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The human–computer interaction (HCI) design of educational technologies influences cognitive behaviour,
so it is imperative to assess how different HCI strategies support intended behaviour. We developed
a neuroscience-inspired game that trains children’s use of “stopping-and-thinking” (S&T)—an inhibitory
control-related behaviour—in the context of counterintuitive science problems. We tested the efficacy of
four HCI features in supporting S&T: (1) a readiness mechanic, (2) motion cues, (3) colour cues, and
(4) rewards/penalties. In a randomised eye-tracking trial with 45 7-to-8-year-olds, we found that the readi-
ness mechanic increased S&T duration, that motion and colour cues proved equally effective at promoting
S&T, that combining symbolic colour with the readiness mechanic may have a cumulative effect, and that
rewards/penalties may have distracted children from S&T. Additionally, S&T duration was related to in-game
performance. Our results underscore the importance of interdisciplinary approaches to educational technol-
ogy research that actively investigates how HCI impacts intended learning behaviours.
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1 INTRODUCTION

Computer-based learning activities offer varied approaches to support more inclusive self-
regulated learningwithin and outside of the classroom [1]. They do this by adapting to the needs of
individual learners, which canmotivate children to engage—and stay engaged—within the learning
environment [19, 43, 55], and by training skills relevant to self-regulated learning, e.g., [7]. When
learning, self-regulated learners take control of their thoughts and actions, display metacognitive
awareness of their learning strategies, have higher self-efficacy, and are more likely to achieve
academically than their peers [7, 60]. As such, promoting self-regulated learning has long been a
focus in educational research. With more emphasis being placed on personalised, self-regulated,
learning than ever before (e.g., with the abrupt rise in home-schooling provoked by the COVID-19
pandemic [75]), there is demand for more research into the application of (i) educational neu-
roscience insights to promote self-regulated learning, (ii) human-computer interaction (HCI) de-
sign strategies to effectively guide computer-based activities based on educational neuroscience,
and (iii) artificial intelligence in education approaches to tailor these technologies to individual
learners.
This article presents work conducted as part of an educational neuroscience-focused project

called UnLocke. UnLocke hypothesised that training primary school children to apply stopping-

and-thinking (S&T) skills—a form of inhibitory control—when solving mathematics and science
problems would promote counterintuitive reasoning and academic achievement, by enabling chil-
dren to suppress (or inhibit) their intuitive but incorrect beliefs and misconceptions [57]. To this
end, we developed a trivia game-based environment (called Stop & Thinks), for 7- to 10-year-olds,
to train the application of S&T behaviours—a skill directly linked to self-regulation competencies
[77]—when engaged in counterintuitive problem solving in science and maths [77]. As part of an
Education Endowment Foundation randomised control trial efficacy evaluation [68], a teacher-led
version of this non-adaptive software was assessed in a trial with 6,672 children from 89 schools
across England. Children played Stop & Thinks as a whole class for a target of 12 minutes, 3 times
per week, and for 10 weeks, with the activity projected on an interactive whiteboard at the front of
the room and with the usual class teacher acting as facilitator. Our research revealed that training
children’s use of within-domain S&T behaviours in this way leads to improved counterintuitive
reasoning skills [77] and increased scores on standardised math and science tests [68, 77].

Due to an increasing emphasis being placed on personalised, technology-mediated, and self-
regulated learning strategies, the aim of the current study was to understand how to modify the
existing software for use in an individualised context, where children play on the computer by
themselves and the activity is not supported by a teacher. More specifically, we manipulated the
HCI characteristics of the software and assessed which characteristics best fostered inhibitory
control-related S&T behaviours in children, using behavioural and eye-tracking measures.

1.1 Inhibitory Control and the Stop & Think Game

Our brains use two distinct ways of reasoning that compete with each other [25, 40, 47]: (1) the
heuristic system, that enables intuitive, quick decision-making in familiar situations; and (2) the
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analytic system, that operates slowly, sequentially, and logically, allowing for abstract reasoning.
This second system acts to suppress the quick, intuitive decision-making of the heuristic system
when we are engaged in logical tasks, via a subset of inhibitory control skills. Inhibitory control is
a type of cognitive skill, known as an “executive function”, that is foundational to self-regulated
learning and life-long academic achievement [4, 42, 57, 80]. Some forms of inhibitory control,
specifically perceptual interference control, prior knowledge inhibition, and response inhibition,
have also been found to be important for maths and science learning, e.g., [32], where inhibition
of pre-existing beliefs or superficial perceptions is necessary for learning and applying new and
counterintuitive knowledge [22, 56, 67, 71]. This is because perceptual interference (e.g., the Earth
is flat, because it looks flat [5]) and prior knowledge interference (e.g., 5 > 3, therefore –5 > –3 [13,
37]) remain even after the child has learnt the new concepts, and are often recalled more quickly
by the brain’s heuristic system than the correct (counterintuitive) one. Furthermore, response in-
hibition also plays a role by allowing children to suppress motor responses and; thus, not give in
immediately to perceptual and prior knowledge interference. As such, exercising “stopping and
thinking” via the analytic system allows the child to engage perceptual and/or prior knowledge
inhibition, giving them time to think about the correct concept.
The UnLocke project chose a game-based learning approach to capitalise on motivational as-

pects of games for young learners [30, 63]. Games can be particularly useful in motivating pro-
longed engagement in repetitive tasks [27], such as those found in academic skills training, e.g.,
[26, 49]. Meta-analyses have also consistently shown game-based learning interventions to have
small to moderate advantages on cognitive outcomes over conventional learning approaches (e.g.,
lectures, drill-and-practice; [20, 70, 78]).

We developed a trivia-genre game-based learning environment, called Stop & Thinks, for 7- to
10-year-old children, in which they were given structured opportunities to repeatedly exercise
S&T behaviours when solving counterintuitive maths and science problems [77]. The in-game
concepts and activities were aligned with the National Curriculum for Years 3 and 5 in England.
The game had two modes: (1) a TV trivia game-show mode and (2) a task mode that actively
trained children to apply S&T behaviours. In the game-show mode, children were introduced
vicariously to the in-game tasks and common maths and science misconceptions. The show-host
character introduced quiz questions (Figure 1(A)), while three contestant characters indicated
their readiness to respond by pressing buzzers. The reasoning behind contestants’ answers was
articulated through speech bubbles to scaffold the player’s learning (Figure 1(C–F)). In the task
mode (Figure 1(B)), the focus was on training children to apply within-domain S&T skills by
having them pause for a few seconds (henceforth—the S&T mechanic) before allowing them
to answer each question, to encourage them to suppress intuitive thinking and adopt analytic
counterintuitive reasoning. An icon (the S&T icon, seen in Figure 1(B)) pulsated in the bottom
left-hand corner of the screen to indicate to the child when they should be stopping-and-thinking
before responding to a problem. Stop & Think offered 30 sessions in total, each comprising a maths
component and a science component (presented in a random order), and wherein each component
contained six problems centred around the same counterintuitive topic. Of these six problems, the
first was “exploratory”, allowing the user to submit up to four incorrect responses and providing
increasingly more supportive feedback with each incorrect attempt. The last five problems were
presented during a “repeated practice” phase, which allowed children to practice their S&T skills
in more problems around the same topic (Supplementary Material Figure S1). Each of these
practice problems allowed two attempts before providing the correct answer and moving onto the
next problem. Each Stop & ThinkS session was timed for 12 minutes (six minutes in maths and six
in science), so the number of problems that were attempted depended on the speed and accuracy
of the player(s). In this experiment, we focus upon studying the Stop & ThinkS science component.
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Fig. 1. Overview of current non-adaptive support provided to S&T players. (A) Game-show mode—show-
host character introduces a new problem; (B) Task mode—player completes the counterintuitive problem;
(C) Game-show host encourages the player to try again upon the first incorrect attempt; (D) Upon a second
incorrect attempt, the player is shown the reasoning of other contestants (one of whom has the correct idea)
before trying again; (E) if the player is again incorrect, they are shown who had the correct idea so that this
idea could then be applied; and (F) Feedback to a correct attempt.

1.2 HCI Features that Support Individualised Training

The impact of specific HCI and design decisions on game-based learning outcomes is rarely inves-
tigated [14, 20, 28, 29]. There is a myriad of ways in which HCI design influences interactions and
training in individualised computer- and game-based learning environments, from the aesthetic of
the graphics, usability of the interface, to the organisation and flow of information on the screen
[62]. However, because we were designing for (a) small children, (b) S&T training, and (c) use
in schools within a limited timeframe, we chose to focus on the following four specific features:
(i) a readiness mechanic, (ii) pre-attentive visual cues, including motion and colour, and (iii) a
reward and penalty system, as a game-specific feature. These features were identified as poten-
tially impactful through a co-design workshop—involving developmental neuroscientists, artificial
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intelligence and HCI researchers, game designers, and educators—to investigate ways in which the
HCI design of our computer-based intervention could be enhanced to promote the application of
S&T behaviours. Below, we describe how each feature might impact S&T training in this context.

1.2.1 Readiness Indication as a Mandatory Interaction. In a typical classroom, children raise
their hands to indicate their readiness to provide answers. This type of behaviour is not com-
monplace in computer game-based activities, where there is an emphasis on play, exploration,
and experimentation [30]. However, when exercising S&T behaviour, a similar mechanic to hand-
raising could encourage metacognitive awareness and monitoring, allowing children to state their
intentionality, or readiness to answer, after giving them time to stop and think before answering.
This hypothesis is in line with the theory of planned behaviour, where goals are accomplished by a
series of more-or-less well-planned actions that are, in turn, controlled by goal-seekers’ intentions
[2, 3]. Hand-raising may play a role in such planning, and a mandatory interaction mechanic that
amplifies such intentional behaviour may provide an important means for S&T training.

1.2.2 Pre-Attentive Cues: Motion and Colour. Pre-attentive—or perceptually salient—features
are processed by our visual systems before conscious attention, thereby effectively guiding our
gaze to areas of interest [76]. Our visual sensory systems are particularly attuned to motion in
our periphery because of the evolutionary advantage that motion detection conveyed to our early
ancestors [61, 76]. Persistent motion, like blinking or pulsating, may consistently grab a user’s
attention, so that important notifications cannot be ignored [8, 76]. In some cases, this may not
be desirable, as motion may distract from the task at-hand. In contrast, there is some suggestion
that only the appearance of newmoving objects in the field of view grabs attention, and that more
persistent motion can be ignored easily [24, 39, 76]. Secondly, colour can also deliver pre-attentive
cues, e.g., by acting as a symbol to represent culturally recognised actions, emotions, or states [31,
76]. Children develop a symbolic understanding of colour at a young age [18]. For instance, the
traffic light metaphor is commonly used in early childhood education to teach “stop and go” types
of activities, such as in nutritional education programs, e.g., [44] where a green light can indicate
healthy foods (“go” behaviour) and a red light—unhealthy foods (“stop” behaviour). Some open-
learner models [17, 33] also use this metaphor to indicate to young learners how well they are per-
forming within intelligent tutoring systems. This suggests that symbolic colour may be well inter-
preted and applied by children within different contexts. Thus, the pre-attentive features of motion
and symbolic colour are potential tools to guide S&T behaviour in a computerised self-regulated
learning environment, e.g., by flagging learners to “stop and thinks” at appropriate intervals.

1.2.3 Reward Systems and Penalties. Reward systems are implemented in games to increase
players’ motivation by relaying performance information and offering tangible rewards [9, 30, 63].
Reward systems may also promote S&T and broader metacognitive competencies by encouraging
self-evaluation and self-monitoring through presenting scores of recently completed problems and
through delivering new problems wherein the player can improve previous scores [30]. Finally,
penalties play a critical role in game-based learning by creating a sense of risk and consequences
for actions, thereby contextualising the value of rewards [30, 46, 52]. As such, reward systems
and penalties in a learning environment might assist in S&T training by motivating children to
stop-and-think for longer to improve performance and, in turn, obtain a greater reward.

1.3 The Current Study

The current study sought to understand how HCI features (as described above) either support
or hinder children’s S&T behaviour in an individual-use context, through behavioural (e.g., click
interactions) and eye-tracking data. Since the 1980s, eye-tracking has been used to assess the
usability of computer interfaces [69]. Conventional methods of understanding on-screen
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attentional allocation (e.g., through users’ self-reports and button clicks) are biased towards con-
scious processes [69], where users purposefully attend to on-screen elements in an effort to achieve
a goal or complete a task. However, visual attention does not entirely depend on conscious con-
trol; in other words, users often do not realise where they are looking [69]. In contrast to con-
ventional methods, eye-tracking technology can more reliably determine allocation of attention
through gaze data by capturing information on fixation frequency and duration on areas of inter-
est, amongst other metrics. The eye-mind hypothesis postulates that people “attend to and process
the visual information that they are currently looking at” [45], with the caveat being that the vi-
sual environment must be relevant to the cognitive task undertaken [41, 45, 64–66]. As such, this
fixation information can help determine what visual information is being processed by children
during cognitive tasks in digital environments.
Throughout this article we use the term “S&T behaviour” to refer to the children’s use of their

“stop-and-think” skills during the game. S&T behaviour is exhibited when children (i) “stop” to
consider the problem, as evidenced by ceasing interactivity (clicks) in the software and focusing
their gaze on the question presented; and (ii) “think” about their answer before responding, as evi-
denced by sustained non-interaction and gaze focused on the presented answer objects or written
question (e.g., animals and buckets as depicted in Figure 1(B)). “Better” S&T behaviours in this
context refer to: increased time spent stopping-and-thinking, increased fixations on on-screen an-
swer objects and question textbox elements, decreased clicks made when supposed to be engaged
in stopping-and-thinking (i.e., “invalid clicks”), and decreased fixations on the S&T icon.
The objectives (O) of the research were to:

(1) Determine how various HCI features (as described above) promoted—or interfered with—
children’s use of S&T in the game;

(2) Demonstrate how children’s S&T behaviours are associated with their accuracy on the
learning activities; and

(3) Use the findings from O1–O2 to conceptualise the design of an adaptive system to un-
derly Stop & Think, to support individual children’s use of S&T based on their unique
behaviours.

In relation to O1, we hypothesised (i) that the addition of the readiness mechanic would improve
children’s S&T-related behaviours, (ii) thatmotionwould bemore distracting than symbolic colour,
pulling fixations away from answer objects and increasing fixations on the pulsating S&T icon,
and (iii) that the reward/penalty mechanic would improve S&T behaviours due to its motivational
influence, thereby increasing answer accuracy. For O2, we hypothesised that children’s average
recorded stopping-and-thinking time, as well as fixations on answer/question elements, would be
positively related to their answer accuracy, and that invalid clicks would be negatively related to
answer accuracy. Confirmation or rejection of the above hypotheses will help to inform O3.
To keep the length of this manuscript manageable, we offer more details of this study in our

Supplementary Materials (SM) document.

2 METHOD ANDMATERIALS

2.1 Stimuli

We developed four versions of the Stop & Think software that implemented the S&T mechanic
through different visual and interactive designs (Figure 2), to evaluate how various HCI fea-
tures impacted Stop & Think behaviours. We label these conditions here as Motion, Motion+,

Colour+, andColour+Reward, where “+” indicates the readiness interactionmechanic. TheMo-

tion condition is the baseline condition and, like the version of S&T used in the teacher-led trial
[68], uses motion to promote S&T behaviour. While the game-show host reads the question, the
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Fig. 2. Differences in HCI design between conditions during Stop & Think science problems. Motion: mo-
tion visual cue; Motion+: motion visual cue + readiness mechanic; Colour+: colour visual cue + readiness
mechanic; Colour+Reward; colour visual cue + readiness mechanic + rewards/penalties.

S&T icon pulsates in the bottom left corner of the screen and continues for five seconds after nar-
ration finishes. During these five seconds, the screen is “locked”, after which the icon disappears,
and the screen becomes interactive.Motion+ builds on the first condition by adding a mandatory
“readiness interaction” mechanic before the player can submit their answer. After the five-second
enforced stopping-and-thinking time, the pulsating icon is replaced by a button that reads “I’m
ready to answer!”. Once pressed, the screen becomes interactive. Colour+ also includes the readi-
ness mechanic design feature but uses colour instead of motion to prompt the child to engage in
S&T behaviour. The common analogy of traffic lights is used: (1) a red “Stop” icon appears in the
bottom-left corner of the screen as the question is being narrated, and the background is shaded
with a red hue; (2) the red icon changes to amber “Think” icon, and the edges of the background
change to yellow. After five seconds of enforced thinking, the “I’m ready” button pops out the side
of the icon; (3) once the button is pressed, the screen is unlocked and the yellow icon and back-
ground change briefly to green for two seconds before both fading away. Colour+Reward builds
on Colour+ by integrating simple rewards and penalties in the form of game tokens. Each cor-
rectly answered question rewards a base value of one token; multiple consecutive correct answers
during repeated-practice problems earn a bonus multiplier, which gains one multiplier point for
each correct answer. The bonus multiplier value is reset (the penalty) when an incorrect answer is
given. Tokens are awarded in game-show mode when the host gives feedback regarding answer
accuracy (depicted in Section SM1).

2.2 Participants

A total of 45 (19 girls, 26 boys) 7– 8 year olds with no known special educational needs drawn from
two English primary state-schools were included in the analysis, with 11 randomly allocated to
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each of conditions Motion, Motion+, and Colour+Reward, and 12 to Colour+. Participants’ mean
age was 7.76 years (SD = 0.32). Groups were homogenous in terms of age and gender composi-
tion (Section SM2 Tables S1, S2). Participants were recruited through a 20-minute interactive
presentation about simple neuroscience two weeks before the study. Opt-in informed consent was
obtained from the children’s parents/guardians. Children were offered stickers and a certificate of
participation as incentives and gave informed ascent before participating.

2.3 Procedure

Participants were excused from their lessons in pairs to participate in the study, which took about
30 minutes to complete. This included a brief introduction, calibration of the eye-tracker, a two-
minute video tutorial on how to play, and 12 minutes of playtime (6 minutes in maths and 6 in
science). Two eye-tracking stations were set up on identical laptops running Tobii Studio 3.3.2,
Tobii X2–30 [73] compact eye-trackers, with child-sized computer mice and headphones. Laptop
stations were set up facing each other so that children could not see each other’s screen, in a
quiet room in their school. Tobii Studio was used to launch the game and record the screen using
the “Screen Recording” Tobii element. While eye-tracking took place, click-stream data was also
digitally tracked, including interactions with answer objects, click attempts made during the S&T
mechanic, and correct/incorrect answers. The researcher gave simple instruction on how to use
the software when requested by the child (e.g., “drag and drop the animals into the buckets”),
but did not give any instruction pertaining to the S&T mechanic, nor did they provide feedback
or help regarding correct/incorrect responses. The same science topics—the categorisation of fish,
birds, andmammals—was chosen for all participants (see Section SM3 for visuals).Whilst children
also played a maths topic (addition of fractions with a common denominator), we have excluded
those data from analysis, since this topic proved too difficult for our target group, obscuring any
relationships between our measures and actual stopping-and-thinking.
Using Tobii Studio, eye-tracking recordings were parsed into four gameplay phases (or “scenes”)

for each problem attempt, based on segments of interaction related to S&T behaviour (Figure 2):
(1) Question narration phase, (2) Enforced S&T phase (i.e. first five seconds after narration
when screen is locked), (3) Voluntary S&T phase (i.e. after first five seconds, whilst the screen
is still locked before the “I’m ready to answer!” button is pressed, in the Motion+, Colour+, and
Colour+Reward conditions only), and (4) Response phase (whilst interactions are enabled but
the child has yet to make their first click). Gaze and interaction data that occurred after the child’s
first interaction with an answer object during the Response phase were not considered.

2.4 Measures

This study focuses on interaction and eye-tracking measures from the science component of the
S&T game.

2.4.1 Interaction Measures.

In-game performance. In-game performance was calculated based on correct and incorrect
answers given. To account for the game allowingmultiple attempts for each problem, the single sci-
ence exploratory problem was worth a total of four possible points, and the five repeated-practice
problems was worth a total two possible points, each reducing in value by one point for every
incorrect attempt. Therefore, the total possible science score was 14 points.
Time spent in gameplay phases. Average time spent in gameplay phases was calculated by

summing time spent in the narration phase, enforced S&T phase, voluntary S&T phase, and re-
sponse phase, up until the first click on an answer object is made in the response phase.
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Fig. 3. stopping-and-thinking time visualisation. (i) A child in the baseline Motion condition appropriately
exercises their stopping-and-thinking skills by refraining to click throughout the narration and enforced
stopping-and-thinking phase, then continues to S&T well into the response phase. (ii) A child in one of
the “+” conditions (Motion+/Colour+/Colour+Reward) appropriately exercises their stopping-and-thinking
skills by refraining to click throughout the narration and enforced S&T phase, continues to stopping-and-
thinking into the voluntary stopping-and-thinking phase, before clicking the “I’m ready to answer” button
and interacting with answer objects shortly thereafter. (iii) A child in one of the “+” conditions does not
exhibit stopping-and-thinking behaviour by attempting to interact while the screen is locked and initially
ignoring the “I’m ready to answer” button. (iv) A child in one of the “+” conditions tries to interact with
answer objects during narration, but then realises they should be stopping-and-thinking and remedies their
behaviour. This individual also ignores the purpose of the “I’m ready” button, clicking it immediately, but
then continues to stopping-and-thinking into the response phase, which we recognise as equally valid.

Stopping-and-thinking time. Average total stopping-and-thinking time was calculated by
(i) identifying the “time-to-first-click” in each problem attempt during narration, enforced S&T,
voluntary S&T, and response phases of the task mode, (ii) summing these times across all phases,
then (iii) averaging over all science problem attempts. We considered first-clicks in all phases of
gameplay, rather than only during voluntary S&T and response phases, because the HCI features
may also affect S&T behaviours before a response is allowed; so, the first click during these earlier
phases would indicate that the child had stopped stopping-and-thinking early on. Steps (i) and
(ii) in this calculation are visualised in Figure 3 to help clarify what was performed and why. The
figure depicts four different scenarios of children interacting in the same problem, where the same
total amount of time has elapsed from the beginning of the narration phase (0 s) to when the child
begins valid interactions with answer objects in the response phase (13 second in this example).
While the total elapsed time is the same across all four scenarios (13 second), the total amount of
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time spent stopping-and-thinking is arguably very different, which is why we looked at all phases
across the task mode. Additionally, we compared stopping-and-thinking time as a proportion of
time spent in the gameplay phases, calculated by dividing stopping-and-thinking time by total
time spent in gameplay phases.
Invalid clicks. Invalid clicks were tallied as clicks occurring during narration, enforced S&T,

and voluntary S&T phases of gameplay. The screen was “locked” from interactions during these
phases, so attempting to interact with answer objects would result in an “invalid click”, indicating
that the child was “doing”, rather than stopping-and-thinking. Invalid clicks are also visualised in
Figure 3.

2.4.2 Eye-Tracking Measures.

Areas of interest. Areas of interest (AOI) were set for (i) answer objects (i.e., animal im-
ages and sorting buckets), (ii) S&T/I’m ready icon, (iii) question textbox, and (iv) scoreboard
(Colour+Reward condition only). Fixation data were analysed in terms of mean total fixation du-
ration per problem, where a fixation is defined as lasting for 60 ms or longer. The fixation data
were summed over all phases of gameplay, up until the first valid click made by the child dur-
ing response phase, and then averaged over all science problem attempts. By including response
phase fixations up until the first valid click, this calculation controls for the lack of voluntary S&T
phase in the Motion condition to make a direct comparison to other conditions. Fixation data were
analysed in terms of their actual values, as well as percentages of total fixation duration (e.g., time
fixated on answer objects AOI / total fixations made on the screen × 100%). Finally, we provide
data on fixation frequency on AOI in the SM, since these do not add substantially to inferences
made solely on duration data.
Time not fixating. Finally, the duration of time children spent not fixating on the screen was

calculated by (i) summing fixation duration on all AOI and other non-AOI areas of the screen
during all four phases of gameplay (up until the first valid click in the response phasee), then
(ii) subtracting this value from the total raw duration of the four gameplay phases (e.g., this total
duration would be 13 second as visualised in Figure 3). This value represents time spent looking
off-screen (or not fixating at all) during S&T training. We examined this value as a raw number, as
well as a percentage of total time over the four gameplay phases.

3 RESULTS

All analyses were performed in SPSS v.26 (α = .05), using non-parametric analyses to compen-
sate for our small sub-group sample sizes (n < 15) [34]. We used Kruskal-Wallis (KW) tests to
compare between multiple conditions, Bonferroni-adjusted Mann–Whitney U (U) tests for post-
hoc pairwise comparisons, and Spearman correlations (rho) to assess the relationships between
in-game performance score and other metrics across conditions.

3.1 Effect of Design Characteristics on S&T Behaviour

3.1.1 Interaction Data.

In-game performance. Participants completed (whether correctly or incorrectly because they
ran out of attempts or time) an average of 3.82 out of 6 (SD = 1.03) unique science problems in
7.09 (SD = 1.69) attempts, within the six minutes of playtime allotted to science. The number of
unique science problems completed and attempted was similar across conditions (Section SM4

Tables S3, S4).
The overall mean science performance was 4.82 (SD = 2.49) out of 14. There was no statis-

tically significant difference between conditions (KW = 6.64, p = .084), though children in the
Colour+Reward condition performed marginally better than those in other conditions (Table 1).
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Table 1. Interaction Data: DESCRIPTIVE Statistics of in-Game Performance Scores on Science Problems
(maximum score = 14), raw Time stopping-and-thinking, and Proportion of time Spent

stopping-and-thinking in Gameplay Phases

In-game performance stopping-and-thinking time % time stopping-and-thinking

Condition M (SD) Range M (SD) Range M (SD) Range

Motion 4.45 (2.38) 2–9 8.45 (1.20) 6.64–10.11 57.88 (5.23) 48.26–63.64

Motion+ 4.55 (3.24) 0–9 13.11 (2.31) 10.14–17.24 62.61 (12.90) 29.52–78.66

Colour+ 4.00 (2.44) 0–7 13.35 (4.33) 8.57–21.26 61.49 (9.48) 47.96–76.48

Colour+Reward 6.36 (0.92) 5–8 12.76 (3.31) 9.85–21.60 67.39 (6.37) 55.67–74.42

Time spent in gameplay phases. Children averaged 19.49 (SD = 6.28) seconds across the
four gameplay phases in each problem. The total average time spent in gameplay phases was
significantly different between conditions (KW = 28.09, p < .001). The baseline Motion condition
averaged 13.60 second (SD = .04) in the gameplay phases, which is less than those in Motion+who
spent on average 22.94 second (SD = 8.75, U = 24.91, p < .001), those in Colour+ who spent 21.76
second (SD = 3.49, U = 26.00, p < .001), and those in Colour+Reward who spent 19.46 second (SD =
5.02, U = 16.27, p = .022). Time in “+” conditions were similar (U’s < 9.73).
Stopping-and-thinking time.Total average stopping-and-thinking time is reported in Table 1.

Children averaged 11.95 second (SD = 3.58) of stopping-and-thinking per science problem, which
represents on average 62.3% of the time spent in the gameplay phases. This is on average 5.49
second (SD = 3.20) beyond the enforced stopping-and-thinking phase (the green shaded area in
Figure 3). There was a significant effect of condition on stopping-and-thinking time (KW = 20.87,
p < .001). Bonferroni-adjusted pairwise comparisons showed that conditions Motion+ (U = 22.73,
p < .001), Colour+ (U = 19.05, p = .003), and Colour+Reward (U = 20.09, p = .002) had significantly
longer stopping-and-thinking times than the baseline Motion condition (no other pairwise com-
parison was significant, U’s < 3.68). This pattern was also observed when looking at time beyond
the enforced stopping-and-thinking phase only (Section SM5 Tables S5, S6), indicating a direct
effect of the readiness mechanic. Condition also had a marginal effect on the percentage of time
spent stopping-and-thinking during the gameplay phases (KW = 7.67, p = .053), where there is
some indication that those in the Colour+Reward condition may have spent a greater proportion
of their training time without trying to respond than other groups (Table 1).
Invalid Clicks. Children made an average of 1.28 (SD = 1.04) invalid clicks per problem. There

were no differences between conditions (KW = 6.64, p = .084) (Section SM6 Table S7).

3.1.2 Eye-Fixation Data.

Answer objects AOI. A significant difference between conditions was observed in duration of
fixation on the answer objects AOI (KW = 15.96, p = .001, Table 2). Bonferroni-adjusted pairwise
comparisons revealed significantly longer fixation on answer objects for the Colour+ condition
than the Motion condition (U = 20.26, p = .001) and the Colour+Reward condition (U = 16.27,
p = .018). All other comparisons were non-significant (U’s < 11.46). Fixation frequency revealed
similar results (Section SM7 Table S8).
A different perspective was gained by examining the percentage of time spent fixated on answer

objects out of the total fixation duration time, instead of the raw durations. Again, a significant
difference was observed (KW= 25.08, p < .001, Table 2), but here the baselineMotion conditionwas
associated with proportionally longer fixations on answer objects than the Motion+ (U = 24.27, p
< .001), Colour+ (U = 14.56, p = .047), and Colour+Reward (U = 24.18, p < .001) conditions. Other
comparisons were non-significant (U’s < 9.71). This is perhaps expected given that children are
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Table 2. Fixation Data: Raw Total Fixation Duration and Percent Fixation Duration on Answer Object and
S&T/I’m Ready Icon, as well as Raw Time and Percentage Time not Fixating on the Screen

Raw fixation duration (s)
Answer objects AOI S&T/I’m Ready icon AOI Not fixating on screen

Condition M (SD) Range M (SD) Range M (SD) Range
Motion 5.20 (1.59) 2.52–7.98 0.30 (0.23) 0.02–0.67 3.00 (0.40) 1.14–5.92
Motion+ 7.19 (2.31) 2.41–10.04 2.07 (0.65) 0.79–3.16 8.52 (8.98) 2.06–33.04
Colour+ 9.97 (3.33) 5.70–16.13 1.89 (1.35) 0.00–4.10 5.31 (2.04) 2.84–10.14
Colour+Reward 6.06 (4.04) 2.38–16.37 1.79 (0.92) 0.77–3.32 6.53 (3.17) 2.67–11.95
Percent fixation duration (%)
Motion 91.03 (3.81) 85.14–96.86 5.71 (4.58) 0.36–13.92 32.49 (7.58) 8.11–67.41
Motion+ 71.84 (5.88) 60.79–77.96 25.18 (5.27) 16.62–33.86 39.30 (22.85) 14.53–81.89
Colour+ 80.35 (8.31) 65.74–91.33 17.75 (10.10) 0.00–28.81 29.06 (8.63) 18.74–43.38
Colour+Reward 71.40 (10.78) 54.73–88.98 25.61 (9.48) 7.09–44.30 44.48 (19.63) 18.86–71.47

likely to look at the S&T icon to press the “I’m ready” button in “+” conditions, thereby diverting
a proportion of their fixation durations away from answer objects.
S&T/I’m ready icon AOI. Analysis of fixations on the S&T icon confirm this interpretation. A

significant difference was found in S&T/I’m ready icon fixation duration (KW = 21.24, p < .001,
Table 2). Children in the baseline Motion condition, which lacked the “I’m ready” button, looked
at the icon less than those in the Motion+ (U = 23.18, p < .001), Colour+ (U = 19.14, p = .003),
and Colour+Reward (U = 19.91, p = .002) conditions. Comparisons between “+” conditions were
non-significant (U’s < 4.05). Fixation frequency on the icon revealed similar results (Section SM8

Table S9).
When looking at proportion of fixation duration on the S&T icon, we again observe a signif-

icant difference (KW = 20.34, p < .001, Table 2), wherein the baseline Motion condition children
fixated proportionally less on the S&T icon in comparison to Motion+ (U = –22.09, p < .001) and
Colour+Reward (U = –21.64, p = .001). There was also a trend for children in the Motion condition
to fixate for proportionally less time on the S&T icon than those in the Colour+ condition (U =
14.12, p = .060), but the difference did not reach significance.

Question textbox AOI. Fixation duration and the percentage fixation duration on the question
textbox AOI was overall low, and equally low across groups (Raw duration: KW = 2.99, p = .394;
Percent: KW = 0.66, p = .882), indicating that the children tended not to read the questions while it
was being narrated. The average fixation duration on the question AOI across conditions was 0.20
s (SD = 0.21) per problem, which is just 2.13% (SD = 2.09) of all fixations; refer to Section SM9

Table SM10 for details within each condition.
Scoreboard AOI. Participants in the Colour+Reward condition fixated on the scoreboard an

average of 0.04 second (SD = 0.05) per problem, which accounts for only 0.05% (SD = 0.07%) of
fixations made during the four gameplay phases. This indicates that the scoreboard as an interface
element did not distract visually from the training task. We did not assess scoreboard fixations
outside of the main gameplay phases (e.g., when the game show host awarded tokens, Figure S1).

Time not fixating. The actual time children spent not fixating on the screen was statistically
different between conditions (KW = 11.75, p = .008, Table 2). Children in the baseline Motion
condition spent less time not fixating on the screen than those in the Motion+ (U = 16.09, p = .024)
and Colour+Reward (U = 17.09, p = .014) conditions, but were similar to the Colour+ condition
(U = 10.49, p = .334). Time spent not fixating on the screen was similar between “+” conditions
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Fig. 4. Association between in-game performance and (A) average significant positive relationship time and
(B) proportion of time spent significant positive relationship, with 95% confidence intervals indicated in the
shaded area.

(U’s < 6.60). However, the difference in percentage of time spent not fixating on the screen between
conditions did not reach significance (KW = 6.44, p = .092). This analysis controls for the fact that
children in the Motion condition generally spent less time across the four phases of gameplay than
others. The trend in this result points to the Colour+ condition possibly spending less time not
fixating the Colour+Reward in this regard.

3.2 Relationship Between S&T Behaviours and in-game Performance

There was a significant positive relationship between in-game performance and average signif-
icant positive relationship time (rho = 0.299, p = .046; Figure 4(A)), as well as between in-game
performance and significant positive relationship as a percentage of total gameplay time (rho =
.483, p = .001; Figure 4(B)). There was no relationship between invalid clicks in science problems
and in-game performance (rho = –0.085, p = .579). Furthermore, there were no relationships be-
tween in-game performance and any AOI fixation measure, nor were there relationships between
time not fixating on the screen (raw and percent) and in-game performance (refer to Section SM10

Table S11).

4 DISCUSSION

This study explored how HCI design decisions impacted children’s implementation of the “signif-
icant positive relationship” instructions as measured through gaze and in-game behaviour, as well
as their performance on science problems. Below, we discuss evidence of (i) the impact of HCI fea-
tures on S&T behaviours, (ii) the relationship between S&T behaviours and in-game performance,
(iii) the application of these findings to the design of an adaptive system to support personalised
training in significant positive relationship, and (iv) the limitations and future directions of this
work.

4.1 Effect of Design Characteristics on S&T Behaviour

First and foremost, the type of interface condition to which children were exposed did not sig-
nificantly impact in-game performance on science problems. We surmise that this is because a
single session of S&T training may not be sufficient to forge a meaningful relationship between
S&T behaviours and actual performance; in previous trials, this training occurred three times per
week over 10 weeks [68, 77]. It is possible that, if children continued to train with these conditions
over a longer period of time, greater differences in performance might be observed, spurred by the
differential S&T behaviours that they generate (elaborated below).
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Secondly, a major finding was that the addition of the mandatory, readiness mechanic through
the “I’m ready to answer!” button (in the three “+” conditions) led to significant increases in
(a) overall time spent in gameplay training, (b) average Secondly, a major finding was time, and
(c) proportion of time spent Secondly, a major finding was during training, compared to the base-
line condition without this feature. This supports our hypothesis that integrating a mechanic that
allows children to indicate when they are ready to answer (like hand-raising) may encourage plan-
ning of, and commitment to, future interactions, and intentions [2, 3], thereby enhancing Secondly,
a major finding was training. It may be argued that the additional time taken to “think” in the “+”
conditions may have resulted from the extra step needed to click the “I’m ready” button. The “+”
conditions generated significantly more fixations on the Secondly, a major finding was icon than
the baseline condition, so a greater proportion of fixations was diverted away from answer objects,
which may be considered a deficit of the readiness mechanic. However, participants in the Motion
condition differed from others, on average, by 4–5 seconds of S&T time each problem, which is
more than what would be reasonably expected from having to click a button—and is longer than
the additional 1–2 seconds diverted by the S&T/I’m ready icon AOI in the “+” conditions. As such,
we feel that this additional S&T was representative of true “thinking” time.
Thirdly, the comparison of Motion+ and Colour+ revealed that the use of symbolic colour and

motion were equally effective at promoting S&T behaviours. Both conditions encouraged similar
average S&T times and fixation duration on answer objects, suggesting that they were equally
effective at focusing children on the S&T task. Interestingly, the two conditions also prompted
similar fixations on the S&T icon, meaning that, contrary to some research [8], the motion of the
icon inMotion+ did not distract in an obvious way from the thinking task. This might be explained
by children acclimatising to the motion with practice or that, because the icon is a persistent visual
element in the user’s peripheral vision during the S&T mechanic, children’s attention was not
constantly drawn to it [24, 39, 76]. Yet, there may have been an interaction effect between the
use of symbolic colour and readiness mechanic that encouraged better S&T-related fixations. For
instance, the Colour+ condition generated significantly more fixations on answer objects than the
baseline Motion condition, whereas no difference was observed between Motion and Motion+.
Additionally, children in Motion+ spent proportionally more time looking at the S&T icon than
those in the Motion condition, whilst the difference between Colour+ and Motion did not reach
significance. There is a long-standing notion that the “whole is greater than the sum of its parts”
when it comes to interface design, so we may be observing this here [10, 12, 38, 59].

Finally, contrary to our hypothesis, the rewards and penalty system (tokens and bonus mul-
tipliers in Colour+Reward) did not positively impact S&T behaviours in obvious ways. The
Colour+Reward condition generated fewer fixations on answer items in comparison to Colour+,
in which children were exposed to the same stimulus without the reward system. Additionally,
whilst Colour+Reward and Colour+ conditions generated similar fixations on the S&T icon and
similar time not fixated, the Colour+Reward condition performed less well in these metrics in
comparison to the baseline Motion condition, indicating a dampening effect of the reward feature
on the effectiveness of Colour+. These findings would suggest that the reward and penalty system
interfered with this S&T behaviour. This is dissimilar to [58] who found that the visibility of time
pressure/scoring in a maths game increased children’s eye-fixations on problem-relevant features
(e.g., question and answer elements). We attribute the increased fixations on the S&T icon to an
increased level of excitement generated by the scoring mechanic, that moved children towards
more frequently checking for the presence of the “I’m ready” button (attached to the icon) and
subsequent ability to play. However, it is possible that this behaviour may have remedied itself
over several play-sessions; perhaps participants did not have enough exposure to the scoring me-
chanic over the 12-minute playtime to develop an appreciation of its value [48, 49], or apply it
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in competitive scenarios [36]. Contrastingly, perhaps the penalty of losing the bonus multiplier
upon a wrong answer was not dramatic enough to instil a sense of action-consequence in partic-
ipants [30, 46], thus motivating S&T behaviour. Alternatively, perhaps the scoring mechanic was
ineffective because it did not provide feedback on the S&T behaviour itself, only whether the an-
swer was correct. Feedback is crucial for engaging children in meta-learning [6], so game-based
learning and AI-in-education interventions often use scoring mechanisms and dynamic visual dis-
plays (e.g., in open-learner models) to support learners’ recovery from errors, heighten engage-
ment, and promote reflective thinking [48, 79]. A breadth of research indicates that feedback is
pivotal for successful game-based and self-regulated learning, but how, when, and what content
should be provided as feedback to foster deep learning remains inconclusive [48]. While positive
effects of the reward and penalty system on S&T behaviour were not observed, children in the
Colour+Reward condition nonetheless performed marginally better than those in other condi-
tions on problem accuracy and on proportion of time spent Stop & ThinkS. This begs an additional
metric (e.g., body language, facial expressions) to help explain how other factors, such as motiva-
tion and engagement, which may have been enhanced with the reward/penalty feature, may be
related to performance.

4.2 S&T Behaviours and in-Game Performance

We considered that (i) more time spent Stop & ThinkS, (ii) a greater proportion of training time
spent Stop & ThinkS, (iii) fewer “invalid” clicks before a response was allowed, (iv) more/longer fix-
ations on answer objects, and (v) fewer fixations on the Stop & ThinkS icon, reflected children’s use
of their Stop & ThinkS skills in the task and attempts to follow instructions to “Stop & ThinkS” be-
fore responding. Two of these “S&T behaviours” were found to positively associate with children’s
performance on counterintuitive science problems.
Specifically, the average Stop & ThinkS, as well as the proportion of training time spent Stop &

ThinkS, was significantly correlated with in-game performance on science problems, suggesting
that engaging in Stop & ThinkS heightened children’s chances of success when encountering coun-
terintuitive problems [15, 77]. However, we failed to observe any relationships between gaze data
and performance, which contradicts other research relating gaze to attentional focus [41, 45, 64–
66]. It is unclear why this was the case. Given that performance was strongly correlated with Stop

& ThinkS time, we expected that fixations on answer objects would also be significantly related
to performance, since increased fixations should naturally follow with increased time-on-task. It
could be that children were looking elsewhere than on-screen, but still have been on-task and
“thinking”: we experienced some children looking skyward, closing/squinting their eyes while
thinking. This is reflected by the high percentage of time “not fixated” on the screen. Gestures
and body language are a mechanism for cognitive change and an indication of thinking taking
place [16, 21, 35]. Hence, body language and gestures (not measured in this study) that diverted
children’s eyes away from the screen may account for why fixations on answer objects and other
metrics were not related to performance, while Stop & ThinkS time was.

4.3 Towards an Adaptive System for Stop & Think

Our results indicate three aspects of the game that might be adapted to support personalised S&T
training and aid children in transitioning to un-cued self-regulated learning scenarios: (i) the en-
forced S&T mechanic; (ii) the difficulty of the content or level of support given to the child; and
(iii) the visual cues (e.g., Stop & ThinkS icon). We found that time spent S&T was positively corre-
lated with performance in science problems. An adaptive system might use the player’s average
S&T time together with answer correctness as a measure to calibrate the optimal S&T time and
the level of scaffolding needed (e.g., enforced vs. voluntary Stop & ThinkSmechanic). However, we
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cannot say for certain that longer S&T times necessarily guarantees that children are exercising
S&T; for some new or more advanced topics, it could mean that the child is confused and needs
support, or that their mind is wandering. The adaptive system should seek to differentiate between
players meaningfully engaging in the desired behaviour and being ‘lost’. Calibrating the enforced
S&T mechanic based on children’s average voluntary Stop & ThinkS time and answer correctness
to infer S&T engagement may be sufficient to simplistically adapt hints or adjust content difficulty.
However, gaining an understanding of relationships between gameplay, S&T behaviour, and per-
formance over time (i.e. repeated exposure to Stop & ThinkS training tasks) is likely to require
the application of machine learning, e.g., hidden Markov models [74]—an approach that we are
presently exploring.
Finally, the fixation data for the baseline Motion condition suggests that participants glanced

at the S&T icon but did not focus their attention on it (average total fixation duration was
0.3 seconds per problem). Thus, it seems participants used the icon as intended, as a reference
for thinking and interaction phases of gameplay. By gauging when learners become more adept
at Stop & ThinkS behaviour and less reliant on cues, an adaptive system should, ideally, scaffold
away the S&T icon and the “I’m ready” button to transition children to performing S&T in un-cued
environments, exemplifying self-regulated learning.

4.4 Limitations and Future Directions

While this study successfully highlighted how various design characteristics can influence S&T
behaviour in an individualised, game-based environment, our results come with some limitations.
First and foremost is our relatively small sample size. While 45 participants is larger than many
published eye-tracking studies, e.g., [23, 50, 51, 54, 72], the subgroups based on stimulus condition
are much smaller, yielding non-normally distributed data requiring non-parametric analyses. This
limits our ability to investigate potential confounding factors, such as gender or preferences for
gaming activities.
Secondly, we did not perform a pre-assessment of children’s knowledge and misconceptions

prior to their interaction in Stop & ThinkS because of the priming effect it would have had on
knowledge-recall within the game. However, performing a pre-assessment would have helped to
support assumptions made about the relationships between S&T-related interactions and in-game
problem accuracy.
Thirdly, this study measured Stop & ThinkS behaviour based on interactions with on-screen el-

ements and fixations on interface elements. While time spent S&T was found to be significantly
related to performance on science problems, suggesting that it might be a good measure for re-
flective thinking, the fixation data did not support previously identified relationships between fix-
ations and attentional focus [64–66]. As such, additional metrics for measuring thinking relevant
to the current project should be considered in future work, such as physical gestures, which may
have diverted eye-gaze away from the screen (e.g., looking skyward) or facial expressions, which
may reveal the child’s frustration or confusion [16, 21].

Finally, we looked at S&T behaviours during a single training session in a programme that would
normally take place over 30 sessions (see [68]). We did not measure long-term changes related to
children learning to apply S&T behaviours to science problem-solving in the real world. While our
results are promising in terms of the usefulness of certain HCI features (e.g., readiness mechanic)
in encouraging S&T-use, longitudinal research is needed to fully appreciate their potential effects
on children’s use of S&T skills in out-of-lab—and out-of-game—contexts.
Future longitudinal research might also investigate the possible integration of open-learner

modelling and data visualisations with scoring mechanics, to promote metacognitive competen-
cies and enhance self-regulation in children, as the current research demonstrated a lack of impact
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from a simple accuracy-based reward system. These findings highlight the pressing need for it-
erative HCI design research into the major pedagogical features of any computer-based learning
environment, e.g., the impact of different scoring mechanics and feedback displays.

5 IMPLICATIONS AND CONCLUSION

Computer-based, adaptive, learning environments enable learning to take place either at school
or at home by supporting the unique needs of individual learners. However, the design of these
environments requires careful consideration. This article provides a multidisciplinary perspective
on this issue—the first is from an educational neuroscience perspective, suggesting that training
domain-specific use of S&T improves children’s counterintuitive reasoning, which is critical to
successful self-regulated learning [56, 77]; the second is from a human–computer interactions
perspective, highlighting the acute need to evaluate how the visual and interactive designs of
digital environments support the intended learning or training goals [62, 76]; and the third is from
an artificial intelligence in education perspective, identifying ways in which technology might
adapt to support educational neuroscience training, based on HCI findings.
Unfortunately, these themes are often not explored together in educational research, where the

adaptive, visual, and HCI design of cognitive interventions often receive little attention. Repro-
ducing educational neuroscience laboratory procedures in live classrooms is notoriously difficult,
and many practitioners claim even undesirable, since the partly unpredictable ecology of class-
room settings stands in direct contradiction with the settings of randomised controlled trials and
prescriptive procedures needed to achieve the same outcomes [11]. Computerising such interven-
tions is often seen in psychology and educational neuroscience as a feasible way in which the
consistency of their delivery, and by extension, the desirable learning outcomes may be guaran-
teed more readily, e.g., [53]. However, although computerising interventions is standard practice
in cognitive neuroscience and psychology research, there is a notable and substantial disconnect
between the intervention programmes developed and research in technology-mediated learning,
HCI practices, and adaptive learning environments. This means that many computerised cognitive
interventions lack appropriate interactive and adaptive elements, and often ignore key design and
knowledge engineering principles/methods at the intersection of HCI and artificial intelligence in
education that might be critical to delivering the cognitive neuroscience interventions as intended.
For example, both visualisations and the use of such visualisation as part of adaptive feedback in
an intervention environment are critical in ensuring that any perceptual or priming interference
with the task is reduced to a minimum [62, 76]. This is critical in the contexts such as S&T training
on counterintuitive science and maths concepts, where the perceptual and prior beliefs interfer-
ence has been identified as the main obstacle for the success of such training [5, 13, 37]. We need
to be reminded that the design, rather than the medium of delivery, ultimately predicts learning
outcomes [20, 28]; when cognitive interventions are delivered via interactive technology, such as
games, the design of the HCI and adaptive system are paramount.
This experiment investigated the effect of four interface design characteristics on children’s

application of problem accuracy and on proportion skills in a game-based learning environment,
using behavioural and eye-tracking data. We found that that a readiness mechanic increased
children’s time spent S&T, that persistent motion and symbolic colour were equally effective
at promoting problem accuracy and on proportion related behaviour but that the combination
of symbolic colour and the readiness mechanic may have a cumulative effect, and that the
reward/penalty mechanic may have distracted from the cognitive task or may not have pro-
vided enough detail to effectively promote problem accuracy and on proportion behaviours.
Additionally, children’s time spent S&T (both in raw duration and percent) was related to their
performance on science problems, supporting previous research touting problem accuracy and
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on proportion training to support academic performance [68, 77]. Our results provide insights
about how the problem accuracy and on proportion game should adapt to support the learning
activity, by e.g., adapting enforced problem accuracy and on proportion time and visual thinking
prompts in response to answer accuracy and voluntary problem accuracy and on proportion time
through machine-learning techniques. In conclusion, this work explicitly bridged educational
neuroscience, HCI, and artificial intelligence in education research by acting as an intermediary
step between (a) implementing established educational neuroscience principles in digital educa-
tion, (b) determining which HCI design features best support children’s use of problem accuracy
and on proportion to improve their counterintuitive problem-solving, and (c) conceptualising
how the problem accuracy and on proportion game should adapt to bolster personalised training.
To that effect, it supports the shift in pedagogy towards personalised, technology-mediated, and
self-regulated learning, that we are currently experiencing.
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