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The article is focused on a hypothesis verification: the higher plants, microalgae and cyanobacteria may be used in bioindication of 
steppe ecosystem restoration dynamics after fires. On the territory of the Askania Nova biosphere reserve (Ukraine) 4 stationary polygons 
were investigated: SP1 – steppe area which had not been exposed to fire for 20 years preceding our study, as well as areas where single fires 
occurred in 2001 (SP2), 2005 (SP3), and a site where fires occurred in 2001 and 2004 (SP4). The investigation revealed the dynamics of 
height and projected area of the higher vegetation according to seasons during two years (2010 and 2011), as well as abundance and biomass 
of microalgae and cyanoprokaryotes in the soil layer by the layer of the depth to 15 cm. It was found that the effects of pyrogenic load re-
main evident for several years after the fires, manifesting in decrease of the height and projected area of herbage, the number and biomass of 
algae and cyanobacteria in the soil, especially to the depth of 5 cm. Multivariate general linear models were used to test the significance of 
the dependence of quantitative characteristics of vegetation, microalgae, and cyanoprokaryotes on environmental predictors (season, year, 
soil layer, and fire). In the model, 75.2% of the grass height variability and 91.6% of the grass projected area variability could be explained by 
the predictors under consideration. In the series SP1 → SP2 → SP3 → SP4 the grass height and projected area decreased. The differences in 
the projected area of the grass stand were most evident in spring. The model explained 89.1% of the variation in abundance and 91.6% of the 
variation in biomass of Bacillariophyceae. The abundance of Bacillariophyceae was greater in the upper soil layer than in the lower layer and 
decreased with depth. The abundance of this group of algae decreased in the series SP1 → SP2 → SP3 → SP4 at depths of 0–5 and 5–
10 cm. Changes in abundances of Chlorophyta, Streptophyta, Heterokontophyta (Xanthophyceae and Eustigmatophyceae) equaling 47.6% 
could also be explained by the model. The abundance of this group of algae was greatest in the upper soil layer. In the upper soil layer, the 
maximum abundance of Chlorophyta, Streptophyta, and Heterokontophyta (Xanthophyceae and Eustigmatophyceae) was recorded for 
Polygon SP1 and the minimum for Polygon SP3. Within the model, 48.0% of the variation in biomass of Chlorophyta, Streptophyta, and 
Heterokontophyta (Xanthophyceae and Eustigmatophyceae) was explained by the environmental predictors. The biomass trend was cohe-
rent with the population trend. A special feature was that there was a significant increase in biomass at 10–15 cm depth at Polygon SP3 
compared to other polygons at this depth. The model was able to explain 61.8% of the variation in abundance and 66.7% of the variation in 
cyanobacteria biomass. The highest abundance of cyanobacteria was found in the upper soil layer of polygon SP1. Somewhat lower num-
bers of cyanobacteria were at polygons SP2 and SP4, and the lowest were found in the upper soil layer at polygon SP3. In turn, the highest 
number of cyanobacteria was found particularly at this polygon in the 5–10 cm layer. The biomass in the 0–5 cm layer was coherent with the 
abundance pattern of this group. The research results confirmed that the quantitative characteristics of the higher vegetation (height and 
projected area) as well as of microalgae and cyanobacteria (abundance and biomass) may be used in bioindication of the dynamics of post-
pyrogenic processes in steppe ecosystems.  

Keywords: grass height and projected area; abundance and biomass of microalgae and cyanobacteria; bioindication.  

Introduction  
 

Ecosystems formed by herbaceous vegetation are widely distributed 
in different continents and in a broad range of climatic conditions (Butter-
bach-Bahl et al., 2011; Zerbo et al., 2016). They provide a wide spectrum 
of ecological services (Smelansky & Tishkov, 2012; Lachashvili et al., 
2017; Leßmeister et al., 2019). The study of their biodiversity, functioning 
regularities, resistance to various factors of natural and anthropogenic ori-
gin is currently considered among the priority scientific problems (Feng & 
Squires, 2020; Siebert et al., 2020; Freitag et al., 2021). The steppe ecosys-
tems of Europe have a special position in the entire diversity of herbaceous 
ecosystems. These are ecosystems dominated by perennial xerophytic 
plants, mainly sod grasses of the geera Stipa, Festuca, Agropyron, Koele-
ria, etc. The diversity of European steppe ecosystems is determined pri-
marily by the heterogeneity of climatic conditions and increasing conti-
nentality in the direction from north-west to south-east. The northernmost 
variant, meadow steppes, is firstly replaced by a strip of true steppes and 
then by desert steppes (Butterbach-Bahl et al., 2011). For true steppes, the 
predominance of herbaceous perennial xerophytes (Stipa capillata L., 
S. ucrainica P. Smirn, S. lessingiana Trin. Et Rupr., Koeleria cristata (L.) 

Pers, Festuca pseudovina Hack. ex Wiesb.) with inclusion of mesophytes 
and xeromesophytes is typical. Currently, the area of natural steppe vege-
tation is greatly modified by the human activity. A huge area of land is 
occupied by agriculture, industry, including mining, pipelines, transport 
routes, etc. As a result, only a small area of steppe natural vegetation has 
survived, mainly in protected areas. The Falz-Fein Biosphere Reserve 
Askania Nova is the largest steppe reserve in Europe (330.3 km2). Its 
history dates back to 1828. The vegetation complexes of the reserve were 
under the reserve regime for a long time, which makes it possible for us to 
consider the steppe ecosystems of the Falz-Fein Biosphere Reserve Aska-
nia Nova as reference ones.  

Despite the strict protection, the steppes of the reserve are periodically 
affected by fires. Fire in herbaceous ecosystems is a quite common phe-
nomenon of both natural and anthropogenic origin. The processes of post-
pyrogenic restoration of such ecosystems are of considerable interest. This 
is important from the perspective of assessing possible losses of biodiver-
sity (Reed-Dustin et al., 2016), reduction of ecosystem productivity (Bates 
et al., 2020), and soil fertility (Allen et al., 2011). Such studies are relevant 
due to the need for developing management strategies for steppe ecosys-
tems after fires (Mata-González et al., 2018; Bates et al., 2019; Davies & 
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Dean, 2019; Nouwakpo et al., 2020). The significant fluctuations in the 
intensity of fires, frequency of their recurrence, seasonality with overlap 
with extreme climatic events (droughts), grazing, etc. considerably com-
plicate the prediction of the post-pyrogenic effects and management of 
ecosystems during the recovery phase (Savadogo et al., 2017). The mana-
gement significance of possible estimates and predictions may be impro-
ved by maximizing the extent of the studies on post-pyrogenic effects at 
the level of different groups of living organisms of steppe ecosystems 
(Kang et al., 2007; Gongalsky et al., 2012; Zaitsev et al., 2014; Muñoz-
Rojas et al., 2016; Tang et al., 2018).  

Vegetation cover plays a special role in assessing the structure and 
functions of ecosystems. The projected area is a fairly simple and informa-
tive indicator of vegetation condition (Bonham & Clark, 2005; Chen et al., 
2009; Zhukov et al., 2019). The projected area is the value of the horizon-
tal projection of aboveground plant organs. Other key ecosystem variables 
such as aboveground biomass, sawfly biomass, and leaf area index (LAI) 
may be reliably estimated using projected area (Chen et al., 2009). 
The projected area of soil vegetation is an important anti-erosion factor 
(Streďanský et al., 2015). Developing a method to accurately determine 
projective vegetation cover to prevent soil erosion is important (Olmstead 
et al., 2004). The eye-catching determinations of projected area are con-
text-dependent and subjective (Rasmussen, 2004), but are still widely used 
in practice (Jensen et al., 2004; Zhukov et al., 2018, 2019). The point-
frame method was also developed (Krebs et al., 2003). This method is 
considered objective and is recommended as a standard protocol, but is 
very time-consuming, usually requiring 2–3 hours for measurements 
within a single site (Chen et al., 2009).  

Cyanobacteria (Cyanoprokaryota, Cyanophyta) are an extremely di-
verse group of prokaryotes. Their adaptive abilities, along with their poten-
tial to survive extreme conditions, make them cosmopolitans. They are 
found in virtually every habitat on Earth where life may exist. Cyanobac-
teria are extremely widespread: in seas, freshwater and hyperhaline water 
bodies, soils, snow and ice, hot springs, aerophytic conditions, etc. (Hoff-
man, 1999; Liu et al., 2016). Cyanobacteria are ranked first on the planet 
in resistance to extreme factors (Rampelotto, 2013). Cyanobacteria are 
characterized by a high ecological plasticity, so they occur in various, 
often even extreme habitats (Soares et al., 2013; Davydov, 2014; Pełecha-
ta et al., 2016), namely, in the marine environment (Hoffman, 1999; En-
gene et al., 2013; Arabadzhy-Tipenko, 2020), freshwater (McGregor 
et al., 2007; Okello et al., 2009; Okhapkin, 2015), soils (Davydov & Pato-
va, 2018; Shekhovtseva & Mal’tseva, 2015; Maltseva et al., 2017; Mal-
tsev & Maltseva, 2018), the biological soil crust, snow, cryoconites, etc. 
(Gaysina et al., 2019). The stress to which algae may be subjected is di-
vided into two types: limiting stress caused by insufficient supplies of 
resources (such as insufficient light or nutrient deficiencies), and destruc-
tive stress (as a result of damage caused by adverse conditions) (Davison 
& Pearson, 1996). Some Cyanobacteria can live in soil and other terrestri-
al habitats, where they are important in the functional processes of ecosys-
tems and nutrient circulation (Whitton & Potts, 2006; Chaurasia, 2015). 
Other species colonize surfaces by attaching to rocks or sediments, some-
times forming microbial mats (Golubic & Seong-Joo, 1999; Stal, 2012). 
The cyanobacteria have an impressive ability to colonize such barren 
substrates as volcanic ash, desert sand, and rocks (Dor & Danin, 1996). 
Another excellent feature of cyanobacteria is their ability to survive ex-
tremely high and low temperatures. Cyanobacteria are inhabitants of hot 
springs (Castenholz, 1977; Ward & Castenholz, 2006), mountain streams 
(Dufford et al., 1987), Arctic and Antarctic lakes (Zakhia et al., 2008), 
snow and ice (Laamanen, 1996). The cyanobacteria also form symbiotic 
associations with animals and plants (Amar Nath Rai, 2018). Cyanobacte-
ria species show different optima with respect to environmental parame-
ters such as temperature, light or nutrient content. Cyanobacteria are very 
well adapted to nutrient-poor conditions and limited light availability 
(Reynolds, 1984).  

Heterokontophyta, Chlorophyta, Streptophyta comprise a numerous 
group of eukaryotic algae found in both aquatic (freshwater and marine) 
and terrestrial ecosystems. From the ecological point of view, this is a 
rather heterogeneous group of algae that includes both stenotopic and 
eurytopic species. They play an important role in the functional processes 
of ecosystems, are of great practical importance and much attention is 

currently paid to the study of their diversity (Mamaeva et al., 2018; Liu 
et al., 2019; Kezlya et al., 2020; Kulikovskiy et al., 2020a, 2020b, 2020c; 
Maltsev et al., 2021a, 2021b).  

In the study, we tested the following hypothesis: the higher plants, 
microalgae and cyanobacteria may be used in bioindication of recovery 
dynamics of the steppe ecosystems after fires. The objective of the study 
was analysis of the impact of fires in steppe ecosystems on the projected 
area and height of grasses, abundance and biomass of soil microalgae and 
Cyanobacteria.  
 
Matherial and methods  
 

The Falz-Fein Biosphere Reserve Askania Nova is located in the 
south of Ukraine in the zone of fescue-feather grass steppes. The mea-
surements of the total projective cover and the height of the grass stand, 
abundance and biomass of soil microalgae and cyanobacteria were con-
ducted seasonally (April, July, October) during 2010–2011 on four statio-
nary polygons (SP) located in steppe ecosystems, where the protection 
regime had been in operation since 1898 (SP1–SP3) and since 1966 
(SP4). SP1 (500 m2 area, block 42) had not been exposed to fire during the 
twenty years preceding our study and was chosen as the control. SP2 (300 
m2 area, block 59), was exposed to fire in 2001. On SP3 (250 m2 area, 
block 42), there was a fire in 2005. On SP4 (500 m2 area, Pivnichna plot) 
there were fires in 2001 and 2004. The projective cover of grasses, taking 
into account all layers, was determined using a square grid of 1 m2 divided 
by twine into separate cells of 10 cm2. On each polygon, to determine the 
projective cover, we laid five 1 m2 recording plots located in the corners of 
the polygon and one in the centre. Projective cover of grasses was ex-
pressed as percentage. The height of each layer was measured with a tape 
measure in each survey plot with the accuracy of 1 cm. Soil samples were 
examined for algae and cyanobacteria. Each sample was formed from 5–
10 individual specimens with an area of 25 cm2 collected randomly within 
the corresponding polygon. A total of 72 soil samples were collected to 
determine the abundance and biomass of algae and cyanobacteria. Algae 
were detected using an optical microscope XSP–128В at the magnifica-
tion × 1000, and using oil immersion. The literature used for identification 
included Ettl & Gärtner (1995, 2014), and others (Ettl, 1978, 1983; 
Krammer & Lange-Bertalot, 1986, 1988; Ettl & Gartner, 1988b, 1988a; 
Komárek & Anagnostidis, 2005; Komárek, 2013). The referential system of 
Cyanobacteria was used in accordance to the reports (Komárek & Anag-
nostidis, 2005; Komárek, 2013), the rest of the groups – according to ‘Syl-
labus of Plant Families’ (Frey, 2015). Cell numbers of algae and cyanobac-
teria were determined by direct counting (Kalinichenko et al., 2018; Fomina, 
2020). This method makes it possible not only to determine the total num-
ber of cells, but also to classify them according to morphological features 
into three groups: Cyanobacteria (first group), Bacillariophyceae (second 
group) and together Chlorophyta, Streptophyta, Xanthophyceae and Eus-
tigmatophyceae from Heterokontophyta (third group). Biomass was de-
termined by the volume-calculation method based on the number of cells 
and their size characteristics. The data were recalculated per 1 gram of 
absolutely dry soil. All measurements were performed in three repetitions.  

Multivariate General Linear Models were used to test the significance 
of the dependence of quantitative characteristics of vegetation on envi-
ronmental predictors (Software package Statistica). Two multivariate 
GLMs were performed. The first multivariate GLM was performed for 
plant cover height and projective cover. The variables season (three le-
vels), year (two levels), polygon (four levels) and season×year, sea-
son×polygon, year×polygon (interaction between predictors) are treated as 
categorical predictors. The second multivariate GLM was performed for 
algae and Cyanobacteria abundance and biomass with the year (two le-
vels), polygon (four levels), soil layer (three levels) and layer×year, 
layer×polygon, layer×polygon (interaction between predictors) as categor-
ical predictors. The Planned Comparisons approach was used to test the 
differences between individual treatments.  
 
Results  
 

The predictors considered were statistically significant for explaining 
the height and projective cover of grass stands (Table 1). Within the mo-
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del, 75.2% of grass height variability can be explained by the considered 
predictors (Radj

2 = 0.75, F = 22.3, P < 0.001). The grass height increased in 
the same manner throughout the growing season (Fig. 1). In 2010, the rate 
of grass height increase during the season was higher than in 2011. In the 
order of polygons SP1 → SP2 → SP3 → SP4, the grass stand height de-
creased. The variation in grass height was most apparent in spring. A total 
of 91.6% of the variability of grass projective cover can be explained by 
the predictors considered (Radj

2 = 0.92, F = 77.7, P < 0.001). The projec-
tive cover reached its maximum in summer. The projective cover was 
higher in 2011 than in 2010. In the order of polygons SP1 → SP2 → SP3 
→ SP4, the projective cover of grasses decreased. The differences in 
projective cover of the grass stand were most pronounced in spring.  

Table 1  
Multivariate GLM results examining the effect of polygon type, season 
and year as predictor on plant coverage height and plant projective cover  

Effect Wilks 
test value F-ratio Effect degree  

of freedom 
Error degree  
of freedom P-level 

Intercept 0.001 45726.70 2 101 <0.001 
Polygon* 0.077        87.30 6 202 <0.001 
Year** 0.672        24.67 2 101 <0.001 
Season*** 0.324        38.51 4 202 <0.001 
Polygon×Year 0.665          7.80 6 202 <0.001 
Season×Polygon 0.254        17.14 12 202 <0.001 
Year×Season 0.712          9.36 4 202 <0.001 
Error 0.001 45726.70 2 101 <0.001 
Note: * – polygon type (SP1–SP4); ** – year (2011 and 2012); *** – season (spring, 
summer, autumn).  
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Fig. 1. The dependence of the plant cover height (сm, a, c) and plant  
projective cover (%, b, d) from the season (c, d), year (a, b) and burn  

effect (c, d): the vertical line indicates the standard deviation (SD)  

The variables considered were statistically significant predictors of the 
abundance and biomass of algae and cyanobacteria (Table 2). Within the 
model, 89.1% of the variation in Bacillariophyceae abundance was ex-
plained (Radj

2 = 0.89, F = 286.2, P < 0.001). The abundance of Bacillario-
phyceae was greater in the upper soil layer than in the lower ones and 
decreased with depth (Fig. 2). The abundance of this group of algae de-
creased in the series SP1 → SP2 → SP3 → SP4 at the depths of 0–5 and 
5–10 cm. At the depth of 10–15 cm the differences in Bacillariophyceae 
abundance were not statistically significantly different. Within the model, 
91.6% of the variation in Bacillariophyceae biomass was explained by the 
considered predictors (Radj

2 = 0.92, F = 379.7, P < 0.001). The highest 
biomass of Bacillariophyceae was in the upper soil layer. The biomass of 
this group of algae was the highest in the SP 1 polygon at the depth of 0–
5 cm. Differences in Bacillariophyceae biomass in other polygons were 
statistically not significant at the same soil depths.  

The 47.6% variation in abundance of Chlorophyta, Streptophyta, He-
terokontophyta (Xanthophyceae and Eustigmatophyceae) can be explai-
ned in the model (Radj

2 = 0.48, F = 32.7, P < 0.001). The abundance of this 
group of algae was greatest in the upper soil layer. In the upper soil layer, 

the maximum abundance of Chlorophyta, Streptophyta, Heterokontophy-
ta (Xanthophyceae and Eustigmatophyceae) was recorded for polygon 
SP1, and the minimum was recorded for polygon SP3. At greater depths, 
differences in the abundance of this group of algae were not statistically 
significantly different within the same soil layer. Within the model, 48.0% 
of the variation in the biomass of Chlorophyta, Streptophyta, Heterokon-
tophyta (Xanthophyceae and Eustigmatophyceae) can be explained by the 
predictors considered (Radj

2 = 0.48, F = 33.2, P < 0.001). The dynamics of 
biomass was coherent with the dynamics of abundance. The peculiarity 
was that at the depth of 10–15 cm in polygon SP3 there was a significant 
increase in biomass compared to other polygons at this depth.  

Table 2  
Multivariate GLM results examining the effect of layer,  
polygon type, season and year as predictor on algae and cyanobacteria  

Effect Wilks 
test value F-ratio Effect degree  

of freedom 
Error degree  
of freedom P-level 

Intercept 0.09 1661.0   6 1043 <0.001 
Layer* 0.09   394.0 12 2086 <0.001 
Season** 0.71     33.2 12 2086 <0.001 
Year*** 0.79     46.7   6 1043 <0.001 
Polygon**** 0.41     59.9 18 2951 <0.001 
Layer×Season 0.63     21.7 24 3640 <0.001 
Layer×Year 0.65     41.8 12 2086 <0.001 
Season×Year 0.69     35.3 12 2086 <0.001 
Layer×Polygon 0.23     50.8 36 4583 – 
Season×Polygon 0.58     16.7 36 4583 – 
Year×Polygon 0.71     20.9 18 2951 – 
Note: * – layer (0–5, 5–10, 10–15 cm); ** – season (spring, summer, autumn); *** – 
year (2011 and 2012); **** – polygon type (SP1–SP4).  
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Fig. 2. Dynamics of abundance (logarithmic data: a – Heterokontophyta 
(Bacillariophyceae), c – Chlorophyta, Streptophyta, Heterokontophyta 

(Xanthophyceae and Eustigmatophyceae), e – Cyanobacteria) and  
biomass (logarithmic data: b – Heterokontophyta (Bacillariophyceae),  
d – Chlorophyta, Streptophyta, Heterokontophyta (Xanthophyceae and  
Eustigmatophyceae), f – Cyanobacteria) as a function of soil layer and 

pyrogenic impact based on the results of the General Linear Model  
(taking into account the impact of season, year, and their interaction);  

the vertical line indicates the standard deviation (SD)  

The model was able to explain 61.8% of the variation in abundance 
and 66.7% of the variation in biomass of Cyanobacteria (Radj

2 = 0.62, F = 
57.2, P < 0.001 and Radj

2 = 0.67, F = 70.6, P < 0.001). The highest abun-
dance of Cyanobacteria was found in the upper soil layer in polygon SP1. 
Somewhat lower abundance of Cyanobacteria was in polygons SP2 and 
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SP4, and the lowest abundance was found in the upper soil layer in poly-
gon SP3. In turn, it was this polygon, in the 5–10 cm layer, where we saw 
the highest Cyanobacteria abundance. Differences in Cyanobacteria bio-
mass in layers 5–10 and 10–15 cm were not statistically significantly 
different in either layers and polygons. The biomass in 0–5 cm layer was 
coherent with the pattern found for the abundance of this group.  
 
Discussion  
 

Fires in herbaceous ecosystems can be both spontaneous, due to natu-
ral or anthropogenic factors, and purposeful, as a regulatory mechanism of 
the management system (Allen et al., 2011; Seger et al., 2014; Bates et al., 
2020; Nouwakpo et al., 2020). Regardless of its origin, the pyrogenic load 
causes changes in ecosystems and, first of all, in the composition and 
structure of the phytosystems. As the studies showed, the pyrogenic im-
pact on the steppe ecosystems continues to manifest itself during the next 
few years in the reduction of the projected area and height of the grass 
stand. This pattern was also recorded earlier (Zedler, 2007; Stavi, 2019). 
The consequence of this is a more pronounced contrast of temperature 
regime and humidity in the post-pyrogenic areas, to which only typically 
steppe species can successfully adapt. The mesophilic component in the 
narrowed ectopic conditions became less important. This is quite consis-
tent with the conclusions that fire changes the course of natural transfor-
mation of the herbaceous ecosystem, associated with the intensification of 
the role of the mesophytic constituent and lignozoic component (Korot-
chenko & Peregrym, 2012). For European steppes, in the absence of large 
ungulates, a tendency towards overgrowth with shrubs and, in some cases, 
with forest trees has been observed (Caragana frutex (L.) K. Koch., 
Rhamnus cathartica L., Acer tataricum L., Prunus stepposa Kotov, Ul-
mus minor Mill., Fraxinus excelsior L.) (Wesche et al., 2016). Fires can 
act as a barrier to the mesophytization of the steppe and allow the steppe 
stages to persist for a longer time. The positive effect of regulated burning 
on the restoration of steppe vegetation has been also noted in the invasion 
of arboreal vegetation into sagebrush steppe communities in North Ame-
rica (Davies & Dean, 2019; Davies et al., 2019; Nouwakpo et al., 2020). 
Our results indicate that the greatest differences in height and projective 
vegetation cover were observed in spring and subsequently during the 
growing season these differences evened out. The spring period is the 
most favourable for the development of mesophilic fraction of flora. 
In spring, the most favourable living conditions are formed for plant spe-
cies that are demanding in terms of water content in soil and are not 
adapted to live in extreme thermal regimes. Obviously, such species are 
most affected by fires. The restoration rate of the mesophilic fraction is 
significantly delayed compared to the restoration rate of the xerophilic 
fraction of the flora.  

The effects of fires in the steppe are not the only changes in the cha-
racteristics of the vegetation, but also the transformation of soil microbial 
communities (Shcherbyna et al., 2017). The fires significantly change the 
properties of the soil as a living environment and affect the soil vegetation 
cover. The grass vegetation significantly affects the light and water regime 
of the soil. In the absence of vegetation cover and dead plant litter, we 
should expect a significant overcooling of the upper soil layers in winter, 
and in summer the soil would be subjected to a significant overheating. 
The vegetation cover also protects the soil from water and wind erosion 
and reduces moisture evaporation. A number of Cyanobacteria species are 
adapted to live at extremely high or low temperatures (Mutalipassi et al., 
2019). A low temperature by itself does not necessarily damage the organ-
ism, but the formation of ice crystals can be fatal to it due to mechanical 
damage or changes in the concentrations of osmotically active solvents 
(Fogg et al., 1973; Fogg, 1999). The stress may occur during sudden 
changes in temperature (Holmstrup et al., 1999; Sinetova & Los, 2016). 
The microclimate temperature in the immediate proximity of the algae can 
differ significantly from the temperature in the broader environment. 
Therefore, it is necessary to distinguish between cooling and freezing. At 
high temperatures, the proximal cause of stress may be oxygen deficiency, 
oxygen being much less soluble in warm water than in cold water (Brook, 
1980; Hemlata & Fatma, 2009).  

In arid ecosystems, the soil surface is covered with biological soil 
crusts (BSC), which are composed of algae and cyanobacteria (Bowker 

et al., 2004; Aguilar et al., 2009; Mager & Thomas, 2011; Dettweiler-
Robinson et al., 2013; Warren et al., 2020). Their importance is associated 
with both a wide range of ecosystem services and the perspective of using 
valuable algae and cyanobacteria as a natural resource for practical use 
(Maltsev et al., 2020), mass production of biomass, preparation of inocu-
lum, and soil inoculation (Liu et al., 2010; Lababpour, 2016; Antoninka 
et al., 2018), monitoring and control of primary successions in various 
man-made ecotopes and sandy habitats (Maestre et al., 2002; Myers & 
Davis, 2003; Barger et al., 2006; Crittenden et al., 2007) and secondary 
successions, including after pyrogenic destruction of various ecosystems 
(Allen et al., 2011; Warren et al., 2015, 2020; Aanderud et al., 2019). 
The biological soil crusts (bio-crusts) are the upper soil communities con-
sisting of many groups of organisms: bacteria, cyanobacteria, microalgae, 
microfungi, mosses, lichens, protozoa and invertebrates (Belnap & Eldrid-
ge, 2001). Closely related to soil particles, these groups provide vital eco-
logical functions in soil ecosystems. They contribute to nutrient cycling, 
increase the soil stability, reduce evaporation, and increase the soil mois-
ture (Chamizo et al., 2016). Globally, biocrusts contribute 40% to 85% of 
biological nitrogen fixation by terrestrial organisms and 15% of global net 
terrestrial primary production (Rodriguez-Caballero et al., 2018). Bio-
crusts are often pioneer communities in ecosystems that are degraded as a 
result of natural or anthropogenic activities, for example, habitats affected 
by fires or that emerged after glacial retreat, mining areas, etc. Biocrusts 
induce the formation of soil and promote the restoration of natural vegeta-
tion (Baumann et al., 2018; Samolov et al., 2020; Tucker et al., 2020). The 
trophic structure of the biocrust determines the quantity and quality of 
nutrients entering the soil. The primary producers, mostly cyanobacteria, 
fix atmospheric carbon and nitrogen, which then become available to 
other soil biota. The soil under the crust can contain more than 300% more 
carbon and 200% more nitrogen than soil without the biocrust (Johnson et 
al., 2007; Pointing & Belnap, 2012). The nutrient enrichment of sub-crust 
soils promotes the localized growth of heterotrophic organisms, including 
bacteria, fungi, and nematodes (McLendon & Redente, 1992; Darby et al., 
2007; Crenshaw et al., 2008). The ecosystemic role of BSC is related first 
of all to the formation of primary organic matter rich in nitrogen due to 
nitrogen-fixing cyanobacteria, provoking activity of heterotrophic micro-
flora, soil animals, improvement of physical and chemical properties of 
soils (Zhang et al., 2006; Aznar et al., 2016). BSC is understood to have an 
effect on the germination ability of seeds of many vascular plant species 
(Rivera-Aguilar et al., 2005; Escudero et al., 2007; Langhans et al., 2009). 
Inhibitory effects of BSC on vascular plant species, especially from arid 
ecosystems, were reported (Prasse & Bornkamm, 2000; Hawkes, 2004). 
Therefore, many researchers emphasize the importance of detailed and 
long-term studies of BSCs and their functional role in biotic and abiotical-
ly changing environments (Aguilar et al., 2009; Mager & Thomas, 2011).  

The development of algal populations is regulated not only by physi-
cal and chemical factors (Richardson et al., 1998), but also biological fac-
tors, such as predation (Maar et al., 2002; Elloumi et al., 2008) and compe-
tition between species (Mallin & Paerl, 1994; Pinckney et al., 1998). 
However, the availability of nutrients remains the main factor controlling 
the composition and biomass of algal communities (Ortega-Mayagoitia 
et al., 2003; López-Flores et al., 2006). These abiotic parameters vary in 
time and directly or indirectly influence the composition and abundance of 
algae flora (Koffi, 2009). As reported earlier, the species composition of 
algae and cyanobacteria of Askania Nova steppe ecosystems changes af-
ter fires (Shcherbyna et al., 2017). The pyrogenic load leads to a decrease 
in the abundance and biomass of algae and cyanobacteria in the soil of 
steppe ecosystems. The most significant changes were observed to the 
depth of 5 cm and persisted for several years after the fire. This indicated a 
rather slow process of recovery of quantitative indicators of algae and 
cyanobacteria communities in BSC after pyrogenic load. Bacillariophy-
ceae were the most abundant (and biomass) both in the control plot and 
the post-pyrogenic plots, with cyanobacteria in the second place. Accor-
ding to other studies, cyanobacteria in steppe and other arid ecosystems 
can exceed other groups of microalgae by abundance (Bu et al., 2014; An-
toninka et al., 2018). At the same time, there are reports that cyanobacteria 
may be more susceptible to fire than other BSC components (Bowker 
et al., 2004). The results show that algae and cyanobacteria are very sensi-
tive to post-pyrogenic loads. A decrease in quantitative indicators was 
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observed, which is also directly related to the change in the volume of their 
ecosystem functions. The extent to which this affects the processes of 
humus accumulation observed under pyrogenic load, the functioning of 
other soil microorganisms, and the biological activity of soils in general 
cannot be unequivocally assessed at this stage of research. This may be the 
subject of further research and be of great importance both for detailing the 
processes of post-pyrogenic transformation of herbaceous ecosystems, 
and for evaluating the totality of consequences when using fires to regulate 
the development of herbaceous ecosystems.  
 
Conclusion  
 

In steppe ecosystems the height and projected area of higher vegeta-
tion, the abundance and biomass of soil microalgae and cyanobacteria 
change significantly after fires. The consequences of pyrogenic load re-
main noticeable for several years, seen in decrease of height and projected 
area of herbage, abundance and biomass of algae and cyanobacteria in the 
soil, especially to the depth of 5 cm. The statistically significant dependen-
cies obtained between the studied characteristics and environmental pre-
dictors (season, year, soil layer, fire) within the framework of multidimen-
sional general linear models confirm that quantitative characteristics of 
higher vegetation (height and projected area), microalgae and cyanobacte-
ria (abundance and biomass), may be used in bioindication of the dyna-
mics of postpyrogenic processes in steppe ecosystems.  
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