Low-cost, high-speed parallel FIR filters for RFSoC front-ends enabled by CAaSH

Low-cost, High-speed Parallel FIR Filters for
RFSoC Front-Ends Enabled by ChaSH

Craig Ramsay
University of Strathclyde
Glasgow, Scotland
craig.ramsay.100@strath.ac.uk

Abstract—We present a new low-cost, high-speed parallel FIR
filter generator targeting the Xilinx Radio Frequency System
on Chip (RFSoC) and direct RF sampling applications. We
compose two existing approaches in a novel hierarchy: effi-
cient parallelism with Fast FIR Algorithm (FFA) structures,
and efficient multiplierless FIR implementations with Heu,. The
resource usage advantages (in both area and type) are compared
with similar output from the traditional architecture, exemplified
by vendor tools, as well as the Hc,,-based filters without the
FFA optimisation. Although these techniques are well studied
individually in the literature, they have not enjoyed mainstream
use as their structural complexity proves awkward to capture
with traditional Hardware Description Languages (HDLs). This
work continues a discussion of the use of functional programming
techniques in hardware description, highlighting the benefits of
having easily composable circuit generators.

I. INTRODUCTION

We present a new family of low-cost, high-speed, parallel
Finite Impulse Response (FIR) filters targeting direct Radio
Frequency (RF) sampling applications with the Xilinx Zynq
UltraScale+ RF System on Chip (RFSoC). These direct RF
sampling devices demand fast filtering stages that operate
over a number of samples in parallel, since the multi-GHz
sampling clock is necessarily higher than the fabric clock of
the internal Field Programmable Gate Array (FPGA). Figure
1 shows an overview of the XCZU28DR RFSoC’s FPGA and
RF capabilities, highlighting the relative scarcity of hardened
multiply-accumulate resources (DSP48E2s) and the high data-
rates produced by the multiple RF Analogue—Digital Converter
(ADC) and Digital-Analogue Converter (DAC) channels.

Specific RFSoC use cases for parallel FIR architectures are
plentiful. This is exemplified by the vendor support for a set
of parallel, or “Super-Sample Rate” (SSR), circuit generators
[1]. Example use cases include:

« Instrumentation applications that demand processing of
the full available spectrum, including arrays for radio
astronomy [2] and quantum computing readouts [3].

o Channelisation of millimetre wave Intermediate Fre-
quency (IF) signals, including 5G NR (FR2) [4]. Such a
signal can contain multiple baseband channels, occupying
the whole 4 GHz spectrum provided by the RFSoC
and demanding parallel filtering architectures for channel
(de)multiplexing.

Louise H. Crockett
University of Strathclyde
Glasgow, Scotland
louise.crockett @strath.ac.uk

Robert W. Stewart
University of Strathclyde

Glasgow, Scotland
r.stewart @strath.ac.uk

Block RAMs UltraRAMs DSP48E2s Logic Fabric

0

0}

" 8 channel

= 12 bit at 4 GSPS

< 8 channel
« 14 bit at 6.5 GSPS

1/0 Pins

Slel= =lers=Ts]

o SISl

To CPUs = AXI

To RAM < Forts

Fig. 1. Overview of RFSoC’s FPGA and RF Data Converters

o Custom Digital Up/Down Conversion (DUC/DDC) as a
front-end of any radio application. Especially useful when
the characteristics of the available hardened DUC/DDCs
[5] do not meet the application’s requirements.

The demand for sample parallelism and the multi-channel
nature of the RFSoC device amplifies the effects of filter
resource usage, making optimal filter implementation a re-
newed battle in the current context of RFSoC systems. These
optimisations are the concrete focus of our presented work.
However, an equally important theme is the reflection on
our practical implementation experience, casting a critical eye
towards some traditional techniques. Instead of relying on soft-
ware programming languages and ad hoc circuit generators, we
encourage the use of modern functional Hardware Description
Languages (HDLs) such as CAaSH [6] for describing families
of complex, parameterised Digital Signal Processing (DSP)
circuits. Our open source example in CAaSH highlights the
realisable benefits of optimisations whose theory is well stud-
ied but whose implementations remain, for the most part, in
academic folklore.

II. PROPOSED FILTER ARCHITECTURE

To improve upon the traditional parallel filter architecture,
exemplified by the System Generator SSR blockset [1] and
LogiCORE FIR Compiler [7], we employ two well studied
but seldom implemented techniques. We compose these tech-
niques into a novel hierarchy; one optimisation for the general
structure of the filter’s parallelism, and another optimisation
for the multiplications required within each subfilter. These
techniques have enjoyed wide discussion in the literature [8]-

Low-cost, high-speed parallel FIR filters for RFSoC front-ends enabled by CAaSH

[10] but are less often seen as practical implementations since
they both prove to be extremely awkward to describe, at least
in a general form, with traditional HDLs.

The following subsections describes the evolution of this
structure from the traditional architecture, to a new mul-
tiplierless polyphase structure, and finally to our proposed
multiplierless Fast FIR Algorithm (FFA) implementation.

A. Traditional Architecture

The traditional architecture for FPGA implementations of
parallel FIR filters is a polyphase structure with systolic sub-
filters, mapped to specialised DSP48E2 multiply-accumulate
resources. This approach is exemplified by the LogiCORE FIR
Compiler [7] and is often used via the SSR blockset of the
System Generator tool [1].

Fig. 2. Example SSR implementation (Polyphase with systolic subfilters) for
8 non-symmetric coefficients

These “SSR” structures can exploit coefficient symmetry,
although we only visualise the non-symmetric subfilter ar-
chitecture above. Figure 3 shows that the footprint scales
approximately linearly with the level of parallelism (noting
that each subfilter halves in length); with the exception of the
extra adders and registers for phase recombination.

T(2k] oy

B—=Y[2k]

HD— Y[2k+1]

D— Y[2k+2)
P Y[2k+3)

Z(2k+1] oy

T(2k]

T[2k+1]

Z[2k+3] g

Fig. 3. Scaling of polyphase structures from x2 — x4 parallelism

The following section begins to extend this SSR structure,
introducing multiplierless subfilters and exploiting resource
sharing between subfilters.

B. Polyphase Filter with Shared MCM subfilters

As our first step, consider one of the subfilters in isolation.
Figure 4 shows the systolic form being replaced with a
transpose form. All of the multiplications now share the input
as a common operand — a property which we will exploit
despite the higher fan-out of the input signal. The shared input
gives us an opportunity to share resources between each of our
constant multiplications. The last step in Figure 4 shows the
inclusion of a Multiple Constant Multiplication (MCM) block
to perform this optimisation.

Fig. 4. From systolic FIR form to MCM-based transpose form

Many existing MCM algorithms have been presented in
the literature, with the most general approaches being graph-
based algorithms. These aim to decompose an expensive set
of multiplications into a graph of inexpensive additions and
bit shifts (free in the routing, excluding wordlength effects),
precluding the need for any specialised DSP48E2s. The topol-
ogy of these MCM circuits will change profoundly and quite
unpredictably depending on the exact set of coefficient values.
Most algorithms will try not only to minimise the graph
for each multiplication in isolation, but also to optimise for
the MCM block as a whole — although finding the optimal
solution is known to be NP-complete.

We implement the H.,, RSG, and RAG-n algorithms in
[11] using CAaSH, recommending the use of an H.,, variant
which limits the graph depth at the expense of the number of
adders. This will generally result in smaller FPGA areas for
fully pipelined MCM blocks due to the predetermined ratio of
look-up tables to registers (1:2 for the RFSoC’s architecture);
an effect explored further in [9].

Figure 5 shows an MCM graph generated using the Hcyp
variant. It realises an example coefficient set — the 15
coefficient half-band filter (£ir0) present in each of the
XCZU28DR ADC channel’s hardend DDCs. Here we can
implement all 15 multiplications with only 5 pipelined adders
and 7 pipeline registers, rather than 15 DSP48E2s. This also
helps to demonstrate that patterns in the coefficient sets can be
readily exploited. We only need to implement multiplications

Low-cost, high-speed parallel FIR filters for RFSoC front-ends enabled by CAaSH

for unique, odd, positive coefficients; even-valued coefficients
can be recovered through bit shifts, and negative coefficients
can simply infer a subtractor in the filter’s adder chain.

H

Fig. 5. MCM Graph for £ir0 using an Hgyp variant

Due to the above effects, as well as more subtle common-
ality between coefficients identified by the MCM algorithm,
implementing fewer but larger MCM blocks will always
encourage more resource sharing, resulting in a more area
efficient circuit. Figure 6 shows how we can apply this
principle to polyphase filters, combining the MCM blocks
common to each input sample. Since each shared MCM will
implement the full impulse response, H, we will directly
exploit both symmetry and antisymmetry in the coefficients.

Tiok) e MCM {HO0,H1} , 1 P Yl2k]
i 21 21 D1 }jia Y2k+1]
Blat1) e MM {HOHT 7 P e e R e
ﬂ\]
AN D e e P

Fig. 6. Sharing MCMs in polyphase filters

The polyphase structure with shared MCM-based filters is
one structure we will present implementation results for, but
our final optimisation step considers a more complex parallel
structure in place of polyphase.

C. FFA Filter with MCM subfilters

We propose the use of FFA for the overall parallel structure
of the filter, as opposed to the more common polyphase
decomposition. FFA identifies extra resource sharing oppor-
tunities and generally requires fewer subfilters, at the expense
of extra pre/post adders and increased coefficient wordlengths
in some subfilters. An example of a 2-parallel FFA structure
is shown in Figure 7. Although further specialisation can be
made for higher parallelisms, we will nest successive 2-parallel
FFA structures in order to implement any required power-of-
two level of parallelism. This form of FFA is recursive in
nature and can be difficult to represent and parameterise with
VHDL.

T[2k] oy

Fig. 7. Proposed 2-parallel filter with 8 coefficients

Although even the 2-parallel structure shows a multiplier
saving of 25%, this increases with the level of parallelism.
For a 2P-parallel filter with constant subfilter length, and any
natural number p, the polyphase structure needs a multiplier
count proportional to 4P. In contrast, our nested FFA structure
needs a multiplier count proportional to only 3P, although we
acknowledge that the additional pre-adders and and their effect
on wordlength will also contribute to the total circuit area. This
scaling behaviour is shown in Figure 8 and the multiplier count
is explored further in Section III. We consider the full circuit
area (including pre-adders and their effect on wordlength) in
Section IV.

~ Y[2k)

S— HO+ H1 Yi2k+1]

i

L2k+1] o—rd8 H 21

T[2k] 18 HO P— Y[2k]

]

il

D—1 HO+ H1 Yl2k+1]

Z[2k+1) H1 P

& [HO+ HI o

Y[2k+2]

i

e

O— HO+ H1 Y[2k+3]

H— H1 =1

|

T[2k+2] H HO

HO+ H1

i

T[2k+3] H

Fig. 8. Scaling of nested 2-parallel FFA filters for x2 — x4 parallelism

The main trade-off with this optimisation is FFA’s ability
to exploit coefficient symmetry. Each subfilter now has a
unique input, precluding our shared MCM approach used
with polyphase filters. So, although FFA appears extremely
promising in the most general case, there is opportunity for a

Low-cost, high-speed parallel FIR filters for RFSoC front-ends enabled by CAaSH

polyphase equivalent to perform favourably under real-world
coefficient sets with symmetry or duplication. Section III
offers an analysis of how each structure will perform under
the six most common coefficient patterns.

III. MULTIPLIER COUNTS UNDER COEFFICIENT
SYMMETRY

Although FFA reduces the number of multiplications in
general, the pre-adders and Hy + H; response can cause
less favourable performance under coefficient symmetry. Since
symmetry is prevalent in real-world impulse responses, we
quantify the effect in Table I for 2P-parallel filters with 2P N
coefficients, where N is the subfilter length. We consider
common impulse response types, with zero padding to reach
an integer multiple of 27, including:

Nonlinear phase: No exploitable symmetry or antisymme-
try in the coefficients
Even coefficients with
tisymmetry
Odd coefficients with symmetry/antisym-
metry, then padded with one zero
Odd symmetric coefficients where every
second value is zero except the centre
value, padded with one zero

Type-1I/1V: symmetry/an-
Padded Type-1/111:

Half-band:

TABLE I
MULTIPLIER COUNT UNDER SYMMETRIES FOR 2P-PARALLELISM AND
2P N COEFFICIENTS

Structure | Impulse Response Multiplications
Nonlinear Phase 4PN
Padded Type-1 oP [QPN-‘
2
| 2PN
Polyphase | Padded Type-TIl || 9 [& W
Type-Il o0 | 2PN
2
Type-1V oP 2°N
2
Half-band 2P 2N
4
Nonlinear Phase 3PN
p—1 p—2 i N
Padded Type-1 NE+Y 3 +2>" 3 3 +(p-1) {—W
k=1 i=0 j=0 2
p—1 p—2 i N
FFA Padded Type-Ill || N2+ > 38 +23">"3/)+(p—1) {;J
k=1 i=0j=0
N e
Type-11 — 2N 3t
v [5 W + Z
i=0
N =
Type-1V — 2N 3*
ype { 5 J + Z 3
i=0
p—2
Half-band 1+2P7 P+ N+4AN D 3
=0

Although applications of nonlinear phase filters are un-
common, we include results for non-symmetric coefficients
for two reasons. The FFA structure can exploit symmetry
to a certain extent, but the analysis of this is non-trivial.

We include nonlinear phase results to give a complete view
of these patterns, since its multiplier cost is no longer just
double that of types I—=IV. Also, direct RF sampling can
offer some demand for nonlinear phase filters; perhaps in
digital predistortion for power amplifiers, or in instrumentation
applications which are insensitive to phase distortion.

While the equations in Table I are useful for numerical eval-
uation of the algorithms, we appreciate that the visualisation in
Figure 9 provides a clearer insight into the behaviour. The half-
band analysis is for singe-rate filters only; the downsamling
step as included in Section IV would introduce its own effects
in FFA, varying with the level of parallelism.

In particular, note that the required number of multipli-
cations for FFA is dramatically lower than polyphase for
high levels of parallelism (x8 and x16). The extreme results
for low levels of parallelism expose some subtleties in our
consideration of real-world filter coefficients. For x2 parallel,
type-II filters, FFA actually requires more multiplications than
the simpler polyphase structure since the Hy and H; responses
break the symmetry in a worse-case manner. Here, the designer
should opt to either adopt polyphase, or convert to a type-I
impulse response.

These rules of thumb only regard the number of multi-
plications required in the filter structure and neglect any of
the differences in additional adders, registers, and wordlengths
which arise from the full filter implementation. The following
section addresses these factors by presenting implementation
results for each filter structure and impulse response type.

IV. IMPLEMENTATION RESULTS

We present the implementation utilisation and timing results
for a set of filters with 16 bit inputs and coefficients, using a
set of realistic impulse responses. The implementation outputs
and scripts to reproduce them are available at [11], with Vivado
2020.1 targeting the ZCU111 development board.

A. Utilisation Results

Figure 10 shows the Configurable Logic Block (CLB) and
DSP48E2 usage for the FFA, polyphase with shared MCM-
block subfilters, and SSR structures. Results are generated
using out-of-context implementation. We sweep over paral-
lelisms, number of coefficients, filter structures, and impulse
response types. The SSR results are split into two resource
types — one line for DSP48E2 usage (the systolic subfilter
logic) and another for CLBs (likely for overheads in phase re-
combination). Our proposed MCM-based FFA and polyphase
structures only use CLB resources, so the DSP lines are
omitted.

As a general rule, our polyphase and FFA implementations
have a percentage of CLB usage that is nearly bounded by the
percentage of DSP usage of the traditional SSR implementa-
tion. From this, we can think of the proposed designs as a
means of trading off a percentage of DSP usage for a similar
or smaller percentage of the more general CLB fabric. A
stronger assertion is that our total FFA CLB percentage tends
towards approximately 50% of the traditional DSP percentage

Low-cost, high-speed parallel FIR filters for RFSoC front-ends enabled by CAaSH

Nonlinear Phase Padded Type-1

2

£ 1,500 ‘ o] 800F
[&] s .

R, . 600 |-
£ 1,000 | o7 A

g i 400 -
3 5001 e 1 200}
= ¢

§ o ‘ ! 0
o 0 50 100 0

Nonlinear Phase Padded Type-1

2

S 400 3
g

& 300 8
g 200 8
o

£ 100 b
=}

g

ke 0

Required multiplications
=
o
o
T

Filter coefficients Filter coefficients

—e— FFA - - Polyphase

(b) x8 Parallel

2
S 800~ 400
8
E_ 600 300 |-
g 400p 200 |-
°
£ 200 100 -
>
g 0 0 L |
o« 0 0 50 100
Filter coefficients Filter coefficients
(a) x16 Parallel
Nonlinear Phase Padded Type-1
(2]
S 100[
©
k<] |
=
2 s0f
> |
<
=
g o
= 0
(2]
c
2
T |
E— 40
= i
S
- 20
9 -
=
5
& 0

Filter coefficients Filter coefficients

(c) x4 Parallel
Fig. 9.

for nonlinear phase responses, 90% for type-I/Il responses,
and 80% for half-bands.

So far, we have neglected the CLB overhead incurred with
the SSR implementation. The overhead is often comparable
to the fotal CLB area required by our FFA implementation —
especially for high levels of parallelism. Indeed, some of the
extreme results for half-band filtering show that the FFA CLB
area is actually smaller than just the CLB overhead incurred
with SSR; not to mention the additional DSP usage!

The comparison between FFA and polyphase is more subtle.
As predicted in Section III, FFA consistently outperforms
polyphase for nonlinear phase impulse responses — trending
towards 65% for x16 parallelism. For the remaining response
types, the two architectures perform quite similarly for low
levels of parallelism. For higher levels of parallelism, the
FFA’s advantages depend on the length of the subfilters.
Small subfilters result in MCM blocks without much oppor-
tunity for resource sharing, limiting any optimisation. Since

Nonlinear Phase Padded Type-1

2

o T T

®

o 20 | 4 10} .

=

E

s 10 |- | 51 g

4

ag; 0 0 | L

= 0 0 5 10
Type-11 Single-rate Half-band

2 T T

2 15 |-] sl 7]

©

2 .- i

£ wof 10 /o/

g s .

E 51 B 9l N

5

g 0 L | 0 | |

e 0 5 10 0 5 10

Filter coefficients Filter coefficients

(d) x2 Parallel

Number of multiplications synthesised under symmetries

the polyphase structure shares larger MCM blocks between
subfilters, the effects of resource sharing opportunity are less
pronounced. In general, subfilter coefficient lengths of two or
less are better suited to polyphase implementations, while FFA
performs better for longer subfilters; tending towards 80% of
the area for large x16 type-I/1I filters.

B. Timing Results

We have estimated the maximum achievable clock fre-
quency, fmax, for each of the filter structures by implementing
half-band decimators with x8 parallelism and various filter
lengths. This is implemented as a small loopback design (no
longer using out-of-context implementation) and f.x is taken
as the fastest clock rate that meets timing over 6 iterations
of a search, directed by the previous run’s achieved timing
estimate. Source code for this process is available at [11].

Figure 11 shows the results for our MCM-based FFA and
polyphase filters, as well as the SSR architecture. This work

Low-cost, high-speed parallel FIR filters for RFSoC front-ends enabled by CAaSH

x4 Parallel

100

Filter coefficients

x4 Parallel

x2 Parallel x4 Parallel x2 Parallel
6F T T] T T N
c | c
o S
© ©
2 2
5 15
R® R*
c | =
o il
© ©
2 2
5 15
& £
0 50 100 0 50 100 0 50 100
Filter coefficients Filter coefficients Filter coefficients
(a) Nonlinear phase (b) Padded Type-1
‘ —e— FFA & MCM CLBs - 4- Polyphase & MCM CLBs a-.-SSR CLBs A SSR DSPs
x2 Parallel x4 Parallel x2 Parallel
] 15[‘ Toad 8| ‘ ‘
c c
2 k]
T 41 ©
2 2
5 =)
R R
c c
2 2
T 1 s
£ 2
5 13
B R

100

100
Filter coefficients Filter coefficients

(c) Type-11

100

100
Filter coefficients Filter coefficients

(d) Half-band Decimator

Fig. 10. Implementation utilisation results

is conducted in the context of front-end digital filtering for the
RFSoC and we should aim to support the ADC block’s full
data rate. Given the clocking resource’s physical limit of 775
MHz [12] , the lowest possible level of parallelism we can use
is x8 with a clock speed of > 500 MHz. This target frequency
is annotated as a red line in Figure 11 — any implementation
above this line is sufficient for processing at the full ADC data
rates.

T T
T T ST 7 S

800 [~ A|
600 |- e
5
E 400 | i
200 - ‘+ FFA & MCM - o~ Polyphase & MCM -4~ SSR ‘ 8
0 | | | | | |

20 40 60 80 100 120

Filter coefficients

Fig. 11. Maximum frequency results for x8 half-band decimators

All three implementations remain above the 500 MHz
target for every tested coefficient length. The SSR half-band
decimators are the clear winner in terms of fy.x, maintaining
the physical maximum — but anything above our red line
target is acceptable for all front-end applications. The MCM-
based polyphase structure behaves comparably but does start to
dip below the chip’s maximum frequency between 64 — 128
coefficients, possibly due to high fan-out from our shared
MCM blocks. Finally, the FFA architecture displays a similar
trend with filter length but with smaller absolute frequencies.
This reduction is due to our pipelining strategy attempting to
better balance utilisation and f,x. The phase recombination
step introduces critical paths including two adders between
registers, but this can be easily further pipelined when timing
closure is an issue.

Low-cost, high-speed parallel FIR filters for RFSoC front-ends enabled by CAaSH

V. PRACTICAL HARDWARE DESCRIPTION

This paper has, so far, only discussed the advantages offered
by the FFA with MCM-based subfilters architecture. While we
do offer some new analysis of how these two techniques inter-
act in Section III, and publish open source implementations of
both, the fundamental idea is simple — compose two existing,
complementary algorithms from the literature. An interesting
question to reflect on is: “Why has this (to the best of our
knowledge) not been implemented already?”.

We propose that the main factor is due to traditional hard-
ware description languages and practices. Both FFA structures
and MCM blocks have proven awkward to describe with
traditional HDLs (such as VHDL and Verilog) for two different
reasons:

o FFA lends itself to descriptions with structural recursion.
This is not typically supported by traditional HDLs,
perhaps because support for general recursion in a (struc-
tural) language would permit many non-synthesisable
descriptions.

e MCM blocks can demand a huge amount of computation
at compile-time in order to infer the circuit topology.
The exact set of coefficient values will have a profound
effect on the structure of the MCM block’s shifts and
adds — and this must be evaluated during compile-time,
rather than during circuit run-time. This level of meta-
programming is not found traditional HDLs beyond for
generate statements directed by a range of scalars.

Historically, a designer can choose to either handcraft a cir-
cuit for one set of parameters, or turn to software programming
in order to implement an ad hoc circuit generator for their
algorithm of choice (see the implementation of Hcy [8] as
a well regarded example). Implementations of the latter are
used as atomic black boxes, producing specialised HDL output
given a set of input parameters. This approach has known
challenges, including being resistant to circuit verification
techniques. These difficulties arise, in part, from the wide
range of technologies at play with no unifying type checker
or other assistance, as well as an effect similar to the required
“semantic domain crossings” described in [13]. Our addition to
this discussion is that ad hoc circuit generators also come with
fundamental challenges for the composition of complementary
techniques, discouraging demonstrably useful classes of circuit
such as our FFA with MCM-based subfilters architecture.

Figure 12 visualises the main additional steps needed to
compose two (hypothetical) ad hoc circuit generators. In prose,
these steps include splicing new sections into each generator,
working with the non-standard intermediate representation of
each circuit, passing these representations between generators
in a language agnostic way (shown in purple), and merging
the HDL generation sections of the two codebases (shown in
red).

We instead advocate for modern functional HDLs which
are expressive enough to directly represent our algorithms
and their staging — staging encodes when an expression
should be evaluated (e.g. compile-time or circuit run-time).

Parallelism o>
FFA Generator VHDL
Coefficients e——» (in Perl)
Coefficients « > VHDL

Fig. 12. Composing ad hoc circuit generators

Our implementation uses the language CAaSH, which offers
these features under a single source language, type checker,
simulator, and compiler. This massively simplifies verification
efforts and enables the designer to have confidence in the
final circuit output for all combinations of parameters, not
just a select few test cases. Functional approaches like ChaSH
directly encourage composition by allowing subcircuits to be
passed to and from circuit generators. This allows exploration
of the design space for many different algorithm combinations
with little extra effort.

In reality, the implementation presented in this paper does
lean heavily on Template Haskell [14] for meta-programming,
including the staging and flattening of the structural recursion.
This comes with a few practical difficulties such as a loss
of type safety (historically, at least) and navigating the stage
restrictions present in the Glasgow Haskell Compiler — the
Haskell compiler on which CAaSH is based. ChaSH does
facilitate our implementation with clear advantages over ad
hoc circuit generators, but this work also has encouraged us
to entertain two new language features for future work.

First of all, support for full spectrum dependent types can
enable a host of quality of life improvements for the designer,
including:

« Concise, type-safe minimum wordlength tracking, espe-
cially for DSP with constant coefficients. For readability,
our ChaSH implementation manually resizes inputs to the
worst-case wordlength and relies on EDA tools to prune
uninhabited bits.

¢ Encoding proofs of circuit behaviour in the source lan-
guage, wherever formal verification is demanded.

Our reliance on meta-programming techniques also high-
lights the need for multistage programming, preferably as a
first class element of the source language. This enforces a clear
split between compile-time computations and circuit run-time
computation in a type safe way. Not only can this address some
common criticism of Template Haskell, it may even alleviate
the pressure on the compiler for unrolling primitive recursion
and partial evaluation; we can write unrolling functions in
the source language explicitly and evaluate them at compile-
time. This is in opposition to ChaSH’s set of templated
VHDL code for recursively defined library functions. These
ideas are explored further in [15]-[17] and could further
encourage modern, verifiable DSP solutions for high-speed
RFSoC applications and beyond.

Low-cost, high-speed parallel FIR filters for RFSoC front-ends enabled by CAaSH

VI. RELATED WORK

Throughout this paper, the proposed MCM-based FFA
filter architecture has been compared against the traditional
polyphase structure with systolic subfilters exemplified by [7].
The comparison is particularly relevant since the proposed
filter can be used as a direct, drop-in replacement for the
traditional architecture. This compatibility is important due to
the prevalence of System Generator/LogiCORE FIR compiler
designs in the RFSoC’s ecosystem; a designer can exploit the
resource savings reported in this paper with minimal effort.

We acknowledge that filters, even for wide bandwidth
signals, can be designed with a greatly reduced computational
workload using Cascade Non-Maximally Decimated Filter
Banks (NMDFBs) [18]. This employs multirate DSP tech-
niques and time-sharing of DSP48E2s to reduce the workload,
rather than optimising a direct FIR filter implementation.
However, the NMDFB approach does burden the designer with
the task of constructing a suitable bank of complementary
filter responses. Our proposed designs instead offer resource
savings via drop-in alternatives, without any extra design
considerations.

VII. CONCLUSION

We have demonstrated that, in the context of RFSoC
applications, a combination of FFA parallelism and MCM-
based subfilters can generate area-efficient and high-speed
parallel filters. These filters quite consistently exchange the
traditional architecture’s DSP usage for a similar percentage of
the generic fabric resources (CLBs) — or for nonlinear phase
filters, often approximately half of the equivalent DSP usage.
This is ignoring the CLB “overhead” incurred by the tradi-
tional architecture as well — there are (somewhat extreme)
scenarios where our full implementation has a smaller CLB
area than the traditional implementation’s overhead alone.

There are some interesting edge-cases for small filters with
low parallelism where our polyphase structure with shared
MCM blocks will often outperform an FFA equivalent, due to
better exploitation of coefficient symmetry explored in Section
III. Both implementations are presented here, and are available
under open source licences.

Finally, we report on our practical experiences with the
hardware description, identifying some limitations of tra-
ditional methods and how these discourage exploration of
circuits with similarly complex structures. After identifying
how modern functional HDLs, such as CAaSH, help alleviate
some of these difficulties, we also propose language extensions
which could improve the experience for future designers.

ACKNOWLEDGEMENT

The authors would like to thank Xilinx for supplying EDA
tools for this project and acknowledge funding for Craig
Ramsay under EPSRC grant no. EP/N509760/1. All source
code underpinning this publication is openly available at [11].

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

(171

(18]

REFERENCES
Xilinx, Inc. (2018) UG897 — Vivado Design
Suite User Guide: Model-Based DSP Design Using
System Generator (v2018.3). [Online]. Available:

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018
_3/ug897-vivado-sysgen-user.pdf

P. Day, H. Leduc, B. Mazin, A. Vayonakis, and J. Zmuidzinas, “A
broadband superconducting detector suitable for use in large arrays,”
Nature, vol. 425, pp. 817-21, October 2003.

J. Pfau, S. P. D. Figuli, S. Bihr, and J. Becker, “Reconfigurable FPGA-
based channelization using polyphase filter banks for quantum com-
puting systems,” in Applied Reconfigurable Computing. Architectures,
Tools, and Applications. Cham: Springer International Publishing, 2018,

pp. 615-626.

3rd Generation Partnership Project (3GPP). (2018) 5G;
NR; Base Station (BS) radio transmission and reception,
TS 38.104 version 15.2.0 Release 15. [Online]. Available:

https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.02.00_60/
ts_138104v150200p.pdf

Xilinx, Inc. (20200 PG 269 — Zynq UltraScale+
RFSoC RF Data Converter v2.3. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip_documentation/
usp_rf_data_converter/v2_3/pg269-rf-data-converter.pdf

C. Baaij, “Digital circuit in cAash: functional specifications and type-
directed synthesis,” Ph.D. dissertation, University of Twente, Nether-
lands, 1 2015.

Xilinx, Inc. (2015) PG149 — FIR Compiler
v7.2 LogiCORE 1P Product Guide. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip_documentation

/fir_compiler/v7_2/pg149-fir-compiler.pdf

Y. Voronenko and M. Piischel, “Multiplierless multiple constant
multiplication,” ACM Trans. Algorithms, vol. 3, no. 2, p. 11-es, May
2007. [Online]. Available: https://doi.org/10.1145/1240233.1240234

K. N. MacPherson and R. W. Stewart, “Low FPGA area multiplier
blocks for full parallel FIR filters,” in Proceedings. 2004 IEEE Inter-
national Conference on Field- Programmable Technology (IEEE Cat.
No.04EX921), Dec 2004, pp. 247-254.

D. Parker and K. Parhi, “Area-efficient parallel FIR digital filter imple-
mentations,” in Proceedings of International Conference on Application
Specific Systems, Architectures and Processors: ASAP ’96, 1996, pp.
93-111.

Craig Ramsay. (2021) Data for: "Low-cost, High-speed Parallel FIR
Filters for RFSoC Front-Ends Enabled by ChaSH". [Online]. Available:
https://doi.org/10.15129/a2¢118f2-48a8-40d2-8896-89b9da7 1 adbe
Xilinx, Inc. (2021) DS 926 — Zynq UltraScale+ RFSoC Data
Sheet: DC and AC Switching Characteristics. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/data_sheets/ds926-
zynq-ultrascale-plus-rfsoc.pdf

G. J. Smit, J. Kuper, and C. P. Baaij, “A mathematical approach towards
hardware design,” in Dagstuhl Seminar Proceedings. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, Germany, 2010.

T. Sheard and S. Peyton Jones, “Template meta-programming for
haskell,” in Proceedings of the 2002 Haskell Workshop, Pittsburgh, Octo-
ber 2002, pp. 1-16. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/template-meta-programming-for-haskell/

E. Brady, J. McKinna, and K. Hammond, “Constructing correct cir-
cuits: Verification of functional aspects of hardware specifications with
dependent types,” in Trends in Functional Programming, vol. 8. United
Kingdom: Intellect Books, 2008, pp. 159-176.

C. Ramsay, L. H. Crockett, and R. W. Stewart, “On applications of
dependent types to parameterised digital signal processing circuits,” in
2021 IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS), 2021, pp. 787-791.

E. Brady and K. Hammond, “A verified staged interpreter is a verified
compiler,” in Proceedings of the 5th International Conference on
Generative Programming and Component Engineering, ser. GPCE ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
111-120. [Online]. Available: https://doi.org/10.1145/1173706.1173724
f. harris, E. Venosa, X. Chen, and C. Dick, “Cascade non-maximally
decimated filter banks form efficient variable bandwidth filters for
wideband digital transceivers,” in 2017 22nd International Conference
on Digital Signal Processing (DSP), 2017, pp. 1-5.

	Abstract
	I. INTRODUCTION
	II. PROPOSED FILTER ARCHITECTURE
	III. MULTIPLIER COUNTS UNDER COEFFICIENTSYMMETRY
	IV. IMPLEMENTATION RESULTS
	V. PRACTICAL HARDWARE DESCRIPTION
	VII. CONCLUSION
	ACKNOWLEDGEMENT
	REFERENCES

