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Abstract

This thesis aims to develop computational tools for multiphysics problems in
topology optimization with particular focus on design-dependent surface physics.
This is a challenging class of problems governed by interface conditions and load-
ings. Fluid-structure interaction (FSI) is a typical example. Level set topology
optimization (LSTO) possesses an advantage over traditional density-based meth-
ods since it provides clearly defined boundaries. However, maintaining this crisp
boundary representation onto the computational model for the analysis is not
straightforward especially with fixed grid methodologies. On the other hand,
remeshing the structure at each iteration directly addresses the problem, it poses
additional difficulties because of the need to ensure good quality meshes at each
iteration. In this thesis a meshfree level set topology optimization methodol-
ogy based on the reproducing kernel particle method (RKPM) is developed to
ensure the well-defined geometrical representation of the structural boundary is
transferred onto the computational domain by placing RKPM particles along the
boundary. In this way, the difficulties associated with fixed grid LSTO methods
and remeshing-based approaches are avoided.

The methodology is first validated for purely hydrostatic pressure, which is a
very simple case of design-dependent physics. The obtained results are validated
through comparison with the literature. Different integration schemes, particle
distributions and continuity orders are also explored to pin down the best balance
between accuracy and efficiency.

The development of the LSTO-RKPM methodology is later extended to fluid-
structure interactions. To accomplish this, the LSTO-RKPM methodology is fur-
ther combined with the modified immersed finite element method (mIFEM). The
coupling of the different methods is illustrated through the analysis of transient
FSI examples. For the optimization, the simplified case of steady-state FSI is
assumed. The applicability of the methodology is illustrated through examples
and compared with the literature. For the sensitivity analysis, a particle-based
discrete adjoint methodology for the level set topology optimization method is
presented. Additionally, an algorithm for identifying and removing free-floating
volumes of solid material into the fluid domain is explained.
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Chapter 1

Introduction

1.1 Overview of structural optimization

Structural optimization is a procedure that seeks for the best, or else the opti-
mum, structure in terms of a performance measure by changing the structure’s
parame-ters. Some examples of performance measures include the weight, stress
or stiffness of a structure, the crashworthiness of a vehicle, the aerodynamic ef-
ficiency of an aircraft etc. whereas design parameters, also known as design
variables, are the variables that affect the performance and can be altered during
the design procedure. The dimensions of a structure such as the thickness and
cross-sectional area, or the geometric shape of a structure are some examples of
design variables. Material properties such as Young’s modulus can also be design
variables. The development of computer-aided design (CAD) and computer-aided
engineering (CAE) allowed for the emergence of simulation-based, gradient-based
design optimization. This consists of the following steps: structural modelling,
design parameterization, structural analysis, problem definition, sensitivity anal-
ysis and optimization:

• Structural Modelling simplifies the physical engineering problem into a
mathematical problem of a desired level of accuracy. Design parameteriza-
tion is then carried out to define the geometric parameters of the structural
model and define a set of geometric parameters as design variables. Design
parameterization is essential for obtaining a good optimum design since
the design variables define the design space within which powerful math-
ematical tools known as optimization algorithms will search for optimum
solutions.

• Structural analysis in simulation-based optimization is typically carried out
by employing numerical approaches which are able to solve partial differen-
tial equations (PDE) describing complex engineering problems. A variety
of numerical methods are used in structural analysis including the well-
known finite element analysis (FEA), boundary element analysis (BEA),
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computational fluid dynamics (CFD) and meshfree analysis. The analysis
selected must be able to handle all possible designs in the defined design
space both in terms of accuracy and efficiency and also the required per-
formance measures (objectives and constraints).

• To define an optimization problem, the cost function also called the objec-
tive function, and constraints need to be defined. The objective function
representing the performance measure of choice, is minimized or maximized
during optimization. Constraint functions are the criteria that the system
has to satisfy for a design to be feasible. In other words, they indicate design
requirements or restrictions. This means that among all possible designs,
only those that satisfy the constraints are candidates for the optimum de-
sign. For example, it may be desirable to design a structure with minimum
weight while the maximum stress is less than the yield stress. In this situa-
tion the weight is the objective function whereas stress acts as a constraint
with the yield stress as the limiting constraint value. Mathematically, an
optimization problem is formulated as:

minimize
x

f(x)

subject to g(x) ≤ 0
h(x) = 0

(1.1)

where f(x) is the objective function, g(x) = [g1(x), g2(x), ..., gn(x)]T and
h(x) = [h1(x), h2(x), ..., hm(x)]T are functions representing inequality and
equality constraints, respectively, and x = [x1, x2, ..., xp]

T is the vector of
design variables.

• Typically, gradient-based optimization algorithms require the function val-
ues and gradient information at given design variables. For a given set of
design variables that define a structural model, the structural analysis pro-
vides the values of the objective and constraint functions whereas design
sensitivity analysis is used to compute the gradients, or else the sensitiv-
ities, of the objective function and constraints with respect to the design
variables.

• Once the sensitivity is computed, a gradient-based optimization algorithm
can be used to find an optimum design that achieves the best cost function
while satisfying all the constraints. This is done in an iterative manner as
shown in Fig. 1.1.
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Figure 1.1: Structural design process. (Choi and Kim, 2005)

Structural optimization is a powerful tool that can assist engineers to find
innovative designs, especially in problems in which engineering intuition and ex-
perience alone are not sufficient to provide the best performing structures. A
good example is problems governed by multiple physics, and in which different
objectives may contradict each other. For instance, consider a system governed
by heat transfer and fluid flow such as heat dissipating devices including cooling
channels, heat exchangers and heat sinks. Such devices are commonly used to
dissipate heat generated from engines, batteries or other devices by passing a liq-
uid through the structure. When it comes to designing these structures, common
performance measures include the amount of heat exchanged and the pressure
gradient required to pump the fluid. These are objectives that oppose each other
since a higher pressure drop results in higher fluid velocity and conse-quently
higher heat dissipation. In such complex design situations structural optimiza-
tion can be useful especially at the initial stages of the design process where
innovative solutions are sought.

Depending on the design parameterization and the set of design variables,
structural optimization can be categorized into sizing, shape and topology optim-
ization (Choi and Kim, 2005).
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(a)

(b)

(c)

Figure 1.2: Three types of structural optimization: (a) Sizing, (b) Shape and (c)
Topology optimization (Bendse and Sigmund, 2004)

Sizing design variables are related to the geometric parameter of the structure,
and these may include for example the thickness or length of the structure. Thus,
in sizing optimization the shape and topology of the structure do not change, and
as shown in Fig. 1.2 (a) the global geometry of the final structure is the same as
the initial one.

Shape optimization on the other hand offers more design freedom since the
shape design variable is related to the structure’s geometry. Different structural
shapes can be obtained by different values of the shape design variables which
is illustrated in Fig. 1.2 (b) where the shape of holes in the final design is
altered in comparison to the initial design. Note however that new holes cannot
spontaneously appear in the design domain.

This leads to the third type of structural optimization, i.e., topology optimiza-
tion, which provides the most design freedom in comparison with size and shape
optimization. Topology optimization determines the structure’s layout, and it
allows for new holes and structural members to be created with no assumption
on the initial design as illustrated in Fig. 1.2 (c).

1.2 Topology optimization methodologies

The main idea of topology optimization is to define the optimum structure by
distributing the material inside the design domain. In other words, it answers
the question “where to place the holes inside the material to achieve the best
performing structure.”. Over the years different approaches have been developed
depending on the type of design variables and material model used. The most
established methods can be categorized as

• Density-based methods such as the Solid Isotropic Material with Penaliza-
tion (SIMP) and the Homogenization method.
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• Discrete methods, including the Evolutionary Structural Optimization
(ESO) and the Bi-directional Evolutionary Structural Optimization (BESO).

• Level-set topology optimization methods (LSTO), based on boundary varia-
tions.

The specific problems studied in this thesis pose certain challenges and one
of the main objectives of the thesis is to address those challenges by developing
alternative implementations in the context of level set topology optimization. To
explain why LSTO is the preferred choice in this thesis, it is worth providing an
overview of each topology optimization approach in this section.

1.2.1 Density-based methods

Typically, density-based topology optimization employs finite element analysis
with the material distribution described by a continuous density variable ρ. Once
the domain is discretized into a mesh of elements, the material properties such
as Young’s modulus within elements can be controlled. The density variable
within each element indicates whether the element should be void (ρ = 0 →
material property = 0) or whether it should be filled with material (ρ > 0 →
material property 6= 0). The general formulation of this problem can be written
as (Sigmund and Maute, 2013).

minimize
ρ

F (ρ,u(ρ))

subject to g(ρ,u(ρ)) ≤ 0
h(ρ,u(ρ)) = 0
ρmin ≤ ρi ≤ 1, i = 1, ..., N

(1.2)

where F (ρ) is the objective function depending on the vector of design variables
ρ, and the vector of state variables u(ρ) that represents the solution to the gov-
erning equations of the problem. For example, u(ρ) could be the displacement
solution to the linear elasticity equation governing a structure for which we are
trying to maximize stiffness. As in Eq. 1.1, g and h are functions representing
inequality and equality constraints, respectively. The element densities are re-
stricted to a lower bound ρmin to avoid singular structural problems. A problem
often encountered in the early days of topology optimization was the checkerboard
problem with patches of alternating black and white element. Checkerboards can
be avoided by use of higher order elements or they are taken care of by restriction
methods that ensure mesh-independence (Sigmund and Maute, 2013). Ideally a
solution that converges to well defined 0-1 solutions is sought, i.e. eliminating the
presence of elements with intermediate density variables as much as possible. To
this end, the widely used SIMP (Solid Isotropic Material with Penalization) ap-
proach was developed (Bendse, 1989; Bendse and Sigmund, 2004). In the SIMP
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approach the relation between the density design variable and the material prop-
erty is given by the power-law, which through the example of Young’s modulus
as the material property looks like

E(ρi) = ρpiE0 (1.3)

where p is the penalization parameter and E0 is the Young’s modulus of the solid
material. Other material interpolation schemes exist and essentially all aim to
provide continuous interpolation between solid and void with a penalization of
intermediate density values (Sigmund and Maute, 2013). Although penalization
drives the design towards a 0-1 solution, often some elements with intermediate
densities remain close to the boundary of the structure. As it will be discussed
later, this makes certain classes of problems difficult to solve with density-based
methods.

1.2.2 ESO and BESO methods

Evolutionary structural optimization (Xie and Steven, 1993) applies a discrete
design update scheme employing discrete design variables. This means that if the
design variable is one within a finite element then the element carries material,
whereas if the design variable is equal to zero then the element is void. So, in
contrast to density-based methods that have gray elements close to the boundary,
in evolutionary methods the boundaries are well defined by the edges of the finite
elements.

(a) (b) (c)

Figure 1.3: Different solutions obtained for the design problem defined in (a).
Solutions are shown using: (b) The SIMP method (Sigmund, 2001a) and (c) The
BESO method (Sanches, 2015)

Evolutionary methods are similar to density-based methods in the sense that
they both employ the finite element analysis, filtering and adjoint sensitivity anal-
ysis. However, the way the design variables are updated is different. In the ESO
method, inefficient material is gradually removed from a structure. Through this
process the resulting structure will evolve towards its optimal shape and topology.
A later version of the ESO method is the bi-directional evolutionary topology op-
timization method (BESO) (Huang and Xie, 2007) which allows material to be
removed and added simultaneously and uses standard adjoint gradient analysis
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and filtering techniques, similar to those used in the density-based approaches
(Sigmund and Maute, 2013).

1.2.3 Level set methods

Level set topology optimization methods define a structure implicitly by iso-
contours of a level set function (Wang et al., 2003; Allaire et al., 2004). The level
set function defines the structure in the following way (van Dijk et al., 2013)

φ(x) ≥ c x ∈ material

φ(x) = c x ∈ interface

φ(x) < c x ∈ void

(1.4)

where c is a constant (conventionally c = 0) and x is a point in the design domain.
Based on this representation, the topology of the structure can be altered by
changing the level set function. Figure 1.4 shows a visual representation of this
approach.

(a)

(b)

Figure 1.4: Illustration of how a change in the level set function φ in (a) translates
into change in the topology of the solid domain Ω in (b). The symbols Γ and D
represent the interface where φ = c and the non-material domain, respectively
(van Dijk et al., 2013)

Once a geometry is defined by the level set method, a numerical approach
such as the FEA is used to discretize the model and solve the governing equation
for the structure. Depending on the level set function parameterization, different
LSTO methods have emerged in the literature.
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The classical LSTO introduced by Wang et al. (2003) and Allaire et al. (2004)
employ a Hamilton-Jacobi equation which is solved to update the location of the
boundary. This is also the method used in this thesis. Level set methods that
use different strategies also exist in the literature such as the parametric level set
method (Pingen et al., 2010), the topological derivative method (Norato et al.,
2007) and the reaction-diffusion equation method (Yamada et al., 2010). An
comprehensive review can be found in van Dijk et al. (2013).

In the context of the classical level set method, different approaches have
appeared based on the mapping used to transfer the geometry from the level set
representation onto the computational domain. Conventionally, Eulerian (fixed)
grid FEA is employed to avoid having to remesh as a structure changes. This
FEA mesh may or may not coincide with the level set mesh on which the geometry
is constructed. However, this results in the appearance of finite elements that
are cut by the structural boundary. These require special treatment since they
belong both in the solid and void domains. The two most common ways is the
Ersatz material approximation (Dunning et al., 2011) and the extended finite
element method (XFEM) (Jenkins and Maute, 2016) shown in Figs. 1.5 (a) and
(b), respectively. Ersatz approximation averages the material property within a
cut element by an element density defined as the area of the solid within the cut
element divided by the total element area. The appearance of a density can be
seen as similar to density-based methods however the gray elements are limited to
just one layer of elements along the boundary. Nevertheless, the crisp boundary
representation of the level set method is not maintained onto the computation
mesh in this way. The XFEM on the other hand is essentially an immersed
boundary method which models the boundary by adding enrichment functions
and additional degrees of freedom to nodes around the boundary discontinuity
(Wein et al., 2020). Boundary conditions can be enforced directly along the
interface, which provides a crisp description of the boundary on the structural
model. Elements that are cut by the discontinuity still need to be integrated.
This is generally done by locally remeshing the element, i.e., partitioning the
domain into elemental shapes such triangles as shown in Fig. 1.6 and then using
Gaussian quadrature over the solid part of these sub-elements (Bosma, 2013).
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(a) (b)

(c)

Figure 1.5: Different methods for mapping the level set geometry onto the com-
putational domain: (a) Ersatz material approximation (van Dijk et al., 2013),
(b) Extended finite element method (XFEM) (Khoei, 2014) and (c) Remeshing
for conforming mesh (Allaire et al., 2014)

An alternative to fixed grid LSTO approaches is to remesh the structure at
each iteration such that nodal degrees of freedom are aligned with the level set
boundary (Allaire et al., 2014). This is shown in Fig. 1.5 (c). This is the most
direct way of ensuring that the crisp boundary representation is maintained onto
the computational domain. However, remeshing can be challenging since in order
to maintain stability and good accuracy of the analysis the mesh needs to undergo
several operations to ensure good element qualities near the boundary. This can
be computationally intensive especially for when large topological changes occur.

Figure 1.6: Gauss integration for cut elements in XFEM: Partitioning of the
element into triangular sub-elements and integration over the solid areas I and
II (Bosma, 2013).
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1.3 Main focus of the thesis:

The design-dependent problem

Despite the advancements in topology optimization, there are still problems that
are considered challenging for all methods. The class of problems known as
“design-dependent” is a good example. These are problems in which the applied
loads depend on the design itself. As the structure undergoes topological changes
throughout the optimization process, the direction, location and magnitude of the
loads change accordingly as shown in Fig. 1.7. Such design-dependent problems
can be classified into two categories based on the type of loads considered, namely,
volumetric and surface loads. Volumetric loads, such as thermal expansion and
self-weight loads, depend on the volume of the material in the structure. Surface
design-dependent loads on the other hand act on the boundary of the structure
and they depend on the surface configuration as the shape changes. Hydrostatic
pressure, convective heat transfer, acoustics and fluid-structure interactions are
characteristic examples. Design-dependent surface loads are the focus of this
thesis. The main challenge lies in tracking the interface at each optimization
iteration to correctly apply loads and coupling conditions.

The research aim of this thesis is to develop methodologies for design-dependent
multiphysics topology optimization in which the physical phenomena at the
boundaries is what drives the optimization procedure. Starting from simple cases
such as hydrostatic pressure loads, the effectiveness of the proposed methodologies
and numerical ingredients can be validated. Then, once an approach is estab-
lished, more challenging design dependent physics are considered. Specifically,
fluid-structure interaction is the main interest, although there is no theoretical
limita-tions in applying the same methodologies for other design-dependent sur-
face physics. At this point it is worth giving a brief overview of what topology
optimization approaches currently exist for addressing the challenge of the design-
dependency and what their limitations are. Note that only an overview of the
different methods is given here, whereas specific citations are discussed later in
the literature review in Ch. 2.
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Figure 1.7: Difference in optimum designs when fixed and design dependent loads
are considered: (a) Design domain, (b) Possible optimum topology for fixed loads
case in which loading surface is fixed throughout optimization and (b) Possible
optimum topology for design-dependent loads case in which the loading surface
changes throughout optimization and thus the loads change in direction and
location (Chen and Kikuchi, 2001)

Starting from density-based methods such as SIMP, the presence of elements
with intermediate densities makes it difficult to identify a clear structural bound-
ary as shown in Fig. 1.8. Thus, alternative ways of mimicking a boundary need to
be implemented. One example of such an approach is shown in Fig. 1.8 (a) and
(b), where at each iteration points of equal density are first identified and then
used to fit spline curves such that they create an approximate loading surface. A
main issue with this approach is that the iso-density value needs to be carefully
selected every time to avoid ill-defined loading curves. Alternative density-based
implementations will be discussed in more detail in Ch. 2 where the literature
review is presented.

(a) (b) (c)

Figure 1.8: (a) Lack of a clear interface due to the presence of “gray” elements
with intermediate densities, (b) Points of equal density and (c) Fitted spline
curves to construct a loading surface. (Hammer and Olhoff, 2000)

BESO methods on the other hand do not employ the continuous density
variable, thus avoiding some of the challenges in SIMP. However, the piecewise
constant discrete nature of BESO often yields boundaries represented by the
finite elements’ jagged edges. In more complex multiphyiscs problems such as
fluid-structure interactions, this can cause problems especially for coarser meshes
leading to flow instabilities near the interface and thus a poor description of the
interface physics (Alexandersen and Andreasen, 2020).

Level set methods have an advantage when it comes to boundary definition
as the boundary is implicitly represented by a level set function. Therefore, solid
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and void regions are well defined. Despite this, when fixed finite element grids and
the Ersatz material approximation is used for the analysis, this crisp boundary
representation of the level set mesh is not maintained on to the computational
domain due to the presence of elements cut by the boundary. Typically, load
transformation techniques are employed to transfer the load from the interface
onto the nodes of the element as work-equivalent nodal loads. The examples in
Fig. 1.9 illustrate such a transformation.

(a)

(b)

Figure 1.9: Work-equivalent nodal loads in LSTO: (a) By Emmendoerfer et al.
(2018), (b) By Picelli et al. (2019). Where Lk is the kth segment defined by
cutting the element with the level set boundary, n is the inward normal vector,
(xc, yc) are the coordinates of the element centroid and (xg, yg) are the coordinates
of the integration point for Gauss quadrature along the segement to compute the
equivalent nodal load.

XFEM on the other hand offers a crisp boundary representation, however
several difficulties can occur. For example, noise and ill-conditioning of the dis-
cretization may occur in case of small intersections of finite elements (i.e., cut
elements with small solid fractions as reported by Miegroet and Duysinx (2007)
which is an issue that Ersatz approximation also shares. Another potential source
of error is the situation of non-physical coupling when the gap between solid com-
ponents is less than the size of an element (Wein et al., 2020), as shown in Fig.
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1.10.

Figure 1.10: Non-physical coupling that can potentially happen in XFEM (Wein
et al., 2020)

Remeshing the structure at each iteration such that the FEA mesh conforms
the level set boundary is another alternative presented by Allaire et al. (2014),
however, a series of operations is required to ensure good element qualities which
depending on user expertise may not be straightforward since certain parameters
are user defined.

1.4 Addressing the interface identification

challenge by employing the meshfree

reproducing kernel particle method (RKPM)

As can be concluded from Sec. 1.3, depending on the methodology used, different
numerical schemes are needed to address the design-dependency challenge. Typi-
cally, this requires either for the loads to be transformed into equivalent nodal
loads or for an artificial interface to constructed. Even methods that directly
address the problem such as XFEM or remeshing have additional difficulties to
deal with as discussed. One thing that becomes apparent, is that since the level
set method provides a clear interface at least geometrically, it can naturally be
more advantageous in design-dependent surface problems. Thus, the LSTO is the
optimization technique used in this thesis. The remaining question is what could
be an appropriate numerical method to combine with the LSTO to solve design-
dependent problems in a straightforward way, without load interpolations, which
at the same time avoids the numerical difficulties arising with conventionally used
methods.

A new class of analysis methods has emerged in the last two decades, in which
no mesh is needed and shape functions are constructed from a scattered set of
particles as shown in Fig. 1.11. These are known as meshfree methods and they
are designed to inherit the useful characteristics of the FEM, such as compact
supports of shape functions and good approximation properties, and at the same
time overcome the main disadvantages caused by the mesh-dependence. Over the
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years, a wide variety of meshfree methods have been studied and they can gener-
ally be categorized into collocation and Galerkin meshfree methods. Collocation
methods are based on the strong form of PDEs whereas Galerkin meshfree meth-
ods are based on the weak form of PDEs. The element free Galerkin method
(EFG) (Belytschko et al., 1994) and the reproducing kernel particle method
(RKPM) (Liu et al., 1995; Chen et al., 1996) are typical Galerkin-based examples.
A recent extensive review can be found in Chen et al. (2017b). Meshfree methods
have been used to study a wide variety of problems in engi-neering as an alterna-
tive to the FEM. Some examples include fracture mechanics (Belytschko et al.,
1994), large deformation problems (Chen et al., 1997) and contact mechanics
(Wang et al., 2014).

(a) (b)

Figure 1.11: Shape function construction in (a) Finite element method based on
a mesh, (b) Meshfree methods based on a scattered set of points (Chen et al.,
2017b)

In this thesis we employ the meshfree reproducing kernel particle method
(RKPM) for performing the analysis and computing sensitivities. As RKPM
offers the ability to place particles anywhere in the design-domain, and further-
more the analysis is not sensitive to the locations of these particles, this allows for
the development of an LSTO-RKPM methodology that can maintain the crisp
boundary representation from the level set onto the computational domain. This
can straightforwardly be done by placing RKPM particles along the structural
boundary, which enables the direct application of the loads on the boundary with-
out any load interpolation or transformation schemes. Furthermore, since RKPM
does not rely on a mesh, the mesh-based difficulties appearing in conven-tional
approaches are avoided.

1.5 LSTO-RKPM methodologies

The combination of LSTO with RKPM for specifically addressing design-dependent
problems in topology optimization is one of the main contributions of this thesis.
Apart from a straightforward way of dealing with design-dependent problems,
RKPM provides additional useful features in the context of LSTO which are fur-
ther investigated in this thesis. For example, different particle distributions that
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may enhance efficiency while maintaining accuracy. Moreover, RKPM allows for
a controllable order of continuity and completeness of the shape functions without
additional complexity, and independent from one another. This enables effective
solutions of partial differential equations (PDEs) involving high-order smooth-
ness or discontinuities. In the process of solving the design-dependent problem,
different implementations have been developed and tested that illustrate these
useful characteristics, which can be useful not only in the design dependent prob-
lem but also in a range of problems where improved smoothness and accuracy is
required.

Imposition of the essential boundary conditions is also an area that requires
special attention. More specifically, it is known that meshfree shape functions lack
the Kronecker delta property, similarly to XFEM. In the finite element method
(FEM) due to this property, shape functions corresponding to a node have a
value equal to one at that node whereas their values at all other nodes are zero.
This is not true in the case of meshfree methods where the shape functions of a
node do not disappear completely in other nodes. In other words, meshfree shape
functions do not pass through the data. This is because the meshfree shape func-
tions are not interpolation functions, rather, they are approximation functions
(Chen and Wang, 2000). This complicates the imposition of essential (Dirichlet)
boundary conditions and creates the need for special techniques. Nevertheless,
this topic has reached a level of maturity now and a variety of methods exist
in the literature for imposition of boundary conditions (Fernandez-Mendez and
Huerta, 2004; Chen et al., 2017b, 2001).

Domain integration is also a point of consideration. Although no mesh is
required for constructing the shape functions, domain integration is still needed
in Galerkin meshfree methods to evaluate the integrals in the weak form. This
is generally done by either Gauss integration on a background mesh (Belytschko
et al., 1994) or by using nodal integration over representative domains. Such
domains could be for example the polygon cells created by a Voronoi diagram
(Chen et al., 2001). The two methods are illustrated in Fig. 1.12. Both techniques
are implemented and tested in this thesis in the context of LSTO and their
differences are discussed in detail with respect to accuracy and efficiency.
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(a)

(b)

Figure 1.12: Domain integration in Galerkin meshfree methods: (a) Gauss inte-
gration on a background mesh and (b) Nodal integration (Huang et al., 2019)

1.6 Extension to fluid-structure interactions

In the last part of the thesis, the LSTO-RKPM implementations developed
throughout the previous chapters are extended to the more complex design-
dependent case of fluid-structure interactions. Having developed a methodol-
ogy for tracking the interface throughout the optimization procedure, allows for
exten-sion to such more complex design-dependent physics.

Instead of pressure, the structure is now in contact with a viscous flow field
governed by the Navier-Stokes equation. The literature on fluid-structure in-
terac-tion topology optimization is very limited which is an indication of the
challenging nature of these problems. This has been recognized by a recent,
extensive review on topology optimization for fluids by Alexandersen and An-
dreasen (2020). The existing works considered steady-state laminar flows with
low Reynolds numbers, and small structural deformations. In this thesis one of
the main aims is to develop a methodology that is capable of solving high fi-
delity fluid-structure interaction topology optimization problems. In order to do
so, the LSTO-RKPM methodology is coupled with a popular method for mod-
elling fluid-structure interactions efficiently, namely, the modified immersed finite
element method (mIFEM) discussed next in section 1.6.1.
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1.6.1 Modified immersed finite element method (mIFEM)

Modelling fluid structure interactions (FSI) is difficult because of the complicated
motions and deformations of the fluid-structure interface. Methods requiring con-
forming meshes between fluid and solid such as the Arbitrary Lagrange Eulerian
(ALE) method (Liu et al., 1988; Hu et al., 2001) can handle complicated fluid-
solid interfaces. However, they require expensive mesh-updating and remeshing.
In practice, remeshing becomes increasingly challenging with large deformation
of the fluid-structure interface. The situation complicates further if in addition
topology optimization is to be considered, where the topological changes and the
structural deformations due to the action of the fluid occur simultaneously within
each optimization iteration.

To avoid such conforming processes, the immersed methods such as the im-
mersed finite element method (Zhang et al., 2004; Zhang and Gay, 2007) have
emerged as non-conforming techniques to model FSI problems. In these methods,
the fluid and solid domains co-exist so that non-conforming meshes or discretiza-
tions can be used. The main idea is that an Eulerian background fluid Ωf is
coupled with a Lagrangian solid domain Ωs that “floats” on top of the fluid as
shown in Fig. 1.13 and is free to deform. The fluid region overlapping with
the solid domain is called the artificial fluid domain Ω̄. The entire fluid domain
consisting of the real fluid and the artificial fluid domains is governed by the
Navier-Stokes equations. The impact of the solid is reflected as a body FSI force
and no-slip boundary condition in the artificial fluid region whereas the fluid
exerts a traction force on the solid boundary.

Figure 1.13: Immersed finite element method scheme (Wang and Zhang, 2013).
Γsq represents the Dirichlet boundary and Γsh is the Neumann boundary.

In conventional immersed methods such as the immersed finite element method,
the solid displacement is imposed from the fluid velocity, rather than being solved
from its own governing equations. Essentially the solid velocity and displacement
are computed by interpolation of the overlapping fluid velocity field. As the fluid
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and solid dynamics are different from one another, a slight mismatch usually
results at each time step, with the solid solution being slightly overestimated.
The accumulation of this effect over time may lead to severe mesh distortion
for the solid especially for high Reynolds number flows. To avoid these issues,
Wang and Zhang (2013) developed the modified immersed finite element method
(mIFEM) which changes the formulation to reverse the imposition of the veloc-
ity: The solid dynamics is first solved using its own governing equation. The
obtained solid velocity is then imposed onto its overlapping fluid domain. As a
result, the solid dynamics is preserved, therefore resulting in more accurate and
realistic coupled solutions. Moreover, since the fluid velocity is not imposed onto
the solid, the incompressibility constraint on the solid when the background fluid
is incompressible is being removed.

1.6.2 mIFEM-LSTO-RKPM

Considering its aforementioned advantages, mIFEM is an ideal choice for com-
bining with the LSTO-RKPM scheme for the following reasons:

1. First and foremost it allows for modularity in the solvers. Thus, it makes
it possible to link the RKPM solver developed in this thesis with any fluid
solver through the mIFEM.

2. Efficiency is another important advantage of mIFEM. By employing an
Eulerian grid for the fluid, the fluid equations can be efficiently solved
without having to remesh for the fluid which would be a tedious task.

3. The mIFEM allows for the solid to deform freely on top of the fluid mesh
as it undergoes topological changes throughout the optimization procedure.
Since the RKPM can handle straightforwardly such topological changes,
this combination makes it possible to have a crisp solid boundary repre-
senta-tion. The idea is that the structure is geometrically described by
LSTO and then using RKPM the crisp level set boundary representation
is maintained onto the computational model by placing RKPM particles
along the boundary and inside the structure.

1.7 Thesis objectives

The overall goal of this thesis is to develop meshfree level set topology optimiza-
tion methodologies for design-dependent surface physics. The main challenges to
be addressed were discussed in this first Chapter. To conclude this introduction,
the main objectives and key elements are summarized below.

1. To develop a meshfree level set topology optimization methodology based
on Galerkin meshfree methods, specifically the reproducing kernel particle
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method. Explore the different features of the methodology such as differ-
ent particle distributions, different orders of continuity, different methods
for imposition of essential boundary conditions and different domain in-
tegration techniques to test what combination provides the most robust
methodology.

2. To employ the LSTO-RKPM methodology to solve the design-dependent
problems with hydrostatic pressure loads, the simplest case of design-depen-
dent physics. Validate for this simple case of design dependent physics and
compare with the literature.

3. To extend the methodology to the more complex case of design-dependent
fluid structure interaction by coupling the LSTO-RKPM methodology with
the mIFEM.

4. To investigate fluid-structure interaction topology optimization problems
and compare with the literature for verification.

1.8 Layout of the thesis

The thesis is composed by seven chapters as follows,

1. In this first introductory chapter the basic terminology for structural opti-
mization has been explained, leading to a discussion on topology optimiza-
tion and the different approaches currently used. The main challenges and
objectives that this thesis aims to address were also outlined. Specifically,
design-dependent surface physics are of interest, from the simplest case of
hydrostatic pressure to the more complex FSI problems. A methodology
that can handle any type of design-dependent surface physics is the main
objective. For this purpose, a meshfree LSTO-RKPM approach is devel-
oped that is capable of maintaining the crisp level set boundary onto the
computational domain.

2. In Ch. 2 the state of the art in the main areas of interest is provided
with a detailed description of specific works. The chapter is divided into
three parts to categorize works for design-dependent topology optimization,
meshfree-based topology optimization and FSI topology optimization. At
the end of each category a summary of the main conclusions drawn from
the existing literature is discussed to emphasize the main challenges the
thesis aims to address.

3. Chapter 3 goes into the mathematical formulation and specific details of the
LSTO and RKPM methods separately. Based on the different ingredients of
RKPM, different implementations can be developed as illustrated through
the examples in the subsequent chapters.
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4. An LSTO-RKPM implementation with Gaussian integration on a fixed
background mesh is presented in Ch. 4 to solve design-dependent prob-
lems with hydrostatic pressure. The obtained results are compared with
the literature and also against an FEA implementation to illustrate the
benefits of the methodology.

5. Before extending the methodology to FSI, an alternate LSTO-RKPM im-
plementation employing nodal integration is developed. The purpose for
this is to address several challenges with the Gauss integration approach
that were observed in Ch. 4 especially in terms of computational efficiency.
As explained in the chapter, the nodally integrated-based RKPM achieves
much higher efficiency while maintaining the same (or even better) levels
of accuracy. The robustness of the approach is tested against stress-based
and design-dependent examples. Through the examples, numerical exper-
imentations with different particle distributions and continuity orders are
also illustrated.

6. With a robust LSTO-RKPM methodology at hand, extension to design-
dependent FSI is presented in Ch. 6. The solid LSTO-RKPM solver is
coupled with the modified immersed finite element method through the
OpenIFEM opensource platform to perform the FSI analysis. Several chal-
lenges specific to FSI topology optimization are addressed in the chapter
such as the identification and removal of free-floating volumes of solid ma-
terial into the fluid domain and the separation of the loading portion of the
boundary from the load-free part. Furthermore, a particle based discrete
adjoint in the context of LSTO is explained to compute the FSI sensitiv-
ities. To validate the mIFEM-LSTO-RKPM approach examples from the
literature are solved and compared.

7. In the last chapter, the main conclusions drawn from the thesis are discussed
and possible future directions of the current work are provided.
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Chapter 2

Literature Review

2.1 Meshfree methods in topology optimization

The vast majority of topology optimization methods are based on the finite ele-
ment method (FEM). In recent years, authors started exploring meshfree methods
in topology optimization and taking advantage of their useful features such as
mesh independency, higher order approximation and smoothness.

A significant part of the literature on meshfree topology optimization com-
bines meshfree methods with density-based approaches such as the SIMP method.
Especially the use of Galerkin based methods has been shown to alleviate the
need for sensitivity filtering due to the higher order smoothness of the meshfree
shape functions and avoid mesh-dependence phenomena (Gong et al., 2010; Luo
et al., 2013). Commonly, density-based meshfree methods are based on point-
wise density interpolation schemes, with either the densities at the Gauss points
considered directly as design variables or with the nodal densities defined as de-
sign variables and then used to interpolate the density field at the computational
points based on the meshfree shape functions as explained in the next paragraph.

Du et al. (2009) used the EFG method integrated into topology optimization
with the SIMP method for the design of thermomechanical compliant mecha-
nisms with geometrical nonlinearities. To eliminate the appearance of discontin-
uous scattered points in the topology, sensitivity filtering is used to smear out the
numerical instability. For the integration of the weak form Gaussian quadrature
on rectangular background cells is used, and the artificial densities at the Gauss
points are considered as the design variables. The EFG method with Gaussian
integration on a background mesh in combination with the SIMP method was
subsequently used by other authors to study a variety of problems. Gong et al.
(2010) presented a study with multiple loading conditions and compliance mini-
mization under stress constraints. The densities at the particles are chosen as the
design variables and are used to interpolate the densities at the computational/
Gauss points using the meshfree shape functions. This exploits the smooth-
ness of the meshfree shape functions to improve the smoothness of the density
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field and eliminate the checkerboard problem. Zheng et al. (2012) studied free
vibrating continuum structures with the objective of maximizing the fundamen-
tal eigenvalue and considering the nodal densities as design variables and Gong
et al. (2012) applied the EFG-SIMP method to the modal topology optimiza-
tion method for maximizing the first-order natural frequency. Luo et al. (2013)
proposed an approach in which the Shepard function is applied to construct a
physically meaningful dual-level density approximant, due to its non-negative
and range-restricted properties. The density at any computational point is in-
terpolated by the Shephard function and the density values of nodes inside the
influence domain of the current point. This density approximant acts as a heuris-
tic filtering scheme to enhance the smoothness of the density field. Geometrically
nonlinear structures were considered by He et al. (2014). The approach is based
on a similar point-wise material density field and Shepard interpolation used in
Luo et al. (2013). The difference in this work is that the density design variable
points are freely positioned independently of the displacement nodes used in the
displacement analysis. However, for ensuring well-posedness of the optimization
problem, the density points should be distributed in a reasonable manner accord-
ing to the displacement node arrangement. Gong et al. (2018) proposed a SIMP
based topology optimization-EFG method based on moving particles rather than
“soft delete” or “hard delete”. The moving of particles is controlled based on
the density values change in each optimization step, by moving particles with
densities lower than a threshold value to positions with higher density values and
keeping high density particles still. Zhang et al. (2020) used the EFG method
combined with the rational approximation of material properties (RAMP) model
for topology optimization of heat conduction in both isotropic and anisotropic
materials. The densities of the EFG nodes are chosen as design variables and
the densities at the Gauss points are computed by the interpolation of the nodal
densities with the moving least squares (MLS) shape function in the domain of
influence.

There are also implementations based on different schemes in terms of the
meshfree method and integration scheme. Cho and Kwak (2006) used the re-
producing kernel particle method in combination with a density-based approach
for topology optimization of geometrically non-linear structures. The bulk den-
sity at the integration points of the background mesh is interpolated using the
nodal densities with support domains covering each integration point using the
reproducing kernel (RK) shape function. Cui et al. (2017) used the EFG method
for multi-material topology optimization based on the alternating active-phase
algorithm within the SIMP framework. The nodal relative density which is taken
as the design variable is obtained through the Shepard interpolation in combi-
nation with the moving least square (MLS) shape function. In contrast to most
meshfree topology optimization methods presented in the literature, this work
employs nodal integra-tion instead of Gauss quadrature which increases the com-
putational efficiency. Due to the order smoothness of the MLS shape functions
sensitivity filtering is not used. A direct coupling between the FEM and EFG was
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presented by Zhang et al. (2018a) to reduce the computational cost of the EFG
method. A constraint centroidal Voronoi tessellation (CCVT) algorithm linked
with the density variable of SIMP is used to generate the point set for discretizing
the EFG domain. A dual-level density approximant is adopted to formulate a
continuous material distribution. The density field at the Gauss points is interpo-
lated by the density field at the FE and EFG nodes in the influence domain using
two different Shepard functions. The domain integration is performed using the
Gauss quadrature on the background cells whereas multilevel Gauss quadrature
points are used to further reduce the computational cost. The authors later ex-
tended the approach to topology optimization of hyperelastic structures (Zhang
et al., 2018b). Zhou and Zou (2008) presented a meshless topology optimization
method based on the implicit topology description and the reproducing kernel
particle method using nodal design variables and the smoothed Heaviside func-
tion with a regular background mesh for the integration of the weak form in the
domain.

Some works exist in the literature employing the smoothed particle hydrody-
namics method which is based on the strong form of the governing equations in
contrast with the Galerkin meshfree methods. Lin et al. (2016) introduced the
corrective smoothed particle method and total Lagrangian formulation in order
to eliminate intrinsic problems in the smoothed particle hydrodynamics (SPH)
method such as inconsistency and instability. Each SHP particle is assigned a
density design variable and topology optimization is performed using a modi-
fied SIMP approach. In contrast to the Galerkin meshfree topology optimization
methods, this approach requires a sensitivity filter to avoid the formation of
checker-board patterns. Minimization of compliance was considered in the exam-
ples. The corrective smoothed particle method (CSPM) was also used by Li et al.
(2020) for optimizing linear structures under multiple load cases. Particle’s den-
sity is chosen as the design variable and it is approximated using the Shepard
interpolation scheme to make it smooth and range-restricted in [0,1]. The modi-
fied SIMP method is applied to determine the Young’s modulus, which is related
to the particle densities. A sensitivity filtering technique is also introduced to
enhance the numerical stability and prevent the checker-board patterns.

In the context of level set methods, Luo et al. (2012a) proposed a meshless
Galerkin parametric level set method based on compactly supported basis func-
tions (CSRBFs). CSRBFs are used to both parameterize the level set function
and to construct the shape functions for the meshfree approximation. For the
domain integration a fixed background mesh is employed with 4×4 Gaussian
quadrature. The particles were placed at the nodal positions of the background
mesh and their positions remain unchanged throughout the optimization process.
To account for the boundary discontinuity, the CSRBFs were used to interpolate
the level set function at quadrature points based on the discrete level set function
nodal values. Quadrature points with a positive or zero level set value were
considered as solid whereas a weak material was assigned to points with negative
level set values. Compliance minimization for linear elastic structures under
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constant point loads was solved in this work and the authors later extended the
methodology to optimization of compliant multiphysics actuators (Luo et al.,
2012b). Subsequent level set optimization based on meshless methods also used
interpolation schemes and Gaussian integrations on fixed background meshes.
For example, the parametric level set method based on CSRBFs was also used
by Ai and Gao (2019) to optimize two-dimensional microarchitected periodic
metamaterials for the cases of single and multiple materials. Similarly to Luo
et al. (2012a), the material discontinuity is treated by an interpolation scheme in
which the level set function value at a Gaussian quadrature point is determined
through the interpolation of the field nodes in the support domain using the
meshfree shape functions. Khan et al. (2019) combined the EFG method with
level set topology optimization using the Hamilton-Jacobi equation with a topo-
logical derivative term. Two-dimensional linear elastic problems under single and
multiple point loads were examined considering compliance minimization as the
objective function. The particles were at fixed locations throughout the whole
optimization process.

The bi-directional evolutionary structural optimization (BESO) method was
also used in combination with the EFG method by Shobeiri (2016) employing
uniformly distributed nodes and Gaussian quadrature in the examples for mini-
mum compliance of linear elastic structures. Zhao (2014) incorporated an im-
proved meshless density variable approximation into the BESO method and used
the Shepard function to create a physically meaningful dual-level density approxi-
mation based on the previous work by Luo et al. (2012a). The shape functions
of the meshless Galerkin method are constructed using CSRBFs and domain
integration is performed on a regular background cell structure using 4×4 Gauss
quadrature.

2.1.1 Conclusions from the literature and identification
of challenges

As seen from the literature, previous works are based on interpolation schemes
based on nodal densities. Even level set methods use such interpolation schemes
thus not transferring the clear boundary representation generated by the level set
method on the computational domain. Conventionally in topology optimization,
fixed grids and interpolation schemes are used to avoid the cumbersome task of
remeshing the structure at each iteration. Recently Allaire et al. (2014) pre-
sented such a remeshing approach and demonstrated its applicability in a range
of different physics. Nevertheless, a series of operations has to be performed at
each optimization step to ensure good mesh quality. One of the main benefits of
the meshfree methods is the ability to freely place particles in the design domain
without relying on a mesh and without the problems caused by mesh depen-
dency. This can allow for an exact representation of shapes without remeshing
and the requirement of element quality operations. However, meshfree topology
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optimization approaches that use interpolation schemes do not fully exploit the
advantages of the meshfree methods and lose the potential of an exact representa-
tion of the structure. Furthermore, almost all Galerkin meshfree methods used
in the literature use Gauss integration on a background mesh with a higher order
quadrature. Higher quadrature rules are necessary to ensure accuracy. This was
identified by Belytschko et al. (1994) as a requirement, due to misalignment of
the supports of the shape functions with the background cells.

One of the main objectives of this thesis is to incorporate different meshfree
implementations into level set topology optimization to exploit their benefits in
the context of design-dependent physics. RKPM implementations using both
Gaussian integration on a fixed background mesh and nodal integration have
been tested and compared in the examples presented in the thesis to highlight
and address the conclusions made in this section based on the literature.

2.2 Hydrostatic pressure loads

Since hydrostatic-pressure is the simplest case of design-dependent physics, a
major part of the literature is focused on pressure loads. A few works also exist on
acoustics, heat transfer, and fluid structure interactions. The primary challenge
which these works aim to address is to identify a clear interface and illustrate the
applicability of their methodologies through this simple case of design-dependent
loads.

In density-based methods, the presence of elements with intermediate den-
sities near the boundaries makes it difficult to identify the specific surface for
the moving loads to be applied. Hammer and Olhoff (2000) proposed the use
of iso-density nodal points and Bezier spline curves. The volumetric density of
material is used to define the load surface which is represented by spline functions
with control points that depend on the design variables. The pressure acting on
this surface is then transformed into nodal forces in the FEA model. A challenge
with this methodology however, is the appearance of ill-defined loading curves if
a cut-off value of the material density is not appropriately selected. As a con-
sequence, invalid load surfaces may appear. To overcome this, Du and Olhoff
(2004), improved this method by determining the loading surface in a given step
based on the isoline of material density not only in the current step but also
in the previous one. Furthermore, the loading surface is represented directly by
straight segments instead of a spline curve, thus making the calculation of nodal
forces simpler. The same framework for tracking the moving load surfaces was
later adopted by Lee and Martins (2012).

Another way of tracking pressure load surfaces in SIMP, was introduced by
Chen and Kikuchi (2001) and also used by Bourdin and Chambolle (2003). In-
stead of constructing a parameterized surface for the pressure to act on, the
design dependent loads are simulated by fictitious thermal loads. A fluid domain
is introduced along with the solid and void domains. This results in a three-phase
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material distribution problem within the design domain in which the solid, void,
and hydrostatic fluid phases are optimally distributed. A hydrostatic pressure
force exists at the interface between the solid and fluid regions and it is simulated
by the thermal load due to the mismatch of thermal expansion coefficients of the
two materials. The thermal stress tensor of the non-fluid area is set to be constant
regardless of the density distribution to ensure that pressure does not act between
the solid and fluid regions. Later, Sigmund and Clausen (2007) introduced a way
to solve the pressure load problem based on a mixed displacement-pressure FE
formulation. Pressure is included as a separate variable and is used to define the
void phase as hydrostatic incompressible fluid. The pressure load is transferred
in the domain through the incompressible hydrostatic fluid.

Bidirectional Evolutionary Structural Optimization (BESO) does not employ
the continuous density variable thus, avoids some of the challenges in SIMP. Pi-
celli et al. (2015a) proposed a BESO approach where binary solid-void design
variables are used along with the process of fluid flooding which allows the fluid
and structure to be modeled during optimization with separate domains. Siva-
puram and Picelli (2017) recently created the Topology Optimization of Binary
Structures (TOBS) method and applied a similar approach to solve for a design-
dependent fluid pressure problem. However, the piecewise constant discrete na-
ture of BESO often yield the boundaries to be represented by finite elements’
jagged edges.

In contrast, the level set topology optimization method has an advantage that
the boundary can be clearly represented as the structure is implicitly described by
a level set function. Therefore, solid and void regions are well defined. However,
without remeshing, there are no nodes along the pressure boundaries to apply
the loading. In the seminal paper by Allaire et al. (2004) a Dirac delta function
was used together with the Ersatz material approximation to replace the surface
loads by equivalent volume forces thus avoiding the need for a pressure surface
identification. Using a similar approach, Xia et al. (2015) employed two level set
functions to represent the free and pressure boundaries. Shu et al. (2014) also
used a Dirac delta function to minimize sound pressure in an acoustic-structural
system. More recently, Emmendoerfer et al. (2018) proposed a level set topology
optimization in which the surface loads acting on the moving boundary are trans-
formed into work equivalent nodal forces to solve pressure loading problems with
level set topology optimization and a fixed grid. In this work, the Ersatz material
was also used for the elements cut by the boundary and a virtual fluid flooding
process was used to track the pressure surface. A similar approach has recently
been employed by Picelli et al. (2019) where a discretized fluid domain was used
to explore benchmarking examples with purely hydrostatic pressure loading.

Alternative to the ersatz material approximation, other approaches have been
used in combination with the level set topology optimization method such as the
extended finite element method (XFEM) or remeshing the geometry at every
iteration. To model the structural boundary using XFEM, the state variable
interpolation is enriched to account for discontinuities of the variables within an
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element that is cut by an interface. Local remeshing is then performed within the
intersected elements for the integration of the weak form. Integration problems
may arise when integrating small areas such as cut elements with a small solid
volume. This issue also appears in the Ersatz approximation scheme. Jenkins
and Maute (2016) combined a level set method XFEM to track fluid-structure
interface in a fluid structure interaction problem. A remeshing algorithm was
used by Isakari et al. (2017) to track the acoustic-interfaces in a FE analysis
coupled with the boundary element (BE) method. Recently, Allaire et al. (2014)
presented a remeshing approach and demonstrated its applicability in a range
of different physics. Nevertheless, a series of numerical operations have to be
performed at each optimization step to ensure mesh quality.

2.2.1 Conclusions from the literature and identification
of challenges

What can be observed from the literature on design-dependent pressure loads, is
that most works employ interpolation schemes for the loads to transform them
into equivalent nodal loads. The challenge of applying the loads in a direct way
without the need of such interpolation and approximation schemes remains. The
difficulty can rise either due to the topology optimization approach used or the
analysis method employed for computing sensitivities. For example, in the case
of density-based methods the optimization methodology makes the direct appli-
cation of the loads difficult due to the presence of gray elements. On the other
hand, with level set methods the optimization method allows for a crisp boundary
representation that could help the direct application of the loads. However, the
use of fixed FEA grids for the analysis again adds to the challenge. The more
direct remeshing LSTO approach on the other hand requires additional mesh
operations at each iteration to maintain the quality of the mesh. The direct ap-
plication of loads on the structural boundary without interpolation schemes or
remeshing is thus one the main challenges that this thesis aims to address. It
is clear that the level set method with the implicit boundary representation has
the most potential for offering an exact loading surface. However, alternatives
to the fixed grid and remeshing FEA need to be explored in order to maintain
this crisp boundary representation onto the computational domain. To this end,
the meshfree reproducing kernel particle method is employed in this thesis in
combination with level set topology optimization.

Inserting new boundary particles for the pressure loading, which can be done
straightforwardly by RKPM, is an advantage of using this method. This elim-
inates the need to transform the loads or to remesh the structure. The clear
boundary representation provided by the level set method in combination with
the ability to freely place RKPM particles wherever needed in the design domain,
allows for a clear identification of the pressure boundary. The particles on the
boundary points, can also be useful in sensitivity computation. Sensitivities at
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the boundary points are required by the level set method used in this work to
evolve the level set function and move the boundary as explained later in Sec.
3.1. In previous works employing the level set method described in section Sec.
3.1 with Ersatz material approximation, the computation of sensitivities at the
boundary points (which exist at the finite element edges), was performed using
a least squares interpolation from the sensitivity vales at the Gauss points of the
elements (Picelli et al., 2018). The presence of particles on the boundary points
allows to compute sensitivities at the boundary points directly without the need
for stress recovery techniques.

2.3 FSI literature

One of the main challenges in topology optimization for FSI is to track the
interface as the structure undergoes topological changes.

The initial work on topology optimization for FSI was done by Yoon (2010)
using a density-based approach. The formulation of distinct regions for solid
and fluid i.e distinct sets of governing equations is difficult in the context of
density-based methods since the appearance of gray elements results in blurred
boundaries thus lacking a crisp representation of the fluid-solid interface. This
makes the imposition of coupling boundary conditions between separated fluid
and solid domains challenging. To circumvent this challenge, typically the entire
domain is assumed to be filled with a porous material resulting in a unified do-
main rather that separated solid and fluid domains. The system of equations is
thus solved simultaneously in the whole domain. Different volume fractions of
fluid and solid exist in each element in the design domain and the material prop-
erties are interpolated with respect to these volume fractions (design variables).
Cases of fluids governed by the steady-state incompressible Navier-Stokes equa-
tions interacting with linear elastic structures were considered in this work. Only
small deformations of the solid domain were assumed and thus two-way coupling
was not actively applied. Yoon later extended the framework (Yoon, 2014) for
stress-based FSI, considering mass minimization under stress constraints. Again
in this work the steady state incompressible Navier-Stokes equations are consid-
ered along with linear elastic structures with small displacements. Andreasen
and Sigmund (2013) used a similar approach for topology optimization of fluid-
struc-ture interaction problems in saturated poroelastic media. In their model
they used a macroscopic Darcy-type flow law to couple the Stokes flow in the
pores of the structure with the deformation of the elastic skeleton. Lundgaard
et al. (2018) revisited the unified density formulation by Yoon (2010), presenting a
modified formulation which ensures length-scale-controlled designs and makes the
optimization results less sensitive to the choice of interpolation function param-
eters and penalization strategies. Multiple objective functions were con-sidered
under the assumptions of steady state conditions and small deformations of linear
elastic solids.
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Density methods require a fine mesh resolution to avoid blurred (intermedi-
ate density) elements as much as possible. When considering multiple physics,
with an increased number of material properties, the complexity of choosing the
correct form of interpolation increases substantially. Further, the fluid-structure
interface is smeared over multiple elements. This lack of a clear interface is
challenging when considering more complicated flow phenomena, due to the in-
accurate enforce-ment of the coupling conditions and the difficulty of performing
local mesh refinement around a smeared interface.

The Bi-directional Evolutionary Structural Optimization (BESO) approach
for FSI presented by Picelli et al. (2015a) uses discrete rather than continuous
density variables, thus avoiding some of the challenges encountered in density-
based methods. Recently, topology optimization of binary structures (TOBS) was
also developed by Picelli et al. (2020) for steady-state FSI problems in contact
with linear elastic structures. In this method the BESO method is combined with
the COMSOL Multiphysics software. The discrete interface provided by BESO
is remeshed with triangular at each iteration using COMSOL to solve the fluid-
structure interaction equations. Although the BESO method provides clearly
defined boundaries, the piecewise constant discrete nature of BESO often yields
jagged boundaries represented by the finite element edges. For coarser meshes,
this may lead to flow instabilities near the interface and thus a poor description
of the boundary layer (Alexandersen and Andreasen, 2020).

In contrast to density based methods, level set topology optimization provides
clear structural boundaries through implicit representation. However, when the
conventional Ersatz approximation is considered the crisp boundary representa-
tion is not transferred onto the finite element model, causing the same difficulties
as with the density-based methods when considering FSI problems. Alternatively
Jenkins and Maute (2016) used the level set method in combination with the ex-
tended finite element method (XFEM) and deformed fluid mesh. The interface
is defined by the zero level set function and XFEM enriches the state variable
interpolation to account for discontinuities of the variables within an element
cut by the interface. This work also considered steady state FSI with the solid
being linear elastic with the examples presented in the paper limited to small
deformations. As mentioned in the paper, the approach is limited to moderate
structural displacements. More recently, Feppon et al. (2019) employed adaptive
remeshing in combination with level set topology optimization in the 2D domain.
At each iteration, the fluid-solid interface is evolved by the level set method and
subsequently remeshed in order to keep track of a clear interface and distinct
fluid and solid domains. A series of operations is used in order to ensure good
mesh quality at each step. This work considers the coupling of the steady state
Navier-Stokes equations for the fluid domain, the convection diffusion equation
for the whole domain and linear elasticity for the solid domain, with all equations
considered in steady state. The three physics are coupled weakly meaning that
the equations are solved consecutively rather than solving a monolithic coupled
system.
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2.3.1 Conclusions from the literature and identification
of challenges

The current literature on topology optimization for FSI problems is limited and
mainly considers small deformations and steady state FSI problems with only an
emphasis on developing methodologies.

Furthermore, only low to moderate Reynolds numbers have been considered.
These were also recognized by a recent, extensive review on fluid-based topology
optimization by Alexandersen and Andreasen (2020), which showed that only 15
papers considered FSI out of 186 papers, all with such simplifications assumed.
A classification of the most relevant of these works according to the methodology
used and the equations considered is shown in Fig. 6.13.

There is, thus, a significant potential in topology optimization for FSI prob-
lems provided a robust methodology is developed. This leads to the main goals
of this thesis, which is to develop a methodology that can handle FSI prob-
lems straightforwardly. Once a methodology has been established and validated
against the existing literature, more complex problems can be considered such
as transient FSI with large structural deformations. This latest challenge is not
addressed in this thesis, however, the methodology developed here provides all
the necessary ingredients for such an extension.
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Figure 2.1: FSI topology optimization literature
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Chapter 3

LSTO - RKPM Methodology

3.1 Level set topology optimization method

This section briefly summarizes the level set topology optimization method used
in this study. More details of the method can be found in Hedges et al. (2017)
and Picelli et al. (2018). In the level set topology optimization, the structural
boundary is defined as the zero level set of an implicit function:

φ(x) ≥ 0 x ∈ Ω

φ(x) = 0 x ∈ Γ

φ(x) < 0 x /∈ Ω

(3.1)

where φ is the level set function, Ω is the structural domain and Γ is the
structural boundary. Commonly, the implicit function is initialized as a signed
distance function (Wang et al., 2003; Allaire et al., 2004).

The structural boundary is optimized by iteratively solving the following
Hamilton-Jacobi equation

∂φ(x, t)

∂t
+ |∇φ(x)|Vn(x) = 0 (3.2)

where t is a fictitious time domain for the level set evolution and Vn is the
normal velocity.

The level set function at each node is updated by solving the following
discretized Hamilton-Jacobi equation using an up-wind differential scheme,

φk+1
r = φkr −∆t

∣∣∇φkr ∣∣Vnr (3.3)
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where r is a discrete node in the design domain, Vnr is the normal velocity at
node r, k is the iteration number and

∣∣∇φkr ∣∣ is computed for each node using
the Hamilton-Jacobi weighted essentially non-oscillatory method (HJ-WENO).
To improve the computational efficiency, the level set update is restricted to
nodes within a narrow band close to the boundary. This means that φr is given
by a signed distance to the boundary only within the narrow band. To correct
this effect, φr is periodically reinitialized to a signed distance function. For the
reinitialization and velocity extension the fast-marching method is used (Sethian,
1996). The velocities required for the level set update are obtained by solving
the linearized optimization problem,

minimize
Ω

∂f
∂Ωk ∆Ωk

subject to ∂gm
∂Ωk ∆Ωk ≤ −gkm

(3.4)

where f is the objective function, gm is the mth inequality constraint function,
∆Ωk is the update for the design domain Ω and gkm is the change in the mth con-
straint. Shape derivatives that provide information about how the objective and
constraint functions change with respect to the boundary movement, typically
take the form of boundary integrals (Allaire et al., 2004):

∂f

∂Ω
∆Ω = ∆t

∫
Γ

sfVndΓ (3.5)

∂gm
∂Ω

∆Ω = ∆t

∫
Γ

sgmVndΓ (3.6)

where sf and sgm are the shape sensitivity functions for the objective and the mth

constraint, respectively. The integrals in Eqs. (3.5) and (3.6) can be estimated
as,

∂f

∂Ω
∆Ω ≈

nb∑
j=1

∆tVnjsf,jlj = Cf ·Vn∆t (3.7)

∂gm
∂Ω

∆Ω ≈
nb∑
j=1

∆tVnjsgm,jlj = Cgm ·Vn∆t (3.8)

where j is a discrete boundary point, Vnj, sf,j and sgm,j are the normal velocity
and boundary point sensitivities for the objective and mth constraint functions,
respectively, at point j. lj is the length of the local boundary around the boundary
point j, Cf and Cgm are vectors containing the product of boundary lengths and
shape sensitivities and Vn is the vector of normal velocities.

The linearized optimization problem is solved using the Simplex method
(Arora, 2004) implemented via the GLPK library, version 4.65
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(gnu.org/software/glpk/). The obtained optimum boundary point velocities are
then used in Eq. (3.3) to update the level set function and this process is re-
peated until convergence is obtained. This method is implemented in the object
oriented C++ code (Kambampati et al., 2018) and is available as opensource at
http://m2do.ucsd.edu/software/.

3.2 Reproducing kernel particle method

This section outlines the reproducing kernel particle method (RKPM). For more
details the readers are referred to Liu et al. (1995) and Chen et al. (1996).

3.2.1 Reproducing kernel approximation

To construct the RK approximation for a finite dimensional solution of the PDEs,
the domain Ω is discretized by a set of nodes {x1,x2, ...,xNP}, where xI is the
position vector of node I, and NP is the total number of particles, then the RK
approximation of a function u(x), denoted by uh(x), is expressed as,

u(x) ≈ uh (x) =
NP∑
I=1

ΨI (x)uI (3.9)

where ΨI(x) is the RK shape function at node I, and uI is the corresponding
nodal coefficients to be determined. Then the RK shape function can be
expressed as

ΨI (x) = C (x; x− xI) Φa(x− xI) (3.10)

where Φa(x − xI) is the kernel function centered at xI with compact support
size a. The kernel function controls the smoothness (continuity) and locality
of the approximation function. The order of continuity in this approximation
can be introduced without complexity. For example, the box function gives C−1

continuity, the hat function leads to C0 continuity, the quadratic spline function
results in C1 continuity, the cubic B-spline function yields C2 continuity and the
quartic and quintic functions give C3 and C4 continuities, respectively. This is
illustrated in fig. 3.1 where the C0 linear B-spline (tent) kernel is compared with
the C2 cubic B-spline kernel function:

Linear B-spline (tent),

Φa(x− xI) =


1− zI for zI ≤ 1

2

0 for zI > 1
(3.11)
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Cubic B-spline,

Φa(x− xI) =



2
3
− 4z2

I + 4z3
I for zI ≤ 1

2

4
3
− 4zI + 4z2

I − 4
3
zI

3 for 1
2
< zI ≤ 1

0 for zI > 1

(3.12)

where zI is defined as:

zI = ‖x− xI‖ /aI (3.13)
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Figure 3.1: Different kernel functions: (a) Linear B-Spline (C0 continuity) and
(b) Cubic B-Spline (C2 continuity)

The higher-order smoothness achieved by the RK shape functions using dif-
ferent kernels has been demonstrated in many examples in the literature of
RKPM. For example, it has been shown that a smooth transition in material
properties can be achieved by the smooth RK approximation in the modelling of
biomaterials (Chen et al., 2017a). Other examples can be found in the context
of contact mechanics (Wang et al., 2014) and large deformation analysis of non-
linear structures (Chen et al., 1996). Numerical comparison of using different
kernel functions with different levels of smoothness and locality can be found in
Huang et al. (2019) and Belytschko et al. (1994).

The correction function C (x; x− xI) is introduced to ensure the completeness of
the RK approximation by enforcing the following n-th order reproducing condi-
tions
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C(x; x− xI) =
n∑
|β|=0

(x− xI)
βbβ(x) = HT (x− xI)b(x) (3.14)

where n is the specified order of completeness, which is related to the order of
consistency in solving PDEs, β = (β1, β2, β3) is the three-dimensional index and
|β| ≡

∑3
i=1 βi.

bβ(x) is the corresponding coefficient of the monomials (x− xI)
β, where

(x− xI)
β ≡ (x1 − x1I)

β1(x2 − x2I)
β2(x3 − x3I)

β3 , and HT(x− xI) can be
expressed as

HT(x−xI) = [1, x−xI , y−yI , z−zI , (x−xI)2, . . . , (z−zI)n] (3.15)

and bT (x) is the unknown coefficient vector which can be computed by the n-th
order reproducing conditions

NP∑
I=1

ΨI(x)xβI = xβ, |β| ≤ n (3.16)

and by substituting Eq. (3.10) and Eq. (3.14) into Eq. (3.16). The coefficients
b(x) can be determined as

b(x) = M−1(x)H(0) (3.17)

where M(x) is the moment matrix. The support size aI is typically defined as:

aI = chI (3.18)

where c is the normalized support size, chosen between 1.5 and 2.0 in practice,
and hI is the nodal spacing associated with point xI (Huang et al. 2019). This
choice for the support has been shown to be stable in the literature (Belytschko
et al., 1994; Chen et al., 1996; Liu et al., 1997). The substitution of Eq. (3.17)
into Eq. (3.14) results in

M(x) =
NP∑
I=1

H(x− xI)H
T(x− xI)Φa(x− xI) (3.19)

where HT(x− xI) is the vector of monomial basis functions. Through the
combination of Eqs. (3.17), (3.14), and (3.10), the RK shape function in Eq.
(3.10) can then be obtained:

ΨI(x) = HT(0)M−1(x)H(x− xI)Φa(x− xI) (3.20)
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By construction, the RK shape function in Eq. (3.20) satisfies the following
n-th order reproducing conditions,

NP∑
I

ΨI(x)xiIy
j
Iz
k
I , 0 ≤ i+ j + k ≤ n (3.21)

where n is the specified order of completeness, which determines the order of
consistency in the solution of PDEs. In this work, linear basis is employed for
which both the zero-th and first-order reproducing conditions are satisfied.

An illustration of the RK discretization and shape functions with circular
supports is shown in Fig. 3.2. It should also be noted the support domains need
not to be circular rather different shapes may be used.

Figure 3.2: RK discretization for 2D domain illustrating the particles and shape
functions with circular supports overlapping over the domain (Huang et al., 2019)

3.2.2 Galerkin approximation and formulation

In this section the Galerkin framework for RKPM is outlined. Enforcement of
essential boundary conditions is discussed first since the formulations of the weak
form discussed later depend on the method selected for the imposition of bound-
ary conditions.

3.2.3 Imposing boundary conditions

The RK shape functions lack the Kronecker delta property. For this reason apply-
ing the essential boundary conditions is not straightforward. Several ap-proaches
have been proposed for this purpose. In general these can be classified into two
categories: Either strong enforcement at the nodes on the essential boundary or
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weak enforcement of conditions along the essential boundary (Chen et al., 2017b).
Strong enforcement methods such as the mixed transformation method and the
boundary singular kernel method (Chen and Wang, 2000) modify the standard
meshfree shape functions whereas weak methods such as the Lagrange multiplier
method (Belytschko et al., 1994), the penalty method (Zhu and Atluri, 1998) and
Nitsche’s method (Griebel and Schweitzer, 2002) are based on a modifi-cation of
the weak form. The Lagrange multiplier and Nitsche’s method are implemented
in this work. Both methods have their benefits and drawbacks. The Lagrange
method is one of the most commonly used because of it is general and can be
straightforwardly implemented for a wide range of problems. In fact, there is no
need to even know the weak form with this method. It essentially introduces a
new unknown function, namely, the Lagrange multiplier for which the physical
meaning corresponds to the flux (traction in a mechanical problem) along the
essential boundary. However, with this method the dimension of the resulting
system of equations is increased. Furthermore, the interpolation spaces for the
Lagrange multiplier and the principal unknown must satisfy an inf-sup, Babuska-
Brezzi stability condition to ensure convergence of the approximation. Thus, the
choice of an appropriate interpolation for the Lagrange multiplier requires a care-
ful treatment in certain situations (Fernandez-Mendez and Huerta, 2004). The
Nitsche’s method on the other hand, can be obtained by combining the Lagrange
multiplier and penalty methods, and only requires the choice of a scalar param-
eter similarly to the penalty method. However, Nitsche’s method does not suffer
from ill-conditioning in contrast to the penalty method in which large values of
this parameter can lead to ill-conditioned systems of equations. Furthermore,
it was shown in the work by Fernandez-Mendez and Huerta (2004), that the
Nitsche’s method yields optimal convergence. The difficulty with the Nitsche’s
method is that the modification of the weak form is different for each particular
problem. This means that generalization to any problem is not as straightfor-
ward as for the Lagrange multiplier method. Nevertheless, the deriva-tion under
the Nitsche’s method for well-known problems can be found in the literature.
For example for the Navier-Stokes problem (Becker, 2002), the Stokes problem
(Freud and Stenberg, 1995), and elasticity problems (Hansbo and Larson, 2002).

Galerkin formulation under Nitsche’s method

In this work we consider the case for linear elasticity

σij,j + bi = 0 on Ω

σijnj = hi on Γhi

ui = gi on Γgi

(3.22)

where ui is the displacement, σij is the Cauchy stress, nj is the surface normal,
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bi is the body force and hi and gi are the prescribed traction and displacement
on the Neumann and Dirichlet boundaries, Γhi and Γgi , respectively. Nitsche’s
method results in the following weak form of Eq. 3.22 (Chen and Wang, 2000)

∫
Ω

δεijCijklεkldΩ =

∫
Ω

δuibidΩ +

∫
Γhi

δuihidΓ +

∫
Γgi

δuiλidΓ

+

∫
Γgi

δλi(ui − gi)dΓ + β

∫
Γgi

δui(ui − gi)dΓ

(3.23)

where Cijkl is the elasticity tensor, εij is the strain, λi is the Lagrange multiplier
which for elasticity problems in Nitsche’s method is taken as the surface
traction, i.e., λi = σijnj, and β is the penalty taken as β = βnor

E
h̄

with βnor the
normalized penalty parameter, E the Young’s modulus and h̄ the average of
nodal spacing.

Introducing the RK approximation for ui in Eq. 3.9 into Eq. 3.23 results in
the following matrix equation

δuT (Ku− f) = 0 (3.24)

where

KIJ =

∫
Ω

BT
I CBJdΩ + β

∫
Γgi

ΨT
I SΨJdΓ

−
∫

Γgi

BT
I CnSΨJdΓ−

∫
Γgi

ΨT
I STnTCBJdΓ

(3.25)

fI =

∫
Ω

ΨT
I bdΩ +

∫
Γhi

ΨT
I hdΓ + β

∫
Γgi

ΨT
I SgdΓ−

∫
Γgi

BT
I CnSgdΓ (3.26)

where K is the stiffness matrix, Ψ represents the matrix of the RK shape func-
tions, B is the shape function gradient matrix, C is the elasticity tensor, u is
the vector of structural displacements, f represents the external load due to the
body force, b and surface load, h. Γhi is the Neumann boundary and Γgi is the
Dirichlet boundary with a prescribed displacement, g, to be enforced. The term
n is the surface unit normal on the essential boundary, β is the penalty taken as
β = βnor

E
h̄

with βnor the normalized penalty parameter, E the Young’s modulus
and S is used to impose each component of the boundary diplacement by setting
si = 0 or 1.

The discretization of the Nitsches weak form leads to a system of equations
with the same size as K, and whose matrix is symmetric and positive defi- nite.
This is not the case for the Lagrange multiplier method as shown in the next
section. However, with Nitsches method the deduction of the weak form and
generalization of the implementation for other problems is not as straightforward
as for the method of Lagrange multipliers (Fernandez-Mendez and Huerta, 2004).
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Galerkin formulation under Lagrange multipliers method

Using the Lagrange multiplier method to impose the essential boundary condi-
tions, the discrete equations corresponding to the weak formulation of 2-dimensional
linear elasticity can be expressed by[

K GT

G 0

] [
u
λ

]
=

[
f
q

]
(3.27)

where

KIJ =

∫
Ω

BT
I DBJdΩ (3.28)

GIJ = −
∫

Γgi

ΨINJdΓ (3.29)

fI =

∫
Ω

ΨIbdΩ +

∫
Γhi

ΨIhdΓ (3.30)

qI = −
∫

Γgi

NT
I gdΓ (3.31)

ΨI =

[
ΨI 0
0 ΨI

]
b =

[
bx
by

]
h =

[
hx
hy

]
g =

[
gx
gy

]
(3.32)

BI =

ΨI,x 0
0 ΨI,y

ΨI,y ΨI,x

 NI =

[
NI 0
0 NI

]
n =

nx 0
0 ny
ny nx

 S =

[
sx 0
0 sy

]
(3.33)

D =
E

1− ν2

1 ν 0
ν 1 0

0 0 (1−ν)
2

 (3.34)

In the above equations, G is a matrix to enforce boundary conditions using
the Lagrange multipliers method. Matrix D is the matrix of material elastic
constants with E, the Young’s modulus and Poisson’s ratio ν. NI in Eq. (3.31)
and Eq. (3.33) is the standard Lagrangian interpolant along the boundary to be
enforced.
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Chapter 4

Design-Dependent Hydrostatic
Pressure

In this chapter the RKPM based LSTO is employed to solve for moving hy-
drostatic pressure. Several necessary ingredients are first implemented. These
include a technique for numerical integration of the integrals in the weak form
of the Galerkin approximation. An algorithm for separating the loading portion
of the boundary from the load-free portion of the interior holes is also presented.
The examples solved here, include both steady and variable pressure fields and
the optimization problem considered is compliance minimization under a volume
constraint.

4.1 Domain integration using a background

mesh approach

Since a Galerkin meshless method is used, domain integration is required. In
this chapter, Gauss quadrature on a fixed rectangular background mesh is em-
ployed. As has been shown by Dolbow and Belytschko (1999), when the Gauss
quadrature is used for the domain integration significant errors may arise when
the background mesh does not coincide with the support domains. This becomes
particularly difficult when circular supports are being used. As has been shown
by Dolbow and Belytschko (1999), this can be improved by using sufficiently high
quadrature rules. Following this work, each background cell has 4×4 quadrature
points in our implementation to ensure accuracy. Integration schemes based on
nodal integration rather than Gauss integration have also been proposed in the
literature such as the stabilized conforming nodal integration (SCNI) by Chen
et al. (2001). Nodal integration is explained and implemented for LSTO in Ch.
5. It is important to note that RKPM is not limited to a regular background
mesh. Furthermore, the positions of the particles within the design domain are
indepen-dent from the background mesh. This very attractive feature is one of
the main advantages exploited in this work.
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4.1.1 Modeling the Interface

There are two different ways to perform Gauss integration on a background grid.
The first is to create cells that are conforming to the structure and integrate only
the solid region. To avoid this process here, the alternative of a fixed background
grid over the entire domain is used. In this scheme, integration points and par-
ticles also exist in the void region throughout optimization as shown in Fig. 4.1.
The void region is modeled as a weak material with a very low Young’s modulus
value.

It is important to clarify at this point, that with the interpolation scheme
proposed here, the crispiness of the boundary is not maintained onto the com-
putational domain. The crisp boundary represented by the level set method is
smeared out on the computational domain by interpolating the Young’s modulus
using the RK shape functions as the interpolation functions. This is in contrast
to methods such as XFEM which can capture the sharp interface on fixed-grids.
Essentially the scheme described here is similar to using the Ersatz approximation
to smear the interface on the computational domain.

A

B Particle with level set function value φ < 0 and Young’s modulus 10−4 × E
A

B

Particle with level set function value φ ≥ 0 and Young’s modulus E
x

Particle with level set function value: φ < 0
=> density: ρ = 1e-4

Particle with level set function value: φ ≥ 0 
=> density: ρ = 1

Computational point (Gauss point)Computational point (Gauss point) covered by support domains of A and B.

Figure 4.1: Interpolating Young’s Modulus at Computational Point (Gauss point)

Figure 4.1 illustrates how the moving boundary discontinuity is represented.
The level set function defines whether a point lies inside or outside the structure,
and the Young’s modulus values for solid and weak materials are also known. Fur-
ther, an interpolation of the Young’s modulus at quadrature points is performed
using the RK shape functions to achieve a smooth Young’s modulus distribution.
This in turn leads to a smooth boundary sensitivity field for a better conver-
gence. The Gauss points that lie near a structural boundary, are covered by the
support domains of the particles in both the solid and void regions as shown in
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Fig. 4.1. At these points, Young’s modulus E is computed by RK approximation
using the level set function values at the particles whose RK support domains
cover the Gauss point. Particles with φ ≥ 0 (For example particle A in Fig.
4.1) have a Young’s modulus value E, whereas particles with φ < 0 (For exam-
ple particle B in Fig. 4.1), have a Young’s modulus value equal to 10−4E. The
particles at the boundary points are placed there in order to apply the design-
dependent loads directly at the boundary. So their main purpose is to address
the design-dependency of the load. They also assist in boundary point sensitivity
computation which is required by the level set method used in this work. Previous
implementations of this level set method with the Ersatz approximation required
a least squares interpolation from the Gauss points of the elements (Picelli et al.,
2018) to compute boundary sensitivities whereas this can be avoided with the
boundary particles. These boundary particles have the same effect as the solid
particles on the Young’s modulus of a Gauss point in their viscinity. They are
assigned a Young’s modulus value equal to E as shown in Fig. 4.1, and they par-
ticipate in the Young’s modulus interpolation through the RK shape functions
just like the interior solid particles in the support domain of each Gauss point.

E at node I :


E(xI) = E if φ ≥ 0

E(xI) = 10−4 × E if φ < 0
(4.1)

where E(xI) is the Young’s modulus associated with the Ith node and E at
Gauss point xgp is computed as

E(xgp) =
∑

I∈Ggp

ΨI(xgp)EI (4.2)

where Ggp is the node set containing all nodes with their support covering the
evaluation point xgp and ΨI represents the RK shape function. The obtained E
is then used to compute the D matrix in Eq. 3.34.

To illustrate the resulting Young’s modulus distribution obtained from the
interpolation in Eq. 4.2, a 1D example is shown in Fig. 4.2. For this example,
500 particles are placed uniformly with a dimensionless spacing between them
equal to 0.01. For this 1D case the boundary is placed at x=3 as indicated by
the red dashed line in the figure. For all particles on the left of the boundary,
Young’s modulus is equal to 1 whereas for particles on the right of the boundary
Young’s modulus is equal to 0.0001. As shown in the figure, the interpolated
Young’s modulus has a smooth transition from the maximum to the minimum
value near the boundary region.
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Figure 4.2: 1D illustration of interpolated Young’s modulus

Later in Ch. 5, a different methodology is adopted for integration which
possesses several advantages over the implementation presented here especially
in terms of computational efficiency, as it will be discussed. Nevertheless, the
current implementation has been shown to be robust and gave good results.
Moreover, the implementation of this methodology allowed for comparison with
the different implementation discussed later, which was valuable for a deeper
understanding of the pros and cons of different LSTO-RKPM implementations.

4.1.2 Methodology

At every iteration, particles are added on the boundary at the intersection points
between the background mesh and the boundary. As explained in Sec. 4.1.1,
these boundary particles are placed to allow for a direct application of the design-
dependent loads at the interface. They also assist in boundary point sensitivity
computation which is required by the level set method used in this work. Pre-
vious implementations of this level set method with the Ersatz approximation
required a least squares interpolation from the Gauss points of the elements (Pi-
celli et al., 2018) to compute boundary sensitivities whereas this can be avoided
with the boundary particles. Boundary particles from the previous iteration are
removed. This means that particles do not move to different locations between
iterations but instead they are generated. It is thus only required to compute the
intersection points and not track the particles. The process of generating new
particles on the boundary is shown in Fig. 4.3. Initially, domain particles are
placed at the nodal positions of the background mesh. These particles are shown
with blue circles in Fig. 4.3 (a). At every iteration during the optimization pro-
cess, these domain particles are generated first. As the boundary moves, domain
particles are separated into particles inside the structure shown in blue circles in
Fig. 4.3 (b) and particles outside the structure shown in red circles. Particles
outside the structure are kept to be used in the domain integration scheme with
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a fixed background mesh described in section 4.1. At every iteration particles are
added to the structural boundary. In Fig. 4.3(b) these boundary particles are
indicated by blue circles at the points where the updated boundary crosses the
edges of the background mesh. Finally, if it happens that a domain particle is
near a boundary particle, the domain particle is removed as shown by the yellow
”x” symbols. In the numerical tests, the removal does not influence the final
topology but it produces a faster convergence. In fact, even if these particles
were not removed, the final topologies do not change. The minimum distance
between particles was set to 0.05 times the length of a background element.

(a) (b)

Boundary point for sensitivity calculation

Particle with level set function value: φ < 0
=> density: ρ = 1e-4

Particle with level set function value: φ ≥ 0 
=> density: ρ = 1
Domain particle Particle outside the domain Boundary point for sensitivity calculation

Particle with level set function value: φ < 0
=> density: ρ = 1e-4

Particle with level set function value: φ ≥ 0 
=> density: ρ = 1

Removed particle

Figure 4.3: (a) Initial particle distribution and (b) Particle distribution after an
optimization iteration

To identify the part of the boundary on which the pressure load is to be
applied a process similar to the fluid flooding proposed by Chen and Kikuchi
(2001) is used here. The difference in this work is that instead of elements we
use the particles to identify the loading surface. Before optimization starts, the
particles on the boundary segments carrying the initial pressure loads are marked
as ”pressure” particles. Depending on the signed distance value at the particles
and the position of the pressure boundary, the following particle types emerge in
addition to pressure particles:

• solid particles that lie inside the structure,

• void particles that lie outside the structure,

• boundary particles that lie on the structural boundary

• boundary pressure particles that indicate where a pressure load should be
applied
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Figure 4.4 illustrates the algorithm of moving boundaries. Fig. 4.4(a) shows
the initial arrangement. The particles in blue with symbol “P” indicate “pres-
sure” particles, and the gray particles with “S” indicate solid particles. When
the boundaries are updated, Fig. 4.4(b), the signed distance, φ, at the particles
is calculated to classify them into solids(“S”) with φ > 0, voids(“V”) with φ < 0
and boundary(“B”) particles with φ = 0. The initial pressure particles remain
unchanged throughout optimization except for those initial pressure particles that
also lie on the boundary. These become boundary pressure particles in subse-
quent iterations (“BP”) as shown in Fig. 4.4(c). The reason for changing these
boundary particles into “boundary pressure” instead of “pressure” is to stop the
pressure load from advancing to the pressure-free portion of the boundary as will
become apparent shortly. Also note that boundary pressure particles only appear
after the first iteration, this is why they do not yet exist in Fig. 4.4(a). In Fig.
4.4(d), void or boundary particles that have pressure neighbors are transformed
into pressure particles and this advances the pressure region. Neighboring be-
tween grid nodes and boundary particles is known by their connec-tivity on the
level set mesh. The process is continued until the pressure region comes into
contact with the boundary. Once the “P” type encounters a boundary particle,
the particle is turned into “BP” type as shown in Fig. 4.4(e). Had these particles
remained as “pressure” particles, then all the “B” particles would eventually turn
into “P” thus transferring the load also in the portion of the boundary that must
remain pressure-free (left and bottom boundary particles). Thus, the separate
“BP” type is used to stop further advancement of the pressure region on the
load-free part of the boundary. Finally, the pressure load is applied to the part
of the boundary on which “BP” particles lie.
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(a) (b)

(c) (d)

(e)

Figure 4.4: (a) Initial particle arrangement, (b) boundary evolves and particle
type assigned based on particle signed distance value, (c) initial boundary pres-
sure particles are identified, (d) pressure region advances and (e) boundary pres-
sure particles are identified and pressure load is applied on boundary segments
including these particles.
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An important point is that in this work, the same mesh used for discretizing
the level set function is also used as the background mesh for the domain inte-
gration in RKPM. For the particular case where an element is cut twice by a
boundary, the following two configurations may arise:

Figure 4.5: Elements cut twice by the boundary: (a) Possible configuration and
(b) Not possible configuration

The configuration shown in Fig. 4.5(b) is not possible due to the linear
interpolation of the level set function. The configuration shown in Fig. 4.5(a)
is possible however, and the scheme for identifying the pressure boundary based
on particle types, is able to correctly apply the pressure loads for this instance
because the load is transferred from point to point rather than from element to
element. Thus, the load transfer stops once the pressure region encounters the
first of the two segments within the element and does not proceed to the second
segment.

We define in this problem that the outside pressure cannot be transferred to
holes inside the structure. However, there is nothing fundamentally limiting in
the methodology to consider problems with inner pressure like pressure vessels.

4.2 Hydrostatic pressure examples

Three benchmark examples for design-dependent pressure loading problems are
investigated and compared with the literature. For all examples, a plane stress
condition is assumed. For the solid material Young’s modulus is equal to 1
whereas for the void region Young’s modulus is set to be 10−4. A Poisson’s ratio
of 0.3 is used. For the domain integration, 4×4 Gauss points are used in each
background cell. A constant normalized support size of 1.5 times the size of a
background cell was used for all particles as this was found to be the minimum
support size that yields good convergence rate. This constant support size worked
well even with the addition of new boundary particles at every iteration. For
support sizes beyond the selected size and up to 3.5 times the size of a background
cell there was no change in the final solution. For each example a number of initial
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hole configurations were investigated. Consistent solutions were obtained from all
cases. The convergence of the objective is checked over 5 consecutive iterations
and the absolute tolerance is 0.001.

4.2.1 Compliance minimization formulation

Topology optimization in this study considers the well known compliance mini-
mization problem

min J = l(u)

s.t. a(u, υ) = l(υ), ∀ υ ∈ U

Vs(Ω)− V̄ ≤ 0

(4.3)

where the energy bilinear functional a(u,υ) and the load linear form l(υ) are
defined as:

a(u,υ) =

∫
Ω

{ε(u)}T : D : {ε(υ)} dΩ (4.4)

l(υ) =

∫
ΓN

p · υdΓ (4.5)

Here, U is the space of kinematically admissible displacement fields. Vs(Ω) is
the volume fraction of the structure with respect to the design domain, V̄ is the
maximum allowed volume fraction, ε is the strain tensor, υ is the virtual
displacement, ΓN is the Neumann boundary on which the pressure load is
applied and p is the pressure load. The pressure load is assumed to be constant
although the method can be generalized for varying pressure.

p = −p0n (4.6)

where p0 is the constant magnitude of the pressure load, and n is the surface
normal.

4.2.2 Boundary sensitivities

Shape sensitivities for the structural compliance function when the surface load
is a pressure load oriented in the direction of the normal vector were derived by
Allaire et al. (2004) as,

∂f

∂x
=

∫
Γs

[−2div (p0u)− σ(u) · ε (u)]VndΓs, (4.7)
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where p0 is the pressure load, u is the displacement, σ(u) = D : ε (u) is the stress
tensor, ε (u) is the strain tensor and Γs represents the structural boundary. For
the boundary points not on the pressure surface the divergence term becomes
zero. As points on the boundary are covered by the support domains of particles
from both the solid and void regions, Young’s modulus is interpolated using Eq.
(4.1) and Eq. (4.2) given in Section 4.1. As can be seen in Eq. (4.7), the shape
sensitivity includes stress and strain terms. The higher order continuity in the
approximation of RKPM is another advantage over the finite element method
with linear elements where stress is discontinuous across the element edges. The
RK approximation has the advantage of employing higher order smoothness with
arbitrary order consistency, which avoids stress discontinuity in FEM with linear
elements. Thus, smooth stresses can be obtained directly at the boundary points
without any additional treatment such as stress recovery.

4.2.3 Arch structure

The arch example is a popular example used to validate topology optimization
with design dependent pressure loads (Sigmund and Clausen, 2007; Xia et al.,
2015; Picelli et al., 2019; Emmendoerfer et al., 2018). The model considered here
is shown in figure 4.6(a). A background mesh consisting of 160×80 rectangular
cells is used. The final volume fraction is set to 30%. The structure is subjected to
a constant pressure load p = 1 on the top, left and right edges. The arch-like op-
timum solution in Fig. 4.6(b) agrees well with those obtained by previous works
that considered this example (Sigmund and Clausen, 2007; Picelli et al., 2015a,
2019; Xia et al., 2015; Emmendoerfer et al., 2018). Figure 4.7 shows snapshots of
the optimization history for a different initial configuration with holes. As can be
seen from these results the consistent solution shown in Fig. 4.6(b) is obtained
with and without holes in the initial design. The solutions from the literature are
shown in Fig. 4.8 for comparison. This solution is also what expected intuitively
since spherical shapes are theoretically the ideal structures for pressure vessels.
The convergence and volume fraction plots are given in Fig.4.6(c). The figure
indicates a smooth convergence. The behavior of the compliance curve depends
on the initial solution of the problem. The final topology and convergence history
shown in Fig. 4.6(b) and (c) respectively, resulted from an initial configuration
without any holes, i.e., infeasible solution. In these cases, the convergence is
expected to move up because as volume is reduced the structure becomes more
compliant (less stiff). Similar behavior can be seen in the literature where au-
thors have solved this example with different methods (see for example Picelli
et al. (2015a)). Fig. 4.6(d) illustrates the particle distribution in the solid (blue
particles) and void (red particles) regions, with the pressure interface indicated
by the black particles.
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Figure 4.6: Arch structure: (a) problem definition (initial domain with no holes),
(b) optimum solution, (c) convergence history and (d) particle distribution: void
particles in red, solid particles in blue, pressure boundary particles in black

Iter: 0 Iter: 15 Iter: 30

Iter: 60 Iter:120 Iter: 200

Figure 4.7: Snapshots of optimization history in the arch example.
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(a) (b) (c)

(d) (e)

Figure 4.8: Arch solutions from the literature: (a) Sigmund and Clausen
(2007)(SIMP), (b) Picelli et al. (2015a)(BESO), (c) Picelli et al. (2019)(LSM),
(d)Xia et al. (2015)(LSM) and (e) Emmendoerfer et al. (2018)(LSM)

4.2.4 Piston head model

Another commonly solved example in the literature is the piston head shown
in Fig. 4.9(a). Authors have considered this example using SIMP by Sigmund
and Clausen (2007) and Lee and Martins (2012), BESO by Picelli et al. (2015a)
and the level set method by Xia et al. (2015), Emmendoerfer et al. (2018) and
Picelli et al. (2019). The roller boundary condition is applied on the sides and
the center point is fixed. Due to symmetry only the right half of the model
is solved here using 156×104 background cells. A volume constraint of 30% is
applied. The mirrored optimum topology is shown in Fig. 4.9(b), and Fig. 4.9(c)
shows the convergence history and volume fraction plots. Figure 4.10 illustrates
the iterative process for a particular initial hole distribution. Figure 4.11 shows
solutions obtained for the piston head example by other authors using different
methodologies. Since different methodologies were used for each of these solutions
with different specifications for the analysis such as different mesh sizes, the
numbers are not directly comparable. We thus compare the solutions qualitively
based on the features they have in common. As can be seen, the arch-like curves
near the lateral left and right walls and the elongated triangular holes in the center
section are features similar to those obtained by other authors who previously
solved this example. The solution obtained by RKPM in Fig. 4.9(b) is similar
to the one obtained by Picelli et al. (2019) in which the level set method with
equivalent nodal loads is used, and Picelli et al. (2015a) using the BESO method.
The main difference between the different approaches is in the number of internal
structural members appearing. There is also a noticeable difference compared
with the other level set methods by Emmendoerfer et al. (2018) and Xia et al.
(2015). Although the overall looks are similar the shapes of the holes are different
in these two works and also the position of the top structural members is higher
in Emmendoerfer et al. (2018).
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Figure 4.9: (a) Piston-head structure problem definition, (b) optimum solution,
(c) convergence history

55



Iter: 0 Iter: 20 Iter: 40

Iter: 80 Iter:95 Iter: 100

Iter: 120 Iter: 130 Iter: 138 (Final topology)

Figure 4.10: Snapshots of optimization history in the piston example.

(a) (b) (c)

(d) (e)

Figure 4.11: Piston solutions from the literature: (a) Emmendoerfer et al.
(2018)(LSM),(b) Xia et al. (2015)(LSM), (c) Picelli et al. (2015a)(BESO), (d)
Sigmund and Clausen (2007)(SIMP) and (e) Picelli et al. (2019)(LSM)

4.2.5 Pressure chamber model

The pressurized chamber example was first proposed by Hammer and Olhoff
(2000) and Chen and Kikuchi (2001). The only subsequent works that considered
this problem were Zhang et al. (2008) using the SIMP method and Picelli et al.
(2015a) using the BESO method. The problem definition as shown in Fig. 4.12(a)
is solved with 120×76 rectangular background cells. The two 40×60 flanges shown
in black in Fig. 4.12 (a) are considered fixed and are excluded from the design
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domain. The applied pressure p = 1 is indicated by the arrows. Starting from
an initial design with no holes the final solution in Fig. 4.12(c) is obtained. The
same solution is also obtained from a design with a different initial configuration
such as the one shown in Fig. 4.12 (b), which shows the independency of the
results on the initial design. The optimized structure agrees well with the ones
obtained in the previous literature as shown in Fig. 4.13, especially the one
obtained by Picelli et al. (2015a). An interesting point here is that in this work
well defined structural boundaries can be obtained with a relatively small grid.
For example, the similar solution to the present work obtained by Picelli et al.
(2015a) in Fig. 4.13(d) used 57000 finite elements whereas here we only use 9120
level set elements. The SIMP results obtained by Chen and Kikuchi (2001) and
Hammer and Olhoff (2000) show differences with the RKPM solution in Fig.
4.12(c). The top structural member appears to be thicker with solid covering all
the area on top of horizontal fluid region. The support at the right-hand side
corner is also thinner in these examples. These differences are possibly due to the
slightly different shape of the pressure region used in these examples as shown
in 4.13(b). Similar differences can also be seen compared with the optimum
structure by Picelli et al. (2019). In this work the level set method was used
with Ersatz material approximation and the loads were transformed into work
equivalent nodal loads.

  

(a)

  

(b) (c)

Figure 4.12: Pressure chamber: (a) Problem definition, (b)initial design with
holes and (c) optimum solution
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(a) (b)

(c) (d) (e)

Figure 4.13: Chamber solutions from the literature: (a) Chen and Kikuchi
(2001)(SIMP), (b) Hammer and Olhoff (2000)(SIMP), (c) Zhang et al.
(2008)(SIMP), (d) Picelli et al. (2015a)(BESO) and (e) Picelli et al. (2015a)(LSM)

The geometry and changing loading direction make this example more chal-
lenging as compared to the arch and piston examples. Based on the literature one
of the most common ways to deal with design dependent loads using a fixed grid
is to transform them into equivalent nodal loads (for example in Hammer and
Olhoff (2000), Du and Olhoff (2004) and Lee and Martins (2012) using SIMP, and
Emmendoerfer et al. (2018) and Picelli et al. (2019) using the level set method).
Thus, we compare the performance of the RKPM approach with an equivalent
finite element method with work equivalent nodal loads for this example. The
implementation for the specific fixed grid approach we used here can be found
in Neofytou et al. (2019). The same level set algorithm is used for the two
approaches whereas for the analysis we simply replaced RKPM with the fixed
grid FEA for a fair comparison. Also, no regularization has been used in either
approach. The convergence history and volume fraction plots for the two method-
ologies are shown in Fig. 4.14. As can be seen, although the final topologies are
very similar, RKPM has a much smoother and more stable behavior compared to
the FEA approach. This results in a much faster convergence, with RKPM con-
verging at 171 iterations whereas the fixed grid FEA struggles to converge even
after 1000 iterations have passed. It is also worth noting that the solution of this
particular RKPM implementation is about 20 times slower per iteration com-
pared to FEA. This is because of the large number of integration points required
by the background cells. This is one of the main drawbacks of the implementation
described in this chapter. Later in Ch. 5, this issue is addressed by employing
a much more efficient nodal integration technique which significantly speeds up
the computation.
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(a)

(b)

Figure 4.14: Convergence history comparison between: (a) RKPM and (b) fixed
grid FEA with work equivalent nodal loads for the chamber example.
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4.3 Variable pressure field

To illustrate the applicability of the methodology to variable pressure fields, in
this section the steady pressure load is replaced by a pressure field governed by
the Laplace equation as

∇2Pf = 0 in Ωp (4.8)

where Pf is the pressure and ∇2 is the Laplacian operator. Boundary conditions
include an imposed pressure P0 on a portion Γp of the pressure boundary

Pf = P0 on Γp (4.9)

and the hard wall condition is given by

n · ∇Pf = 0 on Γw (4.10)

Here n is the outward unit normal vector to the fluid. For the imposition of
boundary conditions in the pressure field the Lagrange multiplier method
described in Ch. 3. The Galerkin discretization of Eq. 4.8 - Eq. 4.10 then yields[

Kp GT
p

Gp 0

] [
P
λp

]
=

[
0
qp

]
(4.11)

where P is the pressure vector to be computed and qp is the equivalent load to
enforce the Dirichlet boundary from Eq. 4.9. The global stiffness matrix Kp is
computed as

Kp =

∫
Ωp

(∇ΨT
p )∇ΨT

p dΩp (4.12)

where Ψp is the vector with RK shape functions of the fluid particles. Matrix
Gp and vector qp are used to enforce pressure boundary conditions using the
Lagrange multiplier method and they are defined as

Gp = −
∫

Γp

ΨT
p NdΓ (4.13)

qp = −
∫

Γp

NTP0dΓ (4.14)

N =

[
NI 0
0 NI

]
(4.15)

where NI is the standard Lagrangian interpolant along the Dirichlet boundary.
The solution of Eq. 4.11 provides the pressure field acting on the structural
loading surface. The discretized equation for the solid domain then becomes
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[
Ks GT

s

Gs 0

] [
u
λs

]
=

[
fs
qs

]
(4.16)

where the subscript s denotes solid quantities and the load fs is given by the
pressure field obtained from Eq. 4.11 as

fs =

∫
Γh

ΨT
s PdΓ (4.17)

The domain integration for the pressure field is performed similarly to the
procedure described in Sec. 4.1. The pressure stiffness at matrix Kp at each
Gauss point is multiplied by an artificial Young’s modulus Ep which for “pressure”
type particles with φ ≤ 0 takes the value 1 and for “void” type particles with
φ < 0 or “solid” particles with φ > 0 takes the value 10−4. This is expressed as

E at node I :


Ep(xI) = 1 if φ ≤ 0 and “pressure′′ type

Ep(xI) = 10−4 × E if φ < 0 and “void′′ type or φ > 0
(4.18)

Then at each Gauss point, EGP
p is computed as

EGP
p (xgp) =

∑
I∈Ggp

ΨI(xgp)EpI (4.19)

where np is the number of particles within the Gauss point’s support domain,
and ΨI and EpI are the RK shape function and Young’s modulus associated
with the Ith node in the Gauss point’s support domain, respectively.

4.4 Pressure chamber subjected to variable

pressure field

The pressurized chamber example described in Sec. 4.2.5 is solved here using
the variable pressure field. In the current case the pressure load is computed
by solving the Laplace equation for the pressure region highlighted in blue in
Fig. 4.15. An inlet pressure Pin is imposed on the right edge of the pressure
domain and an outlet pressure Pout is imposed on the bottom edge of the pressure
domain. The objective is again compliance minimization under the same volume
constraint, however, now the pressure field is provided by Eq. 4.8. The solution
of Eq. 4.11 provides the surface pressure to be applied on the structure as shown
in Fig. 4.16.
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Figure 4.15: Schematic for pressure chamber example under variable pressure
field. Same setup as Sec.4.2.5 only now the pressure load is computed by solving
the Laplace equation for the pressure region highlighted in blue.

(a) (b)

Figure 4.16: Surface load obtained from solution of Eq. 4.11: (a) Pressure region
with linear pressure field solution and (b) Resulting surface load on the structure.

The optimum solutions for different combinations of inlet (Pin) and outlet
(Pout) pressure are presented in Fig. 4.17. As expected when Pin = Pout the
same solution as in Sec. 4.2.5 is obtained as shown in Fig. 4.17(a). In Fig.
4.17 (b), the pressure difference increases which results in the appearance of thin
structural supports to support the higher pressure gradient. As the pressure
difference increases even more in Fig. 4.17 (c) additional members appear. In
Fig. 4.17 (d) the pressure difference at the inlet and outlet is about the same as
in Fig. 4.17 (b) despite the absolute values at the inlet and outlet being different.
This indicates that the pressure difference is what drives the design rather than
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the absolute pressure values. Figure 4.18 illustrates snapshots of the particle
distributions at different iterations for the case Pin = 15.0 Pa, Pout = 1.0 Pa.

(a) (b)

(c) (d)

Figure 4.17: Optimum solution for pressure chamber for different pressure values
at the inlet and outlet: (a) Pin = 1.0 Pa, Pout = 1.0 Pa, (b) Pin = 10.0 Pa, Pout =
1.0 Pa, (c) Pin = 15.0 Pa, Pout = 1.0 Pa and (d) Pin = 15.0 Pa, Pout = 4.0 Pa
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Snapsots of the particle distribution for the pressurized chamber
example for Pin = 15Pout after 200 iterations

4.5 Conclusions

This chapter presented a level set topology optimization method for compliance
minimization of structures subjected to design-dependent pressure loads. To ad-
dress the challenge of identifying the surface for the loads to act on, the reproduc-
ing kernel particle method was used along with the LSTO. The LSTO provides
the clear boundary representation and the RKPM offers the freedom to place
particles on the new boundaries to apply the pressure loads. As shown through
the numerical examples, the proposed methodology gives results that are in good
agreement with the results obtained by different methods in the literature. The
meshfree method can straightforwardly handle the design-dependent loading by
directly applying the pressure loads on the relevant structural boundaries with-
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out the need of any special load treatments or remeshing. This demonstrates
an advantage of this methodology. The explicitly defined boundaries can be ad-
vantageous when using separate governing equations, as will be further discussed
in Ch. 6 for fluid-structure interactions. In addition, the RKPM offers higher
order approximation of the equations. The RK “smooth approximation” allows
for Young’s modulus interpolation in this chapter to yield a smooth Young’s
modulus distribution for better conditioned boundary sensitivities. This leads to
a faster convergence rate of the optimization procedure. Before tackling more
complex problems such as fluid-structure interactions, herein we show that our
method addresses correctly the hydrostatic problem, which is the base for any
design-dependent loading problem.
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Chapter 5

Nodally Integrated RKPM for
Stress-Based and
Design-Dependent Problems

In the previous chapter, design-dependent problems with hydrostatic loads were
solved with RKPM and Gauss quadrature. The method has been shown to per-
form well and effectively handle the design-dependency. However, the use of a
background mesh with a large number of quadrature points results in low compu-
tational efficiency. Moreover, since the background mesh is fixed, an interpolation
scheme had to be used for the integration.

In this chapter, we aim to solve the problem of efficiency by switching to a
nodally integrated RKPM, where quantities are sampled at the particles them-
selves. As will be explained in this chapter, nodal integration methods have
been exten-sively studied and improved since the early days to provide both ef-
ficiency and accuracy. As will be shown in the Chapter, certain types of nodal
integration such as the stabilized conforming nodal integration (SCNI) and the
naturally stabilized nodal integration (NSNI), not only maintain the efficiency
of direct nodal integration but even present higher accuracy than Gauss integra-
tion. This is due to the fact that they achieve linear exactness by satisfying the
so-called integration constraints whereas Gauss integration does not.

5.1 Stabilized conforming nodal integration

Galerkin meshfree methods such as RKPM are based on the weak form of PDEs.
Thus, domain integration is required to evaluate the integrals in the weak form as
explained in Ch. 4. This can be done either by performing Gaussian integration
with background cells as the quadrature domains as implemented in Ch. 4, or
by using nodal integration which employs nodal representative domains. As has
been shown by Dolbow and Belytschko (1999), when Gauss quadrature is used
for the domain integration significant errors may arise when the background mesh
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does not coincide with the support domains. This becomes particularly difficult
when circular supports are being used. This can be improved by using sufficiently
high quadrature rules. However, this results in a high computational cost since
a large number of computational points has to be used.

Nodal integration on the other hand is very efficient since it does not require
as many computational points as Gaussian integration. However, direct nodal
integration where shape functions and their derivatives are evaluated directly
at the nodes is known to be prone to non-convergent numerical solutions and
instability due to rank deficiency. Evaluating shape function gradients directly
at the nodes yields instability in the solution due to severe underestimation of
the strain energy of short-wavelength modes (Beissel and Belytschko, 1996).

To achieve accuracy, stability and optimal convergence properties while main-
taining efficiency, Chen et al. (2001) proposed the stabilized conforming nodal in-
tegration (SCNI) method. In this method, shape function gradients are smoothed
over conforming nodal representative domains to perform the integration at each
particle. SCNI ensures accuracy by satisfying the so-called integration constraints
as necessary conditions for achieving linear exactness, i.e. passing the linear patch
test. In fact, Gaussian integration for the meshfree weak form does not satisfy
the integration constraints, therefore the first order accuracy is not guaranteed
even if the approximation of test and trial functions is linearly complete. The
generalization of SCNI for arbitrary order variational consistency is presented in
Chen et al. (2013). Moreover, strain smoothing avoids evaluating derivatives of
meshfree shape functions at nodes and thus eliminates the rank instability.

The smoothed gradient Ψ̃I,i of the shape functions at each nodal point is
computed using the divergence theorem as follows

Ψ̃I,i(xN) =
1

AN

∫
ΩN

ΨI,i(x)dΩ =
1

AN

∫
ΓN

ΨI(x)nidΓ (5.1)

where AN is the area of the nodal representative domain (i.e voronoi cell) ΩN

associated with node N , ΓN is the boundary of the nodal representative domain,
and ni denotes the i-th component of the outward unit normal vector to the
representative domain. For the evaluation of Ψ̃I,i at the nodal points using Eq.
5.1, boundary integration of the nodal representative domain is needed. This is
done in this work using a one-point Gauss integration rule

Ψ̃I,i(xN) ≈ 1

AN

SN∑
k=1

ΨI(x̃
k
N)ni(x̃

k
N)Lk (5.2)

where SN is the number of midpoints for each boundary segment of the Voronoi
cell associated with node xN and Lk is the length of the kth segment. The nodal
representative domains can be constructed by Delaunay triangulation or Voronoi
diagram as shown in Fig. 5.1.
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Figure 5.1: Voronoi diagram and SCNI integration scheme

Finally the smoothed gradient matrix B̃I for the two-dimensional case can be
expressed as

B̃I =

Ψ̃I,x(xN) 0

0 Ψ̃I,y(xN)

Ψ̃I,y(xN) Ψ̃I,x(xN)

 (5.3)

The smoothed gradient matrix B̃ can now replace matrix B in Eqs. 3.25 and
3.26. It is important to emphasize that although the strain smoothing involves
evaluation of shape functions at the edges of the representative nodal domain,
it is only needed for shape functions. The stiffness is integrated entirely at the
particles. Also, since the smoothed gradient matrices are consistent with the
weights in the nodal integration, the distribution of weights, i.e the areas of the
cells, have marginal effects on the solution accuracy.

Naturally stabilized nodal integration

SCNI avoids rank deficiency in direct nodal integration, however spurious low-
energy modes may still appear in the solution as illustrated in Hillman and Chen
(2016). Therefore, an additional stabiliza-tion technique is needed to eliminate
these low-energy modes. In this work we employ the naturally stabilized nodal
integration (NSNI) technique proposed in Hillman and Chen (2016), that over-
comes the instabilities by introducing an implicit gradient expansion of the strain
field, equivalent to the first order Taylor expansion as

ε
(
uh(x)

)
≈ ε

(
uh(xN)

)
+

d∑
i=1

(xi − xIi)ε
(
ûhi (xN)

)
(5.4)
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where for a 2-dimensional problem, i = x, y and the implicit gradient of the
displacement, ûhi (xN), is given by

ûhi (xN) =
NP∑
i=1

Ψ∇IiuI (5.5)

and Ψ∇Ii is the implicit gradient of the shape function (Chen et al., 2004)

Ψ∇Ii = HT
i M−1(x)H(x− xI)Φa(x− xI) (5.6)

where for a linear basis the vector Hi takes the following values

Hx = [0,−1, 0]T

Hy = [0, 0,−1]T
(5.7)

Putting Eq. 5.4 into the variational equations, the stiffness matrix is derived as

Kc
IJ =

NP∑
N=1

B̃T
I (xN)CB̃T

J (xN)AN︸ ︷︷ ︸
SCNI

+ B∇Ix(xN)CB∇JxMx(xN) + B∇Iy(xN)CB∇JyMy(xN)︸ ︷︷ ︸
Stabilization


(5.8)

where B∇I1(xN) and B∇I2(xN) are defined as

B∇Ix(xN) =

Ψ∇Ix,x(xN) 0
0 Ψ∇Ix,y(xN)

Ψ∇Ix,y(xN) Ψ∇Ix,y(xN)


B∇Iy(xN) =

Ψ∇Iy,x(xN) 0
0 Ψ∇Iy,y(xN)

Ψ∇Iy,y(xN) Ψ∇Iy,x(xN)

 (5.9)

with Ψ∇Ii,j(xN) obtained by direct differentiation of Ψ∇Ii in Eq. 5.6 with respect
to xj Hillman and Chen (2016).

The terms M1(xN) and M2(xN) are the second moments of inertia in each
nodal integration domain given by

M1(xN) =

∫
ΩN

(x− xN)2dΩ

M2(xN) =

∫
ΩN

(y − yN)2dΩ

(5.10)

Stabilization with Eq. 5.8 is termed naturally stabilized nodal integration
(NSNI) since the constants M1(xN) and M2(xN) associated with the additional
terms occur completely naturally, and thus no tuning of any parameters is re-
quired, which is in contrast to other stabilized methods (Beissel and Belytschko,
1996; Puso et al., 2008).
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5.2 Level set method and nodally integrated

RKPM

The nodally integrated RKPM is used in this work within the context of level
set topology optimization to achieve an exact description of structures without
remeshing. The level set boundary and signed distance values are used for the
particle distribution and the construction of the Voronoi diagram of the nodally
integrated RKPM method as explained in this section. In turn, the LSTO benefits
from the useful properties of the RKPM method such as placing particles on the
discretized boundary points to compute sensitivities, and the higher order shape
functions to improve accuracy. This section describes several ingredients of the
methodology which are discussed in more detail through the examples in Sec.
5.3.

5.2.1 Particle positions and boundary sensitivity

As explained in Sec. 3.1, in order to obtain the optimum velocities required for
the update of the level set function and thus the topology, shape sensitivities
need to be computed at the discretized boundary points i.e. the points at which
the boundary intersects the elements of the level set mesh. The positioning
of particles at these boundary points as shown in Fig. 5.2, allows for direct
computation of sensitivities. Thus, at each optimization iteration, particles are
always placed at the boundary points first. These boundary particles are stored
at the top of the list of all particles to identify them from the particles in the
interior of the structure. The particles in the interior of the structure can be freely
positioned. For example in Fig. 5.3 (a) the particles are regularly positioned at
the nodal positions of the level set mesh with the respective Voronoi diagram
for the NSNI shown in Fig. 5.3. In Fig. 5.3 (c) the particles are randomly
positioned and the resulting Voronoi diagram is shown in Fig. 5.3 (d). Based on
the above discussion on boundary sensitivity, accuracy is more critical close to the
boundary. In Sec. 5.3.1 a particle scheme where more particles are strategically
placed within a region close to the boundary is discussed and illustrated through
a stress minimization example.
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Figure 5.2: Particles are first placed at the discretized boundary points

(a) (b)

(c) (d)

Figure 5.3: Different particle distributions: (a) Regularly placed particles, (b)
Voronoi diagram for regularly placed particles, (c) irregularly placed particles
and (d) Voronoi diagram for irregularly placed particles
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5.2.2 Construction of Voronoi diagram

For the construction of the nodal representative domains used in the NSNI, the
Voronoi diagram is employed here using the open source software library voro++
(Rycroft, 2009). For the construction of the diagram, the particle coordinates are
given as an input which results in an unclipped Voronoi diagram. An example is
shown in Fig. 5.4. Figure 5.4 (a) shows the unclipped diagram for a rectangular
plate with a hole, with the cells along the boundary extending outside of the
structure and get intersected by the boundary segments. In order to make the
diagram conforming to the structure, which is employed for the NSNI method,
the intersected cells need to be clipped as shown in Fig. 5.4 (b). For such
clipping process, the signed distance values at the vertices of each intersected
cell are employed as described in Fig. 5.5. The intersections of the level set
boundary segments with the edges of the Voronoi cells are first computed. For
the most part, the cells of boundary particles will be intersected by the boundary
segments, however it can happen that interior cells are intersected as well. If an
intersected cell is also a boundary cell, the intersections along with the particle
to which the cell belongs to split the cell into two polygons as shown in Fig. 5.5
(a). When interior cells are intersected, only the intersection points split the cell
into polygons as shown in Fig. 5.5 (b). The polygon with the biggest sum of the
signed distance values at its vertices is kept as the new clipped cell, while the
vertices of the remaining polygon are removed. This is illustrated in Figs. 5.5
(a) and (b) for boundary and interior cells, respectively. The remaining polygon
after clipping, for example polygon A in Figs. 5.5(a) and (b), is then used as the
integral domain to calculate the stiffness matrix. Since this clipping operation
only has to be done for the cells along the boundary and maybe a few neighboring
interior cells, the process is not computationally expensive.

(a) (b)

Figure 5.4: Construction of Voronoi diagram: (a) Unclipped diagram, (b) Clipped
diagram
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Figure 5.5: Clipping process for intersected cells for: (a) Boundary intersected
cells and (b) interior intersected cells. First, an intersected cell is split into two
polygons based on intersection points with the boundary segments. The next
step is clipping the cell based on signed distance values at the vertices. The sum
φ1 + φ2 + φ5 is larger than φ3 + φ4 and thus polygon B is removed

Size of support domain

The Voronoi diagram information can also be used to compute the support do-
main size for each particle in a way that it is consistent with the density of the
particle distribution around it, as explained in Lu and Chen (2003). The neigh-
bors of each particle are identified as those that share an edge with the particle’s
cell. For example in Fig. 5.6 particles 2-11 except particle 7 are neighbors of
particle 1. The support size aI of particle 1 is then defined as

a = c̃ · dmax (5.11)

where dmax is the distance to the furthest neighbor as shown in Fig. 5.6 in which
the distance between particles 1 and 11 is the maximum amongst all neighbors.
The normalized support size c̃ is chosen as 2.0, which is twice the order of the
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linear basis used in this work. As can be seen in the figure, in areas with denser
particle distribution support sizes are smaller than areas with less dense distri-
bution.

1
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9
7

6
8

10

11 2

𝑎𝐼 = ǁ𝑐 ∙ 𝑑𝑚𝑎𝑥

Figure 5.6: Support domain size definition based on Voronoi diagram information

5.3 Examples

In the literature of Galerkin meshfree methods, stress-based computations have
been used to validate against the FEM in terms of accuracy and convergence
properties (Belytschko et al., 1994; Lacroix and Bouillard, 2003; Tanojo and
Pudjisuryadi, 2006) for linear elastic structures. As a simple illustration, the
example of a linear elastic plate with a hole is presented here as shown in Fig.
5.7 (a). Specifically, the FEA is carried out via the partial differential equation
toolbox in MATLAB, using linear, triangular elements. The FEA mesh is shown
in Fig. 5.7 (b). For the RKPM analysis, the mesh generated in MATLAB is used
to place the particles at the nodal positions of the elements in order to create
a comparable discretization. The particles along with the Voronoi diagram are
shown in Fig. 5.7 (c). Symmetry conditions are applied at the left and bottom
edges. The plate is loaded uniaxially and analyzed under plane stress condi-
tions. The values used for Young’s modulus and Poisson’s ratio are 1 and 0.3,
respectively. The von Mises stress is computed by the two methods at the nodes
on the circular boundary to compare the accuracy of each approach against the
analytical solution Belytschko et al. (1994). As can be seen in Fig. 5.7 (d), the
solution obtained by RKPM is in good agreement with the analytical solution
for this specific discretization, which consists of 230 degrees of freedom (DOF).
Of course, when a finer FEA mesh is used as shown in Fig. 5.7 (d) for 5114 DoF,
FEA also provides an accurate solution as expected.
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Figure 5.7: Plate with a hole example: (a) Problem setup, (b) FEA mesh, (c)
RKPM particles and Voronoi diagram and (d) von Mises stress computation at
the nodes along the circular hole by FEA and RKPM, and comparison with the
analytical solution

In the context of topology optimization, stress-based problems are challeng-
ing and remain an active area of research (Picelli et al., 2018; Zhang et al., 2017;
Sharma et al., 2018; Conlan-Smith and James, 2019). For the aforementioned
reasons, stress-based problems are thus chosen here to illustrate the effectiveness
of the proposed LSTO-RKPM methodology and to investigate several interesting
features such as different particle distributions, kernel functions and efficiency. A
design-dependent problem with hydrostatic pressure loads is also used to show
how the crisp representation of the level set boundary in combination with par-
ticle placement at boundary points can straightforwardly handle the design de-
pendency without interpolation for either the loads or the domain integration.
For the examples Young’s modulus value is set to 1, Poisson’s ratio is 0.3, the
dimensionless support size c̃ is 2.0 and the normalized penalty parameter βnor for
Nitsche’s method is chosen as 1000. Convergence of the objective is checked over
5 consecutive iterations and the absolute tolerance is 0.001.
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5.3.1 Stress-based examples

The p-norm function is used here which approximates the maximum stress in the
structure (Picelli et al., 2018). This is a global stress measure and can be used
either as an objective for stress minimization, or as an inequality constraint. The
p-norm functional defined in the domain Ω can be written as follows

G(Ω) = σPN =

(∫
Ω

σpυmdΩ

) 1
p

(5.12)

where p is the p-norm parameter, σPN denotes the p-norm stress and συm is the
von Mises stress.

For the solution of the stress-based problems the shape sensitivity, G′(Ω), of
the p-norm functional G(Ω) is used, the derivation of which can be found in
Picelli et al. (2018),

G′(Ω) =
G(Ω)1−p

p

∫
Γ

(σpυm + Cijklεij(u) · εkl(λ) (5.13)

where Cijkl is the elasticity tensor,
varepsilon represents the mechanical strain and u and λ denote the state and
adjoint variable vectors respectively. Eq. 5.13 indicates how the p-norm stress
functional changes when a structural boundary point moves in its normal direc-
tion. The shape sensitivity terms are computed directly at the boundary points
where RKPM particles are placed.

Example 1: Stress Minimization

Stress minimization under a volume constraint for the L-bracket shown in Fig.
5.8 (a) is considered as the first example. The optimization problem is expressed
as follows

minimize σPN

subject to
∫

Ω
dΩ ≤ V̄

(5.14)

where V̄ is the limit for the volume constraint set as 70% and the p−norm value
used is 6. Starting from a design without any holes as shown in Fig. 5.8 (b),
the optimum hook-like structure of Fig. 5.8 (c) is obtained as expected. For this
result the cubic kernel spline was used for the construction of RK shape functions.
In the following paragraphs we make use of this example to investigate the effects
of different features such as particle distribution and kernel function choice.
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(a)

Figure 5.8: L-bracket example: (a) problem definition, (b) von Mises stress field
for the initial design and (c) von Mises stress field for the optimum solution

Regular particle distribution

Having a regular particle distribution is useful when trying to reduce the com-
puta-tional cost during optimization. This is because with such a distribution,
new particles are only inserted along the boundary at each iteration. The sup-
ports of these newly inserted particles cover the particles in the region around
them and thus, shape functions of the particles only in that region need to change
accordingly. At each iteration, particles further away from the current location
of the boundary, i.e., a certain value of the signed distance function, will have
the exact same neighbors as in the initial configuration before optimization be-
gun. Thus, their information can be stored before optimization starts and then
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reused throughout the optimization process. This is illustrated in Fig. 5.9. In
Fig. 5.9 (a) the information for particle “P” including the support domain and
the stiffness matrix is computed on the regular grid. In fig. 5.9 (b) after new
particles have been inserted on the boundary created by the circular hole, the
information for particles within the highlighted region has to be computed at this
step, whereas since particle “P” is unaffected, its information can be read from
the previous step. Support sizes vary depending on neighbor distances. How-
ever, since particles are irregular only up to the neighbors of boundary points,
this variation is limited compared to support sizes of the regularly distributed
particles in the interior region. This means that the size of the zone within which
the shape functions need to be recomputed does not have to be much larger than
the size of the average support size. A size of twice the size of a support of an
interior particle is sufficiently large to make sure that prestored information is
only used for particles that are not covered by new particles thus, reducing the
errors in the computation. The scheme described above is shown for the stress
minimization of the L-Bracket example in Fig. 5.10. The dark highlighted zone
indicates particles for which the information has to be recomputed. The light
highlighted regions indicate particles for which the prestored information can be
used. In terms of computational efficiency, we compare the overall time for the
whole optimization process with and without the prestore scheme for the same
number of iterations. The prestore scheme turns out to be 1.4 times faster than
the normal computation (without prestore

with prestore
≈ 1.4). The overall assembly time for

the stiffness matrix for the entire optimization process is two times faster for
the prestore scheme. It is of course expected that this difference will be more
significant as the number of particles increases.

Figure 5.9: Prestore scheme: (a) Supports and local stiffness matrices are com-
puted and stored for a regular particle arrangement before optimization starts
and (b) Once new boundary particles are created, information only has to be
computed for particles in the highlighted zone. Particles such as particle P do
not see any change and thus the information can be used from the initial regular
distribution.
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Iter. 0 Iter. 60 Iter. 140

Figure 5.10: Prestore scheme for the L-Bracket example: The darkly highlighted
zone indicates particles for which the information has to be recomputed. Lightly
highlighted regions indicate particles for which prestored information can be used.

Different choices of kernel functions

RKPM provides controllable orders of continuity and completeness independent
from one another, without additional complexity just by choosing the kernel
function Φa and the basis HT (x), respectively, in Eq. 3.20. We investigate here
with three different kernel functions to see the effect on the convergence behavior.
Specifically we solve the L-Bracket example with the linear (C0 continuity) and
cubic (C2 continuity) kernel functions given in Sec. 3.2.1 and the quintic kernel
(C4 continuity) given as,

Φa(x− xI) =



1− 90
11
z2
I + 405

11
z4
I − 405

11
z5
I for 0 ≤ zI ≤ 1

3

17
22

+ 75
22
zI − 315

11
z2
I + 674

11
z3
I − 1215

22
z4
I + 405

22
z5
I for 1

3
≤ zI ≤ 2

3

81
22
− 405

22
zI + 405

11
z2
I − 405

11
z3
I + 405

22
z4
I − 81

22
z5
I for 2

3
≤ zI ≤ 1

0 for zI > 1
(5.15)

The optimization is left to run for 200 iterations. Figures 5.11 (a), (b) and
(c) show the history of p−norm stress for the linear, cubic and quintic kernel
functions respectively. Figures 5.11 (d), (e) and (f) present the final topologies
for the three cases. For the 1st and the 3rd order kernels although the final
structure is reached around iteration 140, the 0.001 tolerance is not achieved
before 200 iterations whereas with the 5th order kernel the tolerance is achieved
at 148 iterations as shown in Fig. 5.11. The final hook-like optimum solutions
are obtained in all three cases, although boundary oscillations are visible in the
case of the linear kernel function as shown in Fig. 5.11 (d). As the order of the
kernel function increases, the continuity/smoothness of the RK shape function
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increases accordingly. As can be seen from these results increasing the order
of the kernel can make the optimization process smoother and speed up the
convergence. For higher order kernel functions the number of particles remains
the same. Comparing Eq. 5.15 and Eq. 3.12 in Sec. 3.2.1, the only difference
is that the higher order kernel has a few additional terms of higher exponents
of z. The difference in computational time turns out to be insignificant (≈ 2 %
difference).
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Figure 5.11: Convergence history of the minimum stress L-bracket design for
different kernel functions: (a) Linear B-spline (C0 continuity), (b) Cubic B-spline
(C2 continuity) and (c) Quintic B-spline (C4 continuity), (d) optimum solution
for linear kernel function, (e) optimum solution for cubic kernel function and (f)
optimum solution for quintic kernel function
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Quadtree particle distribution

As explained in Sec. 3.1, the level set function is updated based on shape sensi-
tivities computed at the boundary points. Good accuracy is thus more important
close to the boundary than in the interior of the structure. The flexibility that
RKPM offers in adaptivity can be used to create a denser particle distribution
within a narrow band close to the boundary whereas keeping the distribution
coarser away from the boundary at each iteration. Such a scheme is shown in
Fig. 5.12 for the L-Bracket example where a quadtree structure is used to create
the particle distribution. Specifically the particles away from the boundary are
kept regular and coarse, while within a narrow band close to the boundary the
distribution gets denser according to the quadtree data structure. As can be seen
in the figure, the same end result is obtained as with the fully dense particle
arrangement in Fig. 5.8, only here much less particles are used. In the case of
the fully dense particle distribution, the optimization starts with 6601 particles
for the first iteration and ends with 5090 particles for the last iteration, whereas
the quadtree distribution starts with 1838 particles and ends with 1542 particles.
Regarding computational efficiency, the overall time for the whole optimization
process is 1.5 times faster for the quadtree distribution compared to the regular
dense distribution (i.e. regular distribution time

quadtree distribution time
≈ 1.5) which again will scale up

as the mesh size increases. The true benefits of this scheme are expected to be
more significant for larger scale and 3-dimensional structures and this will be the
aim of our future work. Moreover, for such larger scale problems the quadtree
distribution can be combined with the prestore scheme for the regularly spaced
interior particles for even better efficiency.
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(a) (b)

(c) (d)

Figure 5.12: Stress minimization for the L-bracket example with quadtree particle
distribution: (a) Initial design with von Mises stress field, (b) optimum solution
with von Mises stress field, (c) Voronoi diagram for initial design and (b) Voronoi
diagram for optimum solution

The time spent for the construction of the Voronoi diagram per iteration is
shown in Fig. 5.13 for both regular and quadtree particle distributions. The
time comparison is done first at the initial iteration when the number of particles
is maximum and thus the process will take the most time. The comparison is
repeated for iteration 120 at which point the number of particles is decreased
due to the removal of material. As can be seen, the construction of the Voronoi
diagram takes about 11% of the total time per iteration for the regular distri-
bution at the first iteration. For the quadtree distribution the process is faster
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due to the smaller number of particles, taking about 4.5% of the total time. As
expected, the process becomes faster for less particles at iteration 120 in both
cases. Alternative implementations for the construction of the Voronoi diagram
can of course further improve the computational efficiency. For example, since
the positions of the particles in the interior of the domain do not change as the
topology evolves, only partial reconstruction of the Voronoi diagram close to the
boundary is required. Such an efficient implementation will be further examined
in the future. It is important however, to note that the main difference between
the Voronoi diagram used here and remeshing, is that the RKPM with NSNI is
not sensitive to the shape of the polygons, as long as the polygons are conform-
ing. Once the diagram is constructed, no additional operations are required to
modify the shape of the polygons, whereas for FEA with remeshing additional
operations are performed to improve the mesh quality.
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Figure 5.13: Average time per iteration spent for Voronoi diagram construction
for (a) regular particle distribution and (b) Quadtree particle distribution.

Example 2: Volume minimization under Stress Constraint

In this example the volume minimization under a stress constraint is considered.
As explained in Picelli et al. (2018) the p-norm stress is always greater than the
actual maximum. Thus, an adaptive scaling scheme is used,

σmax ≈ ckσPN ≤ σ̄ (5.16)

where σ̄ is the stress constraint limit and c is defined as

ck = ηk
σk−1
max

σk−1
NP

+ (1− ηk)ck−1 (5.17)

where η ∈ (0, 1] controls the variations between ck and ck−1. The scaling uses
information from the previous iteration to normalize the constraint as ckσPN so
it approximates the actual maximum stress σmax as the design converges.

The optimization problem is formulated as,
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minimize
∫

Ω
dΩ

subject to ckσPN ≤ σ̄
(5.18)

The cubic kernel spline is used in this example and the evolution of the struc-
ture throughout optimization is shown in Fig. 5.14. Starting from the initial
design with holes and for a stress constraint ckσPN ≤ 20, optimization converges
at 178 iterations. The convergence history for σPN , σmax and the volume is shown
in Fig. 5.15. This example also illustrates the robustness of the methodology in
the presence of holes and significant topological changes.
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Figure 5.14: Volume minimization with a stress constraint for the L-bracket
example: Evolution of the structure with the von Mises stress field
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Figure 5.15: Convergence history of the minimum volume, stress constraint L-
bracket design.

5.3.2 Example 3: A design-dependent problem:
Piston-head example

The example in Fig. 5.16 is used to illustrate two useful features of the proposed
methodology. The first, is the ability to handle problems with design-dependent
surface loads where the loads can change in magnitude and direction during op-
timization. Fluid-structure interactions and hydrostatic pressure problems fall
under this category. Here we consider hydrostatic pressure loads of constant
magnitude. In such problems a clear boundary identification on the computa-
tional model is essential to correctly apply the loads at each iteration. Due to the
absence of an interpolation scheme and the conforming description of the struc-
ture, the LSTO-RKPM methodology proposed here preserves the clear boundary
from the level set method on the computational domain. Thus, it can straight-
forwardly handle such problems by directly applying the loads on the boundary
without any interpolation schemes.

The second feature is the computational efficiency of this methodology com-
pared to the Gaussian integration for the domain. This specific example was
solved in Ch. 4 using the Gaussian quadrature on a fixed background mesh and
an interpolation scheme based on nodal signed distance values using the RK shape
functions. The two methodologies are com-pared here. The aim is to minimize
the compliance under a volume constraint and the problem is formulated as,

min J = l(u)

subject to a(u, υ) = l(υ)

Vs(Ω)− V̄ ≤ 0

(5.19)

where the energy bilinear functional a(u,υ) and the load linear form l(υ) are
defined as:

a(u,υ) =

∫
Ω

{ε(u)}T : D : {ε(υ)} dΩ (5.20)
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l(υ) =

∫
ΓN

p · υdΓ (5.21)

Here Vs(Ω) is the volume fraction of the structure with respect to the design
domain, V̄ is the maximum allowed volume fraction, ε is the strain tensor, υ is
the virtual displacement, ΓN is the Neumann boundary on which the pressure
load is applied and p is the pressure load. The pressure load is assumed to be
constant although the method can be generalized for varying pressure.

p = −p0n (5.22)

where p0 is the constant magnitude of the pressure load, and n is the surface
normal.

Shape sensitivity for the structural compliance function when the surface load
is a pressure load was derived by Allaire et al. (2004) as,

∂f

∂x
=

∫
ΓN

[−2div (p0u)− σ(u) · ε (u)]VndΓ, (5.23)

where p0 is the pressure load and Vn is the normal velocity on the boundary.

The result obtained here as shown in Fig. 5.17 is the same as the one in
Neofytou et al. (2020) and the solution is achieved in about the same number of
iterations. However now the process is about 20 times faster. This is because in
the case of the Gaussian integration approach almost 3×105 Gauss points were
used to achieve the sufficient accuracy (16 Gauss points per cell), whereas the
nodally integrated RKPM achieves the same level of accuracy with only 1800
particles. Fig. 5.17 shows the evolution of the structure. As can be seen the
methodology is effective in managing the large topological changes such as holes
merging and islands disappearing.

Figure 5.16: Piston-head structure problem definition.
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Figure 5.17: Snapshots of the piston-head solution with pressure loads
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(a) (b)

Figure 5.18: Voronoi diagram for the piston-head example: (a) Initial diagram
and (b) Diagram at the optimum solution

5.4 Conclusion

In this chapter a combination of the nodally integrated RKPM with the LSTO
method has been proposed for an exact geometry description of structures during
optimization without any interpolation schemes and without remeshing. The
effectiveness and robustness of the methodology has been illustrated through
stress-based examples and the piston-head design-dependent problem with hydro-
static pressure loads examined in Ch. 4. As shown, the method presents useful
features such as the ability to change the order of continuity simply by changing
the continuity order of the kernel function without adding computational com-
plexity. Increasing the order of continuity in the RK shape function has been
shown to speed up the convergence without an increase in the computational time.
Moreover, the method is efficient in handling different particle distributions. This
can be used to increase efficiency by increasing the particle density only around
the boundaries where the accuracy for sensitivity computation is more crucial.
As illustrated through the piston-head example, this approach is significantly
more efficient than the Gauss integration procedure of Ch. 4 while providing the
same results. Furthermore, large topological changes such as holes merging and
disappearing can be handled naturally.
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Chapter 6

Level Set Topology Optimization
for FSI

In chapter 4 a methodology was described for solving design-dependent problems
using LSTO-RKPM. By replacing the background mesh integration with nodally
integrated RKPM it was shown in Ch. 5 that superior computational efficiency
can be achieved while obtaining the same results for hydrostatic loads as in Ch. 4.
Moreover, the robustness of the nodally integrated RKPM was illustrated through
well-known challenging stress-based problems. Several useful features such as
efficient particle schemes and employment of higher order RK shape functions
were also examined. Furthermore, the exact description of the structure provided
by the LSTO-nodally integrated RKPM results in a clear boundary description
on the computational domain.

With these ingredients at hand, the work on design-dependent hydrostatic
loads can now be extended to a more challenging class of design-dependent
physics, i.e., fluid-structure interactions, where a viscous fluid governed by the
Navier-Stokes equations, interacts with linear or non-linear solids. For this pur-
pose, the immersed finite element method is used for the coupling, which allows
for the solid and fluid domains to be analyzed with different discretization meth-
ods. Specifically, the solid domain is analyzed and optimized via the nodally
integrated RKPM and level set topology optimization, whereas for the fluid, the
finite element analysis is performed.

A transient framework is developed that can potentially be used to solve
transient FSI problems. However, for validation purposes the optimization exam-
ples presented are solved for steady-state conditions and then compared with
the results from the literature. There are currently no works on transient FSI
topology optimization in the literature. This is of course not a surprise since high
fidelity transient FSI problems pose great challenges especially in the context
of topology optimization. Such challenges include sensitivity computation and
computational cost. Nevertheless, the approach developed here provides a solid
base for an extension to transient FSI problems where fluids in contact with
non-linear solids may be considered.
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6.1 Modified immersed finite element method

For the FSI analysis, the fluid equations are solved using an Eulerian background
mesh whereas the solid is geometrically described by the level set method and the
solid equations are solved with the RKPM method. The full details of the mIFEM
can be found in Wang and Zhang (2013) and its opensource implementation
named OpenIFEM in Cheng et al. (2019). The main equations are provided in
this chapter along with the implementation details for the FSI level set topology
optimization.

6.1.1 Solid domain

The dynamic solid equation is given by

ρsasi = σsij,j in Ωs (6.1)

where as is the solid acceleration and σs is the solid stress defined as

σskl = Cijklε
s
ij + ηijklε

s
ij in Ωs (6.2)

where εs is the solid strain tensor defined as εsij = 1
2
(usi,j +usj,i), us is the solid dis-

placement, and different combinations of Cijkl and ηijkl result in different material
constitutive laws such as linear elastic and hyperelastic materials. The Dirichlet
and Neumann boundary conditions on the boundaries Γsq and Γsh, respectively,
are given by

usi = qi on Γsq (6.3)

σsijnj = hi on Γsh (6.4)

where Γs = Γsq ∪ Γsh and Γsq 6= ∅ to ensure the existence and uniqueness of the
solid solution.

The interface conditions on the solid boundary in contact with the fluid can
be applied as either a Dirichlet boundary condition on Γsq (i.e., the solid dis-
placement can be prescribed as the fluid displacement in a selected portion of
the boundary) and/or as a Neumann boundary condition on Γsh (i.e. as a trac-
tion on the solid boundary due to the action of the fluid). These two boundary
conditions can co-exist, but cannot overlap. They are computed using the fluid
velocity and pressure fields obtained from the fluid solution at the previous time
step as
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qi =

[∫
Ω

υfi φ(xf − xs)dΩ

]
∆t on Γsq (6.5)

hi =

[∫
Ω

σfijφ(xf − xs)dΩ

]
nj on Γsh (6.6)

where qi is the solid displacement interpolated from the fluid region onto the solid
interface. The fluid traction acting on the solid interface is represented by hi. In
this work the interface condition is applied as a Neumann boundary condition on
the solid boundary and thus Eq. 6.5 is not used. Function φ is an interpolation
function which is a function of the distance between a fluid grid point xf and a
solid point xs.

The solid velocities are then computed by solving the solid governing equation,
Eq. 6.1. The initial displacement and velocity conditions for the solid are also
needed to solve the equations. If the solid starts from a resting position, these
are initially set to zero.

The set of the dynamic solid equations is discretized using the RKPM method-
ology described in Ch. 5 and solved numerically using the α-method (Hughes,
2000; Chen et al., 1996), which is an implicit and unconditionally stable scheme,
meaning that there is no limitation to the time step size.

6.1.2 Artificial fluid domain

In the mIFEM, part of the fluid called the artificial fluid, overlaps with the solid
domain. The idea of the artificial fluid is that it physically does not exist, rather,
it should mimic the solid as much as possible. Consequently, the artificial fluid
should produce the same velocity as the solid

vf = vs in Ω̄ (6.7)

where Ω̄ denotes the artificial fluid domain, vf is the velocity vector in the
artificial region and vs is the solid velocity vector.

The continuity equation for the artificial fluid should allow compressibility for
two reasons: First, to ensure that the artificial fluid velocity is the same as the
solid velocity and second when any solid volume change needs to be considered.
Thus, the continuity equation can be written as

1

κs
∂p

∂t
+ υfi,j = 0 in Ω̄ (6.8)

where κs is the bulk modulus of the solid, since we want the compressibility of the
artificial fluid to be the same as the solid to ensure the velocity in the artificial
fluid domain is the same as the solid velocity.

The momentum Navier-Stokes equation is
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ρs
∂υfi
∂t

+ ρsυfi υ
f
i,j = σfij,j + fFSI,fi in Ω̄ (6.9)

where ρs is the solid density, again to ensure that the artificial fluid behaves as
the solid. The interaction force is used to further enforce vf = vs in Ω̄. It is
first evaluated in the solid domain and then distributed onto the fluid domain
through the interpolation function as

fFSI,f =

∫
Ωs

fFSI,sφ(x− xs)dΩs (6.10)

The fluid-structure interaction force per unit volume represents the viscous
effects due to the existence of the solid in the fluid domain and is defined as

fFSI,si = σsij,j − σ
f
ij,j in Ωs (6.11)

in which σf is the fluid stress and σs is the solid stress.

6.1.3 Fluid domain

The fluid domain including both the real fluid and the artificial fluid region is
governed by the Navier-Stokes equations. The real fluid can be either compress-
ible or incompressible but in this work the incompressible case is considered. The
main equations are given below.

The continuity equation expressing the mass conservation is written as
υfi,i = 0, in Ωf

1
ks
∂pf

∂t
+ υfi,i = 0, in Ω̄

(6.12)

and the momentum conservation Navier-Stokes equations are
ρf

∂υfi
∂t

+ ρfυfj υ
f
i,j = σfij,j, in Ωf

ρs
∂υfi
∂t

+ ρsυfj υ
f
i,j = σfij,j + fFSI,fi in Ω̄

(6.13)

The fluid stress is given by

σfij = −pfδij + τ fij (6.14)

where τ fij is the viscous stress

τ fij = µ(υfi,j + υfj,i) (6.15)
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The real fluid and artificial fluid domains are combined together and solved nu-
merically through the use of an indicator delta function I(xf ) defined as

I(xf )


0, in Ωf

1, in Ω̄
(6.16)

where xf are the fluid element coordinates. In this work, the solid velocity is
interpolated at the fluid quadrature points of the artificial fluid region using the
RK shape functions. The artificial fluid region based on this indicator field does
not extend beyond the solid boundary. The requirement for a fluid element to
be considered ”artificial” fluid, is that all the nodes of the fluid element must
be within the solid boundary. Thus, there is no smearing of the solid properties
beyond this region on the fluid side.

The continuity and momentum equations from Eq. 6.12 and Eq. 6.13 can
then be expressed in terms of the indicator function as shown in Eq. 6.17 and
Eq. 6.18 below, respectively.

1

ks
∂pf

∂t
I(xf ) + υfi,i = 0 in Ω (6.17)

ρ̄
∂υfi
∂t

+ ρ̄υfj υi, j
f = σfij,j + fFSI,fi in Ω (6.18)

where ρ̄ is defined as

ρ̄ = ρf + (ρs − ρf )I(xf ) in Ω (6.19)

In the opensource software of mIFEM (Cheng et al., 2019) the governing
equations in the entire fluid domain are solved by the finite element method with
the Matrix-free Newton Krylov method.

6.2 Transient FSI analysis

In this thesis, the solid domain is analyzed using the nodally integrated RKPM
methodology described in Ch. 5. To illustrate the applicability of this combina-
tion, transient FSI analysis is performed here for a commonly used problem in
the literature, known as the leaflet example.
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6.2.1 Transient RKPM solver validation

Before performing the FSI analysis, the transient RKPM solver is validated for
a 2D cantilever beam as shown in Fig. 6.1, which is made of Neo-Hookean
material. This example is provided in the OpenIFEM opensource software (Cheng
et al., 2019) where it is also validated against ABAQUS (Smith, 2014). Here, the
analysis is compared against the OpenIFEM code. As mentioned in Sec. 6.1.1,
the α−method (Hughes, 2000; Chen et al., 1996) is used to solve the dynamic
solid equations.
To begin, the discrete equation of motion can be expressed as

Mas + Cvs + Kus = F (6.20)

where M is the mass matrix formed as MIJ =
∫

Ω
ρsΨIΨJIdΩ, C is the viscous

damping matrix, K is the stiffness matrix, F is the vector of applied forces and
vectors usn,v

s
n and asn represent displacement, velocity, and acceleration vectors

for the solid, respectively. Solution of Eq. 6.20 using the Newmark method
consists of the following equations

Md̈sn+1 + Cḋsn+1 + Kdsn+1 = Fn+1 (6.21)

dsn+1 = dsn + ∆tḋsn +
∆t2

2
[(1− 2β)d̈sn + 2βd̈sn+1] (6.22)

ḋsn+1 = ḋsn + ∆t[(1− γ)d̈sn + γd̈sn+1] (6.23)

where the subscript n denotes the previous time step, d̈s, ḋs and ds are the
approximations of asn, vsn and usn, respectively. The parameters β and γ determine
the stability and accuracy of the algorithm under consideration. The α−method
then defines predictors in terms of the information from the previous time step
n as:

d̃n+1 = dn + ∆tḋn +
∆t2

2
(1− 2β)d̈n (6.24)

˜̇dn+1 = ḋn + (1− γ)∆td̈n (6.25)

Eqs. 6.22 and 6.23 can be re-written using Eqs. 6.26 and 6.28 as

dn+1 = d̃n+1 + β∆t2än+1 (6.26)

ḋn+1 = ˜̇dn+1 + γ∆tän+1 (6.27)

The overall process can be summarized as

1. Form the matrices M, K and F.
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2. Compute initial nodal acceleration d̈0 using the initial nodal displacement
d0 as

Md̈0 = F−Cḋ0 −Kd0 (6.28)

3. At the current time t = n+1 compute predictors according to Eqs. 6.26
and 6.28.

4. Solve for än+1 using

(M + γ∆tC + β∆tK)än+1 = Fn+1 −C˜̇dn+1 −Kd̃n+1 (6.29)

Note that in the case of nonlinear hyperelastic material, such as the Neo-Hookean
model, the Newton’s method is used to solve Eq. 6.29 iteratively within each time
step.

The material properties used for the analysis are: shear modulus G = 59.55
kPa, bulk modulus κ = 100 kPa, density ρ = 1.1 × 106 kg/m3. The uniformly
distributed traction on the top edge has a value of 2.5 Pa, and the time step for
the analysis is 0.1s. For the FEA analysis in OpenIFEM, 512 uniform first-order
quadrilateral elements are used whereas 585 uniformly distributed particles are
used for the RKPM analysis. Furthermore, it is assumed that damping is zero
which means that all the terms involving C in Eq. 6.29 vanish. The vertical
displacements obtained by the two methods at point P in Fig. 6.1 are compared.
Under the load, the beam initially bends downward reaching a maximum deflec-
tion to the point at which the external work equals the elastic energy. Inertia
then takes the beam back to its original position, and in the absence of damping
the beam continues to bounce up and down with the same magnitude for the
entire simulation time. The results shown in Fig. 6.2 indicate a good agreement
between the two methods, and thus by extension, with the ABAQUS commercial
software against which OpenIFEM was validated.

𝑷

6.4 𝑐𝑚

0
.8
𝑐𝑚

Figure 6.1: Cantilever beam˙test case
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Figure 6.2: Validation of RKPM transient solver against OpenIFEM (Cheng
et al., 2019)

6.2.2 Transient FSI analysis for the leaflet example

Following the validation of the transient solid solver, the transient FSI analysis
is shown here for the leaflet example shown in Fig. 6.3 (a). The inlet velocity
of the fluid has a value of U0 = 0.1 m/s. The fluid density is set to ρf = 1000
kg/m3 and the dynamic viscosity is µ = 0.01 kg/(m ·s). The material is modeled
as nearly incompressible Neo-Hookean with a shear modulus of G = 7 kPa and a
bulk modulus of κ = 0.86 MPa, which correspond to the initial Youngs modulus
of 19 kPa and Poissons ratio of 0.49. The solid density is set to ρs = 6000 kg/m3.
The bottom boundary is modeled as no-slip wall, while the upper boundary has
no-penetration condition, and the right boundary is outflow. The fluid mesh is
shown in Fig. 6.3 (b) with a refinement around the solid region. The beam
is analyzed using 561 uniformly distributed RKPM particles. The time step is
set to ∆t = 5 × 10−3s and the simulation is run until t = 0.2s. The velocity
field and beam deformation at four different times are shown in Fig. 6.4. The
beam undergoes large displacements when the flow begins. As the flow develops
towards steady state, the amplitude of the beam displacement decreases until
finally, the oscillations stop.
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Figure 6.3: (a) Setup for the leaflet example (dimensions in cm) and (b) Fluid
and solid discretizations and initial particle distribution

t = 0.005 s t = 0.065 s

t = 0.12 s t = 0.2 s

Figure 6.4: Transient FSI analysis result: Velocity field and particle distribution
at different time steps
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6.3 Discrete adjoint sensitivity analysis

One of the main challenges in topology optimization with complex physics is
the computation of the gradients, or else sensitivities, of the objective function
and constraints with respect to the design variables. The accuracy in the com-
putation of these gradients is essential in the convergence of the gradient-based
optimization algorithms. In topology optimization typically the number of design
variables is usually much larger than the number of the objective and constraint
functions. Because of this, adjoint methods (Choi and Kim, 2005) are preferred
since they are able to provide accurate gradients with a cost that is independent
of the number of design variables.

Adjoint methods are separated into continuous and discrete (Choi and Kim,
2005). In the continuous adjoint methods, the continuous governing equations are
first differentiated in order to derive the adjoint equations in the continuous space.
Once the adjoint system is obtained, it is discretized along with the governing
field equations using a numerical method to compute sensitivities. In the discrete
adjoint method on the other hand, the governing equations are first discretized
and then differentiated to derive the adjoint equations in the discrete space. A
schematic illustration of the difference between continuous and discrete adjoints
for linear elasticity is shown in Fig. 6.5.

Figure 6.5: A schematic of the continuous and discrete adjoint methods. Linear
elasticity equations example. (Kambampati et al., 2020)

.

In the classical level set topology optimization method used in this thesis,
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in which the boundary is updated by solving the Hamilton-Jacobi equation, the
continuous adjoint is typically used. Indeed, up to this point in the thesis the con-
tinuous adjoint approach has been used which required a derivation of the shape
derivative. However, as the physics become more complex, the derivation of such
shape derivatives can become more challenging. Moreover, when employing nu-
merical methods such as FEM or RKPM, what is actually being solved is the
discretized governing equations. Thus, the exact cost function is the discretized
form. Consequently, from the point of view of the discrete problem, the con-
tinuous adjoint sensitivities are only an approximation to the discrete gradients
whereas the discrete adjoint provides the exact gradients. To quote Nadarajah
(2003): “the continuous adjoint approach provides the inexact gradient to the
exact cost function (discrete objective function)”. Since the gradient is derived
from the continuous equations and then computed numerically, it is not necessar-
ily consistent with the discrete cost function. The discrete adjoint on the other
hand provides the exact gradient to discrete cost function. Thus, the advantage
of the discrete adjoint method is that the resulting gradient is exactly consistent
with the discrete cost function, meaning that the optimizer correctly “sees” what
we are solving for. If the discrete gradient is driven to zero, then a local optimum
of the discrete cost is obtained whereas with the continuous adjoint even if the
gradient is driven to zero the discrete objective function may not have converged
to the discrete optimum. Of course, in the limit as the mesh size is reduced,
both approaches yield the exact gradient of the continuous cost function. In ad-
dition, the discrete adjoint has the benefit that it can facilitate the employment
of automatic differentiation (Mader and Martins, 2008).

Since the discretized equations are solved for the entire domain, the discrete
adjoint formulation results in volumetric sensitivities. For the discrete adjoint to
be used in the classical level set method, the main challenge lies in connecting the
volume sensitivities resulting from the discrete adjoint formulation to the struc-
tural shape change as a boundary moves. In the case of the fixed grid approach
this is more straightforward since the mesh does not change due to boundary
point movement. Rather, the value of the level set function changes. In their
work based on XFEM-LSTO, Coffin and Maute (2016) used the chain rule to
link the derivatives of the objective and constraints with respect to the nodal
level set values to the derivatives of the nodal level set values with respect to the
boundary movements. For the computation of the gradients, they employed the
discrete adjoint in combination with finite difference sensitivity. More recently,
Kambampati et al. (2020) presented an approach for coupling the elemental sen-
sitivities to the level set boundary movement in fixed grid FEA-based LSTO with
the Ersatz material approximation. In this case, the chain rule is also used to
link the derivatives of the objectives with respect to the area fractions of the
elements to the derivatives of the area fractions with respect to the boundary
movement. A perturbation method is then used to evaluate the derivatives of the
area fractions with respect to the boundary movement via finite difference.

However, in the case of a moving mesh scheme this becomes more compli-
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cated. This is because the mesh sensitivity that describes how the mesh, i.e., the
coordi-nates of the interior nodes, deforms with respect to the boundary move-
ment, needs to be computed. This problem is commonly encountered in shape
optimiza-tion in computational fluid dynamics (CFD) (Nadarajah, 2003; Mader
and Martins, 2008; Engels-Putzka and Frey, 2021; Secco and Martins, 2019; Patil
et al., 2015; Nielsen and Park, 2006). The mesh sensitivity term is not straight-
forward to compute since grid regeneration, either locally or globally, is typically
required for every movement of the surface. To the best of our knowledge, there
are currently no LSTO approaches employing the discrete adjoint approach for
unstructured meshes or particle-based analysis.

The particle-based approach described in Ch. 5, essentially is similar to the
moving mesh scenario. However, since it does not employ a mesh to construct
the approximation, the movement of the boundary has no effect on the position
of the interior particles and so the mesh sensitivity term does not need to be
computed. Taking advantage of this, a discrete adjoint approach in the context of
the particle-based level set topology optimization described in Ch. 5 is presented
in the next section.

6.3.1 Discrete adjoint for particle-based LSTO

In the level set topology optimization method the design variables are the bound-
ary point movements. The sensitivity analysis thus computes the gradients of the
objective and constraint functions with respect to these boundary point move-
ments. In the LSTO-RKPM method with NSNI as described in Ch. 5, a mesh
does not exist and when a boundary particle moves, only the coordinates of this
specific particle change. The coordinates of all other particles are independent
of this movement and do not change. Thus, differentiating the objective func-
tion by the paritcle’s coordinates is equivalent to differentiating with respect to
the boundary point movement. This means that changes happen only locally
around the neighborhood of the boundary particle. This eliminates the need of
computing the mesh sensitivity term that usually appears in FEA based shape
optimization problems. Instead, in the context of the particle-based level set
topology optimiza-tion, a deformation of the surface affects the shape functions
of the particles present in the local region around the deformation. The RKPM
shape function at a particle location is constructed based on the global coordi-
nates of both the particle under consideration and the particles whose supports
cover the particle. This is illustrated in Fig. 6.6 (a) in which as boundary particle
A moves, the supports of particles B, C, D and E that cover particle A need
to change based on the new coordinates of A. Moreover, in the NSNI-RKPM
scheme described in section 5, the area, edge length, and edge normals of each
Voronoi cell are used to compute the smoothed gradient matrix B̃. The boundary
point movement will change the Voronoi diagram locally as shown in Fig. 6.6
(b). As the boundary point A moves, the segments AB and AC change to A’B
and A’C respectively. In turn, the Voronoi cells for particle A and its direct
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boundary neighbors B and C, need to change. This is done based on the con-
struction of the Voronoi diagram described in Sec. 5, where the boundary cells
are cut based on their intersections with the boundary segments. Consequently,
this also has an effect on the RKPM shape functions and the smoothed gradient
matrix B̃. To summarize, when a boundary particle moves, this will affect the
shape functions around it due to the change in its coordinates and the change in
the Voronoi diagram locally, which in turn will affect the objective function and
constraints.

𝑪

𝑨

𝑬

𝑫

𝑨′

𝑩

(a)

𝑩

𝑨′ 𝑪

𝑨

(b)

Figure 6.6: (a) Support domains affected due to boundary movement and (b)
Local changes in Voronoi diagram due to boundary movement
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To illustrate this idea, the simple case of compliance minimization in a linearly
elastic structure is considered as an example. In the discrete adjoint method, the
linear elasticity equation is first discretized as

Ku = f => R = f −Ku = 0 (6.30)

where u is the displacement vector and f is the force vector, R represents the
residual and K is the stiffness matrix assembled using particle stiffness matrices
as

K =
NP∑
i=1

Ki (6.31)

where NP is the total number of particles. The discretized compliance function
can the be formulated as

C = fTu (6.32)

where C denotes the structural compliance. The total derivative of the objective
function with respect to the change in coordinates of boundary point j can be
expressed as

dC

dxj
=
∂C

∂xj
+
∂C

∂u

∂u

∂xj
(6.33)

where xj denotes the particle coordinates. To treat the unknown implicit term
∂u
∂xj

, the governing equation, i.e., Eq. 6.30 is also differentiated with respect to

the particle coordinates as

dR

dxj
=
∂R

∂xj
+
∂R

∂u

∂u

∂xj
= 0

=>
∂u

∂xj
= −

[
∂R

∂u

]−1
∂R

∂xj
(6.34)

Substituting the result from Eq. 6.34 back into Eq. 6.33 the total sensitivity
equation becomes

dC

dxj
=
∂C

∂xj
− ∂C

∂u

[
∂R

∂u

]−1
∂R

∂xj
(6.35)

From Eq. 6.35 one can either use the direct method which solves the system
generated by the last two terms, or alternatively, the adjoint method can be
used which solves the system of the second and third terms as
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λ = −∂C
∂u

[
∂R

∂u

]−1

(6.36)

or else [
∂R

∂u

]T
λ = −∂C

∂u
(6.37)

where λ is the vector of adjoint variables. The direct method requires solving one
linear system for each design variable whereas with the adjoint method a linear
system needs to be solved for each objective and constraint function. Thus for
cases with large numbers of design variables, as is the case for topology optimiza-
tion, the adjoint method is the preferred option.

For compliance, Eq. 6.37 takes the form[
∂(f −Ku)

∂u

]T
λ = −∂(fTu)

∂u
=> Kλ = f (6.38)

and thus for compliance λ = u. Using this result, Eq. 6.33 becomes

dC

dxj
=
∂(fTu)

∂xj
+ λT

∂(f −Ku)

∂xj

= fT
∂u

∂xj
− λT ∂K

∂xj
u− λTK

∂u

∂xj

= (fT − λTK)
∂u

∂xj
− λT ∂K

∂xj
u (6.39)

if λ satisfies the adjoint Eq. 6.38 the the first term disappears and finally

dC

dxj
= −uT

∂K

∂xj
u (6.40)

Recall from Ch. 5 that the K matrix is defined as K = B̃TDB̃ and so Eq. 6.41
can be written as

dC

dxj
= −uT

∂(B̃TDB̃)

∂xj
u

= −uT2B̃TD
∂B̃

∂xj
u (6.41)
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Once again it is important to note, that when a boundary particle j moves,
only the coordinates of this boundary particle change. As a result of this, only
the particles whose supports cover the boundary particle will be affected, and
thus Eq. 6.41 only needs to be computed for this small number of particles when
computing the sensitivity value for boundary point j. In the example of Fig. 6.6
(a) these would be the particles B, C, D and E.

Computation of ∂B̃i

∂∂xj

The term ∂B̃i

∂∂xj
is computed by finite differencing. For a given boundary particle

j of interest, a small perturbation δ is applied in the boundary normal direction
as shown in Fig. 6.6 for particle A. The perturbation magnitude is of the order
of δ ∼ 10−4 × dmin, where dmin is the distance to the closest neighbor. The term
∂B̃i

∂∂xj
then may be approximated as follows

∂B̃i

∂xj
≈ B̃i − B̃δ

i

δ
(6.42)

where B̃δ
i is the smoothed gradient matrix of the ith particle after the perturba-

tion of boundary particle j.

6.4 Free floating volumes

One of the challenges associated with topology optimization for fluid structure
interaction problems is the emergence of free-floating volumes of solid material.
These non-physical free-floating volumes that usually appear during the optimiza-
tion process as material is being removed and rearranged. They are usually
eliminated by optimization naturally and do not present challenges in structural
optimization. This was also the case for the pressure loading problems considered
in Chapters 4 and 5, since they tend to disappear quickly in the optimization
procedure. However in the case of FSI problems, as the free-floating volumes are
not connected to an anchor point, they undergo rigid-body motion within the
flow field. Figure 6.7 illustrates the formation of such free floating volumes.
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Figure 6.7: Appearance of free-floating volumes of solid material in FSI topology
optimization (Jenkins and Maute, 2016)

.

Some works on FSI topology optimization do not report observing such fea-
tures (Yoon, 2010; Picelli et al., 2015a) in their examples. On the other hand,
several works in the literature have proposed methods for addressing the free-
floating volumes problem. Jenkins and Maute (2016) proposed a scheme in which
free-floating volumes are tracked prior to the FSI analysis, by computing an in-
dicator field governed by the linear, isotropic diffusion equation. Solid material
identified as free-floating solid is considered to be fluid in the subsequent FSI
analysis. In a later work Lundgaard et al. (2018) presented an alternative to the
indicator method for removing free floating islands of solid elements (FFIOSE)
as called by the authors. In this work the islands are removed by combining
different objective functions with different features and weights in a weighted
multi-objective formu-lation. This approach requires a tuning of an additional
parameter which is important to obtain an adequate ratio between the influence
of the multiple objective functions.

For the examples considered in this thesis, free floating volumes naturally dis-
appear without specific treatment. However, it was observed that if not treated
they may take several iterations to disappear, which can slow down the conver-
gence. For this reason, and to avoid potential problems when different objectives
and constraint formulations are considered in the future, an approach is presented
next for removing free-floating volumes or “islands” as referred to hereafter.
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6.4.1 Algorithm for removing islands

The process of removing islands is based on a particle type list which is a list of
integer indices to classify particles into different types according to their location,
i.e., on the Dirichlet boundary, the main chain, inside the main chain or outside
the main chain. The algorithm is divided into two parts. First, the boundary
portion connected to the Dirichlet boundary, called the ”Main Chain”, is iden-
tified. Subsequently, all particles that are enclosed by the main chain are given
a separate particle type. Any particles outside the main chain are identified as
islands and are being removed in the next optimization step.

Main Chain

The process of identifying the main chain is illustrated in Fig. 6.8. Initially,
all particles are assigned “type 1” except particles on the Dirichlet boundary
which are assigned “type 2”, as shown by the blue circles and the green “x”
symbols, respectively, in Fig. 6.8 (a). Starting from the first point on the Dirichlet
boundary indicated as Pstart in Fig. 6.8 (b), the main chain is created by moving
from one boundary point neighbor with “type 1” to the next and turning them
into “type 3”, as indicated by the arrows in the figure. The process continues
until finally a Dirichlet boundary particle with “type 2” is encountered, in which
case the main chain stops as shown by the end of the arrow line in Fig. 6.8
(b). Figure 6.8 (c), shows what would happen if the Dirichlet boundary particles
were not assigned a separate type. In this case, the main chain extends into
the interior hole. As a result, an interior island, i.e., an island within the void
region, would be removed. However, only islands in contact with the fluid are
problematic because they undergo rigid body motion in the fluid domain. Thus,
the Drichlet particles are assigned a separate type to achieve the configuration
in Fig. 6.8 (d), in which the main chain does not extend to the interior holes.
The boundary neighbors are stored during the level set function computation and
this makes it possible to move from neighbor to neighbor without having to loop
through all particles each time, which would be computationally expensive. Thus,
to create the main chain it is only required to loop through as many particles
as the number of particles on the main chain. Since this is only a small number
compared to the total number of particles, the algorithm is not computationally
demanding.

Loading Surface

It is also important to note, that the main chain acts as the loading surface on
which the FSI loads are applied. This way FSI load is not transferred to the
load-free portion of the boundary such as the Dirichlet boundary or the interior
holes of the structures.
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Particles Enclosed by the Main Chain

Once the main chain has been identified, the second part of the island identifica-
tion process begins. At this stage, interior (i.e. non-boundary) particles that are
enclosed by the main chain are assigned a separate “type 4”, to distinguish them
from island particles. This process is described in Fig. 6.9. Starting from any
particle on the main chain such as P1 , its interior neighbors are identified and
turned into “type 4”. This is shown for particles P2 ,P3 and P4 with the yellow
triangles in Fig. 6.9 (a). As explained in Chapter 5, neighbors for each particle
are stored during the construction of the Voronoi diagram and this information is
directly accessible at each iteration. Next, the direct neighbors of P2 ,P3 and P4

are also turned into “type 4” as shown in Fig. 6.9 (b). Moving from neighbor to
neighbor eventually all particles inside the main chain are turned into “type 4”,
whereas for islands both boundary and interior particles remain “type 1”, as Fig.
6.9 (c) illustrates. In the end, as can be seen in Fig. 6.9 (d), all “type 1” particles
are identified as islands and are removed completely from the next optimization
iteration.
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(c) (d)
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𝐓𝐲𝐩𝐞 𝟑:𝐌𝐚𝐢𝐧 𝐜𝐡𝐚𝐢𝐧 𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞𝐬 𝐓𝐲𝐩𝐞 𝟒: 𝐈𝐧𝐭𝐞𝐫𝐢𝐨𝐫 𝐧𝐨𝐧 - 𝐢𝐬𝐥𝐚𝐧𝐝 𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞𝐬
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Figure 6.8: Main chain identification: (a) Setting initial type 0 for all particles
and setting Dirichlet boundary particles as type 2, (b) Creating main chain by
moving from one boundary neighbor to the next, (c) Illustration of problematic
situation if Dirichlet particles were not given a separate type, (d) Illustration of
how a separate type for Dirichlet particles avoids situation in (c) (Bendse and
Sigmund, 2004)
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𝐓𝐲𝐩𝐞 𝟑:𝐌𝐚𝐢𝐧 𝐜𝐡𝐚𝐢𝐧 𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞𝐬 𝐓𝐲𝐩𝐞 𝟒: 𝐈𝐧𝐭𝐞𝐫𝐢𝐨𝐫 𝐧𝐨𝐧 - 𝐢𝐬𝐥𝐚𝐧𝐝 𝐩𝐚𝐫𝐭𝐢𝐜𝐥𝐞𝐬

Figure 6.9: Island identification: (a) Starting from a random point, P1 on the
main chain and turning its neighbors P2 , P3 , P4 into “type 4”, (b) Continuing
the process by turning the neighbors of P2 , P3 , P4 into “type 4”, (c) Repeating
the process until all particles within the main chain are turned into “type 4” and
(d) In the end of the process all remaining “type 1” particles are identified as
islands and removed from the computation

6.5 Compliance minimization for steady-state

FSI

In this section the compliance minimization of linear elastic structures subjected
to steady-state FSI is considered. This one way coupling is a good starting point
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to compare with the literature and validate the approach.

6.5.1 Particle discrete adjoint for steady state
fluid-structure interactions

Section 6.1 illustrated the capability of the LSTO-RKPM-mIFEM method in
analyzing transient FSI problems. Although there is no theoretical limitation in
extending this scheme to transient FSI topology optimization problems, there are
no known solutions or previous literature to compare with. And so, a simplified
case of steady-state FSI problems is considered in this thesis to validate our
approach by comparing with results from the literature.

To consider steady-state conditions, the time dependent terms in the equa-
tions of Sec. 6.1 are disregarded. Under this assumption, the fluid domain is
discretized with the finite element method and the finite element matrices for the
incompressible steady-state Navier-Stokes equations are given by (Sanches, 2015;
Zienkiewicz et al., 2014).

[
Kf + KT (vf ) −Q

−Q 0

] {
vf
Pf

}
=

{
0
0

}
(6.43)

where,

Kf = µ

∫
Ωfe

BT
feI0BfedΩfe (6.44)

KT (vf ) = ρf

∫
Ωfe

NT
υNυ(vx∇Nx

υ + vy∇Ny
υ)dΩfe (6.45)

Q =

∫
Ωfe

∇NT
ν NPdΩfe (6.46)

where the matrices N contain the shape functions for velocity and pressure as
indicated by the subscripts ν and P subscripts, respectively. The matrix Bfe

contains the gradients of the finite element shape functions and Ωfe represents
the area of the finite element. The matrix I0 is the identity matrix. Matrices Kf

and KT (vf ) include the diffusive and inertia terms, respectively.

Compliance Minimization under FSI loads

For the problems considered in this chapter, compliance minimization of linear
elastic structures under FSI loads is the main objective and this can be formulated
in discretized form as
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min C(xj) = uTKu

s.t. KU = ffsi

V (xj)/V0 = V̄

(6.47)

whereas u and K are the solid displacement and solid stiffness matrix in turn, V̄
is the volume constraint limit, and the right hand side ffsi is the fluid traction
applied on the solid at the FSI interface given by

ffsi,I =

∫
Γfsi

ΨI [n(QPf − (Kf + KT (vf )]vf )i) (6.48)

where Γfsi is the FSI interface and the index i denotes the ith fluid element inter-
sected by the FSI interface and from which the fluid quantities are interpolated
onto the interface. Similar to Eq. 6.39 in Sec. 6.3.1, the total derivative of the
compliance with respect to coordinates is given by

dC

dxj
=
∂(fTfsiu)

∂xj
+ λT

∂(ffsi −Ku)

∂xj
(6.49)

whereas as before λ = u. The difference now is that the load is the fluid traction
resulting from the FSI analysis as shown in Eq. 6.47. Then, Eq. 6.49 can be
written as

dC

dxj
=
∂(fTfsiu)

∂xj
+ λT

∂

∂xj

{
Ψ[n((QPf − (Kf + KT (vf ))vf )−Ku]

}

= fTfsi
∂u

∂xj
+ λT

∂(Ψ[nQPf ])

∂xj
− λT ∂K

∂xj
u− λTK

∂u

∂xj

= (fTfsi − λTK)
∂u

∂xj
+ λT

∂(Ψ[nQPf ])

∂xj
− λT ∂K

∂xj
u (6.50)

Note that all the terms multiplied by vf vanish since vf is zero within the solid
and on the FSI interface. If λ satisfies the adjoint equation 6.38 then the first
term disappears and Eq. 6.50 results in

dC

dxj
= −uT2B̃TD

∂B̃

∂xj
u + uT

∂(Ψ[nQPf ])

∂xj
(6.51)

where the term
∂(Ψ[nQPf ])

∂xj
expresses the variation of the pressure load applied at

the FSI interface due to the boundary movement and it is computed via finite

differencing similar to ∂B̃i

∂xj
.
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6.5.2 Leaflet example

The most encountered example in the literature of FSI topology optimization is
the leaflet example discussed in Sec. 6.2. Indeed, this example is considered by
every FSI topology optimization work for low to moderate Reynolds numbers:
Yoon (2010) for Re = 5, Picelli et al. (2015a) for Re = 100, Re = 1000, Jenkins
and Maute (2016) for Re = 10, Lundgaard et al. (2018) for Re = 100, Feppon
et al. (2019) for Re = 60, Picelli et al. (2020) for Re = 0.01, Re = 100. It is
thus a good test case for comparison. As shown in Fig. 6.10 (a), this consists
of a rectangular beam placed inside a viscous fluid field, with fluid flowing from
left to right with a prescribed velocity, which here is set to U0 = 0.1m/s. The
fluid density is set to ρf = 1000kg/m3. The Reynolds number is computed from

the height of the beam as Re = ρf ·h·U0

µ
, where h is the height of the beam and

µ is the dynamic viscosity. Two cases for dynamic viscosity are tested, one with
a value of µ = 60(kg/m · s) which gives a Reynolds number Re = 0.01 and one
with µ = 0.0006(kg/m · s) for which Re = 1000. The results of the two different
Reynolds number cases are compared to investigate the effect of the flow behavior
on the optimum topologies. The top and bottom boundaries are modeled as no-
slip wall. The beam is fixed at the bottom edge, and it is assumed to be linear
elastic with a Young’s modulus value equal to 10 kPa and Poisson’s ratio equal
to 0.3. The black rectangular region on the left side of the beam is considered
as a non-design domain. The initial fluid and solid discretizations are shown in
Fig. 6.10 (b). As can be seen, the fluid mesh is refined near the solid while the
initial particle distribution with holes sits on top of the fluid. The objective is to
minimize the compliance under a volume constraint of 40%.

The optimization results are provided in Fig. 6.11 along with the velocity
fields for the two Reynolds number cases. The obtained solutions appear to be
different for the different Reynolds number cases. Specifically, the outer FSI
interface on the right side of the structure is more rounded, or convex, in the
case of the low Reynolds number flow, whereas for the high Reynolds number
the interface becomes flatter, nearly concave. This difference can be explained
by examining the pressure fields produced in Fig. 6.12. In Fig. 6.12 (a), the
pressure acting on the exterior FSI surface is positive, meaning that it points
towards the interior of the structure. This compressive load forces the interface
to become more rounded, since as discussed in Ch. 4 such shapes are optimum
in carrying positive pressure. On the other hand, pressure is negative in that
region for the high Reynolds number case. This means that the interface is being
pulled outwards and as a result it becomes concave to resist this load. A similar
observation was reported by Picelli et al. (2020), which is the only FSI work that
considered such comparison with different Reynolds numbers.

Figure 6.13 provides the results obtained by other authors in the literature for
the same example for different Reynolds numbers. It seems that the result ob-
tained by LSTO-RKPM-mIFEM bears similarities with these previous solutions.
Especially the solution for Re = 1000 is closer to the results obtained by Jenkins
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and Maute (2016) using LSTO and XFEM and considering Re = 10 and the
results obtained by Picelli et al. (2020) using the TOBS method with COMSOL
considering Re = 0.01 and Re = 100.

(a)

(b)

Figure 6.10: Topology optimization of the leaflet example: (a) Setup (dimensions
are in cm) and (b) Initial particle distribution and fluid mesh with refinement
near the solid
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(a)

(b)

Figure 6.11: Optimum solutions and velocity fields for: (a) Re = 0.01 and (b) Re
= 1000

(a)

(b)

Figure 6.12: Optimum solutions and pressure fields for: (a) Re = 0.01 and (b)
Re = 1000
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(a) (b)

(c) (d)

(e) (f)

Figure 6.13: Comparison with the literature: (a) LSTO-RKPM solution for Re
= 0.01, (b) LSTO-RKPM solution for Re = 1000, (c) Jenkins and Maute (2016)
solution for Re = 10 using LSTO and XFEM, (d) Feppon et al. (2019) solution
for Re = 60 using LSTO and remeshing, (e) Picelli et al. (2020) solution for Re =
0.01 and (f) Picelli et al. (2020) solution for Re = 100 using TOBS and COMSOL
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6.6 Conclusions

In this chapter the LSTO-RKPM methodology was extended to FSI problems.
The modified immersed finite element method is used to couple the separate solid
and fluid governing equations. This LSTO-RKPM-mIFEM combination has cer-
tain advantages. First, it allows for modularity in the solvers and even different
methods of discretization for the solid and the fluid domains. This was illustrated
in this chapter by employing the RKPM for the solid and the FEM for the fluid.
Moreover, the use of a fixed fluid grid allows for efficiently solving the coupled
equations without the need for remeshing, and as was demonstrated through the
example adaptive refinement can also be used. The LSTO-RKPM combination
for the solid can handle straightforwardly the topological changes while providing
a well-defined structural boundary. For the sensitivity analysis, an approach was
presented that allows for the discrete adjoint method to be used in the context of
LSTO-RKPM based on a boundary particle perturbation scheme. Additionally,
an algorithm was developed to identify and remove islands of solid material, which
is a well-known challenge in FSI topology optimization. For validation through
comparison with the literature, the well-known leaflet example was solved for
compliance minimization under a volume constraint, assuming steady state con-
ditions. It can be seen from the results, that they are in good agreement with
the results obtained by other authors in the literature. The assumption of steady
state simplifies the physics and leads to essentially a one-way coupling. Since this
is currently the state of the art in FSI topology optimization it is a good start-
ing point to compare against benchmarking problems in the existing literature
and validate the approach. Nevertheless, as it was shown in this chapter, the
methodology can be readily extended to time dependent problems. Specifically,
this was illustrated through the validation of the transient RKPM solver and the
transient FSI analysis for the leaflet example in section 6.2.
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Chapter 7

Conclusions

In this final chapter some concluding remarks are discussed. The main contribu-
tions of this thesis are outlined along with the methodologies developed for the
different problems. Suggestions for future research are also provided.

7.1 Summary and main contributions

This thesis is focused on a specific class of challenging problems in topology
optimization known as design-dependent surface problems. This includes multi-
physics problems that are governed by the interfaces. The main challenge lies
in tracking the interface for applying coupling or loading conditions. To develop
a general methodology for solving such problems irrespectively of the type of
physics, the simple case of purely hydrostatic pressure was considered first. This
is the situation when a structure is submerged in a static fluid. When using
topology optimization to design such a structure, throughout optimization the
pressure surface changes and thus the position and direction of the loads is altered
to follow this loading surface.

To tackle the problem, a meshfree level set topology optimization approach
was developed in Ch. 4 using the reproducing kernel particle method and Gauss
integration to solve the governing equations and compute sensitivities. The at-
tractiveness of this combination lies in the straightforward way it can handle
the design dependency without any loading interpolation schemes. The crisp
boundary representation provided by the level set method, is maintained onto the
computational domain by placing RKPM particles along the structural bound-
ary without requiring remeshing. This allows for direct application of the loads
and it also helps to compute the sensitivities at the boundary points without
requiring additional approximations such as stress recovery techniques as in fixed
grid FEA. The results obtained by the LSTO-RKPM methodology are in good
agreement with the results presented by other authors for the same examples,
using load interpolation schemes or remeshing. Furthermore, the convergence
rates have been shown to be superior to a fixed-grid FEA LSTO approach with

121



a load transformation scheme.
Validating the LSTO-RKPM methodology for hydrostatic pressure opened up

the road for an extension to more complex design-dependent physics such as FSI,
which is the main interest in this thesis. Before moving on to FSI, an alternative
LSTO-RKPM implementation based on nodal integration was developed in Ch. 5
with the aim of improving certain limitations observed for the LSTO-RKPM with
Gauss integration in Ch. 4. Specifically, improving the computational efficiency
and exploring different particle distributions were the main objectives. As shown,
not only is the nodally integrated approach much more efficient, it is also capable
of achieving higher accuracy than the Gauss integration. Furthermore, a scheme
was presented for storing information such that computations between iterations
are only required for particles in a narrow band around the boundary. This
significantly improved efficiency for a regular distribution of particles. Different
particle distributions were also explored, illustrating another useful feature of the
methodology. Specifically, since in level set topology optimization the structure
evolves based on sensitivities computed at the boundary points, accuracy is more
important near the boundary. Thus, it makes sense to have a denser particle
distribution in a narrow band around the boundary while keeping the distribution
sparse in the interior. The effectiveness of such a particle placement scheme
was illustrated through stress-based examples, in which good convergence rates
were achieved. Moreover, the additional benefit of a higher order approximation
in the RK shape functions was explored. As the order of continuity can be
controlled without additional complexity, simply by choosing the appropriate
kernel function, different continuity orders were investigated. It was shown that
as the order of continuity increases, the convergence rate for stress-based problems
also improves. Lastly, a design-dependent example previously solved with the
Gauss integration approach was considered again for comparison, showing that
the nodally integrated approach gave the same result only 20 times faster. One
last thing to note here is that although the construction of a Voronoi diagram
may seem like remeshing, unlike remeshing in FEA, RPKM is not sensitive to
the shape of the Voronoi cells. It should be emphasized that no effort was needed
in regularizing the shape of the cells in any way. The only requirement for
the accuracy is that the cells conform such that they satisfy the integration
constraints as explained in Ch. 5.

In Ch. 6, the nodally integrated LSTO-RKPM methodology was used to
tackle the more complex design-dependent FSI topology optimization problems.
For this purpose, the modified immersed finite element method was combined
with LSTO-RKPM to solve the FSI problems in an effective and efficient way.
The LSTO-RKPM-mIFEM combination has several benefits starting from the
capability of modularity in the solvers. This means that different solvers can be
used for the solid and fluid domains, and even different discretizations. This was
illustrated by employing FEM to solve the fluid equations and RKPM to solve
the solid governing equations. Furthermore, the geometrical description of the
solid using the level set method and the maintenance of the crisp boundary rep-
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resentation on the computational model by RKPM, provides a clearly identified
FSI interface. The Eulerian fluid mesh allows for efficiently solving the coupled
equations using the artificial fluid region, thus avoiding tedious remeshing for
the fluid. A transient analysis for a fluid in contact with a Neo-Hookean solid
was performed to illustrate the capability of the method to analyze transient FSI
problems. However, for topology optimization FSI, the simplified case of steady-
state problems was considered for validation and comparison with the literature,
since currently there are no other works considering transient FSI topology opti-
mization. Transient problems are however the natural next step to this research,
and this is one of the main suggestions for future work. For sensitivity compu-
tation in a multiphysics environment, a particle-based discrete adjoint approach
was presented which bridges the gap between volumetric discrete sensitivities and
shape deformation. Specifically, boundary particle perturbations were applied to
compute the effect of the boundary movement on the volume sensitivities using
the finite difference method. The derivations for the compliance and steady-state
FSI were provided and the effectiveness of this approach was illustrated through
the examples. Another useful implementation presented was the methodology
for identifying and eliminating free floating volumes of solid materials, which is a
challenge specific to topology optimization of FSI problems. This approach was
developed based on neighbor information provided from the Voronoi diagram
which was used to perform the nodal integration.

Overall, the main contributions of the thesis can be summarized in accordance
with Sec. 1.7 as follows:

1. Development of meshfree LSTO-RKPM methodologies. Implementations
with different integration schemes and boundary conditions. Illustration
of the useful features of nodally integrated LSTO-RKPM such as the con-
trollable order of continuity of the RK shape functions, different particle
distributions and efficiency through stress-based examples.

2. LSTO-RKPM implementation for addressing design-dependent problems
in topology optimization. This has been illustrated through benchmarking
hydrostatic pressure examples. The results were validated by comparison
with the literature.

3. The methodology was extended to the more complex case of FSI by coupling
the LSTO-RKPM methodology with mIFEM. The LSTO-RKPM-mIFEM
methodology for addressing FSI topology optimization problems is the most
significant contribution of the thesis. This is because it brings together
all the ingredients developed throughout the thesis to solve this complex
class of problems. To address FSI topology optimization problems, several
additional ingredients have been developed which may also be considered
as contributions:

• A particle-based discrete adjoint sensitivity methodology for meshfree
LSTO.
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• A new neighbor-based algorithm for identifying and isolating free-
floating volumes of solid material into the fluid domain.

4. A benchmarking steady state FSI topology optimization problem was in-
vestigated and the results were compared with the literature for validation.

Overall, the objectives defined in section 1.7 are achieved. Objective 4 in Sec.
1.7 is not entirely met. This is because in the end, more complex transient FSI
problems were not solved in the thesis. Nevertheless, the methodology presented
in Ch. 6 is directly extensible to such problems. It comes down to identifying a
meaningful transient FSI problem and performing the difficult task of computing
the sensitivities for the transient problem. Further discussion and suggestions on
how to extend this work to transient FSI is provided in the next section.

7.2 Suggestions for further research

Based on the conclusions and the main contributions of the thesis, several
suggestions for future extensions of this research are provided below.

• Large Scale Problems.

The particle scheme employed in Ch. 5 where a denser particle distribution
is used in a narrow band close to the boundary while keeping the distribu-
tion sparce in the interior based on a quadtree particle distribution, inclines
towards consideration of large scale problems. Indeed, through large scale
problems the true benefit of such a scheme would be illustrated. Due to the
higher order approximation and domain overlap of the RK shape functions,
the method can afford to keep a sparse particle distribution in the interior
while providing sufficient accuracy as illustrated through the stress-based
problems in Ch. 5. This means that the number of particles in large sale
problems can be greatly reduced, thus potentially improving computational
efficiency significantly compared to a denser finite element distribution.

Particularly, the combination of LSTO-RKPM with the spatially adaptive
and temporally dynamic Volumetric Dynamic B+ (VDB) tree data struc-
ture (Museth, 2017), open sourced as OpenVDB, would be very interesting.
OpenVDB, is tailored to minimize the computational cost and memory foot-
print on three-dimensional grids by avoid carrying high fidelity data out-
side the narrow band. In fact, the level set used in this thesis has already
been combined with OpenVDB by Kambampati et al. (2019) for large scale
elasticity and heat conduction problems using the Ersatz material approxi-
mation. As shown in that study, although VDB significantly im-proves the
efficiency of the level set operations, the FEA remains the computational
bottleneck taking 90-95% of the total time. The particle-based approach
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on the other hand could more naturally follow the data structures in VDB
to reap its benefits also for the analysis part of the computation.

• Adaptive particle refinement

Instead of placing particles based on a quadtree particle distribution, more
sophisticated schemes can be explored in future works. For example, an
adaptive refinement based on error estimators can be used to create particle
distributions strategically. A question to consider is whether it would be
more beneficial to perform several steps of refinement within each optimiza-
tion iteration or to refine the particles in the next iteration based on error
estimations form the previous iteration.

• Transient FSI

A natural extension of this work is the consideration of high fidelity tran-
sient FSI topology optimization problems. This implies that the fluid is
in contact with highly deformable solids. In this case, not only the topol-
ogy changes throughout optimization, but the current topology also needs
to undergo FSI deformations in a number of time steps within each opti-
mization iteration. Such complex problem not only drastically increases the
computa-tional cost but also adds challenges to the computation of sensitiv-
ities. Thus, future research directions can go two ways, one in developing
more efficient implementations and the other in formulating meaningful
transient FSI topology optimization problems that justify the need of such
a highly complex model. The identification of existing challenges in ap-
plications governed by transient FSI, may assist in formulating interesting
and useful optimization problems.

• Other design-dependent multiphysics

In this thesis, a general methodology for addressing design-dependent physics
was developed. The proposed LSTO-RKPM approach can be further ex-
tended to other types of design-dependent multiphysics problems such as
conjugate heat transfer in which convection or radiation conditions need to
be applied at the interface or acoustic-structure interactions and electro-
mag-netics. In general, any type of multiphysics that requires imposition of
interface conditions or loading, can be considered using the methodologies
developed here.

• Nonlinearities and large deformations

The LSTO-RKPM implementation has been shown in this thesis to possess
benefits that go beyond the design-dependent problems. As explained in
the introduction and literature review sections, RKPM has been developed
to tackle complex problems in which conventional FEA struggles. Thus, the
application of the LSTO-RKPM developed in this thesis to tackle problems
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such as material and geometric nonlinearities including contact and crash-
worthiness problems, would be an interesting extension of this research. In
this context, alternative integration techniques that do not require conform-
ing cells such as the stabilized non-conforming nodal integra-tion (SNNI)
(Chen et al., 2017b) may be explored for use in topology optimization, to
study problems with severe deformations or even fragmen-tations.

• Automatic differentiation (AD) and complex step method

In the particle-based discrete adjoint scheme described in Ch. 6, the fi-
nite difference method was used to compute the partial derivatives of the
shape functions with respect to the boundary point coordinates. For the
simplified problems considered in Ch. 6 this approach provided good re-
sults. However, the sensitivity of the finite difference method on the step
size, can cause problems with accuracy. An alternative method for comput-
ing partial derivatives is the complex step method that computes deriva-
tives of real functions using complex variables (Martins et al., 2003). Like
the finite-difference method, the complex step derivative approximation is
derived from the Taylor series expansion. However, in the complex step
method the only source of numerical error is the truncation error, and by
decreasing the step size to a small enough value, one can ensure that the
truncation error is of the same order as the numerical precision of the eval-
uation of the function at hand. Thus, the complex step method is superior
to the finite difference method in terms of accuracy.

Furthermore, in more complex multiphysics problems in which an analytical
derivation of the partial derivatives in the adjoint equations is difficult or
impossible, automatic differentiation (AD) can be useful. The idea is to
use a hybrid approach similar to the one developed by Mader and Martins
(2008), where the discrete adjoint formulation is combined with AD to
take advantage of the benefits of each approach. Namely, to exploit the
efficiency of the adjoint formulation for computing the total derivatives of
the objectives with respect to the design variables and the accuracy of AD
in computing the partial derivatives.

Overall, the discussion and suggestions above aim to illustrate that the work
presented in this thesis provides a good basis for extension to various research
directions.
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