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Abstract 16 

Shallow-rapid landslides are a significant hillslope erosion mechanism and limited 17 

understanding of their initiation and development results in persistent risk to infrastructure. 18 

Here, we analyse the slope above the strategic A83 Rest and be Thankful road in the west of 19 

Scotland. An inventory of 70 landslides (2003-2020) shows three types of shallow landslide, 20 

debris flows, creep deformation and debris falls. Debris flows dominate and account for 5,350 21 

m3 (98 %) of shallow-landslide source volume across the site. We use novel time-lapse vector 22 

tracking to detect and quantify slope instabilities, whilst seismometers demonstrate the potential 23 

for live detection and location of debris flows. Using on-slope rainfall data, we show that 24 

shallow-landslides are typically triggered by abrupt changes in the rainfall trend, characterised 25 

by high-intensity, long duration rainstorms, sometimes part of larger seasonal rainfall changes. 26 

We derive empirical antecedent precipitation (>62mm) and intensity-duration (>10 hours) 27 

thresholds over which shallow-landslides occur. Analysis shows the new thresholds are more 28 

effective at raising hazard alerts than the current management plan. 29 

The low-cost sensors provide vital notification of increasing hazard, the initiation of 30 

movement, and final failure. This approach offers considerable advances to support operational 31 

decision-making for infrastructure threatened by complex slope hazards. 32 

1. Introduction 33 

Shallow landslides occur where material fails in the upper layers of a soil profile, usually 34 

up to ~2m depth. These landslides usually have little precursory warning and may fail rapidly 35 

(e.g. debris flow; Persichillo et al., 2016) or slowly (e.g. creep deformation; Hungr et al., 2014). 36 

Their unpredictability means they pose a significant global hazard, particularly when 37 

favourable material and fluidisation conditions transform them into debris flows (e.g. 38 

Zimmerman et al., 2020). Debris flows are extremely rapid (>5 m/s), saturated debris-rich 39 
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landslides that exist along the broad spectrum of flow-like landslides (Hungr et al., 2014). 40 

Debris flow runout potential and their capacity to entrain large quantities of water and sediment 41 

make them a significant risk where linear infrastructure traverses affected slopes (Geertsema et 42 

al., 2009; Meyer et al., 2015). Debris flows can be broadly grouped into channelized debris 43 

flows (CDFs) that are constrained for their flow path and hillslope (or open slope) debris flows 44 

(HDFs) that occur on non-incised slopes (Chen et al., 2009). CDFs and HDFs can transition 45 

into one another where HDFs meet gullies or CDFs breach channels and flow over slopes; it is 46 

this hillslope-gully coupling that can control the hazard potential (Milne et al., 2009). CDFs 47 

often occur in torrent systems, such as the Illgraben, Switzerland (Badoux et al., 2009), where 48 

the repeated flow path removes some of the spatial risk uncertainty and allows focussed 49 

monitoring of a single outflow channel. 50 

However, at some sites historic evidence shows debris flows may occur from anywhere 51 

across wide areas with suitable topography and materials. This leads to both spatial and 52 

temporal uncertainty on triggering location and runout. At such sites, where the risk is high, a 53 

combination of active mitigation (physically controlling site aspects using barrier, net, pit, or 54 

deflection engineering infrastructure) and passive mitigation (reducing impacts via land-use 55 

planning, closures, and warning systems) methods can be used (Huebl and Fiebiger, 2005; 56 

Vagnon, 2020) but can be costly given the wide area of potential source and runout zones. In 57 

Scotland, debris flows have repeatedly damaged roads and rail lines resulting in economic and 58 

social costs (Winter et al., 2019a), with many valleys showing historic (and prehistoric) 59 

evidence of multiple debris flow deposits slope wide (Innes, 1983; Luckman, 1992; Curry, 60 

2000). Contemporary infrastructure damaging debris flows have often been linked to high-61 

intensity rainfall (Winter et al., 2019b).  Climate forecasts suggest that in the future Scotland 62 

may receive more high intensity rainfall events in the winter and lower-frequency but higher-63 

intensity rainfall during summer months (Finlayson, 2020; UKCP, 2018, Jones et al., 2013). 64 
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Such changes in antecedent conditions and rainfall patterns may perturb hillslope sediment 65 

cascades (Bennett et al., 2014), releasing sediment from storage that is considered dormant, 66 

increasing the shallow-rapid landslide hazard in mountainous areas (Winter and Shearer, 2017). 67 

Monitoring strategies for determining the level of landslide hazard posed by rainfall, in 68 

a given area or slope, vary from global to hyper-local in scale. Global determination of landslide 69 

hazard requires the combination of variables such as slope, lithology, soil wetness, antecedent 70 

rainfall, and rainfall (Stanley et al., 2021). Whilst useful for global and regional indications of 71 

landslide hazard, these global models do not allow detailed analysis of areas smaller than the 72 

resolution of the data. Input data are at coarse resolution which do not always accurately 73 

represent the real-world spatial variability (Ozturk et al., 2021), making predictions noisy or 74 

imprecise. Where a higher confidence in the level of landslide hazard is required for decision 75 

making at linear infrastructure for example, hyper-local monitoring can be deployed. Hyper-76 

local monitoring collects the detail required to make site specific thresholds for landslide 77 

initiation and makes significant improvements over global landslide susceptibility models 78 

(Ozturk et al., 2021). 79 

Here we demonstrate a novel combination of near-real-time, multi-disciplinary, 80 

monitoring techniques that allow remote detection and quantification of slope changes and 81 

supplement the regional Landslide Management Plan (LMP). The objective of these techniques 82 

is to improve our understanding of shallow-rapid landslide trigger mechanisms that threaten 83 

road users and infrastructure, and thus enhance alert capabilities for road asset managers at sites 84 

that are debris flow prone to shallow-landslide / debris flow transitions. These new, relatively 85 

low-cost, monitoring techniques and analyses are essential in helping to better manage the 86 

present and future increased risk of debris flows. 87 
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2. Study area 88 

The A83 Rest and be Thankful (RabT), a key road into and out of west Scotland (Fig. 89 

1a), bisects the south-western slope of Beinn Luibhean upslope from Glen Croe. This ~1.5 km 90 

section of road has the highest infrastructure damaging landslide frequency on the Scottish road 91 

network (McMillan and Holt, 2019). The average slope of the RabT is ~32° with a relief of 92 

~580 m. The bedrock is Schist, with overlying glacial till up to 3 m thick, interspersed with 93 

gullies, landslide source scars, levees and lower slope debris cones (Sparkes et al., 2017, 94 

Finlayson, 2020, BGS, 2020). The surficial till deposits extend beyond the RabT site and cover 95 

much of the lower and mid-slopes of the surrounding hills in the Trossachs mountain range 96 

(BGS, 2020) where the A83 and other strategic roads route to the west and north of Scotland. 97 

Average annual rainfall from 2013-2019 at the Scottish Environmental Protection 98 

Agency (SEPA) Rest and Be Thankful rainfall gauge, located approximately 750 m away from 99 

the RabT slope, is 3118 mm per year, with on average most rainfall occurring in October to 100 

February (Fig 1b). However, August also appears to be generally as wet as winter months and 101 

there is considerable variation in monthly rainfall between different years (Fig. 1b).  The RabT 102 

is a good proxy for many sediment laden upland / mountainous systems subject to moderate to 103 

high rainfall that are susceptible to a range of slope instabilities and threaten infrastructure. 104 

On average 4,000 vehicles cross the RabT per day (Winter et al., 2019a). Closures divert 105 

traffic a maximum ~88 km, if the A83 and Old Military Road (OMR; Fig. 1c), a one-way 106 

convoy diversion downslope of the A83, are closed, casting a vulnerability shadow over 4,300 107 

km2 (Fig. 1a; Winter et al., 2019a). A full road closure costs ~£90k per day (2012 prices; Winter 108 

et al., 2019a) and £13.3 M has been spent on active protection of the A83, using catch-nets, 109 

catch-pits and culvert upgrades (Fig. 1c and d). This cost also includes improving the OMR to 110 

handle larger vehicles and higher traffic volumes (Scottish Parliament, 2020). However, some 111 

debris flows still exceed mitigation measures and impact the A83 and OMR. From the August 112 
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2020 to January 2021 the A83 was closed for ~120 days, due to a series of large debris flows 113 

in August and September 2020 (Fig. 1c). The OMR convoy diversion was in place for much of 114 

the closure time, but additional investment was made to build a 175 m long, 6.6 m tall barrier, 115 

completed in January 2021 which protects part of the OMR from debris flows (Fig. 1e). The 116 

barrier was installed as a response to the August-September 2020 debris flows and a period of 117 

persistent slope creep above the A83 following those events.  118 

The Scottish Road Network Landslide Study examined the full road network landslide 119 

risk and mitigation options (Winter et al., 2005). As a result, semi-quantitative and quantitative 120 

risk assessments justified additional passive mitigation measures at the RabT (Winter at al., 121 

2009; Winter and Wong, 2020); as part of the LMP daylight patrols are dispatched and warning 122 

lights activated on the RabT approach if forecast rainfall is >=25 mm in a 24-hour period or 123 

>=4 mm in a 3-hour period (Winter et al., 2020), indicating a raised risk of shallow landslides 124 

and  therefore debris flows. 125 

3. Datasets and Methodology 126 

3.1 Landslide inventories 127 

We have collated a new RabT shallow landslide inventory (available from the 128 

Newcastle University Data Repository - https://figshare.com/s/058074e7a14320a994ce)  from 129 

road reports (2003-2015), quarterly and event responsive terrestrial laser scans (TLS; 2015-130 

2020), and time-lapse imagery (2017-2020). Post-2015 it is unlikely events are missing as TLS 131 

(0.1 m resolution) and time-lapse imagery data were used (Sparkes et al., 2017; Khan et al., 132 

2021, and this study). Pre-2015, debris flows that reached the A83 are recorded, but other 133 

shallow landslides that did not reach the road may not be. The quarterly and event response 134 

TLS point cloud data were used to quantify the volume of landslide source areas using the 135 

Multiscale Model to Model Cloud Comparison plugin (M3C2; Lague et al., 2013) in Cloud 136 

https://gbr01.safelinks.protection.outlook.com/?url=https%3A%2F%2Ffigshare.com%2Fs%2F058074e7a14320a994ce&data=04%7C01%7C%7C9c4d3eda44e54fd85a5d08d8d40821d2%7C8cccfbef624a464b8e3b29d54707437d%7C1%7C0%7C637492480204492490%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C1000&sdata=Db%2F%2FVXiehvmhkfoPIgWpNk9NioxXwsehSml33%2BA3gpk%3D&reserved=0
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Compare (Version 2.11.3 Anoia; http://www.cloudcompare.org/), which computes distances 137 

between two referenced point clouds to show 3D change. The resulting change data were 138 

filtered to extract point-to-point losses and gains due to movement of material on the RabT 139 

slope. Longitudinal profiles of CDF and HDF source areas have been extracted from TLS point 140 

cloud derived digital elevation models (DEMs) of the RabT slope in QT Modeler (Version 141 

8070, Applied Imagery). 142 

3.2 Rainfall thresholds for landslide alerts 143 

Rainfall on seasonal, daily and 15-minute timescales are used here as indicators of 144 

increased shallow landslide hazard at the RabT. The 2013-2019 seasonal rainfall trend was 145 

examined for the Scottish Environment Protection Agency (SEPA) RabT rain gauge data 146 

(SEPA, 2020) using the Bayesian Estimator of Abrupt change, Seasonality and Trend (BEAST) 147 

analysis package (Zhao et al., 2019). BEAST uses ensemble modelling, where multiple 148 

competing models analyse data, and Bayesian statistics derive a model average with associated 149 

probabilities that detect if seasonal and trend changes are ‘true’. BEAST identifies seasonal 150 

change points (SCPs) when rainfall has large inter-annual variations, i.e. the seasonal 151 

component of the rainfall time-series changes between the same time in different years. Trend 152 

change points (TCPs) are identified when the rainfall time-series trend changes abruptly. For 153 

seasonal and trend components, not all variations will lead to SCPs and TCPs being assigned, 154 

only those that have a high probability of being a genuine and significant difference, based on 155 

the agreement between competing models. 156 

September to December 2018 was a particularly active landslide period at the RabT and 157 

the start of high-temporal and high-spatial resolution datasets at the site, enabling the 158 

association of shallow landslide occurrence to rainfall conditions. Therefore, this period is used 159 

to look in detail at rainfall conditions at and prior to shallow landslide occurrence.  160 
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We calculated the Antecedent Precipitation Index (API; Fedora and Beschta, 1989), a 161 

proxy for ground saturation (Segoni et al., 2018), for daily rainfall totals using Equation 1, as 162 

an indicator of raised shallow landslide hazard. 163 

𝐴𝑃𝐼𝑖 = 𝑘(𝐴𝑃𝐼𝑖−1) + 𝑃𝑖 (1) 164 

Where APIi is the API at time i, Pi is the daily rainfall total at i and k is a constant decay 165 

function defined by the user (k=0.8). The k value is a conservative estimate based on other 166 

works (Heggen, 2001; Viessman and Lewis 1996, Fedora and Beschta, 1989) as no stream 167 

gauge data is available for Glen Croe, so storm hydrograph regression analysis to derive a local 168 

k estimate was not possible. Rainfall has been measured with an on-slope Davis Vantage Pro 2 169 

gauge (364 m a.s.l) since April 2018, better reflecting on-slope conditions than the off-slope 170 

SEPA gauge that 0.85 km away and 87 m lower in the valley. 171 

Using 15-minute rainfall intensity data from the on-slope Davis Vantage Pro 2 gauge, 172 

we developed an intensity-duration (I-D) threshold over which shallow landslides have 173 

occurred in the past. Duration and mean rain intensity for all storms in the study period were 174 

plotted (Brunetti et al., 2010; Guzzetti et al., 2008), with a six-hour inter-event period. An I-D 175 

threshold above which landslides occur was visually derived from the results (Guzzetti et al., 176 

2008). Mean rain intensity over an entire storm was used, as opposed to mean rain intensity up 177 

to the point of the landslide, as not all landslide timings were known due to occlusion of the 178 

time lapse camera from the slope from clouds and night-time. 179 

3.3 Landslide initiation, tracking and detection 180 

Remote monitoring to detect slope changes can be useful for assessing slope conditions 181 

and managing infrastructure, without needing a constant personnel presence on-site. Visual 182 

analysis of imagery is useful, however an ability to analyse images pixel-by-pixel, detect 183 

changes, and quantify rates of movement provides more data to asset managers. With this ability 184 

large areas can be analysed for precursory movement before landslides occur as well as tracking 185 
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and detecting movement during slope failures. Here, we process time-lapse imagery in a particle 186 

image velocimetry tool (PIVLab; Thielicke and Stamhuis, 2014; Thielicke, 2020) to detect 187 

creeping deformation on the RabT during mid- to late-September 2018, before a series of road-188 

closing debris flows in October 2018. This time-period is used here as a good example of what 189 

this technology and these data can achieve prior to a series of large slope failures. This PIV tool 190 

has since been enhanced by Khan et al., (2021) for automatic image stabilisation, processing, 191 

and filtering. Displacement vectors and velocity were established between consecutive slope-192 

wide images at 16x16 pixel resolution (~2.7 m2). Sequential deformation was derived for a 193 

point tracked through the photo sequence and inverse velocity (I-V), an analytical approach 194 

used to predict failure in brittle materials (Carlà et al., 2017), was used as an indicative metric 195 

for till failure prediction. Despite the non-brittle materials involved, some shallow landslides at 196 

the RabT appear to move as rafts of intact material over a discrete, progressively forming shear 197 

surface, and, as such have more in common with brittle failure than ductile deformation. 198 

Imminent failure is predicted when I-V values reach zero (infinite velocity), in theory, and, 199 

occasionally in practice this time can be derived from monitoring data (Fan et al., 2019; Xu et 200 

al., 2020). Intervals between usable daylight images was not uniform due to cloud, rain, and 201 

night-time obscuration, so velocity data from PIVLab were interpolated to 12h intervals, with 202 

a moving average smoothing of 24h. I-V was calculated for smoothed data using 1/(Vw) (e.g. 203 

Manconi and Giordan, 2016), where V is velocity over the defined time window (w). 204 

We used seismic monitoring to detect the precise timing of the onset of a shallow 205 

landslide that transitioned to a debris flow. Industry standard seismometers are used for the 206 

detection of debris flows in catchment scale torrent systems (Walter et al., 2017) and the slope 207 

failure source areas that cause them (Burtin et al., 2016). Here we deploy a low-cost Raspberry 208 

Shake 3D seismometer (Raspberry Shake, 2020; Manconi et al., 2018) for directional detection 209 

of debris flows on a steep hillslope with uncertain flow initiation and routing, and short flow 210 

https://raspberryshake.org/
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paths. The seismogram trace shows characteristic debris flow signals (Burtin et al., 2016), 211 

generated through clast-clast and flow-substrate interactions, above the long-term average. 212 

Conventional seismics uses cross-correlation between stations to geolocate the event generating 213 

the seismic signal (Burtin et al., 2016). Here we use hodograms (plotting signal direction 214 

through time; Borella et al., 2019) to confirm the direction of debris flow signals to the 215 

seismometer as we only had a single station deployed on the site.  216 

4. Results 217 

Effective road asset management requires information on raised threats of landslide 218 

activity, significant slope changes, precursory movement and, finally, post-failure adjustment 219 

during remedial works. These data all need the context of long-term activity. This enables 220 

stakeholders to be on stand-by, pre-position resources, or proactively manage risk with targeted 221 

interventions. Here we show how the methodologies are applied to achieve alerts of high 222 

activity periods within long-term records, to quantify threshold preconditions to failure, and to 223 

create ‘event happened’ warnings that have been integrated into the management of the RabT. 224 

4.1 Long-term landslide activity 225 

From 2003 to 2020 there were 70 shallow landslides which presented as three different 226 

landslide types: 49 were debris flows (21 HDFs, 25 CDFs, three of unknown type); 12 slope 227 

creep events, defined as a relatively slow gravitational deformation of material; and 9 debris 228 

falls (Hungr et al., 2014), which in the case of the RabT are small ~1 m3 failures of surficial 229 

material, often from the top of bedrock outcrops, which do not propagate downslope (Fig. 2). 230 

Seventeen debris flows closed the A83, on average once a year since 2003 though this masks 231 

the often clustered nature of events in time; eight reached the OMR which requires a full 232 

diversion.  233 
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63 of the landslides have known source locations (Fig. 3), 46% (n=29) are in till, 35% 234 

(n=22) in debris cones and 19% (n=12) in regolith; 53 have volumetric information derived 235 

from TLS (2015-2019) or estimates from reports (2007-2015). Thirty-six are debris flows, 236 

seven debris falls and ten creep deformations. Combining the debris flows and debris falls, 18% 237 

of the landslide source volume originates from the debris cones (22% of the slope by area); 238 

whilst till (61% of the slope by area) and regolith (18% of the slope by area) account for 67% 239 

and 15% of the landslide source volume respectively (Table 1). Creep landslide volumes were 240 

excluded from the above volumetric analysis, as it is not possible to accurately measure the 241 

volume of the entire moving mass from TLS data, given that much of the failed material has 242 

not been evacuated from the source area. For creep landslides it is only possible to calculate the 243 

surface volume loss. Creep landslides were found in the debris cones (n=7) and till (n=3). Most 244 

of the surface volume loss from creep deformation occurred in the debris cones (5,673 m3) and 245 

very little within the till (26 m3) despite its larger coverage over the slope (Fig. 3). 246 

Volumetric contributions from different materials reflect distinct failure processes and 247 

physical controls such as depth to bedrock. Failures originating from debris cone source areas 248 

are generally long (15-50 m) and have the deepest recorded failures; there is a more varied 249 

original surface-to-failure plane depth profile from debris-cone sources (Fig. 4; Table 2). Till-250 

based failure planes vary between 5 m and 35 m in length with a shallower depth profile 251 

(average 1.2 m); whilst regolith failures are between 5 m to 25 m with a shallow average depth  252 

profile of 0.77 m (Fig. 4). The average surface slope of the RabT is ~32° and average failure 253 

plane slopes for all material types range between 30° and 31°. Extrapolation of gully pathways 254 

from a TLS derived DEM, shows a strong coupling of source areas with stream flow paths 255 

(streams in Fig. 3). 256 
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4.2 The likelihood of failure: Rainfall thresholds 257 

Rainfall on seasonal, daily, and 15-minute timescales has been used to indicate raised 258 

landslide hazard. BEAST identified six rainfall seasonal change points (SCP) in winter periods 259 

from 2013 to 2020 (Fig. 5a). SCP4 coincides with Storms Desmond and Frank which caused 260 

debris flows at the RabT. SCP6 in mid-2020 shortly precedes the large August-September 261 

debris flows that shut the A83.  No SCPs are seen from 2016 to late-2019, but debris flows do 262 

still occur. Instead, many debris flows are coincident with abrupt rainfall trend change points 263 

(TCPs) as well as their subsequent falling trends, and long period high trends (Fig. 5b). TCPs 264 

1, 2, 3, 5, 6 and 9 are all associated with debris flow occurrence. 265 

TCP6 starts the 2018 landslide period, a particularly active year with 19 of the 63 266 

shallow landslides (Fig. 2). Here we use September to December 2018, a particularly active 267 

time-period at the RabT, as a case study to highlight the effectiveness of pro-active, near-real-268 

time monitoring to alert asset managers to increased shallow landslide hazard based on rainfall 269 

thresholds, tracking slope creep, and detecting debris flow occurrence. Time-lapse imagery has 270 

allowed the timings of the 2018 landslides to be more accurately detected, allowing the 271 

identification of specific rainstorms where landslides have occurred. 272 

For the late-2018 period Fig. 6 shows when LMP forecast rainfall thresholds were 273 

exceeded and warning lights were operating, along with the same thresholds plotted using on-274 

slope, live rain data. These data are summarized in confusion matrices which describe the 275 

performance of the rainfall thresholds in detecting conditions that triggered shallow landslides; 276 

data are described as times where thresholds predict landslides will or will not happen against 277 

times where landslides did or did not occur. False alarms and missed landslides account for 278 

6.9% of the study period for warning lights and 12.2% for on-slope data (Table 3). 279 

Warning lights are human operated, reducing false alarms through expert judgement. 280 

However, on-slope data would raise alert levels two times where shallow landslides 281 
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(particularly debris flows) occurred, that are not fully covered by the warning lights (Fig. 6 i 282 

and ii). To improve on the current LMP rainfall thresholds for predicting hazardous shallow 283 

landslide conditions on the RabT, shown in Figure 6 and Table 3, we now look at the intensity 284 

and duration of rainstorms which generated landslides, and antecedent precipitation.  285 

Landslide producing storms in 2018 were medium (>10h) to long duration (max. 72h; 286 

Fig. 7); however, for two storms it was not possible to determine in which the landslide 287 

happened. Mean rain intensity for landslide initiation ranges from 2.95 mm/hr to 8.15 mm/hr. 288 

Landslides occur above the threshold described by Equation 2. 289 

 𝐼 = 4.75𝐷−0.18 (2) 290 

Where I is mean rain intensity and D is duration. All confirmed landslide storms were >10h 291 

duration, so it is unclear if the threshold applies to storms of <10h duration. The threshold has 292 

been extrapolated for storms under 10h duration but dashed on Figure 7 to show its uncertainty. 293 

The I-D threshold gives a false alarm for 5.7% of the study period (Table 4). 294 

All landslides (n=18) occur over an API threshold of 37 mm, with three false alarms 295 

and long periods of alert with no landslides (Fig. 8). A 62 mm API threshold covers 90% of 296 

landslides (n=16), reduces false alarms to 0.8% of the study period (Table 4), but misses two 297 

mid-December events. A combination of I-D and API thresholds maximizes landslide detection 298 

and minimizes false alarms (Table 4). All landslide inducing storms exceed the I-D threshold 299 

with five false alarms (Fig. 8 i to v) which API thresholds reduce to two (Fig. 8 iv, v). 300 

4.3 Early warning of slow creeping failures 301 

We monitored the creep of Failure 2 (Fig. 6) via time-lapse image vector tracking from 302 

initiation (19 September 2018) to arrest (27 September 2018) using PIVLab (Thielicke and 303 

Stamhuis, 2014; Thielicke, 2020; Khan et al., 2021). Vectors of change and a velocity heat map 304 

between consecutive images are shown in Figs. 9a and 9b.  305 
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Creep initiation coincides with a rainstorm on the 18 September 2018 (Fig. 9c i). Half 306 

of the total cumulative deformation occurs in the first 2.5 days. Inverse velocity (I-V) rapidly 307 

decreases towards zero on the 19-20 September 2018; extrapolation of the I-V trend predicts 308 

failure on the 21 September 2018. However, I-V values increase on the 21 September, 309 

indicating reduced velocity after rainfall ceases. The deformation rate slows until arrest (Fig. 310 

9c ii) and subsequent rainfall does not affect the deformation rate and (Fig. 9c iii). 311 

Operationally, alert levels would be raised in Phase i when imminent failure seemed likely but 312 

lowered in Phase ii. 313 

4.4 Detecting rapid debris flows  314 

Seismic monitoring identified a HDF (Figs. 10a and 10b) on the 09 October 2018 and 315 

located the source area. The z-axis seismogram (Fig. 10c) shows a high-amplitude signal lasting 316 

~15s, corresponding with the failure time derived from time-lapse imagery, which is likely the 317 

HDF in motion. Short duration, lower amplitude signals follow and are likely post-landslide 318 

sediment and boulder reworking. Hodograms show very little activity at first (Fig. 10c i), but 319 

signal strength increases as the HDF signal arrives (ii) before subsiding (iii). Stacked 320 

hodograms, overlain on a DEM, point to the HDF source area as the direction of the incoming 321 

signal (Fig. 10d).  322 

 323 

RabT debris flow seismic signals are brief due to short, steep flow paths, with boulder 324 

and sediment reworking post-event. Another deposit on Fig. 10b, which is a thin, fine-grained 325 

drape but has a large deposit footprint, was not detected by seismic monitoring; indicating that 326 

whilst high debris content flows can be detected, hyper-concentrated flows may need larger 327 

station arrays for detection. 328 
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5. Discussion  329 

Between 2003 and 2020 there were 70 shallow landslides recorded, including 49 debris 330 

flows. Landslides come from three material types on the slope: regolith, till and, debris cones, 331 

which exert a control on source area morphology and landslide volumes. Debris cone sources 332 

are generally deeper, which likely represents thicker deposits of source material to bedrock. 333 

The failure depths sourced in the upslope surface material comprising of glacial till and regolith 334 

were significantly shallower. The total volume of source areas for debris flows and debris falls 335 

across the slope is 5,404 m3, with debris cones accounting for 18% (984 m3), regolith 15% (823 336 

m3) and till the remaining 67% (3,597 m3). Each material type accounts for a proportion of 337 

source volumes similar to their areal coverage of the slope, indicating that no one material 338 

produces relatively more landslide volume than any other. However, debris cones produce 339 

fewer but larger landslides, whilst till and regolith sources produce smaller but more frequent 340 

landslides. Debris flows in till have closed the road seven times compared to four and three 341 

times for regolith and debris cones respectively. Debris flows in till could therefore be 342 

considered as the greatest risk to road closure. Similar failure plane slope angles of 30° to 31° 343 

indicate a control on landslide initiation, which may represent a critical threshold within the 344 

slope material or relate to the dip angle of the underlying bedrock – although most shallow 345 

landslides at the site are not at the bedrock-cover interface.  346 

BEAST rainfall analysis shows that debris flows are primarily associated with abrupt 347 

rainfall trend changes, but that in some cases there is a larger seasonal signal associated with 348 

debris flow occurrence. In the 2018 study period, antecedent, and medium- to long-duration, 349 

high-intensity rainfall is shown to be an important factor in debris flows initiation. New local 350 

API and I-D rainfall thresholds, identify all landslide inducing storms and minimize false 351 

alarms, improve on the LMP and provide road authorities time to consider actions. 90% of 352 

RabT landslides occurred over a 62 mm API, indicating a critical antecedent rainfall threshold. 353 
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Rainstorm I-D >10h is key for landslide initiation with largely higher mean rain intensity than 354 

non-landslide storms. Whilst the thresholds have been calculated locally at the RabT, the 355 

surface geology and the topography of the site are replicated in and representative of the 356 

surrounding mountain range, indicating that the thresholds potentially apply more regionally 357 

although there is not currently a wider, timed inventory of failures. 358 

Time-lapse vector tracking located and quantified creeping deformation in response to 359 

rainfall drivers. I-V calculations forecast imminent failure in the initiation phase, however creep 360 

slowed when rainfall ceased and arrested despite further rainfall. This method can detect slope 361 

movement and indicate times of heightened risk of failure for management authorities. 362 

24-7 passive seismic detection and hodograms were used to identify a HDF. In this 363 

instance, and likely others due to short RabT flow paths, the 15 second event duration is too 364 

brief for live warnings but allows for 24/7 event detection and rapid response, outside of time-365 

lapse image capture. Additional seismometers (now deployed) extend the range of detection 366 

and allow more traditional geo-location. 367 

6. Conclusions 368 

This paper presents the results of on-site monitoring at the RabT, aimed at 369 

supplementing the existing regional LMP (Winter et al., 2009). Our novel combination of 370 

sensors and processing techniques allows near-real-time monitoring and quantification of 371 

shallow-rapid landslides as demonstrated at the RabT in the west of Scotland. Results show that 372 

local sensor systems improve our understanding of triggers by allowing landslides to be 373 

attributed to specific rainstorms and therefore the conditions leading to their initiation are better 374 

quantified. Improved rainfall thresholds for periods of likely increased shallow landslide hazard 375 

have be developed for the RabT, however the techniques could be readily applied to other sites 376 

of interest. Further, we have shown that creep deformation can be detected and then tracked in 377 

near-real time, and, that rapid debris flow failures (which many or may not have shown 378 
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precursory movement) can be detected. Low-cost sensors can be replicated at high- and lower-379 

risk sites where cost-benefit would normally prevent monitoring. Increased high-intensity 380 

rainfall due to climate warming is expected in Scotland (UKCP, 2018), meaning more 381 

infrastructure and assets will have increased debris flow risk. These combined low-cost 382 

monitoring techniques are an essential advancement and now operationally proven approach 383 

for addressing this future risk. 384 

 385 
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 555 

Figure 1. (a) Scotland digital terrain model showing the RabT location (red arrow) and the 556 

vulnerability shadow for simultaneous A83/OMR road closures outlined in orange (modified 557 

from Winter et al. 2019a). (b) RabT average monthly rainfall from 2013 to 2019 (SEPA RabT 558 

gauge; SEPA, 2020). (c) Debris flows from August and September 2020 with catch-pit and 559 

culvert mitigation. (d) October 9th 2018 debris flow which closed the A83. The catch-net has 560 
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caught the debris, but some has exceeded the net capacity. (e) View of the OMR debris-flow 561 

protection barrier completed in January 2021. 562 

 563 

 564 

Figure 2. 2003 to 2020 cumulative landslide timeseries and yearly totals. Monthly rainfall is 565 

shown from the off-slope SEPA Rest and be Thankful gauge from 2012-2020 (no rainfall data 566 

was collected pre-2012). 567 

 568 

 569 
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 570 

Figure 3. RabT landslide inventory. TLS derived hillshade and 2007 to 2019 landslide 571 

source areas, coloured by the resulting failure type. Surface material delineation 572 

(dashed lines) modified from Finlayson, 2020. Numbers refer to Fig. 6. 573 

 574 

 575 
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 576 

Figure 4. Example debris flow source area long profiles (2018-2020), derived from TLS 577 

point clouds, showing pre- and post-failure surface elevations. Profiles are coloured by 578 

source material type. Profiles are numbered by the landslide inventory. 579 

 580 

 581 

 582 

Figure 5. (a) BEAST seasonal rainfall component. (b) BEAST rainfall trend. 583 

 584 

 585 

 586 
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 587 

Figure 6. 01 September to 31 December 2018 landslides, warning light activations from the 588 

current LMP thresholds (where forecast data is used) and activations that would have occurred 589 

using real-time on-slope data. On-slope rainfall data is from the Newcastle University Davis 590 

gauge. 591 

 592 

 593 

 594 

 595 

Figure 7. September to December rainstorm intensity-duration (I-D) plot. The solid red line is 596 

the intensity-duration threshold above 10 hours duration. Below 10h duration the threshold is a 597 

dashed red line as there was no input data for <10h landslide inducing rainstorms, this is an 598 

extrapolation. 599 
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 600 

601 
Figure 8. Antecedent Precipitation Index (API) with 37 mm and 62 mm thresholds. Rainfall 602 

intensity (data loss 13 November to 05 December) with storms >10h duration exceeding the I-603 

D threshold. 604 
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 605 

 606 

 607 

 608 

Figure 9. (a) PIVLab deformation vector plot (Thielicke and Stamhuis, 2014). (b) Velocity 609 

heat map. (c) Cumulative rainfall, cumulative deformation, and I-V. 610 
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 611 

Figure 10. (a) Pre-failure HDF source and seismometer location. (b) Post-failure. (c) Fifteen-612 

minute seismogram with HDF signal (red box) and three hodogram time-steps (i, ii, iii). (d) 613 

Hillshade with HDF location and ten second stacked hodogram. 614 

 615 
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Table 1. Summary of contribution (by area and volume) of different material source areas to 625 

the slope failure types occurring at the site 626 

 627 

 628 

 629 

Table 2. Descriptive statistics for the depth profiles in Figure 4. 630 

 
Inventory landslide number 

 41 47 48 49 50 51 

Material Debris Debris Till Debris Regolith Debris 

Minimum depth 0.03 0.63 0.21 0.47 0.13 0.34 

Maximum depth 2.3 7.6 1.61 1.79 1.75 3.27 

Average depth 0.79 3.33 0.94 0.85 0.83 1.54 

Standard deviation 

of profile depth  
0.62 1.82 0.43 0.32 0.34 0.7 

Table 2 (Cont.). Descriptive statistics for the depth profiles in Figure 4. 631 

 
Inventory landslide number 

 53 55 57 58 64 65 

Material Regolith Regolith Till Till Till Till 

Minimum depth 0.08 0.32 0.53 0.2 0.27 0.04 

Maximum depth 1.27 1.22 0.72 1.93 2.6 3.2 

Average depth 0.64 0.81 0.4 1.02 1.54 2.15 

Standard deviation 

of profile depth  
0.04 0.24 0.74 0.49 0.61 0.79 

 Debris Cones Till Regolith 

Number of debris flows and debris falls 11 21 11 

Number of creep landslides 7 3 0 

% areal slope coverage 22 61 18 

% source area volume contribution 18 67 15 
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Table 3. Warning light and on-slope alert operation confusion matrix. 632 

% of study period Landslide No Landslide 

Warning lights ON / On-Slope ON 6.6% 7.7% 4.1% 11.1% 

Warning lights OFF / On-Slope OFF 2.8% 1.1% 86.5% 80.1% 

 633 

Table 4. API and I-D threshold confusion matrix. Current LMP statistics are summarised in 634 

Table 3.  635 

% of study period Landslide No Landslide 

API > threshold / I-D > threshold  29.5% 8.2% 0.8% 5.7% 

API < threshold / I-D < threshold 3.3% 0.0% 81.0% 86.1% 

 636 


