Narrow resonances in the continuum of the unbound nucleus ${ }^{15} \mathrm{~F}$

V. Girard-Alcindor,,1,2 A. Mercenne, ${ }^{3}$ I. Stefan, ${ }^{2}$ F. de Oliveira Santos, ${ }^{1}$ N. Michel, ${ }^{4}$ M. Płoszajczak, ${ }^{1}$ M. Assié, ${ }^{2}$ A. Lemasson, ${ }^{1}$ E. Clément, ${ }^{1}$ F. Flavigny, ${ }^{5}$ A. Matta, ${ }^{5}$ D. Ramos, ${ }^{1}$ M. Rejmund, ${ }^{1}$ J. Dudouet, ${ }^{6}$ D. Ackermann, ${ }^{1}$ P. Adsley, ${ }^{2}$ M. Assunção, ${ }^{7}$ B. Bastin, ${ }^{1}$ D. Beaumel, ${ }^{2}$ G. Benzoni, ${ }^{8}$ R. Borcea, ${ }^{9}$ A.J. Boston, ${ }^{10}$ L. Cáceres, ${ }^{1}$ B. Cederwall, ${ }^{11}$ I. Celikovic, ${ }^{12}$ V. Chudoba, ${ }^{13}$ M. Ciemala, ${ }^{14}$ J. Collado, ${ }^{15}$ F. C. L. Crespi,,${ }^{8}{ }^{16}$ G. D'Agata, ${ }^{13}$ G. De France, ${ }^{1}$ F. Delaunay, ${ }^{5}$ C. Diget, ${ }^{17}$ C. Domingo-Pardo, ${ }^{18}$ J. Eberth, ${ }^{19}$ C. Fougères, ${ }^{1}$ S. Franchoo, ${ }^{2}$ F. Galtarossa, ${ }^{3}$ A. Georgiadou, ${ }^{3}$ J. Gibelin, ${ }^{5}$ S. Giraud, ${ }^{1}$ V. González, ${ }^{15}$ N. Goyal, ${ }^{2}$ A. Gottardo, ${ }^{20}$ J. Goupil, ${ }^{1}$ S. Grévy, ${ }^{1}$ V. Guimaraes, ${ }^{21}$ F. Hammache, ${ }^{2}$ L. J. Harkness-Brennan, ${ }^{10}$ H. Hess, ${ }^{19}$ D.S. Judson Oliver, ${ }^{10}$ O. Kamalou, ${ }^{1}$ A. Kameneyero, ${ }^{1}$ J. Kiener, ${ }^{2}$ W. Korten, ${ }^{22}$ S. Koyama, ${ }^{23}$ M. Labiche, ${ }^{24}$ L. Lalanne, ${ }^{2}$ V. Lapoux, ${ }^{22}$ S. Leblond, ${ }^{1}$ A. Lefevre, ${ }^{1}$ C. Lenain, ${ }^{5}$ S.Leoni, ${ }^{8,16}$ H. Li, ${ }^{1}$ A. Lopez-Martens, ${ }^{2}$ A. Maj, ${ }^{14}$ I. Matea, ${ }^{2}$ R. Menegazzo, ${ }^{25}$ D. Mengoni, ${ }^{26,25}$ A. Meyer, ${ }^{2}$ B. Million, ${ }^{8}$ B. Monteagudo, ${ }^{5}$ P. Morfouace, ${ }^{1}$ J. Mrazek, ${ }^{13}$ M. Niikura, ${ }^{23}$ J. Piot, ${ }^{1}$ Zs. Podolyak, ${ }^{27}$ C. Portail, ${ }^{2}$ A. Pullia, ${ }^{16}$ B. Quintana, ${ }^{28}$ F. Recchia, ${ }^{26},{ }_{2} 5$ P. Reiter, ${ }^{19}$ K. Rezynkina, ${ }^{29,25}$ T. Roger, ${ }^{1}$ J. S. Rojo, ${ }^{17}$ F. Rotaru, ${ }^{9}$ M.D. Salsac, ${ }^{22}$ A. M. Sánchez Benítez, ${ }^{30}$ E. Sanchis, ${ }^{15}$ M. Şenyig̈it, ${ }^{31}$ N. de Séréville, ${ }^{2}$ M. Siciliano, ${ }^{20,} 22,32$ J. Simpson, ${ }^{24}$ D. Sohler, ${ }^{33}$ O. Sorlin, ${ }^{1}$ M. Stanoiu, ${ }^{9}$ C. Stodel, ${ }^{1}$ D. Suzuki, ${ }^{34}$ C. Theisen, ${ }^{22}$ J. C. Thomas, ${ }^{1}$ P. Ujic, ${ }^{12}$ J.J. Valiente-Dobón, ${ }^{20}$ and M. Zielińska ${ }^{22}$
${ }^{1}$ Grand Accéérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bvd Henri Becquere, 14076, Caen, France
${ }^{2}$ IJ CLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France
${ }^{3}$ Center for Theoretical Physics, Sloane Physics Laboratory,
Yale University, New Haven, Connecticut 06520, USA
${ }^{4}$ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
${ }^{5}$ Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France
${ }^{6}$ Université de Lyon, Université Lyon-1, CNRS/IN2P3, UMR5822,
IPNL, 4 Rue Enrico Fermi, F-69622 Villeurbanne Cedex, France
${ }^{7}$ Departamento de Física, Universidade Federal de São Paulo, CEP 09913-030, Diadema, São Paulo, Brazil ${ }^{8}$ I NFN Sezione di Milano, I-20133 Milano, Italy
${ }^{9}$ Horia Hulubei National Institute of Physics and Nuclear Enginering, P.O. Box MG6, Bucharest-Margurele, Romania
${ }^{10}$ Oliver Lodge Laboratory, The University of Liverpool, Liverpool, L69 7ZE, UK
${ }^{11}$ Department of Physics, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
${ }^{12}$ Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
${ }^{13}$ Nuclear Physics Institute of the Czech Academy of Sciences, CZ-250 68, Rez, Czech Republic
${ }^{14}$ The Henryk Niewodniczański Institute of Nuclear Physics,
Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
${ }^{15}$ Departamento de Ingeniería Electrónica, Universitat de Valencia, Burjassot, Valencia, Spain
${ }^{16}$ Dipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
${ }^{17}$ Department of Physics, University of York, Heslington, York, YO10 5DD, UK
${ }^{18}$ Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
${ }^{19}$ Institut für Kernphysik, Universität zu K öln, Zülpicher Str. 77, D-50937 Köln, Germany
${ }^{20}$ Laboratori Nazionali di Legnaro, INF N, I-35020 Legnaro (PD), Italy
${ }^{21}$ Instituto de Física, Universidade de São Paulo, CEP 05508-090, São Paulo, São Paulo, Brazil
${ }^{22}$ Irfu, CEA, Université Paris-Saclay, F-91191 Gif-sur-Y vette, France
${ }^{23}$ Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo, 113-0033, Tokyo, J apan
${ }^{24}$ STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK ${ }^{25}$ INFN Sezione di Padova, I-35131 Padova, Italy
${ }^{26}$ Dipartimento di Fisica e Astronomia dell'Università di Padova, I-35131 Padova, Italy
${ }^{27}$ Department of Physics, University of Surrey, Guildford, GU2 7XH, UK
${ }^{28}$ Laboratorio de Radiaciones Ionizantes, Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
${ }^{29}$ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
${ }^{30}$ Department of Integrated Sciences, Centro de Estudios Avanzados en Física,
Matemáticas y Computación (CEAFMC), University of Huelva, 21071, Huelva, Spain
${ }^{31}$ Department of Physics, Ankara University, 06100 Besevler - Ankara, Turkey
${ }^{32}$ Physics Division, Argonne National Laboratory, Lemont (IL), United States
${ }^{33}$ Institute for Nuclear Research, Atomki, 4001 Debrecen, P.O. Box 51, Hungary
${ }^{34}$ RIKEN Nishina Center, Tokyo, J apan
(Dated: November 30, 2021)
The structure of the unbound ${ }^{15} \mathrm{~F}$ nucleus is investigated using the inverse kinematics resonant scattering of a radioactive ${ }^{14} \mathrm{O}$ beam impinging on a CH_{2} target. The analysis of ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, \mathrm{p}\right)^{14} \mathrm{O}$
and ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, 2 \mathrm{p}\right)^{13} \mathrm{~N}$ reactions allowed the confirmation of the previously observed narrow $1 / 2^{-}$ resonance, near the two-proton decay threshold, and the identification of two new narrow $5 / 2^{-}$ and $3 / 2^{-}$resonances. The newly observed levels decay by 1 p emission to the ground of ${ }^{14} \mathrm{O}$, and by sequential 2 p emission to the ground state (g.s.) of ${ }^{13} \mathrm{~N}$ via the 1^{-}resonance of ${ }^{14} \mathrm{O}$. Gamow shell model (GSM) analysis of the experimental data suggests that the wave functions of the $5 / 2^{-}$ and $3 / 2^{-}$resonances may be collectivized by the continuum coupling to nearby 2 p - and 1 p - decay channels. The observed excitation function ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, \mathrm{p}\right){ }^{14} \mathrm{O}$ and resonance spectrum in ${ }^{15} \mathrm{~F}$ are well reproduced in the unified framework of the GSM.

Introduction- The nucleus is an open quantum system (OQS) where virtual excitations to continuum states provide an essential mechanism of the effective interaction [1, 2]. Well known manifestations of nuclear openness are segregation of decay time scales $[3,4]$, modification of the effective interactions [1], multichannel effects in reaction cross-sections and shell occupancies [5, 6], or near-threshold clustering and correlations [7, 8], etc. The latter phenomenon is generic in OQSs and stems from properties of the scattering matrix in a multichannel system [9]. The coupling of different shell model (SM) eigenstates with the same quantum numbers (angular momentum and parity) to the same decay channel induces a mixing among them, reflecting the nature of the decay channel $[7,8]$. Such configuration mixing can radically change the structure of near-threshold states.

Resonance spectroscopy of nuclei located far from the valley of stability and close, or beyond, the neutron and proton driplines, is the basic experimental tool to study coupling of discrete states with a scattering continuum. Due to their extremely short half-life, these nuclei are difficult to produce and study. Investigating the structure of the excited states of these unbound nuclei is an even greater challenge, since several decay channels might be opened with particle emission times usually shorter than 10^{-21} seconds. Among these broad states, one might find narrow resonances [10-12] which are the principal source of information about the spectroscopic properties and clusterization of unbound nuclei.

The interplay between Hermitian and anti-Hermitian continuum couplings is a general mechanism of the formation of the narrow resonances in the continuum. Specifically, in the proximity of the decay threshold, the mixing of SM eigenstates leads to the formation of a collective eigenstate of the OQS Hamiltonian which carries an imprint of the decay channel [7, 8]. Numerous examples of such states are known in light nuclei. Among them are near-threshold α-cluster states [13], such as the famous 0_{2}^{+}Hoyle state in ${ }^{12} \mathrm{C}$, neutron halo states, such as ${ }^{11} \mathrm{Li}$ and ${ }^{11} \mathrm{Be}$, or the narrow resonance $1 / 2_{1}^{-}$in ${ }^{15} \mathrm{~F}$ near the 2p-decay threshold [14].

Three unusually narrow resonances in the unbound ${ }^{15} \mathrm{~F}$ nucleus have been predicted by Canton et al. [15] and updated predictions are given in Ref. [16-18]. The prediction of these resonances was partially confirmed by the experimental observation of a narrow ($\Gamma=36(19) \mathrm{keV})$ resonance located only 129 keV above the 2 p-decay
threshold [14].
In the present work we report, for the first time, the clear observation of two new narrow resonances in ${ }^{15} \mathrm{~F}$ more than 3 MeV above the Coulomb barrier, by the resonant elastic $\left({ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, \mathrm{p}\right){ }^{14} \mathrm{O}\right)$ and inelastic scattering $\left({ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, 2 \mathrm{p}\right){ }^{13} \mathrm{~N}\right)$ reactions. The spectroscopic properties of these resonances have been determined from a phenomenological R-matrix analysis of the excitation functions of these reactions.

Experimental method.- The experimental results have been obtained from a campaign of two measurements performed at GANIL using ${ }^{14} \mathrm{O}$ radioactive beam delivered by the SPIRAL1 facility. The unbound nucleus ${ }^{15} \mathrm{~F}$ was studied through the measurement of the ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, \mathrm{p}\right){ }^{14} \mathrm{O}$ and ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, 2 \mathrm{p}\right){ }^{13} \mathrm{~N}$ reactions. Both measurements used the thick-target technique [14]. The first measurement used a $7.64(1) \mathrm{MeV} / \mathrm{u}$ beam of ${ }^{14} \mathrm{O}$ impinging a $107(11) \mu$ m-thick CH_{2} target while the second experiment used a $7.42(1) \mathrm{MeV} / \mathrm{u}^{14} \mathrm{O}$ beam impinging on a $92(9) \mu$ m-thick CH_{2} target. A $75(8) \mu$ m-thick ${ }^{12} \mathrm{C}$ target was used to determine and subtract the carbon-induced background. A low-pressure multiwire detector, CATS [19], located upstream of the target was used in both experiments to monitor the beam intensity ($\sim 3 \times 10^{5} \mathrm{pps}$).

The ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, \mathrm{p}\right){ }^{14} \mathrm{O}$ excitation function has been obtained in the first experiment [20] from a MUST2 detector [21] responsible for the particle identification and the measurement of the total energy and angle of the protons. This telescope was composed of two stages: a square 300μ m-thick DSSD with 128×128 strips, and a 4 x 4 CsI crystals array and covered angles between 0° and 5° relative to the beam direction. A $57(5) \mu \mathrm{m} \mathrm{Ta}$ foil acted as a beam stopper completely stopping beamlike particles from entering the detector, while having a minimal effect on the elastically scattered protons.

The ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, 2 \mathrm{p}\right){ }^{13} \mathrm{~N}$ excitation function has been measured in the second experiment [22] using the invariant mass method. This experiment used for the first time the recently commissioned, state-of-the-art, detection system composed of the MUGAST array [23] which includes 4 MUST2 detectors, the VAMOS magnetic spectrometer [24] and the HPGe γ-ray spectrometer AGATA [25]. This detection system allowed the measurement of the full kinematics of the reaction. Particle identification, total energy and angle of the protons have been obtained using MUST2 telescopes covering angles between 8 and 50 degrees in the lab relative to beam direction. For beam-

FIG. 1. (Color online) Differential cross section of the ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, \mathrm{p}\right)^{14} \mathrm{O}$ reaction measured in the present study (full red dots) and in Ref. [14] (empty blue squares) and total cross-section of the ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, 2 \mathrm{p}\right){ }^{13} \mathrm{~N}$ reaction (empty green circles), both, as a function of the reconstructed resonance energy E_{r} in the $p+{ }^{14} \mathrm{O}$ system. For the latter, the contribution of the $5 / 2^{-}, 3 / 2^{-}$ states and higher-energy resonances extracted from the R-M atrix fit are shown in filled blue, red and green respectively. The best R-matrix simultaneous fit of the two reaction channels constrained only by the g.s. properties extracted from Ref. [14] is shown as a continuous black line. The blue dashed line corresponds to the result of the GSMCC calculation (see text for details) scaled in amplitude to match the experimental cross-section.

TABLE I. Resonances properties determined from the Rmatrix analysis of the resonant elastic ($\left.{ }^{15} \mathrm{~F} \rightarrow{ }^{14} \mathrm{O}\left(\mathrm{O}_{1}^{+}\right)+\mathrm{p}\right)$ and inelastic scattering (${ }^{15} \mathrm{~F} \rightarrow{ }^{14} \mathrm{O}\left(1^{-}\right)+\mathrm{p}$) excitation functions.

J^{π}	$\mathrm{E}_{\mathrm{r}}(\mathrm{MeV})$	 ${ }^{15} \mathrm{~F} \rightarrow{ }^{14} \mathrm{O}\left(\mathrm{O}_{1}^{+}\right)+\mathrm{p}$ $\Gamma(\mathrm{keV})$	${ }^{15} \mathrm{~F} \rightarrow{ }^{14} \mathrm{O}\left(\mathrm{l}_{1}^{-}\right)+\mathrm{p}$ $\Gamma(\mathrm{keV})$		
$5 / 2^{+}$	$2.81(12)$	$251(26)$	2	-	-
$1 / 2^{-}$	$4.88(21)$	$30(15)$	1	-	-
$5 / 2^{-}$	$5.93(10)$	$3(2)$	3	$0.3(1)$	2
$3 / 2^{-}$	$6.33(13)$	$28(13)$	1	$2.2(6)$	2
				$<1 \times 10^{-3}$	0

like residues, such as ${ }^{13} \mathrm{~N}$, their total energy, angle and identification have been obtained using VAMOS with an acceptance up to 4.6 degrees relative to the beam direction. The γ-rays from the decay of unbound states were detected by AGATA but they are not discussed in this paper.

Experimental results.- The measured excitation functions for ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, \mathrm{p}\right){ }^{14} \mathrm{O}$ and ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, 2 \mathrm{p}\right){ }^{13} \mathrm{~N}$ reactions are shown in Fig. 1 and the determined properties of the resonances are summarized in Table I. The analysis of the two excitation functions has been performed using R-matrix formalism [26] implemented into the AZURE2 code [27] (radius parameter $\mathrm{a}=5.1 \mathrm{fm}$). The center-ofmass energy resolution considered for the resonant elastic and inelastic excitation function (see Fig. 1) are respectively: $\sigma\left(E_{r}\right)=50(5) \mathrm{keV}$ and $\sigma\left(\mathrm{E}_{\mathrm{r}}\right)=300(20) \mathrm{keV}$. The experimental spectroscopic factors were deduced from the measured partial width $\Gamma(E)$ and the single particle width $\Gamma_{\mathrm{sp}}(\mathrm{E})$ (calculated with the DWU code [28]): $\mathrm{C}^{2} \mathrm{~S}_{\text {exp }}=\Gamma(E) / \Gamma_{\mathrm{sp}}(E)$. The experimental spectroscopic factors to the ground and first-excited states of ${ }^{14} \mathrm{O}$ are displayed in Table II.

The ground state (g.s.) is a broad resonance $\mathrm{J}^{\pi}=1 / 2^{+}$ [14, 29-38], closely related to the configuration $\left[{ }^{14} \mathrm{O}\left(0_{1}^{+}\right)\right.$ $\left.+p\left(S_{1 / 2}\right)\right]$. The first excited state $\left(J^{\pi}=5 / 2^{+}\right.$, $\left.\mathrm{E}_{\mathrm{r}}=2.81(12) \mathrm{MeV}, \Gamma=251(26) \mathrm{keV}\right)$ is in good agreement with previous measurements [14]. Based on the large spectroscopic factor $\mathrm{C}^{2} \mathrm{~S}=1.0$ (see Table II), its structure is interpreted as $\left[{ }^{14} \mathrm{O}\left(0_{1}^{+}\right)+\mathrm{p}\left(\mathrm{d}_{5 / 2}\right)\right]$ [29, 39, 40].

Contrary to the positive-parity resonances, the $1 / 2_{1}^{-}$, $5 / 2_{1}^{-}, 3 / 2_{1}^{-}$inherit weakly from the ${ }^{14} \mathrm{O}\left(0_{1}^{+}\right)+\mathrm{p}$ configuration. Indeed, these states are collectivized by the coupling to 2 p-decay channel ${ }^{13} \mathrm{~N}+2 \mathrm{p}$ and to several inelastic 1p-decay channels. The second excited state $J^{\pi}=1 / 2^{-}$, has been found at $\mathrm{E}_{\mathrm{r}}=4.88(21) \mathrm{MeV}$, $\Gamma=30(15) \mathrm{keV}$, confirming previous measurements $[14,36,41,42]$. The small decay width of this resonance, which is situated more than 1.5 MeV above the Coulomb plus centrifugal barrier and almost 4.9 MeV above the 1 p-emission threshold, has been explained [14] as a consequence of the continuum-coupling induced collective mixing of SM eigenstates [43, 44] with the nearby 2p-decay channel.

At higher excitation energies, two new narrow resonances have been measured for the first time. These states can decay by one-proton emission to ${ }^{14} \mathrm{O}\left(0_{1}^{+}\right)$ or sequentially by two-proton emission to the g.s. of ${ }^{13} \mathrm{~N}\left(1 / 2_{1}^{-}\right)$through the intermediate state ${ }^{14} \mathrm{O}\left(1_{1}^{-}\right)$. The 2p-decay has been investigated by the mean of the invariant-mass method. A comparison of the Dalitz plot representation [45] of the experimental events compared to a realistic GEANT4 [46] simulation performed within the nptool framework [47] (see Fig. 2) indicated that the sequential 2p-decay through the first excited state of ${ }^{14} \mathrm{O}$

FIG. 2. (Color online) Reduced relative energy between one proton and the ${ }^{13} \mathrm{~N}$ residue is shown vs reduced relativeenergy between the two protons for the ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, 2 \mathrm{p}\right){ }^{13} \mathrm{~N}$ events. The red and black lines corresponds respectively to the first and the second sequentially emitted protons.

FIG. 3. (Color online) (a), (b): Measured center-of-mass angular distribution of the first sequentially emitted proton reaction (black dots). The red line, the dot-dashed pink lineand the dotted blue line display the best Legendre polynomials fit with the order $K=0, K=2$ and $K=4$ [48]
dominates.
The first new state is observed as a very narrow resonance with $\mathrm{J}^{\pi}=5 / 2^{-}, \mathrm{E}_{\mathrm{r}}=5.93(10) \mathrm{MeV}$, $\Gamma\left(0_{1}^{+}\right)=3(2) \mathrm{keV}$ and $\Gamma\left(1_{1}^{-}\right)=0.3(1) \mathrm{keV}$. The obtained spectroscopic information for this resonance is consistent with the mirror-nucleus level sequence and the prediction of Fortune and Sherr [17].

The second new state is a $3 / 2^{-}$resonance with $\mathrm{E}_{\mathrm{r}}=6.33(13) \mathrm{MeV}, \Gamma\left(0_{1}^{+}\right)=28(13) \mathrm{keV}$ and $\Gamma(\overline{1})=$ $2.2(6) \mathrm{keV}$. The R-matrix analysis could not distinguish between $3 / 2^{-}$and $1 / 2^{+}$spin-parity assignments for this resonance. The $3 / 2^{-}$spin assignment for this resonance is based on the Legendre polynomial fit [48] of the center-of-mass angular distribution of the first sequentially emitted proton in the ${ }^{1} \mathrm{H}\left({ }^{14} \mathrm{O}, 2 \mathrm{p}\right){ }^{13} \mathrm{~N}$ reaction as shown in Fig. 3. The analysis of this angular distribution also showed that the decay was dominated by the $l=2$ component with a ${ }^{`}=0$ partial width $<1 \mathrm{eV}$ (see Fig. 3 and Table I). The energy and spin-parity of this resonance agrees with a prediction of Ref. [17, 18]. However, the width is surprisingly 12.5 times narrower than the predicted value from Ref. [18], where they deduce the width from the ${ }^{15} \mathrm{C}$ mirror nucleus using the usual equality of spectroscopic factors between mirror states, without considering the coupling to the continuum.

Theoretical description.- The present data has been

FIG. 4. (Color online) Level scheme of ${ }^{15} \mathrm{~F}$ with respect to ${ }^{14} \mathrm{O}$ g.s. from the GSMCC calculation (left) and the present analysis (center), and level scheme of ${ }^{14} \mathrm{O}$ (right). ${ }^{15} \mathrm{~F}$ data aretaken from [14] and the present analysis, and ${ }^{14} \mathrm{O}$ data are taken from [57]. The red lines indicate the $2 p$ and $3 p$ decay thresholds. Resonance widths are given in the brackets.
analysed and interpreted in the framework of the Gamow Shell Model (GSM) [1, 49-52]. This model is a configuration-interaction OQS approach formulated in the Berggren single-particle (s.p.) basis [53] that includes bound states, resonances and non-resonant background states of the discretized contour embedding resonances. The many-body basis states consist of Slater determinants where nucleons occupy s.p. basis of the chosen Berggren basis [1, 52].

The model space consists of ${ }^{12} \mathrm{C}$ core and valence protons in the p and sd shells. The s.p. valence space is build of three pole states: $0 p_{1 / 2}, 0 d_{5 / 2}, 1 s_{1 / 2}$ and five continua: $p_{1 / 2}, p_{3 / 2}, d_{3 / 2}, s_{1 / 2}$, and $d_{5 / 2}$. The $d_{5 / 2}$ and $\mathrm{s}_{1 / 2}$ levels are described in the Berggren s.p. basis, whereas remaining partial waves are expanded in the harmonic oscillator basis. The Hamiltonian consists of a onebody part which includes a Woods-Saxon, spin-orbit and Coulomb potentials, and a two-body part which comprise of the Furutani-Horiuchi-Tamagaki effective interaction plus the Coulomb interaction and recoil term [54]. Parameters of the Hamiltonian are adjusted to reproduce the energies of $1 / 2_{1}^{-}, 1 / 2_{1}^{+}, 5 / 2_{1}^{+}$states of ${ }^{13} \mathrm{~N}$ and ${ }^{15} \mathrm{~F}$, as well as the energies of $0_{1}^{+}, 1_{1}^{-}$, and 3_{1}^{-}states in ${ }^{14} \mathrm{O}$.

To describe nuclear reactions, GSM has to be formulated in the coupled-channel representation, the GSMCC $[1,55,56]$. In the present studies, the reaction channels in the GSMCC are constructed by coupling states of ${ }^{14} \mathrm{O}$ calculated in the GSM with proton states in different partial waves (n j$)$). The considered states of ${ }^{14} \mathrm{O}$ are $0_{1}^{+}, 0_{2}^{+}, 2_{1}^{+}, 2_{2}^{+}, 0_{1}^{-}, 1_{1}^{-}, 2_{1}^{-}$, and 3_{1}^{-}. The projectile motion is described by single particle states of p, and sd shells, and by s, p and sd continua.

The GSMCC excitation function is superimposed and scaled in amplitude to match the data in Fig. 1. Strong resonances are seen for the positive-parity states $\mathrm{J}^{\pi}=$
(2003).
[12] A. F. Sadreev, Rep. Prog. Phys. 84, 055901 (2021).
[13] K. Ikeda, N. Takigawa, and H. Horiuchi, Prog. Theor. Phys. Suppl. E68, 464 (1968).
[14] F. De Grancey, A. Mercenne, F. de Oliveira Santos, T. Davinson, O. Sorlin, J. C. Angélique, M. Assié, E. Berthoumieux, R. Borcea, A. Buta, et al., Phys. Lett. B 758, 26 (2016).
[15] L. Canton, G. Pisent, J. Svenne, K. Amos, and S. Karataglidis, Phys. Rev. Lett. 96, 072502 (2006).
[16] P. R. Fraser, K. Amos, L. Canton, S. Karataglidis, D. van der Knijff, and J. P. Svenne, Phys. Rev. C 100, 024609 (2019).
[17] H. T. Fortune and R. Sherr, Phys. Rev. Lett. 99, 089201 (2007).
[18] H. T. Fortune, Phys. Rev. C 83, 024311 (2011).
[19] S. Ottini-Hustache, C. Mazur, F. Auger, A. Musumarra, N. Alamanos, B. Cahan, A. Gillibert, A. Lagoyannis, O. Maillard, E. Pollacco, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 431, 476 (1999).
[20] GANIL, "E744-LISE data set (2018)," htt ps:// dx. doi . org/ 10. 26143/ GAN L- 2018- E744- LI SE/ ().
[21] E. Pollacco, D. Beaumel, P. Roussel-Chomaz, E. Atkin, P. Baron, J. P. Baronick, E. Becheva, Y. Blumenfeld, A. Boujrad, A. Drouart, et al., Eur. Phys. J. A - Hadrons and Nuclei 25, 287 (2005).
[22] GANIL, "E744-VAMOS data set (2019)," htt ps: / / dx. doi . org/ 10. 26143/ 10. 26143/ GAN L- 2019- E744- VAMDS/ ().
[23] M. Assié, E. Clément, A. Lemasson, D. Ramos, A. Raggio, I. Zanon, F. Galtarossa, C. Lenain, J. Casal, F. Flavigny, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 1014, 165743 (2021).
[24] M. Rejmund, B. Lecornu, A. Navin, C. Schmitt, S. Damoy, O. Delaune, J. Enguerrand, G. Fremont, P. Gangnant, L. Gaudefroy, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 646, 184 (2011).
[25] S. Akkoyun, A. Algora, B. Alikhani, F. Ameil, G. de Angelis, L. Arnold, A. Astier, A. Ataç, Y. Aubert, C. Aufranc, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 668, 26 (2012).
[26] A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257 (1958).
[27] R. E. Azuma, E. Uberseder, E. C. Simpson, C. R. Brune, H. Costantini, R. J. de Boer, J. Görres, M. Heil, P. J. LeBlanc, C. Ugalde, and M. Wiescher, Phys. Rev. C 81, 045805 (2010).
[28] K. L. A. M. E. Koonin, Computational Nuclear Physics 2 (Springer, 1993).
[29] H. T. Fortune, Phys. Rev. C 74, 054310 (2006).
[30] A. Mukhamedzhanov, B. Irgaziev, V. Goldberg, Y. V. Orlov, and I. Qazi, Phys. Rev. C 81, 054314 (2010).
[31] D. Baye, P. Descouvemont, and F. Leo, Phys. Rev. C 72, 024309 (2005).
[32] G. KeKelis, M. S. Zisman, D. Scott, R. Jahn, D. Vieira, J. Cerny, and F. Ajzenberg-Selove, Phys. Rev. C 17, 1929 (1978).
[33] W. Benenson, E. Kashy, A. Ledebuhr, R. Pardo, R. Robertson, and L. Robinson, Phys. Rev. C 17, 1939 (1978).
[34] W. A. Peters, T. Baumann, D. Bazin, B. A. Brown, R. R. C. Clement, N. Frank, P. Heckman, B. A. Luther,
F. Nunes, J. Seitz, A. Stolz, M. Thoennessen, and E. Tryggestad, Phys. Rev. C 68, 034607 (2003).
[35] A. Lepine-Szily, J. Oliveira, D. Galante, G. Amadio, V. Vanin, R. Lichtenthäler, V. Guimaraes, G. Lima, H. Bohlen, A. Ostrowski, et al., Nucl. Phys. A 722, C512 (2003).
[36] A. Le, J. Oliveira, D. Galante, G. Amadio, R. Lichtentha, H. Bohlen, A. Ostrowski, A. Blazevic, C. Borcea, V. Guimara, et al., Nucl. Phys. A 734, 331 (2004).
[37] V. Goldberg, G. Chubarian, G. Tabacaru, L. Trache, R. E. Tribble, A. Aprahamian, G. Rogachev, B. Skorodumov, and X. Tang, Phys. Rev. C 69, 031302 (2004).
[38] F. Guo, J. Powell, D. Lee, D. Leitner, M. McMahan, D. Moltz, J. O'Neil, K. Perajarvi, L. Phair, C. Ramsey, et al., Phys. Rev. C 72, 034312 (2005).
[39] H. Fortune and R. Sherr, Phys. Rev. C 72, 024319 (2005).
[40] L. Grigorenko, T. Golubkova, and M. Zhukov, Phys. Rev. C 91, 024325 (2015).
[41] I. Mukha, N. Timofeyuk, K. Sümmerer, L. Acosta, M. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J. Espino, A. Fomichev, et al., Phys. Rev. C 79, 061301 (2009).
[42] V. Girard-Alcindor, I. Stefan, F. de Oliveira Santos, O. Sorlin, D. Ackermann, P. Adsley, J. C. Angélique, M. Assié, M. Assunção, D. Beaumel, Berthoumieux, et al., Eur. Phys. J. A , 93.
[43] J. Okołowicz, M. Płoszajczak, and W. Nazarewicz, Prog. Theor. Phys. Suppl. 196, 230 (2012).
[44] J. Okołowicz, W. Nazarewicz, and M. Płoszajczak, Fortschritte der Physik 61, 66 (2013).
[45] D. H. Perkins, Introduction to High Energy Physics, 4th ed. (Cambridge University Press, 2000).
[46] S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[47] A. Matta, P. Morfouace, N. de Séréville, F. Flavigny, M. Labiche, and R. Shearman, J. Phys. G: Nucl. and Part. Phys. 43, 045113 (2016).
[48] J. Pronko and R. Lindgren, Nuclear Instruments and Methods 98, 445 (1972).
[49] N. Michel, W. Nazarewicz, M. Płoszajczak, and K. Bennaceur, Phys. Rev. Lett. 89, 042502 (2002).
[50] R. M. Id Betan, R. J. Liotta, N. Sandulescu, and T. Vertse, Phys. Rev. Lett. 89, 042501 (2002).
[51] N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Okołowicz, Phys. Rev. C 67, 054311 (2003).
[52] N. Michel, W. Nazarewicz, M. Płoszajczak, and T. Vertse, J. Phys. G: Nuclear and Particle Physics 36, 013101 (2008).
[53] T. Berggren, Nucl. Phys. A 109, 265 (1968).
[54] K. Fossez, N. Michel, M. Płoszajczak, Y. Jaganathen, and R. M. Id Betan, Phys. Rev. C 91, 034609 (2015).
[55] Y. Jaganathen, N. Michel, and M. Płoszajczak, Phys. Rev. C 89, 034624 (2014).
[56] A. Mercenne, N. Michel, and M. Płoszajczak, Phys. Rev. C 99, 044606 (2019).
[57] F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).
[58] F. De Oliveira, A. Coc, P. Aguer, G. Bogaert, J. Kiener, A. Lefebvre, V. Tatischeff, J.-P. Thibaud, S. Fortier, J. Maison, et al., Phys. Rev. C 55, 3149 (1997).

