Journal Pre-proof

SOFTWARE

IMPACTS

Probability bounds analysis for Python

Nicholas Gray, Scott Ferson, Marco De Angelis, Ander Gray, Francis
Baumont de Oliveira

PII: S52665-9638(22)00015-X
DOI: https://doi.org/10.1016/j.simpa.2022.100246
Reference: SIMPA 100246

To appear in:  Software Impacts

Received date: 8 December 2021
Revised date: 17 January 2022
Accepted date: 24 January 2022

Please cite this article as: N. Gray, S. Ferson, M. De Angelis et al., Probability bounds analysis for
Python, Software Impacts (2022), doi: https://doi.org/10.1016/j.simpa.2022.100246.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.simpa.2022.100246
https://doi.org/10.1016/j.simpa.2022.100246
http://creativecommons.org/licenses/by/4.0/

Probability Bounds Analysis for Python

Nicholas Gray, Scott Ferson, Marco De Angelis, Ander Gray and Francis Baumont de Oliveira

Institute for Risk and Uncertainty, University of Liverpool, Liverpool, United Kingdom, L.69 7ZX. nickgray@liverpool.ac.uk
Abstract

Probability bounds analysis (PBA) is a collection of mathematical methods generalising interval analysis and probability
theory. PBA can be utilised for uncertainty quantification for both aleatory and epistemic uncertainty across a wide
range of scientific fields. PBA is most useful when information about variables is only partially known and can be used
without requiring untenable assumptions to be made about parameter values, distribution shapes or dependence between
variables. This paper introduces a PBA library for the Python programming language.
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C1 | Current code version v0.12

C2 | Permanent link to code/repository used for | https://github.com/Institute-for-Risk-and-Uncertainty/
this code version pba-for-python

C3 | Permanent link to Reproducible Capsule | https://codeocean.com/capsule/8485409

C4 | Legal Code License MIT License

(05 Code versioning system used Git/GitHub

C6 Software code languages, tools, and ser- | Python
vices used

C7 | Compilation requirements, operating envi- | Python > 3.7, NumPy > 1.21.1, SciPy > 1.7.0, Matplotlib >
ronments & dependencies 3.3.2

C8 | If available Link to developer documenta- | https://pba-for-python.readthedocs.io
tion/manual

C9 | Support email for questions nickgray@liverpool.ac.uk

1. Introduction

Two types of uncertainty, aleatory and epistemic, appear in the numerical calculations essential to science and en-
gineering. Aleatory uncertainty arises from the natural variability in dynamical environments and material properties,
errors in manufacturing processes or inconsistencies in the realisation of systems. Aleatory uncertainty cannot be reduced
by empirical effort. Epistemic uncertainty is caused by measurement imperfections or a lack of understanding about the
underlying physics or biology of a system. This could be due to not knowing the full specification of a system in the early
phases of engineering design or simplifying the mathematics of a simulation to save computational resources.

Probability bounds analysis (PBA) is a tool that can be used to compute with both types of uncertainties without
requiring often untenable assumptions to be made about the parameters involved in calculations and any subsequent
dependencies between them. Probability bounds analysis has many applications across diverse disciplines ranging from
aerospace engineering [23] to conservation biology [12]. The Wikipedia page lists many applications to various scientific
problems!. It is particularly popular when undertaking risk or reliability analyses when data is not perfectly known
[24, 6, 5]. PBA objects and methods can also be used within machine learning techniques [15, 25, 26].

In this paper, we discuss the fundamental components of PBA, intervals and p-boxes, and how calculations are
performed with them within PBA for Python. We make use of SciPy [29], NumPy [16] and Matplotlib [18] in order to
define, store, display and perform calculations with p-boxes and intervals within PBA.

2. Probability Bounds Analysis

There are two main objects used for PBA, intervals and probability boxes (p-boxes). An interval is a value that is
imprecisely known even though it may be fixed and unchanging, or perhaps an uncertain number representing values
obeying an unknown distribution prescribed only by a specified range [4, 11, 17, 19, 20]. Intervals allow for epistemic
uncertainty to be propagated through calculations.

A p-box is a generalisation of intervals and probability distributions in a single structure that allows the propagation
of both epistemic and aleatory uncertainty through calculations in a rigorous way. A p-box can be considered as interval
bounds on a probability distribution [8, 9, 10]. Within PBA it is convenient to think of a probability distribution as a
special case of a p-box with precise inputs. Calculations performed with p-boxes yield results that are guaranteed to enclose
all possible distributions of the output variable if the input p-boxes were also sure to enclose their respective distributions.
The results may be best-possible if only valid distributions are enclosed within the p-box, although the output p-box may
also contain distributions that could not arise under any dependence between the two input distributions. This property
allows them to be used for automatic verification of computer codes [10, 21].

2.1 Intervals

An unknown real number z can be represented by an interval [z, 7], where x < x < Z. This implies that the precise
value of  can be any number within x < z < Z. Intervals do not make any futher assumptions about which values within
the range are more or less likely than other values.

Thttps://en.wikipedia.org/wiki/Applications_of p-boxes_and_probability_bounds_ analysis



Within the context of probability bounds analysis, it is useful to consider intervals as the set of all possible distributions
that lie within the endpoints of the interval, this definition is discussed further in Section 2.3.

In PBA intervals can be defined by setting the left and right edges of the interval. If a = [a,a] and b = [Q,ﬂ are
intervals, then the following arithmetic operations can currently be performed in PBA:

« Addition
a+b=[a+ba+b (1)
¢ Subtraction B
a—b=[a—ba—1b (2)
e Multiplication B _ _ _
axb= [min (g*gg*b,d*b,a*b) , max (g*b,g*b,ﬁ*b,ﬁ*b)] (3)
e Division
a/b= [min (g/b, a/b,a/b, 5/5) ,max (Q/Q, a/b,a/b, E/B)] (4)

If 0 € b then a/b returns a division-by-zero error. If there is dependence between two intervals then PBA allows for this
dependence to be included within the calculation. For intervals, perfect and opposite dependence calculations are possible.
Perfect dependence between a and b implies that larger values of a correspond to larger values of b. In this scenario the
arithmetic operations become

aob=[aocbaob (5)
where o € (+, —, %, /). Whereas, under opposite dependence smaller values of a imply larger values of b, meaning that the

arithmetic operations become

aob=laobaobl. (6)

An interval can be propagated through a function producing an interval output, f([z,Z]) = [Q, @} where y is the
minimum possible value of f(z) for all € [z,Z] and ¥ is the maximum possible value. This calculation is simple for
monotonic functions. For instance, increasing monotonicity implies that the end points of the input interval correspond
to the end points of the output interval, i.e.

f(la,al) = [f(a), f(@)]. (7)

For more general functions alternative strategies are needed to insure correct calculations.

Comparison operations can be performed on intervals, however, the uncertainty associated with the interval leads to
uncertainty in the Boolean operations. For example, if a decision relies on some value = being less than 1, when we know
the value of z accurately then it is easy to make such a comparison. However, if there is some uncertainty about the value
of x then this comparison may not be so easy. The comparison becomes

1 ifz<l1
r<1=40 if 2> 1 (8)
[0,1] otherwise
with 0 and 1 denoting false and true respectively, and [0,1] being the Boolean equivalent of “I don’t know”. We can call
[0,1] the dunno interval. Similarly,
1 if x>1
z>1=40 if <1 (9)
[0,1] otherwise.

For intervals it is often impossible to say whether an interval is equal to a value,

b :{pu iflex (10)

0 otherwise

Two intervals can also be compared to each other. For intervals x = [z,Z] and y = [y, 7], then

1 ifz<y
r<y=4{0 ifz>7y (11)
[0,1] otherwise



and
r>y=+<1 ifx>7y (12)
[0,1] otherwise

This implies that we cannot say whether an uncertain value characterised by an interval is larger or smaller than another
unless the interval is entirely greater or less than the other interval. For the equality comparison,

0,1 ifzU %}
pomy= {01 AUy 7 (13)
0 otherwise,
it is never possible to say that one value is equal to another. We can introduce a new Boolean operator (===) to test for
whether two uncertain numbers are equivalent in form,
1 ifz= dz =79
0 otherwise.
The [0, 1] interval can be converted into a true Boolean using operators such as always or sometimes
always ([0,1]) =0 (15a)
sometimes ([0, 1]) =1 (15b)
so that we can get
1 z<y
always (z < y) = 2 16
ys 2 {0 otherwise (16)
. L z<y
sometimes (z < y) = . (17)
0 otherwise.

2.2 Probability Distributions and Probability Boxes

A probability distribution is a mathematical function that gives the probabilities of occurrence for different possible
values of a variable. Probability boxes (p-boxes) represent interval bounds on probability distributions. The simplest kind
of p-box can be expressed mathematically as

F(z) = [E(z), F(z)], E(z) > F(z) Vz €R (18)

where F(r) is the function that defines the left bound of the p-box and F(z) defines the right bound of the p-box. In
PBA the left and right bounds are each stored as a NumPy array containing the percent point function (the inverse of
the cumulative distribution function) for N evenly spaced values between 0 and 1, where N is the number of steps in the
p-box. P-boxes can be defined using all the probability distributions that are available through SciPy’s statistics library.
Figure 1a shows a p-box that defined by a normal distribution with = [—1,1] and o = [0.5, 1.5].

Naturally, precise probability distributions can be defined in PBA by defining a p-box with precise inputs. This means
that within probability bounds analysis probability distributions are considered a special case of a p-box with zero width.
Resultantly, all methodology that applies to p-boxes can also be applied to probability distributions. Figure 1b shows a
standard normal distribution (=0, o = 1).

Distribution-free p-boxes can also be generated when the underlying distribution is unknown but parameters such as
the mean, variance or minimum/maximum bounds are known. Such p-boxes make no assumption about the shape of the
distribution and instead return bounds expressing all possible distributions that are valid given the known information.
Such p-boxes can be constructed making use of Chebyshev, Markov and Cantelli inequalities from probability theory. A
p-box defined by min = —3 ;maz = 3, p = [0,1] and o = 1 is shown in Figure Ic.

As with intervals, standard arithmetic operations can be performed on p-boxes (and therefore probability distributions
which are special cases of p-boxes). For two p-boxes A(z) = [A(z), A(x)] and B(x) = [B(z), B(z)),

C(z) = A(x) o B(x) = [C(x), C(x)] (19)

where
O() = inf [min (M o B(y), 1)} (20a)
C(z) = zS:L;I:y [max (A(z) oB(y) — 1, 0)} (20Db)
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Figure 1: Probability distributions and probability boxes.
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Figure 2: Adding together two p-boxes with different dependencies.
if o € [+, x], or
C(z) =1+ inf [min (A(a:) o B(y), 0)} (21a)
_— z=x0y e
C(z) = sup {max (A((E) o B(y), 0)} (21b)
zZ=x0Y -
if o € [—,=]. If 0 € B then the division returns a error [9, p. 89].

Knowledge of what the dependence is between the two p-boxes can reduce the amount of uncertainty present within the
output p-box. Figure 2 shows the result of adding a normal p-box A = N([—1, 1], 1) to a uniform p-box B = U([0, 1], 2, 3]),
with different dependencies between A and B. When the dependence between A and B is unknown, the operation defined
in equations 19-21 yields the most general bounds guaranteed to enclose the true distribution of A+ B which are called the
Fréchet bounds. As depicted in Figure 2, the Fréchet bounds enclose all the other dependencies. Perfect (or comonotonic)
dependence is where there is a perfect positive relationship between the two variables, with the highest possible correlation
coefficient. Opposite (or countermonotonic) dependence creates a perfect negative relationship between the two variables
with the lowest possible correlation coefficient. Independence is where there is no dependence between the two variables.
It should not be assumed that variables are independent unless this is known because wrongly assuming independence
can lead to incorrectly reducing the amount of uncertainty and understating tail risks.

2.3 Comparison between objects

As mentioned within Section 2.1, intervals can be considered as the set of all possible distributions that lie between
the endpoints of the interval. This feature implies that interval objects can be converted into p-boxes by transforming
the interval into a box-shaped p-box, such an object is shown in Figure 3a, this property means that arithmetic can be
performed between p-boxes and intervals by casting the interval as a p-box when performing the calculation. Conversely,
many unary operations that can be performed on intervals can be performed on p-boxes. This can be done by slicing the
p-box into intervals, performing the operation before sorting and recombining the intervals back into a p-box.

Within PBA an interval can be considered as the most basic object, for example, if all we know about variable x is that
its value lies between -2 and 2 then all we can say is that © = [—2, 2], this is shown in Figure 3a. If more information about
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Figure 3: Comparing different PBA objects as the amount of information about z increases

the variable is known then the uncertainty can be reduced, for instance, if we know that x has mean 0.5 and standard
deviation 1 then we can instead use a distribution-free p-box to model the uncertainty. Such an object can be seen in
Figure 3b. Finally, if we know that x follows a truncated normal distribution then we can model x as shown in Figure 3c.
As calculations with all of these objects can be performed using PBA, analysts can compute with what they know rather
than making assumptions that may be unjustified.

3. Example

The attitude of a spacecraft is the direction in which it points. It is often important to control the attitude of a
spacecraft; solar panels need to be pointed to the sun, communication antennas need to be pointed at the earth or
scientific instruments need to point at the correct target. Attitude can be controlled through reaction wheels which can
provide angular momentum to the spacecraft to point it in the desired direction.

The choice of how powerful a reaction wheel needs to be in depends on the torque needed to change the attitude of the
spacecraft. The torque required depends on the moment of inertia of the spacecraft. The moment of inertia depends on
the size of the spacecraft’s solar panels which impacts the power available to the reaction wheels which impacts the torque
available and so on. Therefore whilst there is uncertainty about the design of the spacecraft it is useful to make calculations
using imprecise numbers. There are also additional uncertainties to consider such as the fact that solar radiation is not
constant.

The equations of motion that determine the required angular momentum from the reaction wheel to change the attitude
of a spacecraft within 1 dimension are as follows:

_ . F
h = Tior X Atorpit (22) Tsp = LspiAs(l + q) cos (l) (27)

C

Ttot = Tslew T Tdist (23) 2MD,UJ0

= MO 28
404100 o 7 (Rg + H)3 (28)

Tatew = Atilew ( ) 1
Ta = = LapCyAV? (29)

Tdist = Tg + Tsp + Tm + Tq (25) 2

3u . m
= 5 p_ 1 7\3 Imaz I?nin 260 2 V= —_ 30
% = Sy es + Toial 5 (20) (20 Y- (30

Table 1 gives definitions and values for all variables within these equations.

PBA for Python can be used to perform the calculation using the uncertainty expressed about the variables. The
full calculation is available through the linked Code Ocean repository. Figure 4 shows the final step in the calculation
(Equation 22). The resultant p-box can be used to make decisions about the requirements of the reaction wheels.

4. Impact Overview

Before the creation of this library, there was not a PBA library for Python. Although versions did exist for Risk Calc
[7], MATLAB [2], R [3] and Julia [1, 13], as Python is one of the most popular programming languages [27, 28], especially



Symbol | Variable Type Value Unit
h Required angular momentum Calculated Nms
Ttot Total required torque Calculated Nm
Tslew Slewing torque Calculated Nm
Ta Torque due to atomspheric resistance Calculated Nm
Tsp Torque due to solar radiation pressure Calculated Nm
Tg Torque due to gravitational gradient Calculated N m
\%4 Velocity of spacecraft Calculated m s !
Cy Drag coefficient p-box min=2, max = 4, mean=3.13 unitless
L, Aerodynamic drag torque moment p-box min=0, max=3.75, mean=0.25 | m
L, Solar radiation torque moment p-box min=0, max=3.75, mean=0.25 | m
D Residual dipole interval | [0,1] A m?
i Sun incidence angle interval | [0,90] degrees
p Atmospheric density interval | [3.96 x 10712,9.9 x 10~ 1] kg m3
0 Major moment axis deviation from nadir | interval | [10,19] degrees
q Surface reflectivity interval | [0.1,0.99] unitless
Lin Minimum moment of inertia point 4655 kg m?
g Maximum moment of inertia point 7315 kg m?
m Earth gravity constant point 3.98x10™ m3s~2
A Area in the direction of flight point 3.752 m?
Rg Earth radius point 6378.14 km
H Orbit altitude point 340 km
Fs Average solar flux point 1367 W m~2
Gslew Maximum slewing angle point 38 degrees
c Light speed point 2.9979x 108 ms !
M Earth magnetic moment point 7.96x1022 A m?
Atgiew Minimum maneuver time point 760 S
A, Area reflecting solar radiation point 3.752 m?
At orpit Quarter orbit period point 1370 S
1o Permiability of free space point 47 x 1077 N A2
Table 1: Definitions and values for Equations 22-30
1.001
__0.751
=
20.50
a
0.251
0.001

500 1300 1400
h (N m S) = Atorbil.“ (N m)

x(

0.010 0.015 0.00 0.25
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Figure 4: Calculation of Equation 22 using PBA.
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within the field of scientific computing, many scientists and engineers who prefer to programme using Python were unable
to make use of the powerful methodology and many advantages of probability bounds analysis. The creation of PBA for
Python expands the reach of this methodology so that it can be applied to other disciplines and sectors.

5.

Research Areas

Probability bounds analysis has many possible applications as discussed in the introduction. The authors are aware
of the following work that uses PBA for Python in the following fields:

Agricultural economics — Calculating financial cash flows and risk of insolvency for indoor farming businesses in the
absence of data [22],

Medical diagnosis — Propagating uncertainty through Bayes’ rule to calculate whether a patient has a disease based
upon their incomplete answers to a symptom questionnaire,

Logistic regression — Generalising logistic regression models for use with possibly imprecise data and unknown status
outcomes [15], and

Automated uncertainty quantification — Translating Python code into uncertainty-aware code that can full take
account of uncertainties in parameters and inputs [14].
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In this paper we introduce a Probability Bounds Analysis (PBA) Library for Python
PBA is a collection of mathematical methods generalising interval analysis and
probability theory.

The PBA library contains class definitions for intervals and p-boxes as well as key
functions to enable their use within calculations

The library is open source and available through both GitHub and pypi
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