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Abstract: Parkinson’s disease is the second most common neurodegenerative disorder in the world. 
Assumed that gait dysfunctions represent a major motor symptom for the pathology, gait analysis can 
provide clinicians quantitative information about the rehabilitation outcome of patients. In this scenario, 
wearable inertial systems for gait analysis can be a valid tool to assess the functional recovery of 
patients in an automatic and quantitative way, helping clinicians in decision making. Aim of the study 
is to evaluate the impact of the short-term rehabilitation on gait and balance of patients with 
Parkinson’s disease. A cohort of 12 patients with Idiopathic Parkinson’s disease performed a gait 
analysis session instrumented by a wearable inertial system for gait analysis: Opal System, by APDM 
Inc., with spatial and temporal parameters being analyzed through a statistic and machine learning 
approach. Six out of fourteen motion parameters exhibited a statistically significant difference between 
the measurements at admission and at discharge of the patients, while the machine learning analysis 
confirmed the separability of the two phases in terms of Accuracy and Area under the Receiving 
Operating Characteristic Curve. The rehabilitation treatment especially improved the motion 
parameters related to the gait. The study shows the positive impact on the gait of a short-term 
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rehabilitation in patients with Parkinson’s disease and the feasibility of the wearable inertial devices, 
that are increasingly spreading in clinical practice, to quantitatively assess the gait improvement. 

Keywords: gait analysis; machine learning; Parkinson’s disease; short-term rehabilitation; wearable 
inertial device 

 

1. Introduction  

Parkinson’s Disease (PD) is a neurodegenerative, progressive and age-related disorder, which 
usually starts between age 30 and 60. It occurs in about 1% of the population aged over 60 and its 
prevalence increases in the elderly. Around 20% of people over 80 have parkinsonism, a clinical 
syndrome characterized–in various combinations–by tremor, bradykinesia, rigidity, and postural 
instability [1]. PD is the second most common neurodegenerative disease after Alzheimer disease, and 
may be less common in population of Asian or African origin, and more common in men than in 
women [2]. As the life expectancy of the world population increases, prevalence and incidence of PD 
are expected to double by 2030 [3]. Neuropathological hallmarks of PD include selective loss of 
dopaminergic neurons in the Substantia Nigra pars compacta of the central nervous system [4], the 
absence of dopamine in the circuit of the basal ganglia leading to the loss of automatic gait [5] and the 
presence of Lewy bodies containing alpha-synuclein in several brain regions [6]. PD clinical features 
include both motor symptoms, such as bradykinesia, akinesia, freezing, resting tremor, rigidity, gait 
and stability impairment [7,8], and non-motor symptoms, such as cognitive impairment, depression, 
anxiety, psychosis and constipation. However, gait and posture disorders remain the most 
discriminating features of the pathology [7,9]; in fact, gait dysfunctions represent a major motor 
symptom in PD and have been associated with an increased risk for falls and immobility, which in turn 
contributes to greater disability, institutionalization with consequent increases in healthcare costs, and, 
ultimately, death [10]. As the disease progresses, these gait disorders become more pronounced; in fact, 
initially these can disable patients and severely limit their quality of life [11], while later these can lead 
to rapid loss of independency and reduced survival between 5.3 to 9.7 years from the onset of 
symptoms [12]. 

In this scenario, the evaluation of PD patients gait analysis represents a valid tool to monitor both 
the evolution of the disease and the improvements following pharmacological therapy and/or 
functional rehabilitation in terms of gait and posture in a quantitative way. Conventional gait analysis 
records spatiotemporal and kinematics parameters of the gait cycle during a specific gait protocol; this 
strategy results a quick and reliable tool to measure walking and balance performances of patients. 
Several instruments have been adopted over years to effectively collect spatiotemporal and kinematics 
parameters during patients’ gait. Undoubtedly, the gold standard has been represented by three-
dimensional motion capture systems and force plates; nevertheless, these instruments have 
demonstrated expensive to acquire and operate and, therefore, often unfeasible for clinical use. Thus, 
there have been the necessity to find and study alternative low-cost solutions; in this scenario, previous 
studies have demonstrated e-textile socks [13–15], KinectTM [16], Wii Fit [17] and even webcams–
which demonstrated useful for clinicians to perform quantitative assessments, despite their intrinsic 
limitations–allowed to achieve significant results. Nevertheless, even the use of wearable inertial 
systems for gait analysis–which are spreading in several fields [18–21], included the rehabilitation 
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setting [22–24]–have demonstrated as an alternative cost-effective solution. In fact, the development 
of inertial measurement units (IMUs) for kinematic assessments have been a major technological 
advancement in both the biomechanics and wearable sensors fields. In this scenario, IMUs have 
demonstrated a set of significant advantages, e.g., IMUs are relatively inexpensive, allow a virtually 
unlimited number of steps to be evaluated, present a lower complexity of the experimental setup and 
reduce the time required for the examinations. These advantages explain the rapid spreading of these 
devices even in the clinical field. In recent years, the assessment of the rehabilitation outcome of PD 
patients using the–previously described–advanced instruments has been establishing in clinical 
practice; it is not by chance if the traditional, subjective and empirical assessments based on clinical 
scales has lowering their importance in favor of strategies which allow e.g. to evaluate quantitatively, 
eventually through gait analysis instrumentations, the kinematic parameters able to support clinicians 
in the decision making. Moreover, artificial intelligence–through the use of machine learning (ML) 
algorithms–is spreading in the context of the clinical research and, more specifically, in the gait 
analysis field. In this scenario, previous research aimed even to distinguish motor disorders by means 
of gait analysis and ML. A recent solution has been proposed by De Vos et al. [25] who used a wearable 
inertial system and ML algorithms to discriminate progressive supranuclear palsy from PD. 

Although several contributions in the field have addressed the evaluation of the rehabilitation 
outcome for PD patients, to the authors’ best knowledge, instead, no studies aimed at investigating if 
the effect–demonstrated by kinematic quantitative evaluations–of short-time rehabilitation programs 
could effectively promote objective improvements on both the gait and balance performances of PD 
patients. Therefore, in this paper we statistically assessed the rehabilitation power–evaluating the 
potential mutual quantitative differences of several kinematic parameters extracted using a wearable 
inertial system–of a potential 2-months rehabilitation program for PD patients. Moreover, we even 
performed–as counterchecks– several ML analyses. Specifically, we verified the overall improvement 
of patients studying the degree of separability of the two classes–hospitalization and discharge–starting 
from the statistically significant kinematic features computed by the wearable system. Moreover, 
through a feature importance analysis we studied the most informative and predictive kinematic 
features following the short-term rehabilitation. 

2. Materials and methods 

2.1. Wearable inertial system for gait analysis  

A commercial wearable inertial system for gait analysis–Opal System by APDM Inc.–was used 
in this work [26–28]. Opal System is composed of 3 movement monitors, each including a 3 axes 
accelerometer with 14 bits resolution (selectable on different ranges on the basis of the specific use), 
a 3 axes gyroscope with 16 bits resolution and a 3 axes magnetometer with 12 bits resolution. 
Movement monitors or Opal sensors are attachable on subjects using a selection of straps and 
wirelessly connected by Bluetooth 3.0 to a remote laptop running the Mobility Lab software, which is 
able to process all movement data and compute the main kinematic parameters through native 
algorithms. Moreover, the Docking Station allows to charge and configure Opal sensors while the 
Access Point makes possible the communication between the sensors and the laptop (Figure 1). 
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Figure 1. Opal System: Mobility Lab Software, Access Point, Docking Station, a 
movement monitor. Modified with permission from Donisi et al., Sensors; published by 
MDPI, 2021. 

2.2. Study Population 

Table 1. Demographic and clinical characteristics of patients. 

Pt Age Sex Weight Height BMI Fam BERG UPDR III FIM Motor 
1 67 M 94 180 29 No 34 28 59 
2 68 F 70 158 28 No 36 28 60 
3 51 M 90 170 31.8 No 25 26 61 
4 75 M 89 170 30 Yes 20 27 49 
5 72 M 68 170 23.5 No m.v. m.v. 64 
6 60 F 72 167 25.8 No m.v. m.v. 57 
7 73 M 70 170 24.5 No 27 26 m.v. 
8 63 M 74 170 25.6 No 28 m.v. 49 
9 77 M 100 170 34.6 Yes 18 28 49 
10 75 M 89 169 31.1 Yes 30 36 64 
11 64 F 74 155 30.8 Yes 30 29 61 
12 52 M 90 186 26 No 42 21 m.v. 

Abbreviations: Pt = patient; M = Male; F = Female; BMI = Body Max Index; Fam = Familiarity; BERG = Berg 

Balance Scale; UPDRS III = Unified Parkinson’s Disease Rating Scale (Motor Examination); FIM Motor = 

Functional Independence Measure (Motor Examination); m.v. = missing value. 

Forty-two PD patients undergoing a rehabilitation treatment at the Institute of Care and Scientific 
Research of Telese Terme (BN) in Italy were consecutively recruited for the study. Of these, only 12 
patients took part in the study, due to the compliance to the following criteria: 

1) Inclusion Criteria: age between 50 and 80 years old; diagnosis of idiopathic PD; adequate 
compliance and sufficiently stable response to therapy, ability to perform a gait analysis session 
without any support or interruption. 
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2) Exclusion Criteria: secondary Parkinsonism; presence of severe cognitive impairment. 
The patients were analyzed through gait analysis instrumentation at the beginning and at the end 

of the hospitalization (2 months) in order to analyze their rehabilitation outcome in terms of gait and 
balance through the calculation of kinematic parameters. 

All the clinical characteristics of the patients’ cohort are shown in Table 1. 
All the patients gave the informed consent. The local Ethics Committee approved the study, which 

was performed in accordance with the Declaration of Helsinki. 

2.3. Therapeutic interventions 

The patients were assessed within 48 hours from the admission by a neurologist or a physiatrist. 
The physicians and the nurses collected the demographic and clinical data. All the patients but one 
were on levodopa and/or dopa-agonist pharmacological treatment (range of Levodopa Equivalent 
Daily Dose: 0–1464 mg). Following the admission evaluations, the multidisciplinary team defined the 
therapeutic plan, delivered in 2 hours per day sessions, 6 sessions/week, during 6–8 weeks of staying 
at the rehabilitation department. 

The individually tailored neurorehabilitation sessions included physiotherapy sessions 
(cardiovascular warm-up activities, relaxation exercises, muscle stretching, exercise to improve the 
range of motion of spinal, pelvic and scapular joints, exercises to improve the functionality of 
abdominal muscles and postural changes in the supine position, exercise to improve balance and gait), 
speech and swallowing therapy, occupational therapy (transfers from sitting to standing, rolling from 
supine to sitting and from sitting to supine, dressing, use of tools, and exercises to improve hand 
functionality and skills) and neuropsychology (cognitive stimulation programs aimed at enhancing the 
cognitive and social functioning of each patient). 

2.4. Study protocol 

All the patients underwent a gait analysis session instrumented by the Opal system with two Opal 
sensors attached to each shin by Velcro straps and one Opal sensor attached to the low back through a 
belt (Figure 2). The gait analysis session consisted in three consecutive trials spaced by a pause of at 
least one minute. Each trial consisted in stand quietly for 30 seconds, walk for 7 meters, turn 180 
degrees around a pin and walk back to the start point (Figure 3). 

The Instrumented Stand and Walk (ISAW) protocol, included in the Mobility Lab software, allows 
to compute several kinematic parameters. In this study, fourteen parameters related to postural sway, 
anticipatory postural adjustment (APA) during step initiation, gait and turning were evaluated and for 
each patient the mean value of the three trials was reported for each motion parameter. The computed 
parameters are listed as follows along with a specific brief description. 

1. Postural Sway: 
 Total Sway Area (m2/s5): area included in the sway trajectory per unit of time; 
 95% Ellipse Sway Area (m2/s5): Area of the 95% confidence ellipse encompassing the sway 

trajectory in the transverse plane. 
2. APA: 
 Duration (s): Time for APA onset to end; 
 First Step Length (degrees): Range of motion of the shank (calculated from the integrated 



7000 

Mathematical Biosciences and Engineering  Volume 18, Issue 5, 6995-7009. 

sagittal angular velocity); 
 First Step Latency (s): Time-to-peak angular velocity of the stepping leg from the APA onset. 

 

Figure 2. Movement Monitor’ placement: 2 Opal sensors attached on the shank (a) and 1 
Opal sensor attached on the back (b). 

 

Figure 3. Study Protocol: Instrumented Stand and Walk (ISAW) provided by the Mobility 
Lab Software. 

3. Gait: 
 Stride Length (%stature): Distance between two consecutive foot falls at the moment of initial 

contacts. Averaged for left and right side. The value is normalized for height; 
 Stride Velocity (%stature/s): Walking speed. Average of the right and left sides. The value is 

normalized for height; 
 Cadence (steps/min): Stepping rate; 
 Gait Cycle Time (s): Duration of a complete gait cycle; 
 Double Support (%): Percentage of a gait cycle that both feet are on the ground; 
 Swing (%): Average percentage of a gait cycle that either foot is off the ground. Average of 

the right and left sides; 
 Stance (%): Average percentage of a gait cycle that either foot is on the ground. Average of 
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the right and left sides. 
4. Turning: 
 Duration (s): Duration of 180° turn; 
 Number of steps (dimensionless): Number of steps during 180° turn. 

2.5. Statistical and machine learning analysis 

Given the low sample size, we performed a nonparametric paired test. Two tailed Wilcoxon 
matched-pairs signed rank tests (95% confidence level) were chosen with the following definition of 
statistical significance: p-value < 0.05. IBM SPSS Statistics (version 26) was employed. The statistical 
tests were performed to find if a statistically significant difference could be ascertained between the 
admission and the discharge of the patients for each kinematic parameter and even for each of the 
following clinical scales: Berg Balance (BERG) Scale, Unified Parkinson Disease Rating Scale 
(UPDRS) III, Functional Independence Measure (FIM) scale. 

Moreover, a ML analysis was carried out to assess the degree of the separability between the 
admission and discharge measurements considering the motion parameters described above. 
Considering the small sample size, our data were doubled through an oversampling technique–
specifically, Synthetic Minority Oversampling Technique (SMOTE) was used–to perform a reliable 
ML analysis [29,30]. Because of the negative impact of irrelevant features on most ML algorithms, a 
filter method feature selection, based on the statistical significance of the features between the 
hospitalization and discharge phases, was carried out. 

In order to assess the degree of separability between the two phases that implies a certain degree 
of clinical improvement we used Accuracy and Area under the Receiving Characteristic curve 
(AUCROC) as evaluation metrics. In fact, Accuracy is an adequate metric considering our dataset is 
perfectly balanced between the two classes, while AUCROC represents the degree or measure of 
separability showing how much the ML model is capable to distinguish between the classes. To 
measure the degree of difference between admission and discharge we implemented four tree-based 
ML algorithms: Random Forest (Ran-F), Rotation Forest (Rot-F), Ada-Boost of Decision Stumps (AB-
DS) and Gradient Boost tree (GB-DT). Tree-based algorithms are the evolution of a simpler decision 
tree made more powerful in classification tasks. 

Ran-F is an ensemble learning based on multiple decision trees. The assignment of a given 
instance vector to a specific class is due to a majority vote of the different decisions provided by each 
three forming the forest [31]. In this paper Information Gain (IG) Ratio was adopted as split criterion; 
no limit about the number of levels (tree depth) was considered and neither the minimum node size 
was set. About the forest options, we set a number of models equal to 100 and we used a static 
random seed. 

Rot-F is an ensemble learning method. It combines the random subspace and bagging approaches 
with principal component feature generation to construct an ensemble of decision trees [32]. In this 
paper, the J48 was considered as basic classifier. Then, we considered a number of iterations equal 
to 10 and as projection filter the Principal Component Analysis (PCA). 

AB-DS is a machine learning meta-algorithm in which the weights are re-assigned to each 
instance, with higher weights to incorrectly classified instances [33]. In this paper, an ensemble of 
decision stumps (decision trees with a single split) was considered. Moreover, we considered a number 
of iterations equal to 10 and a weight threshold equal to 100. 
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GB-DT algorithm aims to minimize the loss function of the model by adding weak learners using 
gradient descent to find a local minimum of a differentiable function [34]. In this paper, the limit 
number of levels (tree depth) was set to 4. About the boosting options, we set a number of models 
equal to 100 and a learning rate equal to 0.1. 

Leave-one-out cross-validation [35] was performed to evaluate the performances of the four 
predictive tree-based models considering the sample size. Moreover, a feature importance by means 
of the calculation of the IG was reported considering only the features which obtained a statistically 
significant difference between the admission and discharge phases (Table 2). IG is an indicator of the 
amount of information provided by each feature [36]. The ML analysis was performed by means of 
the Knime Analytics Platform (Version 4.1.3), a well-known open source software widely used in the 
scientific literature for clinical studies [37–41]. 

3. Results 

Table 2 shows the results of two tailed nonparametric Wilcoxon matched-pairs signed rank tests 
carried out for each spatiotemporal parameter considering the values computed at admission (PRE) 
and discharge (POST). 

Table 2. Wilcoxon matched-pairs signed rank test between Hospitalization (PRE) and 
Discharge (POST) of patients for each spatiotemporal parameter computed by Opal system 
(mean ± standard deviation). 

 PAR PRE POST p-value Normal Range 

POSTURAL 

SWAY 

Total Sway Area 0.01 ± 0.02 0.01 ± 0.02 0.050 (ns) [0.001 ÷ 0.003] 

95% Ellipse Sway 

Area 
0.08 ± 0.12 0.10 ± 0.16 0.583 (ns) [0.001 ÷ 0.026] 

APA 

Duration 0.40 ± 0.16 0.42 ± 0.11 0.638 (ns) [0.33 ÷ 0.552] 

First Step Length 28.9 ± 8.76 35.7 ± 5.74 0.008 (s) [28 ÷ 47.8] 

First Step Latency 0.36 ± 0.09 0.34 ± 0.09 0.594 (ns) [0.212 ÷ 0.398] 

GAIT 

Stride Length 73.0 ± 9.94 78.4 ± 6.26 0.023 (s) n.p. 

Stride Velocity 64.4 ± 10.9 70.9 ± 10.6 0.028 (s) n.p. 

Cadence 110 ± 15.1 110 ± 11.6 0.889 (ns) [106 ÷128] 

Gait Cycle Time 1.15 ± 0.13 1.13 ± 0.13 0.398 (ns) [0.939 ÷ 1.13] 

Double Support 25.8 ± 3.97 23.4 ± 3.13 0.023 (s) [17 ÷ 25.7] 

Swing 37.0 ± 1.99 38.3 ± 1.56 0.023 (s) [37.1 ÷ 41.5] 

Stance 63.0 ± 1.99 61.7 ± 1.56 0.023 (s) [58.5 ÷ 62.9] 

TURN 
Duration 3.49 ± 1.10 3.42 ± 1.28 0.480 (ns) [1.5 ÷ 2.2] 

Number of Steps 7.00 ± 2.74 6.71 ± 2.67 0.470 (ns) [3 ÷ 5] 

Abbreviations: s: significant (p-value < 0.05); ns: not significant (p-value > 0.5); n.p.: not provided. 

Table 3 shows the results of two tailed nonparametric Wilcoxon matched-pairs signed rank test 
considering the score of the three clinical scales used to evaluate–at hospitalization (PRE) and at 
discharge (POST), after two months of rehabilitation treatment–the PD patients clinical picture. 
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Table 3. Wilcoxon matched-pairs signed rank test between Hospitalization (PRE) and 
Discharge (POST) of patients considering the clinical scales. 

 PRE POST p-value 
BERG 29.0 ± 7.21 40.5 ± 6.98 0.005 (s) 
UPDRS III 27.7 ± 3.91 22.4 ± 3.75 0.008 (s) 
FIM Motor 57.3 ± 6.09 71.9 ± 5.93 0.007 (s) 

Abbreviations: s: significant (p-value < 0.05); BERG: Berg Balance Scale; UPDRS III: Unified Parkinson Disease 

Rating Scale (Motor Examination); FIM Motor: Functional Independence Measure (Motor Examination) 

Table 4 shows the results of ML analysis carried out by means of the four tree-based algorithms 
in terms of Accuracy and AUCROC. 

Table 4. Evaluation metric scores of the tree-based ML algorithms. 

ALGORITHMS ACCURACY AUCROC 
Ran-F 0.94 0.99 
Rot-F 0.79 0.90 
AB-RF 0.94 0.94 
GB-DT 0.90 0.84 

Abbreviations: Ran-F: Random Forest; Rot-F: Rotation Forest; AB-RF: Ada-Boost of Random Forest; GB-DT: 

Gradient Boost Tree, AUCROC: Area Under the Receiving Characteristic Curve 

Finally, Figure 4 shows the Feature importance computed by means of the IG considering (see 
Table 2) only the features which resulted statistically significant. 

 

Figure 4. Feature Importance according to the Information Gain. 

4. Discussion 

Our study shows that the short-term rehabilitation treatment induced–on the considered cohort of 
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PD patients–significant improvements in gait more than posture, according to a well-established role 
of rehabilitation in PD treatment [42]. In addition, the results also show how simple spatiotemporal 
parameters of motion analysis can reliably detect the improvements resulting from rehabilitation. 

In patients with PD, Stride Length reduction is considered the most important characteristic of 
gait; this particular case is often coupled with a reduction of Stride Velocity and a tendency towards 
an increase in the duration of Double Support Phase [7,43,44]. Considering the gait related parameters 
of the MobilityLab ISAW test, Double Support, Stance and Swing resulted statistically significant–p-
values = 0.023 (see Table 2)–and improved according to the considerations already mentioned and 
considering the relative normal ranges reported in Table 2. Serrao et al. [45] observed a similar trend 
for these features analyzing the 12 m walk of 36 PD patients whose kinematic parameters were 
computed using an optical system. Even Stride Velocity and Stride Length demonstrated statistically 
significant (p-value = 0.028 and 0.023 respectively). Considering Stride Velocity, the statistical 
analysis has in fact showed that this parameter increased after the rehabilitation treatment from 64.4 
to 70.9 %stature/s in mean value. Bouça-Machado and co-workers [46] showed a similar increment 
for this kinematic parameter, which again resulted statistically significant (p-value = 0.004). Another 
confirmation has also been observed in the paper by Serrao et al. [45] which ascertained Stride Velocity 
increased after a rehabilitation treatment of 10 weeks. Similarly, we observed Stride Length increased 
from 73.0 to 78.4 in mean value; again, Serrao and co-workers [45] confirmed such trend. Finally, the 
same trends–namely, increments for Stride Velocity and Stride Length–were further confirmed by 
Kleiner and co-workers [47] which designed a rehabilitation treatment (based on the use of Automated 
Mechanical Peripheral Stimulation) to quantify the gait spatiotemporal parameters using a single 
inertial sensor. 

Considering the APA related parameters, we found that 1 out of 3–namely, First Step Length–
varied in a statistically significant way (p-value = 0.008) between admission and discharge. Indeed, 
we observed First Step Length passed from a mean value of 28.9 to 35.7 degrees. Differently, none of 
the two parameters considered for Postural Sway and Turn resulted statistically significant using the 
two tailed Wilcoxon test. To the authors’ best knowledge, papers which use a similar methodology are 
still lacking: therefore, our pilot study finds for the first time that the MobilityLab ISAW test and the 
APA related parameter First Step Length would convey information of note for PD patients’ 
rehabilitation outcome.  

Table 3 shows that the clinical scales scores considered in this study improved after the 
rehabilitation treatment, quantitatively corroborating a statistically significant increment of patients’ 
motor recovery. Specifically, for the 12 patients we observed the mean BERG score increased from 29.0 
to 40.5 (p-value = 0.005), UPDRS III mean score passed increased from 27.7 to 22.4 (p-value = 0.008) 
and the FIM Motor mean score increased from 57.3 to 71.9 (p-value = 0.007). Serrao and co-workers [45] 
and Bouça-Machado and co-workers [46] showed a similar trend for the UPDRS III mean score for 
the 36 and 22 patients considered in their studies. 

Several studies proposed in the scientific clinical literature aimed to distinguish patients with PD 
from other forms of parkinsonism or from healthy control [25,48–50], but at the best of our knowledge 
no works used ML to study the rehabilitation outcome of patients after the rehabilitation. 

Finally, ML results further confirmed the positive impact of the short-term rehabilitation 
treatment. In fact, as showed in Table 4, high scores in evaluation metric were achieved both for 
accuracy and AUCROC. It is worth noting conventionally AUCROC values > 0.70 are considered to 
represent a moderate discrimination, values > 0.80 a good discrimination and values > 0.90 an 
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excellent discrimination. Thus, from the outcome of our investigation it is possible to claim that all the 
algorithms, except GB-DT, reached AUCROC values greater than 0.90 confirming the high degree of 
separation between the two classes (namely, PRE and POST). This way to use ML is proposed in other 
works even if in a different field [20]. This finding implies patients’ admission and discharge were 
effectively discriminated by the implemented tree-based ML algorithms, as also underlined by the high 
Accuracy scores, all greater than 0.90 except for the Rot-F algorithm. 

Finally, the features importance by means of the calculation of the IG confirms that (see Figure 4), 
among the statistically significant parameters, Stride Velocity is the feature that determines the 
maximum separation between the two classes, namely PRE and POST. The positive impact of the 
rehabilitation treatment on this parameter is underlined elsewhere [51] and is in line with our result. 

Being aware that this should be considered a preliminary study, the presented findings have 
several intrinsic limitations. Firstly, the exclusion criteria have limited the number of eligible patients 
from 48 to 12; a larger study cohort would have allowed us to collect more data which–we are 
confident–would have corroborated more strongly the presented results. Secondly, two patients out of 
the 12 were not perfectly matched with the other ones in terms of age; nevertheless, they were included 
in order to not excessively reduce the study sample considering they were affected by idiopathic PD. 
Thirdly, we presented in this study only a few of the spatiotemporal parameters which can be computed 
using the Opal coupled with the MobilityLab ISAW protocol; further analyses will be needed to verify 
whether other ISAW related parameters could quantify the rehabilitation outcome. Finally, only a 
preliminary ML analysis was performed; the design and implementation of improvements which can 
allow to overcome the previous limitations could extend the possible methodologies and strengthen 
the results. For instance, a larger dataset would limit or exclude data augmentation (i.e., SMOTE) and 
maybe allow to consider a different validation procedure and/or even other ML algorithms. 

5. Conclusions 

The study showed a method to automatically ascertain the short-term rehabilitation outcome of 
patients with PD. The Opal–coupled with the MobilityLab software–was used to compute several 
spatiotemporal parameters–related to the ISAW test–for the PRE and POST classes. The six 
statistically different parameters indicate such methodology can be readily used to corroborate 
clinicians’ evaluations for PD rehabilitation assessment. Furthermore, this methodology could have 
great potential for other applications where the ISAW test–or other tests protocols yet uploaded in the 
MobilityLab–could be used to pursue the same or quite similar goals. 
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