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Abstract: Topological insulators constitute oneof themost
intriguing phenomena in modern condensed matter the-
ory. The unique and exotic properties of topological states
of matter allow for unidirectional gapless electron trans-
port and extremely accurate measurements of the Hall
conductivity. Recently, new topological effects occurring
at Dirac/Weyl points have been better understood and
demonstrated using artificial materials such as photonic
and phononic crystals, metamaterials and electrical cir-
cuits. In comparison, the topological properties of nodal
lines, which are one-dimensional degeneracies inmomen-
tumspace, remain lessexplored.Here,weexplain the theo-
retical concept of topological nodal lines and review recent
and ongoing progress using artificialmaterials. The review
includes recentdemonstrationsofnon-Abelian topological
chargesofnodal lines inmomentumspaceandexamplesof
nodal lines realized in photonic andother systems. Finally,
we will address the challenges involved in both experi-
mental demonstration and theoretical understanding of
topological nodal lines.

Keywords: metamaterials; nodal lines; non-Abelian; pho-
tonic crystals; topology.

1 Introduction
Degeneracies in energy-momentum relations, so-called
band structures, play an important role in many fields
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of physics from classical mechanics to condensed mat-
ter physics and optics. Recently, the study on degenerate
points in band structures opened a new path to observe
many exotic topological behaviors. For instance, Dirac
points, point degeneracies with a linear dispersion rela-
tion in two-dimensional momentum space [1, 2], have
been used to show chiral one-way edge/surface states in a
band gap [3–6]. Weyl points, which are also point degen-
eracies with a linear dispersion but in three-dimensional
momentum space [7–9], have been used to generate Fermi
arc-like surface states [10–14]. In particular, Weyl points
are very interesting and important in topological classi-
fication because they are stable meaning that the Weyl
points are robust to perturbations when only one of the
inversion () symmetry and time-reversal ( ) symmetry is
broken in three-dimensional space [7].

By recovering the broken symmetry in a structure
with Dirac/Weyl points, i.e., making it  and  symmet-
ric, a nodal line [15–18], a one-dimensional degeneracy,
can be created. Nodal lines have drawn attention because
they can feature two-dimensional surface states bounded
by the projected nodal lines, called drumhead surface
states [19–21], and exhibit non-Abelian band topology [17].
Moreover, as nodal lines have higher dimensions than
Dirac/Weyl points, they show various shapes, for instance,
a simple nodal line, a nodal ring [22–24], nodal knots
[25–27] for a single nodal line or a Hopf link [18, 27–31], a
nodal chain [18, 32–34] for multiple nodal lines.

To study the topological characteristics of the nodal
lines, the starting point is to define topological invariants
which are the conserved quantities when any topologi-
cal phase transitions do not occur, i.e., the topological
phase do not change under certain perturbations [35].
Topological invariants of Dirac/Weyl points and nodal
lines are often called topological charges similarly to elec-
tric/magnetic charges of electric/magnetic monopoles.
While the topological charge of a simple nodal line, that
is the degeneracy between two bands, can be described by
a Berry phase [36], the definition of topological charge for
multiple nodal lines becomesmore complex because three
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or more bands are involved. Recently, it was shown that
the topological charges of the nodal lines in a three-band
system can be described by quaternion numbers, forming
anon-Abelian group [17] and the experimental observation
of the quaternion charges has been reported [37].

Along with the progress in understanding band topol-
ogy, recent years saw the rapid development of topological
photonics which studies and demonstrates the topological
statesofphotons inmetamaterials (includingmetallicpho-
tonic crystals) [22, 24, 33, 38–41] and dielectric photonic
crystals [7, 18, 42–44]. In contrast to electronic systems
these photonic materials have great advantages because
one can design a structure and manipulate the propaga-
tionproperties of photonswithmore freedomand inawide
range of frequency spectra. For this reason, many exciting
advances have been made, for example, Weyl fermions
have been demonstrated using a dielectric photonic crys-
tal called double gyroid [7, 43, 44] and unidirectional edge
modeshavebeendemonstratedusing amagnetic photonic
crystal [10, 45]. On the other hand, however, the progress
onnodal lines in photonics has been rather slow compared
to the study on Dirac/Weyl photonic crystals. The possible
reasons can be summarized as follows. First, investigat-
ing nodal lines in three-dimensional momentum space
requires more amount of computations than Dirac or Weyl
points. Second, it was very recent that nodal chains [33] or
nodal links [18, 31, 46] started tobe realizedalthoughnodal
ring by a dielectric photonic crystal was already reported
in Reference [7]. Lastly, discussions on new topological
invariants of nodal lines such as non-Abelian topologi-
cal charges have been made very recently [17]. Therefore,
reviewing the recent work on nodal lines is very timely
and summarizing important concepts is essential for more
exciting outcomes that will be generated in the field of
topological photonics in the near future.

In this review, we will aim to cover the basic theory of
topological physics with a focus on topological nodal lines
and introduce important examples of topological nodal
lines demonstrated in various artificial material systems.
In Section 2, we describe the degeneracies in band struc-
tures including Weyl points and nodal lines. In Section 3,
weexplainAbelianandnon-Abelian topological invariants
using two examples, the Berry phase and theWilczek–Zee
connection. In Section 4, we highlight examples of topo-
logical nodal lines inmetamaterials, photonic crystals and
photonic systems with synthetic dimensions. In Section 5,
we discuss examples in electronic crystals, phononic crys-
tals and electrical circuits.

2 Band degeneracies
In an electronic band structure, two adjacent bands may
touch each other in one or more k-point(s) meaning that
the two bands have the same energy but different eigen-
states. This is ‘degeneracy’. The concept of degeneracy
can also be applied to photonic/phononic band structures
which are the frequency-wavevector relations for waves
in a periodic array of photonic/phononic atoms. In three-
dimensional momentum space, the degeneracies can be
classified as zero-, one-, and two-dimensional depending
on their dimensionality. In this section, we will explain
zero- and one-dimensional degeneracies which can be
Weyl points and nodal lines, respectively, and introduce
diverse categories of nodal lines that are classified by their
shapes.

2.1 Zero-dimensional degeneracies: Weyl
points

A representative example of a zero-dimensional degen-
eracy is a Weyl point [7–9]. The Weyl point was named
thus because the dispersion around the degenerate point
is governed by the Weyl Hamiltonian H(k) = 𝑣1k1𝜎1 +
𝑣2k2𝜎2 + 𝑣3k3𝜎3 where 𝜎i are the Pauli matrices. In three-
dimensional momentum space, the Weyl point acts as a
monopole that emits or soaks the Berry flux similar to a
magnetic monopole where the magnetic flux departs or
terminates. The mathematical definition of the Berry flux
will be introduced in Section 3.2. In the Weyl Hamilto-
nian, the 𝜎2 term can exist only when one of the inver-
sion () and time-reversal ( ) symmetries is broken [7].
This is a necessary condition for the existence of Weyl
points. If we set 𝑣1 = 𝑣2 = 𝑣3 = 1, the eigenenergies of the
Weyl Hamiltonian are expressed as E = ± |k|. Thus, the
band structure shows a point degeneracy at k = 0 and
a linear dispersion around the degeneracy, as shown in
Figure 1(a). The eigenstates of the Weyl Hamiltonian at
k ≠ 0 can be expressed as 𝜓1 =

[
cos (𝜃∕2) , ei𝜙 sin (𝜃∕2)

]
and 𝜓2 =

[
e−i𝜙 sin (𝜃∕2) ,− cos (𝜃∕2)

]
using the spherical

coordinate system (r, 𝜃, 𝜙). Then, the Berry curvature is
expressed as ±1∕

(
2k2

)
r̂ where r̂ is the unit vector in

the radial direction in momentum space [8, 47] imply-
ing that the Weyl point becomes a sink or source of the
Berry flux.

In the early 2010s, significant efforts have been made
to realize Weyl points [48–54], and a double gyroid struc-
ture was theoretically proposed as a Weyl photonic crystal
in 2013 [7]. Two years after this theoretical work, Weyl
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Figure 1: Schematics of band degeneracies.
(a) and (b) correspond to a Weyl point and a nodal line, respectively.

points were experimentally observed in the microwave
frequency range [8]. Following this first experimental
demonstration, the realization of Weyl points has been
achieved using photonic crystals [9, 10, 43, 44, 55–60],
phononic crystals [3, 14, 61–66], metals [67–70] and
semimetals [71–77].

2.2 One-dimensional degeneracies: nodal
lines

One-dimensional degeneracies (co-dimension N − 1 in an
N-dimensional space), called ‘nodal lines’, can be found
when two bands touch each other on a line in momentum
space [15–18, 78], as illustrated in Figure 1(b). The nodal
lines can be classified by their shapes and the connectivi-
ties between other nodal lines, as shown in Figure 2.

As shown in Figure 2(a), a nodal line can have a loop
shape to form a nodal ring [7, 22–24, 29, 79–90] or a knot,
such as a trefoil knot [25–27], a double trefoil knot [26, 91],
a cinquefoil knot [25, 26], or a figure 8-knot [27]. Such knots
cannot be transformed into a nodal ring without cutting or
intersecting them.

If two rings intersect each other, they form a nodal
chain [92–98]. If two rings are tied without touching so
that they cannot be separated without cutting or passing
them, they form a nodal link [25, 27–30, 91, 92, 95, 98–105]
or Solomon’s knots [26, 91] (Figure 2(b)). Each ring of the
nodal chain/link can be formed by the same or a different
pair of bands. Especially, if the two rings of the nodal chain

originate fromdifferentsetofbands ina three-bandsystem,
the threebandsmeet at a singlepointwhere thenodal rings
touch [17, 106–108]. This is called a triple point.

Multiple nodal rings may form an infinite nodal chain
[18, 32–34,94, 109]ora link [18, 28, 106]due to theperiodic-
ity of momentum space (Figure 2(c)). Although Figure 2(c)
shows only a one-dimensional infinite chain and a link,
they can also form a two- or three-dimensional infinite
chain [33] or a link [28].

In some cases, multiple nodes of different types can
appear mixed. First, the mixed shape of the nodal rings
appear as earring nodal links [17, 29], multiple Hopf links
[25, 91, 95, 110], mixed nodal links [29], and the linked
nodal ring and a chain (Figure 2(d)) [31, 111]. Second, the
nodal lines and a nodal ring/chain can be linked to show
the non-touching between nodal lines and rings [29, 31,
107]. Inversely, the nodal lines and nodal ring/link can be
chained to show the touching between nodal lines and
ring [32, 94, 111, 112] or the touching between nodal lines
and link [17, 111], as shown in Figure 2(e). Finally, if the
linked nodal ring and chain [46] and the nodal lines touch,
the linked nodal ring, chain, and lines [31] are generated
(Figure 2(f)).

For the above classification, wemake one assumption
forbrevity.Aswewill lookataperiodic system, themomen-
tumspace is periodic.Whenanodal line crosses aBrillouin
zone boundary, it intersects at the same point at the oppo-
site Brillouin zone boundary. Therefore, a nodal line and a
double helix (Figure 2(b)) [15, 34, 113–118] can be consid-
ered as a nodal ring and a nodal link, respectively. In the
above, however, we assumed that the first Brillouin zone
is distinct from the neighboring Brillouin zones, which
means that a nodal line that crosses the boundary extends
from negative infinity to positive infinity.

3 Topological invariants
The physical behaviors of bands in momentum space are
interpreted using several kinds of topological invariants.
The topological invariant is a quantized number that char-
acterizes the topological status of a given system, and the
Chern number or Berry phase are examples of the topolog-
ical invariants. The topological invariants are related to the
various phenomena (e.g., surface states) of the topologi-
cal insulators, which act as an insulators in their bulk and
permit the electronic/photonic/phononic waves on their
boundaries. For example, in  -symmetry broken topolog-
ical insulators, one-way surface states are formed at the
interface of two band-gapped materials due to the dif-
ference in Chern numbers between two bands [35, 45,
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Figure 2: Classification of nodal lines.

119, 120]. In pseudo- -symmetry broken or -symmetry
broken topological insulators, surface states exist due to
the difference in the spin-Chern numbers or valley-Chern
numbers [121–123]. In addition to the topological invari-
ants of these gapped phases, several efforts also have been
carried out to understand relations between surface states
and the topological invariants of gapless phases (band
degeneracies), such as Dirac points [124], Weyl points [7,
125] or nodal lines [17]. Thus, describing the topological
invariants of the band degeneracy is an important step
to understanding the degeneracy and finding appropriate
applications.

In the following, we review Abelian and non-Abelian
topological invariants.We introduce theBerryphase [36] as
an example of the abelian topological invariants. We also
explain the Wilczek–Zee phase [126], which is the start-
ing point toward the non-Abelian topological quaternion
charges [17]. Simple examples of the quaternion charges
are shown, and the use of correlation vectors in full-vector
field systems is explained. Finally, the patch Euler class
is explained with an example of non-Abelian topology.
For more information, refer to Reference [36] for the Berry
phase, Reference [126] for the Wilczek–Zee connection,
Reference [17] for the non-Abelian quaternion charges,
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and Reference [127] for the Euler class derived using the
Wilson loop.

3.1 Abelian and non-Abelian topological
invariants

Asnoted inSection2,aWeylpointandanodal linearezero-
and one-dimensional degeneracies, respectively. In fact, a
nodal line in three-dimensional space has the similar fea-
tures to a Dirac point [1, 2, 4, 5, 42, 128–135] which is a
point degeneracy in two-dimensional momentum space.
The nodal line and the Dirac point have the same co-
dimension N − 1 and commonly correspond to H(k) =
𝑣1k1𝜎1 + 𝑣3k3𝜎3 that does not have the 𝜎2 term compared
to theWeyl Hamiltonianmentioned in Section 2.1. In addi-
tion, calculating the topological invariant of a nodal line
and a Dirac point starts from considering a closed loop
around the degeneracies, whereas calculating the topolog-
ical charge of aWeyl point is associated with the Berry flux
on the surface enclosing the Weyl point.

In caseof theAbelian chargeofnodal lines, todescribe
the topological nature of multiple degeneracies between
the same pair of bands, e.g., in a two-band system, the
topological invariants are obtained by simply summing
up the invariants of all the degeneracies. However, such
an invariant cannot express the full topological nature of
the multi-band systems. For example, when the Abelian
charges are used, the nodal lines between the first and
second bands and between the second and third bands
commonly exhibit a topological charge of ±𝜋. Thus, this
invariant cannot distinguishwhich bandsmake the degen-
eracy, and the relation of the charges between a different
pair of bands cannot be described.

Thenon-Abelianband topologygives a solution for the
multi-band systems [17]. Degeneracies by adifferent pair of
bands have different topological charges, the quaternion
numbers. The mutual interaction between the different
pairs of bands can be written clearly, and the topological
charges satisfy the anticommutative relation.

3.2 Berry phase
Berryphase is ageometricalphase that is obtainedbyasys-
temwhen itmovesalongaclosedpath inaparameter space
[36]. The Berry phase is path-dependent and is useful in
studying the topology of the parameter space by providing
a way to calculate topological invariants. The mathemati-
cal descriptionof theBerryphase startswithaHamiltonian
that depends on time-varying parameters k = [k1, k2,…],

i.e., H = H (k (t)). We denote the orthonormal bases of
H (k (t)) as ||un (k (t))⟩:

H (k (t)) ||un (k (t))⟩ = En (k (t)) ||un (k (t))⟩ , (1)

⟨um (k (t)) |un (k (t))⟩ = 𝛿mn. (2)

Here, we assume that the eigenstates in Eqs. (1) and (2)
are given by not only ||un (k (t))⟩ but also ei𝛾n(t) ||un (k (t))⟩.
A state |𝜓 (t)⟩ satisfying the time-dependent Schrödinger
equation is considered. If the parameter k changes adia-
batically (that is,kvaries slowlywith time), the state |𝜓 (t)⟩
that was in nth state at t = 0 remains in the same state at
t = T where T is the period of the cycle [136, 137]. The state
|𝜓 (t)⟩ is given by [36]

|𝜓 (t)⟩ = e
− i
ℏ

t
∫

0
dt′En(k(t′))ei𝛾n(t) ||un (k (t))⟩ (3)

where the first exponential term is the dynamical phase
factor. By substituting |𝜓 (t)⟩ into the time-dependent
Schrödinger equation, the geometric phase 𝛾n can be
obtained as an integral form. If a closed loop Γ in k-space
is considered such that k (0) = k (T), we have

𝛾n =
∮

Γ

An ⋅ dk (4)

where
An (k) = i ⟨un (k) |∇kun (k)⟩ . (5)

As we consider a closed loop, the phase difference
𝜁 (k (T))− 𝜁 (k (0)) for the gauge transformation ||un (k)⟩→
ei𝜁 (k) ||un (k)⟩ should be an integer multiple of 2𝜋, so that
𝛾n in Eq. (4) becomes gauge-invariant. Here, 𝛾n and An (k)
are called Berry phase and Berry connection, respectively
[36, 47, 138]. The Berry flux (mentioned in Section 2.1) is
givenby∬ Fn ⋅ d2kwhereFn (k) = ∇k × An (k) is called the
Berry curvature [35]. Regarding the closed loop Γ, a more
practical form of Eqs. (4) and (5) is

𝛾n = i
∮

Γ

⟨
un (k) | 𝜕

𝜕kun (k)
⟩
dk. (6)

From the orthonormality relation ⟨um|un⟩ = 𝛿mn, we
have ⟨𝜕un∕𝜕k|un⟩+ ⟨un|𝜕un∕𝜕k⟩ = 2Re (⟨un|𝜕un∕𝜕k⟩) =
0. Thus, the integrand in Eq. (6) is purely imaginary,
and 𝛾n is real. If ||un⟩ consists of only real numbers, 𝛾n
becomes zero. In other words, to get a non-zero Berry
phase, ||un⟩ should consist of complex numbers having
one or more non-zero imaginary components. One repre-
sentative example for this case is the Weyl Hamiltonian
with 𝑣1 = 𝑣2 = 𝑣3 = 1, mentioned in Section 2.1. The Weyl
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Hamiltonian has 𝜎2 so that its eigenstates consist of com-
plex numbers. Possessing this 𝜎2 term corresponds to the
 -symmetry breaking in three-dimensional space and is
a necessary condition for the existence of Weyl points [7].

3.3 Wilczek–Zee connection
Nodal lines are generated when both  and  symmetries
are conserved. Such a situation corresponds to the lack of
𝜎2 in theWeyl Hamiltonian. In this case, the Berry phase in
Eq. (6) becomes zero because one can choose a gauge that
keeps theHamiltonian and its eigenvectors real. Therefore,
it is useful to define a non-vanishing topological invariant,
for example, the Wilczek–Zee connection [126] which will
be explained in the following.

A state ||𝜂m (t)⟩ of the mth band satisfying the
Schrödinger equation can be expressed as a linear com-
bination of the basis ||un (k (t))⟩ in Eqs. (1) and (2):

||𝜂m (t)⟩ =
∑
n
Wmn

||un⟩ (7)

If we assume that ||𝜂m (t)⟩ remain normalized, we have

0 =
⟨
𝜂l|𝜕𝜂m

𝜕t

⟩
= ⟨𝜂l||

∑
n

[
𝜕Wmn
𝜕t

||un⟩+Wmn
𝜕 ||un⟩
𝜕t

]
. (8)

This equation can be arranged as follows:

𝜕W
𝜕t |u⟩ = −W𝜕 |u⟩

𝜕t (9)

or [
W−1 𝜕W

𝜕t

]
|u⟩ = −𝜕 |u⟩

𝜕t (10)

where |u⟩ = [||u1⟩ , ||u1⟩ ,…
]T and [W]mn = Wmn. Using the

orthonormality condition in Eq. (2), we have the following
skew-symmetric matrix:
[
W−1 𝜕W

𝜕t

]

mn
= −

⟨
un|𝜕um

𝜕t

⟩
=

⟨
um|𝜕un

𝜕t

⟩
= Amn. (11)

Then the path-ordered integrals of this can be expressed
as

W = exp
T

∫

0

A
(
t′
)
dt′, (12)

or if we consider a closed loop Γ, and if we recall that
𝜕un∕𝜕t = (∇kun) ⋅ (𝜕k∕𝜕t), we can get the Wilson loop

W = exp
⎧
⎪⎨⎪⎩
∮

Γ

A (k) ⋅ dk
⎫
⎪⎬⎪⎭
= exp

⎧
⎪⎨⎪⎩
∮

Γ

A (k) dk
⎫
⎪⎬⎪⎭
. (13)

Here, the component of A (k) is given by

Amn = ⟨um|∇kun⟩ =
⟨
um|𝜕un

𝜕k

⟩
(14)

and is called the Wilczek–Zee connection [126].

3.4 Three-band system
In this section, the expressions derived in the previous
section are applied to a three-band system. Following for-
malism will be the basis of the rigorous description of
quaternion charges [17].

To calculate the topological charges of an arbitrary
nodal line, first, a closed loop Γ (𝛼) (𝛼 ∈ (0, 2𝜋]) around
the nodal line is considered (see Figure 3(a)). From the
eigenstates of the m- and nth bands (m, n = 1, 2, 3), the
Wilczek–Zee connection (Eq. (14)) is rewritten as follows:

A (k) =
⎡
⎢⎢⎣

A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤
⎥⎥⎦
. (15)

Eq. (11) leads to the skew-symmetric A (k):

A (k) =
⎡
⎢⎢⎣

0 A12 −A31
−A12 0 A23
A31 −A23 0

⎤
⎥⎥⎦
= 𝜷 (k) ⋅ L (16)

where 𝜷 =
[
−A23,−A31,−A12

]
and (Li) jk = −𝜖i jk [17, 31].

If the closed loop encircles the nodal line formed by
the bandsm = 1 and n = 2, A (k) is rewritten as

A (k)=
⎡
⎢⎢⎣

0 A12 0
−A12 0 0
0 0 0

⎤
⎥⎥⎦

= 𝜷12 (k) ⋅ L = −A12L3,

(17)

where 𝜷12 (k) = [0,0,−A12]. Substituting Eq. (17) into
Eq. (13) gives

W = exp
⎧
⎪⎨⎪⎩
∮

Γ(𝛼)

𝜷12 (k) ⋅ L dk
⎫
⎪⎬⎪⎭

= exp
⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝∮Γ(𝛼)

− A12 dk
⎞
⎟⎟⎠
L3

⎫
⎪⎬⎪⎭
.

(18)

The spin Wilczek–Zee connection which is a spin (N)-
valued 1-form is then written as [17]

Ā (k) = 𝜷12 (k) ⋅ t = 𝜷12 (k) ⋅
(
− i
2𝝈

)
, (19)
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Figure 3: Schematics of the non-Abelian quaternion charges.
(a) A nodal line and a closed loop encircling the nodal line. (b) An example of the eigenstates along the closed loop. (c) Quaternion
multiplication table. (d)–(f) Eigenstates gathered at the origin indicating the topological charges +k,+i, and +j, respectively.

where the components of 𝝈 =
[
𝜎1, 𝜎2, 𝜎3

]
are the Pauli

matrices and t = (−i∕2)𝝈.
From Eqs. (18) and (19), the topological charge [17, 31]

is then expressed as

nΓ = exp
⎧
⎪⎨⎪⎩
∮

Γ(𝛼)

Ā (k) dk
⎫
⎪⎬⎪⎭

= exp
⎧
⎪⎨⎪⎩
∮

Γ(𝛼)

𝜷12 (k) ⋅
(
− i
2
𝝈

)
dk

⎫
⎪⎬⎪⎭

= exp
⎧
⎪⎨⎪⎩
− i
2𝜎3∮

Γ(𝛼)

− A12dk.
⎫
⎪⎬⎪⎭
. (20)

If the integral ∮Γ(𝛼)−A12dk is ±𝜋, the charge nΓ becomes
∓i𝜎3.

Now, if the closed loop encircles the nodal line
formed by the bands m = 2 and n = 3, A (k) in Eq. (16)
is rewritten as A (k) = 𝜷23 (k) ⋅ L = −A23L1 where 𝜷23 (k) =[
−A23,0,0

]
. Substituting this into Eq. (13) gives

W = exp
⎧
⎪⎨⎪⎩

⎛
⎜⎜⎝∮Γ(𝛼)

− A23dk
⎞
⎟⎟⎠
L1

⎫
⎪⎬⎪⎭
. (21)

The spin Wilczek–Zee connection is Ā (k) = 𝜷23 (k) ⋅ t =
𝜷23 (k) ⋅

(
− i

2𝝈
)
, and the charge in Eq. (20) is then

rewritten as

nΓ = exp
⎧
⎪⎨⎪⎩
− i
2𝜎1∮

Γ(𝛼)

− [A (k)]23dk.
⎫
⎪⎬⎪⎭
. (22)

In the samewayas thefirst case,weobtainnΓ = ∓i𝜎1 when
∮Γ(𝛼)−A23dk = ±𝜋.

3.5 Non-Abelian quaternion charges
To describe the non-abelian band topology, Wu et al. [17]
employed the quaternion numbers, ℚ = {±i,±j,±k,±1}
(first written by the Irish mathematician, William Rowan
Hamilton in 1843). The basis elements i, j, and k are
defined such that i2 = j2 = k2 = −1. Their multiplication
relations are ij = k, jk = i, and ki = j. They all anticom-
mute, that is, ij = −ji, jk = −kj, andki = −ik. All these are
summarized in Figure 3(c). Interestingly, the Pauli matri-
ces {∓i𝜎1,∓i𝜎2,∓i𝜎3,±I} exhibit the same properties as
the quaternions and are isomorphic so that we can map
i ↦ −i𝜎1, j ↦ −i𝜎2, k ↦ −i𝜎3, and 1 ↦ I. Due to the anti-
commutative properties of i, j, k, or−i𝜎1,−i𝜎2,−i𝜎3, their
relations are regarded as non-Abelian.
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Thus, the topological charges calculated in Eqs. (20)
and (22) can be regarded as the quaternions ±k and ±i,
respectively.

3.6 Behavior of eigenstates of a 3× 3
Hamiltonian

We apply the above formalism to a system expressed by a
3 × 3 Hamiltonian. First, the rightmost side of Eq. (18) is
rewritten in rotation matrix form:

W =
⎡
⎢⎢⎣

cos (𝜙12) − sin (𝜙12) 0
sin (𝜙12) cos (𝜙12) 0

0 0 1

⎤
⎥⎥⎦
, (23)

where
𝜙12 =

∮

Γ(𝛼)

− A12dk. (24)

Let us suppose that |||u
n
k
⟩

(n = 1, 2, 3) are the eigen-
states of the Hamiltonian of the given system. To sat-
isfy Eqs. (17) and (23) we fix |||u

3
k
⟩
as [0,0, 1]. We also

assume |||u
1
k(𝛼)

⟩
= [cos (g (𝛼)) , sin (g (𝛼)) ,0] and |||u

2
k(𝛼)

⟩
=

[− sin (g (𝛼)) , cos (g (𝛼)) ,0] where g (𝛼) is a real-valued
arbitrary function that depends on the position of the
closed-loop Γ (𝛼) parametrized by 𝛼. For convenience, we
set g (0) = 0. The integral in Eq. (24) is written as

𝜙 =
𝛼=2𝜋

∫

𝛼=0

−
⟨
u1k(𝛼)|

𝜕u2k(𝛼)
𝜕𝛼

⟩
d𝛼 = g (2𝜋) (25)

In the above, we mentioned that the quaternion ∓i𝜎3
is obtained if this integral is ±𝜋. Thus, we can deduce
g (2𝜋) = ±𝜋, and one can define g (𝛼) = ±𝛼∕2 [17, 31].
This means that we can plot the eigenstates |||u

1
k
⟩
and |||u

2
k
⟩

rotating around the fixed |||u
3
k
⟩
by ±𝜋.

In the same manner, the rightmost side of Eq. (21)
becomes

W =
⎡
⎢⎢⎣

1 0 0
0 cos

(
𝜙23

)
− sin

(
𝜙23

)
0 sin

(
𝜙23

)
cos

(
𝜙23

)
⎤
⎥⎥⎦
, (26)

where
𝜙23 =

∮

Γ(𝛼)

− A23dk. (27)

We assume |||u
1
k
⟩
= [1,0,0], |||u

2
k(𝛼)

⟩
= [0, cos (g (𝛼)) , sin

(g (𝛼))], and |||u
3
k(𝛼)

⟩
= [0,− sin (g (𝛼)) , cos (g (𝛼))] with the

same g (𝛼). The integral in Eq. (27) becomes

𝜙 =
𝛼=2𝜋

∫

𝛼=0

−
⟨
u2k(𝛼)|

𝜕u3k(𝛼)
𝜕𝛼

⟩
d𝛼 = g (2𝜋) (28)

and we get similar results; the eigenstates |||u
2
k
⟩
and |||u

3
k
⟩

rotate by ±𝜋 around |||u
1
k
⟩
that corresponds to the quater-

nion ∓i𝜎1.
Thus, if the nodal line system is described by a 3 × 3

Hamiltonian, the eigenstates u1k, u2k, u
3
k along the closed

loop can be calculated and plotted along an arbitrary
coordinate system (see Figure 3(b)). After collecting the
eigenstates at the origin, the rotation behavior of the eigen-
states indicates the corresponding topological charge. For
example, in Figure 3(d), u3k is fixed while u1k and u2k show
the+𝜋-rotation. Then, this is considered as the quaternion
charge k. Figure 3(e) and (f) also show similar behaviors,
thereby their charges are i and j, respectively.

3.7 Correlations for full-vector field
problems

Let us think more about the rotation behaviors of the
eigenstates |||u

1
k
⟩
, |||u

2
k
⟩
, and |||u

3
k
⟩
. If we denote the starting

point of the closed loop as k0 and choose the orthonormal
coordinates placed along |||u

1
k0

⟩
, |||u

2
k0

⟩
, and |||u

3
k0

⟩
, these

eigenstates |||u
n
k0

⟩
are the same as the unit vectors of the

coordinate system. For an arbitrary orthonormal coordi-
nate system |en⟩, the eigenstates |||u

n
k
⟩
can be mapped to

|||
(
u′
)n
k

⟩
by the following rotation matrix

R =
3∑

n=1

||en⟩
⟨
unk0

||| . (29)

The resulting new eigenstates |||
(
u′
)n
k

⟩
are explicitly

written as

|||
(
u′
)n
k

⟩
=

[⟨
u1k0 |u

n
k

⟩
,

⟨
u2k0 |u

n
k

⟩
,

⟨
u3k0 |u

n
k

⟩]T
. (30)

Now, we want to render a plot similar to Figure3(d)–(f)
when the system is described not only by a 3× 3matrix but
also a geometry-dependent Hamiltonian, e.g., as in pho-
tonic crystals. In this case, an eigenstate |||𝜓

n
k
⟩
is a function

of the three-dimensional position vector [139]. Similar to
Eq. (30) the following correlations can be defined [18]:

Cnk =
[⟨
𝜓

1
k0 |𝜓

n
k

⟩
,

⟨
𝜓

2
k0 |𝜓

n
k

⟩
,

⟨
𝜓

3
k0
|𝜓n

k

⟩]
. (31)

In the same manner, if the correlations C1k and C2k rotate
by ±𝜋 around C3k, it corresponds to the quaternion ∓i𝜎3.
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And if the correlations C2k and C
3
k rotate by ±𝜋 around C1k,

it corresponds to the quaternion ∓i𝜎1.

3.8 Evolution of degeneracies and the patch
Euler class

In the previous sections, the non-Abelian topological
charges in three-band systems were introduced. On top
of discovering the nodal line systems with non-Abelian
charges, it has been studied how the non-Abelian charged
degeneracies evolve with the tuning of the Hamiltonian.
Such evolutions include the annihilation or creation of the
degeneracies [93, 140–143]. To understand whether the
degeneracies are annihilated or not, the patch Euler class
was introduced in Reference [127, 142].

In a recent experimental work [124], Jiang et al.
demonstrated the evolution of degeneracies with non-
Abelian charges and patch Euler class. The experimentally
observed evolution of degeneracies clearly shows the cre-
ation and annihilation of degeneracies although they con-
sidered Dirac nodes in two-dimensional momentum space
instead of the nodal lines in three-dimensional momen-
tum space. For the three-band system in two-dimensional
momentum space illustrated in Figure 4(a), the nodes
between the first and second (second and third) bands
have the charges ±i (±j). Here, the two charges ±i (±j)
have opposite signs. Thus, the oppositely charged ±i (or
±j) can be annihilated pairwise and the patch Euler class
is zero. However, braiding the open triangle around the

Figure 4: Schematic of a three-band system exhibiting the
non-Abelian band nodes in two-dimensional momentum space.
(a) Band structure with oppositely charges nodes. The blue triangles
and red circles indicate the nodes whose charges are ±i and±j,
respectively. The open and filled symbols correspond to the plus
and minus signs, respectively. (b) Braiding of the open triangle node
around the open circle node. (c) and (d) Band structure with the
nodes whose charges changed by a factor of−1 after the tuning of
(b). The patch Euler class is now 1. Reproduced with permission from
Reference [124]. Copyright 2021, Nature Portfolio (a)–(d).

open circle (see Figure 4(b)) makes these two flip their
charges to positive as shown in Figure 4(c). As a result,
the patch Euler class becomes one (see Figure 4(d)). A
patch Euler class of ±1 means that when the two nodes
merge together, they form a stable quadratic node with
frame charge q = −1 rather than undergoing pairwise
annihilation.

4 Topological nodal lines in
photonic systems

Aswedescribed in Section 3.5, nodal line degeneracies can
be described by the Weyl Hamiltonian without 𝜎2 term.
Therefore, the goal of designing a structure with nodal
lines is to find geometrical or coupling parameters for a
structure that has such a dispersion. Although there is no
general recipe that can be applied to different systems, the
spatial symmetry consideration can be a good guide to find
nodal lines because a structurewith nodal lines respects
and  symmetry as mentioned earlier. For instance, if we
know a structure with Weyl degeneracy, that respects  or
 symmetry only,we can start from the structure to recover
both symmetries. Alternatively, if we start with a structure
with excessive symmetries including and  symmetries,
which is the case for most of the Bravais lattices, we need
to introduce perturbations in the direction of reducing the
number of symmetries. Numerical simulations are often
used to see how the dimension of degeneracies changes
during the symmetry reduction process. In this section,
we will introduce examples of nodal lines in photonic sys-
tems using metamaterials, metallic photonic crystals and
dielectric photonic crystals.

4.1 Metamaterials and metallic photonic
crystals

Photonicmetamaterialsemergeasaprominent lightmatter
interactionplatformandhaveattractedenormous research
interest within the past two decades [144–147]. Utiliz-
ing the quasi-homogeneity and by manipulating the con-
stituent deep-subwavelength units, so-calledmeta-atoms,
they can create collective responses to photons far beyond
thescopeofnaturalmaterials, for instance,negative refrac-
tion [148, 149], strong anisotropy [150, 151], hyperbolicity
[152, 153], strong optical activity [154, 155], etc. Metama-
terials have provided a reliable and convenient guideline
toward artificial photonic materials, assisted by the rich
design experience accumulated in the past two decades.
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Providing new degrees of freedom in photonic material
design, researchers have found rich fundamentally new
physics and applications with metamaterials.

Topological photonic metamaterials have emerged in
recent years as a salient topic within the grand regime of
topological photonics. For instance, bianisotropic meta-
materials were used to realize a photonic topological insu-
lator [38]. In fact, topological phenomena in continuous
photonic medium have a long-standing history including
the renowned Pancharatnam–Berry phase in polarization
space [156], and the conical diffraction in biaxial crystals
that is a direct consequence of the quantized Berry phase
of the Dirac point [157].

The first topological metamaterial was designed in
2015 [39], in which a composite response from hyperbol-
icity and chirality introduces Fermi surfaces with distinct
Chernnumbers that uni-directional surface state connects.
Various topological semimetals have also been discov-
ered in metamaterials, including Weyl nodes [40] and
Dirac nodes [41]. Naturally, metamaterials, or equivalently
effective medium methods, play an important role in the
construction of topological nodal lines.

An ideal photonic nodal line was discovered in a type-
I hyperbolic metamaterial [22]. Here ‘ideal’ refers to that
the nodal line is free from coexisting trivial modes in
the bulk. The band crossing happens between effective
longitudinal and transverse modes in which interactions
are eliminated due to their mismatched field polariza-
tions. Despite being an accidental degeneracy, the band

crossing is imposed by the engineered nonlocal response
in the metamaterial exerted by the glide reflection sym-
metry. In terms of crystallographic symmetry, these nodal
lines are protected bymirror symmetry and by introducing
mirror symmetrybreaking terms, for instancebianisotropy,
these nodal lines are instantly gapped and give rise to
vortex-like distributed Berry curvatures [24].

An ideal type-II nodal line has been discovered
recently in Bragg reflection mirror type layered photonic
crystals as the phase transition point between trivial and
non-trivial Zak phase regimes [158]. Definition of the ‘type-
II’ follows the classification of Weyl points [71], meaning
the highly tilted contact between bands. It exhibits a
ring-like contact between electron and hole pocket, distin-
guished from the donut-like Fermi surface in type-I nodal
line semimetals [22]. The nodal chain was experimentally
introducedusinga three-dimensionalmetallic-meshstruc-
ture (Figure 5(a)) in microwave scale [33], which was the
original design of a metallic metamaterial with extremely
low plasma frequency [159], though the nodal chain was
found far above the plasma frequency and cannot be
explained by effective medium theory. The nodal chain in
Figure 5(b), although it consists of two colored nodal rings,
is formed by the same adjacent two bands. This study also
examined the drumhead surface states, a sheet of surface
dispersion enclosed by the projected nodal line bulk states
on the surface Brillouin zone.

Another example of crystallographic symmetry medi-
ated optical response of meta-atoms was demonstrated

Figure 5: Examples of nodal line topological metamaterials.
(a) Schematic of the metallic mesh structure for generating a nodal chain. (b) The illustration of the nodal chain consists of two types of
nodal lines (blue and red) in the cubic Brillouin zone. (c) Equifrequency contour and band structure of the non-Abelian nodal line
metamaterial reminiscent of a biaxial crystal at low frequencies. (d) Schematic of the unit cell and the nodal lines in the Brillouin zone. (e)
The transitions between orthogonal nodal chain, in-plane nodal chain, and separated nodal lines are observed in the illustrated
bianisotropic metamaterial. Reproduced with permission from Reference [33]. Copyright 2018, Nature Portfolio (a) and (b); reproduced with
permission from Reference [31]. Copyright 2020, American Physical Society (c) and (d); reproduced with permission from Reference [46].
Copyright 2021, Nature Portfolio (e).
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in the discovery of hourglass nodal lines in a photonic
metamaterial [23]. Although it may seem that band topolo-
gies can be solely determined by global crystallographic
symmetries, the interplay between them and local opti-
cal responses is surprisingly rich in new physics, for
instance, the hidden symmetries that are unforeseen by
crystallographic group theory [160]. It is, however, worth
noting that without exquisite design, the touching point
between equi-frequency contours in natural biaxial crys-
tal forms a three-dimensional nodal chain if the bands at
higher momentum are considered cut off and flattened by
the Brillouin zone boundary (Figure 5(c)). Utilizing this
property and the extreme anisotropy provided by meta-
materials, researchers have constructed and measured
nodal-link metamaterials in the microwave regime [31].
The nodal link in thismetamaterial is formed by the lowest
three bands (see Figure 5(c) and (d)). The surface bound
states in the continuum are another achievement of this
study. Moreover, in a metamaterial with explicitly broken
inversion symmetry through bianisotropic optical activ-
ities (Figure 5(e)), transition between different types of
nodal chains is observed by engineering the optical reso-
nances ofmeta-atoms [46]. One remarkable aspect of these
studies is that the topological nature of the nodal line was
well described by the non-Abelian band topology [17], and
canbe conveniently derived from the effectiveHamiltonian
model stemming from the effectivemedium theorywithout
referring to microscopic electromagnetic fields within the
structures.

4.2 Dielectric photonic crystals
In this section, we explain how to realize nodal lines in
dielectric materials with two examples: double gyroid and
double diamond structures. Although fabricating dielec-
tric photonic crystals is challenging, these crystals have
advantages such as scalability and convenience in theoret-
ical descriptions.

The nodal ring was theoretically realized using an -
symmetric double gyroid [7]. Thewell-known single gyroid
in O-symmetry is defined by a set x =

[
x1, x2, x3

]
such that

g (x) = sin (X1) cos (X2)+ sin (X2) cos
(
X3

)

+ sin
(
X3

)
cos (X1) > gc > 0, (32)

and its space group is I4132 (No. 214) [43, 59]. Here,
Xi = (2𝜋∕a) xi is a local coordinate where a is a lattice con-
stant. In the study in Reference [7], the reduced-symmetric
single gyroid is created by introducing an air sphere of
radius 0.13a located at [1∕4,−1∕8, 1∕2] a in the single
gyroid. Then, a double gyroid was created by combining

this singlegyroidand its counterpartwhile satisfying inver-
sion symmetry, as shown inFigure 6(a). Thephotonic band
structure reveals that the set of degeneracies between the
forth and fifth bands form the nodal ring, as shown in
Figure 6(b).

Very recently, a double diamond photonic crystal
exhibiting nodal link, nodal chain, and nodal lines all at
once was reported [18]. When the lattice vectors are given
by a1 = a∕2 [0, 1, 1], a2 = a∕2 [1,0, 1], and a1 = a∕2 [1, 1,0]
with the lattice constant a, the double diamond is defined
by a set x satisfying f (±x) > fc > 0. Each inequality with
plus or minus sign corresponds to each single diamond,
so that the two single diamonds are inversion symmetric.
Here, the function f (x) is given by

f (x) = A0 sin
(
X1 + X2 + X3

)

+
3∑
i=1

Ai sin
(
X1 + X2 + X3 − 2Xi

)
(33)

whereX =
[
X1,X2,X3

]
= (2𝜋∕a)

(
x− 𝛾∕2∑3

i=1ai
)
is a local

coordinate that expresses the translation of the single dia-
monds along the± [1, 1, 1]-directions, adjusted by the coef-
ficient 𝛾 . SelectingA0 = A1 = A2 = A3 and 𝛾 = 0 generates
the conventional diamond structure [161–165]. However,
this study selected different coefficients Ai and non-zero 𝛾
(see Figure 6(c)) to destroy as many symmetries as possi-
ble.The resultingstructure isanisotropic so that thedouble
diamond has only inversion and translational symmetries.

In momentum space the degeneracies between the
first and second bands form the nodal chain, the degen-
eracies between the third and fourth bands form the sim-
ple nodal lines, and the degeneracies between the third,
fourth,andfifthbands formthenodal link (seeFigure6(d)).
The nodal chain is centered at theΓ-point. Two pink nodal
lines (between the first and second bands) depart the Γ-
point and arrive on a single boundary. Another two pink
nodal lines are centrosymmetric to the first two pink nodal
lines. The two boundaries that these nodal lines touch are
parallel, and their normal vectors are commonly along the
b2-direction. Thus, the nodal chain is infinitely connected
along the b2-direction.

Meanwhile, the nodal link consists of the non-
touching orange (between the third and fourth bands) and
cyan rings (between the fourth and fifth bands), as shown
in Figure 6(d). The cyan ring is centered at the Γ-point,
and the center of the orange ring is located on a boundary.
Due to the periodicity of the first Brillouin zone, this link
is infinitely connected.

One more significance of this research [18] is that the
correlation vectors in Eq. (31) were first introduced. By
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Figure 6: Examples of nodal lines in dielectric photonic crystals.
(a) Inversion symmetric double gyroid structure that has air spheres. (b) Band structure of (a) that exhibits a nodal ring in the momentum
space. (c) Inversion symmetric and anisotropic double diamond structure. (d) Nodal link, nodal chain, and nodal lines in momentum space of
the structure in (c). Reproduced with permission from Reference [7]. Copyright 2013, Nature Portfolio (b); reproduced with permission from
Reference [18]. Copyright 2021, American Chemical Society (c) and (d).

employing the correlation vectors, the non-Abelian topo-
logical nature of the nodal link could be directly calculated
from the full-vector field eigenstates, instead of using the
3 × 3 effective Hamiltonian, thus the topological charges
ℚ = {±i,±j,±k,±1} were completely deduced from the
numerically calculated nodal link.

A simple post-processing calibration was also pro-
posed in this photonic study [18]. To get the topological
charge ±j, a closed loop that encloses two nodal lines
exhibiting the topological charges ±k and ±i should be
considered. Although we illustrate the quaternion charge
±j in Figure 3(f), the eigenstates or correlations calculated
by Figure 3(a) and (b) do not generally show results as in
Figure 3(f). Inmany cases, they exhibit the 𝜋-disclinations
of u3k and u1k at k0 of the loop, implying the topological
charge ±j. Here, the 𝜋-disclinations mean that, before
and after winding along the loop, the directions of u3k and
u1k are rotated by 𝜋. To observe the rotation behaviors of
the eigenstates or correlations more clearly, this study [18]
introduces a post-processing calibration method. First, at
a point k, a rotation matrix R (k) is defined so that it maps

u2k to u2k0 around r (k) = u2k × u2k0 . Then, u
1
k and u

3
k are also

rotated byR (k). This process is done for all k on the closed
loop, to get a result like Figure 3(f).

4.3 Optical frequency synthetic dimension
As described in the previous sections, diverse topologies of
nodal lines can be created using metamaterials and pho-
tonic crystals because one can design a periodic structure
and tune geometric and optical parameters. However, the
freedom in photonic designs is not simply limited to a
spatially periodic system but one can extend the design
freedom into the frequency domain based on a new con-
cept called ‘synthetic dimension’. Indeed, this can provide
anotherpossibility tocreatemorecomplex topologies.Very
recently, Wang et al. [118] showed that topologies such
as unknots, Hopf links and trefoils can be created using
two coupled ring resonators and a dielectric waveguide by
modulating the phase and amplitude in one of the ring
resonators. In their work, the frequency synthetic dimen-
sion is created by multiple resonance frequencies of the
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unperturbed ring resonators which are periodic in fre-
quency space and the complex energy spectra are obtained
by measuring the detuning of the resonance frequencies.
By doing so, the wavevector-energy space (k,Re(E), Im(E))
becomes theparameter spacewhere theoptical bandswith
different topologies can exist. It is worth noting that the
topology of two bands is considered instead of nodal lines
originating from two different bands.

5 Topological nodal lines in other
systems

In this section, we review recent achievement in find-
ing nodal lines in electronic crystals, phononic crystals
and electrical circuits. Historically, the study on nodal
lines in electronic crystals started earlier than all other
systems. Several review papers have been published on
nodal line semimetals [166, 167]. Therefore, in our review,
we highlight a few important achievements in electronic
crystals.

5.1 Electronic crystals
The discovery of nodal lines starts from the prediction
of the cubic antiperovskite material Cu3NX, where X =
{Ni; Cu; Pd; Ag; Cd}, as ℤ2 protected topological semimet-
als when ignoring spin–orbit interaction [19, 20]. This
material holds one-dimensional Dirac line nodes and two-
dimensional nearly-flat surface states, protected by  and
 symmetries. In particular, the two-dimensional sur-
face states are bounded by the projected Dirac line nodes
and because of this, they were called drumhead states
(Figure 7(a)) in the field afterwards. In the same work by
Kim et al. [20], they showed that nearly flat surface states
exist in Cu3NX. Additionally, Chan et al. showed that the
drumhead surface states of Ca3P2 exist due to a quantized
Berry phase and theℤ2 topological invariantswere defined
similarly as in strong topological insulators [85]. It is worth
noting that, before the surge of the search for the drum-
head edge states, a topologically protected flat band has
drawn attention because it can promote surface supercon-
ductivity with an infinite density of states [168]. Recently,
the drumhead surface states were also shown in phononic
crystals [89]. Wang et al. analyzed the flatness and bound-
edness of photonic drumhead surface states using a simple
cubic lattice of metals [21].

Soon after, other nodal linematerials in the absence of
spin-orbital interaction were predicted, such as alkaline-
earth compounds AX2 (A = Ca, Sr, Ba; X = Si, Ge, Sn)

[169], the CaP3 family ofmaterials [170, 171], some ofwhich
are experimentally demonstrated, such as CaCdSn [172]
and Mg3Bi3 [173] (Figure 7(b)). Furthermore, topological
semimetals can be classified into two types according to
the tilting degree of the fermion cone. Type-II nodal lines
inCaPd [174] andMg3Bi3 [173]wereproposed. Finally, topo-
logical spinful nodal lines were found to exist in TlTaSe2
[175], ZrSiSe and ZrSiTe [176] by including spin–orbit inter-
action as well.

More recently, diverse topologies have been reported
in electronic crystals. For example, nodal chains were pre-
dicted in IrF4 (Figure7(c)) [140]andnodal linkswereshown
in Sc [17]. Interestingly, non-Abelian topological invariants
(see Subsection 3.5) were shown to exist in those multi-
ple nodal line structures and this work has inspired much
additional research onnon-Abelian topology including the
one in photonic crystals [43]. In addition, it was recently
reported thatbraidinghappens inelectronswith strainand
phase transitions [177, 178].

5.2 Phononic crystals
Phononic crystals, alsoknownasacoustic crystals, arealso
a good platform to demonstrate the topological physics
because the couplings between meta-atoms can be easily
controlled and the displacement field of the modes can be
easily measured giving the full profile of the modes and
band structure.

A nodal chain by the phononic wave was theoreti-
cally proposed using a granular metamaterial [97]. For the
beads consisting a face-centered cubic arrangement, one
can assume that tension, shear, bending, and torsion exist
on all contacts between any two nearest-neighbors grains,
denotes as KN , KS, GB, and GT , respectively, in Figure 8(a).
By applying these assumptions to the linear equations of
motion foreachbead, theresult inFigure8(b)clearlyshows
the nodal chain in momentum space.

Deng et al. proposed a phononic crystal that exhibits
nodal rings in momentum space [89]. The effective Hamil-
tonian for this realization is written as

H = dx𝜎1 + dy𝜎2 (34)

where

dx = −2 cos kx − 2 cos ky − 2 t cos kz (35)

and
dy = −2𝛿t sin kz (36)

are the sublattice pseudospins. For t > 0 and 𝛿t > 0, the
hopping amplitude in the z-direction is −t ± 𝛿t as illus-
trated in Figure 8(c) by thin and thick vertical rods. The
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Figure 7: Nodal lines and nodal chains in
electronic crystals.
(a) Drumhead surface states (green) bounded
by the nodal line in Ca3P2. (b) Surface states in
Mg3Bi3 measured by ARPES. (c) Nodal chains.
(d) Nodal lines in IrF4. Reproduced with per-
mission from Reference [85]. Copyright 2021,
American Physical Society (a); reproduced
with permission from Reference [173]. Copy-
right 2019, WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim (b); reproduced with per-
mission from Reference [32]. Copyright 2016,
Nature Portfolio (c); reproduced with permis-
sion from Reference [17]. Copyright 2019,
American Association for the Advancement of
Science (d).

Figure 8: Nodal lines in phononic crystals.
(a) Schematic of a granular metamaterial toward phononic nodal chain. Four types of interactions between two beads in the
nearest-neighbors are also illustrated. (b). Simulation results showing the nodal chain in momentum space. (c) An illustration of the
tight-binding Hamiltonian in Eq. (34) with different values of t and 𝛿t. (d) Photograph (left) and schematics (right) of a phononic crystal
exhibiting nodal rings. (e) and (f) Simulation and experimental results showing nodal rings, respectively. Reproduced with permission from
Reference [97]. Copyright 2019, Nature Portfolio (c)–(f); Reproduced with permission from Reference [89]. Copyright 2019, Nature Portfolio
(c)–(f).

hopping in the x- and y-directions are−1 as represented in
Figure 8(c). The eigenvalue of Eq. (34) is E = ±

√
d2x + d2y,

and the degeneracies are formed when dx = dy = 0. This

indicates that the pseudospins are arranged as that corre-
sponds to nodal rings formed on the kz = n𝜋 plane (n is an
integer).
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For experimental observation of the nodal rings, they
prepared a layer-stacked-phononic crystal made of plas-
tic stereolithography material. In the three-dimensional
structures shown in Figure 8(d), there are several types
of holes, the propagation paths of sound waves. Along
the z-direction, two types of holes exist. The smaller and
larger holes correspond to the thinner and thicker rods
in Figure 8(c). Along the horizontal directions, the sound
waves meet the same types of rectangular holes, and this
corresponds to thesamesizeof rods inFigure8(c).With this
phononic crystal design, the nodal rings could be observed
in momentum space (see Figure 8(e) and (f)), as predicted
by Eq. (34).

Very recently, Jiang et al. used a two-dimensional
phononic crystal to observe non-Abelian topological
charges and topological phase transitions [124]. Although
this work is not directly related to nodal lines in three-
dimensional momentum space, this work has its signifi-
cance in experimental demonstration of the non-Abelian
phononic nodes (degenerate point in two-dimensional
momentum space) and the patch Euler class mentioned
in Section 3.8. They employed a tight-binding model of
a Kagome lattice as shown in Figure 9(a). The hopping
between lattice points A–C can be adjusted by t and t′.
Band structures by tuning these two variables exhibit sev-
eral types of non-Abelian charges and Euler classes, as
shown in Figure 9(b). Then, the tight-binding model is

Figure 9: Experimental realization of Euler class using a phononic
crystal.
(a) Schematics of a Kagome tight-binding model with tunning
parameters t and t′. (b) Phononic band structure of (a). (c)
Experimental design of (a). (d) Simulation (white plots) and
experimental band structure of (c). Reproduced with permission
from Reference [124]. Copyright 2021, Nature Portfolio (a)–(d).

realized using cylindrical acoustic resonators as shown in
Figure 9(c) to observe topological phase transitions and
the new topological invariant (−1 of the Euler class) (see
Figure 9(d)).

5.3 Electrical circuits
Knots, such as everyday-life ropes are intricate nodal lines.
They are difficult to construct because they require finely
tuned long-ranged hoppings. To realize models with those
long-ranged hoppings, it is naturally suggested to use arti-
ficial structures, which allow for unprecedented control
over individual couplings [27]. Most importantly, electrical
circuits, whose connections transcend locality and dimen-
sionality constraints, put the implementation of couplings
between distant sites of a high-dimensional system and
nearest-neighbor connections on equally accessible foot-
ing. This advantage is found to be crucial to the realization
of nodal knots, which contains many strong long-ranged
hoppings.

Having explained the necessity to implement nodal
knots using electrical circuits, we now describe how they
can be concretely implemented and detected. An elec-
trical RLC circuit is an undirected network with nodes
𝛼 = 1,… ,N connected by resistors, inductors, capacitors
or combinations of them. Its behavior can be fully char-
acterized by Kirchhoff’s law as I

𝛼
= J

𝛼𝛽
V
𝛽
, where I

𝛼
is the

external current at junction 𝛼 andV
𝛽
is the voltage at junc-

tion 𝛽. Each entry J
𝛼𝛽

of the Laplacian J contributes rab
to the Laplacian, where rab = R, i𝜔L, (i𝜔C)−1 for a single
resistor, inductor and capacitor and whose combinations
follows. The strictly reciprocal (symmetric) formof J

𝛼𝛽
con-

strains the possible Laplacian, which prevents nodal knot
circuits from being developed using mathematical models
of nodal knots proposed before, since those imply broken
reciprocity. Thus in order to construct nodal knot circuits,
newmodelswhichpreserve reciprocity need tobe invented
[27].

A very recent work discovered a method to overcome
this obstacle, which goes beyond existing approaches that
requires broken reciprocity, by pairing nodal knots with
their mirror images to realize pairs of nodal knots in a fully
reciprocal setting [27]. The key insight is that pairs of nodal
knots can preserve reciprocity while a single knot cannot,
such that they can be realized in a circuit as shown in
Figure 10(a). A highlight of this work is the experimental
verification of surface drumhead states in a design of the
nodal Hopf link circuit shown in Figure 10(b). This experi-
mental setting isused to extract the admittancebandstruc-
ture through linearly independentmeasurements,whereas
the number of measurements needed is the same as the
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Figure 10: Nodal knot and link using electrical circuits.
(a) Mathematical models construct a nodal knot/link from a braid. A braid closure can be embedded onto the three-dimensional Brillouin
zone torus differently through different choices of F (k) functions. Depending on its topological charge density distribution, it produces
different numbers of nodal knots in the Brillouin zone, i.e. either a single copy (F 1) or two copies (F 2) related by mirror symmetry. (b)
Experimental setup for impedance measurement of the Hopf-link circuit. Reproduced with permission from Reference [27]. Copyright 2020,
Nature Portfolio (a) and (b).

Figure 11: Illustration of different constituents of the non-Hermitian trefoil knot circuit.
(a) On-site hopping and nearest-neighbor hopping along the x direction, (b) next-nearest-neighbor hopping along the x direction, (c)
nearest-neighbor hopping along the y direction, (d) nearest-neighbor hopping along the z direction, (e) next-nearest-neighbor hopping
along the y direction, and (f) diagonal hopping within the x–y plane. Reproduced with permission from Reference [179]. Copyright 2021,
Nature Portfolio (a)–(f).

number of inequivalent nodes N. Each step consists of a
local excitation in this circuit and a globalmeasurement of
thevoltage response fromwhichonecanextract all compo-
nentsof theLaplacian inreciprocal space.Bydiagonalizing
the Laplacian J(k), the admittance band structure can be
found, reflecting that the Laplacian plays the same role as
the Hamiltonian in an electronic material.

There are other advantages that we have not
mentioned so far in using electronic circuits to con-
struct nodal knot as well as other nodal lines. Take the
non-Hermitian nodal knots as an example, the positive,
negative and non-reciprocal couplings needed for non-
Hermitian nodal knots can be realized through carefully
chosen combinations of RLC components and operation
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amplifiers, which can introduce non-reciprocal feedback
needed for the skin effect [179] that RLC components can-
not. By active elements in those circuits we can realize
non-Hermitian models straightforwardly in electrical cir-
cuits, given the non-Hermitian trefoil circuit as an example
in Figure 11, which reflects the flexibility of topolectrical
circuits. In those circuits, topological zero modes manifest
themselves through a divergent impedance which we call
topolectrical resonances. Finally, but not least, electronic
circuits provide possibilities to simulate nodal lines and
drumhead states beyond three dimensions, in an analo-
gous way as simulating topological insulators in Class AI
with electronic circuits in four dimensions [180, 181].

6 Conclusions and outlook
To summarize, we have explained the concept of nodal
lines in band structures and showed that a wide range of
types from a simple nodal line, a nodal link and a chain
to mixed nodal lines can exist. Indeed, the extension from
zero-dimensional degeneracy allows for a wider range of
topology for the degeneracies in band structures of par-
ticles/waves including electrons, photons and phonons.
Then, we have reviewed the theoretical description of the
topological invariants of nodal lines with the Berry phase
and the Wilczek–Zee connection based on the two sem-
inal papers by Berry [36] and Wilczek and Zee [99]. This
provides us with an essential toolset to describe the topol-
ogy of nodal lines. Using the Wilczek–Zee connection,
we explained how non-Abelian topology can be consid-
ered in a three-band system, following the recent work on
non-Abelian topology by Wu et al. [17].

Finally, we have reviewed recent advances in imple-
menting nodal lines using metamaterials and photonic
crystals. These two photonic systems have successfully
demonstrated those exotic behaviors and they remain very
promising infindingnewtopological states related tonodal
lines. However, they are not the only systems and they also
benefit fromtheearlierwork inotherfields.Tosupplement,
we have introduced the examples of nodal lines in elec-
tronic crystals, phononic crystals, and electrical circuits.
Moreover, non-Hermitian systems, which have complex
energy eigenvalues due to the exchange of energy with
the environment, can be used to extend the dimension
of parameters space. Indeed, new non-Hermitian systems
with optical ring resonators and RLC circuits are being
introduced to implement more complex topology of nodal
linessuchasknotsandweexpectmanyundiscovered topo-
logical nodal lines will be implemented soon with these
new approaches.

However, there are still challenges in understanding
the physical consequence of topological phase of nodal
linesandalso implementing theproposed ideas inartificial
materials. First, no bulk-edge/surface correspondence for
the non-Abelian charges has been mathematically proven
[124] although one can naturally think that there could
be a relation similar to the bulk-edge/surface correspon-
dence inChern insulators,which isAbelian. To answer this
question, more in-depth theoretical investigation on mul-
tiple nodal lines systems is required. Second, the refractive
index required to have nodal links and other topology
using dielectric photonic crystals is too high, normally
requiring a refractive index higher than 3.5 [43]. This
limits the choices of materials in the microwave range,
adding another challenge in fabrication. For example,
Lu et al. used a ceramic material with a high refractive
index to observe Weyl points experimentally, and they
drilled the material in different directions to prepare a
Weyl photonic crystal [8]. Third, the fabrication of nanos-
tructures for dielectric photonic crystals working at opti-
cal wavelengths can be challenging. As the nodal lines
are normally implemented in three-dimensional momen-
tum space that requires a three-dimensional array of high
index dielectric materials. A self-assembly method using
block copolymers [44] can be used but it requires the
additional step of inserting high-refractive indexmaterials
and it is hard to control the local geometrical perturba-
tions as we want. A direct-laser writing or other poly-
merization methods can be used but they still require
an additional step to add high-refractive index material.
However, these challenges could be overcome in a few
years considering the rapid progress in nanofabrication
techniques.

There are also unexplored areas in relation to nodal
line physics in photonic systems. First, three-dimensional
nanoplasmonic systems can be used to implement and
observe nodal lines of surface plasmon polaritons. In
two-dimensional topological photonics, there is already
a theoretical study that shows unidirectional propaga-
tion and corner states in two-dimensional metallic arrays
[182]. However, due to the difficulty in fabricating three-
dimensional plasmonic structures, no nodal lines in
three-dimensional plasmonic band structures have been
observed yet. Second, quantum optic systems can be
used to implement the nodal line. An array of coupled
quantum emitters has been studied in 2D topological
photonics structures [183]. If we extend the system to
three-dimensional structures, three-dimensional exciton
polaritonic systems could be a good platform to study the
topology of nodal lines. Recently, also an array of dipolar



18 | H. Park et al.: Nodal lines in momentum space

molecules in three-dimensional optical lattices has been
proposed to implement Hopf insulators [184].

The remaining question is what applications could
be enabled using nodal lines. There are very few reports
or proposals regarding practical applications and it is
hard to discuss a general way of applying nodal lines.
For electronic crystals with nodal lines, high-temperature
surface superconductivity using drumhead surface states
[168]hasbeenonemajormotivationof studyofnodal lines.
Additionally, applications for surface ferromagnetism[185]
and high harmonic generation [186] have been theoreti-
cally proposed. For photonic applications, high density of
states of surface states in nodal lines systems [21, 22] are
expected to enhance spontaneous emission, resonant scat-
tering, nonlinearities and blackbody radiation. The bound
states in the continuum related to nodal lines [31] may find
applications in lasing [187] and sensing [188]. Although
direct applications seem limited for the moment, a bet-
ter understanding of topological phases of nodal lines
would give us rich knowledge and interesting physics
of artificially designed materials system as well as elec-
tronicmaterials. We believe this would open a new avenue
to exciting applications as well as expand our human
knowledge.
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