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1. Introduction

Large-scale fires that have occurred in recent years 
have proved the need to rearm fire departments with qual-

itatively new equipment. The problem of extinguishing 
large-scale fires is related to two key points: the devel-
opment of highly effective extinguishing substances and 
ways of their delivery to the fire zone. While success in 
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A geometric model of a new meth-
od of delivering fire-extinguishing sub-
stances to a fire zone located at a con-
siderable distance was offered. The 
idea of delivery is based on the mechan-
ical action of throwing. To this end, a 
substance (e.g. extinguishing powder) 
is loaded in a hard shell made as a spe-
cial container. After delivery by means 
of a launcher to a fire zone, the contain-
er has to release the substance which 
will promote fire extinguishing.

The known method of remote deliv-
ery of extinguishing substances uses a 
pneumatic gun with a cylindrical con-
tainer. During delivery, the cylinder 
must rotate around its axis to ensure 
flight stability. The cylinder is rotat-
ed by a special turbine when passing 
through the gun barrel. There are diffi-
culties in regulating the distribution of 
compressed air flows during the turbine 
operation. In addition, the tightness of 
the pneumatic part of the gun should be 
monitored.

The new delivery method uses a 
container in a form of two spaced loads 
similar to a sports dumbbell. The dumb-
bell motion is initiated by simultane-
ous action of explosion-generated puls-
es directed at each of its loads in a 
pre-calculated manner. This results in 
the rotational motion of the container. 
To describe the dynamics of the dumb-
bell motion, a Lagrangian was defined 
and a system of Lagrange differential 
equations of the second kind was set up 
and solved. Examples of modeling tra-
jectories of the centers of masses of the 
dumbbell loads taking into account air 
resistance were given.

The proposed method is planned to 
be a basis of a new fire extinguishing 
technology. This is evidenced by the 
new scheme of launching the dumbbell 
by means of explosion-generated pulses 
of charges of two pyro cartridges. The 
obtained results make it possible to esti-
mate magnitudes of explosion-generat-
ed pulses necessary for throwing and 
corresponding distances of the dumb-
bell delivery
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the development of physical and chemical compositions of 
current extinguishing substances is doubtless, methods of 
their delivery to the fire zone still need to be improved. In 
exceptional cases, fire extinguishing substances are deliv-
ered by air with the help of planes or helicopters or using 
heavy equipment such as “fire tanks”. However, such means 
of delivery of fire-extinguishing substances are not prompt 
and too expensive.

More often, fire extinguishing means are delivered over 
long distances by means of throwing devices like an air gun. 
To do this, the substance (a fire-extinguishing powder) is 
loaded in a special hard shell serving as a container. It is 
destroyed when delivered to the fire site and releases the 
substance thus contributing to fire extinguishing. Gun bar-
rel installations for delivering containers with extinguishing 
substances over long distances is a well-known example of 
this method. The container has a cylindrical form. It is de-
livered to the fire zone with a pneumatic gun as a launcher. 
During its flight, the container must rotate around its axis 
for motion stability. A special turbine is used to spin the 
container when it is propelled through the gun barrel. It 
must be powerful enough to spin the massive container in a 
short time.

According to the proposed method, the container has a 
dumbbell shape, that is, two spaced (for a short distance) 
loads connected by a rod. For stability during its delivery, 
the dumbbell must rotate around its center of masses in a 
vertical plane. The dumbbell motion is initiated due to a 
directed action of calculated explosion-generated pulses 
from the combustion of charge of two pyro cartridges. This 
ensures the rotational motion of the container. It means 
that the “start” of the dumbbell rotation is easier to realize 
compared with the spinning of the cylinder by means of an 
air gun turbine. The explosive is given a shape of a pyro car-
tridge or a pyro bolt. Such devices are safely used in space 
technology. Their designs can be taken as prototypes in 
developing pyrotechnics of the proposed method.

The relevance of the construction of a geometric model 
of a new method of far delivery of extinguishing substances 
in dumbbell-shaped shells is proved as follows. The launcher 
will have a simpler (compared to an air gun) design and will 
not require efforts and money to maintain it in working 
order. Inexpensive pyro cartridges (in comparison with the 
pneumatic system) are used as movers. The container must 
move within a vertical plane up to the end of the flight while 
rotating around its center of masses. This will make it pos-
sible to use the energy of rotation to destroy the container 
at the end of the flight by striking against an obstacle with 
the release of the extinguishant. The considered concept can 
form a basis of a prospective fire extinguishing technology 
with a new way of extinguishant delivery on considerable 
distances.

2. Literature review and problem statement

Large-scale fires include a class of fires characterized 
by large inflaming areas and significant thermal radiation. 
These factors forced to take measures to eliminate fires 
from long distances. In addition to well-known forest fires, 
large-scale fires occur in warehouses and storage facilities, 
at enterprises with flammable and explosive substances, 
airfield facilities, oil and gas production fields, power plants, 
etc. [1, 2]. Fire aircraft are used in special cases.

Firefighting aircraft are designed to extinguish forest 
and other large-scale fires with fire extinguishing liquids 
and firebombs and for spraying reagents on clouds to evoke 
artificial precipitations over a fire zone.

The study [3] is devoted to theoretical issues of remote 
fire extinguishing. Fire-fighting missiles [4], explosion-gen-
erated shock waves [5, 6], and “fire tanks” [7] are used in 
remote fire extinguishing.

The listed means of remote delivery of extinguishing 
substances are used in exceptional cases. Firefighting using 
air guns is a more common method. Peculiarities of using 
air guns are considered in [8]. Analysis of the use of extin-
guishing substances and the methods of their delivery for 
firefighting are considered in [9]. The issue of preliminary 
preparation for the use of remote fire extinguishing measures 
is discussed in [10, 11]. The nature of the hazards that must 
be taken into account when deploying the firefighting equip-
ment is studied in [12]. Studies [13, 14] report determining 
the parameters of fire-extinguishing efficiency of ejecting 
powder mixes from containers in remote fire extinguishing.

The use of an air gun for this purpose [15, 16] can be con-
sidered a prototype of the proposed method of a container’s 
delivery. Studies connected with the design features of a gun 
barrel installation are listed. Movers that deliver cylindrical 
containers with extinguishing substances directly into the 
fire zone are considered. Mechanics of the fire-extinguishing 
action of powder compositions during their emission due to 
container destruction under the action of excess pressure 
created by the products of explosive detonation was quite 
well studied in [17]. Upon entering the fire zone, the contain-
er ruptures under the action of internal forces with a release 
of inert detonation products and powder composition.

It was shown that according to the basics of ballistics, 
a cylinder must rotate around its axis for the stability of 
motion in the process of delivery. In artillery, the spinning of 
the projectiles of a similar design occurs during their move-
ment along the threaded barrel grooves. This gives an initial 
axial rotation of the projectile when it enters the external 
ballistic trajectory. Due to the gyroscopic effect, the pro-
jectile motion gets stabilized. In pneumatic guns, the initial 
pulse of spinning the cylindrical container is ensured by a 
special turbine [15, 16]. However, there are unresolved issues 
related to the reliability of the device for the uniform four-di-
rectional distribution of air flows in the turbine. Each of the 
directions blows compressed air to one of the four chambers 
of the turbine. Compressed air stimulates the translational 
and rotational motion of the container during its travel down 
the gun barrel. In addition to the requirements of uniform 
distribution of compressed air flows, there are requirements 
for ensuring the tightness of the pneumatic unit of the gun. 
Failure to comply with these requirements leads to the in-
sufficient spinning of the massive container. Therefore, the 
cylindrical container may lose its rotation energy in the final 
flight phase. Gliding flight of the container makes it difficult 
to destroy it when the fire zone is reached and the release of 
extinguishant may not occur. Therefore, containers for air 
guns must be additionally provided with explosives for their 
destruction. This complicates the design and increases the 
danger if used. This can be caused by objective difficulties 
associated with providing the required energy of rotation 
of the cylindrical container when launching it with a pneu-
matic gun.

The development of a fundamentally different way of 
extinguishant delivery in a container may be an option of 
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overcoming the relevant difficulties. This approach was 
first described in [18] but the method was not substanti-
ated there.

A container shaped like a sports dumbbell is used in the 
new delivery method. The container must consist of two 
spaced loads. The dumbbell motion is initiated due to the 
simultaneous action of directed explosion-generated pulses 
directed at each of its loads in a pre-calculated manner. As a 
result, the rotational motion of the container is achieved. To 
describe the dynamics of the dumbbell motion, a Lagrangian 
was determined and a system of differential Lagrange equa-
tions of the second kind was set up and solved. Examples of 
modeling trajectories of the center of masses of the dumbbell 
loads taking into account air resistance were given.

The studies of the revolute translational motion of a 
dumbbell in a vertical plane can be attributed to the prob-
lems of technical mechanics. They are devoted to the calcu-
lation of the dynamics of a rigid body with a moving point of 
the center of mass. Koenig’s theorem was used to solve this 
class of problems [19]. An example of an application of the 
theorem is given in [20]. The Koenig’s theorem enables the 
expression of the kinetic energy of the system through the 
kinetic energy of the center of mass. Approximate methods 
are more convenient for engineering calculations. This paper 
presents graph-analytical modeling of the dumbbell trajec-
tory taking into account air resistance. Two concepts of the 
trajectory were used: a calculative one obtained in solving a 
system of differential Lagrange equations of the second kind 
and a theoretical obtained by solving a system of differential 
equations of motion of a point mass when launching at an 
angle to the horizon. The concept of theoretical trajectory is 
characterized, inter alia, by the coefficient of air resistance. 
As a result of the combination of the above concepts, trajec-
tories of motion of a dumbbell and its components were ob-
tained taking into account air resistance. When construct-
ing mathematical models of throwing machines, parameters 
in this study were set in conditional units.

Examples of modeling trajectories of the center of mass 
of the dumbbell loads and the center of mass of the whole 
dumbbell in the process of its rotational motion and images 
of individual phases of the dumbbell rotation in flight were 
given. The obtained results make it possible to estimate dis-
tances of delivery of the dumbbell-shaped container taking 
into account the coefficient of air resistance depending on 
the values of the explosion-generated pulses. All this sug-
gests that it would be appropriate to conduct a study on the 
development of a new method of distant delivery of extin-
guishing substances to the fire zone. At the initial stage, it 
was decided to illustrate such studies on a geometric model.

Thus, as a result of reviewing published data [1–20], 
issues that have not yet been studied by other authors were 
identified. This has allowed us to formulate the following 
study line: suggest a new method of delivering extinguish-
ing substances in a dumbbell-shaped container to a remote 
area. Moreover, the container must perform rotational and 
translational motions until the end of the flight within the 
vertical plane.

3. The aim and objectives of the study

The study objective is to develop a geometric model of a 
new method of delivering extinguishing substances in a hard 
dumbbell-shaped shell to remote fire zones.

To achieve this objective, it was necessary to solve the 
following tasks:

– to substantiate calculations of the methods of throw-
ing loads over long distances on examples of two options of 
trebuchet mechanisms;

– to simulate the rotational motion of dumbbell-shaped 
containers in a vertical plane taking into account air resis-
tance: it will make it possible to use the energy of rotation to 
destroy containers at the end of their flight and release the 
extinguishing substances;

– to propose a scheme of a launcher for realizing rota-
tional motion of the dumbbell-shaped containers in which 
explosion-generated pulses of two pyro cartridges aimed at 
the dumbbell loads should act as movers.

4. Geometric models of throwing units of a trebuchet type 
as a means of delivering loads over long distances

Before presenting the main material, let us consider two 
geometric models of throwing units based on the scheme of 
operation of a mechanism such as a trebuchet [21–23]. Trebu-
chet throwing machines were used in ancient times as a means 
of delivering heavy loads over long distances. These were 
mainly devices for destroying walls of medieval castles. They 
tried to place them at distances inaccessible to arrows of the 
castle archers. To ensure the effective dynamics of the mech-
anism variants, it is necessary to calculate the parameters of 
its elements. This is done within the framework of Lagrange 
mechanics which takes into account kinetic and potential 
energies of the system. As a result of solving the composite 
Lagrange equation of the second kind, the sought trajectory of 
the load on a slingshot was obtained which makes it possible 
to approximate distance of the payload delivery.

4. 1. The geometric model of the trebuchet mechanism 
in which a vehicle is a counterweight load

A model of a mobile throwing unit of trebuchet type 
designed for launching (catapulting) of unmanned aerial ve-
hicles is described in [24, 25]. A similar throwing unit can be 
used to deliver extinguishing substances to a remote fire zone. 
The mechanism design features the use of a vehicle on which 
the throwing unit is fixed as a counterweight. This facilitates 
the mobility of the entire throwing system which dismantles 
compactly and can be transported by a vehicle. To deploy the 
installation in a working state, it is necessary to install metal 
supports and attach to them the trebuchet lever in the form 
of a “rocker”. It is necessary to lift the rear part of the vehicle 
with the help of an electric winch, that is, create a counter-
weight at the short end of the mentioned lever (Fig. 1). The 
scheme of a trebuchet design includes a lever of length l1+l2. A 
lever of length l3 (denoting a slingshot) and a lever of length l4 
(denoting a lever of fastening the counterweight) are hinged 
to it. Loads with masses m1 (car) and m2 (container with an 
extinguishant) are attached to the levers in nodal points.  
The mass m1 will be several orders of magnitude larger than 
the mass m2. For certainty, let the container have a spherical 
shape. When the vehicle is instantly lowered, the container 
with the extinguishant will be given an acceleration for 
throwing [26].

Fig. 1 shows selected generalized coordinates of the 
trebuchet mechanism: angles u(t), v(t), and w(t). To describe 
the trebuchet dynamics, expressions for kinetic (T) and po-
tential (P) energies are used [21–23]:
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where u(t) is the time function of change in the angle of 
deviation from vertical of the lever of length l1+l2; v(t) is 
the function of change in the angle between the levers of  
lengths l4 and l1+l2; w(t) is the function of change in the angle 
between levers of lengths l3 and l1+l2; g=9.81.

Fig. 1. Schematic view of a throwing unit of a trebuchet type 
combined with a vehicle

Using the Lagrangian l=T–P, a system of differential 
Lagrange equations of the second kind is obtained in the 
following form:
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The system of equations (2) is solved numerically using 
the Runge-Kutta method in the Maple environment with the 
following initial conditions: u(0), v(0), w(0), that is, initial 
values of the lever deviation; Du(0), Dv(0), Dw(0) are initial 
rates of change in the deviation angles. Here and further, 
according to the syntax of the maple language, an expression, 
e. g. Dw(0) means the value of the derivative function w(t) 
at time t=0. Using the found approximate solutions for the 
functions u(t), v(t) and w(t) (denote them, U(t), V(t) and 
W(t), respectively, the load trajectory must be built in the 
Cartesian coordinate system xOy according to the formulas:

( ) ( )( ) ( ) ( )( )2 3sin sin ;x t l U t l U t W t= − + −

( ) ( )( ) ( ) ( )( )2 3cos cos .y t l U t l U t W t= − − 		  (3)

That is, for certain time intervals t, the instantaneous 
coordinates of the load in a vertical plane can be determined 
using formulas (3) where there is the system of Cartesian 
coordinates xOy.

The initial phase of the container trajectory before its 
delivery to the fire zone is built in a vertical plane with the 
Cartesian coordinate system xOy using formulas (3).

The following parameter values were selected for the 
test example: the car weight m1=4,000; the container weight 
m2=50; values of parameters: l1=0.65; l2=4.2; l3=2.5; l4=1.5; 
the value of initial conditions u(0)=Pi/2–2; Du(0)=0; 
v(0)=2; Dv(0)=0; w(0)=Pi/8; Dw(0)=0, g=9.81. Time lim-
its of integration of the system of equations (2) 0<t<1.25 (all 
values are given in conditional units).

Fig. 2 shows phase trajectories for functions of general-
ized coordinates, that is, angles u(t), v(t), and w(t). Fig. 3 
shows graphs of rates of change in these angles. Analysis of 
phase trajectories makes it possible to find out some quanti-
tative estimates of the process of load catapulting. Namely, 
the maximum value of rapid change in the angle w(t) will be 
equal to w=80 conditional values which can be considered 
the container velocity at the time of separation from the 
slingshot. At the same time, the change in angles u(t) and 
v(t) will reach the extreme velocity.

a                     b                     с 

Fig. 2. Phase trajectory for parameters:  
a – u(t); b – v(t); c – w(t)

Let us determine the time moment when the container 
will reach maximum velocity. For this purpose, it is neces-
sary to construct a graph of dependence of the rate of change 
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in the angle w on time. Fig. 3 shows a corresponding graph 
where the maximum rate of change in the angle w will occur 
at t=0.62, which is the recommended moment of the contain-
er separation.

a                     b                     с 

Fig. 3. The graph of change in velocities of angles in time:  
a – u(t); b – v(t); c – w(t)

Some qualitative estimates of the process of container 
catapulting can also be illustrated including determination 
of the angle of the container departure after its detachment 
from the slingshot. For this purpose, the program of con-
structing frames of an animated film of the scheme of trebu-
chet action was developed. Fig. 4, a–c shows separate phases 
of motion of its elements. Fig. 4 also shows the trajectory of 
the container center of mass. A computer-animated scheme 
of container catapulting using a vehicle as a counterweight 
is given in [40].

a                     b                     с 

Fig. 4. The obtained images: a – the position of elements 
after start; b – the current phase of throwing; c – the phase 

before the moment of load separation 

The trebuchet parameters were selected so that the final 
phase of the trajectory of the center of mass of the container 
has a rectilinear appearance (Fig. 4). This makes it possible 
to determine the angle of the container departure at the time 
of detachment from the slingshot. To do this, coordinates of 
the endpoints of the trajectory of the container’s center of 
mass must be taken into account.

4. 2. The geometric model of the trebuchet mechanism 
with a vertical displacement of the counterweight load

Here is a diagram of another throwing unit that differs 
from the conditional trebuchet design. The main difference 
is the displacement of the counterweight load vertical-
ly downwards during the throwing process (Fig. 5). The 
considered mechanism is called in literature Floating-Arm 
Trebuchet [27–30].

The structure consists of the main lever of length l0=l1+l2 
to which a lever (or a rope slingshot) of length l3 is hinged. 
A counterweight load of mass m1 is attached to the lever at a 
node point A and the load of container for throwing having 
mass m3 is attached to point D. The mass m1 is chosen to 
be several orders of magnitude greater than the mass m3. 
The counterweight load with point A must move vertically 
downwards along the guides under the action of gravity. In 
this case, the wheel mounted on the lever at point B must 

roll along the horizontal bar of the structure. Then the 
payload m3 will be accelerated causing the effect of throwing 
after its separation from the slingshot.

Fig. 5. The scheme of the Floating-Arm Trebuchet throwing 
mechanism

Fig. 5 shows the Cartesian coordinate system Oxy. Let 
us choose angles u and v as generalized coordinates. They 
will determine functions of change in angles over time, 
namely, changes in the angle u(t) of deviation from the verti-
cal of the lever of length l1+l2 as well as changes in the angle 
v(t) between the horizontal and the lever of length l1+l2. The 
marked points are defined in [27] by coordinates: A(x1, y1); 
B(x2, y2); C(x3, y3); D(x4, y4) where

1 0;x =  1 1 cos ;y l u=
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Then, to describe the dynamics of the Floating-Arm Tre-
buchet, it is necessary to use expressions for kinetic (T) and 
potential (P) energies [27]:
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A system of Lagrange equations of the second kind was 
set up using the Lagrangian L=T–P. It is not given here 
because of its cumbersomeness. This system was solved nu-
merically using the Runge-Kutta method in an environment 
of the Maple mathematical processor. Initial conditions u0, 
v0 are initial values of the angles of the lever of deviation; 
Du(0), Dv(0) are initial velocities of change in the angles of 
deviation. Denote the approximate solutions found for the 
functions u(t) and v(t) as U(t) and V(t), respectively. These 
can be expressions in a form of the Maple codes. Then the 
trajectory of the load displacement in the Cartesian coor-
dinate system xOy must be built according to the formulas:

4 1 2 3sin sin cos ;x l U l U l V= − − +
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4 2 3cos sin .y l U l V= − − 			   (6)

Here is a test calculation of the Floating-Arm Trebuchet 
model with parameters m1=2,000; m2=50; l1=3; l2=2.57; 
l3=3.6 and initial conditions u(0)=Pi/4; Du(0)=0; v(0)=0; 
Dv(0)=0. All values are in conditional units.

Fig. 6 shows the functional dependences of the rate of 
change in angles u(t) and v(t) on time. Fig. 7 shows phase 
trajectories for angles u(t) and v(t). Analysis of the graphs 
shows that the maximum rate of change in the angle u(t) will 
be reached at values of t=1.1 and u=3.4. At this point, the rate 
of change in the angle v will be maximum (about 12.5 condi-
tional units) which will allow the payload to gain maximum 
velocity at the time of its separation from the slingshot.

а                                          b 

Fig. 6. The graphs of velocity dependence for:  
a – u(t); b – v(t)

а                                           b 

Fig. 7. Phase trajectory for parameters: a – u(t); b – v(t)

Fig. 8 shows the constructed trajectory of the center of 
masses of the container. With the help of the developed pro-
gram, an animated film of Floating-Arm Trebuchet action 
was created [40]. Some of its frames are shown in Fig. 9.

It should be noted that the Floating-Arm Trebuchet is 
easy for transportation as the counterweight load can be 
fixed on the vertical guideways. A container with water can 
be used as a counterweight.

Mechanisms of trebuchet type are not used in the prac-
tice of real firefighting. But the ideas embedded in their 
design can be useful and implemented in designing a new 
throwing mechanism as demonstrated in this section.

5. Modeling of rotary-translational motion of  
dumbbell-shaped containers in a vertical plane

To ensure the stability of the rotary motion of the 
dumbbell in a vertical plane, it is necessary to impart ro-
tational motion to it. This can be achieved thanks to two 
explosion-generated pulses directed at a load of dumbbells 
in pre-calculated directions.

In the general case, this is the problem of the dynamics 
of a solid body with a moving center of mass. This class of 
problems is solved on the basis of Koenig’s theorem [19]. An 
example of such a solution is given in [20]. Some calculations 
related to the dumbbell motion are given in [33].

Approximate methods are used for engineering calcula-
tions. A variant of the graph analytical method is considered 
in this section.

5. 1. The geometric model of the motion of a dumb-
bell-shaped object under the condition of initiating its 
motion analogously to a pendulum

The origin of the dumbbell motion can be explained us-
ing the pendulum analogy. To do this, consider a mathemati-
cal pendulum of length h with a load A suspended from a sta-
tionary load B. Let the load B be separated from the mount at 
a certain point of the pendulum oscillation. Then the pendu-
lum will lose contact with the fixed point of attachment. Its 
motion will resemble the motion of a gymnast who performs 
a somersault from the crossbar. As a result of separation, 
the newly formed object with two spaced loads will move 
in the form of a combination of translational and rotational 
motions. Moreover, the newly formed object will continue 
to move within the plane of oscillation of the pendulum. At 
the moment of detachment from the fastening, the object of 
the study formally ceases to be a pendulum. Therefore, the 
point of attachment will be called the reference point. Due 
to the presence of loads attached to the pendulum ends, such 
a design should be called a dumbbell (or a dumbbell-shaped 
object) taking the image of a sports dumbbell as a basis.

Let us consider a dumbbell including a weightless rod 
and two loads of masses m1 and m2 at its ends. Distance 
between the centers of masses of the loads is equal to h. 
Suppose that the moving reference point has coordinates 
x=u(t) and y=v(t) in the Cartesian coordinate system Oxy. 
The center of masses of the first load is superposed with a 

moving reference point. The rod performs 
rotational oscillations around the refer-
ence point due to the change in the value 
of the angle w(t).

The problem consists in the devel-
opment of a geometric model of dumb-
bell motion within vertical plane Oxy 
depending on the dumbbell parameters 
and initial conditions. Note that the 
conditions contributing to the dumbbell 
motion can be “explosive” in addition 
to “pendulum”. That is, the motion of 

the dumbbell can occur due to the explosion-generated 
pulses directed at the centers of masses of the dumbbell 
loads. This will be discussed below. It is based on a meth-
od of calculation similar to that described in [31, 32].

Let us consider the Cartesian coordinates Oxy of the 
vertical plane in which the dumbbell should move. Assume 
the angle w(t) formed by the axis of the rod with the axis Oy 
as well as coordinates u(t) and v(t) of displacement of the 

 

  

 

    
 

 

   
 
 

   

 

   
 
 

   
а                             b                              c                              d 

Fig. 8. The obtained images of the throwing phases:  
a – initial; b – current; c – final; d – at the time of load separation
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reference point (Fig. 9) be the generalized coordinates 
of motion.

Fig. 9. A rod with a moving reference point

The motion of the rod is started due to the action of the 
pulse m2 Dw(0) set for the angle of deviation w(t). That is, 
the angle of deviation w(t) is given the initial velocity Dw(0). 
The vector of direction of setting velocities coincides with 
the direction of action of the device pulse on the center of 
masses of the second load directed perpendicular to the axis 
of the dumbbell. Taking into account the momentum veloc-
ity Dw(0) given by pulse, the dumbbell must continue to 
move mechanically. To start the dumbbell motion simultane-
ously with actions of the pulse m2Dw(0), pulses m1Du(0) and 
m1Dv(0) aimed at the reference point with coordinates u(t), 
v(t) can act simultaneously. That is, the reference point can 
be given initial velocities Du(0) or Dv(0) in directions of the 
corresponding coordinates Ox or Oy. Values of all quantities 
are in conditional units.

To describe the dynamics of motion of a dumbbell with 
a moving reference point, it is necessary to set up and solve 
a system of Lagrange equations of the second kind. A La-
grangian for a mathematical pendulum was taken as a basis. 
It is also necessary to add two generalized coordinates in 
a form of functions describing the motion of the reference 
point to the generalized coordinate, that is, angle of the 
pendulum deviation.

First, using generalized coordinates, calculate “virtual” 
coordinates of the reference point:

( ) ( )( ) ( )sin ;x t h w t u t= +

( ) ( )( ) ( )cos .y t h w t v t= − 			   (7)

In the absence of dissipative forces, the description of the 
motion of the dumbbell in a vertical plane can be calculated 
using the Lagrangian L=T–Р. Expressions for kinetic and 
potential energies (g=9.81) take the form: 

2 2 2 2

1 2d d d d
;

2 d d 2 d d
m mu v x y

T
t t t t

          = + + +                    
	   (8)

( )1 22 .P yg m m= − + 		
 
Using the Lagrangian L=T–Р, description of the dumb-

bell motion is obtained in a form of a system of three La-
grange differential equations of the second kind relative to 
the functions u(t), v(t), w(t).

( ) ( )
( )( )

2 2 2
2

2 2 22 2 2

1 2

d d d
cos sin

d d d
sin 2 0;

u w v
m h w m h m h w

t t t
gh w m m

+ + +

+ + =  	 (9)

( ) ( ) ( )
2 2 2

2 2 1 22 2

d d d
sin cos 0;

d d d
w w u

m h w hm w m m
t t t

  + + + =  
	

	

Basic parameters of the dumbbell should be taken into 
account when solving the system of equations (9), namely, 
its length h and values of load masses m1 and m2 and initial 
conditions: the values of initial displacements of the refer-
ence point and the angle of deviation u(0), v(0), w(0). This 
requires values of initial velocities given to the point of dis-
placement and the angle of deviation Du(0), Dv(0), Dw(0).

Taking into account corresponding initial conditions, 
the system of Lagrange equations of the second kind is 
solved by the Runge-Kutta method in the environment of 
the Maple mathematical package. The obtained approximate 
solutions are denoted by symbols U(t), V(t), W(t) which can 
look like a sequence of the Maple codes. Using approximate 
solutions, determine coordinates of the centers of masses of 
the dumbbell loads at time t in the coordinate system Oxy 
chosen in the plane. To do this, use expressions (7) formally 
replacing their lowercase letters with uppercase ones: U in-
stead of u, V instead of v, W instead of w. 

Taking into account the calculated coordinates of the 
centers of masses of the dumbbell loads as a function of time, 
a program of computer animation of the process of dumbbell 
motion was developed. Options of computer animations can 
be found on website [40].

The following are examples of the program execution. The 
dumbbell parameters h=2; m1=1 and m2=1 will be the same 
for them. Recall that according to the syntax of the Maple 
language, expression, e. g. Dw(0), means the value of the de-
rivative function w(t) at time t=0. The calculation options will 
differ in initial conditions. It should be noted in advance that 
it is possible to construct trajectories of the dumbbell loads 
at arbitrary values of instantaneous velocities Dw(0) and 
Du(0)=10 as initial conditions. For example, Fig. 10 shows the 
trajectory of motion for values Dw(0)=18 and Du(0)=13.5.

The disadvantage of a trajectory constructed with arbi-
trary values of instantaneous velocities consists in its asym-
metry relative to half the distance of the dumbbell flight. This 
will lead to a violation of uniformity of the dumbbell rotation 
as evidenced by the irregular shape of the phase trajectory for 
the generalized coordinate v(t) (Fig. 11). Therefore, in the fu-
ture, the trajectories of the dumbbell motion will be depicted 
in conjunction with the corresponding phase trajectory.

Fig. 10. Trajectories of motion for initial conditions: 
w(0)=Pi/2; Dw(0)=18; u(0)=0; Du(0)=13.5; v(0)=0; 

Dv(0)=0; T=2.5

Fig. 11. Phase trajectories for the generalized coordinate v(t) 
corresponding to the values Dw(0)=18 and Du(0)=13.5

 

 

 

 
 

( ) ( ) ( ) ( )
2 2 2

2 2 1 2 1 22 2

d d d
cos sin 2 0.

d d d
w w v
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  + + + + + =  
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Example 1. h=2; m1=1 and m2=1. Fig. 12–16 show tra-
jectories of the dumbbell loads at different values of initial 
conditions. In order not to overload the figure, only one 
instantaneous position of the dumbbell will be condition-
ally marked.

Fig. 12. Plunging trajectories of motion for initial conditions: 
w(0)=Pi/2; Dw(0)=25; u(0)=0; Du(0)=10; v(0)=0;  

Dv(0)=0; T=3.4

Fig. 13. Phase trajectories for the generalized coordinate v(t) 
corresponding to values Dw(0)=25 and Du(0)=10 

Fig. 14. Flat trajectories of motion for initial conditions: 
w(0)=Pi/2; Dw(0)=10; u(0)=0; Du(0)=25; v(0)=0;  

Dv(0)=0; T=1.4

Fig. 15. Trajectories of motion for initial conditions: 
w(0)=Pi/2; Dw(0)=16; u(0)=0; Du(0)=16; v(0)=0;  

Dv(0)=0; T=2.17

Fig. 16. Phase trajectories for a generalized coordinate v(t) 
corresponding to values of Dw(0)=16 and Du(0)=16

The results of Example 1 make it possible to draw the 
following conclusions:

1) a change in places of the values of instantaneous ve-
locities Dw(0)=25 and Du(0)=10 leads to a transition from a 
plunging to a flat method of dumbbell delivery with different 
numbers of the dumbbell rotations;

2) deliver a dumbbell to the distance given in Example 1,  
possibly at the same values of instantaneous velocities 
Dw(0)=16 and Du(0)=16;

3) analysis of the phase trajectory for the generalized 
coordinate v(t) makes it possible to assess the velocities of 
the dumbbell motion.

Example 2. Fig. 17 shows the trajectory of the dumb-
bell motion with three identical initial conditions: instan-
taneous velocities of 9.25 conditional units for parameters 
h=4; m1=1 and m2=1. The phase trajectory of the general-
ized coordinate v(t) corresponding to this case is shown 
in Fig. 18.

Fig. 17. Trajectories of motion for initial conditions 
w(0)=Pi/2; Dw(0)=9.25; u(0)=0; Du(0)=9.25; v(0)=0; 

Dv(0)=9.25

Fig. 18. Phase trajectory of the function v(t) corresponding 
to the values of Dw(0)=Du(0)=Dv(0)=9.25

The considered examples contain geometrical model-
ing of a dumbbell motion as the motion of two separate 
spaced loads (endpoints of a mathematical pendulum). 
This does not quite apply to the dumbbell concept as a 
single whole geometric object. Trajectories of motion of 
just the load center of mass were determined. The trajec-
tory of the center of mass of the dumbbell as a whole can 
be determined indirectly using centers of masses of the 
loads. All this affects the adequacy of geometric model-
ing of the influence of air resistance on the trajectory of 
the entire dumbbell. To get rid of this shortcoming, it is 
necessary to determine the kinetic and potential energy 
of the dumbbell as a whole. Then, the spaced loads will be 
combined energetically. This will lead to more adequate 
computer simulation of the dumbbell motion, and what 
is most important, to an adequate response to initiation 
of its motion with the help of explosion-generated pulses 
of pyro cartridges the action of which is directed at the 
endpoints of the dumbbell including motion with taking 
into account air resistance.
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5. 2. Development of a geometric model of the rota-
tional-translational motion of the dumbbell in space tak-
ing into account air resistance

Here is a calculation variant when the spaced dumbbell 
loads will be interconnected in the form of a dumbbell as an 
object when moving. In this case, trajectories of the centers of 
masses of the loads and the center of mass of the entire dumb-
bell as a whole will be determined. This will have a positive 
effect on the adequacy of geometric modeling of the effect of air 
resistance on the trajectory of movements of the entire dumb-
bell including different values of masses of the dumbbell loads.

Choose the method of modeling the motion within the 
vertical plane of the dumbbell described in [34, 35] as a com-
bination of two spaced loads as a basis. Fig. 19 shows a dia-
gram of the initial position of the dumbbell-shaped container 
in the coordinate system Oxy. The container consists of two 
loads of masses m1 and m2 connected by a weightless rod. The 
center of mass of the first load is located in the origin. The 
center of mass of the second load is located on the axis Ox at 
a distance h from the first load (Fig. 19).

Fig. 19. A diagram of a dumbbell-shaped container

Choose the coordinates x(t) and y(t) of the first load 
as well as the angle w(t) formed by the dumbbell axis and 
the negative part of the axis Oy as generalized coordinates. 
Assume that the explosion-generated pulse Px acts on the 
mass m1 and the pulse Py acts on the mass m2 simultaneously 
with the previous one. Using the symbols, initial position of 
the dumbbell is determined as follows: x(0)=0; Dx(0)=Px; 
y(0)=0; Dy(0)=0; w(0)=0; Dw(0)=Py. Hereinafter, all val-
ues are given in conditional units (g=9.81). Air resistance is 
not taken into account at this stage.

Using the generalized coordinates, calculate “virtual” 
coordinates of the centers of masses: for the first and second 
loads as well as the entire dumbbell as a whole:

( )1 ;x x t=  ( )1 ;y y t=

( )2 sin ;x x t h w= +  ( )2 cos ;y y t h w= −  		  (10)

( ) ( )1 1 2 2 1 2/ ;Cx m x m x m m= + +

( ) ( )1 1 2 2 1 2/ .Cy m y m y m m= + +

To describe rotational motion of the dumbbell, use the 
Lagrangian L=T–Р where kinetic and potential energies are 
calculated as follows [34, 35]:
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( )( )1 2 cos .P m yg m g y h w= + − 		   (12)

The Lagrangian makes it possible to set up a system of 
Lagrange differential equations of the second kind relative 
to the generalized coordinates x(t), y(t) and w(t)
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The system of equations (13) is solved by the numerical 
Runge-Kutta method in the Maple environment. Choose 
the distance h between the centers of masses of the loads, 
load masses m1 and m2 as well as values of initial conditions 
x(0)=0; y(0)=0 and w(0)=Pi/2 as the values of parameters. 
Vary the values of instantaneous velocities Dх(0); Dy(0) 
and Dw(0).

As a result of solving the system of Lagrange equations 
of the second kind, approximate expressions for values of the 
angle W(t) as well as for the coordinates of the first load X(t) 
and Y(t) are obtained in time t. These expressions can be rep-
resented as a sequence of the Maple operators in formulas (10) 
to calculate “virtual” coordinates of the centers of masses.

Here is the sequence of graph-analytical modeling of the 
trajectory of the dumbbell motion taking into account air 
resistance. Two notions of the trajectory will be used.

Call motion of the center of masses of the entire dumbbell 
the calculated trajectory. It is obtained by solving a system 
of Lagrange differential equations of the second kind based 
on the kinetic and potential energies of motion.

Call the curve obtained by solving a system of differ-
ential equations of motion of a point thrown at an angle to 
the horizon the theoretical trajectory. It is characterized by 
the following basic parameters: mass m of the point, angle A 
and velocity V0 of the point departure, and, what is the most 
important, the coefficient K of air resistance.

The relationship of these trajectories is revealed in a se-
quence of such steps.

Step 1. Under the condition of the Lagrangian definition, 
construct two trajectories of the centers of masses of the 
two dumbbell loads after solving the system of the Lagrange 
equations of the second kind and also construct the calculat-
ed trajectory of motion of the center of mass of the dumbbell 
as a whole. Assume that the air resistance is absent, that is, 
the coefficient of air resistance R=0.

Step 2. The obtained image of the calculated trajectory 
of the center of masses of the dumbbell allows one to approx-
imate the angle A of the dumbbell departure as well as the 
range d of its flight. The graphic method of study is used here.

Step 3. Using the compiled Maple program, form the the-
oretical trajectory of the point load and using its analytical 
description, determine (approximately) the launching veloc-
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ity V0 of the dumbbell departure. The analytical method of 
study is used here.

Step 4. Next, a formal substitution should be made: sub-
stitute the theoretical trajectory of the point load for the 
calculated trajectory of the center of masses of the dumbbell 
and use its feature to respond to the effect of the coefficient 
of air resistance.

Step 5. Connect coordinates of the centers of masses of 
the dumbbell loads with corresponding coordinates of the 
theoretical trajectory of the point load. Since the theoretical 
trajectory will react to the change in the coefficient K of 
air resistance, centers of both dumbbell loads will react 
to this. As a result, the trajectory of the dumbbell loads 
is obtained taking into account air resistance.

Let us illustrate this sequence with an example. 
The values of all parameters were presented in con-
ditional values. The parameters were deliberately 
exaggerated for the convenience of illustrating the 
graphics images.

Here is an explanation of the algorithm of “five steps”. 
Suppose we have a dumbbell of length h=5 with the same 
masses m1=25 and m2=25. It is necessary to estimate the 
distance to which one can deliver a dumbbell at values of the 
coefficient of air resistance K=5 or K=10. Initiate the dumb-
bell motion with the following initial conditions: x(0)=0; 
Dх(0)=8.23, y(0)=0; Dy(0)=0 і w(0)=Pi/2, Dw(0)=8.23.

Using the result of solving the system of Lagrange equa-
tions of the second kind, construct the calculated trajectory 
for the value K=0 of the coefficient of air resistance as well 
as the trajectory of the centers of masses of both loads of the 
dumbbell (Fig. 20).

Fig. 20. Trajectories of the centers of masses of the loads in 
the entire dumbbell (flight time: 4.2 sec)

The phase trajectory of the generalized coordinate v(t) 
corresponding to this case for the value of K=0 of the coeffi-
cient of air resistance is shown in Fig. 21. Its shape indicates 
symmetry of trajectories of the centers of mass relative to the 
middle of the distance of the dumbbell delivery. 

Fig. 21. The phase trajectory of the function y(t) which 
corresponds to the values of Dw(0)=Dx(0)=8.23

The calculated trajectory makes it possible to make an 
approximate estimate of the dumbbell flight distance (d=52) 

as well as the angle of its departure (A=1.2 rad). The angle 
was estimated using a specially compiled program.

To calculate velocity V0 of the dumbbell, use the well-
known [36, 37] description of the theoretical flight trajec-
tory of a physical point with mass M and coefficient K of air 
resistance

0 cos 1 exp
;

K t
V M A

M
X

K

  − + −    
= 		  (14)

where M=m1+m2 is the mass of the container; A is the throw 
angle, rad.

Using the compiled program, determine the theoretical 
flight trajectory of a physical point (Fig. 22). To do this, cal-
culate (approximately) velocity V0 of the dumbbell departure 
provided that the calculated trajectory (Fig. 20) and the 
theoretical trajectory (Fig. 22) do not differ by a percentage 
of the value of approximation along the axis Oy. In this ex-
ample, V0=24 conditional units.

Fig. 22. The theoretical trajectory of flight of a physical point

Next, it is necessary to substitute the theoretical tra-
jectory of the point load for the calculated trajectory of the 
center of masses of the dumbbell because the shape of the 
latter is affected by the coefficient of air resistance. To do 
this, connect the coordinates of the centers of masses of the 
dumbbell loads with corresponding coordinates of the theo-
retical trajectory of the point load.

Expressions for calculating coordinates (X1, Y1) of the 
first load depending on coordinates (XC, YC) of the center of 
masses of the dumbbell take the form

2
1

1 2

;C

hm simW
X X

m m
= +

+
 2

1
1 2

cos
,C

hm W
Y Y

m m
= −

+
	 (15)

where m1 and m2 are values of the load masses. Coordi-
nates (X2, Y2) of the second load can be calculated by the 
formulas

2 1 sin ;X X h W= −  2 1 cos ;Y Y h W= + 		  (16)

As a result of these actions, the image of the trajectories 
of the dumbbell loads for the values K=10 and K=15 of the 
coefficients of air resistance are obtained (Fig. 23, 24).

Hence, estimates of dumbbell delivery distances of 52, 
42, and 33 conditional values were obtained at values of both 
explosion-generated pulses of pyro cartridges of 8.23 con-
ditional units and values of the coefficient of air resistance 
K=0; K=5 or K=10. The angle of departure of the dumbbell 
was about 45 deg and the departure velocity was 24 condi-
tional values.
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Fig. 23. Trajectories of the dumbbell displacement for  
the value of K=10 (flight time: 3.7 sec)

Fig. 24. Trajectories of dumbbell displacement for  
the value of K=15 (flight time: 3.5 sec)

The example where values of both explosion-generated 
pulses of pyro cartridges and the load masses are identical 
was considered above. In the following examples, it is nec-
essary to choose various basic values of parameters and be 
convinced that changes in their sizes do not lead to contra-
dictions.

Example 1. The values of both explosion-generated puls-
es of pyro cartridges are the same and masses of loads are 
different. It is h=5 with masses m1=25 and m2=50. The 
dumbbell motion was initiated with the following initial 
conditions: x(0)=0; Dх(0)=16, y(0)=0; Dy(0)=0 and w(0)= 
=Pi/2, Dw(0)=16. The results of geometric modeling are 
given in Fig. 25–27.

Fig. 25. Trajectories of the dumbbell displacement for  
the value of K=0.05 (flight time: 3.6 sec)

Fig. 26. Trajectories of the dumbbell displacement for  
the value of K=10 (flight time: 3.3 sec)

Therefore, the following estimates of dumbbell delivery 
distances were obtained: 42, 32, and 28 conditional values at 
values of both explosion-generated pulses of pyro cartridges 
of 16 conditional units and values of the coefficient of air re-
sistance K=0.05; K=5 or K=10. The angle of departure of the 
dumbbell was about 44.8 deg, and the velocity of departure 

was 21 conditional units. In the case of geometric modeling, 
results similar to the previous ones will be obtained at the 
same values but with masses of m1=50 and m2=25.

Fig. 27. Trajectories of the dumbbell displacement for  
the value of K=15 (flight time: 3.2 sec)

Example 2. The values of both explosion-generated puls-
es of pyro cartridges are different and masses of the loads are 
the same. There is h=5 at masses m1=50 and m2=50. Motion 
of the dumbbell will be initiated with the following initial 
conditions: x(0)=0; Dх(0)=16, y(0)=0; Dy(0)=0 and w(0)= 
=Pi/2, Dw(0)=8.24. The results of geometric modeling are 
shown in Fig. 28–30.

Fig. 28. Trajectories of the dumbbell displacement for  
the value of K=0.05 (flight time: 4.24 sec)

Fig. 29. Trajectories of the dumbbell displacement for  
the value of K=10 (flight time: 4 sec)

Fig. 30. Trajectories of the dumbbell displacement for  
the value of K=15 (flight time: 3.8 sec)

Trajectories of the dumbbell for the same values of 
parameters but with mutually replaced values of explo-
sion-generated pulses of pyro cartridges Dх(0)=8.24 and 
Dw(0)=16 are shown in Fig. 31–33. Interestingly, the flight 
time and delivery distances agree with the previous cases.

Therefore, the following was obtained for masses m1=50 
and m2=50 at values of explosion-generated pulses dх(0)=16 
and dw(0)=8.24 conditional units. When values of the 
coefficient of air resistance K=0.05; K=10 or K=15, corre-
sponding estimates of distances of the dumbbell delivery 
were obtained: 60, 48, and 42 conditional units. The angle of 
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departure of the dumbbell was about 45 deg and the depar-
ture velocity was 25 conditional units. In the case of mutual 
replacement of explosion-generated pulses of pyro cartridges 
Dх(0)=8.24 and Dw(0)=16, distances and delivery times 
similar to the previous ones were obtained at the same val-
ues. The difference consists in the more revolutions that the 
dumbbell will make during the flight. A high frequency of 
the dumbbell rotation will cause a buzzer-type signal which 
will contribute to safety.

Fig. 31. Trajectories of the dumbbell displacement for  
the value of K=0.05 (flight time: 4.24 sec)

Fig. 32. Trajectories of the dumbbell displacement for  
the value of K=10 (flight time: 4 sec)

Fig. 33. Trajectories of the dumbbell displacement for  
the value of K=15 (flight time: 3.8 sec)

Example 3. Investigate the effect of the dumbbell length 
h on the trajectory of motion taking into account the coef-
ficient of air resistance K=15 at masses m1=50 and m2=50. 
Motion of the dumbbell will be initiated with the following 
initial conditions: x(0)=0; Dх(0)=27, y(0)=0; Dy(0)=0 and 
w(0)=Pi/2, Dw(0)=5. The results of geometric modeling are 
shown in Fig. 34–36.

Fig. 34. Trajectories of the dumbbell displacement for  
the value of h=3 (flight time: 3.8 sec)

Therefore, the following was obtained for masses m1=50 
and m2=50 at the values of explosion-generated pulses of 
pyro cartridges Dх(0)=27 and Dw(0)=5 conditional units. 

It was shown for the value of the coefficient of air resistance 
was K=15 conditional units that regardless of the dumbbell 
length, delivery distance and the flight time will be the 
same, namely, the distance of 40 conditional values and the 
flight time of 3.8 sec. The angle of the dumbbell departure 
was about 45 degrees and the velocity of departure was  
25 conditional values.

Fig. 35. Trajectories of the dumbbell displacement for  
the value of h=15 (flight time: 3.8 sec)

Fig. 36. Trajectories of the dumbbell displacement for  
the value of h=9 (flight time: 3.8 sec)

5. 3. The scheme of a launcher for the realization of 
rotational motion of the dumbbell-shaped containers

The launcher is designed to initiate the dumbbell mo-
tion in space within the vertical plane. Assume that the 
dumbbell loads have a spherical form. It is proposed to use 
explosion-generated pulses of pyrotechnic devices as movers. 
It is desirable to design the explosive in the form of a pyro 
cartridge (pyro bolt) capable of creating a directed explo-
sion-generated pulse of a predetermined magnitude [38, 39]. 
For this purpose, it is necessary to provide fastening of pyro 
cartridges in the launcher structure and direction of explo-
sion-generated pulses of pyro cartridges to the centers of 
masses of the dumbbell loads. Fig. 37 presents a schematic 
view of the launcher [18]. It has a form of a metal angle with 
two holes shown in the intersection with a vertical plane.

Fig. 37. Schematic view of the launcher in the intersection 
with a normal plane

Before launching, the dumbbell is installed on the ap-
propriate holes. By means of simultaneous action of pyro 
cartridges explosion, pulses Px and Py are formed and the 
dumbbell begins to move in the vertical plane. Its motion 
will have a rotary-translational form and it will rotate 
around the center of masses in its flight. The following no-
tation of conditional values of explosion-generated pulses 
of pyro cartridges with an account of the initial conditions 
discussed above was taken: Px=Dx(0) and Py=Dw(0). The 
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tightness of the contact of spherical surfaces of the dumbbell 
loads with the holes is provided by masses of the loads.

Fig. 38 shows stages of launching a dumbbell and its 
flight in space. Trajectories of motion of the centers of 
masses of two loads as well as the trajectory of motion of the 
center of mass of the whole dumbbell are shown. Animation 
of the start process can be viewed on the website [40].

                      а                                                b

                         c                                             d

Fig. 38. Schematic view of the stages of dumbbell start:  
a – initial position of the dumbbell; b – arrows show 

directions of the explosion-generated pulses of the pyro 
cartridges; c – the initial phase of the flight;  

d – current phase of the flight

The launcher scheme is modifiable, e. g. by making it for 
three types of dumbbell sizes. To this end, it is necessary 
to make three holes in the horizontal part of the scheme 
corresponding to the lengths of three dumbbell types. It is 
also necessary to design special locks for pyro cartridges to 
ensure the safe operation of the launcher. 

It should be noted that there is no need to invest in 
ensuring constant readiness of the launcher to deliver ex-
tinguishing substances at long distances. In addition, such 
a device does not require long-term deployment which is 
especially important for the prompt actions of firefighters.

6. Discussion of the results of computer simulation of  
the motion of a dumbbell container taking into account 

air resistance

The proposed method of remote delivery of extinguish-
ing substances packed in a dumbbell-shaped shell can form 
a basis for a new firefighting technology. This is evidenced 
by the new scheme of launching the dumbbell with explo-
sion-generated pulses of charges of two pyro cartridges.

The obtained results can be explained by the possibility 
of applying the Lagrange variational principle to the calcula-
tion of mechanical structures taking into account kinematic 
connections and the use of energy of a mechanical system. 
It was possible to simulate the motion of a dumbbell taking 
into account air resistance based on a combination of results 
of solving two systems of differential equations, namely, 
the Lagrange equation of the second kind and equations of 
motion of a point mass thrown at an angle to the horizon. 
It was implemented in this study in the form of a five-step 
algorithm.

To implement this method in actual firefighting practice, 
the following main issues should be addressed:

1) select the explosive type and develop measures for its 
safe operation. It is desirable to design the explosive in a form 
of a pyro cartridge (pyro bolt) capable of creating a directed 
explosion-generated pulse of a predetermined magnitude;

2) select the material for the manufacture of the dumb-
bell body. It must be strong enough to resist destruction 
during start-up. On the other hand, it must be easily de-
stroyed in the fire zone from an impact or under the influ-
ence of high temperature;

3) select effective extinguishing substances for delivery 
to the fire area as fillers for container shells. Such substanc-
es may include a fire-extinguishing powder, solid carbon 
dioxide and organometallic compounds, environmentally 
friendly freon, or the like;

4) Develop a user-friendly design of the launcher for re-
mote delivery of containers with extinguishing substances. 
Consider the creation of “batteries” from them, that is, a 
combination of several launchers;

5) develop hardware implementation of a rangefinder to 
measure the distance to the fire zone while calculating the 
required magnitudes of explosion-generated pulses to ensure 
delivery of the extinguishant to this distance;

6) carry out comprehensive tests of the method of de-
livering the substance in dumbbell-shaped shells which will 
provide knowledge of allowable dimensions of the containers 
and the launcher. This will help correctly move from con-
ditional quantities used in the study calculations to actual 
physical units.

Difficulties of carrying out studies in this area are main-
ly related to the use of explosives as a basis for the method of 
delivery of extinguishing substances to a remote fire zone. A 
significant disadvantage of the use of explosives consists in 
an increased danger when using shells with powder charges. 
Therefore, it was believed that the line of developing means 
for delivery of extinguishing substances over long distances 
poses a threat of impact factors during a rupture or destruc-
tion of the projectile. However, such threats can be reduced 
greatly by using pyro cartridges or pyro bolts as explosive 
devices. Their designs have proven to be reliable and safe 
in space applications. However, in the future, it is advisable 
to develop this approach in the direction of other possible 
movers, e.g. pneumatic or hydraulic movers which would use 
compressed air or compressed fluid. Solutions in the field of 
electromagnetic movers also look interesting. This shows the 
way for further studies.

7. Conclusions

1. The method of calculating the process of throwing 
goods over long distances was explained by examples of 
two variants of the trebuchet mechanisms: when the load of 
the counterweight is a vehicle and when the counterweight 
moves vertically. To construct the trajectory of the center of 
mass of the load, it is necessary to determine a Lagrangian 
and taking it as a basis, set up and solve a system of differ-
ential Lagrange equations of the second kind relative to the 
functions of generalized coordinates. The object trajectory is 
formed by coordinates of the points of individual solutions of 
the system of equations.

2. Graphoanalytical modeling of the trajectory of ro-
tational-translational motion of a dumbbell based on a 
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combination of the result of the solution of two systems of 
differential equations was offered, namely, the Lagrangian 
of the second kind and motion of a point mass launched at 
an angle to the horizon. This has allowed us to simulate the 
motion of a dumbbell taking into account air resistance. 
Estimates of the flight range of the dumbbell depending 
on magnitudes of explosion-generated pulses from the car-
tridges as a means of initiating its motion were obtained. 
For example, for masses m1=50 and m2=50, the following 
is obtained at magnitudes of explosion-generated pulses 
dх(0)=16 and dw(0)=8.24 conditional units. For values 
of the coefficient of air resistance K=0.05; K=5 or K=10, 
corresponding estimates of distances of delivery of a dumb-

bell were obtained: 60, 52, and 45 conditional units. The 
angle of departure of the dumbbell was about 45 deg and 
the velocity of departure was 25 conditional values. Rota-
tional motion of the container will make it possible to use 
rotational energy to destroy it at the end of the flight and 
release the extinguishant.

3. A scheme of a launcher for imparting rotational-trans-
lational motion to the container of a dumbbell-shaped form 
was offered. Explosion-generated pulses of two pyro car-
tridges aimed at the dumbbell loads were used as movers. 
The generated frames of computer animation of dumbbell 
motion [40] convince of the adequacy of the geometric model 
of the method of delivery of a dumbbell-like object.
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