally included temporal convolutions to generate information

from the time series. However, a valid question one could ask is are these

required in our application, or do the simple levels and gradients retain enough

information to make informative predictions? In essence, we are asking is

the improvement observed in some metrics for the neural networks due to

the non-linear feed-forward structure, or do the temporal convolutions also

contribute? We test this by implementing a model without the CNN structure

and instead feeding an input vector consisting of the time-invariant features and

the level and gradients computed as in the landmarking case to a feed-forward

network. We see that such a model achieves a worse Brier score and C-index

at every considered prediction time and horizon compared to the equivalent

sliding window model, and a worse error at the half way point of an incident,

so the temporal convolutions do indeed appear to be an informative feature

engineering method for our data. Interested readers can find the results for

this in appendix E.7.
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6.6 Variable importance

Variable importance has been studied for static models of incident duration

many times in the literature, however here we consider variable importance

in both our novel dataset and in the dynamic sense. We choose to evaluate

variable importance for two dynamic models: RSF and the sliding window

non-parametric neural network. Doing so for the non-parametric model makes

interpretation of impacts simpler, as the output neurons represent the actual

distribution at particular times, rather than some distribution parameters as

in the log-normal case or weights as in the kernel case.

6.6.1 Random survival forest variable importance

As RSF are adaptations of random forest methods, standard variable import-

ance metrics are well explored and readily implemented. Recall that trees are

trained based on a bootstrap sampled dataset, meaning a set of observations

remains for each tree that are ‘out of bag’ which will be used for measuring

variable importance. Given a trained forest and some variable of interest x, we

drop the out of bag data for each tree down the tree and whenever a split on

x is encountered, we assign a daughter node at random instead of evaluating

based on the value of x. We then compute the estimates from the model doing

this, and the variable importance for variable x is the difference in prediction

error between the original ensemble and the new ensemble ignoring the value

of x. A large variable importance suggests that a variable is highly useful in

accurately predicting the output. We compute the importance for all features,

then scale the importance values by diving by the largest. This yields variable

importance on a scale from 0 to 1 and we plot particularly important variables

in Fig. 6.5.

From Fig. 6.5, we see that the speed value is the most important variable

for horizons of 5, 30 and 60 minutes. At a horizon of 180 minutes, the most

important variable becomes the time of day. This makes intuitive sense, as

we expect the time-varying features to provide more useful information about

the immediate future rather than times far into the future. Similar reasoning

applies to the importance of travel time and flow. It is interesting to note

that flow is often less important than other, time-invariant features, across all

horizons. Flow is the tenth most important variable at a horizon of 5 minutes,

seventh most important at horizons of 30 and 60 minutes, and fourth at a

horizon of 180 minutes. We expect speed to be important as this directly

defines what a normal state is, however clearly other features for an incident

are more useful in predicting durations than the flow time series. The gradients

are always less important than the residual values themselves, which may be

a consequence of noise when estimating them, or the fact that the we can
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(a) h = 5.
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(b) h = 30.
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(c) h = 60.
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(d) h = 180.

Figure 6.5: Variable importance, as measured for the random survival forest
model, for a subset of the important variables. Each plot is a different prediction
horizon, all shown are at a prediction time of t = 30. The importance at each
prediction horizon has been normalised such that the largest importance at
any time is 1, and all others are relative to this. The rank of each variable at a
given time is written beside each bar. Due to the scaling, one should focus on
the ranking and relative difference between bars in each plot.

see short term rises and falls in the traffic variables that do not indicate the

incident is actually near ending, but rather traffic state is just unstable as in

Fig. 6.1. The location of an incident is always somewhat important, ranking

between sixth and fourth across all horizons. This suggests clear heterogeneity

in durations by location. Note that with a location and length, a model should

be able to identify specific single links in the network, so predictions can be

specific to these if it improves performance. However, the importance of length

decays over horizons, and is always less than the location itself, so the coarse

segmentation we have introduced for location seems more important than the

specific link an incident occurs on. We see that the season becomes increasingly

important as horizon increases. The type of incident is generally of medium

importance, being the sixth, fifth, eighth and sixth most important variable

going from horizons of 5, 30, 60 and 180 minutes respectively. This suggests

that it is always somewhat important to know what type of incident the network

is experiencing, however other factors can be more useful for predictions, such
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as location, time of day and the speed values. Finally, we might have expected

more influence from the weekday indicator, however this is between the tenth

and twelfth most important variable across all horizons for this specific model.

6.6.2 Neural network variable importance

Recently, there has been a significant effort to improve the interpretability

of prediction models, both those involving neural networks and more general

frameworks. As discussed in section 2.5.3, an emerging unified approach to

this is to consider SHAP values, seeing how features shift a model output up

or down from some reference value. It is upon this that we base our feature

importance exploration for the neural network model. We compute the SHAP

values for the network, for the time-invariant features and the features output

from the CNN deriving information from the time series. Recall that computing

the SHAP values for a neural network requires a background dataset, which we

set to the training data, and we explain a random sample of 1000 instances from

the hold-out set due to computational demand. We use the implementation1

provided by the original authors of [131], specifically the permutation method

for computational speed and the incorporation of structured inputs. A more

extensive discussion of SHAP values for neural networks is given in appendix

A.

A point of note for this method of feature importance is that we are

computing values for each output neuron in the network that correspond

to particular horizons, and how this output value changes, not how some

performance metric changes. As a result, we can question if different features

have more or less impact on different parts of the output distribution for a

single input data-point. First, we consider raw feature importance, that is does

a variable have a large or small impact the output of the model at particular

horizons, showing results in Fig. 6.6. From Fig. 6.6, we see that for very short

horizons (5 minutes) there are a large number of time series features with high

importance. This makes intuitive sense, as the time series are most likely going

to be highly informative of short-term behaviour. After the time series features,

we see the time of day, location and incident type are the features with the

highest impact on the model output. Moving to a horizon of 30 minutes, we

see the time series features become less important, and location and time of

day dominate the other features. Note that at the 5 minute horizon, there

were lots of features with quite high importance, showing quite a number

influenced the model output, but at a horizon of 30 minutes we see two with

large importance and many others with far less. At a horizon of 60 minutes, we

again see the importance of the time series features increase, but the time of

1Implementation and examples given in https://github.com/slundberg/shap
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(d) h = 180.

Figure 6.6: Variable importance, as measured for the sliding window neural
network model, for a subset of the important variables. Each plot is a different
prediction horizon, all shown are at a prediction time of t = 30. The importance
at each prediction time is computed by taking the average of the absolute SHAP
values for each feature across all query instances, and then has been normalised
such that the largest importance at any horizon is 1, and all others are relative
to this. The rank of each variable at a given time is written beside each bar.
Due to the scaling, one should focus on the the ranking and relative difference
between bars in each plot. TSF stands for time series feature, extracted by
passing temporal convolutions across the data. As SHAP values are linear,
one-hot encoded variables such as time of day have had their corresponding φi
values summed, yielding a single result for that feature.

day and location are still the two most important of the time-invariant features,

ranking first and fifth respectively. One might question why the time series

resurge in importance here, and we explore this further in Fig. 6.7 and the

analysis of it. At a long horizon of 180 minutes, the time of day is by far the

most important feature, and the location is second. A natural interpretation of

this might be that for long horizons into the future, knowing if an incident will

overlap with rush hour or go into lunch time or the night is a good indication

of if we believe it might last a long time.

Having inspected the magnitude of SHAP values, we now question how do

actual feature values shift the network output, either increasing or decreasing

it from some reference output φ0. Visualising this is more complex due to
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Figure 6.7: SHAP values for various features, plotted to visualise how feature
values shift the output of the network at particular horizons. One should read
these plots as follows. The y-axis shows model features, where categorical ones
have been split into their one-hot encodings. The x-axis displays the raw SHAP
values, showing how a particular feature shifts the model output up or down.
Feature values are indicated by colour, with high binary features indicating
‘yes’. Where many data-points had similar SHAP values for the same feature,
points are expanded outwards in the y-axis, so a large vertical strip of points
for a single feature indicates a high density of points at that SHAP value.
Horizon is indicated by h in each sub-caption, corresponding to particular
output nodes of the network. Time-varying and time-invariant features are
split to aid readability. Pushing the model output ‘up’ (positive SHAP value)
indicates increasing the probability mass at this horizon. TSF stands for time
series feature, extracted by passing temporal convolutions across the data.
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the fact that we want to plot the impact of various features, the value they

attain, and if this shifted the prediction up or down. A standard way to do

this for SHAP values is to make a so called ‘beeswarm’ plot, in which each

data-instance is plotted as a single dot, once per each feature. Examples of

making such plots for our dataset, and descriptions of how to read them are

given in Fig. 6.7.

Whilst there is a large amount of information in Fig. 6.7, we breakdown

the main points here. Firstly, we see that at a horizon of 5 minutes (Figs.

6.7a, 6.7b), there is clear coherence in the features, shown by there not being

a random assortment of colours across single features. Earlier, we saw time

series features, the time of day and location were influential factors at this

horizon. Considering the time of day more finely, we see from Fig. 6.7a that

when incidents are in the morning rush period, the value of the PMF at this

time is decreased, suggesting the model has learnt it is unlikely incidents at this

time of day will end very quickly. Inspecting horizons of 30 and 60 minutes, in

Figs. 6.7c, 6.7e, we see that that when incidents occur in the morning rush,

this increases the output values at these horizons. Finally, there appears to be

more complex behaviour at a horizon of 180 minutes, as incidents occurring in

the morning rush sometimes increase, and sometimes decrease the output at

this time.

If we turn instead to view how a location impacts the result, for example

inspecting the SHAP values for ‘West’ we see that attaining a value of 1 here

decreases the model output at a horizon of 5 minutes (Fig. 6.7a), increases

it at horizons of 30 and 60 minutes (Figs. 6.7c, 6.7e) and then decreases it

again at a horizon of 180 minutes (Fig. 6.7g). Note however that since some

of these features are in-fact categorical and have been one-hot encoded for

use with a neural network, care must be taken in interpreting the impact of

such values. In doing this analysis, we attain a SHAP value for each feature,

however every data-point has as single location value equal to 1, and the rest

equal to 0. So each location feature here will alter the neural network output,

but the total impact of a data-point having a particular location will be the

sum of the SHAP values for that data-point over all encoded categories. As

such, we can better visualise the impact of categorical variables, for example

location, by first summing the SHAP values for a data-point for all encoded

groups of a particular feature, then visualising how the overall feature impacted

predictions. We do so in Fig. 6.8.

The more intuitive description offered in Fig. 6.8 allows one to see the

overall impact of the location variable. An example interpretation one could

read from Fig. 6.8 is: for data-points where the spatial location was ‘East’,

the overall impact of having this location on the model output was an increase

in the output at horizons of 5 and 30 minutes, and a decrease at 60 and 180
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Figure 6.8: SHAP values for the location feature. In each plot, we have summed
the SHAP values for each one-hot encoded value, and then only plotted the
resulting value in the row corresponding to each data-points true feature value.
This shows the overall impact of the location feature, and allows one to view
this impact separately for each value it attains.

minutes. From this more refined view, we can see that incidents with a location

of ‘North East’ are quite varied, as their location sometimes increases and

sometimes decreases the model output across all horizons. Incidents with a

location of ‘North’ typically have the output increased at horizons of 5 and

30 minutes (Figs. 6.8a, 6.8b) and then decreased at horizons of 60 and 180

minutes (Figs. 6.8c, 6.8d). This suggests that, for example, the model has

learnt incidents in the north are of shorter duration than incidents in the

south, however this can then be adjusted further by other observed features.

Locations can be compared in this way for all possible pairs.

A further question of interpretability relates to the features engineered

from the time series: what effect do these have on the model? We previously

saw that they were highly important at 5 and 60 minute horizons, but we

can now use Fig. 6.7 to consider what impact they are having. If we start

with a horizon of 5 minutes, we see from Fig. 6.7b that when the time series

features attain a high value, the model output at this horizon is increased. We

do not have an interpretable explanation of these features, but we see that
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they can provide quite significant shifts up in the output if their values are

high. Moving to a horizon of 30 minutes, we see from Fig. 6.7d that the series

features become less coherent. Some features attain a high value and increase

the output, others decrease it, and the overall impact is small for many features

compared to the impact of the time-invariant features. This does indicate

that the features learnt from the series are distinct in some sense, providing

different impacts on the model output. At a horizon of 60 minutes, we see from

Fig. 6.7f that the features attaining a high value indicates a decrease in the

model value at this point. From this we can interpret that when high values

of features from the are attained, they are making the model put more mass

in the immediate future, and less at horizons of 60 minutes or longer. This

is perhaps an intuitive result, that the time series are providing information

that can significantly increase the model output at short term horizons, and

attaining these same values shifts down the predictions at long horizons.

Of course, the sheer amount of data available here is somewhat overwhelm-

ing, however using SHAP values one can gain a significant understanding of

why the machine learning model is outputting particular values. We further

show plots for the overall impact of categorical features in appendix E.8, for

interested readers, omitted for brevity here. However, care must always be

taken in ensuring that feature importance and causality are not assumed, rather

we are able to question why the model gives a set of outputs for a particular

set of inputs.

6.7 Summary & conclusions

In this chapter, we have addressed a number of issues raised in the literature

regarding traffic incident duration prediction. Firstly, we considered a method

to determine incident duration accounting for both when an operator declared

it cleared, but also when the traffic state at the location had returned to

some typical behaviour. This ensured that our predictions reflected when

commuters could expect normal traffic conditions to resume if an incident

had a significant impact even after it was cleared. Secondly, we considered a

range of models, some based on classic survival analysis and others based on

machine learning and assessed how they performed on our dataset in both a

static and dynamic setting. In-particular, we took inspiration from work in the

domain of healthcare and applied emerging methods used there to problems

in traffic incident analysis. We saw that in a static setting, there was little to

choose between the models but generally either a neural network or random

survival forest method would be preferred to the others considered. We moved

into the dynamic setting by utilising landmarking and sliding window neural

networks that applied temporal convolutions to the time series, both of which
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were inspired by success in healthcare applications. We saw non-parametric

methods that made no distributional assumptions were preferred to methods

that parametrised mixture distributions, and saw some benefit in applying

kernel smoothing to enforce some minimal structure on a non-parametric output.

Utilising models with non-parametric distributional forms was influenced by

the increasingly complex distributions being considered for this problem in the

traffic literature, and showed significant promise in our results.

We assessed how each model performed using three different scoring criteria

and in the dynamic sense, we saw clear structure in the results. The kernel

smoothed neural network model generally achieved optimal C-index when

making predictions on or after 30 minutes, and the random survival forest

was optimal at times before this. Optimal Brier score was dependent on

the prediction time and horizon considered, with the random survival forest

generally being preferred, however at long prediction times and short prediction

horizons, the non-parametric neural network models were optimal. Finally, we

saw the neural network models showed much better performance in terms of

point-wise error than the comparison models. We also related our results back

to practical considerations, noting that the existing industrial specification is

to achieve a prediction error at the half-way point of an incident of less than

35%. We showed the dynamic models considered here were able to do this,

with the optimal model achieving an error of 21.6% at this point. We further

questioned if one gained anything from applying temporal convolutions to the

time series data, or if feeding manually engineered features to the network

achieved the same performance, as had been done in previous traffic studies

[78, 82]. We saw that the C-index, Brier score and error at half-way point were

all improved by applying these temporal convolutions, suggesting future work

should continue to explore optimal methods of deriving features from sensor

data rather than inputting manually engineered features.

After, we considered variable importance for our model in the dynamic

sense, assessing how the random survival forest and neural network models

were influenced by the derived features. Whilst we are aware of variable

importance being studied in the traffic literature previously, we are not aware

of SHAP values being applied to neural network models for incident duration

analysis. Time of day and location were generally important across models,

particularly at long horizons, and the time series features were shown to have

significant impact on the neural network output at 5 and 60 minute horizons.

Specifically for the random survival forest, we saw the in addition to time of

day and location, the time series residuals and incident type strongly influence

predictions. Ultimately we hope that our work highlights a range of potential

ways to address pressing issues in the field of incident duration analysis, and

leads to more cross-disciplinary consideration of models and approaches that
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have shown success in other applications.

Finally, our suggestion to use the output of a neural network to define

kernel weights, and from this construct a non-parametric distribution through

smoothing was novel in that we are not aware of this being done before to the

considered model. It has relevance to other applications, specifically if one

requires a continuous distribution to be output, but does not want to make

strong parametric assumptions about what form this will take. Further work

could be done to consider alternative methods to select a bandwidth when

applying this type of model, but the freedom it provides appeared promising

on our data.

To take this work forward into a real-world application, new data-sources

would first need to be incorporated and the model retrained appropriately. The

data that we believe should be included before the model is used in a traffic

control room are information on injuries to drivers and passengers, emergency

service responses and arrival times, clearance notifications for disabled vehicles

and weather conditions. These could realistically be incorporated by the current

control room operators, recording into the system what emergency services are

dispatched to the scene and when they arrive, transcribing injury reports and

noting when obstructions have been cleared. Weather may be more complex, as

we would ideally want to incorporate information relating to visibility, rainfall

and details on any surface water. If each of these data sources were available,

it would however be a simple extension to incorporate them into some of the

modelling frameworks we have described. The sliding window neural network

specifically in the original implementation has a missing mask designed to

enable the network to account for missing values at different time points, so

we suggest future work implements this for a transport setting. One would

then simply need to retrain the model with the new inputs and recompute the

variable importance scores.

After doing so, we suggest displaying the output of our model to operators

by printing estimates of the median duration predicted at a given time, along

with the 25th and 75th percentiles of the output distribution. Doing so would,

in three numbers, summarise the expected behaviour and associated uncertainty

in this prediction. By displaying the associated uncertainty, an operator could

then take this into account when acting upon the model output, altering their

response based on the variability identified by the model. It may be that when

tested, alternative uncertainty estimates are preferred, for example the 5th and

95th percentiles, however this is a simple aspect to adjust. The operator may

then be able to expand the explanation for a prediction, where a plot similar

to Fig. 6.6 could be displayed, acting as a sense check for why the model is

outputting a particular result.

We believe that the main source of uncertainty in this chapter relate directly
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to the unobserved data that should be collected and incorporated before

practical use of our model. These features will likely be highly informative

of the duration of an incident, and hence training a model without them

does not account for their potentially significant influence. Since we expect

these to be incorporated before practical use of our methods, this should not

impact an operators use of our methods. A second source of uncertainty is

fundamental to the underlying problem. It is seen both in our work and the

wider literature that there is fundamentally a large amount of variation in the

duration of traffic incidents. As a result, predictions will always be subject

to some amount of uncertainty, even as more features are incorporated into

models. Our suggestion to present a measure of this uncertainty to operators

during practical use of our method is based upon this observation, and we feel

this is a fundamental aspect of our work. This further provides justification to

apply survival analysis methodologies rather than those for point-predictions

alone.

Missing data, as with the previous two chapters, could create a bias in our

results. Firstly, if there is a systematic process or reason resulting in incidents

not being logged more often for particular locations or times, then our model

will be trained on only a subset of the true range of incidents the network is

subject to. This may result in a bias as the performance is optimised over this

subset, rather than a representative sample of the true population. Since we

see our tool being used directly by operators, we expect them to be aware of

any potential mechanisms that would cause such a recording pattern. Further,

since events that are not input into the system are mostly likely those with

a minor impact on the network, we do not expect them to be the focus of

applying the models we have considered. Rather, it is likely operators are most

interested in predictions for the most significantly impactful events in terms of

causing congestion and reducing flow.

The other potential bias in our methodology is that locations with a

significant amount of missing data may have behaviours and incident behaviour

that is not observed on other sections of the domain. As a result, the model

will not have optimal performance on these incidents if they exist. This could

create systematic errors in the output if locations start to report data after

the model is put into practical use. To overcome this, we believe retraining

the model periodically may be useful, and potentially weighting more recent

observations higher than older ones. This should ensure that the model is

constantly adapting to the potential inputs it will receive. Along with this,

displaying the most recent training period to operators can give them a sense

of what input data the model has been optimised for, and they can then use

their judgement on a case by case basis to decide if the model is appropriate

to use. We expect both this and the previously discussed bias to be most
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prominent for links 60-69 along the M25, giving a location to specifically focus

on in future analysis.
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Chapter 7

An emergent behaviour

approach to path planning for

autonomous vehicles

Path planning is a fundamental problem in autonomous driving. Methods that

address this problem need to incorporate the complexities of human decision

making, vehicle dynamics, and some sense of safety, comfort and progress to

choose the optimal actions in a given scenario. In this chapter, we consider an

emergent behaviour approach to path planning, designing a fully interpretable

cost function with components expressing concepts of safety, progress and

comfort. After suggesting functional forms to measure each component, we

include minimal hard-constraints, representing legal requirements, and then

consider what behaviours can emerge in typical driving scenarios from such a

model. We show our model naturally produces vehicle following and overtaking

with and without the presence of oncoming vehicles. So-called advanced driving

techniques emerge from the model, in-particular driving off the centre line

of the road and allowing greater visibility for sensing. Further, when our

predictions of actor behaviour prove to be incorrect, we show that the model

still recovers safe behaviour, and obeys legal and comfort limits. This chapter

is an exploratory analysis of what emergent behaviours can be seen from such

a model, with clear examples of interpretability and control.

7.1 Introduction & problem relevance

Path planning for autonomous vehicles, in-particular vehicles that will use

public roads, is a complex task. The challenge of encoding human driver

behaviour, refined over years of training and development, into an algorithmic

set of rules is a task that is subject to extensive ongoing development [186].

There are a huge number of variables that could effect the ‘optimal’ path in a
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scenario, and indeed numerous ways one could measure optimality of a path.

The first factor we highlight is uncertain behaviour of other drivers, pedestrians,

cyclists and so forth (actors) in a scenario (or scene). This is comprised of

two components: what is physically possible from a kinematic standpoint for a

given actor, and what is likely to occur in practice. A second factor, highly

coupled to this first is some measure of safety, and exactly what safety means

in the context of driving. A further minimal requirement would be progress

from some origin to some goal over the course of the path. Other factors

determining the optimality of a path include the level of comfort passengers

experience, abiding by legal regulations, travel-time, emissions, fuel-usage and

various other considerations.

Machine learning provides one way to approach this task, attempting to

imitate an expert driver with training data providing examples of what such a

driver would do in each scenario an autonomous vehicle encounters. At the

other extreme is a full rules-based system, trying to encode desired behaviour

into a rigid set of rules that can be executed and checked in all scenarios.

The approach discussed in this chapter is between these two extremes. We

formulate an optimisation problem to determine the optimal actions up to

some look-ahead horizon, minimising a cost function that accounts for some

of the different components of desirable path planning. Our model ultimately

presents a model predictive control approach to solving the coupled planning

and control problem, from which we show common driving behaviours are

re-created and controlled by varying components of the cost function. We

retain some level of interpretability through manually designing a cost function,

yet we have no rules dictating what to do in a given scenario and how to do it,

rather behaviours are emergent from the scenario and choice of cost function.

In-particular, we control the optimal steering rate and longitudinal jerk, which

in turn determine a set of vehicle states into the future.

Our original contributions are as follows. Firstly, we explicitly incorporate

distributional forecasts of actor behaviour into our planning, which naturally

incorporates the uncertainty in how a situation may develop. Secondly, we avoid

explicit specification of how an overtake should look, how far to follow vehicles

and so forth, instead letting the minima of our cost function control what

behaviour emerges. We are therefore not attempting to define different sub-

systems for different manoeuvres, instead we design a single cost function that

allows a range of desired behaviours to emerge. Thirdly, we propose to weight

cost components using a distance dependent scheme, allowing components of

the vehicle state to vary significantly from the target state when far away from

the target location. In practice, this means that one can drive at high speed

towards a distant target, and only slowdown to some lower, target velocity

when near to the target location. Finally, we retain interpretability of our
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model despite it allowing for various complex emergent behaviours. If one were

to train a machine learning model to imitate an expert driver, then show it a

new scenario, it may result in a particular manoeuvre, however it extremely

difficult in the autonomous driving setting to truly determine why such a

black box model resulted in that driving behaviour. This is a consequence

of the huge number of features that such a model would use. By explicitly

representing practical engineering concerns relating to driving, we are able to

interpret the behaviour of our model, and indeed show that one could raise

practical questions and adjust the model to meet these. Examples of this

can be seen throughout section 7.4. A specific example could be an expert

saying ‘we are following vehicles too closely’ and explicitly being able to control

this by adjusting the cost. It is unclear how one would do the same with a

machine learning approach without simply collecting significantly more data

demonstrating the desired behaviour.

Comparisons between a machine learning approach and the one we pursue

encapsulate compromises made by each. To utilise the machine learning

framework, one has to collect significant amounts of data demonstrating the

behaviour of an expert driving in a range of practical scenarios that will be

encountered. Doing so is time consuming and carries a high financial cost,

however the policy learnt has enormous freedom in its power to approximate

the training data. On the other hand, one could formulate a cost function

that incorporates the components expert engineers value most, and embed a

significant amount of prior knowledge into the model itself. Doing so reduces

the freedom of the model, however it will also lead to orders of magnitude

fewer parameters to fit, and hence require significantly less data to tune. We

see our method as a balance between a full rules based approach, in which the

model has no freedom, and the complex machine learning approaches. We limit

the freedom compared to a machine learning approach, but we never specify

any rules for manoeuvres. A significant drawback of such a method however

is that solving an optimisation problem at every step of a drive is far more

computationally demanding than passing data through a neural network. One

could envision a scenario where a machine learning model is trained on results

from a well calibrated emergent behaviour model, avoiding the computational

complexity of solving a full optimisation problem and requiring less real world

data than a standard machine learning model. There is additional scope

for methods to augment each other, and there are many future directions to

investigate.

The cost function we formulate makes explicit use of distributional predic-

tions of other drivers behaviours. This is not often used in the literature. There

is some discussion of it and application in [103], constructing a distribution

from data and then using it to design a reference path for an overtake. We argue

150



that if one trains such models for every type of object one might encounter,

these allow for emergent behaviours regardless of specific manoeuvre. Further

consideration of other vehicles uncertainty is considered by NVIDIA in [187],

where a ‘safety potential’ is designed in order to determine occupied sets of

space and trajectories. The idea is then to choose some subset of state space

which the controlled vehicle can occupy that will ensure some safety margin to

other vehicles and avoid any collisions. Similar work on evaluation of safety

is conducted by Mobileye in [188], where 5 ‘common sense’ rules are used to

formulate some sense of safety. This is an extensive work considering sensing

errors, different road geometry and right of way, which we do not consider

in our model. We also have no concept of common sense rules, instead our

actions are purely determined by the predictions of other vehicles and our cost

function minima.

The remainder of this chapter is structured as follows. Firstly, we discuss

the components of autonomous driving, detailing where our model would fit

into the existing framework. After, we detail our methodology, costs and

constraints to formulate an optimisation problem. We then show how our

method performs in a number of typical driving tasks: vehicle following, passing

and overtaking, and how it copes with abnormal actor behaviour. To end we

summarise our findings.

7.2 Components of autonomous driving

Autonomous driving is typically separated into distinct components, each with

clear functions. Those relevant to our work are often referred to as ‘perception’,

‘prediction’, ‘planning’ and ‘control.’ Perception deals with the identification

of actors in a scene using data from on-board sensors: cameras, light detection

and ranging (LIDAR), radar and so forth. In our work, we take the output of

the perception module to be object level data, that is identification of explicit

cars, pedestrians, cyclists and other objects in a scene. Prediction then takes

this object data and outputs a multivariate probability distribution for each

object, specifying the probability an actor will be in a particular state at a

given future time. This distribution should be defined over all feasible states

from a kinematic perspective, however of course many of these will be extremely

unlikely due to social factors.

After prediction, a planning step is typically performed, where a set of

coordinates are generated that is deemed the path to follow into the future.

We detailed how such paths can be generated in section 2.4, however in short

it is common to separate generating a path and following the path into two

tasks. Given a reference path, the goal of control is to select actions that

ensure the vehicle follows this path as closely as possible. Such a work-flow is
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typical in this domain, with a major example being the open-source ‘Apollo’

platform [189]. In Fig. 7.1, we show how the relevant parts of the software

overview in Apollo relates to our work. In such a framework, ‘HD Map’ refers

to an assumed available map of the domain a vehicle is driving on, along

with information such as speed limits, lane markings and instructive signs.

‘Localisation’ is the process of determining the current location of the vehicle

in this mapped domain.

Prediction Planning Control

HD Map Localisation

Perception

Key:

Control Lines
Data Lines

(a) Relevant components of the Apollo
software overview.

Prediction
Emergent 

Behaviour Model

HD Map Localisation

Perception

(b) Where our model fits in
the autonomous work-flow.

Figure 7.1: Example of the Apollo software overview relevant to our work, and
a depiction of where our model fits in this framework. Control lines show the
flow between stages of the autonomous driving platform, and data-lines show
how environmental, intended actions and positional information are used by
different components of the framework.

Our model sits after prediction, combining planning and control into one

task. We take the prediction output, along with knowledge of the domain,

and instead of generating a reference path, we choose the control actions to

optimise some criteria. These actions are dynamically updated over a receding

horizon in time using model predictive control (recall MPC from section 2.4).

As a result, our path is emergent and only exists up to some look-ahead time.

However, we will see that this allows us not to plan any particular manoeuvre,

for example an overtake, but instead have them occur if they are optimal.

One point to note is that we envision some hardware ‘watchdog’ will exist

between our autonomous interface and the vehicle, ensuring a last-line of safety

against any problems that may emerge in the system. This is common and

included in the full referenced Apollo framework. From this point forward,

we shall use the common terminology in autonomous vehicles of referring to

our own controlled vehicle as the ‘ego’ vehicle and all others as actors. The

final point relevant to autonomous domain knowledge is that hard constrains

on jerk, acceleration and steering angle used in section 7.3.2 are informed

by ECE79-01 regulations found in [190] and by reasonable values from an

experienced engineering perspective.

7.3 Methodology

Our approach to the problem of path planning relies on two novel aspects, the

first of which is utilising distributional predictions of future actor states. A
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fundamental assumption we make is that the prediction module will yield a set

of PDFs that describe actor behaviour at all time-steps we look into the future.

One such PDF should be available for each actor in a scene, or a single combined

density function, the choice is entirely up to the modeller and can therefore

be an expression of the actors individual intents, or a combined distribution

considering how each will impact the other. We shall denote the probability

density functions for actor A, at time t as P (x, y,A, t). Various models for

this can be used, however for proof of concept we shall use multi-dimensional

Gaussian distributions throughout this chapter. We keep the framework general

to allow for future incorporation of more complex distributions. Notice that

whilst we specify this distribution in space (x, y), it can also incorporate other

attributes such as speed and acceleration.

Secondly, we do not specify a reference trajectory to follow and measure our

deviation from this. Instead, we consider if placing minimal physical constraints

on a vehicle, along with costs representing progression, safety and comfort are

sufficient to reproduce intuitive driving behaviour when optimising our actions

using MPC. As a result, the path we will take only ever exists up to some

prediction horizon. Doing so however ensures we do not constrain ourselves to

following the shortest route along a domain, rather we choose one that is a

compromise between each of the components we consider important. Finally,

our main goal is to question what behaviours are emergent from a model in

which we enforce minimal rules, and incorporate practical engineering concerns.

We aim for such a model to be useful in a range of scenarios rather than ever

designing an overtake, following behaviour and so forth.

Developing a model for this problem involves a number of steps, and we

detail each in the remainder of this section. We describe the model of the

vehicle used in section 7.3.1, the hard constraints imposed on the optimisation

in section 7.3.2, the cost function constructed in 7.3.3 and the optimisation

problem in section 7.3.4.

7.3.1 Vehicle model

There is a wealth of literature on modelling vehicle behaviour. For our purposes,

we require a model that takes some action inputs u, an initial state x0 and

generates a new state x. Formally this is

x = fVM (u,x0) . (7.1)

A large number of the works reviewed in chapter 2 choose a specific form of

fVM, and general models of vehicles are reviewed in [191]. We choose to use

the kinematic bicycle model in our work, specifically the model tested in a

real-world setting in [192]. Further application of kinematic models is given in
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[193] and they are used in the Apollo framework in [194]. Despite the simplicity,

it is stated in [195] that such models are preferred for autonomous driving

control design due to their computation speed and that the error from using

one is not hugely detrimental to the final optimisation result. Whilst we ignore

significant amounts of complexity relating to the vehicle dynamics, we propose

this is sufficient for an initial exploration of our modelling approach. The key

assumptions the model makes are: the vehicle is steered from the front wheels,

slip angle is negligible, the front wheels are collapsed into a single steering

point, the rear wheels are collapsed into a single point and the vehicle only

moves in x, y space. Such assumptions are reasonable at low-speeds and in

typical conditions, for example where no sudden large steering commands are

input. Whilst some of the speeds we consider in scenarios may mean tyre forces

become relevant from a practical stand point, we do not consider scenarios

with high-speed, sharp turns where they could dominate the dynamics.

The system of equations for such a model is

dx(t)

dt
= vx(t) cos(φ(t))

dy(t)

dt
= vx(t) sin(φ(t))

dφ(t)

dt
=
vx(t)

LV
tan(δ(t))

dvx(t)

dt
= ax(t)

day(t)

dt
=
vx(t)

LV
(2ax(t)δ(t) + vx(t)∆δ)

dax(t)

dt
= jx

dδ(t)

dt
= ∆δ.

(7.2)

This is the model and notation used in [192]. Given a start state and set of

actions to take, we can determine the state of the vehicle at any given time,

being the position in space x(t), y(t), the heading φ(t), longitudinal velocity

vx(t), steering angle δ(t), longitudinal acceleration ax(t) and lateral acceleration

ay(t). We control the longitudinal jerk jx and steering rate ∆δ, and the goal is

to choose these values to create some optimal path through a domain. The

final variable in this model is the vehicle length LV . We note that one could

choose to control the steering angle, steering rate, or its higher derivatives, and

similarly one could control the longitudinal acceleration, the longitudinal jerk

or higher order derivatives. Throughout the literature, it is common to choose

either steering angle or rate to control direction, and longitudinal acceleration

or jerk to control longitudinal velocity. We are informed by industry experts

that going to any higher order derivatives presents a problem that from an
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engineering standpoint would be very difficult to actually execute. To check our

results are not highly dependent on the model used, we also run all of our tests

but assume we directly control the steering angle and longitudinal acceleration,

and see the same emergent behaviours and conclusions hold throughout all

parts of this chapter. Details of this are in appendix F.

7.3.2 Hard constraints

When planning a path, clear physical and legal requirements are present and

must generally be abided by. The first such constraint is that the vehicle must

always occupy drivable space. To do this, we first define the section of our

domain that is legal to drive on, and then constrain the vehicle positions to

lie inside of this. For simple domains, this is just a linear constraint on x(t)

and y(t), however for more complex domains one can utilise methods such

as the ‘point in polygon’ algorithms to check arbitrary shaped domains. The

second obvious constraint to consider the the speed limit. This is practically

implemented by placing an upper bound on the state component representing

longitudinal velocity, and we also place a lower bound representing the physical

reversing capabilities of the vehicle. The drivable region and speed limit is

assumed to be known from the HD map at all times.

Further hard constraints are required due to legal regulations specifying

allowed states on the vehicle and an absolute minimum level of comfort for

passengers. These take the form of limits on lateral and longitudinal acceleration

and jerk, detailed in table 7.1. We note that in [196] it is stated that kinematic

Quantity Unit Lower Value Upper Value

Longitudinal acceleration - ax m/s2 −0.4× 9.81 0.2× 9.81

Longitudinal jerk - jx m/s3 −3 2

Lateral acceleration - ay m/s2 −3 3

Lateral Jerk - jy m/s3 −5 5

Steering angle - δ radians −3π
18

3π
18

Table 7.1: Constraints enforced on the vehicle. These are informed by legal
requirements and experienced engineering perspectives. The steering angle
constraints represent ‘full lock’ on a vehicle, being roughly ±30 degrees. One
might consider these constraints as a ‘comfort profile’ in general terms.

models retain validity when lateral acceleration values are kept below 0.5×
9.81 = 4.905 m/s2 which is enforced by these constraints. For each quantity in

table 7.1, we can compute the model values using Eq. (7.2).

The final hard constraint placed on the model relates to a minimum expected

safety throughout the journey. At any point throughout a journey, we should
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not expect to collide with another vehicle. To enforce this, we choose to set

some area of space to be impassable, changing through time. At any horizon,

we set the impassable space to be an ellipse placed over the largest mode of

the probability distribution of actor positions at that time. The dimensions

of this ellipse are chosen such that if the actor vehicle is in the position we

believe most likely, we will not be in-contact with it when outside of the

ellipse. We note that this component is purely a consequence of our model

being point-based, and to enforce a realistic dimension of the vehicle and

other actors. The safety component it provides is very local, and the cost

function determines the majority of the safety, discussed further in section

7.3.3. If the prediction distribution is a bivariate Gaussian, quantiles of this

distribution will be an ellipse, so one can choose to specify a quantile level α of

the forecast distribution instead of a physical size for this constraint. However,

care must be taken that, when predictions are very certain, for example at

very short horizons, the hard constraint should still be sufficiently large to

cover the physical size of the vehicles. Finally, for more complex situations

with multi-modal distributions, one could assign a hard constraint only to

modes above some threshold in probability, which is more akin to choosing a

particular quantile of the distribution.

7.3.3 Costs

Whilst our constraints express required properties of a trajectory, our costs

express desired properties. These are incorporated as a weighted combination

of multiple separate components, many of which are often in conflict with

each other. We now detail the form of the cost function and the practical and

engineering intuition for each choice.

The most basic requirement of a trajectory, before any of the environment is

considered, is to progress towards some target or goal state. We consider a target

state to constitute a 4-element vector, specifying a position (xtarget, ytarget), a

heading φtarget and velocity vtarget. All of our testing is done on a highway and

A road scenario, so we consider x to progress along the road, and y to describe

movement between lanes. If we set x to be the major direction of travel, we

want to progress as much as possible along this direction in each time-step to

minimise journey time. At any time t, we will be at position x(t), and if we

made optimal progress in a time-step, the largest distance we could cover is

vmax∆t. As a result, the lowest possible distance from ourselves to a target in

a given time-step will be

xtarget − (x(t− 1) + vmax∆t) . (7.3)
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However, in practice we will have ended up at a distance of

xtarget − x(t). (7.4)

Therefore, we know that the difference between our actual progress and the

optimal progress is

∆progx = [xtarget − (x(t− 1) + vmax∆t)]− [xtarget − x(t)]

= x(t)− x(t− 1)− vmax∆t.
(7.5)

If we square and sum over all times, and divide by some characteristic value x̃,

we have a progress function in the major direction of travel as

Cpx =
N∑
t=1

wx,t

(
x(t)− x(t− 1)− vmax∆t

x̃

)2

(7.6)

where wx,t are weights placed on the progress at each time point t, and we

look ahead N time points. If we are able to reach the target in a time-step

∆t, we can adjust this accordingly. The future positions can be computed by

simulating the vehicle model forward in time given a set of input actions over

the horizon.

For all other target components, we can express simpler functions, of the

form

Cpy =

N∑
t=1

wy,t

(
ytarget − y(t)

ỹ

)2

Cpφ =

N∑
t=1

wφ,t

(
φtarget − φ(t)

φ̃

)2

Cpv =

N∑
t=1

wv,t

(
vtarget − v(t)

ṽ

)2

.

(7.7)

Here, we simply compute the difference between the desired value and actual

value of our state components, normalise by some characteristic values ỹ, φ̃, ṽ

and then apply some weighting to each of these in time.

The need for weights is clear when we consider a situation far away in x, y

that we want to arrive at a greatly reduced speed, for example starting at 30

miles per hour on a road, and ending parked on a driveway. If we equally

weight all components of this progress, we may enter a solution where we

slow down far earlier than necessary, as we would achieve the target velocity,

whilst still progressing in all other values. Instead, we can specify that as we

move closer to our target, we care more about particular components, namely

the velocity, heading and being in a particular lane, whereas when we are far
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away, we prioritise moving quickly towards the target. For an example of this

phenomena, view the results in section 7.4.1. Whilst it is common to use weight

matrices in other MPC works for autonomous driving, we propose to make

these weights functions of distance to the target. In-particular, they are either

constant functions, or increase as distance to the target decreases. To compute

this distance at any time-step, we take the current optimal set of actions and

determine the distance to the target position (xtarget, ytarget) over the horizon.

When we solve the optimal control problem at the following time, we use these

expected distances to determine weights. Denoting the expected distance at

time t as d(t), we specify weights of the form

wv,t = αve
−βvd(t) (7.8)

for some constants αv, βv > 0 and d(t) > 0∀ t. The parameters αv, βv can be

tuned according to the preparation time we believe should be taken to slow

down, the conditions around the vehicle and the situation. One may also want

to limit these by specifying a maximum value any weight can take to avoid

issues when very close to the target.

The second aspect we impose a cost on is comfort, which we measure

through lateral and longitudinal jerk values. We can limit jerk values by

specifying costs of

Cjx =
N∑
t=1

wjx,t

(
jx

j̃x

)2

, Cjy =
N∑
t=1

wjy ,t

(
jy

j̃y

)2

(7.9)

These supplement the hard constraints on comfort in section 7.3.2, minimising

jerk if possible to improve passenger comfort.

The third aspect vital to journeys is safety, and whilst we have enforced

a minimal level of it, we can further refine it by including a cost based on

unsafe actions. Given we have a probability density function describing where

we expect actor A will be over time, we can incorporate this directly through

standard probability arguments. Considering any time t and actor A, we can

compute the probability the ego vehicle is at the same location as an actor

with ∫ xmax

xmin

∫ ymax

ymin

P (x, y,A, t) dxdy, (7.10)

where we are integrating over some bounds that describe the physical space

occupied by the ego vehicle. This alone, summed over all time and actors is a

candidate safety cost function. However, we can also penalise ‘large’ collisions,

in the sense of avoiding hitting a vehicle with a very large velocity difference, by

considering our own expected velocity and a prediction of the actors expected

velocity. If we take another output of prediction to be expected velocities, then
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we have some estimate of an actors velocity at each time, which we will denote

ṽ. We can then compute the expected velocity difference between the ego and

actor, and for any path can specify

C∗Safety =
∑

A∈Actors

N∑
t=1

||v(t)−ṽ(A, t)||2
∫ xmax

xmin

∫ ymax

ymin

P (x, y,A, t) dxdy. (7.11)

In Eq. (7.11), we see that this safety cost avoids occupying the same area that

we expect other actors to be in at any time. Note the square on the velocity

differences, representing the kinetic energy involved in collision dynamics. Here,

the region we are integrating over would change in time as we simulate where

the ego vehicle would be after applying control actions. In practice, evaluating

this integral slows down the optimisation, and for sufficiently well behaved

density functions we can replace it with the actor PDF at some time t evaluated

at the ego’s expected position x(t), y(t), reducing to

C∗∗Safety =
∑

A∈Actors

N∑
t=1

wsaftey,t||v(t)− ṽ(A, t)||2P (x(t), y(t),A, t) . (7.12)

Here, we have also multiplied by a weighting factor for each component of

the safety function in time that incorporates characteristic values for the

components. Note however that we have a minimum of this function when we

have equal velocities. This means, we could find ourselves in a situation where

we occupy a region of space that we believe is very likely to also be occupied

by an actor. However, if we have the same velocity as we expect them to, we

would consider it safe. Of course, this is not desired, and to alleviate this, we

can write

CSafety =
∑

A∈Actors

N∑
t=1

wsaftey,t

(
ζ + ||v(t)− ṽ(A, t)||2

)
P (x(t), y(t),A, t)

(7.13)

where we perturb the minima by some ζ > 0, allowing us to pull away from an

actors expected position in a rare but extreme case. Here there is now always

a penalty for both passing actors at high speeds and occupying the same areas

they are likely to occupy.

The final cost function is then given by a linear combination of components,
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written as

Ctotal =
[
wpx , wpy , wpφ , wpvx , wjx , wjy , wsafety

]


Cpx

Cpy

Cpφ
Cpvx
Cjx

Cjy

CSafety


(7.14)

where we can further weight the overall contribution of a component with the

values wpx , wpy , wpφ , wpvx , wjx , wjy and wsafety.

7.3.4 Model predictive control formulation

Given our model, constraints and costs, we formulate our optimisation problem

as
minimise

u
Ctotal

with x = fVM (u,x0)

s.t. v ∈ [vmin, vmax]

(x, y) ∈ Domain

(x, y) /∈ Actor Constraints

ax ∈ [−0.4× 9.81, 0.2× 9.81]

ay ∈ [−3, 3]

jx ∈ [−3, 2]

jy ∈ [−5, 5]

δ ∈
[
−3π

18
,
3π

18

]
.

(7.15)

We solve the above problem using MPC in Matlab 2019a. In the MPC

framework, we look some horizon ahead, and optimise the control actions u

over that horizon. We then apply the action for one time-step and re-solve

the optimisation problem using the new step, new predictions from the actor

models and new cost function. In a receding horizon fashion, this dynamically

updates our path to adjust the the varying uncertainty we might experience

in actor behaviour. Constraints are required to be satisfied across the entire

horizon. Numerically, we solve the optimisation problem at any time by using

an interior-point (IP) method [197]. A review of such methods is found in

[133], and an open source implementation is available in [198]. We offer some

discussion of the method in appendix A.
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7.3.5 A note on the safety cost component

A point of obvious note is that we are considering a safety cost that takes

values from some distributional prediction of actor behaviour, and assume

that the prediction component of the autonomous work-flow would output

these. Recent work focusing on predicting a distribution of potential future

states in autonomous driving is found in [199] and [200], and more generally

for distributional trajectory prediction in [201].

7.3.6 Modelling summary

One can incorporate each of the steps we have described into a single model

and, given some driving scenario, iteratively determine a route through the

scenario. We write the pseudo-code for applying this model in algorithm 2.

We determine the distance between the current state and target state using

some D, which could be the euclidean distance, or some other choice if different

components are more important for a particular scenario. We of course note

Algorithm 2: Iterative path planning

Input: Prediction model(s) MP, Cost function with associated weights
and parameters Ctotal, Initial state x0, Target state xtarget,
Stopping threshold ε, Time-step ∆t, Hard constraints H

1 Set current state: x = x0

2 while D (x− xtarget) > ε do
3 Get actor states from perception module: As
4 Get future state predictions: PA =MP (As)
5 Determine actions u by solving Eq. (7.15) subject to H
6 Apply control actions u to vehicle for time-step ∆t
7 Localise vehicle to determine x

8 end

that the prediction models MP may depend on some window of historic actor

states, and take many more inputs from the environment than just the current

actor state.

7.4 Results

Given our problem and methodology, we now specify a set of tests that show

key features of the approach. We specify a time-varying uncertainty in all actor

predictions, aligning with the common attribute of forecasting models that as

we increase the horizon, we become more uncertain of predictions. Initially, the

uncertainty is simply measurement error, but as we look further ahead in the

MPC framework, we grow the variance to suggest reasonable uncertainty. Note

that each of the examples shown are qualitatively similar for various choices of
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horizons, but choosing a horizon so small (reasonably, less than 3 seconds) can

yield situations where one can move into states that are actually detrimental

in the long term.

7.4.1 Scenario 1: speed change

In section 7.3.3, we noted that distance-dependent weights were particularly

important in the case of velocity progress costs. An important point in path

planning is to ensure we are not too conservative, slowing down far too early

and compromising progress for matching to a target final speed. Suppose

we take a scenario where we drive in a straight line, with no other actors

present. The ego vehicle starts at some (x0, y0) and v0 < vmax. The aim

is to reach some (xtarget, ytarget) at a lower speed, vtarget < v0. We now set

up such a simulation and run with two different weighting schemes in our

progress function. The first is a fixed weighting on all components, whereas

the second has a distance dependent weighting on velocity. Our results are

differing profiles of acceleration and velocity, shown in Fig. 7.2.
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Figure 7.2: Comparison of uniform and distance dependent velocity weighting
in the progress function. We see the distance dependent scheme allows the ego
vehicle to first speed up travel at a higher speed, then slow down towards the
end of the simulation window and when the ego vehicle is nearer the target.
The uniform one by comparison immediately moves to some comprise velocity,
where there is a balance between optimal progress and matching the target
velocity, leading to a situation where the ego vehicle does not reach the target
speed and makes slower progress. Of course, one can change how quickly the
target speed is reached with a weighting change.

Of particular note in Fig. 7.2 is the fact that the constant weighting choice

leads to a solution where the ego vehicle neither makes optimal progress in terms

of distance to the (xtarget, ytarget), or matches the target speed throughout the

entire simulation. This is due to the fact that the minima of the cost function

coincides with some ‘compromise’ velocity, where some amount of progress is

made and the speed of the ego vehicle is somewhat close to the target speed,
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but a better solution for both of these components simultaneously cannot be

found. The distance dependent case does not suffer from this, as we encode

sensible restrictions on the model that in turn allow the ego vehicle to travel at

higher speeds when progress towards (xtarget, ytarget) is most important, then

brake when near the target and progress towards (xtarget, ytarget), relatively

speaking, is less important. Whilst we observe a larger deceleration in Fig.

7.2b for the time dependent case compared to the uniform one, this can be

dampened by appropriate weighting choices.

7.4.2 Scenario 2: vehicle following on a single lane road

The most basic test of any path planning method is to reproduce existing

work that is more limited in scope. Consider the simple scenario of a single

lane straight road, with some speed limit, say 13.41 m/s (30 mph). The ego

vehicle drives down this road (for practical purposes, of a length that will take

far longer to traverse than we simulate) and encounters a vehicle travelling

at some lower speed, say 8.94 m/s (20 mph). In such a scenario, there is

no opportunity to overtake the actor, so the ego vehicle simply has to slow

down and ensure a safe distance to the vehicle in front. It can already be seen

that such a scenario is simply longitudinal control, something accomplished

in simple scenarios though adaptive cruise control. Our existing methodology

should do the same, even if the basis of it may take more computation power.

We test such a scenario, and present results in Fig. 7.3. Note that the only

hard constraint we have relating to the actor is that we cannot occupy the

ellipse surrounding its mode, and we have no other explicit concept of a ‘safe

following distance’. Instead we allow the probability distribution, or more

specifically its variance, to yield a safe following distance.

When viewing each plot in Fig. 7.3, it is important to note that we have

pictured 3 states of the actor, one at the current time-step, one half way

through the look-ahead time and one at the end of the look-ahead time. Each

of our future points is aware of a different forecast of the actor position and

variance, and hence concept of safety. Note that here, and in all future plots

of the same type we plot a fixed set of contours for the forecast distribution,

which demonstrates the concept of a growing variance in time. If we compare

the contour lines half way through the look-ahead time and at the end of the

look-ahead time, we see those in the latter are wider than in the former. This

shows that the variance is growing as we predict further ahead in time. Firstly,

in Fig. 7.3a, the ego vehicle begins to move from the starting point towards

the road centre and along the road. In Fig. 7.3b, it approaches the actor

and starts to incur a safety cost by occupying regions of space that the actor

may be in at future times. We see from Fig. 7.3c that later in the simulation,
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(a) Example trajectory 0.5
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tion.
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(b) Example trajectory 8
seconds into the simula-
tion.
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(c) Example trajectory 25
seconds into the simula-
tion.

Figure 7.3: Optimisation result for a vehicle following example. The green
markers show the historic ego states, based on previous actions we have
optimised and executed. The magenta markers show, at that current time-step,
the positions that result from what we believe to be the optimal actions for each
time-step in the future, extending from 1 time-step to the specified look-ahead
time. In the top panel of each, we plot the current situation at the given
time-step. We physically ‘see’ the actor through sensors and have a hard
constraint which we cannot occupy. In the centre panel of each, we consider
half-way through the look ahead time. At this point, marked with a black ×,
our optimisation considers the distribution represented through the contours
on the given plot, meaning the further the ego vehicle is from the centre of
this distribution the safer it is. The dark zones should be considered the most
unsafe. In the bottom plot, we consider the same but for the last point in our
look-ahead time. As expected, the ego vehicle slows down as it approaches the
actor. Note how the distance between the ego vehicle and actor is not 2 seconds
of travel time, but instead relates to the probability distribution assigned to
the actor. This is an example of emergent safety, following distances as a result
of uncertainty.

the ego vehicle has settled into a steady state where it follows the actor and

occupies regions of space that are highly unlikely to contain the actor both

half way and at the end of the look-ahead time. Clearly, a particular following

distance has emerged from the model and choice of weights, without a rule

specifying it. Note that the ego vehicle has intentionally started off the road

centre line in Fig. 7.3a to show a lateral deviation and emphasise this is not

simply a reinvention of adaptive cruise control, but rather this is a subset of

our methodology.

The associated acceleration and jerk values for this simulation are given in

Fig. 7.4, showing how passengers in the ego vehicle would have felt during the

drive. From Fig. 7.4, the ego vehicle clearly slows down and avoids a collision

with the actor, and from Fig. 7.3 see that this corresponds to staying some

distance away that stabilises as we slow down and begin to match the actor

speed, hence giving a low safety cost. Both the decrease in velocity and the
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Figure 7.4: Constraints summary for
a vehicle following example. The red
dashed lines indicate hard constraint
values, and the black-dashed line in-
dicates the actor speed. The ego
vehicle brakes when the actor is seen in
the look-ahead time, and then slowly
matches its velocity which results in
very low jerk and acceleration values.
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Figure 7.5: Comparison of following
distances based on varying the safety
weight from some low value to a high
value.

distance to the actor contribute to the safety cost.

We further demonstrate the following distance as a function of the safety

importance and variance by re-running the same simulation but varying the

safety weight from some low value to a higher value, waiting for the ego vehicle

to have reached a stable speed after encountering the actor, and plot the

average distance between the ego vehicle and the actor for the remaining time

in the simulation. Results for this are shown in Fig. 7.5. From Fig. 7.5, we see

that a particularly low safety weight might lead to a following distance of 7.5

metres, whereas a particularly high one might lead to distance of 25 metres.

Of course, coupled to this is the variation associated with the distributional

prediction models. This also raises reasonable questions relating to models

of autonomous driving: if we are very confident of a particular future state

of an actor, we can potentially drive closer than a human naturally would,

whilst still retaining some confidence level that we will not collide. Further,

the opposite is true, if an actor is acting very unusually, we may hold further

back because we simply are not confident where they will be in the future.

A final point of note from this vehicle following scenario is that some

advanced driving behaviour is observed for particular weighting choices. Spe-

cifically, we observe a lateral deviation when following vehicles, pulling slightly

off centre on the road, when we have a low weight on aligning to some ytarget

relative to our weight on safety. This is demonstrated in Fig. 7.6, where we

show a frame of a simulation where the ego vehicle has reached a sustained

behaviour driving slightly off the road centre-line. This behaviour is due to
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the distribution we have placed over the actor position being Gaussian but

decaying far faster in y (lateral direction) than in x (longitudinal direction).

Essentially, we achieve a lower safety cost by moving lateral slightly. In doing

so, we would then have a longer sensor range and it mimics so called ‘advanced

driving’ techniques where one can see further ahead in traffic by driving off the

road centre-line, but not so much so as to obstruct another lane. Note that
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Figure 7.6: Optimisation result showing a concept of advanced driving. All
details in these plots should be interpreted as explained in Fig. 7.3.

now we expect to be somewhat closer to the vehicle than in the previous case,

due to the decay laterally of the PDF.

7.4.3 Scenario 3: vehicle passing on a dual carriageway

The next demonstration of our methodology is passing a vehicle. The domain

is two straight lanes with the same direction of travel (imagine an A road in the

UK) with the ego vehicle approaching a slow-moving actor (imagine a tractor

in this example) in the left hand lane. We aim to continue along this road

which will take far longer to traverse than the time of the simulation. The ego

vehicle starts at some position x, y behind the actor in the right hand lane,

and wants to pass the actor safely. Intuitively, we expect the ego vehicle to

approach the actor, start to slow down creating a small velocity difference, pass

the vehicle, then speed up once we are far from it to make good progress. We

might also expect a movement away from the actor to maximise the passing

distance, and then to return to the point aligned with the target y coordinate

(in this case, the right-hand lane centre line). We set up such a simulation,

again using a multivariate Gaussian distribution with growing uncertainty in

time for the actor predictions. We choose the covariance matrix to cover both

lanes as it grows but clearly favours the actor staying in the same lane. In

Fig. 7.7 we visualise the solution of the resulting optimal control problem for
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two weighting choices, and show a summary of the constraints after the entire

simulation is complete.
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(a) Simulation 1 trajectory example, at
the point at which a slight lateral devi-
ation from the road centre-line is planned
for the safest passing.
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(b) Simulation 2 trajectory example. A
lateral deviation is no longer planned but
the actor is still passed.
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(c) Simulation 1 constraints summary.
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(d) Simulation 2 constraints summary.

Figure 7.7: All details in these plots should be interpreted as explained in
section 7.4.2. We see a small lateral deviation during the pass in (a), keeping
more of a distance when we expect the actor may move slightly across the lane.
We see none in (b). The difference between these two trajectories is of course
very subtle, but more is gained considering the corresponding constraint plots
in (c) and (d). Inspecting these we see that in simulation 1, the ego vehicle
does not slow down at all but use the slight lateral deviation to improve safety,
whereas in simulation 2 it slows down to reduce the safety cost, and then does
not laterally deviate at all.

From Fig. 7.7, we see how our simple model can recreate a very subtle

but important component of human driving. The ego vehicle has a slight

deviation from the road centre line, giving a small lateral jerk, acceleration

and progress-y cost, but decreasing the safety cost in doing so. We see the

slight bend is planned prior to being level with the actor, meaning using the

current look-ahead horizon, the ego vehicle has a plan of the entire pass, but
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can update this if the scene develops differently to that which is expected from

the prediction models. Alternatively, if one considers passing speed to be more

important, then the model can eliminate the turn and instead pass the vehicle

with a lower velocity difference, and speed up after. Doing so incurs different

penalties on lateral and longitudinal values.

Finally, we note that behaviours in-between these two shown are possible.

One can deviate laterally and still slow-down for particular weightings, or

ignore the influence of the actor entirely if progress and comfort is significantly

more important. We plot four different trajectories across the road in Fig. 7.8,

which gives an illustration of this. The distinction to make from Fig. 7.8 is
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Case 0
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Figure 7.8: Comparison of trajectories for the ego vehicle during different
weighting choices. We see two cases that stay on the centre line and two that
deviate laterally.

that case 2 and 3 both deviate laterally, however the curve in case 2 does this

after case 3, as the ego vehicle slows down in this instance as well as moving

laterally to reduce the safety cost.

7.4.4 Scenario 4: vehicle overtaking on a two lane road

There are a number of papers that develop methods of vehicle overtaking and

systems to support this. Often, this is a purpose built system, for example

in [202], [203] and [204]. Indeed, it is stated in [202] that ‘automation of the

overtaking maneuver is considered to be one of the toughest challenges in

the development of autonomous vehicles’. We argue that an overtake is a

natural consequence of balancing costs and a distributional prediction of actor

positions, showing an example here. In this case, the ego vehicle starts in the

left lane of a two-lane domain, with a speed of 17.9 m/s (40 mph). Ahead

is an actor with a speed of 13.4 m/s (30 mph) also in the left lane, and the

speed limit on the domain is 26.8 m/s (60 mph). We have a target to be in

the left hand lane, level with the centre line, at a large distance up the road,

so naturally a human would approach the actor, move into the right hand to

overtake and then return to the left lane. We show exactly this happening in
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our model in Fig. 7.9. We further show a second weighting scheme that allows

for a later cut-in back the original lane of travel in Fig. 7.10, valuing a safer

drive.
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(a) Example trajectory.
The ego vehicle plans
to move alongside the
actor during the look-
ahead time.

-2.0

0

2.0

y
(m

)

Current time step

-2.0

0

2.0

y
(m

)

Half-way through look-ahead time

25 50 75 100 125 150 175 200

x (m)

-2.0

0

2.0

y
(m

)

End of look-ahead time

Historic trajectory

Expected future
trajectory

Current actor position

Example future
comparision point

Hard actor
constraint

Contours of future
actor distribution

(b) Example trajectory.
The ego vehicle plans to
cut back into the left lane
ahead of the actor.
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(c) Example trajectory.
The ego vehicle has com-
pleted the overtake and
continues to drive along
the road towards a target.

Figure 7.9: Optimisation result for a vehicle overtake. We place a time-varying
weight (as a function of distance) on y progress such that we care little about
it initially, allowing the overtake. We move into the right hand lane, pass the
vehicle and return to the left hand lane.
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(a) Example trajectory.
The ego vehicle plans to
drive alongside the actor
for a prolonged period of
time.
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(b) Example trajectory.
We see the beginning of a
plan to cut back into the
left lane.
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(c) Example trajectory.
We see the end of the over-
take is now planned.

Figure 7.10: Optimisation result for a vehicle overtake, showing the ego vehicle
waiting longer to cut back into the original lane of travel after passing the
actor compared to Fig. 7.9.

Whilst overtaking is a complex behaviour, we see from Fig. 7.9 that such a

behaviour has emerged from our model. Altering the relative importance of

safety, jerk and progress yields two distinct behaviours, changing the time the

ego vehicle drives beside the actor for and when it returns to the original lane

of travel. This, as well as the previous results for emergent following distances

and passing behaviour, shows the potential of emergent behaviour models to

capture complex driving behaviour with a minimal description of the scenario.
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(a) Constraints summary shown for the
overtake in Fig. 7.9.
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(b) Constraints summary shown for the
overtake in Fig. 7.10.

Figure 7.11: Constraints summary shown for two weightings of overtake man-
oeuvres. All values remain inside the specified limits. Although we do apply a
steering angle, we are no where near full lock and hence stay far from these
constraints.

A summary of the constraints for the overtake scenarios are given in Fig. 7.11.

A point to note from Fig. 7.11a is that the ego vehicle initially shows an

increase in velocity to make good progress, but when the actor is encountered

there is a clear time period where velocity stops increasing. Doing so not only

increases the comfort of the overtake but also increases the safety, as the ego

vehicle passes the actor with a lower velocity difference. The lateral distance

moved during the overtake is controlled both by the weighting on the safety

components and the progress on y, which both alter the compromises made in

the cost function. One can therefore see how the model can be fine-tuned to

account for practical concerns, for example passing vehicles too closely.

7.4.5 Scenario 5: multi-actor vehicle overtaking on a two lane

road

A more complex version of an overtake is when there may be actors approaching

in the opposite lane, in which case one has to plan a comfortable and safe

overtake of a slow vehicle, but also avoid collisions with oncoming vehicles.

Our framework generalises to this example, with our results shown in Fig.

7.12. When viewing Fig. 7.12, we see a clear waiting period where the ego

vehicle allows the oncoming vehicle to pass before moving into the right-hand

lane. Whilst we see quite a small lateral deviation for the overtake, this can be

explained by the fact that we have placed distance dependent weights on the y

progress. As the ego vehicle waits for the oncoming vehicle to pass, it moves

closer to the target, and as a result the distance-dependent weight increases.

When the vehicle has passed, there is a larger weight on y progress than in

the previous example, still allowing the ego vehicle to overtake but not to
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(a) Example trajectory, be-
fore the overtake begins.
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(b) Example trajectory.
The ego vehicle plans the
overtake after it expects
the oncoming vehicle to
have passed in the look-
ahead window.
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(c) Example trajectory.
The ego vehicle has pulled
into the right-hand lane
and plans to overtake and
cut back into the left lane.

Figure 7.12: Optimisation result of an overtake, with another actor in the
right-hand lane delaying our overtake. Imagine this as a B-road scenario in
the UK.

deviate significantly laterally. As a result the ego vehicle also cuts back into

the left-hand lane in a higher region of the prediction distribution than it did

in the single vehicle case, however again tuning the weights to adjust for this

is a possibility.

7.4.6 Scenario 6: abnormal actor behaviour

Throughout this chapter, we have used distributional predictions of actor states

to determine what we consider to be safe behaviour in the future. However,

there may be instances were forecasts are incorrect, and we realise at some

time that an actor is doing something that we thought was highly unlikely just

a short time prior. Suppose we take the vehicle following example in section

7.4.2, but part way through the simulation, the actor brakes suddenly, without

warning and reduces their speed from 8.94 m/s (20 mph) to 2.24 m/s (5 mph).

We allow this slow-down to be a 0.8g deceleration, and recall that our comfort

profile specifies a 0.4g deceleration constraint (taking g to be 9.81). Results

for this are shown in Fig. 7.13. For such an example, we require a prediction

model, yet for this case we take the simplest possible model. At time t, we

assume we can measure the velocity and acceleration of an actor, a sensible

assumption for a vehicle equipped with a modern radar system. Then, our

prediction model is simply to assume the actor will continue with their current

acceleration profile into the future. We do not assume an actor will ever travel

backwards, instead they will stop rather than reverse on a major road. Such a

model is very simple and invalid in many scenarios, however it is sufficient to

illustrate the models adaptation in abnormal circumstances.
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Figure 7.13: Optimisation result for vehicle following with abnormal actor
braking. Recall as before that the black-dashed line indicates the actor speed.
The ego vehicle only begins to slow down after the actor has, as it had no
information from the prediction model that a slow-down was likely to occur.
It overshoots the actor speed because of this, then returns back to a following
speed similar to the actor’s.

From Fig. 7.13, we see that to begin, the ego vehicle follows the actor

and stabilises to some speed and distance. After some time, the actor brakes

suddenly and far harder than the ego vehicle is allowed to (note that the

actor instantly applies a 0.8g deceleration), and the ego vehicle reacts with

a prolonged period of deceleration reaching around −3 m/s2. It avoids both

violating any hard constraints during the optimisation and hitting the actor. An

obvious extension to this however is to ask how different would this behaviour

look with a prediction model that somehow predicted the actor would slow

down, and how would comfort be impacted in such a case? To investigate

this, we run the simulation again however this time we specify the actor’s

distribution to reflect the true behaviour, seeing the slow-down as soon as it is

within our prediction horizon rather than as it is happening. We then plot the

resulting speed and acceleration profiles in Fig. 7.14.

From Fig. 7.14b we see that when we correctly predict the actor slow-down,

even though it is harder than we allow the ego vehicle to brake, it is accounted

for by holding a less extreme deceleration behaviour for an extended period

of time. In the case where we did not predict it, the ego vehicle has to brake

far harder and reach a higher deceleration value to account for the abnormal

actor behaviour. Note also that from Fig. 7.14a when we correctly predict the

slowdown, we do not overshoot the velocity, whereas we do in the abnormal

case due to the high deceleration values required to avoid a collision and remain

within our comfort constraints. These two cases in some sense represent the

two reasonable extremes: a prediction that has no idea the actor will brake, and

a prediction that knows the actor’s behaviour perfectly. In reality, we might

expect a situation between these two, with some knowledge from a prediction

model informed by a combination of the actor states and environment around
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Figure 7.14: Comparison of speed and acceleration results for a scenario with an
actor slowdown, considering cases where we had no knowledge of the slowdown,
and where we predicted it before it happened. The first 27 seconds of the two
cases are exactly the same as the actor and prediction models are the same up
to this point.

it. It also highlights that reasonable comfort can be sustained even when others

perform actions the ego vehicle is unable to match within the specified comfort

constraints, as long as we are able to predict them far enough ahead of their

occurrence. As such, the ego vehicle is not mirroring what the vehicle ahead is

doing, it is accounting for it and the specified comfort profile jointly.

7.4.7 Stability of future trajectories

In the framework of MPC, we not only solve for the optimal actions at the

current time-step, we also consider some horizon τ∗ ahead, yielding expected

optimal actions at these steps. We find that our methods are reasonably

stable in predicting future states for our toy problems, with examples of future

expected states already seen in each scenario considered. The stability of

this look-ahead planning directly relates to how the dynamic environment

changes between time-steps, and choosing an appropriate look-ahead time is

a compromise between computation power, desired comfort and safety, and

the risk of entering a situation one cannot escape without a harsh manoeuvre.

This look-ahead time however is coupled with the question of how far ahead

can a predictive distribution actually yield informative, precise predictions in

driving scenarios. Such a question is a topic of active research, however in

some scenarios, there may be justification to believe that forecast horizons

could be quite large for A road and motorway scenarios. Consider an example

of an A road in the UK, and where we observe some actor ahead of the ego

vehicle, driving near to the speed limit. Openly available data provided by

various sources, one being NTIS, would allow one to determine the state of

the road long distances ahead, and if we are not near to an exit or entry of
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the A road, we can make sensible predictions of the future road state, and

the actions an actor we observe locally might have to take. As an example,

if we observe higher density of traffic some distance ahead that would not be

visible by on-board sensors or human vision, but can be detected using the

real-time data-streams openly available, we might then know the actor will

have to slow down, and have a reasonable estimate of where and when this

will occur, which in turn will allow us to make longer range predictions than

only considering information locally obtained from the ego vehicle. Such an

idea is referred to as ‘V2X’ or ‘Vehicle-to-everything’ in autonomous driving

frameworks, and offers a clear way to make longer range predictions for actor

behaviour, accounting for factors not immediately visible to the ego vehicle.

7.5 Summary & conclusions

In this work, we have explored what behaviours emerge as a consequence of

abstract definitions of safety, progress and comfort in an autonomous driving

setting. The novelty of this method compared to those already discussed

in the literature is three fold. Firstly, we couple the problems of finding an

optimal route in (x,y) with that of lateral and longitudinal control of the

vehicle. In some cases, work assumes a given path and aims to best follow it

with some optimal control approach. We instead only consider a local path,

that is dynamically updated in a receding horizon style, and is impacted by

growing uncertainty in predictions of actor states. Secondly, our cost function

contains within it an abstract notion of safety based on both minimising velocity

difference of potential collisions and a probabilistic interpretation of future

actor states. Specifically, we have a hard constraint avoiding some region of

space we deem highly likely for an actor to occupy, and the remaining space

has a cost associated with occupying at various speeds which is determined by

the uncertainty in the actor prediction. Doing so avoids specifying some cut

off or influence distance of a potential function, and instead determines our

actions based on our certainty of future actor behaviour. Since we dynamically

update our path, we are able to account for predictions varying in certainty over

time. Finally, the model retains interpretability, which can be seen through the

concept of ‘compromise’, without resorting to a black box method or explicit

rules. This allows practical concerns to be raised, for example ‘we are following

actors too closely’ or ‘we need to leave more lateral distance when overtaking’

and for engineers to directly see how one might address them. It is perhaps a

complex social and legal question to ask what the optimal compromise between

safety, comfort and progress is, however from a modelling approach building

this into the path planning allows for such discussions in the future. Our focus

has consistently been on exploring emergent behaviours that recreate complex
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driving tasks, rather than immediate applicability to a real-world vehicle.

We have shown how our approach generalises to vehicle following, vehicle

passing, and overtaking both with and without oncoming traffic. Such behaviour

is complex, yet we use a minimal description of fundamental quantities we

value to promote it. This also avoids any sort of expert systems approach, not

defining an ‘overtake’ algorithm and a ‘following’ algorithm, instead suggesting

that driving behaviour is inherently a balance of compromises, and these novel

behaviours and actions are implied by certain choices of compromise. In other

phrasing, we have designed a system where some typical driving behaviours

are emergent rather than rigidly enforced. A first specific example of emergent

behaviours include a following distance emerging as a function of future actor

uncertainty and how much we value safety relative to other components. A

second is slowing down, moving laterally, or both when passing slow vehicles

in the outside lane. Further, how early to overtake, when to return to the

original lane of travel and avoiding oncoming traffic are also seen to be emergent

behaviours that in turn define overtake manoeuvres. Finally, we have seen

that even if actors perform actions that violate our comfort profile, we are still

able to react within our constraints, and observed the importance of predicting

such things ahead of time rather than being purely reactive to them.

It should be noted that in the considered cases, other drivers should be

unimpeded by our actions, meaning we do not force them to change their

planned actions, slow down and so forth. This is reasonable for many scenarios

encountered in driving, however for more complex urban scenarios one may have

to consider how our planned actions impact the predicted future actor states.

In these cases, the prediction model would output a distribution, conditioned

on a given input action. If we are forced to impact the actions of another

driver, we should then consider how likely they are to alter their actions given

our planned trajectory, which clearly relates to our prediction models and

safety cost. Such cases would create another variable altering the cost function.

However, for the considered scenarios and many typically encountered, we can

reasonable perform our actions and plan a path that will not require any change

of actions from other actors. Further, dynamically updating our decisions can

account for the changing behaviour of others relative to our own.

In the future, one could consider heuristics to make this optimisation process

more efficient and practical for real-time use. We do not claim the current

method is real-time, however there are many refinements and adaptations that

could be done to account for this from an implementation stand-point. An

alternative and intriguing suggestion is to collect data from an expert driver

in many scenarios, and parametrise the weights of our model on this data.

Then, one could generate many orders of magnitude more driving examples

and scenarios, run our already tuned model in them, and generate a large
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synthetic dataset of optimal control actions and behaviours given a scene.

Finally, one could then use this synthetic dataset to train a complex neural

network to approximate our emergent behaviour model. Doing this will avoid

the computational constraints of solving the full optimisation problem, however

the fact that our model has significant amounts of driving concerns explicitly

incorporated into it means it should be far easier to fit to data than a neural

network. Doing this side-steps the enormous cost of collecting enough data to

train a neural network for autonomous driving, as well as the computational

complexity of our approach. An investigation into the most appropriate network

structure to approximate such a model is needed if this avenue is pursued.

Functional safety is also paramount to consider for applications of any

autonomous driving methodologies. In general, this describes an umbrella term

that encapsulates a wide variety of assurances one would require for the full

autonomous system: ensuring perception works in all weather an environment

conditions, ensuring that for all possible outputs of perception the prediction

models function, understanding all potential outputs that a system may yield

and so forth. Whilst other non-rule based methods, for example reinforcement

learning in the case of [205], have examined this problem, it is still very much a

concern when applying highly complex and non-linear methods. If our method

were to be taken closer to implementation, one would have to consider how to

adhere to such standards and what the accepted standards will indeed be at

the time autonomous vehicles are ready for significant commercialisation.
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Chapter 8

Conclusions and future work

In this thesis, we have applied techniques from data science and mathemat-

ical modelling to tackle a number of problems in the domains of intelligent

transportation systems and intelligent mobility. For the first three discussed

problems, the ultimate goal was to exploit the wealth of data provided across

the SRN to better monitor, understand and model existing infrastructure. For

the final discussed problem, the focus turned to a pressing issue for industry

in autonomous vehicles, and how one might model behaviour on a smaller,

individual vehicle scale rather than across the entire network. Our results

throughout this work have shown how we have successfully used the wealth of

data provided on the SRN to develop new anomaly detection methods, apply

novel mathematical models and derive new understanding from the data, and

address key issues raised in the literature.

In chapter 4, we proposed a non-parametric methodology to define the

typical behaviour of a link, and proposed a principled way of alerting operators

to problems on the link in real-time by tracking fluctuations from this typical

behaviour. Suggesting a natural definition of severity along with this, we

showed that these periods of atypical behaviour aligned closely with incident

labels in the data and spikes in travel time. Upon comparison, the method was

shown to be comparable or superior to existing incident detection methods,

particularly if bimodality was present in the speed data conditioned on the time

of week. Clear future extensions exist for this section of work that would be

relevant if it were to be applied in industry. An obvious one would be to try this

approach directly on loop level data rather than on aggregated link-level data

as we have done. This may provide a more granular view of what is happening

on the network and may further increase the speed with which information

about significant deviations can be extracted. However, to properly validate

such a method, one would ideally use the true incident locations, which are

currently removed before data is input into NTIS. Another avenue for future

work would be to consider what performance criterion should be optimised
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to combine false alarm rate, detection rate and mean time to detect. Whilst

we have used the standard performance index, it requires arbitrary choices of

perturbations to avoid trivial minima, and these choices of course influence

the optimal parameter values. Ideas from the multi-objective optimisation

literature may be appropriate for this, in conjunction with close discussion

with traffic operators.

In chapter 5, we applied a self-exciting point process model to NTIS

incident data. This allowed us to explore both a set of background components,

representing spatial and temporal variation in the incident rate that resulted

in primary incidents, and to model the fact that the occurrence of incidents

may themselves alter the likelihood of another nearby in space and time,

generating secondary incidents. Analysis of each component is given at length

in chapter 5, with the main conclusions being two spatial hotspots and a

double peak daily structure existed in the background, and 6-7% of incidents

are most likely due to self-excitation under the assumptions of the model.

Time and length scales of around 100 minutes and 1 kilometre were identified

for self-excitation. In the future, it would be very informative to repeat the

analysis for a major road without the MIDAS system or other smart motorway

features since we expect this infrastructure to reduce the risk of secondary

incidents. General comments about clustering of incidents on urban roads,

made in [39], suggest that this behaviour is not exclusive to smart motorways,

but also occurs on inner-city roads. Additionally, determining the amount of

self-excitation observed on the other side of a carriageway to an incident would

be informative, to quantify the ‘rubbernecking’ effect. More relevant variables

could also be incorporated into the model, for example weather conditions. One

could also extend our out-of-sample validation to include a trend component,

however a parametric form would be required, as we cannot extrapolate the

non-parametric estimate. Finally, our method of limiting the model freedom

and improving interpretability by enforcing monotonic triggering functions,

along with unidirectional triggering, are not specific to the discussed application,

and can be used when models of this form are applied to different domains

with similar practical considerations.

Chapter 6 considered dynamic prediction of incident durations, incorporat-

ing information from the sensor network to update predictions as new features

became evident. We addressed a number of problems raised in the literature,

aiming to create a system of practical use to operators, and compared multiple

models across different performance criteria. In the static setting, there was

little to differentiate the models, however a random survival forest model

generally showed optimal performance. In the dynamic setting, non-parametric

neural network models and random survival forests were competitive, and

temporal convolutions improved upon manually engineered features from the
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time series. One avenue for future work here is to incorporate more features

in the dynamic models. These include when recovery vehicles arrive, police

involvement and details from on-site reports, along with social media and

weather data that can be captured, and can develop over time. These will likely

have predictive power for an incidents duration, however attaining and incor-

porating the data types they present remains a challenge in dynamic prediction.

Incorporation of more spatial information also remains an avenue for future

work. This can be provided by the loop sensors, and may offer some additional

insight into an incident’s duration that is not captured by the link averaged

values we have used. Finally, from our analysis in chapter 6 we suspect that if

one was able to derive robust, complex features from the time series and feed

them into a random survival forest model, we may see improved performance.

One way to accomplish this is to consider an auto-encoder framework in which

we pre-train a model to determine hidden representations of the series, however

it is unclear if these will offer the same predictive power as we have observed

from the CNN.

Chapter 7 considered the path planning problem for autonomous vehicles.

We formulated an optimisation problem with measures of safety, comfort and

progress, showing that dynamically solving this resulted in the emergence of a

number of complex driving behaviours. Uncertainty in the prediction of other

actors influenced these driving behaviours. Considering future work, one could

adapt our model to better mimic social norms, including eco-friendly driving

and avoiding undertaking. Another avenue would be to consider cases where

no optimisation solution exists such that the probability of occupying the same

space as another actor is above some minimum threshold. In such a case, it may

be irresponsible to proceed and some ‘emergency case’ would likely need to be

implemented. As discussed within the chapter, first calibrating the emergent

behaviour model to data, then generating simulated data from the model to

train a neural network could side-step both the cost of collecting enough data

to train a deep neural network and the computational demand of the emergent

behaviour model. An investigation into the most appropriate network structure

to approximate such a model is needed if this avenue is pursued. Additionally,

it would be interesting to see what emergent behaviours are observed in extreme

scenarios based on real-world experience, for example situations that resulted

in an accident. Open questions in this context include could the optimisation

problem have avoided the accident within the current constraints? Would

slack variables have to be introduced to allow the model to exceed certain

constraints, and where so? Further, do the prediction models offer enough

warning to avoid the incident entirely? Finally, refinement and improvement of

the prediction models determining the future probability distribution of actors

is fundamental to this method, so any work to validate and improve these
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would greatly improve the usefulness of our methodology.

The methodologies we have developed offer practically useful ways for

operators to better manage road infrastructure, and the conclusions drawn

throughout this thesis are useful in understanding different aspects of the

data, infrastructure and traffic patterns on it. Further, these methodologies

and analyses are novel in the considered domain. There are of course still

significant amounts of research that could be done to improve upon each aspect

of our work, or tackle different problems entirely in intelligent mobility and

intelligent transportation systems. Such research will be required to truly

realise the full potential of existing infrastructure and optimally incorporate

new technologies as they become available. Ultimately, this could continue to

improve the reliability and safety of journeys for road users and on a wider

scale, the efficiency of all transportation avenues through intelligent usage of

data science and mathematical modelling.
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Appendix A

Appendix to Chapter 2

A.1 Further discussion on kernel density estimation

We follow the discussion in [111, chapter 3] and [110] to detail where formulae

discussed in chapter 2 arise.

A.1.1 Some properties of the estimator

Throughout the following we consider a Gaussian kernel with mean 0 and

variance 1, written as

k(u) =
1√
2π
e−

u2

2 (A.1)

and denote the kernel estimator with bandwidth ω as

p̂ω(x) =
1

Nω

N∑
i=1

k

(
x−Xi

ω

)
. (A.2)

We note that the kernel is symmetric, and assume the data-points we have are

independent, identically distributed random variables.

The bias

The bias of the estimator p̂ω of the true density p(x) at some point x is defined

as

Bias(p̂ω(x), p(x)) = E [p̂ω(x)]− p(x) (A.3)
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One can compute E [p̂ω(x)] as follows

E [p̂ω(x)] =
1

Nω

N∑
i=1

E
[
k

(
x−Xi

ω

)]
=

1

ω
E
[
k

(
x−Xi

ω

)]
=

∫ ∞
−∞

1

ω
k

(
x− u
ω

)
p(u)du.

(A.4)

We now use the change of variables y = x−u
ω and attain

E [p̂ω(x)] =

∫ ∞
−∞

k (y) p(x− ωy)dy. (A.5)

Taylor expansion of p(x− ωy) yields

E [p̂ω(x)] =

∫ ∞
−∞

k (y)

[
p(x)− ωyp′(x) +

ω2y2

2
p′′(x) + . . .

]
dy

= p(x)

∫ ∞
−∞

k (y) dy − ωp′(x)

∫ ∞
−∞

k (y) ydy +
ω2p′′(x)

2

∫ ∞
−∞

k (y) y2dy +O
(
ω3
)

= p(x) +
ω2p′′(x)

2
m2(k) +O

(
ω3
)

(A.6)

where m2(k) =
∫∞
−∞ k (y) y2dy. The bias of the estimator is therefore

Bias(p̂ω(x), p(x)) =
ω2p′′(x)

2
m2(k) +O

(
ω3
)

(A.7)

Finally, for small ω, we have

Bias(p̂ω(x), p(x)) ≈ ω2p′′(x)

2
m2(k) (A.8)

where high order terms in ω are discarded.

The variance

The variance of the estimator at a point x can be derived as follows

V ar(p̂ω(x)) = V ar

(
1

Nω

N∑
i=1

k

(
x−Xi

ω

))

=
1

N2ω2
V ar
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i=1

k

(
x−Xi

ω

))

=
1

Nω2
V ar

(
k

(
x−Xi

ω
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=

1

Nω2

(
E

[
k

(
x−Xi

ω

)2
]
− E

[
k

(
x−Xi

ω

)]2
)
.

(A.9)
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We have seen from Eqs. (A.3), (A.5) and (A.6) that we can replace E
[
k
(
x−Xi
ω

)]
with ω

[
p(x) + ω2p′′(x)

2 m2(k) +O
(
ω3
)]

. For the remaining term, we see

1

Nω2
E

[
k

(
x−Xi

ω

)2
]

=
1

Nω

∫ ∞
−∞

1

ω
k

(
x− u
ω

)2

p(u)du (A.10)

which we can again apply the change of variables y = x−u
ω to and attain

1

Nω2
E

[
k

(
x−Xi

ω

)2
]

=
1

Nω

∫ ∞
−∞

k (y)2 p(x− ωy)dy. (A.11)

Taylor expanding yields
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(A.12)

Hence, we see

V ar(p̂ω(x)) =
1

Nω2
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(A.13)

If we now consider the amount of data to be large, (N →∞) and a small ω,

we see most of the terms here can be omitted, leaving

V ar(p̂ω(x)) ≈ p(x)

Nω

∫ ∞
−∞

k (y)2 dy. (A.14)

A.1.2 The bias-variance trade-off

One can view the MSE for KDE as a trade-off between the bias and variance

of the estimator. First consider expected MSE, given by

MSE (p̂ω) = E
[
(p̂ω(x)− p(x))2

]
(A.15)

where as before p̂ω is the smoothed estimate and p is the true density function

we wish to approximate. We can re-write Eq. (A.15) in terms of bias and
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variance as follows

MSE (p̂ω) = E
[
(p̂ω(x)− E[p̂ω(x)] + E[p̂ω(x)]− p(x))2

]
= E

[
(p̂ω(x)− E[p̂ω(x)])2 + 2(p̂ω(x)− E[p̂ω(x)])(E[p̂ω(x)]− p(x)) + (E[p̂ω(x)]− p(x))2

]
= E

[
(p̂ω(x)− E[p̂ω(x)])2

]
+ 2E [(p̂ω(x)− E[p̂ω(x)])(E[p̂ω(x)]− p(x))] + E

[
(E[p̂ω(x)]− p(x))2

]
= E

[
(p̂ω(x)− E[p̂ω(x)])2

]
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= E
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]
+ 2 (E [p̂ω(x)]− E[p̂ω(x)]) (E[p̂ω(x)]− p(x)) + (E[p̂ω(x)]− p(x))2

= E
[
(p̂ω(x)− E[p̂ω(x)])2

]
+ (E[p̂ω(x)]− p(x))2

= V ar(p̂ω(x)) +Bias(p̂ω(x), p(x))2.

(A.16)

Clearly, choosing the smoothing parameter is a trade-off between the bias of

the estimator and its variance. However, MSE is point-wise error, and one is

interested in the global accuracy of p̂ω, resulting in the consideration of MISE,

written as

MISE (p̂ω) = E
[∫ ∞
−∞

(p̂ω(x)− p(x))2 dx

]
=

∫ ∞
−∞

Bias(p̂ω(x), p(x))2dx+

∫ ∞
−∞

V ar(p̂ω(x))dx.

(A.17)

A.1.3 Determining AMISE

If we substitute the asymptotic estimates of bias and variance given by

Eqs. (A.8) and (A.14) into Eq. (A.17), we attain the asymptotic mean in-

tegrated square error (AMISE), which has the form

AMISE (p̂ω) =
ω4m2

2(k)

4

(∫ ∞
−∞

p′′(x)2dx

)
+

∫∞
−∞ k (y)2 dy

Nω

[∫ ∞
−∞

p(x)dx

]
.

(A.18)

If we denote R(ν) =
∫∞
−∞ ν

2(z)dz then we see that this can be written as

AMISE (p̂ω) =
R(k)

Nω
+
ω4

4
(m2(k))2R(p′′) (A.19)

which matches Eq. (2.4) exactly.

A.1.4 The minimiser of AMISE

Eq. (A.19) clearly has a minimiser, and it can be derived using standard

methods. If we follow the methods in [206], we consider a general function of

the form

f(x) = Axα +Bx−β (A.20)

with α, β 6= 0, we see that

f ′(x) = Aαxα−1 −Bβx−β−1, (A.21)
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and the minimum of the function is found at

x =

(
βB

αA

) 1
α+β

. (A.22)

Applying this to Eq. (A.19), we see that A = (m2(k))2R(p′′)
4 , B = R(k)

N , α = 4

and β = 1. It is therefore clear that the minimiser of Eq. (A.19), called ωoptimal

is

ωoptimal =

(
R(k)

(m2(k))2R(p′′)

) 1
5

N−
1
5 . (A.23)

Taking a step back, we realise that our data collection tells us of the value of

N , and our choice of kernel allows us to compute R(k) and (m2(k))2. However,

we still do not know p, and therefore cannot directly compute R(p′′).

The idea behind plug-in methods is to choose some reference bandwidth

ω0 to estimate R(p′′), and plug this estimate into Eq. (A.23). As discussed in

[111], the final density estimate p̂ω(x) is less sensitive to the choice of ω0 than

ω, justifying the idea. One can even go further, approximating integrals of

higher order derivatives and see the influence of the initial choice decay further.

Fundamentally, these methods require a choice of bandwidth at some stage,

however they exploit the calculations throughout this section to make a choice

that the final approximation is less sensitive to compared to directly choosing

ω. These methods can be extended to the multivariate setting, where a matrix

of smoothing values is determined. This is discussed at length in [110].

A.2 Further discussion on model interpretability &

SHAP values

To offer more details on SHAP values, we follow discussions in [207] throughout

this section.

A.2.1 Coalition games

To begin, we consider a coalition game, with a pair (N, v) where:

- N is a finite set of players

- v is a function that yields a pay-off for each coalition S ⊆ N

- Assume an empty set gives no pay-off

Shapley values arise from a theory from coalition games, stating there must

be a unique way to divide the pay-off between a coalition that satisfies three

axioms: ‘symmetry’, ‘dummy player’ and ‘additivity’.
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A.2.2 Symmetry

Two players i and j are interchangeable if they always contribute the same

amount to every coalition of other players. Formally, for all S that contain

neither i or j, they are interchangeable if

v(S ∪ {i}) = v(S ∪ {j}). (A.24)

The symmetry axiom states that if i and j are interchangeable, then ψi(N, v) =

ψj(N, v), that is their pay off should be the same.

A.2.3 Dumb players

A dumb player gains nothing personally from joining a coalition, resulting in

∀ S s.t. i /∈ S, v(S ∪ {i})− v(S) = v({i}). (A.25)

Their pay-off must be ψi(N, v) = v({i}).

A.2.4 Additivity

For any two v1, v2, we have for any player i that

ψi(N, v1 + v2) = ψi(N, v1) + ψi(N, v2) (A.26)

where the game (N, v1 + v2) is defined by (v1 + v2)(S) = v1(S) + v2(S) for

every coalition S.

A.2.5 Shapley values

Shapley values tell us how to divide the pay-off in a coalition game in a unique

way such that the 3 discussed axioms are met. The value for player i is

computed as

φi(N, v) =
1

|N |!
∑

S⊆N\i

|S|!(|N | − |S| − 1)! [v(S ∪ {i})− v(S)] . (A.27)

We can intuitively consider how Eq. (A.27) arises as follows. Imagine at

first we have an empty coalition of players. Then, at random, we start adding

players to it. Whenever we happen to add player i, the change in value will be

v(S ∪ {i})− v(S). (A.28)

Now consider, at the point we add i into S, how many ways could S have

formed into its current state? There are |S|! ways this could have happened.
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Further, there are (|N | − |S| − 1)! ways that the remaining players could be

added after i has been. This suggests for a single instance we have

|S|!(|N | − |S| − 1)! [v(S ∪ {i})− v(S)] . (A.29)

However, this is just for a single S, so we then sum over all possible sets S

and then average the value by dividing by the the total number of possible

orderings of players. Combining all of this, we attain Eq. (A.27).

A.2.6 Interpretability in machine learning

Shapley values should be interpreted in the machine learning context similar

to how they are game theory, where the model features represent players

and the game result is the model output. Since computing these values

involves summing over all feature subsets, the raw implementation is quite

computationally expensive. However, a number of computational improvements

are discussed in [132]. Two further complications exist. Firstly, neural networks

cannot take arbitrary missing values. To avoid this problem, one instead

considers some ‘reference’ or ‘background’ dataset, from which values are taken

as replacements when considering alterations of feature vectors [131]. The

appropriate choice of background is an open problem in applying these methods.

For image tasks, it might be clear than one can use a blank image as a reference,

however in many domains an intuitive reference value does not exist. Instead,

it is common to provide a dataset with many records in as the background,

and average over it, which is the approach we take.

Secondly, there is often structure to feature vectors in problems, and

elements are not simply a random collection of possible values for each entry.

One can consider this structure most clearly when considering a one-hot encoded

example. Suppose our feature vector contained three binary values, which

indicate morning, afternoon or evening, which of course correspond to a time

of day being discretised and then one-hot encoded. In the raw methodology

for SHAP in [131], one would go through each feature, and consider setting

it to a reference value and use the change in model output as a measure of

importance. However, suppose we had our time of day encoding, and an entry

occurred during the morning, with a feature vector of [1, 0, 0]. We may then

consider altering the entry corresponding to the binary label for afternoon,

which might lead us to considering a feature vector of [1, 1, 0]. Such an input

is not practically possible, and so the model output for it is irrelevant to our

problem. To avoid this, recent work in [132] incorporates the structure in

the data before performing any perturbations. A partition of the data into

highly correlated components is performed, and then when considering feature

importance, instead of altering a single element, a set are altered if they are
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grouped together. We do however note that we compute the SHAP values

both incorporating this structure and neglecting it, and see similar results in

both cases.

A.3 Further discussion on optimisation

A.3.1 Gradient decent and Newton’s method from Taylor series

The goal of both gradient descent and Newton’s method is, given a current

point x, choose an optimal step ∆x to move towards the minima of a function

f . If we consider a Taylor expansion of f , with some v up to second order

terms, we have

f(x+ v) ≈ f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v. (A.30)

To choose the optimal v that minimises this approximation, we differentiate

and set to 0, giving

0 = ∇f(x) +∇2f(x)v, (A.31)

and hence the optimal step ∆x is

∆x = −
(
∇2f(x)

)−1∇f(x). (A.32)

This suggests an iterative procedure of

x(n+1) = x(n) −
(
∇2f(x)

)−1∇f(x) (A.33)

which is exactly Newton’s method. Gradient descent on the other hand does

not use any information on ∇2f(x). For direct comparison, the methods are

x(n+1) = x(n) − η∇f(x) (Gradient decent)

x(n+1) = x(n) − η
(
∇2f(x)

)−1∇f(x) (Newton’s method).
(A.34)

Here, we have included some step size η that influences how far we move at

each iteration, and can be chosen by backtracking line search.

A.3.2 Newton’s method with equality constraints

Equality constraints can be incorporated into Newton’s method naturally by

doing as follows. If we have the general problem

min (f(x)) s.t. Ax = b, (A.35)
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we recall that Newton’s method is attempting to choose the optimal value of v

to minimise and satisfy

f̂(x+ v) = f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v,

A(x+ v) = b.
(A.36)

If we assume that we start at a feasible point, then the later equation becomes

Av = 0. We can write the Lagrangian and its derivative for this problem as

L = f(x) +∇f(x)Tv +
1

2
vT∇2f(x)v + λTAv

∇L = ∇f(x) +∇2f(x)v +ATλ.
(A.37)

The Karush-Kuhn-Tucker conditions yield

∇f(x) +∇2f(x)v +ATλ = 0 (stationary)

Av = 0 (feasibility).
(A.38)

This yields the final system, giving the optimal step ∆x as(
∇2f(x) AT

A 0

)(
∆x

λ

)
=

(
−∇f(x)

0

)
. (A.39)

If the equality constraint is non-linear, written as hc(x) = 0, then this

system becomes (
∇2f(x) ∇hc(x)T

∇hc(x) 0

)(
∆x

λ

)
=

(
−∇f(x)

−hc(x)

)
(A.40)

where the second equation is derived from considering the Newton step for

solving hc(x) = 0.

A.3.3 The barrier method

The barrier method is an optimisation technique that incorporates inequality

constraints into an optimisation, not just equality ones. Suppose we have an

optimisation problem

min (f(x)) s.t. hci (x) ≤ 0 (A.41)

∀ i ∈ {1, . . .Mc}, meaning we have a function to minimise and have Mc

inequality constraints captured by hci . As discussed in section 2.5.4, the

barrier method replaces the inequality constraints with a penalty term directly
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in the optimisation function, giving

min

(
f(x)− 1

κ

Mc∑
i=1

log(−hci (x))

)
(A.42)

if the log-barrier function is used, and recall that κ > 0 is a parameter that

can vary to ensure the constraints are enforced. We can now solve Eq. (A.42)

subject to any equality constraints using Newton’s method, and in practice

the barrier method performs the steps listed in algorithm 3.

Algorithm 3: Barrier method

Input: Starting point x(0), Stopping threshold ε > 0, Inequality
constraints hci (x), Update factor µ > 1

1 Let Mc be the number of constraints, initialise κ to some positive value.

2 while Mc
κ > ε do

3 Solve the optimisation problem defined in Eq. (A.42) using κ and

starting point x(0)

4 Update starting point x(0) as solution to current problem
5 Update κ with κ→ µκ

6 end
Output: Final optimization result x

A.3.4 Backtracking line search

We have already seen that Newton’s method applies a step of x(n+1) = x(n) −
η
(
∇2f(x)

)−1∇f(x), however there are methods to choose η such that one

takes optimal step lengths, rather than fixed ones. Such methods are called

backtracking line search, and pseudocode describing them is given in algorithm

4. One can apply algorithm 4 at each step of the optimisation problem to

Algorithm 4: Backtracking line search

Input: Parameters α ∈ (0, 1
2 ] and β ∈ (0, 1), function to minimise f(x)

1 Set η = 1

2 Let v = −
(
∇2f(x)

)−1∇f(x)
3 while f(x+ ηv) > f(x) + αη∇f(x)Tv do
4 Update η with η → βη
5 end

Output: Optimal step size η

take optimal sized steps, yielding faster and more stable convergence compared

to using a fixed η.
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Appendix B

Appendix to Chapter 3

B.1 Data pipeline

An outline of the data pipeline developed for this work is given in Fig. B.1.

Download 
Historic Data

Cloud 
Hosted 

Machine

Extract  
Values From 

XML Data

Cloud 
Hosted SQL 
Database

Local Files 
Through SQL

Queries

NTIS (Raw 
Data)

Figure B.1: Outline of the flow of
data from the NTIS system to a
local computer.

1 - Acquire raw NTIS data in XML
format from Highways England.

2 - Extract required information by
parsing XML files.

3 - Insert time series, incident, sign
and speed limit data into an SQL
database.

4 - Query the database to get local
files.

B.2 Conversion of TMS to SMS

Denoting SMS = v̄SM and TMS = v̄TM, it was shown by Wardrop in [142] that,

assuming constant road topology, one can write

v̄TM = v̄SM +
σ2

SM

v̄SM
(B.1)

where σSM is the standard deviation of the instantaneous vehicle speeds. For our

purposes, Eq. (B.1) is not directly applicable as we do not have the resolution

of data to measure the instantaneous speed distribution. Instead, we turn to

methods developed in [141], where the authors derive a heuristic approximation
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to calculate v̄SM given v̄TM. In short, the authors did as follows: first, suppose

we use the definition of variance and linearity of expectation to write

σ2
SM = E

[
(vi − v̄SM)2

]
= E

[
v2
i + v̄2

SM − 2viv̄SM

]
= E

[
v2
i

]
+ v̄2

SM − 2v̄SME [vi] .

(B.2)

From Eq. (B.2), we do not have data measuring E [vi] or E
[
v2
i

]
. If we assume

the traffic stream maintains the same levels of flow and speed along a specified

stretch of road in a single measurement interval, we can approximate E [vi] ≈
v̄TM, meaning we expect the instantaneous speed of any vehicle i to be equal to

the average speed measured at the detector location under these assumptions.

Substituting this into Eq. (B.2), we get

σ2
SM ≈ E

[
v2
i

]
+ v̄2

SM − 2v̄SMv̄TM. (B.3)

Replacing σ2
SM using Eq. (B.1), we attain

v̄SMv̄TM − v̄2
SM ≈ E

[
v2
i

]
+ v̄2

SM − 2v̄SMv̄TM (B.4)

from which we can attain the final quadratic in v̄SM as

2v̄2
SM − 3v̄TMv̄SM + E

[
v2
i

]
≈ 0. (B.5)

Whilst there are actually two unknown quantities in Eq. (B.5), v̄SM and E
[
v2
i

]
,

[141] derived an empirical relationship between the observed v̄TM and unknown

E
[
v2
i

]
, fitting such a relationship across multiple links to ensure generality.

To fit this relationship, the authors took Automatic Number Plate Recog-

nition (ANPR) and sensor data from NTIS. Using these two data sources, and

inspecting 2 weeks of data across 6 different links, the authors proposed a

quadratic relationship between v̄TM and E
[
v2
i

]
, of the form

E
[
v2
i

]
= av̄2

TM + bv̄TM + c. (B.6)

for some constants a, b, c.

Fitting the relationship in Eq. (B.6) to their datasets, the authors found

such a fit had an R2 value of 0.9718 with each coefficient being significantly

different to 0 when tested. The final coefficients derived for the relationships

were: a = 1.22, b = −15.21, c = 207.95.

Given this approximation for E
[
v2
i

]
, we then simply solve Eq. (B.5) using

the quadratic formula, knowing to take the positive square root through realistic

restrictions on the values of space mean speeds, yielding a final approximation
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of

v̄SM ≈
3v̄TM +

√
9v̄2

TM − 8E
[
v2
i

]
4

. (B.7)

The proposed method generated MAPE between 3.6% and 17.9% depending

on link, roughly a 10% improvement compared to simply assuming v̄TM and

v̄SM were equal.

B.3 Seasonality Plots

Seasonality in the data for each link is shown for flow, speed and density in Figs.

B.2, B.3 and B.4 respectively. These seasonal visualisations are constructed by

grouping the data-points by time of week, and computing the median value for

each quantity.
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B.4 Summary statistics of data subsets

B.4.1 Data between April 7th 2017 and June 16th 2017

In table B.1, we show summary statistics for the 10 week subset of data between

April 7th 2017 and June 16th 2017. The differences of note between this, and

the entire dataset shown in table 3.1 are as follows. Firstly, links 11, 12, 13

and 14 report only missing values in this subset, but had non-missing values

for parts of the entire dataset. The same is true for links 61, 62, 63 and 64.

Comparing central tendencies of the data, we see that generally links have

similar median speeds, with the largest differences being on links 8, 42 and 62.

Link 62 has the largest change, with a median speed of 101 km/hr in the full

dataset but 85 km/hr in table B.1, however a very large amount of the data

for link 62 is missing in this subset, so we do not expect the small amount we

have to be as representative of the wider behaviour as we observe in the full

dataset. The same reasoning applies to why we observe the largest difference

in median travel time on this link. Median flow and density values appear

consistent across both tables B.1 and 3.1.

Comparing the spread of data, we see the largest changes in inter-quartile

range of speed values are observed on links 35 and 62. The changes on link

62 can again be attributed to missing data, however for link 35 we see that

the subset of data given in table B.1 has a reduction in inter-quartile range

of 11 km/hr. Inter-quartile ranges of flows are consistent between the full

dataset and subset, and for densities generally vary by less than 4 vehicles per

kilometre.

Since the data in table 3.1 spans over a full year of collection, we will

observe data generated in each season. The subset in table B.1 is collected

between April and June however, so we expect the average temperature to be

higher during this subset compared to the entire dataset, and there to be less

rain, fog and similar conditions that are common in winter in the UK. A final

point of note is that this dataset is used for exploratory analysis in chapter 4,

and there are clearly a significant amount of links appropriate for analysis.
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B.4.2 Data between April 7th 2017 and April 27th 2017

In table B.2, we show summary statistics for the subset of data recorded

between April 7th 2017 and April 27th 2017. The differences of note between

this, and the entire dataset shown in table 3.1 are as follows. Firstly, as this

data is a subset of the data discussed in appendix B.4.1, the same comments

regarding missing data hold here. Similarly, the same comments regarding

expected difference in weather conditions hold. If we compare median speed

values, we see that the largest differences between tables 3.1 and B.2 are seen

for links 8, 41, 42 and 64. There may have been a systematic reason for the

reduction in median speeds we observe considering two of the most significant

changes are seen at neighbouring spatial locations. Median flows are generally

consistent across the full data and this subset, with minor decreases on parts

of the network. Median density values are also consistent across both datasets,

with the largest difference being 4 veh/km on link 42.

Considering the spread of data, we see the largest differences in inter-

quartile range are found on links 28, 37, 38, 42 and 43 when comparing tables

3.1 and B.2. It may be that during this shorter collection period, significant

incidents can impact traffic speed, and their impact is more noticeable through

changes in inter-quartile range when looking at small subsets of data. Such

events would also likely effect neighbouring links, which may be why we see

links 37 and 38, along with links 42 and 43 showing the largest changes in

inter-quartile range. Links 37 and 38 similarly show some of the largest changes

in flow and density inter-quartile range.

This dataset, along with those discussed in appendix B.4.3 and B.4.4 is

used to verify stationarity of the typical density-flow relationship in time, and

exploratory analysis of our incident detection methodology in chapter 4.
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B.4.3 Data between April 28th 2017 and May 18th 2017

In table B.3, we show summary statistics for data collected between April 28th

2017 and May 18th 2017. The differences of note between this, and the entire

dataset shown in table 3.1 are as follows. As this data is again a subset of

the data discussed in appendix B.4.1, the same comments regarding missing

data and expected difference in weather conditions hold here. If we compare

median speed values, we see that the largest differences between tables 3.1

and B.2 are seen for links 8, 29, 41, 42 and 64, which is generally in-line with

appendix B.4.2. Median flows are generally consistent across the full data and

this subset, with peak increases of 100 veh/hr around links 29 and 31. The

most significant decreases in median flows are seen on links 36 and 38, with

differences being around 200 veh/hr. As in appendix B.4.2, link 42 shows the

most significant difference in median density values.

Considering the spread of data, the largest differences in inter-quartile

range of speeds are found on links 35, 36 and 37 when comparing tables 3.1

and B.2. The spatial structure here clearly suggests that this is either due to

major incidents impacting this part of the network in the collection window, or

a similar physical aspect altering the traffic flow, rather than random variation.

Similarly, the largest differences in inter-quartile range for flow and density are

also observed on these links.

This dataset, along with those discussed in appendix B.4.2 and B.4.4 is

used to verify stationarity of the typical density-flow relationship in time, and

exploratory analysis of our incident detection methodology in chapter 4.
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B.4.4 Data between May 19th 2017 and June 8th 2017

In table B.4, we show summary statistics for data collected between May 19th

2017 and June 8th 2017. The differences of note between this, and the entire

dataset shown in table 3.1 are as follows. As this data is again a subset of

the data discussed in appendix B.4.1, the same comments regarding missing

data and expected difference in weather conditions hold here. However, unlike

the subsets discussed in appendix B.4.2 and B.4.3, link 25 reports mostly non-

missing flow values. Comparing median speed values, the largest differences

between tables 3.1 and B.4 are observed on links 8, 42, 49, 62 and 64. Median

flow values are lower on almost all links during this subset, suggesting there was

reduced demand on a network wide scale in this short time-window compared

to the entire collection period. The same is true for density, as it is derived

using speed and flow measurements.

Comparing variation, we see that the largest changes in inter-quartile range

of speed values are found on links 34, 35, 37, 62 and 64. There is an increase

in the speed inter-quartile range across links 30 to 40, again showing spatial

structure in the changes on the network. This could point to significant events

causing larger speed drops than typical, and these being more noticeable in

short windows of data. There is no systematic pattern in the change in the

inter-quartile range of flow values across links, with some being higher than in

the full dataset and some being lower. As expected, links 30 to 40 generally

show an increase in the inter-quartile range of their density values compared

to the full dataset.

Note that the FA cup final took place at Wembley Stadium on May 27th

2017, between two clubs located in London, Chelsea and Arsenal. This may

have impacted traffic on the M25, particularly on the western side, meaning

we would observe what appeared to be a particularly busy Saturday morning

and afternoon. This is the only event we are aware of occurring in the

collection window that would significantly impact the dataset, in-particular

when compared to those discussed in appendix B.4.2 and B.4.3.

This dataset, along with those discussed in appendix B.4.2 and B.4.4 is

used to verify stationarity of the typical density-flow relationship in time, and

exploratory analysis of our incident detection methodology in chapter 4.
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B.4.5 Data between April 7th 2017 and June 20th 2017

In table B.5, we show summary statistics for data collected between April 7th

2017 and June 20th 2017. This data is very similar to the subset described in

appendix B.4.1, just extended by 13 days. As a result, the same conclusions

made in appendix B.4.1 hold here, and the additional 13 days of data show no

additional patterns.

This dataset is used to compare atypical traffic durations with NTIS incident

flags in section 4.3.4.
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B.4.6 Data between September 1st 2017 and November 24th

2017

In table B.6, we show summary statistics for data collected between September

1st 2017 and November 24th 2017. The differences of note between this, and

the entire dataset shown in table 3.1 are as follows. Regarding missing data,

link 63 reports only missing values in this subset, where as in the entire data-set

it had a small fraction of non-missing values. Regarding central tendencies,

the largest differences in median speed are observed on links 42, 64 and 76.

The majority of differences in median speeds are below 2 km/hr, showing little

difference in an absolute sense. Median flow appears to be systematically lower

across most links in table B.6 compared to table 3.1, suggesting some factor

impacting the network wide behaviour. However, the majority of median flows

in table B.6 are within 200 veh/hr of the values in table 3.1.

Inspecting central tendencies, links 33, 34, 35 and 37 show lower speed

inter-quartile ranges in table B.6 than table 3.1. The fact these are nearby in

space clearly suggest a physical factor that propagated across the network was

responsible. Similarly to median flow values, inter-quartile ranges of flows are

generally lower in this subset of data compared to the entire dataset.

This dataset is used in calibrate incident detection methodologies in section

4.6.
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B.4.7 Data between December 21st 2017 and November 1st

2018

In table B.7, we show summary statistics for data collected between December

21st 2017 and November 1st 2018. The differences of note between this, and

the entire dataset shown in table 3.1 are as follows. First, this dataset starts

near Christmas, where one would clearly expect cold temperatures in the UK,

and potentially lower commuter traffic. However, since it spans such a long

time-period, we see this as simply a representative aspect of the data generation

process, and when testing our methodology for detecting events, should be

included in the validation. Secondly, if we consider missing data, we see link

31 reported data for part of the entire collection period, however is entirely

missing in this subset of the data.

If we compare median speed values in table B.7 to those attained from

the entire dataset in table 3.1, we see no systematic increase or decrease. The

largest discrepancies are link 76 (2 km/hr lower median speed) and link 11 (1

km/hr higher median speed) however these values are small enough to consider

them simply noise in the data. Median flow and density values similarly show

little difference from the entire subset. Considering the inter-quartile range of

speed in the entire dataset and this subset, we see the largest discrepancies

occur on links 28 and 48, both of which have a larger inter-quartile range by

2 km/hr. Again, this difference is small enough to be considered negligible.

The same patterns hold when inspecting the inter-quartile ranges of flow and

density in the full dataset and subset considered here.

This dataset is used as unseen test data in the validation of our proposed

incident detection methodology in section 4.6.
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B.4.8 Data between September 1st 2017 and September 31st

2018

In table B.8, we show summary statistics for the subset of data between

September 1st 2017 and September 31st 2018. The differences of note between

this, and the entire dataset shown in table 3.1 are as follows. If we first look to

missing data, we see that link 31 has roughly 10% more data-points missing in

this subset compared to the entire dataset. There are no links that report only

missing values in this subset that do not do the same in the entire dataset.

Considering median speed values, the largest discrepancy is observed on

link 42, with a difference of 3 km/hr compared to the main dataset. All other

links have median speed values in this subset within 1 km/hr of their values

in the entire dataset. Median flow values are marginally higher for the first

40 links in the dataset, with median flow values in table B.8 being up to 60

veh/hr higher than those in table 3.1. In both absolute and relative terms

however, this difference is negligible.

Comparing variation in the data, we see that the largest change in inter-

quartile range of speeds is observed on link 35, with a difference of 1.7 km/hr.

All other values are at most different by 1 km/hr. Again, in both absolute and

relative terms this difference is negligible. The largest change in inter-quartile

range of flow is on link 31, with a difference of just under 100 veh/hr.

This dataset is used to fit point process models to incident data in chapter

5.
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B.4.9 Data between September 1st 2017 and November 30th

2017

In table B.9, we show summary statistics for the subset of data between

September 1st 2017 and November 30th 2017. The differences of note between

this, and the entire dataset shown in table 3.1 are as follows. Considering

missing data, we see that links 11, 12 and 13 report all missing flow values

in this subset, whereas there are some non-missing values in the full dataset.

Whilst link 11 reports speed values for a significant fraction of the window,

this is missing for links 12 and 13. Similarly, we observe a higher proportion of

missing flow data between links 60 and 69 in table B.9 than in table 3.1, but

this is less extreme for speed values on the same links. Note that when our

point process methodology is applied to this subset, we do not use flow data,

so missing values here are less impactful on this aspect of our work.

Considering median speed values, the largest discrepancies are observed

on links 42 and 62, with link 42 dropping by 6 km/hr and link 62 increasing

by 4 km/hr compared to the main dataset. Median flow values are generally

lower across the network in this subset compared to the full dataset, typically

being between 0 and 200 veh/hr lower. If we also consider variation, we see

the largest changes in inter-quartile range of speeds are observed on links 35,

37 and 64. It is unclear if this is due to significant events in the dataset, or

other social factors. Differences in inter-quartile range of flows are negligible

across all links. Since this data is collected between September and November,

we expect there to be cooler temperatures and more rain on average than one

would observe over the collection range of the entire dataset.

This dataset is used to fit point process models to incident data in section

5.4.6.
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B.4.10 Data between December 1st 2017 and February 28th

2018

In table B.10, we show summary statistics for the subset of data between

December 1st 2017 and February 28th 2018. The differences of note between

this, and the entire dataset shown in table 3.1 are as follows. Considering

missing data, we see that links 11, 12 and 13 report less missing values than in

the subset seen in appendix B.4.9, however link 14 still does not report flow

values in this subset, but has some non-missing values in the full dataset. The

same missing data patterns between links 60 and 69 discussed in appendix

B.4.9 are observed here. Note as in appendix B.4.9 that when our point process

methodology is applied to this subset, we do not use flow data, so missing

values here are less impactful on this aspect of our work.

Considering median speed values, the largest discrepancies are observed

on links 30 and 62, with link 30 increasing by 4 km/hr and link 62 increasing

by 5 km/hr compared to the main dataset. As in appendix B.4.9, median

flow values are generally lower across the network in this subset compared to

the full dataset, typically being different by less than 500 veh/hr. If we also

consider variation, we see the largest changes in inter-quartile range of speeds

are observed on links 35, 36 and 37. As these are neighbouring links, it is likely

that this is due to a physical factor during the time-period, rather than noise in

the data. Since this dataset includes the Christmas period, this may indicate

that these links are significant commuter links, and the reduction in commuter

traffic may have resulted in less extreme drops in speed during incident periods.

Differences in inter-quartile range of flows are negligible across all links. As

a result of the time this subset was collected from, we expect the coldest

temperatures to be observed during it and more severe weather conditions on

average than one would observe over the collection range of the entire dataset.

This dataset is used to fit point process models to incident data in section

5.4.6.
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B.4.11 Data between March 1st 2018 and May 31st 2018

In table B.11, we show summary statistics for the subset of data between

March 1st 2018 and May 31st 2018. The differences of note between this, and

the entire dataset shown in table 3.1 are as follows. Considering missing data,

we see that links 11, 12 and 13 now report valid data at almost all times in the

window, in contrast to what was seen in appendix B.4.9 and B.4.10. However

link 9 does not report flow values in this subset, and link 31 reports missing

data for all variables, but has a significant amount of non-missing values in

the full dataset. The same missing data patterns between links 60 and 69

discussed in appendix B.4.9 and B.4.10 are observed here. Again note that

as in appendix B.4.9 and B.4.10 that when our point process methodology is

applied to this subset, we do not use flow data, so missing values here are less

impactful on this aspect of our work.

Considering median speed values, the largest discrepancies are observed on

links 41, 42, 62 and 63, with links 41 and 42 having a lower median speed by 3

and 6 km/hr respectively, and links 62 and 63 having a higher median speed by

5 and 8 km/hr respectively to the main dataset. The fact that these differences

occur on two pairs of links, each pair being adjacent in space, suggests a single

factor may have impacted links 41 and 42, and similarly for links 62 and 63. As

in appendix B.4.9 and B.4.10, median flow values are generally lower across the

network in this subset compared to the full dataset, typically being different by

less than 200 veh/hr. If we also consider variation, we see the largest changes

in inter-quartile range of speeds are observed on links 63 and 64. This is

likely explained by the high fraction of missing speed values on these links

during the subset, and hence insufficient data is available in this subset to

accurately reflect the spread of the data over a wider set of times. Differences

in inter-quartile range of flows are negligible across all links. As a result of

the time period this subset was collected in, we expect temperatures to be

increasing compared to appendix B.4.10, and less severe weather conditions

than one would observe over the collection range of the entire dataset.

This dataset is used to fit point process models to incident data in section

5.4.6.
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B.4.12 Data between June 1st 2018 and August 31st 2018

In table B.12, we show summary statistics for the subset of data between June

1st 2018 and August 31st 2018. The differences of note between this, and the

entire dataset shown in table 3.1 are as follows. Considering missing data, we

see that link 31 reports missing data for all variables at all times in this subset,

however it reports non-missing values for large parts of the full dataset. Recall

that as in appendix B.4.9, B.4.10 and B.4.11 that when our point process

methodology is applied to this subset, we do not use flow data, so missing

values here are less impactful on this aspect of our work.

Considering median speed values, the largest discrepancies are observed on

links 35, 36, 38 and 68, all of which have a lower median speed in this subset

of around 4 km/hr compared to the full dataset. Since three of these links are

very near each other in space, we again might consider a single cause of these

drops in speed. Median flow values are generally higher across the network

in this subset compared to the full dataset, typically being different by less

than 350 veh/hr. If we also consider variation, we see the largest changes in

inter-quartile range of speeds are observed on links 25, 26, 27, 28, 34 and 35.

These changes are large compared to what we typically see in other subsets,

having higher variations by up to 30 km/hr. This suggests a significant amount

of variability in this subset of data compared to the entire dataset. When we

consider why this might be, one could postulate that, because an extended

school holiday occurs during this time window, this may have lead to some

changes in commuter behaviour as they take holidays from work to coincide

with this. Differences in inter-quartile range of flows range between increases

of up to 130 veh/hr and decreases of up to 400 veh/hr. but again these are

negligible relative to the absolute values the attain. In the time window this

dataset is collected in, we expect temperatures to be the highest one would

encounter in the UK, and therefore higher on average than in the full dataset.

This dataset is used to fit point process models to incident data in section

5.4.6.

230



L
in

k
N

u
m

L
en

gth
(k

m
)

N
u

m
L

o
op

s
N

u
m

E
ven

ts
S

p
eed

(k
m

/h
r)

F
low

(veh
/h

r)
T

ravel
T

im
e

(seco
n

d
s)

D
en

sity
(veh

/
k
m

)

M
ed

ia
n

IQ
R

M
in

M
ax

N
u

m
M

issin
g

%
M

issin
g

M
ed

ian
IQ

R
M

in
M

ax
N

u
m

M
issin

g
%

M
issin

g
M

ed
ian

IQ
R

M
in

M
a
x

N
u

m
M

issin
g

%
M

issin
g

M
ed

ia
n

IQ
R

M
in

M
a
x

N
u

m
M

issin
g

%
M

issin
g

0
0
.7

3
1
1

10
0

6
0

12
7

1
43

0
1

2176
1995

0
4140

1430
1

2
6

1
22

2
33

1
6
7
0
1

1
3

2
2

21
0

1
3
3

1
8
28

1
1

3
.6

1
3

1
6

10
2

7
1
4

11
7

1
43

0
1

3752
3396

180
7131

1430
1

1
28

9
1
1
2

9
35

1
6
1
1

1
3
7

36
2

1
7
6

1
4
30

1
2

1
.0

3
1
5

10
6

7
1
1

12
2

1
43

6
1

2820
2720

120
5943

1442
1

3
4

2
29

3
27

1
6
1
7

1
2
6

27
1

1
2
3

1
4
42

1
3

0
.5

2
1
5

10
6

8
1
3

12
9

1
48

0
1

2500
2293

0
5213

1486
1

1
7

1
14

1
42

2
9
9
6

2
2
4

23
0

1
3
7

1
4
86

1
4

0
.4

1
1
5

10
6

8
1
3

12
9

1
48

0
1

2489
2297

0
5213

1442
1

1
4

1
11

1
11

1
6
6
1

1
2
4

23
0

1
4
0

1
4
86

1
5

4
.5

2
1
5

10
8

9
0

12
9

1
43

6
1

3180
2988

0
6540

1486
1

1
52

1
5

1
2
6

1
7
2
7

1
5
8
1
6

1
2

2
9

30
0

1
4
1

1
5
22

1
6

0
.9

2
1
0

10
9

8
5

13
0

1
43

6
1

2520
2340

0
4860

1441
1

2
9

2
24

6
24

1
5
8
1
6

1
2

2
3

23
0

1
4
1

1
4
41

1
7

5
.1

2
2
8

11
0

9
8

12
7

1
43

0
1

2873
2715

0
5628

1523
1

1
68

1
4

1
4
5

2
3
0
1

1
6
1
1

1
2
6

26
0

2
4
4

1
5
23

1
8

1
.0

1
4
6

90
5

5
11

6
1
43

0
1

1824
1652

0
4358

1431
1

4
2

2
32

6
92

1
6
1
1

1
2
1

20
0

1
9
0

1
4
31

1
9

0
.7

1
3
2

10
0

6
1
6

11
3

1
43

6
1

3300
2864

300
7006

8868
7

6
7

2
3

1
21

1
47

1
6
1
7

1
3
4

32
3

1
3
5

8
8
6
87

67
10

0
.9

2
4
7

10
3

7
1
2

11
5

1
43

6
1

3376
3225

240
7920

1442
1

3
1

2
28

2
64

2
9
5
2

2
3
3

34
2

1
6
7

1
4
42

1
11

5
.9

1
3

1
27

10
4

9
1
4

11
6

1
43

6
1

3558
3177

180
7680

1442
1

2
04

1
9

1
8
3

1
5
1
7

2
9
5
2

2
3
5

34
3

1
4
8

1
4
42

1
12

1
.0

2
5
4

10
8

9
1
6

12
6

1
47

9
1

3300
2962

0
7359

1486
1

3
4

3
29

2
30

2
9
9
5

2
3
1

31
0

1
6
8

1
4
86

1
13

6
.8

1
7

1
01

10
4

12
1
3

11
9

1
43

1
1

3540
3220

84
6900

1442
1

2
36

3
3

2
0
4

1
8
7
2

1
5
7
8
5

1
2

3
4

35
1

2
0
5

1
4
42

1
14

1
.0

2
2
4

10
3

15
1
4

12
0

1
47

5
1

3120
2747

0
6120

1437
1

3
5

6
30

2
55

1
5
7
8
6

1
2

3
0

31
0

2
4
3

1
4
81

1
15

1
.2

4
1
2

10
5

14
0

12
1

1
43

0
1

3989
3743

0
7176

1486
1

4
1

6
36

2
34

2
9
4
8

2
3
8

41
0

1
5
4

1
6
48

1
16

1
.5

6
1
1

10
5

11
0

11
9

1
43

0
1

3918
3720

0
7020

1441
1

5
2

6
47

2
11

2
9
4
8

2
3
7

39
0

1
4
1

1
6
03

1
17

0
.5

0
8

10
7

10
0

12
4

1
43

4
1

3909
3720

0
7020

1434
1

1
6

2
14

1
51

1
6
1
8

1
3
6

38
0

2
6
6

1
6
00

1
18

0
.2

1
1
0

10
9

11
8

12
7

1
50

9
1

2700
2671

0
5508

1486
1

6
1

5
8
0

1
6
7
0
7

1
3

2
4

27
0

1
4
5

1
5
59

1
19

1
.2

4
2
0

10
8

10
6

12
4

1
54

4
1

2524
2580

0
5580

1486
1

4
1

4
36

7
39

1
6
7
5
1

1
3

2
3

26
0

2
0
7

1
5
50

1
20

2
.0

4
1
3

10
2

9
1
2

11
7

1
43

6
1

4366
3804

0
7901

1442
1

7
2

6
63

6
36

1
6
6
2
9

1
3

4
3

41
0

2
4
3

1
4
42

1
21

3
.0

6
2
2

10
1

10
7

12
1

1
43

6
1

3660
3243

0
7056

1486
1

1
06

1
1

89
1
5
0
9

1
6
6
2
9

1
3

3
6

34
0

2
4
1

1
4
86

1
22

1
0.0

2
2

3
3

10
8

9
1
3

12
3

1
43

6
1

4200
3697

120
8040

1441
1

3
34

2
8

2
9
3

2
7
6
2

1
6
6
2
9

1
3

3
9

37
2

1
6
5

1
4
41

1
23

0
.5

1
3
7

10
9

10
1
3

12
7

1
43

6
1

3400
3022

0
6761

1950
1

1
7

2
15

1
42

1
6
6
2
9

1
3

3
2

32
0

1
7
6

1
9
50

1
24

6
.4

1
3

1
25

10
7

18
7

12
2

1
43

6
1

4012
3589

360
7620

1442
1

2
17

4
7

1
8
9

3
2
9
1

1
6
6
6
0

1
3

3
9

43
3

2
0
0

1
4
42

1
25

0
.8

2
8
7

10
6

33
1
0

12
3

1
43

6
1

3615
3303

300
7365

1485
1

2
7

1
6

23
2
55

1
6
6
6
0

1
3

3
7

51
3

2
0
6

1
4
85

1
26

2
.6

9
7
4

10
5

36
1
2

12
1

1
43

6
1

4050
3604

360
7483

1442
1

8
8

5
2

76
6
14

1
6
6
6
0

1
3

4
1

60
3

1
9
8

1
4
42

1
27

0
.9

2
8
4

10
6

37
0

12
5

1
43

6
1

3021
2684

0
5987

1442
1

2
9

1
4

25
2
84

1
4
6
5

1
3
2

45
0

1
7
8

1
4
81

1
28

6
.9

1
3

1
02

10
1

45
1
7

11
8

1
43

6
1

4740
4093

360
7800

1441
1

2
57

17
4

2
1
2

1
4
6
6

1
5
8
1
6

1
2

5
0

78
3

1
6
7

1
4
41

1
29

0
.9

3
1
9

99
31

1
1

12
4

1
43

6
1

4140
3572

346
6840

1441
1

3
6

1
4

27
3
05

1
5
8
1
6

1
2

4
5

55
3

1
4
5

1
4
41

1
30

2
.5

4
1
7

97
21

1
6

11
9

1
43

0
1

5220
4440

360
8241

1442
1

9
3

2
1

76
5
64

1
4
5
9

1
5
5

56
4

1
5
7

1
4
42

1
31

1
.2

1
0

-
-

-
-

13247
9

100
-

-
-

-
1324

79
1
00

-
-

-
-

1
3
24

7
9

1
0
0

-
-

-
-

1
32

4
7
9

1
0
0

32
3
.9

6
6
6

10
3

13
0

12
0

1
43

6
1

4882
4231

0
9600

1441
1

1
37

1
6

1
1
6

1
2
6
6

1
6
6
6
0

1
3

5
1

50
3

2
2
1

1
8
67

1
33

1
.0

3
1
86

10
5

22
0

12
2

1
43

6
1

3816
3644

0
8700

1442
1

3
4

1
0

29
5
20

1
6
6
2
9

1
3

4
7

51
0

1
9
7

2
3
29

2
34

1
.9

3
1
65

10
0

50
1
1

12
3

1
43

6
1

4906
4256

194
10063

1442
1

7
0

7
4

57
7
60

1
6
6
6
0

1
3

6
2

90
2

3
0
9

1
4
42

1
35

1
.7

5
2
07

97
67

6
12

4
1
47

4
1

3540
3458

0
8138

1430
1

6
3

11
7

49
1
0
2
2

1
6
6
9
8

1
3

5
5

1
0
0

0
2
3
3

1
4
74

1
36

1
.6

3
6
9

92
45

2
3

11
1

1
43

0
1

5667
4335

0
9570

1456
1

6
3

5
0

51
3
46

1
6
6
5
4

1
3

7
3

93
0

2
6
4

1
4
56

1
37

1
.2

3
8
5

95
55

1
1

11
6

1
43

0
1

3375
2862

0
5860

1430
1

4
8

4
9

38
4
03

7
9
3
9

6
4
2

70
0

1
3
4

1
4
30

1
38

7
.1

1
7

8
3

93
27

1
0

11
8

1
43

0
1

5643
4664

60
7977

1430
1

2
77

8
5

2
1
9

2
5
7
3

2
5
9
3

2
6
5

66
1

2
0
8

1
4
30

1
39

0
.7

2
3
3

97
14

0
13

0
1
43

0
1

4140
3437

0
6180

1434
1

2
7

4
20

2
44

2
5
9
3

2
4
5

41
0

1
4
1

1
5
30

1
40

0
.6

2
3
9

98
15

0
13

0
1
98

5
1

3376
2958

0
5100

1259
3

1
0

2
4

4
18

4
67

3
0
6
2

2
3
6

34
0

1
5
8

1
3
1
74

10
41

1
.9

5
3
8

97
16

0
11

7
1
51

0
1

4797
4328

0
7371

1475
1

7
0

1
1

58
1
3
5
5

5
2
9
2

4
5
2

50
0

2
1
6

3
0
67

2

231



L
in

k
N

u
m

L
en

gth
(k

m
)

N
u
m

L
o
o
p
s

N
u
m

E
ven

ts
S
p

eed
(k

m
/h

r)
F

low
(veh

/h
r)

T
ravel

T
im

e
(secon

d
s)

D
en

sity
(veh

/
k
m

)

M
ed

ian
IQ

R
M

in
M

ax
N

u
m

M
issin

g
%

M
issin

g
M

ed
ian

IQ
R

M
in

M
ax

N
u
m

M
issin

g
%

M
issin

g
M

ed
ian

IQ
R

M
in

M
a
x

N
u
m

M
issin

g
%

M
issin

g
M

ed
ia

n
IQ

R
M

in
M

ax
N

u
m

M
issin

g
%

M
issin

g

4
2

1
.3

3
25

9
0

2
1

0
119

1
634

1
4691

4295
0

7253
1431

1
53

12
40

95
4

5
3
51

4
53

55
0

38
2

2
7
88

2
4
3

4
.6

1
1

39
9
6

1
3

0
116

1
475

1
4682

4286
0

7246
1430

1
171

23
1
4
2

24
9
7

8
4
93

6
50

48
0

22
2

2
9
61

2
4
4

0
.8

1
23

100
9

8
121

1
430

1
4678

4266
0

7200
2671

2
29

3
25

35
8

8
1
76

6
47

46
0

34
4

2
6
71

2
4
5

1
.6

5
22

100
9

0
116

1
430

1
4874

4500
0

8008
1430

1
59

5
50

73
2

8
1
76

6
49

48
0

17
6

1
6
77

1
4
6

0
.2

1
22

100
1
0

10
130

1
430

1
4664

4322
0

7729
1573

1
9

1
7

8
9

7
9
39

6
47

46
0

19
8

1
5
73

1
4
7

0
.9

3
18

100
1
0

7
130

1
430

1
5169

4820
0

8548
1474

1
33

3
25

50
2

2
9
46

2
53

52
0

35
4

1
4
74

1
4
8

1
.4

4
23

9
9

1
0

7
126

1
430

1
5160

4800
0

8548
1430

1
50

5
39

70
4

2
9
46

2
52

51
0

24
4

1
4
30

1
4
9

1
.8

4
22

100
1
0

6
123

1
430

1
5152

4790
0

8580
1430

1
66

7
54

11
0
7

7
9
39

6
52

50
0

21
3

1
4
30

1
5
0

2
.3

7
20

102
1
0

0
129

1
430

1
4427

4169
0

7320
1430

1
80

8
64

36
0

7
3
24

6
43

41
0

13
7

1
9
65

1
5
1

0
.9

3
13

9
8

1
0

0
124

1
669

1
3960

3679
0

6240
4187

3
34

4
27

29
0

7
3
67

6
41

38
0

14
7

7
2
16

5
5
2

3
.8

1
2

16
103

8
0

122
1
430

1
4590

4334
0

7560
1430

1
133

10
1
1
3

12
5
2

2
4
91

2
46

44
2

30
6

2
3
30

2
5
3

1
.0

3
14

108
8

0
130

1
504

1
2982

3098
0

5509
1430

1
33

3
27

58
8

2
8
01

2
28

30
0

13
8

2
4
67

2
5
4

0
.4

2
11

105
8

0
130

1
430

1
2278

2460
0

4680
1431

1
14

1
11

18
7

2
4
91

2
22

24
0

13
1

2
1
76

2
5
5

0
.5

1
15

103
6

0
123

1
553

1
3638

3470
0

6540
1430

1
18

1
15

30
0

3
0
69

2
36

35
0

23
6

2
4
53

2
5
6

6
.1

1
6

29
105

7
0

120
1
430

1
3984

3805
0

7320
1430

1
209

15
1
8
2

27
3
7

7
9
25

6
38

39
2

25
8

2
2
06

2
5
7

0
.8

3
58

104
7

0
124

1
430

1
3495

3300
0

6360
1475

1
26

2
22

19
2

7
3
74

6
34

34
0

16
3

1
5
35

1
5
8

4
.0

1
2

108
102

1
0

0
118

1
430

1
3840

3610
0

6660
1430

1
142

14
1
2
3

78
5

7
9
39

6
38

39
2

15
1

1
5
04

1
5
9

0
.9

3
47

103
1
0

8
128

5
104

4
3105

2880
0

5562
1475

1
33

3
27

50
4

11
1
47

8
32

31
0

14
5

5
1
49

4
6
0

3
.4

1
1

86
9
6

1
6

0
128

1
435

1
-

-
-

-
132

479
100

127
19

95
20

3
0

15
7
89

1
2

-
-

-
-

1
3
24

7
9

1
00

6
1

0
.8

2
62

105
9

0
128

1
487

1
3540

3240
0

6420
1490

1
29

2
23

33
0

15
8
41

1
2

36
30

0
22

5
8
2
63

6
6
2

7
.8

2
0

168
9
8

1
6

0
128

12401
9

3960
3573

0
7056

1475
1

286
35

2
1
9

28
0
6

22
6
63

1
7

46
32

2
39

7
19

2
17

1
5

6
3

1
.0

3
32

9
1

1
1

0
130

39928
30

3173
2850

0
5700

1490
1

40
4

28
73

2
41

7
99

3
2

41
18

0
34

0
40

7
37

3
1

6
4

4
.7

1
1

99
9
5

1
1

0
130

31065
23

3540
3070

0
6520

105
721

8
0

180
22

1
3
1

28
4
3

35
5
44

2
7

39
34

0
20

0
1
0
64

7
0

8
0

6
5

0
.6

2
29

-
-

-
-

132479
100

-
-

-
-

132
479

100
-

-
-

-
1
3
24

7
9

1
00

-
-

-
-

1
3
24

7
9

1
00

6
6

1
.8

4
36

9
8

9
0

125
1
430

1
-

-
-

-
132

479
100

66
6

52
12

8
9

3
7
69

3
-

-
-

-
1
3
24

7
9

1
00

6
7

4
.5

1
1

64
9
9

6
0

123
1
472

1
3626

3360
0

6705
1430

1
163

10
1
3
9

17
8
9

15
1
94

1
1

37
36

0
16

8
2
2
21

2
6
8

0
.9

2
34

101
9

0
124

38039
29

-
-

-
-

132
479

100
32

3
26

64
9

40
6
28

3
1

-
-

-
-

1
3
24

7
9

1
00

6
9

0
.5

1
19

101
7

0
118

1
431

1
-

-
-

-
132

479
100

16
1

14
32

9
15

1
94

1
1

-
-

-
-

1
3
24

7
9

1
00

7
0

1
.9

6
16

105
8

6
119

1
430

1
3859

3696
0

7440
1474

1
66

5
58

11
5
2

2
9
46

2
37

38
0

18
2

1
4
74

1
7
1

9
.5

2
7

47
104

9
8

120
1
430

1
3900

3735
0

7320
1430

1
330

29
2
8
8

42
8
9

13
9
72

1
1

38
38

0
15

4
1
4
30

1
7
2

0
.9

3
17

101
8

0
114

1
430

1
2647

2526
0

5340
1430

1
31

2
27

38
6

15
7
84

1
2

27
27

0
12

9
1
8
61

1
7
3

3
.4

1
0

14
104

7
10

117
1
430

1
3600

3448
180

6631
1430

1
119

8
1
0
6

12
1
0

13
9
72

1
1

35
35

2
13

0
1
4
30

1
7
4

1
.1

4
16

106
8

0
130

1
464

1
2755

2608
0

5258
1430

1
36

3
30

77
2

14
0
06

1
1

26
26

0
10

3
2
0
54

2
7
5

7
.8

2
4

55
103

8
0

127
1
430

1
3420

3120
0

5989
1430

1
273

18
2
2
0

38
5
1

15
6
12

1
2

34
32

0
16

7
1
8
68

1
7
6

1
.2

2
100

9
7

8
0

114
1
430

1
2315

2135
0

4440
1430

1
44

4
37

52
4

15
1
94

1
1

25
24

0
18

5
2
6
72

2

T
ab

le
B

.12:
S
u
m

m
ary

statistics
of

d
ata,

com
p
u
ted

u
sin

g
d
ata

b
etw

een
J
u
n
e

1st
2018

an
d

A
u
gu

st
31st

2018.
T

h
is

su
b
set

is
d
iscu

ssed
in

section
5.4.6

an
d

is
u
sed

to
fi
t

th
e

self-ex
citin

g
p

oin
t

p
ro

cess
m

o
d
el.

F
or

read
ab

ility,
th

e
tab

le
h
as

b
een

sp
lit

across
tw

o
p
ages,

an
d

h
ead

ers
are

in
clu

d
ed

on
b

oth
p

ages.
R

eca
ll

tab
le

3
.1

an
d

th
e

a
cco

m
p

an
y
in

g
d

iscu
ssion

for
in

terp
retation

of
th

ese
tab

les.

232



Appendix C

Appendix to Chapter 4

C.1 Computational aspects of our implementation

Firstly, it is possible, although rare, to find deviations from the typical behaviour

contour that are low-density and high-flow. This is atypically good periods

for a link, and should not be flagged. From the formulation of our system,

such deviations always occur on the top left of the contour. As a result we can

check, when a deviation occurs, if we have exited the contour to the left or

right, and flag if appropriate. Secondly, the contours are typically made up of

a single large component, and occasionally have some minor scattered regions.

If these components are negligibly small relative to the total area of all contour

components, we can neglect them for computational speed and simplicity. To

implement this, we discard any contour components that make up less than

5% of the total area of the entire contours. Numerically, we determine the

contours of typical behaviour using the ks package in R [147], and detect if they

lie outside the contour using the Matlab function ‘inpolygon’. We determine

the distance between a data-point and the contour by defining the contour as

a high-resolution set of (ρ, f) points and finding the closest point in this set to

the data in question. When performing the computations, we have used scaled

flow and density data, using the maximum flow we observe and the density at

which this occurs for each link respectively.

C.2 The point in polygon problem

A simple way to determine if a point lies in a polygon is to use the ‘crossing

rule’ or ‘ray casting’, depicted in Fig. C.1. Numerical difficulties can arise if a

point is closer to the boundary than numerical precision can detect, but due

to secondary thresholding this is not a problem in our application.

233



Crossings = 2

Crossings = 6

Crossings = 0

Crossings = 3

Crossings = 1

Crossings = 1

Figure C.1: An example of the crossing rule for the point in polygon problem.
We cast rays from the point in question in some direction, and count how
many times the ray crosses an edge of the polygon. If the number of crossings
is odd, the point lies inside the polygon, otherwise it is outside. We show
examples of both here, colouring by red and green to indicate outside and
inside respectively. We have used an arbitrary polygon as an example, shown
in blue.

C.3 Overview of hypothesis tests

C.3.1 The Wilcoxon signed rank test

The Wilcoxon signed rank test is a non-parametric test used to compare

paired observations, considering ranks of variables. Firstly, one assumes that

the variable investigated has some natural ordering, the data is recorded in

matched pairs and that each pair is chosen randomly and independently. The

null hypothesis of this test is that the median difference between pairs is 0,

following a symmetric distribution. To test this, we first compute the absolute

difference between paired data-points, and discard any that are equal in value.

We then order the remaining data-pairs by the absolute magnitude of their

difference. The test statistic is computed as

W =
N∑
i=1

[sign(x2,i − x1,i) ·Ri] , (C.1)

with Ri being the rank of the data-pair, and sign(x) being -1 if x < 0, 0 if x = 0

and 1 otherwise. The value of W can then be compared to standard statistical
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tables, and a p-value obtained. Since this test uses ranks, it is resilient to

outliers. However, the distributions of the differences between data-pairs may

not actually be symmetric in practice.

C.3.2 The paired sign test

Another non-parametric test used to compare paired observations is the sign

test. To conduct this, we first assume that the differences between data-points

are independent, each difference comes from the same continuous population

and data has a natural ordering. We collect independent pairs of sample data,

and then initially assume that given any pair x1,i, x2,i, P (x1,i < x2,i) = 0.5.

This means for any measurement pair, it is equally likely that one groups

observation is larger than the other groups. If we denote the number of pairs

where x2,i − x1,i > 0 as S, then under the null hypothesis S follows a binomial

distribution with N trials and probability of success 0.5. Again, standard

statistical tables can be used to determine a p-value given the measured test

statistic.

C.4 Sensitivity to threshold choices

The main question one may have in applying this method is what choice of

α to make, meaning how much mass we want inside the contour of typical

behaviour. This choice will directly impact the shape of the contour, and in

particular it’s area, meaning we will raise more incidents the larger it is made.

In Fig. C.2, we quantify this by comparing the DFTB flags raised for various

values of α, and no thresholding on time-quantiles applied.

From Fig. C.2, we see a clear progression of raising more DFTB incidents

as we increase α from 0.02 to 0.1. For the all cases we see the significant spikes

in the series have DFTB incidents raised, however as we go from α = 0.02 to

α = 0.1 more of the recurrent parts of the series are highlighted as deviations

from typical behaviour. The use of secondary thresholding based on severity

means that making some base choice of α = 0.05 is reasonable and does not

need to be considered from an operational perspective.

C.5 Loop level anomaly detection

Whilst our incidents location data is only given at the link level and hence has

focused our detection work on this scale of data, one could equally perform the

same analysis on loop level data with no changes. To demonstrate that this

is true, we construct the contour of typical behaviour at the link level, then

again at the loop level for loops on the same link. Our results for doing this
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(a) α = 0.02.
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(b) α = 0.05.
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(c) α = 0.10.
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Figure C.2: Comparisons of the incident detection method using various α
values to fit the contour, all on the same 3-week set of data. In (a), (b) and (c)
we plot the travel time series as before, coloured and marked by the presence
of a DFTB incident. In (d) we count the number of incidents raised in this 3
week window at various thresholds as a function of α.
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(c) Loop 2.
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(d) Loop 3.
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(e) Loop 4.
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(f) Loop 5.

Figure C.3: Contour plots of 3-week segmented data. We see that the method
is entirely applicable to loop and link data, and if suitable data is collected
one can validate it at a higher spatial resolution than we have considered.

are shown in Fig. C.3. Using the loop level implementation, one can identify

where is atypical on the network at a higher resolution than the link level.
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C.6 Further example plots
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(a) Training data.
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(b) Test set 1.
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(c) Test set 2.

Figure C.4: Severity examples on another link.
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Appendix D

Appendix to Chapter 5

D.1 Derivation of weekly periodic background com-

ponent

To begin, we first denote

w(w)(t, x) =
µw(t)µs(x)

λ(t, x)
, (D.1)

and substitute this into Eq. (5.5), giving

N∑
i=1

w(w)(ti, xi)1ti∈∪k∈Z[t+kmw−∆t,t+kmw+∆t]

≈
∫ T

0

∫ X

0
w(w)(τ, χ)λ(τ, χ)1τ∈∪k∈Z[t+kmw−∆t,t+kmw+∆t]dχdτ

=

∫ T

0

∫ X

0

µw(τ)µs(χ)

λ(τ, χ)
λ(τ, χ)1τ∈∪k∈Z[t+kmw−∆t,t+kmw+∆t]dχdτ

=

[∫ T

0
µw(τ)1τ∈∪k∈Z[t+kmw−∆t,t+kmw+∆t]dτ

] [∫ X

0
µs(χ)dχ

]

=


⌊
T
mw

⌋∑
γ=0

∫ mw

0
µw(τ)1τ∈[t−∆t,t+∆t]dτ

[∫ X

0
µs(χ)dχ

]

=


⌊
T
mw

⌋∑
γ=0

∫ t+∆t

t−∆t
µw(τ)dτ

[∫ X

0
µs(χ)dχ

]

≈


⌊
T
mw

⌋∑
γ=0

2∆tµw(t)

[∫ X

0
µs(χ)dχ

]

∝ µw(t).

(D.2)
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Similarly to the daily case, we have the indicator function

1ti∈∪k∈Z[t+kmw−∆t,t+kmw+∆t]

incorporating a data-point into the estimate if it lies in some interval [t−∆t, t+

∆t], on any week in the dataset, where t ∈ [0,mw) and ∆t is a small positive

value. From Eq. (D.2), it follows that

µ̂w(t) ∝
N∑
i=1

w
(w)
i 1ti∈∪k∈Z[t+kmw−∆t,t+kmw+∆t], (D.3)

w
(w)
i =

µw(ti)µs(xi)

λ(ti, xi)
. (D.4)

We can simply this expression by introducing t̃i = ti − mw

⌊
ti
mw

⌋
, ∀i ∈

{1, 2, . . . , N}, mapping the raw incident times from the domain [0, T ] onto the

domain [0,mw). Eq. (D.3) then becomes

µ̂w(t) ∝
N∑
i=1

w
(w)
i 1t̃i∈[t−∆t,t+∆t]. (D.5)

Applying smoothing, we attain

µ̂w(t) ∝
N∑
i=1

w
(w)
i

kωw(t− t̃i)∫mw
0 kωw(τ − t̃i)dτ

(D.6)

where ωw is the smoothing bandwidth specific to the weekly background com-

ponent. One can incorporate potential non-negligible contributions from points

either side of the domain, writing klower
weekly = kωw

(
t−

[
ti −mw

⌊
ti
mw

⌋
−mw

])
and kupper

weekly = kωw

(
t−
[
ti −mw

⌊
ti
mw

⌋
+mw

])
, finally yielding

µ̂w(t) ∝
N∑
i=1

w
(w)
i

klower
weekly + kωw

(
t−

[
ti −mw

⌊
ti
mw

⌋])
+ kupper

weekly∫ 2mw
−mw kωw(τ − t̃i)dτ

. (D.7)

D.2 Derivation of spatial triggering component

To determine the spatial triggering function, we again consider two data points(
τ (1), χ(1)

)
and

(
τ (2), χ(2)

)
. We then define ρ(τ (1), χ(1), τ (2), χ(2)) as

ρ
(
τ (1), χ(1), τ (2), χ(2)

)
=


Ag(τ (2)−τ (1))h(χ(2)−χ(1))

λ(τ (2),χ(2))
, if τ (1) < τ (2)and χ(1) > χ(2).

0, otherwise

(D.8)
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If we apply this to Eq. (5.5), letting f(τ, χ) = ρ(ti, xi, τ, χ)1χ−xi∈[x−∆x,x+∆x],

then we attain∑
j

ρ(ti, xi, τj , χj)1χj−xi∈[x−∆x,x+∆x]

≈
∫ T

0

∫ X

0
ρ(ti, xi, τ, χ)1χ−xi∈[x−∆x,x+∆x]λ(τ, χ)dχdτ

= A

∫ T

ti

∫ xi

0

g(τ − ti)h(χ− xi)
λ(τ, χ)

1χ−xi∈[x−∆x,x+∆x]λ(τ, χ)dχdτ

= A

[∫ T

ti

g(τ − ti)dτ
] [∫ xi

0
h(χ− xi)1χ−xi∈[x−∆x,x+∆x]dχ

]
.

(D.9)

If we then let s = χ− xi we have∑
j

ρ(ti, xi, τj , χj)1χj−xi∈[x−∆x,x+∆x]

≈ A
[∫ T

0
g(τ)dτ

] [∫ 0

−xi
h(s)1s∈[x−∆x,x+∆x]ds

]
= A

[∫ T

ti

g(τ)dτ

] [∫ x+∆x

x−∆x
h(s)ds

]
≈ A

[∫ T

ti

g(τ)dτ

]
2∆xh(x)

∝ h(x).

(D.10)

As a result

h(x) ∝
∑
i

∑
j

ρ(ti, xi, tj , xj)1xj−xi∈[x−∆x,x+∆x] (D.11)

and hence

ĥ(x) ∝
∑
(i,j)

ρi,j1xj−xi∈[x−∆x,x+∆x] (D.12)

with

ρi,j =
Ag(tj − ti)h(xj − xi)

λ(tj , xj)
∀ (i, j) s.t. ti < tj and xi > xj . (D.13)

As before, the estimator in Eq. (5.29) can be smoothed to give

ĥ(x) ∝

∑
(i,j)

ρi,jkωh (x−xj+xi)∫ xi
0 kωh (χ−xj+xi)dχ

N∑
i=1

1xi+x≥0

. (D.14)
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D.3 Examples of boundary correction

In chapter 5, we discussed methods of boundary correction. Specifically, we use

mirrored correction when the domain is truncated, and for periodic domains

we include influence from points lying one period either side of the domain in

question. In Fig. D.1, we show examples with and without these corrections

using simulated data. In Fig. D.1a, we show a data-set truncated at 0, and

fit two density estimates to it, one with and one without mirrored boundary

correction. In Fig. D.1b, we show a dataset generated on the domain [0, 10], and

imagine that we are trying to construct a periodic function from it. Inspecting
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(a) Mirrored correction example, using
data generated from a half normal distri-
bution with mean 0, standard deviation
2. Each density estimate is fit with a
bandwidth of 0.75.
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(b) Periodic correction example, using
data generated from a gamma distribu-
tion with shape 5 and scale 1. Each dens-
ity estimate is fit with a bandwidth of
0.5.

Figure D.1: Examples of boundary correction influence on simulated data.
We show the data as a histogram, the non-corrected fits with ( ) and the
boundary corrected fits with ( ).

Fig. D.1a, we see a clear drop in the estimate at the truncation point of 0

without correction. Additionally, from Fig. D.1b, we see a drop at the two

ends of the periodic domain without any correction. These are removed when

we apply our correction methods.
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Appendix E

Appendix to Chapter 6

E.1 Distribution information

In table E.1 we summarise the discussed probability distributions.

Distribution Parameters PDF

Log-normal
µ ∈ (−∞,∞)
σ ∈ (0,∞)

1
xσ
√

2π
e−

(log(x)−µ)2

2σ2

Log-logistic
α ∈ (0,∞)
β ∈ (0,∞)

( βα)( xα)
β−1(

1+( xα)
β
)2

Weibull
λ ∈ (0,∞)
k ∈ (0,∞)

k
λ

(
x
λ

)k−1
e−( xλ)

k

Generalised F

β ∈ (−∞,∞)
σ ∈ (0,∞)
m1 ∈ (0,∞)
m2 ∈ (0,∞)

Let: P =
m1e

ω

m2

1+
m1
m2

eω
, ω = log(x)−β

σ .

Then: 1
σxB(m1,m2)P

m1 (1− P )m2

Mixture
θi∀i ∈ {1, . . . , k}
πi∀i ∈ {1, . . . , k}

∑k
i=1 πif̃i (x;θi)

Table E.1: Summary of distributions considered throughout this work. All
distributions are defined for positive x. Log-normal: Can be seen as assuming
the logarithm of x is normally distributed. Generalised F: B (m1,m2) represents
the beta function. Mixture: Each mixture component has some PDF f̃i(x;θi),
that depends on some parameter set θi, and a component weight πi. The
weighted sum of all components generates the final distribution.

E.2 Incident visualisation

Clear structure was observed incident time series in section 6.3. We show more

examples in Fig. E.1.
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Figure E.1: Example speed time series from NTIS incidents.

E.3 Clustering analysis

When clustering the data by their time-invariant features, we use the ‘daisy’

dissimilarity measure [208] as it is able to handle features of varying types

using the Gower dissimilarity coefficient [209]. Inspecting the average within

cluster sum of squares distance values on both clustering results, we construct

‘elbow plots’ shown in Fig. E.2. From Fig. E.2 we see diminishing reduction

in the within cluster sum of squared distances after around 6 clusters in each

case.

E.4 Models summary

In table E.2, we summarise the models considered, chosen to reflect exist-

ing work in the transportation literature and recent advancements in other

disciplines

E.5 Neural network outputs

We consider a mixture of log-normal distributions as a model of incident

durations, and parametrise this using a neural network. As a result, we have
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(a) Time-invariant features.
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Figure E.2: Plots comparing the within cluster sum of squared distances when
clustering on time-invariant and time-varying features. Distance measures
used are very different, so the numerical values on the y-axis should not be
compared.
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restrictions on the network output for certain nodes, which are accounted for

using activation functions. For each mixture component, the network outputs a

mixture weight, and parameters representing the mean and standard deviation

of the underlying normal distribution, consistent with the implementation of

the log-normal distribution in Tensorflow. A softmax activation is applied to

the mixture weights to ensure their validity. A linear activation is applied to

the network outputs that correspond to the underlying means, and a ‘softplus’

activation applied to the outputs that correspond to the underlying standard

deviations, written as

SP (x) = log(ex + 1). (E.1)

E.6 Hyper-parameter values

In table E.3 we detail the hyper-parameters considered. We apply early stop-

ping, learning rate decay and use a batch size of 128. Models are implemented

in Keras with the Adam optimiser.

Hyper-parameter Values Considered

Dropout 0.5

Kernel size {5, 10}
L1, L2 regularisation 10−4

Learning rate { 10−4, 10−2 }
Number of dense layers {1, 2, 3}

Number of neurons per dense layer {32, 64, 128, 256}
Number of mixtures {1, 2, 3}

Number of CNN layers {1, 2, 3}
Number of filters per layer {4, 8, 16}

Smoothing bandwidth 3 (minutes)

Time series window size {30, 60} (minutes)

ησ {0.1, 1.0}

Table E.3: Hyper-parameters considered when fitting neural network models.

E.7 Comparison of temporal convolutions to manu-

ally engineered time series features

In table E.4 we show the C-index and Brier score comparing a sliding window

CNN model to one that uses the series levels and gradients. The later is

denoted ‘Raw (NP)’. MAPE results are shown in table E.5.
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Prediction Time
Metric Model

Prediction Horizon (minutes) Mean Over
(minutes) 5 15 30 45 60 120 180 240 Horizons

t = 0
C-Index

SW (NP) - 0.798 0.743 0.705 0.682 0.642 0.637 0.634 0.692
Raw (NP) - 0.755 0.701 0.669 0.646 0.599 0.592 0.588 0.650

Brier
SW (NP) 0.007 0.082 0.160 0.213 0.262 0.290 0.195 0.113 0.165
Raw (NP) 0.015 0.122 0.208 0.260 0.306 0.310 0.203 0.116 0.193

t = 15
C-Index

SW (NP) 0.947 0.884 0.811 0.772 0.731 0.678 0.669 0.666 0.770
Raw (NP) 0.946 0.849 0.773 0.729 0.689 0.637 0.624 0.620 0.733

Brier
SW (NP) 0.019 0.069 0.134 0.180 0.230 0.259 0.170 0.096 0.145
Raw (NP) 0.022 0.091 0.163 0.210 0.257 0.272 0.175 0.098 0.161

t = 30
C-Index

SW (NP) 0.960 0.905 0.803 0.761 0.733 0.689 0.681 0.677 0.776
Raw (NP) 0.948 0.870 0.773 0.730 0.702 0.655 0.645 0.641 0.746

Brier
SW (NP) 0.018 0.067 0.138 0.183 0.223 0.236 0.155 0.088 0.139
Raw (NP) 0.021 0.083 0.158 0.203 0.241 0.248 0.160 0.090 0.151

t = 45
C-Index

SW (NP) 0.967 0.880 0.813 0.784 0.749 0.703 0.692 0.688 0.785
Raw (NP) 0.953 0.851 0.777 0.748 0.715 0.667 0.654 0.651 0.752

Brier
SW (NP) 0.019 0.074 0.138 0.176 0.217 0.221 0.148 0.089 0.135
Raw (NP) 0.021 0.087 0.158 0.196 0.234 0.230 0.152 0.090 0.146

t = 60
C-Index

SW (NP) 0.953 0.903 0.830 0.787 0.755 0.711 0.702 0.699 0.793
Raw (NP) 0.938 0.870 0.799 0.763 0.729 0.679 0.667 0.665 0.764

Brier
SW (NP) 0.023 0.073 0.136 0.176 0.212 0.210 0.139 0.089 0.132
Raw (NP) 0.025 0.087 0.153 0.192 0.228 0.221 0.144 0.091 0.143

t = 120
C-Index

SW (NP) 0.968 0.896 0.852 0.824 0.791 0.744 0.739 0.735 0.819
Raw (NP) 0.958 0.847 0.795 0.773 0.745 0.697 0.692 0.689 0.775

Brier
SW (NP) 0.023 0.082 0.128 0.157 0.189 0.183 0.130 0.089 0.123
Raw (NP) 0.026 0.101 0.159 0.180 0.207 0.194 0.135 0.091 0.137

Table E.4: Results comparing a sliding window model and a model where we
input the most recent time series values and gradients. The sliding window
model achieves better C-Index and Brier values across all considered prediction
time and horizon pairs.

Model
MAPE Dynamic Model

Percentile Into Incident Prediction Made at
30th 50th 70th 90th

SW (NP) 31.660 21.998 17.069 10.399

Raw (NP) 33.922 23.140 16.762 10.134

Table E.5: Results comparing a sliding window model and a model where we
input the most recent time series values and the gradients. The sliding window
model achieves better MAPE at the 30th and 50th percentiles, but marginally
worse at the 70th and 90th percentiles.

E.8 SHAP values for categorical features

In section 6.6.2, we considered SHAP values as a measure for variable import-

ance and gave example interpretations of why the neural network model was

outputting particular predictions. Here we plot further examples of what the

categorical values contribute overall to the model. In Fig. E.3, we show the

results for the time of day. Generally, we see that the impact of the time of day

variable attaining the value ‘afternoon’ decreases the model output at short

horizons (5, 30 minutes in Figs. E.3a, E.3b). At a horizon of 60 minutes (Fig.

E.3c) the impact is mixed, and at a horizon of 180 minutes (Fig. E.3d) the

model output is increased. From this we might be lead to believe that incidents

occurring in the afternoon can spill over into the evening rush period and last

a significant amount of time.

Impact of incident type is shown in Fig. E.4. We first note that the NTIS
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Figure E.3: SHAP values for the time of day feature. In each plot, we have
summed the SHAP values for each one-hot encoded value, and then only
plotted the resulting value in the row corresponding to each data-points true
feature value.

incidents data is dominated by abnormal traffic incidents, which is clearly seen

by the random sample of 1000 incidents for explanation containing a large

number of abnormal traffic cases. When we inspect the data, the abnormal

traffic cases are quite heavy tailed, suggesting either they are not always turned

off by the operator in a timely manner, or there are some significant drops in

link performance that are not directly attributed to a physical incident on the

link. We see that general obstructions increase the model output at horizons

of 30 minutes (Fig. E.4b) but decrease it after this. Abnormal traffic incidents

typically increase the model output at higher horizons and decrease it at lower

ones, however the time series and other information could then account for

some of the short-lived abnormal traffic incidents we observe.

The seasons impact on the model are shown in Fig. E.5. Note that with

one year of data, the season variable could capture some long term change in

response time or incident severity. However, we are not told to expect this

from industry experts. When we consider incidents in the winter, we see the

output is mixed at a 5 minute horizon (Fig. E.5a), increased at a horizon of 30

minutes (Fig. E.5b) and decreased at the later horizons. The effect of spring
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Figure E.4: SHAP values for the incident type feature. In each plot, we
have summed the SHAP values for each one-hot encoded value, and then only
plotted the resulting value in the row corresponding to each data-points true
feature value.

appears to be systematically smaller in size than the other seasons.

E.9 AUROC validation

Whilst we have discussed C-index and Brier score for different prediction time,

prediction horizon pairs as was done in [180], we can equally look at the area

under the receiver operator curve (AUROC) as a performance metric, as in

[81]. We show results for this, at particular horizons, averaged over all input

windows, in table E.6, computed using the methods discussed in [210] and

[211].

E.10 MAPE as a function of time

We have looked at the error at different percentiles into an incident because

of the national criteria set by Highways England. However, we note that

some other works consider error at different minutes into an incident. These

are two different methods of aggregation. The first averages across different
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Figure E.5: SHAP values for the season feature. In each plot, we have summed
the SHAP values for each one-hot encoded value, and then only plotted the
resulting value in the row corresponding to each data-points true feature value.

incidents, taking predictions from potentially very different time points, but

that represent the same fraction of the entire incident. The second averages

across the same prediction time for every incident, but disregards the fact that

this might be a very short time relative to the total duration of some incidents,

and a very long time relative to others. We present results for the second

averaging here to offer a clearer comparison to existing work. The results in

Fig. E.6 are qualitatively similar to those in figure 2 of [83].
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Model
Prediction Horizon (minutes) Mean Over

15 30 45 60 120 180 240 Horizons

Cox 0.693 0.716 0.655 0.615 0.558 0.557 0.540 0.619
RSF 0.805 0.745 0.692 0.653 0.582 0.585 0.572 0.662

SW (LN) 0.857 0.798 0.759 0.714 0.622 0.580 0.552 0.697
SW (NP) 0.862 0.808 0.771 0.731 0.642 0.602 0.568 0.712

SW (Kernel) 0.878 0.818 0.780 0.735 0.640 0.594 0.558 0.715
SW (Raw) 0.877 0.809 0.764 0.712 0.613 0.571 0.544 0.698

Table E.6: AUROC values for the dynamic models. Larger values indicate
a better model. We see similar conclusions are present here that were made
when inspecting the time-varying C-index values.
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Figure E.6: APE (both mean and median shown) for some dynamic models
as a function of the minutes into an incident. We show 30 minutes onwards,
which is the point where only incident related information is being fed into
the sliding window model, and the landmarking models are no longer fit with
minor incidents, as these have already ended.
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Appendix F

Appendix to Chapter 7

F.1 Emergent behaviours from a simplified model

Here we present results showing that the emergent behaviours we have observed

are not dependent on the vehicle model, rather the problem formulation. A

simple kinematic bicycle model is

dx(t)

dt
= vx(t) cos(φ(t))

dy(t)

dt
= vx(t) sin(φ(t))

dφ(t)

dt
=
vx(t)

LV
tan(δ(t))

dvx(t)

dt
= ax(t).

(F.1)

and assumes we directly control the acceleration ax and steering angle δ. This

was used in the Apollo path planning framework in [194].

F.1.1 Vehicle following

Vehicle following behaviour is shown in Fig. F.1.

F.1.2 Vehicle passing

Vehicle passing behaviour is shown in Fig. F.2.

F.1.3 Vehicle overtaking

Vehicle overtaking behaviour is shown in Fig. F.3.

F.1.4 Multi-actor vehicle overtaking

Vehicle overtaking behaviour with multiple actors is shown in Fig. F.3.
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the simulation.
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lowing example.

Figure F.1: Optimisation result for a vehicle following example.

F.1.5 Abnormal actor behaviour

The model response to an abnormal actor braking is shown in Fig. F.5.
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the simulation.
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(c) Constraints summary for a vehicle
passing example.

Figure F.2: Optimisation result for a vehicle passing example.
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(b) Example trajectory 11 seconds into
the simulation.
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(c) Example trajectory 13 seconds into
the simulation.
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Figure F.3: Optimisation result for a vehicle overtake example.
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(a) Example trajectory 1 second into the
simulation.
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(b) Example trajectory 5.5 seconds into
the simulation.
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(c) Example trajectory 10 seconds into
the simulation.
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(d) Example trajectory 17 seconds into
the simulation.

Figure F.4: Optimisation result for a vehicle overtake example with multiple
actors.
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actor example.

Figure F.5: Optimisation result for abnormal actor behaviour scenario.
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Université de Lorraine; University of Luxembourg, 2020. URL https:

//hal.archives-ouvertes.fr/hal-02510642.

[124] J. Zhuang and J. Mateu. A semiparametric spatiotemporal Hawkes-type

point process model with periodic background for crime data. Journal

of the Royal Statistical Society: Series A (Statistics in Society), 182(3):

919–942, 2019.

[125] J. Zhuang. Second-order residual analysis of spatiotemporal point pro-

cesses and applications in model evaluation. Journal of the Royal Stat-

istical Society: Series B (Statistical Methodology), 68(4):635–653, 2006.

268

https://hal.archives-ouvertes.fr/hal-02510642
https://hal.archives-ouvertes.fr/hal-02510642


[126] L. Zhongping, C. Lirong, and C. Jianhui. Traffic accident modelling via

self-exciting point processes. Reliability Engineering and System Safety,

180:312–320, 2018.

[127] K. W. Lim, W. Wang, H. Nguyen, Y. Lee, C. Cai, and F. Chen. Traffic flow

modelling with point processes. In Proceedings of the 23rd World Congress

on Intelligent Transport Systems, pages 1–12, Melbourne, Australia, 2016.

[128] A. LeNail. NN-SVG: publication-ready neural network architecture

schematics. Journal of Open Source Software, 4(33):747, 2019.

[129] M. T. Ribeiro, S. Singh, and C. Guestrin. “Why Should I Trust You?”:

Explaining the Predictions of Any Classifier. In Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ‘16, pages 1135–1144, San Francisco, CA, 2016.

[130] A. Shrikumar, P. Greenside, and A. Kundaje. Learning important

features through propagating activation differences. In Proceedings of the

34th International Conference on Machine Learning, volume 70, pages

3145–3153, Sydney, Australia, 2017.

[131] S. M. Lundberg and S. Lee. A unified approach to interpreting model

predictions. In Advances in Neural Information Processing Systems 30,

pages 4765–4774, Los Angeles, CA, 2017.

[132] S. Lundberg. SHAP (SHapley Additive exPlanations). https://github.

com/slundberg/shap, 2017. Accessed: 14-12-2019.

[133] F. A. Potra and S. J. Wright. Interior-point methods. Journal of Com-

putational and Applied Mathematics, 124(1):281–302, 2000. Numerical

Analysis 2000. Vol. IV: Optimization and Nonlinear Equations.

[134] R. J. A. Little and D. B. Rubin. Statistical Analysis with Missing Data.

Wiley, Hoboken, NJ, USA, 3 edition, May 2019.

[135] R. J. A. Little. A test of missing completely at random for multivariate

data with missing values. Journal of the American Statistical Association,

83(404):1198–1202, December 1988.

[136] S. French. Uncertainty and imprecision: Modelling and analysis. The

Journal of the Operational Research Society, 46(1):70–79, January 1995.

[137] S. French, S. Haywood, D. H. Oughton, and C. Turcanu. Different types

of uncertainty in nuclear emergency management. Radioprotection, 55:

S175–S180, May 2020.

269

https://github.com/slundberg/shap
https://github.com/slundberg/shap


[138] Highways England. Safer driving on motor-

ways. https://highwaysengland.co.uk/road-safety/

safer-driving-on-motorways/, 2021. Accessed: 12-02-2021.

[139] B. Harbord, J. White, K. Mccabe, A. Riley, and S. Tarry. A flexible

approach to motorway control. In Proceedings of the 13th ITS World

Congress 2006, pages 37–42, London, United Kingdom, 2006.

[140] V. Knoop, S. P. Hoogendoorn, and H. van Zuylen. Empirical differences

between time mean speed and space mean speed. In Traffic and Granular

Flow ‘07, pages 351–356, 2009.

[141] J. Jiang, J. W. Polak, J. Barria, and R. Krishnan. On the estimation

of space-mean-speed from inductive loop detector data. Transportation

Planning and Technology, 33(1):91–104, 2010.

[142] J. G. Wardrop. Some theoretical aspects of road traffic research. Pro-

ceedings of the Institution of Civil Engineers, Part II:325–378, 1952.

[143] C. F. Daganzo. Fundamentals of transportation and traffic operations.

Emerald Group Publishing Limited, Bingley, United Kingdom, September

1997.

[144] R. D. Kühne. Greenshields’ legacy: Highway traffic. In 75 Years of

the Fundamental Diagram for Traffic Flow Theory: The Fundamental

Diagram, number E-C149, pages 3–10, Woods Hole, MA, 2008.

[145] M. J. Cassidy. Bivariate relations in nearly stationary highway traffic.

Transportation Research Part B: Methodological, 32(1):49–59, 1998.

[146] M. J. Cassidy and B. Coifman. Relation among average speed, flow,

and density and analogous relation between density and occupancy.

Transportation Research Record, 1591(1):1–6, 1997.

[147] T. Duong. ks: Kernel Smoothing, 2018. URL https://CRAN.R-project.

org/package=ks. R package version 1.11.3.

[148] Y-C. Chen, C. R. Genovese, and L. Wasserman. Density level sets:

Asymptotics, inference, and visualization. Journal of the American

Statistical Association, 112(520):1684–1696, 2017.

[149] Systematics. Traffic Congestion and Reliability: Trends and Advanced

Strategies for Congestion Mitigation. Technical report, 2005. URL

https://ops.fhwa.dot.gov/congestion_report/. Federal Highway

Administration, Texas Transportation Institute.

270

https://highwaysengland.co.uk/road-safety/safer-driving-on-motorways/
https://highwaysengland.co.uk/road-safety/safer-driving-on-motorways/
https://CRAN.R-project.org/package=ks
https://CRAN.R-project.org/package=ks
https://ops.fhwa.dot.gov/congestion_report/


[150] J. S. Ren, W. Wang, J. Wang, and S. Liao. An unsupervised feature

learning approach to improve automatic incident detection. In 2012 15th

International IEEE Conference on Intelligent Transportation Systems,

pages 172–177, Anchorage, AK, 2012.

[151] R. L. Cheu, D. Srinivasan, and E. T. Teh. Support vector machine

models for freeway incident detection. In Proceedings of the 2003 IEEE

International Conference on Intelligent Transportation Systems, volume 1,

pages 238–243, Shanghai, China, October 2003.

[152] B. M. Williams and A. Guin. Traffic management center use of incident

detection algorithms: Findings of a nationwide survey. IEEE Transactions

on Intelligent Transportation Systems, 8(2):351–358, 2007.
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