
  

Abstract—Estimating the Q factor of an unloaded 

reverberation chamber (RC) is a challenging problem in practice. 

To answer this question conservatively and confidently, this paper 

reviews the measured unloaded Q factors of 38 RCs worldwide. 

The effective wall conductivities are summarized from the 

reported measurement results. Broadband Q factors of RCs from 

the same supplier but with different dimensions are highlighted to 

compare. The measurement results show that the effective wall 

conductivity is frequency dependent and the dependency behaves 

in a similar way. The empirical values of the effective wall 

conductivity are extracted to estimate the unloaded Q factors 

conservatively.  

 
Index Terms—Reverberation chamber, Q factor. 

 

I. INTRODUCTION 

EVERBERATION chambers (RCs) are over-mode 

cavities with stirrers which can tune the electromagnetic 

fields inside the cavities randomly by moving the stirrers either 

in continuous or discrete manner. RCs have been widely used in 

electromagnetic compatibility (EMC) for decades [1]-[3] and 

have been expanded into over-the-air (OTA) testing of wireless 

devices in recent years [4]. In RC EMC applications, a 

frequently asked question from the costumers in industry is: 

what is the mean/highest electric field (E-field) an RC can 

achieve for 1 W input power? For a commercially off-the-shelf 

RC, as it would have been measured, a typical E-field curve can 

be given. However, for an RC with customized dimensions, it 
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may not be easy to answer the question quickly. It is well 

known that the key is the quality (Q) factor. 

The Q factor of an RC is an important figure of merit to 

describe its ability to store energy. It is defined as [5] 

 

𝑄 = 𝜔
𝑊̅

𝑃𝑑

                                       (1) 

 

where 𝑊̅ is the time-averaged total stored energy in the RC, 

𝜔 = 2𝜋𝑓  is the angular frequency, and 𝑃𝑑  is the dissipated 

power. The Q factor characterizes the resonance of the cavity 

and determines the mean E-field strength for a given input 

power. 

Obviously, when all the losses in an RC are quantified, the Q 

factor can be simulated accurately. However, estimating 

accurate Q factors without measurements could be extremely 

difficult, as the losses in practice could be far off from the 

parameters in simulations. Because there are connections 

between panels, screws, dirt and possible oxidation spots, the 

effective conductivity of the walls could be much less than the 

conductivity of pure material [6]. Although the Q factor may 

not be a big issue in OTA measurements (the chamber transfer 

function is calibrated in measurements and not very high 

E-field is required [4]), in EMC radiated susceptibility testing, 

the Q factor determines the highest acquired E-field the RC can 

achieve. The Q factor can only be reduced (e.g. using absorbing 

materials) once an RC is built, as the unloaded Q factor is 

envisaged as the maximum Q factor value of the RC. 

Several computational electromagnetics (CEM) tools have 

been employed for RC simulations to provide important 

insights over the last decades. For example, the 

finite-difference time-domain (FDTD) has been used to 

simulate the stirrer performance [7]-[10], field uniformity [9], 

[10], independent sample number [9], [10] and the loss effect 

[11]-[15]. It has been found that the volumetric loss can be used 

to emulate the total loss in an RC [11]-[15], and a typical value 

of air conductivity of 10-5 S/m can be used for galvanized steel 

RCs [12]-[15]. However, this empirical value is limited in a 

certain frequency range. Similarly, the transmission line matrix 

(TLM) method has been applied in [16]-[20] for the analysis 

and optimization of the RC designs. Frequency domain 

methods such as boundary element method (BEM) [21], [22], 
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method of moments (MoM) [23]-[29], fast multipole method 

(FMM) and multilevel fast multipole method (MLFMM) 

[30]-[32] can take the advantage of surface discretization and 

could be more efficient for irregularly shaped and rotating 

structures. The finite element method (FEM) may not be very 

efficient in analyzing the broadband frequency response of RCs 

at high frequencies, but it can be used for low frequency 

simulation and eigenanalysis [33]-[43]. 

It has been found that as long as the simulated RC Q factor is 

realistically close to its practical value, the behavior of an RC 

can be modeled accurately from a statistical perspective 

(without considering the time and resource consumption) [44]. 

Note that one needs to measure the Q factor first and fit the 

parameters later in simulations. For a commercial off-the-shelf 

RC, the unloaded Q factor could have already been evaluated 

thereby; the loaded E-field can be estimated from the 

absorption cross section (ACS) of the loaded object [45], [46]. 

However, establishing a customized RC without such 

evaluation, the accurate estimation of loaded E-field could be 

extremely difficult to simulate all the loss just from pure 

simulation. In this paper, we aim to solve this problem by 

applying an engineering approach: analyzing measurement 

results from the existing RCs directly, a conservative 

estimation of the effective wall conductivity can be obtained for 

RCs with galvanized steel walls, thus the problem can be 

empirically answered. 

This paper is organized as follows. Section II provides the 

theory; Section III summarizes the Q factors of the RCs from 

the published literatures, while we have also measured Q 

factors of three RCs with different dimensions from the same 

supplier; typical effective conductivity is summarized for RCs 

with galvanized steel walls. Section IV provides the discussion 

and the equivalency with the lossy air model. Section V 

concludes the paper.  

II. THEORY 

The loss mechanism in an RC has been detailed in [5]. A 

typical setup for the Q factor measurement is illustrated in 

Fig. 1, the overall average Q factor can be decomposed as 

  

𝑄−1 = 𝑄𝑤
−1 + 𝑄𝑇𝑥

−1 + 𝑄𝑅𝑥
−1 + 𝑄𝑎

−1                (2) 

 

where 𝑄𝑤 is the contribution from the finite conductivity of the 

walls, ceilings and ground, 𝑄𝑇𝑥 , 𝑄𝑅𝑥  and 𝑄𝑎  are the 

contributions from transmitting (Tx) antenna, receiving (Rx) 

antenna and lossy objects loaded in the RC, respectively. As the 

shielding effectiveness of an RC is normally very good, the 

contribution from the aperture transmission cross section in (2) 

is not being considered. The expressions for the decomposed Q 

factors are 

 

𝑄𝑤 =
3𝑉

2𝜇𝑟𝑆𝛿𝑤

1

1 +
3𝜋
8𝑘

(
1
𝑎

+
1
𝑏

+
1
𝑑

)
              (3) 

𝑄𝑇𝑥 =
8𝜋2𝑉

𝑚𝜆3
                                        (4) 

𝑄𝑅𝑥 =
16𝜋2𝑉

𝑚𝜆3
                                     (5) 

𝑄𝑎 =
2𝜋𝑉

𝜆〈ACS〉
                                       (6) 

𝛿𝑤 = √2 (𝜔𝜇𝜎eff)⁄                             (7) 

 

where V is the volume of the RC, 𝜇𝑟 ≈ 1  is the relative 

permeability of the RC walls, 𝑆 is the overall inner surface area 

of the RC, 𝛿𝑤 is the skin depth, 𝑘 = 2𝜋/𝜆 is the wavenumber, 

 

 
Fig. 1.  Typical measurement setup in an RC. 
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TABLE I 
RCS WITH DIFFERENT DIMENSIONS 

Index 
Dimensions 

(m) 

Volume 

(m3) 
References 

#1 0.3×0.25×0.15 0.013 [52] 

#2 0.42×0.41×0.38 0.067 [53] 

#3 Surface area: 1.25 m2 0.08 [54] 

#4 0.58×0.59×0.60 0.204 [55] 

#5 0.8×0.8×1.2 0.769 [56] 

#6 1.49×1.16×1.45 2.51 [57] 

#7 2.48×1.87×2.48 11.5 [58] 

#8 3.8×2.3×1.5 13.1 [6] 

#9 3.08×1.84×2.44 13.8 [59] 

#10 2.9×2.13×2.72 16.8 [60] 

#11 2.48×2.48×2.86 17.6 [61] 

#12 2.95×2.75×2.35 19.1 [61] 

#13 2.5 ×2.5×3.1 19.4 [62] 

#14 3.7×2.5×2.89 26.7 [63] 

#15 4.9×2.5×3 36.8 [21] 

#16 2.74×3.05×4.57 38.2 [60] 

#17 2.9×4.2×3.6 13.8 [64] 

#18 5.8×3.2×2.4 44.5 [65] 

#19 3×5.4 ×2.8 45.4 - 

#20 5.3×3.7×3 58.8 [28] 

#21 6×4×2.5 60.0 [66] 

#22 3.9 ×6 ×2.8 65.5 - 

#23 4.05×5.7 ×3.15 72.7 [67] 

#24 6.16×4.05×3.15 78.6 [68] 

#25 2.9 ×3.96×7.01 80.5 [60] 

#26 5.8 ×4 ×3.6 83.5 [69], [70] 

#27 2.9 ×3.7×8.7 93.4 [71] 

#28 7.78×4.34×3.1 105 [57] 

#29 6.55×5.85×3.5 134 [72], [73] 

#30 7.9 ×6.5×3.5 180 [74] 

#31 7.5×5.6×4.6 193 [6] 

#32 8.94×6×3.92 210 [75] 

#33 2.9 ×7.01×14.33 291 [60] 

#34 10.5×8×4.3 361 [76] 

#35 12.6×10.8×6.03 821 [46] 

#36 29×11×6 1914 [77], [78] 

#37 8×14.7×20 2352 [79] 

#38  Surface area: 5735 m2 23315 [80] 

#3 and #38 are not rectangular RCs, #19 and #22 are chambers 

introduced in this paper. 

 

 



𝜆  is the wavelength, 𝑚  is the impedance mismatch factor, 

〈ACS〉  is the average ACS of the loading object, 𝜔  is the 

angular frequency, 𝜇 = 𝜇𝑟𝜇0  is the permeability of the RC 

walls, 𝜇0 = 4𝜋 × 10−7 H/m is the permeability of free space, 

𝜎eff is the effective conductivity of the RC walls, 𝑎, 𝑏 and 𝑑 are 

the width, length and height of a rectangular RC, respectively. 

Because of the enhanced back scatter effect, when an RC is 

well stirred, the average power absorbed by the Tx antenna is 

twice of that absorbed by the Rx antenna [6], [47]-[49]. We 

assume 𝑄𝑎  does not dominate the Q factor of the RCs 

(unloaded) and the antennas are well matched in the published 

literatures, by applying 𝑚 ≈ 1  and 𝑄𝑎
−1 ≈ 0  in (2)-(7), the 

effective conductivity of the walls can be solved from the 

measured overall average Q factor.  

Note that at high frequencies, the loss of the antennas does 

not dominate the Q factor, even the contribution of 𝑄𝑇𝑥, 𝑄𝑅𝑥  

and 𝑄𝑎 are not considered, the results remain similar [6], [50]. 

The detailed structure does not affect the loss of the walls at 

high frequency, and 𝑄𝑤  in (3) can be further simplified to 

𝑄𝑤 = 3𝑉 (2𝜇𝑟𝑆𝛿𝑤)⁄  [5], [51].  

III. MEASUREMENT DATA 

After reviewing the published literatures, the RCs with 

different dimensions are listed in Table I. They are sorted with 

ascending volumes which works from millimeter wave 

frequencies to frequencies lower than 80 MHz.  The measured 

Q factors are extracted and illustrated in Fig. 2. The mean 

E-field strength can be calculated using [3], [5] 

 

〈|𝐸𝑥|〉𝑢 = √
5𝜋𝑄𝜆𝑃𝑖𝑛

𝑉
                                (8) 

 

where 〈|𝐸𝑥|〉𝑢  represents the mean value of the rectangular 

component of the E-field in an unloaded RC, 𝑃𝑖𝑛 is the net input 

power to the RC. The normalized mean E-field (𝑃𝑖𝑛=1 W) is 

shown in Fig. 3, which provides a useful reference to look up if 

a required E-field is expected. Once the mean value of the 

E-field is estimated, the peak value can be estimated by 

multiplying the mean value with a factor which depends on the 

independent sample number [3], [46]. When the loss is 

dominated by 𝑄𝑇𝑥 in (2) at low frequencies, the upper bound of 

the mean E-field can be obtained by substituting (4) into (8) 

which is √40𝜋3𝑃𝑖𝑛/𝜆2 and is also plotted in Fig. 3. Note that 

there are some points exceed this limit, which should be due to 

the insufficient averaging or the RC works in the undermoded 

region and the field is no longer statistically uniform.  

The effective conductivities of the RC walls are calculated 

and plotted in Fig. 4. The RC #8 is small and made of aluminum 

which shows the highest 𝜎eff  and is relatively flat at high 

frequencies. This could be due to the fewer junctions between 

panels. Interestingly, the effective conductivity (𝜎eff) of the 

walls shows frequency dependency and 𝜎eff  shows higher 

values when the frequency increases. This could be due to the 

contact loss between panels of the wall. The #19, #22 and #35 

RCs are from the same supplier, and the Q factors are measured 

 
Fig. 2.  Measured Q factors extracted from references. 
  

 
Fig. 3.  The normalized E-field (net input power is 1 W) calculated from the Q 

factor and the volume of the RCs, the upper bound is also given. 



using the time domain technique [50], [64]. It can be found that 

the calculated 𝜎eff  (extracted and shown in Fig. 5) for these 

three RCs have good consistencies with each other as they are 

from the same supplier and the wall materials are the same. In 

the meanwhile, 𝜎eff  of these three RCs locates nearly in the 

middle of all the curves in Fig. 4. To have an empirical equation 

conservatively, the least-squares fitting is performed for the 

minimum values of 𝜎eff  from #19, #22 and #35 RCs in the 

frequency range of 100 MHz – 40 GHz in Fig. 5. Since the 

information of the measurement setup for the RCs in the 

literatures is incomplete, the low 𝜎eff in Fig. 4 could be due to 

the following reasons: 

1) The Q factor is measured in the frequency domain and the 

total efficiency of antennas is not corrected accurately; 

2) The 𝜎eff of these RCs is indeed low; 

3) The RC is actually loaded (with wood, foam or other lossy 

objects).   

IV. DISCUSSION 

The loss in an RC using the wall loss with effective 

conductivity has been emulated. However, the model used in 

this paper is equivalent to the conductive air model. Suppose 

the permittivity of the conductive air inside an RC is  
𝜀 = 𝜀′ − 𝑗𝜀′′, we have  

 

tan𝛿 =
𝜀′′

𝜀′
=

𝜀𝑟
′′

𝜀𝑟
′

=
𝜎diel

𝜔𝜀𝑟
′ 𝜀0

                   (9) 

The Q factor contributed by the lossy air is [81] 

 

𝑄diel =
1

tan𝛿
=

𝜀𝑟
′

𝜀𝑟
′′

                            (10) 

 

where 𝜀′ = 𝜀𝑟
′ 𝜀0  , 𝜀′′ = 𝜀𝑟

′′𝜀0 = 𝜎diel/𝜔 , 𝜀𝑟
′  and 𝜀𝑟

′′  are the 

relative real part and imaginary part of the permittivity, 

respectively, 𝜀0 ≈ 8.85 × 10−12 F/m is the permittivity of free 

space,  𝜎diel is the conductivity of the lossy air inside the RC. 

When 𝜀𝑟
′ = 1, the total Q factor of the RC can be written as 

𝑄−1 = 𝑄diel
−1 + 𝑄Tx

−1 + 𝑄Rx
−1, when the contribution from the 

loss of the antennas is small, we have 

 

𝑄−1 ≈ 𝑄diel
−1 , or 𝜀𝑟

′′ ≈  𝑄−1                      (11) 

 
Fig. 4.  Effective conductivity of the walls of different RCs. 
  

 
Fig. 5.  The effective conductivity of the walls of the RCs from the same 

supplier with different dimensions. The least-squares fitting equation is 𝑦 =
−0.04𝑥2 + 1.43𝑥 + 40.95 , where 𝑥 = 10log10(𝑓) , 𝑓  in GHz and 𝑦 =
10log10(𝜎eff), 𝜎eff in S/m. 

 

 
Fig. 6.  The equivalent conductive air model: the imaginary parts of the 

relative permittivity of the conductive air are calculated, the conductivities are 

also given. 



 
The equivalency between the loss from the lossy air and the 

conductive wall parameters can be found using 𝑄diel = 𝑄𝑤 in 

(3) which are 

 

𝜀𝑟
′′ =

2𝜇𝑟𝑆

3𝑉
[1 +

3𝜋

8𝑘
(

1

𝑎
+

1

𝑏
+

1

𝑑
)] √2 (𝜔𝜇𝜎eff)⁄     

 

≈
2𝜇𝑟𝑆√2 (𝜔𝜇𝜎eff)⁄

3𝑉
                                   (12) 

 

and 𝜎diel = 𝜔𝜀𝑟
′′𝜀0 . The calculated 𝜀𝑟

′′  and 𝜎diel  from 𝜎eff  in 

Fig. 5 are illustrated in Fig. 6. The values of 𝜎diel in Fig. 6 are 

also in the same order with the typical value of 10-5 S/m used in 

[12]-[15]. To validate the equivalency of the conductive air 

model, we use the calculated 𝜀𝑟
′′  (or 𝜎diel ) of RC #22 and 

simulate the Q factors. The simulated results are presented in 

Fig. 7. As expected, accurate Q factors are reconstructed in the 

simulation model. The FEM method is used to simulate the 

model with a tetrahedron number of 19,038,722, and the peak 

memory consumption is about 210.7 GB. As the memory 

consumption is huge, we did not simulate the model for 

frequencies higher than 3 GHz. The surface current density (or 

H-field) for different frequencies is illustrated in Fig. 8. Unlike 

in measurements, the Q factors in simulations can be 

postprocessed from the fields inside the RC using (1) directly. 

Although conductive air model and the lossy wall model are 

theoretically equivalent in emulating loss in RCs, the 

conductive wall model can give stable values (𝜎eff) for different 

RCs as shown in Fig. 5. The parameters 𝜀𝑟
′′ (or 𝜎diel) in the 

lossy air model depends on the volume of the RC and a larger 

volume gives smaller values. This can also be found in (12), 

unlike the conductive wall model, the parameters for the lossy 

air model vary for different RC dimensions.  A more general 

and complex model has been proposed in [82] to include the 

loss from permeability (without the assumption of 𝜇𝑟 = 1), and 

a multi-layer wall model is used. The multi-layer model should 

be closer to real physical world but more complex. 

V. CONCLUSIONS 

Estimating the unloaded Q factor of an RC before 

measurements is a long-standing problem in practice. This 

problem is difficult to solve from pure simulations. Thanks to 

the existing RCs worldwide, this problem can now be answered 

by adapting an engineering approach.  

In 1980, the Q factor of 7 RCs had been reviewed [83]. This 

paper has reviewed the unloaded Q factors of 38 RCs from 

published literatures, and calculated the relevant effective wall 

conductivities (𝜎eff ). The 𝜎eff  of three RCs from the same 

supplier with different dimensions have been measured. The 

results show good consistencies and an empirical equation has 

been given. Since the aim is to provide estimated 𝜎eff values, 

the surface area of the stirrers inside the RCs are not considered. 

As for large RCs, the surface area of stirrers is small compared 

with the overall internal surface area. The #19 and #22 RCs 

have horizontal and vertical stirrers while the #35 RC has an 

oscillating wall stirrer, but they give similar 𝜎eff . The 

equivalency between the conductive wall model and the lossy 

air model is also discussed. The parameters for the lossy air 

model show dependency on the dimensions of an RC and may 

not be easily generalized to arbitrary dimensions. 

Although the focus is given on the galvanized steel RCs, one 

should note that 𝜎eff for all the RCs are not the same. This is not 

surprising, as different RC supplier may have different surface 

material and different ways to connect panels. From this paper, 

a reference 𝜎eff  has been given, and it is believed that 𝜎eff 

 
Fig. 7.  A comparison of measured and simulated Q factor of RC #22.  

  

 
(a) 

 
(b) 

 
(c) 

Fig. 8.  Simulated surface current density (or H-field) at different frequencies: 
(a) 0.2 GHz, (b) 0.4 GHz and (c) 3 GHz. 

 



should be stable for the same supplier (with the same material 

and consistent panel connections). This information is 

envisaged useful for an RC supplier. For customized RC 

dimensions, the proposed empirical equations could provide 

references to estimate the mean E-field conservatively.  
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