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Abstract

An age-structured SEIR model simulates the propagation of COVID-19 in the population of Northern
Ireland. It is used to identify optimal timings of short-term lockdowns that enable long-term pandemic
exit strategies by clearing the threshold for herd immunity or achieving time for vaccine development
with minimal excess deaths.
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1 Introduction

Epidemiological population models are developed to analyse the characteristics of infectious disease propa-
gation such as the distribution of epidemic sizes [16], to predict the possible course of future epidemics [30],
and to determine the efficacy of possible interventions [39]. These are especially useful when there is limited
empirical data during the early stages of an outbreak and a rapid response of allocating resources at scale
is required to pre-empt the exponential growth of case numbers. In vaccination programmes, mathematical
models can indicate what fraction of the population would need to be immunised in order to control the
epidemic. In such a way, modelling assists with planning interventions in public health, particularly when
trials or direct measures of impact are unavailable [19].

Compartmental population models capture the mechanisms of infectious disease transmission in a popu-
lation. In such models, compartments represent the different statuses of an individual regarding the disease
and so the size of the compartments indicates how much of the population is in a particular state at a given
time. Simplest is the SIR (“susceptible - infectious - recovered”) model, where the infectious compartment
accounts for the number of individuals in the population who currently can transmit the disease. A pro-
portion of susceptible individuals who encounter them are infected while infectious individuals recover or
perish with a given rate. More sophisticated models of this type may include an “exposed” compartment and
may segregate the population by age, gender, or physical location. Such models have been widely used to
simulate COVID-19 [46], incorporating complications such as age- or space-structure and multiple infectious
compartments to delineate the severity of symptoms. Examples simulating the outbreak in Wuhan include
an age-structured SEIIR model [44], and an SEIR model [32] that distinguishes between “true” cases and the
estimated fraction of these that are detected. Some approaches separate symptomatic and asymptomatic in-
fections, such as a model calibrated to US states [3]. An age-structured SEIIIR model for Belgium separates
the infection into three levels of severity [8], while a SEIRS model allowing for re-infection has been trained
on data from Northern Ireland and South Korea [40]. Others are used to quantify the effect of national
lockdowns, comparing their impact across countries [21], and testing optimal lockdown and control measures
to identify a viable pandemic “exit strategy” [48]. Space-structured network models divide states or nations
into multiple smaller communities, with examples including an age-structured model for Scotland [1]; for
the UK [9]; for Italy [20]; and for Georgia, USA [2]. Such a spatially-structured approach can incorporate
non-uniform spatial factors such as age-distribution and population density, allowing researchers to forecast
the regions of a country likely to be worst affected or to simulate varying regional interventions. For example,
a model for the UK [11] that compares the use of national lockdowns with localised lockdowns triggered by
regional levels of ICU bed capacity.

Mathematical models are employed practically to test the effectiveness of proposed interventions such as
further lockdowns, mask use, and social distancing on the possible course of the pandemic. Researchers
have sought to quantify the effect of timing and duration of lockdowns [42], finding that timing restrictions
within an optimal opportunity window may be critical in controlling peak infections. Others have found that
either a longer eradication strategy or a shorter curve-flattening strategy may be preferable when accounting
for economic concerns [5]. Throughout 2020, the UK government’s decisions were influenced by modelling
by the group at Imperial College London [17], and in November 2020 model projections were the reported
rationale for the four-week national lockdown in England. Concerns about a possible second wave, combined
with the hope of an imminent vaccine led to further high-intensity “circuit break” lockdowns. As these need
to be maximally effective and as short as possible to minimise further economic disruption, a particular
application of compartmental models was to identify optimal use of circuit breaks [28, 29], while other work
has explored switching strategies between lockdowns and keeping communities open [7]. Further research
has concerned the question of “unlocking”, with both agent-based [12] and SEIR compartmental models [22]
favouring exit strategies that gradually release restrictions.

In this manuscript, we calibrate an age-structured SEIIR model to the age-distribution of the population of
Northern Ireland and simulate the COVID-19 pandemic throughout 2020 and early 2021, computationally
fitting parameters such as infection rates. This model is employed to explore hypothetical implementations
of lockdowns. In §4 this involves testing the influence of the duration and intensity of a lockdown and the
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possibility of restrictions only applying to the more vulnerable members of society. In §5 we test trigger
mechanisms that could be used during a future pandemic for implementing restrictions according to the
number of hospital occupants. In such cases, we study the impact of the sensitivity of the trigger and the
delay until lockdown begins on clinical outcomes such as the overall cumulative deaths from the pandemic.

2 Model description

We divide the population of Northern Ireland (approximately 1,894,000) into five 20-year age classes i =
1, . . . , 5, using demographic data [18]. The total population of each age class is considered invariant over the
time-frame of the simulations, but they are each subdivided into eight compartments that reflect the status
of individuals with respect to the disease, and so the sizes of these compartments are updated according to
the epidemiological dynamics described below.

For age class i, the population Pi consists of:

• Si susceptible individuals who have never contracted the disease.

• Ei exposed individuals, who are currently infected with the disease but are not yet able to transmit it.

• IS,i subclinical infectious individuals, who have the disease currently and may infect others but who
do not display recognisable symptoms. This includes both pre-symptomatic individuals who will later
develop symptoms, and asymptomatic individuals, who will never display symptoms.

• IC,i clinical infectious individuals, who have the disease currently, manifest symptoms and may infect
others, but who do not yet require hospitalisation treatment.

• H1,i clinical infectious individuals who have been progressed to hospital.

• H2,i clinical infectious individual who have been progressed from general hospital wards to ICU.

• Ri recovered individuals who are no longer capable of either spreading the disease or of contracting it.

• Di deceased individuals.

Thus,

Pi = Si + Ei + IS,i + IC,i +H1,i +H2,i +Ri +Di

and the total population of the country is given by:

P =

5∑
i=1

Pi

Infectious individuals come into contact with (any) individuals of an age-distribution governed by a contact
matrix c [43], and the base probability of infection is determined by the transmission rate β. Data for the
number of contacts made between individuals of each age class are obtained from an empirical study [43]
which estimated contacts separately for “home”, “work”, “school” and “other” environments for 5-year age
classes up to age 80. For this study, we condensed the average of the matrices for the UK and Ireland, with
the process fully-described in §1.2 of the Supplementary Material. The final contact matrix c and β may
vary during the simulation, for example as school closures reduce the contact for the youngest age class, and
as social distancing reduces the value of β across the entire population. Infectious individuals are divided
into two categories: subclinical and clinical, who have a relative infectiousness iS = 1 and iC = 0.5869
respectively, so that on average 56.1% of infections occur during the pre-symptomatic stage of a clinical case
[4, 6, 24], given that each such case spends on average 3 days in the subclinical compartment followed by 4
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days in the clinical compartment1. Additional infections occur due to subclinical cases that do not progress
and may have been undetected in these studies, and due to the emphasis on symptomatic individuals self-
isolating a higher transmission rate for the subclinical compartment is not unreasonable. The number of
individuals of age class i who move to the exposed compartment is further influenced by their susceptibility
αi [10]. Thus, βαicj,i(iSIS,j + iCIC,j) would be the rate of new infections generated in class i from class j,
assuming that all members of i are susceptible. Summing over the infectious compartments of all classes,
and scaling by the probability SiP

−1
i of an individual of class i being susceptible gives the total rate of new

exposed cases for this age class2.

Exposed individuals become subclinical infectious at rate σ (1/5.1 [34, 37]). They do not show symp-
toms at this stage but can transmit the virus to others. With rate γS (1/3 [44]) they leave this class, and an
age-dependent [10] fraction εi develop clinical symptoms, while the remainder join the recovered compart-
ment. Those who have moved to the clinical infectious group then leave it with rate γC (1/4 [44]). Of them,
an age-dependent fraction h1,i subsequently require hospitalisation, and a fraction h2,i of that compartment
will progress further to intensive care (ICU) [31]. We assume that transmission from hospitalised individuals
is negligible as they are isolated. Those in hospital and those in ICU have an age-dependent probability d1,i

and d2,i respectively of death [31]. These are recorded as they exit that compartment, after an average of
11 days in general ward and 8 days in ICU (thus leaving with rates δ1 = 1/11 and δ2 = 1/8 respectively),
based on a major study in China [50]3. Any individuals who do not progress to a more serious stage enter
the recovered compartment instead.

Probabilities of requiring more serious treatment and of death (εi, h1,i, h2,i, d1,i, d2,i) are dependent upon
age class i, but the time spent in each stage and thus the rates of progression (σ, γS , γC , δ1, δ2) are treated
as universal across all ages (although some studies indicate that average duration of hospital stays may
increase with age [15]). The age-weighted probabilities of progression to hospital, ICU, and death were
obtained from the estimates of the Imperial College COVID-19 Response Team [31] using data from March-
May 2020 recorded by the COVID-19 Hospitalisation in England Surveillance System (CHESS). We have
adapted these estimates for our simpler model - combining the probabilities of death in ICU and step-down
after ICU, and modifying the probability of death in general ward such that it is only applied to the fraction
of patients who are not progressed to ICU. Parameters fixed using external sources are summarised in Table 1.

1We have also investigated an alternative where exposed cases become either subclinical for 3 days, or clinical for 7 days,
essentially merging pre-symptomatic cases into the clinical compartment. By tuning β a similar age-profile of cases, and overall
projections of deaths, hospital and ICU occupants may be recovered. Thus the exact behaviour of the disease in this regard is
not critical for the model’s predictive accuracy.

2This formulation is equivalent to S′i = −βαiSi
∑5

j=1 ci,j(iSIS,j + iCIC,j)P−1
j , such as demonstrated in the supplementary

material of [43].
3A meta-study [45] found these estimates to vary considerably, with other Chinese studies producing larger estimated lengths

of stay, while a smaller number of studies outside China yield lower estimates. Some UK-specific studies suggest average lengths
of stay closer to 7-10 for general ward and 10-13 for ICU [35, 47] depending on the dataset.
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Parameter Symbol Value Source
Incubation rate σ 1/5.1 [34, 37]

Recovery rate from subclinical γS 1/3 [44, 49]
Recovery rate from clinical γC 1/4 (7 days infectious) [44, 49]

Progression rate from general hospital δ1 1/11 [50]
Progression rate from ICU δ2 1/8 [50]

Age-dependent susceptibility to infection weighting αi - [10]
Age-dependent probability of clinical case εi - [10]

Age-dependent probability of hospitalisation h1,i - [31]
Age-dependent probability of ICU h2,i - [31]

Age-dependent probability of death in hospital ward d1,i - [31]
Age-dependent probability of death in ICU d2,i - [31]

Contact matrices between age classes c - [43]

Table 1: Summary: Parameters chosen based on external data

Hence, the rates of change for the compartments of class i are given by the following system of ODE’s:

dSi

dt
= −βαiSiP

−1
i

5∑
j=1

cj,i(iSIS,j + iCIC,j)

dEi

dt
= βαiSiP

−1
i

5∑
j=1

cj,i(iSIS,j + iCIC,j)− σEi

dIS,i
dt

= σEi − γSIS,i

dIC,i

dt
= εiγSIS,i − γCIC,i

dH1,i

dt
= h1,iγCIC,i − δ1H1,i

dH2,i

dt
= h2,iδ1H1,i − δ2H2,i

dRi

dt
= (1− εi)γSIS,i + (1− h1,i)γCIC,i + (1− h2,i − d1,i)δ1H1,i + (1− d2,i)δ2H2,i

dDi

dt
= d1,iδ1H1,i + d2,iδ2H2,i

These are discretised using the Euler method with step size of one day. The process (excluding transmission
between different age classes) is illustrated in Figure 1.
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Figure 1: Compartmental flowchart of disease progression within each age class i

For a given simulation, we iterate for 400 days beginning on January 1st 2020. This is divided into nine
distinct intervals based on policy Northern Ireland, and during a simulation the transmission rate β must be
selected for each of these intervals alongside other parameters that could not be determined a priori. These
time periods and the parameters to be fitted are described in sections §1.1 and 1.4 of the Supplementary
Material respectively.

3 Fitted simulation

The simulation which best predicts the 7-day rolling average of hospital admissions (available from the
Department of Health [41]) is illustrated in Figures 2-4. The accompanying set of parameters are contained
in Table 1 of the Supplementary Material, giving a coefficient of determination R2 = 0.9481. The procedure
for identifying these are described in §2.1-2.2 with additional results in §2.3.
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(a) Empirical data (b) Best fit of the model

Figure 2: 7-day rolling average of daily new hospital admissions

(a) Empirical data (b) Projections of the model best fit

Figure 3: Hospital occupancy, ICU occupancy and cumulative deaths

(a) Spread of the virus in the population (b) Effective reproduction ratio Rt

Figure 4: Time-series of the spread of the virus according to the best fit of the model

Aside from underestimating the number of hospital admissions in those aged 60-80 during early 2021 (Figure
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2(a) and (b), purple), the model is able to accurately reproduce the behaviour of the pandemic. The total
hospital occupancy during this period is consequently also lower than that recorded (Figure 3(a) and (b),
blue). This could also be partly due to longer hospital stays during the winter, noting that such durations
vary considerably between countries and studies [45]. Total ICU occupancy and deaths are closely predicted,
with only a slight over-estimate of total deaths (Figure 3(a) and (b), yellow) coming from the 60-80 age class
(Supplementary Material: Figure 6) while deaths in the 80+ age class are slightly underestimated.

The effective reproduction ratio Rt is calculated daily (Figure 4(b)) using the next generation matrix method
[14, 13]. It is obtained from the largest eigenvalue of a 15 × 15 matrix using the current base transmission
rate β, the time-dependent contact matrices, and the susceptible proportion of each age class. This yields an
estimated Rt of approximately 5.08 during the initial stage of the pandemic, and thus a basic reproduction
ratio of R0 ≈ 5, commensurate with the wide range of estimates in other work4. The measures introduced
during the initial Spring 2020 lockdown, and the period of strengthened restrictions in late October 2020,
successfully reduced the Rt value below one, while the two circuit breaks only just brought it to down to a
value of one. Note that Rt is not constant in each time period, decreasing as the proportion of susceptible
individuals gradually declines.

(a) Pre-pandemic social conditions (b) Post-pandemic social conditions,
schools closed

(c) Post-pandemic social conditions,
schools open

Figure 5: Relationship between Rt, transmission rate and the non-susceptible fraction of the population

We further calculate the minimum thresholds of the proportion of the population (assuming uniform be-
haviour across all age classes) who would need to be non-susceptible (whether because of natural immunity,
recovery, or vaccination) to control the value of Rt as a function of the transmission rate β, and these are
presented for each of the three sets of contact matrices used at different periods of the simulation: in Figure
5(a) schools are open, and the contact matrices follow their pre-pandemic values. In Figure 5(b) and (c),
fitted post-pandemic contacts are used with schools closed and open respectively. The estimated β values at
each stage of the pandemic (Supplementary Material, Table 1) are indicated on the appropriate subfigure, so
given pre-pandemic rates we would require 80.4% of the population to be immune in order to achieve Rt < 1
(herd immunity) where the virus would fail to establish (Figure 5(a), red cross), whilst the first lockdown
(β2 line in Figure 5(b)) is completely effective and requires no population immunity. This proportion can
also be directly estimated by 1− 1/R0, for example in [33] who calculated a smaller fraction for the United
Kingdom based on early estimates of R0.

Further results of the model are:

• 9.5% of the population of Northern Ireland had contracted COVID-19 between the introduction of
the virus and early February 2021 (Figure 4(a)), whether they had shown symptoms or not. This is
in comparison with 104,274 (approximately 5.5% of the population) cases identified by at least one
positive lab-recorded test by February 1st 2021 [41].

4Early studies in China averaged around 2.2 [36] to 2.6 [26], as did the earliest European studies [38]. However, later
modelling indicates an uncontrolled basic R0 of 4.5 [27].
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• At no point after 24th March 2020 did either the transmission rate β or reproduction ratio Rt return
to those of the initial period (Figure 4(b)). The most severe spike in cases in winter 2020 was due
to a transmission rate approximately 3/4 of that prior to the pandemic, likely due to reduced social
interaction. However, at no point were the transmission rate or Rt lower than during the first lockdown,
indicating subsequent lockdowns were not as effective in accordance with the perception that they were
less severe and the increased transmissibility of subsequent COVID-19 variants.

In Supplementary Material §4, the effect of modifying the fixed parameters is investigated. In each case,
the fitted values of the infection rate β potentially compensate for the effect these changes may have on
hospital admissions, but all alternative scenarios yielded a worse fit than the parameters employed in the
main body of the paper. Despite this, the time-series of total deaths, ICU occupancy, and hospital occupancy
remained highly consistent such that in all cases the final number of cumulative deaths by day 400 lay within
2000-2500, demonstrating that the model’s predicted clinical outcomes are robust to modification.

4 Role of intensity and duration of a lockdown

This section investigates how properties impact the effectiveness of a lockdown. During a 1000-day simula-
tion, once the pandemic has been recognised by day 84 as necessitating a response, we assume a transmission
rate β = 0.0663 for the remaining days (averaging the fitted rate for non-lockdown post-pandemic periods),
except for up to 100 days of lockdown (when schools will be closed). The optimal time for intervention is
determined by explicit testing, and the question is how do reductions in total deaths or peak hospitalisations
vary with the severity and duration of the intervention? We compare the impact of measures restricted
to more vulnerable older age groups with blanket restrictions on the entire population. In each case, the
simulation requires the lockdown be activated within 100 days of day 84, and all simulations last 1000 days
so as to avoid merely selecting the circumstances that delay the larger impact of the virus (although even
then the virus will not be fully extinguished in most cases).

The scenarios illustrated in Figures 6-7 feature a “constant inflow” of new cases to allow for subsequent
re-infections entering from Great Britain and the Republic of Ireland. From day 31 of the simulation, one
additional member is added to a randomly-selected age class of the exposed compartment. Testing indicates
that the random age can alter projected long-term deaths by up to 1500 by day 2000, however the following
figures are representative of the overall trends. The main figure illustrates the minimised value of cumulative
deaths or peak numbers in hospital or ICU for a given lockdown duration (in days, from 1 to 100) and
lockdown intensity (defined as the percentage reduction of the transmission rate β from its base value 0.0663
during the lockdown, testing from 1 to 100%). The corresponding point in the inset figure indicates the day
(between 84 and 183) when the lockdown begins in order to yield this optimal result.

Additional results in Supplementary Material §5.1-5.3 include modelling Northern Ireland as a “closed sys-
tem” with no importation of exposed cases, restricting only the 80+ age class or only the 60-80 age class,
and the implementation of a sequence of ten lockdowns each of duration up to ten days.

(a) Total deaths (b) Peak hospital inpatients (c) Peak ICU occupancy

Figure 6: Optimally-timed single lockdown in a system with constant inflow. All age classes restricted.
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(a) Total deaths (b) Peak hospital inpatients (c) Peak ICU occupancy

Figure 7: Optimally-timed single lockdown in a system with constant inflow. Only the 60-80 and 80+ age
classes are restricted.

Unsurprisingly, stronger and longer lockdowns are more effective by every measure across all scenarios. By
late March the strongest measures should usually be implemented as soon as possible (for Figures 6-7 the
dark-coloured top-right of the subfigure indicates an optimal early intervention). However, when using a
single lockdown affecting all ages a slightly later lockdown minimises overall deaths (inset of Figure 6(a)),
whilst the best reduction to peak hospital or ICU occupancy was achieved by intervening as soon as possible
(compare with the corresponding subfigure in Figure 6(b)), so the optimal timing of a single lockdown may
depend on which outcome is most critical to manage in the short term.

Restricting only the contact of all individuals aged 60+ (Figure 7) can yield the best reduction of total
deaths, but only in the case of the strongest and longest-lasting interventions (the top-right corner of Figure
7(a) is darker in colour than anywhere in Figure 6(a)). This is because it allows spread among the younger
population, who then recover, thus building up immunity without incurring a large number of deaths. When
the vulnerable groups subsequently exit lockdown, the virus is then less able to spread to them. However, if
this strategy is attempted with lockdowns that are insufficient in duration or intensity, the overall effect is
actually worse than an equivalent weak-moderate lockdown of all ages. To further demonstrate this, limiting
restrictions to either only those aged 60-80 or to only those aged 80+ is less effective than a blanket restriction
on the entire population. Thus, targeted restrictions are a risky strategy that may be counter-productive if
they are insufficient in strength, duration, or the size of the restricted group. These age-related trends are
evidenced for both the closed system and constant inflow models.

5 Mechanistic activation of lockdowns

Statistical analysis has indicated that once the virus begins to spread, the precise timing and delays in
implementing restrictions can significantly impact case numbers [25], and it is essential to time restrictions
based on the true peak incidence [42]. Given possible delays in monitoring and reporting cases [23], we inves-
tigate the use of easily-trackable clinical outcomes as a mechanistic trigger than could be used to implement
restrictions during an ongoing pandemic.

We use the current number of hospital inpatients as the trigger mechanism and study the effect of in-
terventions of varying strengths, the threshold of the trigger that will enable lockdown (between 0 and 2000
hospital inpatients) and the delay between the conditions being met and the beginning of the lockdown
(between 0 and 20 days). Low-, medium- and high- interventions reduce the transmission rate by 25% for
15 days, by 50% for 30 days, and by 75% for 60 days respectively. Either a single or an unlimited number
of lockdowns are permitted.

Each simulation lasts 2000 days, with a single infection on January 30th 2020, and initial transmission
rate β = 0.1200. On the 84th day this reduces to β = 0.0663 as in the previous section. This rate reduces
further and schools close during a lockdown intervention, and the rate returns (and schools re-open) when
the lockdown concludes. No lockdowns are permitted during days 1000-2000 so as to ensure that long-term
consequences are accounted for. Caution must be emphasised when interpreting the following results as the
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model over-estimates deaths, school holidays are not accounted for. Vaccination is considered in §5.4, but
not present in the main set of results.

Figures 8-9 illustrate the effect of lockdowns in a closed system model, using hospital occupancy as the
trigger, showing the cumulative deaths, peak hospital and ICU occupancies, and the fraction of the popula-
tion (“disease spread”) who have contracted COVID-19 (whether symptomatic or otherwise) by the end of
the 2000-day simulation as a function of the trigger sensitivity and the delay between this threshold and the
lockdown(s) beginning. Additional outcomes are shown in §6.1 of the Supplementary Material, along with
full results for equivalent scenarios using the number of new daily deaths as the trigger5.

(a) Total deaths (b) Peak hospital inpatients (c) Peak ICU occupancy (d) Disease spread

Figure 8: Dynamic lockdowns: Closed system - Hospital triggers - Single lockdown

(a) Total deaths (b) Peak hospital inpatients (c) Peak ICU occupancy (d) Disease spread

Figure 9: Dynamic lockdowns: Closed system - Hospital triggers - Multiple lockdowns

In Figures 10-11, we illustrate the equivalent effect of dynamically-activated lockdowns in a system where
there is a constant inflow of new exposed individuals.

(a) Total deaths (b) Peak hospital inpatients (c) Peak ICU occupancy (d) Disease spread

Figure 10: Dynamic lockdowns: Constant inflow - Hospital triggers - Single lockdown

5Using the current number of ICU occupants yields broadly similar results to using hospital occupants, with a rough
conversion of 1000 hospital inpatients as a trigger being equivalent to 75 ICU occupants.
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(a) Total deaths (b) Peak hospital inpatients (c) Peak ICU occupancy (d) Disease spread

Figure 11: Dynamic lockdowns: Constant inflow - Hospital triggers - Multiple lockdowns

5.1 Outcomes of mechanistic lockdown scenarios

Even without eradicating the virus completely, deaths can be reduced over a significant timescale without
an indefinite number of lockdowns. With a single lockdown of medium quality (lasting only 30 days), to-
tal deaths can be reduced from 16,000 to 10,000 by managing the spread until herd immunity (Rt < 1)
is reached with sufficient recovered cases. However, this depends on several years of post-pandemic social
distancing, assuming reduced transmission rates rather than a return to pre-pandemic conditions. As it
is more realistic to model Northern Ireland as a system which cannot be fully isolated, cumulative deaths
will slowly continue to grow, and long-term forecasts are discussed in §6.4 of the Supplementary Material.
Therefore these investigations primarily concern short-term lockdown strategies to minimise deaths while a
permanent solution is developed, such as the vaccination exit strategy separately considered in §5.4.

There is the counter-intuitive result that while peak hospital and ICU occupancy is uniformly reduced
in a closed system model compared to the equivalent scenario with constant inflow, the propagation of
COVID-19 and the accompanying cumulative deaths is not always lessened in such a model. In fact, when
strong interventions are used, there is greater overall spread of the virus in a closed system and hence greater
deaths (compare the strong slices of Figure 8(a) and (d) with those of Figure 10), while weak interventions
revert to the expected patterns. This is because of a surge in the virus that occurs in such a system when
strong restrictions are lifted (§6.5 of the Supplementary Material), which is greatly reduced if there is a
constant importation of new cases as these lessen the impact of the lockdown. It is still the case in a closed
system that stronger controls are generally more effective than weaker restrictions, but the relative difference
is greatly reduced compared to a system with constant inflow.

5.2 Deaths, number of lockdowns, and the spread of the virus

Cumulative deaths can be reduced by at least one intervention, best triggered by a high number of hospital-
isations (or an intermediate number of daily deaths). Where the thresholds for lockdown are too low, there
may be little long term benefit (see the right-hand edges in Figure 8(a) - Figure 9(a)). This is especially the
case where there are multiple lockdowns permitted in a closed system. Here, many lockdowns are triggered
in succession, covering much of the first 1000 days. If deaths are measured at day 1000, close to the time
whilst measures are in place, this will seem to yield optimal results (§6.6 of the Supplementary Material).
However once significant time has passed without further restrictions, it is ultimately a poor long-term strat-
egy - observe the many deaths with low-threshold strong restrictions in Figure 9(a). This demonstrates a
circumstance where the only gain from lockdown is to purchase time, as these lowest thresholds become
optimal again if a vaccination programme is forthcoming (§5.4).

Alternatively, if using high-threshold daily deaths as the trigger the intervention may be too late or even
never activated, leading to the worst case scenario with around 16,500 deaths. This is in agreement with
other studies [42] which found that triggering a lockdown within an optimal window of 5-15 days before the
peak cases was crucial for significantly reducing peak hospitalisations.

The maximum cumulative deaths across these experiments is approximately 16,500. This is equivalent
to the virus spreading to 45% of the population, where there is an Rt value of 0.85 and so even without
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interventions herd immunity is achieved. This is close to the minimum of 41.6% predicted to achieve Rt < 1
for this value of β under such post-pandemic social behaviours in Figure 5(c). The discrepancy is due to
non-uniformity in the distribution of cases (and that there will be some overshoot as individuals are in-
fected while the virus is unable to sustain itself), whereby in this worst case proportionally fewer infections
are spreading among the vulnerable older age classes according to the contact matrices while the 20-40
age class has the highest proportion of infections. This is also why the upper limit of 16,500 deaths is less
than half the maximum possible deaths (Supplementary Material §1.3) if the entire population were infected.

5.3 Peak hospitalisation and ICU occupancy

In a closed system, peak levels of hospital and ICU admission are again minimised not by multiple lockdowns
with the lowest trigger threshold as these coincide with a possible resurgence after restrictions are lifted, but
instead by multiple lockdowns with a low-intermediate threshold (Figure 9(b) and (c)).

In models with constant new cases, high peak hospital and ICU occupancy of around 10000 and 850 re-
spectively may be reached if the lockdowns are not activated quickly enough - either because the threshold
was too high or if there is too great a delay. As deaths occur later, using these as the trigger requires
very low thresholds (Supplementary Material Figure 33(b) and (c)). If hospital admissions are used as the
trigger it is more important to ensure that there is low delay in implementation (Figure 10(b) and (c)). In
each case, the strength of the lockdown is less influential in reducing these peaks than the timeliness of the
intervention. This yields two contrasts when managing different outcomes during a pandemic: (i) intervene
earlier while the levels of hospital occupancy are still low to prevent over-burdening the healthcare system6,
but hold off until moderately-higher thresholds to reduce overall deaths (compare the locations that yield
the lowest values in the high-strength slices of Figure 9(b) and (c) with that of (a)). This contrast was also
observed in §4; and (ii) the strength of an intervention is of greater significance for reducing deaths, while
timing plays a greater role in controlling peak occupancies.

5.4 Effect of vaccination

We briefly consider how results are impacted by vaccination, as began in Northern Ireland in Decem-
ber 2020. Every day from 1st January 2021 a constant number v(i) of individuals from each age class
i are immediately removed from the pool of susceptible individuals. In the results shown in Figure 12,
v = {200, 400, 650, 1250, 2500} (during January-August 2021 in Northern Ireland there were 3000-18,600
average daily vaccinations) and we consider the scenario of constant inflow of random age-class infections,
using the number of hospital inpatients as the lockdown trigger. Alternative rates of vaccination are tested
in Supplementary Material §6.7.

6Not necessarily as low as possible in a closed system, but still definitively lower than the optimal threshold for minimising
deaths. See the location of the darkest colours of Figure 8(b) and (c) in comparison to (a).
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(a) One lockdown (b) Multiple lockdowns

Figure 12: Total deaths using hospital triggers with constant inflow and age-structured vaccination

Vaccination only has an effect on outcomes if prior lockdowns are sufficient to reduce spread in the preceding
period. With a single high-intensity lockdown, vaccination will reduce total deaths from 10,000-12,000 to
5000-6000, of which about 3200 occur during the first year. With multiple lockdowns, it becomes desirable
to trigger interventions at the lowest sensitivities and thus to lockdown as strongly as is economically and
socially viable to maximally suppress spread until the vaccination exit strategy is available, and the faster the
vaccine rollout, the less low that the trigger needs to be in order to prevent additional deaths. Finally, note
that there are 3000-4000 total deaths when 1-3 strong lockdowns are triggered by 50-300 hospital inpatients
(Figure 12(b)), which is not unreasonable given recorded COVID-related deaths in Northern Ireland reached
3000 in January 2022 after one year of vaccine distribution.

6 Conclusions

We have determined several principles informing the use of lockdowns for controlling future infectious dis-
eases in Northern Ireland, demonstrating significant reductions in total forecast deaths by proper timing of
interventions. Furthermore, restrictions targeting only the most vulnerable rather than the entire population
may have short term benefits, provided they are of sufficient intensity and last long enough such that these
individuals are protected while the virus spreads among the less vulnerable until they recover. Earlier inter-
ventions tend to be more helpful at managing peak demands on healthcare resources, while optimal strategies
for lowering cumulative deaths require later initiation of restrictions. Indeed, the exact timing is crucial for
controlling the peak number of occupants in hospitals and intensive care, whilst the greatest factors affecting
the number of deaths are more often the duration of the lockdown and how effectively it reduces transmission.

The study is limited in the modelling of vaccination programmes by the restriction of the scope to the
short-medium term use of lockdowns. Furthermore, an average non-lockdown transmission rate is employed
for the duration of the investigation of mechanistically-activated interventions, rather than varying with
the proliferation of more-transmissible mutations. This limits the interpretation of these results specifically
regarding COVID-19 in the United Kingdom in 2021-22, while allowing the principles obtained to be more
broadly applicable to future pandemics. Finally, note that the parameter choices tended to predict fewer
hospitalisations but greater deaths than observed in Northern Ireland for the 60-80 age group.

Unless and until a vaccination exit strategy is feasible (as for COVID-19), implementing the strongest
controls at too low a threshold of the disease’s effect may not be the best route to minimising long-term
deaths - although it may not be apparent in the short term while interventions are still available. Locking
down too strong and too early in an isolated society can result in a resurgence when restrictions are lifted if
there is a failure to completely eliminate the virus, with potentially higher deaths than if it was permitted
to spread to a small extent prior to lockdown. Such hazards observed in a closed system may be applicable
to more geographically-isolated territories than Northern Ireland.
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