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Summary

We consider local linear estimation of the graphon function, which determines probabilities
of pairwise edges between nodes in an unlabelled network. Real-world networks are typically
characterized by node heterogeneity, with different nodes exhibiting different degrees of interac-
tion. Existing approaches to graphon estimation are limited to local constant approximations, and
are not designed to estimate heterogeneity across the full network. In this paper, we show how
continuous node covariates can be employed to estimate heterogeneity in the network via a local
linear graphon estimator. We derive the bias and variance of an oracle-based local linear graphon
estimator, and thus obtain the mean integrated squared error optimal bandwidth rule. We also
provide a plug-in bandwidth selection procedure that makes local linear estimation for unlabelled
networks practically feasible. The finite-sample performance of our approach is investigated in a
simulation study, and the method is applied to a school friendship network and an email network
to illustrate its advantages over existing methods.

Some key words: Exchangeable network; Graph limit; Graphon estimation; Nonparametric regression.

1. Introduction

The easy availability of network data has fundamentally changed data analysis in a variety of
fields, ranging from social to biological applications. This has led to burgeoning interest in novel
statistical methods that take network dependence into account. This paper concerns estimation of
the graphon, the generative mechanism for unlabelled networks, formulated using the framework
of exchangeability (e.g., Diaconis & Janson, 2007). Recently, there has been growing interest
in the problem of graphon estimation (e.g., Chan & Airoldi, 2014; Olhede & Wolfe, 2014;
Cai et al., 2015; Gao et al., 2015; Klopp et al., 2017; Pensky, 2019) and its applications to,
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for example, bootstrapping network data (Green & Shalizi, 2017), testing for equivalence of
network distribution using subgraph counts (Maugis et al., 2020), and estimating missing links
(Borgs & Chayes, 2017). The existing literature on graphon function estimation focuses entirely
on local constant approximations, providing the extremely useful histogram tool for analysing
complex networks. Although histogram estimators yield a meaningful clustering of nodes, they
are not designed to allow estimation of the full degree of heterogeneity across the network. As
networks grow in size and complexity, they typically exhibit heterogeneous behaviour, along
with the absence of homogeneous communities (Leskovec et al., 2009), suggesting that the use
of histogram approximations may be limited only to exploratory analysis. Motivated by these
issues, we propose a novel local linear graphon estimator that uses covariates to account for node
heterogeneity, and enables improved graphon estimation.

We consider the setting where a single undirected network without self-loops is observed
along with continuous covariates at each node. For a network comprising n nodes, pairwise
interactions between nodes are represented by an n × n adjacency matrix A = (Aij), where
Aij = 1 represents the presence, and Aij = 0 the absence, of interaction between nodes i and
j. Further, Aij = Aji for 1 � i, j � n, and Aii = 0 because there are no self-loops. Using the
notion of exchangeable arrays (e.g., Hoover, 1979; Aldous, 1981), the Aij (i � j) are modelled
as independent Ber(pij) trials for binary networks, where the interaction or edge probabilities pij
are determined by the graphon f : [0, 1]2 → [0, ∞), a bivariate symmetric measurable function.
Specifically, pij ∝ f (ξi, ξj) where ξ1, . . . , ξn denote independent latent node variables. Since the
graphon provides a generative mechanism for unlabelled networks, as in the existing literature,
we study local linear estimation of the graphon function as an element of an equivalence class
that is invariant under symmetric rearrangement of its axes.

From the model described above, it is clear that graphon estimation is a nonparametric regres-
sion problem with the pairwise interactions Aij as the observed response corresponding to latent
design points ξi and ξj. Given this latency of design points, it is natural to construct histogram
approximations by clustering pairwise interactions into bins of a suitable size. In the case of a
single network observation, this has been achieved, for instance, by Chan & Airoldi (2014) and
Yang et al. (2014) under the restrictive assumption of strict monotonicity of the degree sequence,
by Olhede & Wolfe (2014) through a combinatorial likelihood approach, by Cai et al. (2015)
via iterative clustering based on the cut-metric, and by Pensky (2019) through penalized least
squares. The aforementioned approaches, as well as related works on the special problem of
probability matrix estimation (e.g., Chatterjee, 2015; Zhang et al., 2017; Padilla, 2019), with the
exception of Su et al. (2020), are based on the adjacency matrix alone and ignore the commonly
available covariates. In numerous applications, covariates are known to provide information com-
plementary to pairwise interactions; therefore, the integration of covariates is pivotal and is a topic
of growing research interest (e.g., Hoff et al., 2002; Perry & Wolfe, 2013; Zhang et al., 2016;
Binkiewicz et al., 2017; Latouche et al., 2018; Yan et al., 2019).

Since pij ∝ f (ξi, ξj), node heterogeneity in the nonparametric framework described above
is clearly determined by the node-specific design points {ξi}n

i=1. In practice, these are never
observed; however, node covariates are commonly recorded. Empirically observed heterogeneity
in the network can often be attributed to heterogeneity in the nodes expressed through covariates.
For example, in a contact network of employees, differences in interactions between employees
can be attributed to employee-specific features such as seniority in the profession or popularity.
Likewise, in a student friendship network, differences in friendship-forming behaviour can be
attributed to school grades. With this in mind, we employ node covariates via an error-in-variable
model to inform local linear modelling within disjoint neighbourhoods. Our algorithm for local
linear estimation is based on profile least squares with iterative updates for the neighbourhood
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assignment of nodes and covariate-informed local linear model-fitting. Our approach may be
viewed as analogous to classical scatter plot smoothing (e.g., Härdle & Marron, 1995), but is
designed to deal with the additional challenges arising from the latency of design points. Key to
our graphon estimation procedure is the size of the neighbourhoods, or the bandwidth, which must
be determined appropriately from the observed network. Given the absence of design points, we
do this by studying the theoretical properties of an oracle-informed local linear graphon estimator.
Our results show how local linear modelling leads to reduced bias relative to local constant fitting,
and results in a mean integrated squared error that decays much faster than that of the network
histogram of Olhede & Wolfe (2014). The mean integrated squared error optimal bandwidth
choice is derived and found to be determined by, the number of nodes in the network, global
sparsity, and a measure of network variability defined in terms of the Laplacian of the graphon.
We provide a procedure based on spectral decomposition for estimating this measure of network
variability from the adjacency matrix, yielding a simple plug-in bandwidth selection rule.

The finite-sample performance of our method assessed via synthetic graphons with different
properties, under both dense and sparse regimes, suggests that our approach can lead to signifi-
cantly improved estimation, even when covariates do not provide ideal proxies for latent design
points. Application of our method to a student friendship network from the Add Health dataset
and to a network of email interactions from the Enron database reveals key structural features
that are not observed when estimation is performed using existing approaches, with our method
showing improved prediction of edge probabilities.

2. Preliminaries

A simple stochastic model for an undirected, unlabelled binary network of size n, represented
by an n × n adjacency matrix A = (Aij), is given in Definition 1 (Hoover, 1979; Aldous, 1981).
For convenience, we use [n] to denote {1, . . . , n} for any positive integer n.

Definition 1. Let {ξi}n
i=1 be a sequence of independently distributed Un[0, 1] random vari-

ables. Then Aij = Aji for (i, j) ∈ [n] × [n] are modelled as conditionally independent Bernoulli
trials, Aij | ξi, ξj ∼ Ber{ρnf (ξi, ξj)}, where the graphon function f : [0, 1]2 → [0, ∞) is a sym-
metric measurable function, and the scaling factor ρn > 0, assumed to be nonincreasing in n,
allows for globally sparse networks (e.g., Bollobás & Riordan, 2011).

For statistical identifiability of ρn, it is assumed that f integrates to unity, i.e.,∫∫
(0,1)2 f (u, v) du dv = 1. Then, noting that E(Aij) = pr(Aij = 1) = ρn, we estimate it as

the proportion of nonzero edges in the network, i.e., ρ̂n = (n
2

)−1∑
i<j Aij (e.g., Olhede & Wolfe,

2014). We let pij = ρnf (ξi, ξj) denote the probability of an edge between nodes i and j, and use
p(ξi, ξj) = pij to denote the corresponding probability function.

3. Methodology

3.1. Local linear modelling

Because of the lack of traditional geometry on the space of unlabelled networks, a neigh-
bourhood is commonly defined in terms of disjoint blocks comprising a fixed number of nodes,
similar to communities (e.g., Kolaczyk & Csárdi, 2014), rather than in terms of distance from
a focal point as in classical nonparametric regression. Given a suitable bandwidth 1 < h � n,
representing the number of nodes in each block, we divide the total number of nodes n into
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k = �n/h� blocks, writing n = hk + r where r = n mod h is the remainder lying between 0 and
h − 1. Given n and h such that n = hk + r, let Zn,h ⊆ {1, . . . , k}n contain all block assignment
vectors z = (z1, . . . , zn)

T with h components equal to each of the integers from 1 to k − 1, up
to relabelling, and h + r components equal to k , again up to relabelling. Then for node pair
(i, j) ∈ [n] × [n] such that zi = a and zj = b, where (a, b) ∈ [k] × [k], we consider a local linear
model (e.g., Fan & Gijbels, 1996) for the unknown probability function p,

p(ξi, ξj) = κ̃ab, 0 + κ̃ab, 1ξi + κ̃ab, 2ξj, (1)

where κ̃ab, 0, κ̃ab, 1 and κ̃ab, 2 denote the local linear coefficients for block pair (a, b). As mentioned
in the introduction, the node-specific design points {ξi}n

i=1 are latent, but node covariates {xi}n
i=1

are commonly observed and may be used to explain heterogeneity in interactions (e.g., Fosdick
& Hoff, 2015). We integrate covariate information via an error-in-variable model where node
covariates are modelled as proxies for unobserved node positions, i.e.,

xi = ξi + εi, (2)

where {εi}n
i=1 denotes the error term with mean zero and variance σ 2, such that {ξi, εi}i are

mutually independent. Then, upon replacing the latent variable ξi by xi and likewise ξj by xj
in (1), we get p(ξi, ξj) = κab, 0 + κab, 1xi + κab, 2xj, where the change in coefficients from κ̃ab, l
to κab, l (l = 0, 1, 2) takes into account the change in regressors from ξ to x. We use (2) to
employ node covariates xi as proxies, or measurements, for ξi to explain heterogeneity in pairwise
interactions within blocks via linear associations. Thus, estimation of the probability function p
in our framework is a nonparametric regression problem with unknown neighbourhoods in the
form of disjoint blocks, and with node covariates {xi} as regressors to explain local structure. For
simplicity, we proceed with the case of a single covariate at each node; integration of multiple
covariates follows similarly, as described in the Supplementary Material. For further discussion
on integration of covariates via (2), see the Supplementary Material.

3.2. Least-squares estimator

The least-squares approach to local constant graphon estimation has been studied, for example,
by Gao et al. (2015) and Klopp et al. (2017). In contrast, we are concerned with local linear least-
squares estimation, and hence are not restricted to the class of block-constant matrices. Given our
local linear model, let κab = (κab, 0, κab, 1, κab, 2)

T denote the vector of local linear coefficients
and z ∈ Zn, h the block assignment vector. Consider the residual sum of squares,

L(κ , z; A, X ) =
∑

{(a,b)∈[k]×[k]}

∑
{(i,j)∈z−1(a)×z−1(b), i<j}

lij(κab, A, X ), (3)

where lij(κab, A, X ) = (Aij − κT
abXij)

2, Xij = (1, xi, xj)
T is the vector of regressors, and κ =

(κab)(a, b)∈[k]×[k] ∈ R
3×k×k denotes the full set of k2 local linear coefficient vectors. Thus, the

least-squares estimator of (κ , z) is

(κ̂ , ẑ) ∈ arg min
κ∈R3×k×k , z∈Zn,h

L(κ , z; A, X ).

Given the dependence of local linear coefficients κab on the unknown block assignment vector
z, we solve this optimization problem via profile least-squares estimation with iterative updates,
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as outlined in the Supplementary Material. Then, for any (i, j) ∈ [n] × [n] such that ẑi =
a and ẑj = b, the local linear edge probability estimate is p̂ij = κ̂ab, 0 + κ̂ab, 1xi + κ̂ab, 2xj,
which implies the corresponding graphon estimate f̂ij = ρ̂−1

n p̂ij. In general, for any given point
(u, v) ∈ (0, 1)2, setting a = min(
nu/h�, k) and b = min(
nv/h�, k) we define f̂ (u, v) =
ρ̂−1

n p̂(u, v) where p̂(u, v) = κ̂ab, 0 + κ̂ab, 1u + κ̂ab, 2v. Our local linear graphon estimator depends
on the size of neighbourhoods, or the bandwidth h, which must be selected to control the bias-
variance trade-off, one of the key issues in nonparametric regression. This is the topic of the next
section.

4. Bandwidth selection

4.1. Oracle-based local linear graphon estimator

Given the latency of the design points {ξi}, we employ an oracle (e.g., Donoho & Johnstone,
1994; Olhede &Wolfe, 2014) that supplies information about the true neighbourhoods to construct
a theoretically tractable local linear graphon estimator. Consider the oracle that provides order
statistics of the unobserved node positions {ξi}n

i=1, i.e., for each i ∈ [n] we are given (i) such that
ξ(1) � ξ(2) � · · · � ξ(n). We use this information to construct the oracle block assignment vector
z̄∗ = (z̄∗

1 , . . . , z̄∗
n)

T, where z̄∗
i = min{
(i)−1/h�, k} with (i)−1 denoting the rank, ordered from

smallest to largest, of the ith element ξi (Olhede & Wolfe, 2014). A fixed block neighbourhood
design as given by z̄∗ is, in general, asymmetric about a point of estimation and leads to a
theoretically intractable local linear estimator. We therefore use the order statistics of {ξi}n

i=1 to
construct a symmetric neighbourhood around a given point of estimation (e.g., Fan & Gijbels,
1996), as detailed below; see the Supplementary Material for further discussion.

Define in = i/(n + 1). Since E(ξ(i)) = in for ξi ∼ Un[0, 1] (e.g., Davison & Hinkley, 2007),
for a given u in the interior of [0, 1], i.e., h/2n � u � 1−h/2n (e.g., Ruppert & Wand, 1994), we
define the oracle neighbourhood indicator vector z∗(u; h) = {z∗

1(u), . . . , z∗
n(u)}T, where z∗

i (u) = 1
if (i)−1

n ∈ [u − h/2n, u + h/2n] and z∗
i (u) = 0 otherwise. Given (2), the oracle must also inform

the choice of ideal design points. Using the fact that E(ξ(i)) = in, we define x∗
i = in (i ∈

[n]) as oracle measurements for unobserved ξ(i). Let X ∗
ij = (1, x∗

i , x∗
j )

T, and let A∗
ij = A(i)(j)

denote the adjacency with nodes rearranged to correspond to increasing node positions {ξ(i)}.
Then, given (u, v) ∈ (0, 1)2, following (3), the residual sum of squares in the oracle setting
is L∗(γuv) = ∑

{(i,j): i<j} lij(γuv, A∗, X ∗)z∗
i (u)z

∗
j (v), where γuv = (γuv,0, γuv,1, γuv,2)

T ∈ R
3×1

denotes the vector of local linear coefficients. There are implicit assumptions on the parameter
space, namely that γ T

uvX ∗
ij ∈ [0, 1] for all (i, j) ∈ [n] × [n] where z∗

i (u)z
∗
j (v) = 1 (e.g., Battey

et al., 2019). The least-squares estimator γ̂uv = γ̂uv(z∗) is γ̂uv = arg minγuv
L∗(γuv). This leads

to the oracle local linear graphon estimator f̂ ∗(u, v; h) = ρ̂−1
n p̂∗(u, v), where p̂∗(u, v) = γ̂uv,0 +

γ̂uv,1u+ γ̂uv,2v. Expressions for the bias and variance of this oracle local linear graphon estimator
for a bandwidth h > 1 are given in the following theorem.

Theorem 1. Given a bandwidth h > 1, assume that h/n → 0 as n → ∞, h = ω(
√

n), and
the graphon f : [0, 1]2 → [0, ∞) is twice differentiable with continuous second-order partial
derivatives. Let fu and fv denote the first-order partial derivatives with respect to the first and
second variables, respectively. Then, as n → ∞, for any interior point (u, v) ∈ (0, 1)2,

bias{f̂ ∗(u, v; h)} = μ2(K)
2

h2

n2

{
∂2f

∂u2 (u, v)+ ∂2f

∂v2 (u, v)

}
{1 + o(1)}
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and

var{f̂ ∗(u, v; h)} =
[

f̄ω − ρnf̄ 2
ω

ρnh2 + 2f̄u;ω f̄v;ω
(u + v)

(n + 2)

{
2n

n + 1
− (u + v)

}]
{1 + o(1)}, (4)

where μ2(K) denotes the second moment with respect to the kernel K ≡ Un[−1/2, 1/2],
implying μ2(K) = 1/12. Further, we denote by f̄ω = |ωuv|−1

∫∫
ωuv

f (x, y) dx dy,

f̄ 2
ω = |ωuv|−1

∫∫
ωuv

f 2(x, y) dx dy, f̄u;ω = |ωuv|−1
∫∫
ωuv

fu(x, y) dx dy and f̄v;ω =
|ωuv|−1

∫∫
ωuv

fv(x, y) dx dy the corresponding local averages over the size-h oracle region
ωuv = [u − h/2n, u + h/2n] × [v − h/2n, v + h/2n].

The leading bias term captures how the curvature of graphon f controls the bias of the local
linear graphon estimator, with higher bias at points corresponding to higher curvature. The product
of the unmixed second-order partial derivative(s) of f with bandwidth n−2h2 indicates the amount
of smoothing that must be performed to reduce bias. The variance given by the first term in (4)
scales as the inverse of the effective degrees of freedom, i.e., (ρnh2)−1 in each neighbourhood.
The second term in (4) is the covariance term arising from the order statistics of {ξi}n

i=1 and is
determined by local averages of first-order partial derivatives of f , specifically f̄u;ω and f̄v;ω.

Remark 1. Writing Hn = diag(n−2h2, n−2h2), the bias term in Theorem 1 is expressed as
bias{f̂ ∗(u, v; h)} = 0.5μ2(K) tr{HnHf (u, v)}{1 + o(1)}, where tr denotes trace and Hf (u, v)
denotes the 2 × 2 Hessian matrix of graphon f at (u, v). This is similar in form to the asymptotic
bias obtained in classical local linear regression (Ruppert & Wand, 1994, Theorem 2.1). Likewise,
the variance of our estimator scales as (ρnh2)−1, which can be expressed as (n−2h2 × n2ρn)

−1 =
(|Hn|1/2 × effective sample size)−1 as in the classical setting.

Using the properties of our local linear estimator given in Theorem 1, we obtain the mean
integrated squared error optimal bandwidth rule.

Proposition 1. Under the conditions of Theorem 1, as n → ∞, the mean integrated squared
error mise(f̂ ∗) of the oracle local linear estimator satisfies

mise(f̂ ∗) �
{

h4

4n4μ
2
2(K)ψ2,f + (ρnh2)−1 + 5n

3(n + 1)(n + 2)
max

(u,v)∈[0,1]2
f̄u;ω f̄v;ω

}
{1 + o(1)},

where ψ2,f = ∫∫
(0,1)2 �f (u, v)2 du dv, with �f (u, v) denoting the Laplacian of f at (u, v). This

leads to the mean integrated squared error optimal bandwidth

h∗ =
(

2

ρnμ
2
2(K)ψ2,f

)1/6

n2/3. (5)

With n, ρn andψ2,f specified, Proposition 1 provides a bandwidth selection rule h∗ that respects
the global properties of the network. Specifically, an increase in the bandwidth with an increase
in network size n is dictated by a trade-off between the sparsity of the network and its structural
variability as measured by ψ2,f . The rule in (5) governs how the bandwidth should increase with
decreasing network density specified via ρn, and explains how a high overall variability in the

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article/doi/10.1093/biom
et/asab057/6425670 by Birkbeck C

ollege, U
niversity of London user on 17 January 2022



Local linear graphon estimation 7

network must imply a smaller bandwidth. With h = h∗, it follows that

mise(f̂ ∗)
∣∣∣
h=h∗ �

⎧⎨
⎩

3μ2/3
2 (K)ψ1/3

2,f

24/3ρ
2/3
n n4/3

+ 5n

3(n + 1)(n + 2)
max

(u,v)∈[0,1]2
f̄u;ω f̄v;ω

⎫⎬
⎭ {1 + o(1)}.

Thus, the mean integrated squared error of the local linear estimator decays at a rate of
(n4/3ρ

2/3
n )−1, which is much faster than the (nρn

1/2)−1 rate at which the mean integrated squared
error of the histogram decays, for ρn > n−2. This is what we would expect, as using a local linear
fit leads to a reduced bias, with the contribution from the bias term being proportional to h4n−4,
in comparison with h2n−2 for the histogram of Olhede & Wolfe (2014).

4.2. Data-dependent bandwidth selection

To provide a plug-in bandwidth selection rule based on h∗ in (5), the unknown quantity ψ2,f
involving derivatives of the unknown function f must be estimated. In classical nonparametric
regression, this is typically achieved via a simple parametric fit (e.g., Fan & Gijbels, 1996) or
a piecewise-parametric fit (e.g., Ruppert et al., 1995) to the unknown function. However, these
approaches are not directly applicable in our setting because of the latency of design points. To
overcome this problem, we use the spectral decomposition of A to estimate a rank-τ representation
of f (e.g., Lovász, 2012), which is then used to obtain the partial derivatives of f via global
quadratic fitting. This results in an approximation to ψ2,f as given by Algorithm 1.

Algorithm 1. Plug-in bandwidth selection.

Input: the n × n adjacency matrix A
Output: ψ̂2,f for plug-in bandwidth selection rule ĥ∗ = 
h∗(ρ̂n, ψ̂2,f , n)�

Step 1. Let λ1, . . . , λn denote the eigenvalues of A indexed such that
|λ1| � |λ2| � · · · � |λn|, with corresponding eigenvectors v1, . . . , vn where
vl = (vl,1, . . . , vl,n)

T for l ∈ [n].
Step 2. Define

α̂l =
(∑n

i=1 vl,i

n

)2
λl

ρ̂n
, κ̂l,i = nvl,(i)∑n

m=1 vl,m
,

where {vl,(j)}j∈[n] are obtained by sorting {vl,j}j∈[n] in increasing order.

Step 3. Obtain the quadratic fit κ̂l,i = bl,0i2n + bl,1in + bl,2 where in = i/(n + 1), for
instance via least squares.

Step 4. Let τ̃ denote the estimated rank obtained as the smallest positive integer such that

∑τ̃+1
l=1 |α̂l|∑n
l=1 |α̂l| −

∑τ̃
l=1 |α̂l|∑n
l=1 |α̂l| � c′,

with c′ ∝ 10−t for an integer t � 3.
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Table 1. Graphons for numerical experiments with corresponding properties; the
theoretical mean integrated squared error optimal bandwidth h∗ is reported for

n = 2000 and ρn = 1/3
Index fIndex(u, v) Rank Monotone degree ψ2,f h∗(ψ2,f ; n, ρn)

1 exp(u + v)/[0.7238{1 + exp(u + v)}] Full Yes 0.05 808
2 3

4 + 9
4 u2v2 Low (2) Yes 12.60 322

3 exp(−0.5|u − v|)/0.8522 Full No 0.25 618

Step 5. Set

ψ̂2,f = 4

n2

n∑
i=1

n∑
j=1

⎧⎨
⎩

τ̃∑
l=1

α̂lbl,0(κ̂l,j + κ̂l,i)

⎫⎬
⎭

2

.

Let ĥ∗ denote the plug-in bandwidth selection rule obtained by replacingψ2,f with ψ̂2,f and ρn

with ρ̂n in (5). Comparisons of our plug-in bandwidth ĥ∗ with the true bandwidth h∗, for synthetic
graphons as in Table 1, are included in the Supplementary Material. From these comparisons,
it is evident that our method performs well in both the dense and the sparse regimes; see the
Supplementary Material for further details and discussion.

5. Finite-sample performance

The finite-sample performance of the proposed local linear estimator is investigated using
synthetic networks under two density regimes. We report results of comparisons with the network
histogram of Olhede & Wolfe (2014), the sort-and-smooth method of Chan & Airoldi (2014), the
universal singular-value thresholding of Chatterjee (2015), and the neighbourhood smoothing of
Zhang et al. (2017). Graphons used to generate synthetic networks, along with their rank, degree
structure, network variability as measured byψ2,f , and corresponding bandwidth h∗ for n = 2000
and ρn = 1/3 are listed in Table 1. The true structures implied by these graphons are visualized
using heatmaps in the first column of Fig. 1.

We consider a dense regime with ρn ∝ 1 and a sparse regime with ρn ∝ n−1 log3(n), dictating
how the density of edges decreases with increasing n. For each f , ρn is chosen to coincide in
the two regimes for n = 200. This leads to a significantly different ρn in the sparse regime for
the largest value of n = 1600, results for which are reported. To study the performance of our
local linear estimator in situations where the observed node covariates xi may not provide ideal
measurements for the latent node positions ξi, we use node covariates generated following (2)
where εi ∼ N (0, σ 2), with (i) σ 2 = 0.0001, implying a high signal-to-noise ratio of 28, referred
to as local linear high, and (ii) σ 2 = 0.02, corresponding to a much lower signal-to-noise ratio
of 2, referred to as local linear low.

Table 2 shows mean squared error comparisons averaged over 100 replications; visual com-
parisons of graphon matrix estimates via heatmaps from a single network of size n = 1600 are
displayed in Fig. 1. Due to space constraints, we have displayed heatmaps only for f3 in the sparse
regime; see the Supplementary Material for f1 and f2. From the mean squared error comparisons
in the dense case, we see that for f1 our method yields the best results, with an average mean
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Local linear graphon estimation 9

Table 2. Comparisons of mean squared error (×103, with standard deviation in parentheses)
averaged over 100 replications

Graphon n ρn Proposed (high) Proposed (low) NH SAS USVT NBS

ρn ∝ 1

f1
800 0.70 0.60 (0.13) 0.91 (0.13) 3.70 (1.40) 1.00 (0.06) 1.30 (0.07) 5.10 (0.19)

1600 0.70 0.34 (0.06) 0.64 (0.10) 1.40 (0.27) 0.52 (0.04) 0.78 (0.03) 3.10 (0.11)

f2
800 0.28 6.60 (2.97) 8.90 (1.40) 18.70 (1.80) 9.50 (0.69) 13.60 (0.73) 29.90 (0.66)

1600 0.28 3.64 (0.84) 6.32 (0.98) 9.00 (0.97) 5.00 (0.27) 6.50 (0.28) 17.80 (0.22)

f3
800 0.71 4.00 (1.40) 5.00 (1.56) 1.90 (0.45) 11.10 (0.47) 3.20 (0.09) 6.50 (0.11)

1600 0.71 2.30 (1.32) 2.75 (1.70) 1.20 (0.91) 10.50 (0.40) 2.00 (0.04) 3.70 (0.05)

ρn ∝ n−1 log3(n)
f1 1600 0.24 3.40 (0.75) 3.60 (0.63) 13.10 (1.90) 3.50 (0.13) 4.40 (0.14) 27.60 (0.16)
f2 1600 0.10 11.80 (1.80) 12.10 (1.60) 33.10 (1.40) 16.60 (0.80) 33.30 (1.00) 89.10 (0.95)
f3 1600 0.24 3.80 (0.50) 4.40 (0.32) 10.30 (1.30) 13.70 (0.38) 10.10 (0.24) 34.50 (0.24)

NH, network histogram of Olhede & Wolfe (2014); SAS, sort-and-smooth method of Chan & Airoldi (2014); USVT,
universal singular-value thresholding of Chatterjee (2015); NBS, neighbourhood smoothing of Zhang et al. (2017).

1(a)

0.8

1

1.2

1(b) 1(f)1(e) 1(g)1(d)1(c)

True LL (high) USVTSAS NBSNHLL (low)

2(a)

1

1.5

2

2.5

2(b) 2(f)2(e) 2(g)2(d)2(c)

3(a)

0.8
0.9
1
1.1

3(b) 3(f)3(e) 3(g)3(d)3(c)

4(a)

0.8
0.9
1
1.1

4(b) 4(f)4(e)4(d) 4(g)4(c)

Fig. 1. Graphon estimates from networks of size n = 1600, with f1 and ρn ∝ 1 in the first row, f2 and ρn ∝ 1 in
the second row, f3 and ρn ∝ 1 in the third row, and f3 and ρn ∝ n−1 log3(n) in the fourth row, using the proposed
local linear method (LL) under high and low signal-to-noise ratio settings in (b) and (c) and using the network
histogram (NH), sort-and-smooth method (SAS), universal singular-value thresholding (USVT) and neighbourhood

smoothing (NBS) in (d)–(g).

squared error of 7.75 for n = 800 and 4.98 for n = 1600 over the two signal-to-noise ratio
settings; the sort-and-smooth and singular-value thresholding methods give comparable results.
In contrast, the network histogram and neighbourhood smoothing do not perform well. For f2, the
best results are obtained from our approach, which gives an average mean squared error of 7.75
for n = 800 and 4.98 for n = 1600, and from the sort-and-smooth method for each n. The other
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methods have relatively high mean squared errors. For f3, the sort-and-smooth approach clearly
has the worst performance, which can also be seen in Fig. 1. This is what one would expect given
the nonmonotonic degree structure of f3. From Table 2 it is evident that for f3 the best-performing
methods are the network histogram and singular-value thresholding. The proposed local linear
method, with an average mean squared error of 4.50 for n = 800 and 2.53 for n = 1600, and
neighbourhood smoothing yield the second-best results.

From the mean squared error comparisons in the sparse regime, we see that for f1, as in the dense
case, local linear estimation continues to perform the best, with the mean squared errors from sort-
and-smooth and singular-value thresholding being comparable. For f2, our method leads to the
smallest mean squared error, with sort-and-smooth producing the second-best results; however,
the mean squared error of all other methods is at least three times as high as the mean squared error
of our approach. Interestingly, for f3 in the sparse regime, our approach leads to the smallest mean
squared error, with the mean squared errors of all other methods being at least twice as high. This
is in contrast to the dense setting, where the network histogram and singular-value thresholding
give the best results, and is also apparent from the last row of Fig. 1, where bands with different
intensities along the diagonal are clearly visible in the local linear estimates; neighbourhood
smoothing and sort-and-smooth estimates, on the other hand, are unable to identify these key
structural components.

To summarize, our method consistently performs well, significantly outperforming existing
approaches in the sparse regime of greater practical interest, and giving the best or second-best
results in the dense regime. On average, the results in Table 2 imply a 27% reduction in mean
squared error in the high signal-to-noise ratio case, and a 10% reduction in the low signal-to-
noise ratio case from using the proposed method, in comparison to the best-performing of the
network histogram, sort-and-smooth, singular-value thresholding and neighbourhood smoothing
methods.

6. Data analysis

6.1. School friendship network

We illustrate local linear graphon estimation by applying it to a student friendship network
comprising 994 students, collected as part of the U.S. National Longitudinal Study of Adolescent
Health, called Add Health for short (Resnick et al., 1997). One of the objectives of Add Health is
to examine friendship patterns among high school students. Students participating in the survey
were asked to report their school grade, coded 7–12; race, coded 1–5, with 0 representing a missing
response; and sex, coded female or male. They were then asked to nominate up to five friends of
each sex. For our example we select School 75, one of the more heterogeneous schools, with 62%
of participants reporting their race as ‘White only’, coded as 1, 28% as ‘Black only’, coded as 2,
and 10% from the remaining three categories, 3–5. Using the data on friendship nominations, an
undirected network was constructed with Aij = 1 if either student i or student j nominated the
other as a friend. We illustrate our approach with the school grade covariate observed for each
student. As a pre-processing step, nodes with missing grade information were removed, leaving a
network of size n = 987 and an edge density of ρ̂n = 0.0089. Using Algorithm 1 with c′ varying
between 10−3 and 10−7, we obtained bandwidths in the range of 138–145; we select ĥ∗ = 141,
as it implies seven equally sized blocks, or bins.

The reported race and grade attributes of nodes in the estimated local linear and network
histogram bins are displayed in Fig. 2. Observing the attributes of students in histogram bins,
it is apparent that each bin has a clear majority of its nodal attributes in one of two reported
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Fig. 2. (a) Race and (b) corresponding grade attributes reported by students, for bins identified via our local linear
approach (top row) and via the network histogram (bottom row). The bin index is marked along the horizontal axis,
and the counts of students with different reported race attributes and school grades (7–12) are marked on the vertical

axis (see legends).
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1
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Fig. 3. Graphon estimates f̂ 1/4 by race code for the school network, using (a) the proposed local linear method, (b) the
network histogram, and (c) neighbourhood smoothing.

race categories,‘White only’, and ‘Black only’, and this corresponds to a weak majority across
most grade categories, 7–12, as is visible from the rightmost subplot in the second row. This
is not surprising as each grade includes students from these two reported race categories. Our
method, on the other hand, yields a balance between the race and grade attributes of bins; for
example, there is a clear majority in grades 7–11 across bins, and bins 1–6 contain mostly students
reporting their race as ‘White only’, while bin 7 contains mostly students reporting their race
as ‘Black only’, which evidently includes students from each of the six different grades. These
differences in clustering are reflected in the corresponding graphon estimates displayed in Fig. 3,
which also includes the neighbourhood smoothing method of Zhang et al. (2017) for comparison.
Here the histogram and local linear bins as labelled in Fig. 2, i.e., by race code, are positioned
on the diagonal from (0, 0) to (1, 1); likewise, the graphon matrix estimate from neighbourhood
smoothing has nodes arranged by race code. Our local linear graphon estimate in Fig. 3(a) clearly
identifies a division of the friendship network into three key components: (i) bins 2 and 3, (ii) bins
4 and 5, and (iii) bins 1, 6 and 7, with an assortative community-like structure displayed jointly
by the first two components, and with low-intensity hub-like interactions of students in the third
component. The network histogram is clearly unable to identify structure stemming from nodes
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Fig. 4. Graphon estimates f̂ by seniority for the Enron network, using (a) our proposed local linear method, (b) the
network histogram, and (c) neighbourhood smoothing.

belonging to the same grade, as expected. Further comparisons, reported in the Supplementary
Material, show that (i) unlike the histogram method of Olhede & Wolfe (2014), our local linear
estimate is able to identify structure irrespective of the choice of bin labelling, i.e., by race code
or grade, and (ii) our local linear estimate leads to the lowest root mean squared prediction error
and log loss when used for prediction. From comparisons reported here and in the Supplementary
Material, it is also evident that matrix estimation techniques such as neighbourhood smoothing
and singular-value thresholding are harder to interpret owing to the absence of a clustering of
nodes.

6.2. Enron email network

The Enron email corpus comprises a subset of the email messages exchanged within the
Enron corporation between 1998 and 2002. We analyse the dataset compiled by Zhou et al.
(2007), which consists of 21 635 messages sent between 156 employees from 13 November 1998
to 21 June 2002. In order to exclude messages sent en masse to large groups, emails with more
than five recipients were removed from the analysis. We consider the undirected binary network
of n = 156 nodes, i.e., employees, where Aij = 1 if node i either sent an email to or received an
email from node j and Aij = 0 otherwise. This implies ρ̂n = 0.1524. The dataset also includes
information on the directed count of ‘send’ and ‘receive’ interactions; node covariates such as
seniority, classified as ‘junior’ or ‘senior’; department, i.e., ‘legal’, ‘trading’ or ‘other’; and the
sex of employees. Motivated by Perry & Wolfe (2013), we illustrate our local linear graphon
estimation using a receive-senior covariate, xi, defined as the proportion of emails received by
node i from senior nodes. Following our bandwidth selection procedure, we obtain ĥ∗ = 39,
implying r = 0, and hence four bins of the same size. A comparison of graphon estimates is
displayed in Fig. 4, where each local linear and histogram bin is identified as ‘junior’ or ‘senior’
via a majority vote based on the seniority of the employees making up the bin. Subsequently,
bins labelled 1, 2, . . . are arranged on the diagonal with the highest junior majority at (0, 0) and
the highest senior majority at (1, 1). Likewise, the graphon estimate of Zhang et al. (2017) is
displayed in Fig. 4(c), with nodes arranged by seniority; see the Supplementary Material for
comparisons with the sort-and-smooth method and singular-value thresholding.

At a coarse level, these estimates appear similar to each other, with high edge intensities near
(1, 1) and significantly lower edge intensities on the off-diagonal; however, a feature unique to our
local linear estimate is the separation of the network into four weakly connected components. The
employees in bin 1, containing a majority of junior employees, are almost disconnected from the
rest of the network because of low estimated edge intensities; bins 2 and 3, also with a majority of
junior employees, display an assortative community-like behaviour, whereas bin 4, with a majority
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of senior employees, displays a high degree of heterogeneity and low-intensity interactions with
bins 2 and 3. Regarding the attributes, we find that bin 4 comprises senior employees with pivotal
positions such as ‘President and CEO’ or ‘VP of Regulatory Affairs’, whereas bin 1 consists
of junior employees from all three departments with roles such as ‘Attorney’, ‘Associate’ and
‘Analyst’. Further comparisons, reported in the Supplementary Material, confirm that our local
linear estimation method, not only provides a meaningful visualization of the underlying structure,
but also leads to the lowest root mean squared prediction error and log loss.
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