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Many systemically mobile mRNAs have been revealed in phloem. However, very few of
them have been found to be of clear signaling functions. One of such rare examples
is the mobile Flowering locus T (FT ) mRNA despite the continuous debate about its
mobility and biological relevance to the control of flowering time in plants. Nevertheless,
accumulating evidence supports the notion of the long-distance movement of FT mRNA
from leaf to shoot apex meristem and its role in flowering. In this review, we discuss the
discovery of florigenic FT, the initial debate on long-distance movement of FT mRNA,
emerging evidence to prove its mobility, and the use of mobile FT mRNA to generate
heritable transgenerational gene editing in plants. We elaborate on evidence from virus-
based RNA mobility assay, plant grafting, RNA with fluorescent protein labeling, and
CRISPR/Cas9 gene-editing technology, to demonstrate that the FT mRNA besides the
FT protein can move systemically and function as an integral component of the florigenic
signal in flowering. We also propose a model to prompt further research on the molecular
mechanism underlying the long-distance movement of this important mobile signaling
RNA in plants.

Keywords: florigen, Flowering Locus T, mRNA, long-distancing movement, mobile RNA-based genome editing

INTRODUCTION

Wheat, rice, and maize are the three most important crops which produce seeds as food to
feed people globally (Borlaug, 2002). To produce seeds, flowering is a necessary and significant
transition from vegetative to reproductive growth in these crop plants (Srikanth and Schmid,
2011). Therefore, flowering is essential not only for plant propagation but also for the survival
of humanity. On the other hand, unlike animals, plants rooting in soil cannot move away from
surrounding environments and hazards such as biotic or abiotic stresses. To survive and thrive,
plants can generate a wide range of responsive signals. Indeed, stress stimulation sensed, and signals
perceived by any part of plants can be collected and transported to cells and/or the entire plant
through the vascular system (Takahashi and Shinozaki, 2019). The flowering plant vascular system
consists of phloem and xylem, where phloem moves materials in a source-to-sink direction, and
xylem typically moves materials upward from the roots, to facilitate transportation of these stimulus
signals in plants (Deeken et al., 2008; Lucas et al., 2013). Recently, more and more systemically
mobile mRNAs have been revealed in phloem. However, up to now, only a few mRNAs with the
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long-distance movement have been demonstrated to be
involved in signal transduction in plant physiological processes
(Jackson and Hong, 2012).

To flower, plants perceive the day-length changes in leaves
and synthesize a flowering messenger. This signal molecule,
dubbed florigen, a theoretical flowering initiation switch, moves
long-distance from leave to shoot apical meristem (SAM)
through the phloem vascular system to induce flowering
(Chailakhyan, 1968; Yanovsky and Kay, 2003; Andrés and
Coupland, 2012). However, it took decades to define the nature
of florigen, the flowering signaling molecule (Imaizumi and
Kay, 2006). In this article, we have discussed the discovery
of florigenic Flowering Locus T (FT), the initial debate on
long-distance movement of FT mRNA and its biological
relevance to flowering, emerging evidence to prove FT mRNA
mobility, and the application of mobile FT mRNA to generate
heritable transgenerational gene editing. We also discuss ideas
to prompt further investigation into the molecular mechanisms
underlying the long-distance movement of this important mobile
signaling RNA in plants.

ROLE OF FLORIGENIC FLOWERING
LOCUS T IN THE INDUCTION OF
FLOWERING

Flowering Locus T encodes mobile florigen to induce plant
flowering (Evans, 1971; Turck et al., 2008). This is well
documented in literature. For instance, an activation tagged
T-DNA mutant overexpressed FT and flowered early
independently of day-length (Kardailsky et al., 1999). Ethyl
methane sulfonate-induced point mutations in FT such as a
single amino acid substitution in ft-3 (Arg119His; Kardailsky
et al., 1999) or premature termination in ft-7 (Trp138STOP;
Corbesier et al., 2007), led to late flowering. A knockout FT
mutant ft-10 in which a T-DNA was inserted in the first
intron was also late flowering (Yoo et al., 2005). Moreover,
different Arabidopsis thaliana ecotypes flowered at a various
time dependent on their environmental adaptability. Through
quantitative trait locus (QTL) mapping of the recombinant
inbred line populations, Schwartz et al. (2009) found that the
QTL interval to a 6.7 kb region upstream of the FT coding
sequence. Tissue-specific expression assays by dissecting the FT
promoter activities also reveal that FT transcription is under the
control of CONSTANS, and this occurs only in leaf veins but
not the shoot meristem (Adrian et al., 2010). The FT transcript
level increases under long-day (LD) but decreases under the
short-day (SD), consistent with that Arabidopsis plants flowered
much earlier in LD than SD growth conditions (Corbesier
et al., 2007). It is believed that florigenic FT once expressed in
leaves travels long distances to SAM to induce flowering. This is
consistent with the compelling evidence for the requirement of
the movement of FT in the induction of flowering (Abe et al.,
2005; Wigge et al., 2005; Jaeger and Wigge, 2007; Mathieu et al.,
2007). Taken together, these genetic and molecular analyses have
demonstrated the role of FT and the requirement of movement
of florigen in floral induction in plants.

THE DEBATE ON THE NATURE OF
MOBILE FLORIGEN: FLOWERING
LOCUS T mRNA VERSUS FT PROTEIN

Transcription of FT produces mRNA that then translates into
the FT protein in leaves. It is no doubt that the FT protein is
essential for cell-autonomous function in induction of flowering
when it presents in SAM. However, the burning question is
whether the FT protein or the FT mRNA is non-cell autonomous
and directly contributes to the mobile florigenic signal. It is
worthwhile noting that both protein and RNA (even DNA) can
spread from cell to cell and over long-distance in plants. For
instance, plant RNA and DNA viruses are long known to move
their RNA and DNA genomes intercellular and systemically.
Moreover, viruses express movement proteins that are required
to promote the intercellular and systemic spread of viral RNA or
DNA in plants (Qin et al., 2015). Thus, it is reasonable to presume
that FT mRNA, its protein product, or both can contribute to
florigen. Nevertheless, the initial finding that the FT mRNA
produced under a heat shock-inducible promoter in distal leaf
tissues can trigger flowering in SAM, attributing the FT mRNA as
the non-cell autonomous mobile florigenic signal (Huang et al.,
2005; Hurtley and Szuromi, 2005). However, this work cannot
exclude the possibility of the potential role of the FT protein
in the non-cell autonomous mobile florigenic signaling. Even
more unfortunately, key data to support FT mRNA mobility were
brought into question and this work has been retracted although
heat treatment of local leaf was sufficient to induce flowering
(Böhlenius et al., 2007).

In the meanwhile, the FT protein was reported to move
long-distance and induce flowering in plants. For example, in
LD Arabidopsis the FT-GFP fusion protein was shown to move
across the grafting junction (Corbesier et al., 2007). On the
other hand, in SD rice, Hd3a, the rice ortholog of Arabidopsis
FT, is expressed in blade tissue, but interacts with SAM-specific
FD, heralding that the FT protein spreads to SAM through
vascular tissue (Tamaki et al., 2007). Recently, FT protein has
been found to move from companion cells to sieve elements (Liu
et al., 2020). However, whether FD is strictly SAM-specific is
questionable since FD expression can also be detected in mature
leaf tissues (Klepikova et al., 2016). This experiment suggests
that it remains possible for both FT and FD RNAs to move to
and then be translated into proteins in SAM (Pennisi, 2007).
Thus, the nature of mobile florigen, FT mRNA vs FT protein,
remains debatable.

THE EVIDENCE ON MOBILE
FLOWERING LOCUS T mRNA: TO MOVE
OR NOT TO MOVE

Virus-Based RNA Mobility Assay
As aforementioned, plant viruses can move their RNA and
DNA genomes from cell to cell and over a long distance. This
is determined (at least in part) by virus-encoded movement
proteins. Thus, defects in viral movement proteins can rid viruses
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of intercellular and systemic mobility whilst such movement-
deficient viruses can still replicate in single infected cells.
Based on these, two plant RNA viruses, i.e., Potato virus X
(PVX, Chapman et al., 1992) and Turnip crinkle virus (TCV;
Ryabov et al., 2004), were modified as RNA mobility Assay
(RMA) vectors in which the coat protein gene was deleted
from each virus genome. The resultant virus-based RMA vectors
PVX/1CP and TCV/1CP, can infect, but are restricted within
individual leaf epidermal cells (Li et al., 2009). By engineering
the FT RNA into the two RMA vectors, it restores cell-to-
cell and long-distance movement of PVX/1CP and TCV/1CP
RNA. Such virus-based RMAs provide compelling answers to
three questions on FT mRNA movement. Firstly, FT mRNA
can move long distances independent of FT protein. This
conclusion was also confirmed by virus-free RMA in which
FT RNA produced via agro-infiltration of local leaf tissues
can spread to distal non-infiltrated newly growing leaves (Li
et al., 2009). Secondly, the core mobile determinant consists
of 102-nucleotides at the 5′ end of the FT mRNA (Li et al.,
2009). Thirdly, FT mRNA can facilitate PVX entry of SAM
where viruses are usually excluded (Wu et al., 2020), and
leads to virus-induced gene silencing in SAM. Moreover, the
long-distance FT RNA movement is also shown to enhance
early flowering (Li et al., 2011). It is worthwhile noting that
the virus-based RMA is also used to show that long-distance
movement of the BEL5 mRNA contributes to tuberization in
potato (Cho et al., 2016).

Grafting Evidence
Grafting is one of the gold standard methods to study long-
distance RNA movement (Gaut et al., 2019). Using heterografting
technique coupled with RNAseq, 2,006 genes producing mobile
mRNAs were identified in two different A. thaliana ecotypes
(Thieme et al., 2015), and 138 Arabidopsis mobile mRNAs were
found in A. thaliana (as stock) - Nicotiana benthamiana (as
scion) system (Notaguchi et al., 2015). However, it is conceivable
that this method is more suitable to identify mobile RNAs of
high abundance. Therefore, it is unsurprising that FT mRNA
with limited and dynamic expression pattern cannot be easily
detected in previous studies (Corbesier et al., 2007; Tamaki et al.,
2007). To avoid this issue, some mature leaves of the ft-3 scion
grafted onto the wild-type stock were removed in order to enrich
potential wild-type FT mRNAs originated from wild-type stock.
This indeed allows a positive detection of the wild-type FT mRNA
movement from stock to scion through grafting junction (Lu
et al., 2012). Furthermore, such grafting experiment also led
to identify the 210-nt sequence at the 5′ end of FT mRNA as
the mobility determinant (Lu et al., 2012), consistent with the
virus-based RMA’s findings (Li et al., 2009).

Intracellular RNA Imaging
The bacteriophage coat protein MS2 can bind its target RNAs
“stem-loop repeats (SL).” The MS2-GFP fusion protein is often
used to label and image RNAs in different organisms (Querido
and Chartrand, 2008). However, due to its high background
fluorescent noise in the cytoplasm, this method is not extensively
used in plants. Nevertheless, MS2 was found to be very specific

nucleus localized when it is fused with transcription factor FD
(Luo et al., 2018). The nuclear retention of MS2FD-GFP was
much longer than MS2SV40-GFP. Luo et al. (2018) then co-
expressed the MS2FD-GFP, and chimeric SL-FT mRNA. Through
fluorescent imaging, the SL-FT mRNA was found to move
intracellularly and mainly accumulated at the plasmodesmata
sites; however, the dynamic process of the SL-FT mRNA moving
from one cell to another was not observed (Luo et al., 2018).

Mobile Flowering Locus T
mRNA-Assisted Seed Transmission of
Gene Editing – Biotechnological
Potential
Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (CRISRP/Cas9) gene
editing system has revolutionized targeted gene editing (Jinek
et al., 2012; Cong et al., 2013; Feng et al., 2013). This gene
editing tool contains three main components, Cas9 enzyme,
spacer sequence and sgRNA (Jinek et al., 2012). Spacer and
sgRNA are usually taken as a whole. As for plants, agrobacterium-
mediated CRISPR/Cas9 technology is widely used. However,
this technology is often involved in genetically modified plants
and time-consuming screen of homologous lines with the
edited target gene. These issues can be partially avoided by a
technology so called virus-induced gene/genome editing (ViGE;
Ali et al., 2015).

However, gene editing resulted from ViGE is often not
heritable to next-generation due to virus exclusion from SAM,
thus its use is limited (Zhang et al., 2020). How to generate
heritable ViGE is the issue that needs to be resolved. Recently,
Ellison et al. (2020) have elegantly exploited the fact that the
mobile translatable and non-translatable FT RNA can facilitate
RNA virus entering SAM (Li et al., 2011), and used the Tobacco
rattle virus (TRV) to deliver sgRNA-tagged with the mobile FT
RNA into SAM. In the way, the mutant progeny of Nicotiana
benthamiana were recovered in next-generation at frequencies
ranging from 65 to 100%; and due to sgRNA-targeting of PDS
gene, the transgenerational seedlings with albino phenotype
resulted from the PDS gene editing via TRV/(m)FT-sgRNA were
statistically different compared with the mock control (Ellison
et al., 2020). This demonstrated that the mobile FT RNA can
promote the PDS sgRNA into SAM and enhances the progeny
gene editing efficiency of the CRISPR/Cas9 system (Ellison et al.,
2020). Similar results have been also reported using PVX to
deliver FT RNA-tagged sgRNA to plants (Uranga et al., 2021).

Moreover, a cotton leaf crumple virus (CLCrV)-mediated
ViGE system was also developed. In this case, sgRNAs were fused
to the 102-nt FT mRNA, then expressed by CLCrV in transgenic
Cas9 A. thaliana. The enhanced gene editing efficiency of 4.35–
8.79% was found in progeny plants free of the CLCrV genome
(Lei et al., 2021). Together, all these latest evidence shows that
FT RNA is mobile and can enter SAM, as well as that such
mobile RNA element has a high potential of biotechnological
application in inheritable and transgenerational genome editing
in plants and crops.
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Movement of Flowering Locus T
Homolog Genes
Flowering Locus T is one of six phosphatidyl ethanolamine-
binding protein (PEBP) family members and the other five
are TERMINAL FLOWER1 (TFL1) LIKE, MOTHER OF FT
AND TFL1 (MFT), BROTHER OF FT AND TFL1 (BFT),
ARABIDOPSIS THALIANA CENTRORADIALIS (ATC), and
TWIN SISTER OF FT (TSF) in Arabidopsis (Karlgren et al.,
2011). Phylogenetic analysis indicates that this small multigene
family consists of three classes, FT-LIKE (FT and TSF), MFT,
and TFL1-LIKE (ATC, BFT, and TFL1) (Chardon and Damerval,
2005). FT and TFL1 are two highly conserved homologous
proteins, which have opposite functions but compete to regulate
the initiation of plant flowering (Hanzawa et al., 2005). So far,
there is no evidence that TFL1 RNA can move long distance. On
the other hand, CET1 mRNA, an ortholog of the Arabidopsis
antiflorigen ATC, is mobile, as revealed in tobacco/Arabidopsis
grafting experiments. Its non-cell-autonomously movement is
also confirmed in heterograft of tobacco and tomato (Huang
et al., 2018). Other FT ortholog gene mRNAs were also
found moving across the tomato-tobacco heterograft junction
(Huang et al., 2018).

WHAT DETERMINES THE MOBILITY OF
FLOWERING LOCUS T mRNA?

Primary Flowering Locus T RNA
Structures
Synonymous codon substitution in FT (synFT) does not change
the FT protein amino acid sequence but alters the RNA
sequence. Notaguchi et al. (2008) transformed ft-1 with an

expression cassette in which synFT contains 171 (of 175) codon
substitutions. In grafting experiments where ft-1 was used as a
recipient stock and transgenic synFT/ft-1 as a donor scion, the
synFT mRNA was not detectable in the ft-1 shoot apical region.
These experiments also suggest that changes in the FT RNA
sequence did not affect the FT protein movement (Notaguchi
et al., 2008). However, unlike the later grafting study (Lu et al.,
2012), no enrichment of potential mobile synFT mRNA was
done. This may explain why the synFT RNA could not be
detected (Notaguchi et al., 2008). On the other hand, changes of
primary mRNA sequence may lead to alternation of secondary
structures (see below), which may be required for systemic
FT RNA movement.

RNA Secondary Structures
A high number of tRNAs were detected in the phloem sap
of pumpkin (Cucurbita maxima). Among these mobile tRNAs,
their distributions are uneven. For example, no Ile-tRNA or
very few Arg-tRNA but a few Asp-tRNA molecules were
detected; however, Cys, Leu, Phe, Try, Trp, and Ser tRNAs
were predominantly present in the phloem sap (Zhang et al.,
2009). These tRNAs have been predicted to serve as long-
distance signals (Zhang et al., 2009, 2016; Lezzhov et al.,
2019; Wang et al., 2021), suggesting that tRNA or tRNA-like
structure could be an important factor, if not the determinant
for systemic RNA movement. Indeed, in the ViGE systems,
like the FT mRNA/102 nt-FT RNA element, Met, Gly, and
Ile tRNAs were also found to improve transgenerational gene
editing when they were fused to sgRNA (Ellison et al., 2020). It
is possible that the FT mRNA may form unique structure, or
tRNA/tRNA-like secondary or even tertiary structures that are
important for its mobility.

FIGURE 1 | A Model for FT mRNA Signaling. In companion cells, FT mRNAs may be epigenetically modified and form specific structures such as tRNA-like
secondary structures. Such structured RNAs may then be recognized by RNA-binding proteins and transported through plasmodesmata into sieve tube. FT mRNAs
will travel pass sieve plates through phloem to germline cells in shoot apical meristem to induce flowering along with other floral induction factors.
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RNA Binding Proteins
In plants, it is well-established that the movement of RNA
requires RNA binding proteins. For example, KNOTTED1 (KN1)
(Lucas et al., 1995) and a viral movement paralog protein in
Cucurbita maxima, CmPP16 have been reported to be involved
in cellular RNA trafficking (Xoconostle-Cázares et al., 1999).
In Arabidopsis, a conserved SMALL RNA-BINDING PROTEIN
1 (SRBP1) family member, AtSRBP1, was found to mediate
small RNA movement. AtSRBP1, a glycine-rich (GR) RNA-
binding protein, also named AtGRP7, can bind to single-
stranded siRNA (Yan et al., 2020). It is plausible that FT mRNA
movement may also involve certain RNA binding protein(s)
(Jackson and Hong, 2012).

RNA Epigenetic Modification
Numerous RNA modifications have been reported (Boccaletto
et al., 2018) and some specific modifications are closely
associated with biological functions (Chmielowska-Bąk et al.,
2019). In plants, mRNA N6-methyladenosine (m6A) and 5-
methylcytosine (m5C) play crucial and dynamic roles in embryo
development, leaf morphogenesis, and root development (Liang
et al., 2020). Recently, epigenetic modifications such as m5C
have been found to be linked with RNA mobility and m5C
RNAs are predominant in the phloem (Yang et al., 2019; Wang
et al., 2021). Interestingly, in RNA m5C methylation-deficient
mutants, mobile TRANSLATIONALLY CONTROLLED TUMOR
PROTEIN 1 and HEAT SHOCK COGNATE PROTEIN 70.1
mRNAs become immobile (Yang et al., 2019). We speculate that
m5C or other types of epigenetic modifications may play a role in
FT mRNA mobility.

PROSPECTIVE

Specificized xylem and phloem are two conduits of the plant
transportation system. They not only provide physical support
for plants, but also are crucial to transport nutrients, minerals,
and various signaling molecules in plants (De Rybel et al.,
2016). Phloem consists of two types of cells: companion cells
and sieve tubes. Sieve tubes lack nuclei. Almost all inorganic
and organic substances are transferred from companion cells to
sieve tubes via plasmodesmata (Slewinski et al., 2013). While
local FT protein produced in source leaf tissues moves into
SAM via the phloem-transportation highway, emerging evidence
demonstrates that FT RNA can also undergo the same voyage
en route to SAM. Therefore, it is possible that both FT mRNA
and FT protein contribute to the florigen signal. Based on
recent findings on the relevance of epigenetic RNA modifications,

primary ribonucleotide sequences, secondary structures, and
RNA binding proteins to RNA mobility, we propose a model
for FT mRNA signaling in flowering (Figure 1). Once FT
mRNAs is produced in companion cells, FT mRNAs may
be epigenetically modified and form specific structures such
as tRNA-like structures. Structured FT RNAs may then be
recognized by RNA-binding proteins and transported through
plasmodesmata into sieve tube. Along with the FT protein, FT
mRNAs will move across sieve plates through phloem to germline
cells in shoot apical meristem to induce flowering together with
other floral induction factors. This model explains the possible
movement of FT mRNA from specific companion cells to sieve
tubes, then to distal SAM where they coordinate with other
flowering induction factors to induce flowering (Figure 1). This
model is also expected to be universal for the study of the
mechanism of mobile mRNA in plants.
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T. K., et al. (2018). MODOMICS: a database of RNA modification pathways.
Nucleic Acids Res. 46, D303–D307. doi: 10.1093/nar/gkx1030

Böhlenius, H., Eriksson, S., Parcy, F., and Nilsson, O. (2007). Retraction. Science
316:367. doi: 10.1126/science.316.5823.367b

Borlaug, N. E. (2002). Feeding a World of 10 Billion people: the miracle ahead.
In Vitro Cell. Dev. Biol. Plant 38, 221–228.

Chailakhyan, M. K. (1968). Internal factors of plant flowering. Annu. Rev. Plant
Physiol. 19, 1–37. doi: 10.1146/annurev.pp.19.060168.000245

Chapman, S., Kavanagh, T., and Baulcombe, D. (1992). Potato virus X as a vector
for gene expression in plants. Plant J. 2, 549–557. doi: 10.1046/j.1365-313x.
1992.t01-24-00999.x

Chardon, F., and Damerval, C. (2005). Phylogenomic analysis of the PEBP gene
family in cereals. J. Mol. Evol. 61, 579–590. doi: 10.1007/s00239-004-0179-4
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