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1.  Introduction and Motivation
On sub-seasonal and seasonal timescales, coupling between the stratosphere and troposphere is a significant part 
of the available tropospheric forecast skill (e.g., Domeisen, Butler, et al., 2020; Scaife et al., 2016). The con-
trasting impact of stratospheric variability during recent winter seasons with similar stratospheric disturbances 
(Knight et al., 2021) has, however, brought into sharp relief the lack of a full quantitative understanding of the 
stratospheric contribution to tropospheric prediction skill. The Sudden Stratospheric Warming (SSW) which 
occurred in February 2018 has been clearly linked to enhanced sub-seasonal predictive skill of cold conditions 
in Europe during late-winter and spring (Karpechko et al., 2018; Kautz et al., 2020). In contrast, the SSW which 
occurred in January 2019 is not thought to have had a major surface impact or have contributed to enhanced 
skill (Rao et al., 2020). Early examination of the January 2021 SSW (Lee, 2021) suggest this event was strong-
ly coupled to the surface Northern Annular Mode (NAM). Some authors have also proposed links to weather 
impacts in both Texas and Greece (Wright et al., 2021). The exceptionally strong and predictable polar vortex 
during the 2019/20 season also seems to have enhanced tropospheric seasonal forecast skill during late winter 
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on the initial or predicted state of the stratosphere. In this study, we propose a simple, minimal model that can 
be used to understand the impact of the stratosphere on tropospheric predictability. Our model purposefully 
excludes state dependent predictability in either the stratosphere or troposphere or in the coupling between the 
two. Model parameters are set up to broadly represent current sub-seasonal prediction systems by comparison 
with four dynamical models from the Sub-Seasonal to Seasonal Prediction Project database. The model can 
reproduce the increases in correlation skill in sub-sets of forecasts for weak and strong lower stratospheric 
polar vortex states over neutral states despite the lack of dependence of coupling or predictability on the 
stratospheric state. We demonstrate why different forecast skill diagnostics can give a very different impression 
of the relative skill in the three sub-sets. Forecasts with large stratospheric signals and low amounts of noise 
are demonstrated to also be windows-of-opportunity for skillfull tropospheric forecasts, but we show that these 
windows can be obscured by the presence of unrelated tropospheric signals.
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weeks and one season ahead, the stratosphere has been shown to be a key source of information. Despite many 
studies examining how well the stratosphere can be predicted in computer-based forecasting systems, there 
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instead to determine a simple framework that can be used to understand when and how the stratosphere is 
important. Using our framework we can construct a series of simple experiments that help to understand how 
important the stratosphere is in the longer range forecasting problem. Our experiments show that forecasts 
made during periods in which the Arctic stratospheric winds are unusually strong or weak have greater skill, but 
this does not depend on how unusually weak or strong the stratospheric winds are. The results are particularly 
important for thinking about the times in which longer range forecasts might be more skillfull than on average, 
so called windows-of-opportunity, and how these depend on the stratosphere.
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and spring (Lee et al., 2020). Explanations for these differences often focus on several different aspects of the 
stratosphere-troposphere coupling. On the one hand, there is evidence that not all SSWs produce the necessary 
lower stratospheric signals associated with strong coupling to the surface (Karpechko et al., 2017). Related work 
notes a difference in the tropospheric response to the morphology of SSW, vortex displacement or vortex split, 
with enhanced coupling following splitting events (White et al., 2020). Other recent work suggests tropospheric 
drivers of sub-seasonal skill, unconnected to the stratosphere, significantly influence the sign and predictability 
of the tropospheric response (e.g., Afargan-Gerstman & Domeisen, 2020; Knight et al., 2021). It has also been 
proposed that coupling between the stratosphere and troposphere is strongly dependent on the tropospheric state 
at the time of the stratospheric perturbation (Charlton-Perez et al., 2018; Domeisen, Grams, & Papritz, 2020; 
Maycock et al., 2020). These ideas relate, more generally, to the concept of intermittent “windows-of-opportuni-
ty” for sub-seasonal prediction (Mariotti et al., 2020). In order to critically assess and quantify the importance of 
these ideas, it would be helpful to have a simple “toy” or “null” model of how predictability in the stratosphere 
and troposphere is connected. By this, we mean a simple stochastic model that captures the relationships between 
the predictable signal in the stratosphere and troposphere with as few parameters as possible. A toy model with a 
minimal set of parameters is important, because it provides a quantitative lens through which to examine expla-
nations of why some stratospheric perturbations appear to have a larger impact on tropospheric predictability than 
others. Put another way, are the differences in the impact on tropospheric skill of recent SSW and strong vortex 
events just an effect of random variability in stratosphere-troposphere coupling or do they reflect more complex 
dynamics? To the best of our knowledge, no such null model exists. When considering tropospheric predictability 
more generally, the simple models of, for example, Weigel et al. (2008) and Siegert et al. (2016) have been widely 
used for similar purposes. We choose to call this model a “minimal” model since it contains what we believe is the 
simplest description of the coupled distribution of forecasts and observations in the stratosphere and troposphere. 
Having proposed a minimal model of the stratospheric contribution to tropospheric predictability, in the second 
half of the paper we perform a number of simple thought experiments to show the extent to which many of the 
characteristic properties of stratosphere-troposphere coupling can be reproduced by this simple model. Given the 
limited size of hindcast datasets that can be exploited to understand the properties of stratosphere-troposphere 
coupling, we also hope that this minimal model can be used to test and refine diagnostic tools for examining 
coupling in operational prediction systems.

2.  Model Design
We start from the signal-noise model for ensemble forecasts developed by Charlton-Perez et  al.  (2019) from 
Siegert et al. (2016):

𝑌𝑌 (𝑡𝑡) = 𝜇𝜇𝑦𝑦 + 𝛽𝛽𝑦𝑦𝑆𝑆(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡)� (1)

��(�) = �� + ���(�) + ���(�) for � = 1,… , �� (2)

In this model, 𝐴𝐴 𝐴𝐴 (𝑡𝑡) is the observed time series of the parameter of interest for forecasts made at different times, 𝐴𝐴 𝐴𝐴 . 
𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) are the matching ensemble forecasts; 𝐴𝐴 𝐴𝐴(𝑡𝑡), 𝑂𝑂(𝑡𝑡), 𝑃𝑃1(𝑡𝑡),… , 𝑃𝑃𝐾𝐾 (𝑡𝑡) are independent standard normal random 

variables that are also independent over time (i.e., for different 𝐴𝐴 𝐴𝐴 ); 𝐴𝐴 𝐴𝐴𝑦𝑦 and 𝐴𝐴 𝐴𝐴𝑥𝑥 are the climatological means. Key 
to the model is the shared “signal” term that is identical in the forecasts and observations, 𝐴𝐴 𝐴𝐴(𝑡𝑡) . The noise terms, 

𝐴𝐴 𝐴𝐴(𝑡𝑡), 𝑃𝑃1,… , 𝑃𝑃𝐾𝐾 (𝑡𝑡) are uncorrelated with 𝐴𝐴 𝐴𝐴(𝑡𝑡) and with each other. The two parameters 𝐴𝐴 𝐴𝐴𝑦𝑦 and 𝐴𝐴 𝐴𝐴𝑥𝑥 scale the signal 
term, allowing for under or over confidence in the forecasts. The 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 terms similarly scale the noise com-
ponents. This model can be further simplified by considering the case where the forecast and observations are 
normalised climate indices (e.g., the North Atlantic Oscillation index, NAO) with mean of zero and variance of 
one. In this case 𝐴𝐴 𝐴𝐴𝑦𝑦 and 𝐴𝐴 𝐴𝐴𝑥𝑥 are zero and can be removed. If the variance of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) and 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) are known to be one, then 
the amplitude of the signal and noise terms are related (since the variance of the sum of uncorrelated variables is 
the sum of the variances of each variable):

𝛽𝛽2
𝑦𝑦 = 1 − 𝜀𝜀2,� (3)

𝛽𝛽2
𝑥𝑥 = 1 − 𝜂𝜂2.� (4)

To extend this model to consider coupling between the stratosphere and troposphere we adopt a series of princi-
ples and assumptions:
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1.	 �The stratospheric observations and forecasts should have identical structure to the model above.
2.	 �The predictable signal in the troposphere should have two uncorrelated components: a predictable signal 

linked linearly to the stratospheric state and one which captures skill from purely tropospheric processes, 
such as the Madden-Julian Oscillation (MJO) or from other Earth System processes like sea-ice, sea-surface 
temperature or soil moisture.

3.	 �Coupling between the stratosphere and troposphere in the model forecasts is linked to the full stratospheric 
state in each ensemble member, not solely the predictable component.

4.	 �The tropospheric and stratospheric variables should represent normalised climate indices. We consider 
these to be the NAM index in the lower stratosphere (for example 100 hPa) where forecast skill is high (Son 
et al., 2020) and the NAO index, but any normalised climate index would be equally appropriate.

By adopting these design choices, the model does not seek to explicitly consider upward coupling that is, the role 
of the tropospheric state in determining the predictable signal in the stratosphere. Anomalous stratospheric states 
have been shown to be a strong function of the integrated lower stratospheric meridional heatflux (Hinssen & 
Ambaum, 2010; Polvani & Waugh, 2004). The model does not seek to capture this process. Since on sub-seasonal 
and seasonal timescales, the lower stratosphere is the most predictable part of the extra-tropical atmosphere and 
predicting the tropospheric state is the ultimate goal of any forecasting system it is natural to design the model in 
this way. Quoting a reviewer of the paper, in a sentiment we agree with, this means we “do not seek to produce 
a model which can be judged “wrong” due to a lack of realism rather one which is relevant and useful.” Other 
authors may wish to produce a model that includes other interesting effects such as upward coupling, interactions 
between the mean state and wave part of the flow or state dependence of stratosphere-troposphere coupling. Our 
choice here is to sacrifice model complexity in order to make the model easy to understand and conduct exper-
iments with.

The proposed model is then as follows:

𝑌𝑌𝑆𝑆 (𝑡𝑡) = 𝛽𝛽𝑦𝑦𝑆𝑆(𝑡𝑡) + 𝜀𝜀𝜀𝜀(𝑡𝑡),� (5)

𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) = 𝛽𝛽𝑥𝑥𝑆𝑆(𝑡𝑡) + 𝜂𝜂𝜂𝜂𝑘𝑘(𝑡𝑡) for 𝑘𝑘 = 1,… , 𝐾𝐾𝐾� (6)

𝑌𝑌𝑇𝑇 (𝑡𝑡) = 𝐶𝐶𝑦𝑦𝑌𝑌𝑆𝑆 (𝑡𝑡) + 𝛼𝛼𝑦𝑦𝑇𝑇 (𝑡𝑡) + 𝜆𝜆𝜆𝜆(𝑡𝑡),� (7)

𝑋𝑋𝑇𝑇𝑇𝑇(𝑡𝑡) = 𝐶𝐶𝑥𝑥𝑋𝑋𝑆𝑆𝑆𝑆(𝑡𝑡) + 𝛼𝛼𝑥𝑥𝑇𝑇 (𝑡𝑡) + 𝜉𝜉𝜉𝜉𝑘𝑘(𝑡𝑡) for 𝑘𝑘 = 1,… , 𝐾𝐾𝐾� (8)

where an added subscript S means stratosphere and T means troposphere. The predictable signal in the tropo-
sphere, which is common to the forecasts and observations but uncorrelated with the stratospheric signal 𝐴𝐴 𝐴𝐴(𝑡𝑡) is 
denoted 𝐴𝐴 𝐴𝐴 (𝑡𝑡) . In the real world, some part of the tropospheric and stratospheric signal may be correlated with a 
common forcing, for example, from the tropics (Barnes et al., 2019), and so this is an additional way in which 
the model is minimal rather than realistic. 𝐴𝐴 𝐴𝐴𝑦𝑦 and 𝐴𝐴 𝐴𝐴𝑥𝑥 are the amplitude of 𝐴𝐴 𝐴𝐴 (𝑡𝑡) in the observations and model 
respectively. 𝐴𝐴 𝐴𝐴(𝑡𝑡), 𝑅𝑅1(𝑡𝑡),… , 𝑅𝑅𝐾𝐾 (𝑡𝑡) 𝑄𝑄(𝑡𝑡) are the noise terms in the troposphere. They are uncorrelated with each 
other and with the noise terms in the stratosphere. 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 are the amplitude of the tropospheric noise terms. By 
substitution, the expressions for the tropospheric observations and forecast can then be expanded as:

�� (�) = �����(�) + ����(�) + ��� (�) + ��(�),

���(�) = �����(�) + �����(�) + ��� (�) + 
��(�) for � = 1,… , �.
�

the variance, covariance and correlation structure of the model, along with expression for the signal-to-noise ratio, 
are shown in the Supporting Information S1. Since the forecasts and observations are normalised, with variance of 
one, the correlation and covariance between individual ensemble members and the observations are equal.

𝜌𝜌(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) = 𝛽𝛽𝑥𝑥𝛽𝛽𝑦𝑦� (9)

𝜌𝜌(𝑌𝑌𝑆𝑆, 𝑌𝑌𝑇𝑇 ) = 𝐶𝐶𝑦𝑦� (10)

𝜌𝜌(𝑋𝑋𝑆𝑆𝑆𝑆,𝑋𝑋𝑇𝑇𝑇𝑇) = 𝐶𝐶𝑥𝑥� (11)

𝜌𝜌(𝑋𝑋𝑇𝑇𝑇𝑇, 𝑌𝑌𝑇𝑇 ) = 𝐶𝐶𝑦𝑦𝛽𝛽𝑦𝑦𝐶𝐶𝑥𝑥𝛽𝛽𝑥𝑥 + 𝛼𝛼𝑦𝑦𝛼𝛼𝑥𝑥� (12)
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For the stratosphere, the Pearson's correlation, 𝐴𝐴 𝐴𝐴 , between each ensemble member and the observations (Equa-
tion 9) is simply the product of the two signal amplitudes, 𝐴𝐴 𝐴𝐴𝑦𝑦𝛽𝛽𝑥𝑥 . The correlation between the stratospheric and 
tropospheric index in the observations (Equation 10) is 𝐴𝐴 𝐴𝐴𝑦𝑦 , and for each ensemble member (Equation 11) is 𝐴𝐴 𝐴𝐴𝑥𝑥 . 
The correlation between each ensemble member and the observations in the troposphere (Equation 12) has a 
component which depends on both the strength of the coupling between the model and observations and the size 
of the stratospheric signal (𝐴𝐴 𝐴𝐴𝑦𝑦𝛽𝛽𝑦𝑦𝐶𝐶𝑥𝑥𝛽𝛽𝑥𝑥 ) and a component that depends on the size of the tropospheric signal (𝐴𝐴 𝐴𝐴𝑦𝑦𝛼𝛼𝑥𝑥 ).

3.  Model Parameters
To complete the minimal model, we need to set values of the parameters in Equations  5–8. As in Siegert 
et al. (2016), a Bayesian approach could be used to fit the model to a set of model hindcasts to determine these 
parameters. In this study, since the aim is to describe and analyze the simple model we do not take this approach 
but it is a clear extension. Instead, as a simple starting point, we can examine the correlation structure of four 
sets of example hindcasts available from the sub-seasonal to seasonal project database (S2S, Vitart et al., 2017). 
As a representative stratospheric index we chose the NAM at 100 hPa derived using the zonal mean principal 
component method of Baldwin and Thompson  (2009). As a representative tropospheric index we chose the 
NAO, here defined as the mean sea-level pressure difference between a 2.5° × 2.5° grid box centered at 65N and 
20W and one centered at 37.5N and 25W, that is, over Iceland and the Azores respectively. In both cases, these 
indices are chosen to be illustrative only and different choices would result in slightly different numerical values 
for the calculations. All hindcasts in the database initialized between November and February for the particular 
model version in question are considered. No attempt is made to standardize the period over which the forecasts 
are made. For the NCEP CFS model, a lagged ensemble is created by combining forecasts initialized over three 
consecutive days. The lead time dependent bias is removed, prior to analysis. For the week 3 forecast, Table 1 
shows the correlation structure.

Broadly, the correlation structure in all four models is similar for these climate indices and this lead time:

1.	 �The correlation between the stratosphere and troposphere in the observations, 𝐴𝐴 𝐴𝐴(𝑌𝑌𝑆𝑆, 𝑌𝑌𝑇𝑇 ) , is approximately 
0.45.

2.	 �The correlation between the stratosphere and troposphere in the models, 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆,𝑋𝑋𝑇𝑇𝑇𝑇) is also approximately 
0.45.

3.	 �The correlation between the observed NAM and an individual ensemble member, 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) , is approximate-
ly 0.6.

4.	 �The correlation between the observed NAO and an individual ensemble member, 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑇𝑇𝑇𝑇, 𝑌𝑌𝑇𝑇 ) , is approximately 
0.25.

Center (model version)

Number of 
forecasts, 

ensemble size

Stratosphere-
troposphere 
correlation 

(observations)

Stratosphere-
troposphere 
correlation 
(forecasts)

Forecast-
observation 
correlation 

(stratosphere)

Forecast-
observation 
correlation 

(troposphere)

Ensemble mean 
correlation 

(stratosphere)

Ensemble 
mean 

correlation 
(troposphere)

N, K 𝐴𝐴 𝐴𝐴(𝑌𝑌𝑆𝑆, 𝑌𝑌𝑇𝑇 ) 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆,𝑋𝑋𝑇𝑇𝑇𝑇) 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑇𝑇𝑇𝑇, 𝑌𝑌𝑇𝑇 ) �(��, �� ) �(�� , �� )

ECMWF (cy45r1) 700, 11 0.44 0.46 0.63 0.24 0.77 0.43

UKMO (GloSea5) 384, 7 0.43 0.44 0.67 0.24 0.75 0.36

NCEP (CFS v2) 467, 12 0.45 0.41 0.61 0.26 0.73 0.44

Meteo-France (cnrm-cm 6.0) 352, 15 0.43 0.49 0.60 0.26 0.72 0.42

Assumed representative system 0.45 0.45 0.6 0.25

Note. Here, Week 3 means the average of days 14–20 of the forecast, and correlations are calculated by first taking the mean value of the index over these days. 
𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆,𝑋𝑋𝑇𝑇𝑇𝑇) , 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) and 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑇𝑇𝑇𝑇, 𝑌𝑌𝑇𝑇 ) are the ensemble mean of the correlation in each individual ensemble member. N is the number of forecast initialisations 

considered, K is the number of ensemble members. The final line shows summary values assumed in our minimal model calculations which should represent a typical 
sub-seasonal forecasting system. No values are assumed for the ensemble size or number of forecasts since this variable is explored in later calculations, also changing 
the ensemble mean correlation.

Table 1 
Week 3 Correlation Structure Measured From Samples of Sub-Seasonal Forecasts



Journal of Geophysical Research: Atmospheres

CHARLTON-PEREZ ET AL.

10.1029/2021JD035504

5 of 13

Using these four representative correlations, we can derive example parameters for the minimal model. For the 
remainder of the manuscript, all calculations and estimates assume these values, and no further reference to the 
four sets of sub-seasonal forecasts is made. We first assume that the amplitude of the signal in the observations 
and model is the same in the stratosphere (𝐴𝐴 𝐴𝐴𝑦𝑦 = 𝛽𝛽𝑥𝑥 , a perfect model assumption which is relaxed later). We can 
use the representative correlation 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) = 0.6 above to calculate values for the stratospheric parameters 
from Equation  9 and Equations  3 and  4. In this case, 𝐴𝐴 𝐴𝐴𝑦𝑦 = 𝛽𝛽𝑥𝑥 = 0.77 , 𝐴𝐴 𝐴𝐴 = 𝜂𝜂 = 0.63 . This is equivalent to an 
identical signal-to-noise ratio in the model and observations of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 1.22 (see the Supporting 
Information S1). Note that we have assumed positive values for 𝐴𝐴 𝐴𝐴𝑦𝑦 and 𝐴𝐴 𝐴𝐴𝑥𝑥 , although they could produce the same 
positive correlation if both values were negative. If we assume that the model has these parameter values, we can 
calculate a representative correlation between the ensemble mean forecast and the observations by assuming a 
value for the ensemble size, K (for details of the calculation of the ensemble mean correlation see the Supporting 
Information S1). For an example ensemble size of 51 members (which corresponds to the size of the operational 
ECMWF ensemble forecast), the correlation between the ensemble mean forecast and observations (�(��, �� ) ) is 
0.77. Making a further assumption that the amplitude of the uncoupled part of the tropospheric signal is the same 
in the model and observations (i.e., that 𝐴𝐴 𝐴𝐴𝑦𝑦 and 𝐴𝐴 𝐴𝐴𝑥𝑥 are the same) and using Equation 12, we can derive the follow-
ing parameters for the tropospheric part of the minimal model. The size of the tropospheric signal, 𝐴𝐴 𝐴𝐴𝑦𝑦  = 𝐴𝐴 𝐴𝐴𝑥𝑥  = 0.36 
and the residual noise terms 𝐴𝐴 𝐴𝐴  = 𝐴𝐴 𝐴𝐴  = 0.82. These values give an overall signal-to-noise ratio in the troposphere, 

𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑇𝑇 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇 = 0.58 and for an assumed ensemble size of 51 members the correlation between the ensem-
ble mean forecast and observations (�(�� , �� ) ) is 0.49. In the next sections, these model parameters are further 
perturbed to explore the importance of the stratosphere-troposphere coupling for sub-seasonal predictability. 
Later in the paper, the minimal model with the same parameters is used to generate synthetic forecast sets with 1 
million forecast initialisations.

4.  Thought Experiment 1: Impact of Stratospheric Skill Improvement and Increased 
Ensemble Size
A common question posed about the importance of the stratosphere for sub-seasonal prediction is understanding 
the trade off between spending additional computational resources to improve stratospheric skill (for example 
by increasing the complexity of the gravity wave drag parameterization or enhancing model vertical resolution) 
versus using the same resources to increase the ensemble size. While it is difficult to quantify the impact of 
any given model improvement on forecast skill, the minimal model does give some insight into this question. 
Assuming that improving skill in the model stratosphere does not affect tropospheric predictability from other 
sources (i.e., the 𝐴𝐴 𝐴𝐴 terms remain constant) or the coupling between the stratosphere and troposphere (i.e., the 𝐴𝐴 𝐴𝐴 
terms remain constant), the impact of increased stratospheric skill (𝐴𝐴 𝐴𝐴𝐴𝐴 ) is proportional to 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) multiplied 
by 𝐴𝐴 𝐴𝐴𝑥𝑥𝐶𝐶𝑦𝑦 = 0.452 = 0.20 for parameters representative of the four sub-seasonal forecast models above. So (from 
Equations 9 and 12),

𝛿𝛿𝛿𝛿(𝑋𝑋𝑇𝑇𝑇𝑇, 𝑌𝑌𝑇𝑇 ) ∝ 0.2𝛿𝛿𝛿𝛿(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 )�

The model can be used to anticipate the impact of this increased skill on the ensemble mean correlation skill as 
shown in the Supporting Information S1. Assuming all other parameters are fixed, for an ensemble size of 51 
members, modifying 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) between 0 (no skill) and 1 (perfect skill) results in �(�� , �� ) increasing from 
0.34 to 0.56. Further calculations of the impact of changes in stratospheric skill are shown in Figure 1a, with the 
case with 51 ensemble members shown in the solid line. The close to linear increase of �(�� , �� ) for the range 
of values around 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) = 0.6 typical of most S2S modeling systems does not depend strongly on the size of 
the model ensemble (see for example the dashed and dotted lines showing the cases with 101 and 11 ensemble 
members respectively). The contrasting impact of increasing ensemble size on �(�� , �� ) is shown in Figure 1b. 
The impact of the increasing ensemble size is relatively large as the ensemble size increases between 11 and 50 
members but begins to saturate for much larger sizes. This effect is also not strongly dependent on the skill of the 
stratospheric forecast, with a similar dependence for �(�� , �� ) when 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) is equal to 0.4 (dotted line) or 
0.8 (dashed line). Note that the quantification here is only relevant for forecasting systems with similar signal-to-
noise properties as the minimal model in this configuration. Further experiments could use the same framework 
to explore how to target model investment in under or over confident forecasting systems, which we will consider 
next.
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5.  Thought Experiment 2: Differences in Signal-To-Noise Ratio Between Forecasts 
and Observations
Given that most forecasting systems are not explicitly designed to perturb the stratosphere (or target error growth 
there) then one could imagine a case whereby the stratospheric forecast is over confident. Equally there has been 
much discussion in the literature of under confidence of forecast systems on seasonal and longer timescales, par-
ticularly in the North Atlantic and for the NAO (Eade et al., 2014). Using the minimal model, there are a number 
of different ways to explore the relationships between correlation and signal-to-noise ratio in this simple system, 
diverging from the perfect ensemble approach in Thought Experiment 1. One approach would be to fix the value 
of the signal-to-noise ratio in the observations and perturb the signal-to-noise ratio of the forecast ensemble mem-
bers (not shown). Another approach, is to fix the value of the correlation between the forecasts and observations 
in the stratosphere and examine the different values of signal-to-noise ratio and tropospheric correlation which 
are consistent with these values. This set of experiments is reported here, since we assume that the correlation 
between forecasts and observations in the stratosphere (𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) ) is mostly robustly known (note that in the 
four systems above, there is little variation in this parameter). By assuming the correlation is known, this means 
that different cases can only be generated by varying the SNR in both the observations and forecasts, so in the 
extreme cases the SNR in the observations is either much greater or much smaller than is assumed in the base 
case in thought experiment 1.

In the base case above, we assume that the size of the signal in the model stratosphere is equal to that of the ob-
servations, that is, 𝐴𝐴 𝐴𝐴𝑥𝑥 = 𝛽𝛽𝑦𝑦 = 𝛽𝛽𝑆𝑆 =

√

𝜌𝜌(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) .

We can relax this assumption, without changing 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) by introducing a parameter, c, which represents the 
fractional change in the size of 𝐴𝐴 𝐴𝐴𝑆𝑆 for the base case above that is, 𝐴𝐴 𝐴𝐴𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑆𝑆 and 𝐴𝐴 𝐴𝐴𝑥𝑥 = 1

𝑐𝑐
𝛽𝛽𝑆𝑆 .

The impact of model under or overconfidence on the skill of tropospheric forecasts, for an ensemble size of 51 
members, is shown in Figure 2. For clarity, when we refer to model under confidence, this means that the signal-
to-noise ratio of the model is smaller than the signal-noise ratio of the observations and vice versa for model over 
confidence. As might be expected, the tropospheric signal-to-noise ratio somewhat follows the signal-to-noise 

Figure 1.  Impact of improving model skill in the stratosphere and increasing ensemble size on tropospheric ensemble mean skill. (a) Shows the resulting tropospheric 
ensemble mean skill plotted against the imposed correlation between an individual ensemble member and the observations in the stratosphere for an ensemble with 11 
ensemble members (dotted line), 51 ensemble members (solid line) and 101 ensemble members (dashed line). (b) Shows the impact of changing the ensemble size (K) 
on tropospheric ensemble mean skill where correlation between an individual ensemble member and the observations in the stratosphere (𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) ) is 0.4 (dotted 
line), 0.6 (solid line) and 0.8 (dashed line). All other parameters follow the base model.
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ratio in the stratosphere. Where the model is under confident in the stratosphere (blue part of the lines) it is also 
under confident (although to a lesser degree) in the troposphere. The relative size of the different terms mean that 
for the range in the center of the plot, the impact in the troposphere is modest. Figure 2c demonstrates the impact 
of stratospheric under or over confidence on the correlation skill of the tropospheric ensemble mean. Compared 
to the case in which the amplitude of the stratospheric signal-to-noise ratio is correct in the model (black dot), 
�(�� , �� ) is reduced for an ensemble with an over confident stratosphere and increased for an under confident 
stratosphere.Due to the fact that:

�(�� , �� ) =
�������� + ����

√

1 − �−1
�

(

�2 + �2
��2

)

,�

and since in this experiment, all parameters apart from 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝑥𝑥 and 𝐴𝐴 𝐴𝐴𝑦𝑦 are fixed and the product 𝐴𝐴 𝐴𝐴𝑥𝑥𝛽𝛽𝑦𝑦 is fixed, 
this dependence is related to the value of 𝐴𝐴 𝐴𝐴 . In the over confident case, 𝐴𝐴 𝐴𝐴 is small, increasing the denomina-
tor and therefore decreasing the correlation in the expression above. In the limiting case, where stratospheric 
forecasts have no noise (but there is still an unpredictable, noise component in the observations), 𝐴𝐴 𝐴𝐴 = 0 and 
�(�� , �� ) = �(���,�� )

√

1− �−1
� (�2)

= 0.41 .

6.  Thought Experiment 3: Perfect Stratospheric Forecasts
An increasingly common method used to interrogate the stratosphere-troposphere coupling in models is to add 
artificial physics to the model to nudge the state in the model stratosphere towards the observed state (e.g., Dou-
ville, 2009; Hitchcock & Simpson, 2014). The minimal model can be used to think about what these experiments 
might reveal. Although the minimal model is, of course, much simpler than the real world it can be used to think 
about limits to the gain in correlation skill that nudging experiments could yield.

This thought experiment starts from a hypothetical case of a perfectly predictable stratosphere in which there is 
no noise. In this case, 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑌𝑌𝑆𝑆 and so 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑆𝑆𝑆𝑆, 𝑌𝑌𝑆𝑆 ) = 1 . The only way this can be achieved in the minimal model 
is if 𝐴𝐴 𝐴𝐴𝑥𝑥, 𝛽𝛽𝑦𝑦 = 1 and 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 = 0 . This then implies that 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑇𝑇𝑇𝑇, 𝑌𝑌𝑇𝑇 ) = 𝐶𝐶𝑥𝑥𝐶𝐶𝑦𝑦 + 𝛼𝛼𝑥𝑥𝛼𝛼𝑦𝑦 .

It follows that for the same set of parameters used in Thought Experiment 1, 𝐴𝐴 𝐴𝐴(𝑋𝑋𝑇𝑇𝑇𝑇, 𝑌𝑌𝑇𝑇 ) = 0.33 and �(�� , �� ) = 0.56 
with 51 ensemble members, for a perfect, deterministic stratospheric forecast. In practice, stratospheric nudging 
could never achieve this perfect forecast state, partly because the strength of nudging required would lead to 

Figure 2.  Impact of stratospheric signal-to-noise ratio biases on the tropospheric forecast (for an ensemble size of 51 members). In all plots, blue lines show cases 
where the model is under confident and red lines where the model is over confident. The black dot shows the base solution where the size of the signal in model and 
observations is equal. (a) Shows the possible range of signal-to-noise ratio for the model (x-axis) and observations (y-axis) when the stratospheric model skill is fixed as 
the same value as the base model. (b) Shows the same quantities in the troposphere. (c) Shows the tropospheric ensemble mean skill plotted against the signal-to-noise 
ratio in the model stratosphere.
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numerical instability, but it predicts an upper limit for tropospheric correlation that might be achieved in a series 
of nudging experiments. This value should be compared to the tropospheric ensemble mean correlation derived 
from the model with standard parameters, for an identical ensemble size of 51 ensemble members this value is 
0.49 as stated in Section 3. In other words, the minimal model predicts a maximum increase of 0.07 in correlation 
skill for the week 3 sub-seasonal forecast for a set of forecasts with strong stratospheric nudging, compared to 
free running control experiments.

7.  Synthetic Experiment 1: Skill for Weak, Neutral and Strong Vortex Cases in the 
Stratosphere
A common method to explore the impact of the stratosphere on prediction skill is to separate forecasts into 
categories where the initial stratospheric state has a weak, strong or neutral vortex (as in Domeisen, Butler, 
et al., 2020; Sigmond et al., 2013; Son et al., 2020; Tripathi et al., 2015). One approach to quantify the differences 
in skill between the forecasts is to use the correlation skill score:

��� =
1
�

∑�
�=1 � ⋅�

√

1
�

∑�
�=1 � 2 ⋅ 1

�

∑�
�=1 �

2
.� (13)

In this and subsequent expressions, M indicates the number of forecast initialisations in each subset. An alterna-
tive is to measure the correlation between the observations and ensemble mean forecasts within each sub-selected 
ensemble, which we call here the sub-set correlation (SSC)

��� =
1
�

∑�
�=1(� − [� ]) ⋅ (� − [�])

√

1
�

∑�
�=1 (� − [� ])2 ⋅ 1

�

∑�
�=1 (� − [�])

2� (14)

Here, [� ], [�] are, respectively, the mean of the observations and ensemble-mean forecasts within each sub-set. A 
further measure used to quantify the differences in skill of the different sub-sets of forecasts (Domeisen, Butler, 
et al., 2020) is the Root Mean Square Error.

���� =

√

√

√

√
1
�

�
∑

�=1

(� −�)
2� (15)

To simulate these calculations, and explore their relationship with the predictable signal, we can sub-set syn-
thetic forecasts by the observed stratospheric state (𝐴𝐴 𝐴𝐴𝑠𝑠 ). In the studies referenced above, sub-setting is normally 
performed on the observed state at the start of the forecast. Since the minimal model does not simulate the time 
development of the forecast, this experiment assumes that the state during week 3 is well correlated with the 
initial state, which is a reasonable assumption given the long autocorrelation timescale in the lower stratosphere. 
As an illustrative example, we define weak and strong cases as being below the 20th percentile or above the 80th 
percentile of the index, and generate one million synthetic forecasts using simple random draws for the signal and 
noise terms in Equations 5–8.

The minimal model reproduces the behavior seen in real forecast ensembles. The CSS for the weak and strong 
sub-sets is significantly larger than the neutral sub-set in both the stratosphere and troposphere. Note also that the 
CSS and SSC are equal in the neutral sub-set but that the CSS is substantially higher than the SSC in the weak 
and strong subsets. This difference doesn't reflect greater correlation within each sub-set. Rather it represents a 
shift of the PDF of the signal term. Since the signal term is common to the observations and forecasts, this results 
in a larger CSS for the weak and strong cases. Put another way, the larger CSS in the weak and strong sub-sets 
reflects their larger signal-to-noise ratio. Even more simply put, forecasts made during weak and strong strato-
spheric states can have greater CSS than forecasts made during neutral states even when the correlation between 
the stratosphere and troposphere is identical for all the sub-sets as is explicitly the case in the minimal model.

These results shed new light on the results of Sigmond et al. (2013), who compared the forecast skill of a group 
of forecasts initialized during SSW events and a control case with no SSWs. The CSS reported in that study for 
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the NAM at 1,000 hPa is 0.55 for the SSW case and −0.01 for the control case, a difference that is statistically 
significant (p 𝐴𝐴 𝐴 0.01). We reanalyzed the Sigmond et al. (2013) results and found that the SSC is 0.23 for the 
SSW case and −0.02 for the control case, a difference that is not statistically significant. This implies that the 
difference in CSS reported in that study is mainly due to a shift of the PDF of the signal term, and is not the result 
of a (significantly) greater correlation within the SSW sub-set compared to the control sub-set.

In contrast, the RMSE in the weak and strong sub-sets is much larger than the neutral sub-set for the stratospheric 
forecasts. The difference in RMSE between weak/strong and neutral sub-sets is replicated in the troposphere, 
although the relative size of the difference between the sub-sets is smaller. Since the signal term is common to 
the observations and forecasts, the RMSE for the stratosphere depends only on the properties of the noise terms, 

𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) and 𝐴𝐴 𝜂𝜂
𝐾𝐾

∑𝐾𝐾
𝑘𝑘=1 𝑃𝑃𝑘𝑘(𝑡𝑡) . Sub-setting the forecasts by the magnitude of 𝐴𝐴 𝐴𝐴𝑆𝑆 means that the distribution of 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) is 

biased towards negative or positive values in the weak or strong sub-sets (see Supporting Information S1). There 
is no corresponding bias in 𝐴𝐴

∑𝐾𝐾
𝑘𝑘=1 𝑃𝑃𝑘𝑘(𝑡𝑡) . As the RMSE is a property of the distribution of �� −��  and the distri-

bution is dominated by the distribution of 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) this leads to the difference in RMSE demonstrated in Figure 3.

Another approach to assess skill in different states is to make the sub-sets on the basis of the ensemble mean fore-
cast rather than the observed state (Figure 4). Sub-setting on this basis, produces a very similar result to the one 
in Figure 3 for CSS and SSC, but with a clean separation of the three states by the size of the signal term through 
the effective elimination of the noise term when taking the ensemble average. Since there is no bias in 𝐴𝐴 𝐴𝐴𝐴𝐴(𝑡𝑡) in 
the three sub-sets introduced by this method, the RMSE is identical for the three sub-sets and very close to 𝐴𝐴 𝐴𝐴 .

Figure 3.  Upper row shows diagnostics for the stratospheric forecast and lower row shows diagnostics for the tropospheric forecasts. (a) & (f) show the CSS for 
the three observed sub-sets (with weak, neutral and strong conditions in the stratosphere). (b) & (g) show the SSC and (c) & (h) show the RMSE. (d) & (i) show 
Kernel Density Estimates (KDE) of the signal and (e) & (j) show noise terms for the three sub-sets. In the troposphere, the signal term includes signal from intrinsic 
tropospheric processes and due to coupling with the stratosphere.

Figure 4.  As Figure 3 but for sub-setting based on the forecast ensemble mean state in the stratosphere.
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When analyzing real hindcast data, there are arguments for using either of these methods to compare skill in 
different sub-sets. When comparing forecasts sub-set based on the initial state in the stratosphere, this analysis 
shows that caution is needed when interpreting simple measures of forecast skill, something well-known in the 
forecast verification community but perhaps not so widely appreciated when considering atmospheric processes, 
such as stratosphere-troposphere coupling. The arguments presented in this section are not unique to coupling 
between the stratosphere and troposphere. Our model could also be applied to other cases in which a predictable 
component is weakly coupled to the extra-tropical troposphere. Examples might include coupling of the MJO and 
El Niño Southern Oscillation to the North Atlantic.

8.  Synthetic Experiment 2: Windows of Opportunity
There has been a lot of recent interest in understanding when there might be “windows of opportunity” (Mariotti 
et al., 2020) for sub-seasonal forecasts that are more skillfull than on average based on the presence of a par-
ticular dynamical forcing. The minimal model can be used to explore to what extent the stratospheric signal can 
provide windows of opportunity when this stratosphere-troposphere coupling is linear and independent of the 
tropospheric state.

Since there is no widely agreed diagnostic of a window of opportunity, here a simple diagnostic from Zieh-
mann (2001) is used. First observations and forecasts are assigned to categorical bins (in this case based on ter-
ciles of the observed tropospheric state). The forecast “state” for each forecast is the modal category (i.e., the one 
with most forecasts, with random assignment for rare bimodal cases). A forecast is counted as successful when 
the forecast and observed states are the same, with skill measured simply as the fraction of forecasts for which this 
is true. Windows of opportunity can be explored by sub-setting the forecasts based on the occupation frequency 
of the modal category. A more confident forecast is one in which the number of forecasts in the modal category 
is large, a less confident forecast where the number of forecasts in the modal category is small. Figure 5a shows 
the result of this calculation. The dashed black line shows the average fraction of successful forecasts. The green 
solid line shows the success rate of forecasts with high confidence, as a function of the percentile of the number 
of members in the modal category used to define the “high confidence” sub-set. Forecasts with high confidence 
are much more likely to be successful than an average forecast. Conversely, forecasts with low confidence, shown 
in the brown line, are much less likely to be successful. In other words, the forecast spread, as quantified here by 
the number of members in the modal category, is a good predictor of forecast windows of opportunity.

Figure 5.  (a) Shows the fraction of tropospheric forecasts which are correct for two categories of forecast, those classified as highly (green) opoorly (brown) 
predictable. Results are presented as a function of the percentile used to define each class. For example, the value plotted at 20% on the green line is for all forecasts 
with modal occupation frequency greater than the highest 20% of forecasts and the value plotted at 20% on the brown line is for all forecasts with modal occupation 
frequency smaller than the lowest 20% of forecasts. The dashed lines show the same calculation, but with forecasts sub-set based on the modal category of the 
stratospheric forecast. (b) Shows 2D histograms of 𝐴𝐴 𝐴𝐴𝑇𝑇  and ��  for the two sub-sets based on the tropospheric forecasts for the 20% case (dots in the left panel). Dashed 
black lines show the values of the observed state that define the weak, neutral and strong forecast categories. (c) Shows histograms of the part of the tropospheric signal 
due to the stratosphere (on the x-axis) and intrinsic to the troposphere (on the y-axis).



Journal of Geophysical Research: Atmospheres

CHARLTON-PEREZ ET AL.

10.1029/2021JD035504

11 of 13

How much are the windows of opportunity due to the signal present in the stratosphere? One way to quantify 
this effect is to repeat the calculation but sub-set the forecasts based on the size of the modal category in the 
stratospheric forecast. This is shown in the dashed lines in Figure 5a. While not as good a predictor of skill as the 
size of the modal category of the tropospheric forecast, this diagnostic can also be used to identify windows of 
opportunity. The set of forecasts in the high and low confidence sub-sets for the case shown by the dots in Fig-
ure 5a are shown in Figure 5b. Forecasts with high confidence (green) are those in which the ensemble mean is 
generally large and positive or negative. Since the signal and noise terms are uncorrelated by construction, when 
the signal term is large, the likelihood of more members of the ensemble being in the same category as the ensem-
ble mean forecast and the observations is increased. Confident forecasts generally have a large signal resulting 
from the stratosphere with a large tropospheric signal of the same sign, as shown in Figure 5c. Forecasts with low 
confidence include both those with little signal from either process, and cases where there is an opposing signal 
from the stratosphere and troposphere (brown points). Forecasts in which there is a large stratospheric signal 
are therefore windows of opportunity for skillfull tropospheric sub-seasonal predictions. Sometimes, as seen for 
example, in the contrasting forecasts of the 2018 and 2019 SSW events, opposing stratospheric and tropospheric 
signals might mask this predictability.

9.  Conclusions
In this study, we have attempted to define and investigate a minimal model which describes how skillfull fore-
casts in the stratosphere contribute to forecast skill in the troposphere. The model is developed from the earlier 
toy model of Siegert et al. (2016). The key addition to the model to allow the link between the stratosphere and 
troposphere to be examined is a term coupling the observed and forecast indices in the troposphere with those 
in the stratosphere. This coupling is independent of the state in the stratosphere or troposphere (i.e., it doesn't 
depend on the value of 𝐴𝐴 𝐴𝐴𝑠𝑠 or 𝐴𝐴 𝐴𝐴𝑆𝑆𝑆𝑆 ), and should be thought of as the simplest possible representation of strato-
sphere-troposphere coupling. There is no reason to think that this model rules out the need for more complex 
explanations of the contribution of the stratosphere to tropospheric forecast skill, but it should be regarded as a 
minimum standard that more complex explanations should be judged against. The simplicity of the model, and 
its similarity to other simple models of forecasts and observations mean that the conclusions about conditional 
skill and windows of opportunity that we highlight below are likely to be familiar to a reader who is well versed 
in thinking about ensemble forecasts and skill scores. Indeed, many of the conclusions below could be derived 
from a model like that of Weigel et al. (2008) or Siegert et al. (2016) in which only the relationship between a set 
of forecasts and observations are considered. A key message of this paper is that this body of understanding and 
literature is also relevant to the case of stratosphere-troposphere and other types of coupling if that coupling is 
independent of the underlying state of the system. For the broader community involved in analyzing and under-
standing weak coupling between a relatively well predictable component of the Earth system like the stratosphere 
and a more weakly predictable component like the extra-tropical troposphere we hope that the model provides a 
useful interpretive framework with which to consider sets of real sub-seasonal forecasts.

The model reproduces a number of features of the observed properties of real sub-seasonal and seasonal predic-
tion systems, particularly when considering sub-sets of forecasts during weak, neutral and strong lower strato-
spheric NAM states. The increased CSS for these sub-sets reflects the greater signal-to-noise ratio in these cases. 
By construction, and as demonstrated by the calculations of SSC, correlation between forecast and observed 
states is identical within each sub-set. The analysis of the minimal model also demonstrates that care should be 
taken when constructing sub-sets of forecasts. Choosing to sub-set based on the observed stratospheric state can 
lead to biases in the RMSE because this method inherently chooses cases with larger than average noise. An al-
ternative approach for analysis of sub-seasonal forecasts could be to sub-set based on the ensemble mean forecast 
in the stratosphere since this better isolates cases with a large predictable signal.

In a similar vein, windows-of-opportunity for skillfull tropospheric forecasts can be identified by considering the 
spread of forecasts in the stratosphere. Results from the simple model suggest that focusing detailed dynamical 
analysis on stratospheric forecasts with high confidence could be a way to identify windows-of-opportunity for 
skillfull sub-seasonal and seasonal forecasts. Often, confidence in stratospheric forecasts is largest once the signal 
of vortex disturbances is present in the upper and middle stratosphere. For the parameter choices used in this 
study, the similar size of the tropospheric signal derived from coupling to the stratosphere and from other unre-
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lated tropospheric processes mean that there can often be confounding between the two signals. If this model is a 
good representation of real forecasting systems, this means that on the sub-seasonal timescale, the development 
of methods to disaggregate these signals could be an important forecast post-processing tool.

In the future, we aim to use Bayesian methods to fit this model to sub-seasonal and seasonal hindcast datasets 
in order to compare and contrast different prediction systems. The synthetic forecast datasets that can be easily 
generated by the minimal model could be used to test other ideas about the predictability associated with strat-
osphere-troposphere coupling. Obvious examples are tests of the windows-of-opportunity for tropospheric fore-
casts produced by models that have lower signal-to-noise ratio than the real world and comparison of a broader 
range of skill metrics to test their performance in detecting model skill derived from stratosphere-troposphere 
coupling.

Data Availability Statement
Sub-seasonal forecast data used in the study was obtained from the sub-seasonal to seasonal (S2S) archive which 
can be found at: https://apps.ecmwf.int/datasets/.
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